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SUMMARY 40 

Fungi and oomycetes are filamentous microorganisms that include a diversity of highly 41 

developed pathogens of plants. These are sophisticated modulators of plant processes that secrete 42 

an arsenal of effector proteins to target multiple host cell compartments and enable parasitic 43 

infection. Genome sequencing revealed complex catalogues of filamentous pathogen effectors 44 

with some species harbouring hundreds of effector genes. Although a large fraction of these 45 

effector genes encode secreted proteins with weak or no sequence similarity to known proteins, 46 

structural studies have revealed unexpected similarities amid the diversity. This article reviews 47 

progress in our understanding of effector structure and function in light of these new insights. 48 

We conclude that there is emerging evidence for multiple pathways of filamentous plant 49 

pathogen effector evolution, but that some families have probably expanded by duplication and 50 

diversification from a common ancestor. Conserved folds, such as the oomycete WY- and the 51 

fungal MAX-domains, are not predictive of the precise function of the effectors but serve as a 52 

chassis to support protein structural integrity, while providing enough plasticity for the effectors 53 

to bind different host proteins and evolve unrelated activities inside host cells. Further effector 54 

evolution and diversification arise via short linear motifs, domain integration and duplications, 55 

and oligomerization.  56 
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INTRODUCTION 57 

Filamentous pathogens (fungi and oomycetes) are the causative agents of some of the world’s 58 

most notorious plant diseases. Left unchecked they can devastate crop harvests, destroy managed 59 

and wild forests, affect supply of ornamental plants and disturb natural ecosystems (1-3). 60 

Perhaps the most famous plant disease outbreak was caused by the oomycete Phytophthora 61 

infestans, which spread to Europe and triggered the 19th century Irish potato famine (4). This 62 

pathogen remains relevant in agriculture today, infecting potato and tomato crops throughout the 63 

world (5). Diseases caused by fungal pathogens, such as rice and wheat blast, and wheat stem 64 

and stripe rust, are of immediate concern for global food security (1, 6, 7). A major factor in the 65 

ability of these filamentous microbes to cause disease on their hosts are effectors, pathogen-66 

encoded proteins that are secreted to either the apoplast or specialized biotrophic interfaces (both 67 

are spaces outside of plant cells), or are translocated inside host cells (8-11). 68 

Effectors act to modulate host cell physiology to promote susceptibility to pathogens. In turn, 69 

plants have evolved cell surface and intracellular receptors to detect the presence of pathogen 70 

signatures and mount an immune response to restrict the progression of disease. Cell surface 71 

receptors typically recognize microbe-associated molecular patterns (MAMPs), derived from 72 

abundant structural components of microbes’ cell walls, or secreted proteins that function as 73 

virulence effectors. Intracellular receptors respond to the presence of translocated effectors 74 

and/or their activity on host cell targets. These intracellular receptors are nucleotide-binding 75 

domain and leucine-rich repeat-containing (NLR) proteins that mediate innate immunity to 76 

pathogens in both plants and animals (recently reviewed in (12)). 77 

One of the defining features of effector proteins, be they of bacterial or filamentous pathogen 78 

origin, is the lack of clear sequence similarity to proteins of known function. This is thought to 79 
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be the consequence of evolutionary pressure that drives rapid diversification of effector activities 80 

in host cells to optimize function and/or avoid recognition by the innate immune system. The 81 

frequent difficulty in recognizing common motifs that indicate function or activity of effectors 82 

may be due to few of them having enzymatic activity, or absence of known domains for direct 83 

interaction with host factors. In addition, many effectors are small proteins of < 15kDa and thus 84 

their rapid diversification would result in loss of sequence similarity. With a few notable 85 

exceptions (the RXLR motif of effectors in some oomycetes being the most prominent), this 86 

sequence diversity has meant it is challenging to confidently produce catalogues of effectors 87 

from filamentous plant pathogen genomes, despite many of these now being available. In some 88 

cases, bioinformatic approaches have been useful in predicting and classifying candidate 89 

effectors from filamentous plant pathogens (13-23). However, it can be challenging to pick the 90 

most relevant proteins to select for further investigation from these lists. These bioinformatic 91 

approaches use some of the commonalities identified among effectors from different organisms, 92 

such as genomic context, presence of a secretion signal, absence of predicted transmembrane 93 

domains, expression patterns, and lack of similarity to known protein domains. Recent advances 94 

in computational prediction of effectors have employed machine learning approaches, which is 95 

proving useful for prioritizing effectors for further study (24). There are also examples of 96 

filamentous plant pathogen effectors that share common sequence motifs with known enzymes, 97 

enzyme inhibitors, sugar-binding proteins, and toxins, with some shown to possess such 98 

activities. 99 

It is well established that protein structure is more conserved than amino acid sequence, and in 100 

many cases this is due to the evolutionary relationship between structure and function (25). The 101 

fact that structural conservation can be a powerful method for functional annotation of proteins is 102 
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a fundamental concept that has driven the development of structure determination as a tool to 103 

understand effector biology of both mammalian and plant pathogens (26, 27). In particular, this 104 

has been important where the lack of sequence similarity to known functional proteins has 105 

prevented prediction of molecular mechanism. 106 

In this review, we focus on recent advances that highlight commonalities shared by filamentous 107 

plant pathogen effectors, focusing on functional similarities with known proteins, on effectors 108 

which cluster into large structurally common but sequence divergent families comprising novel 109 

folds, or those that share structural similarity to proteins of known function. It is timely to review 110 

progress in this area in light of new insights. We conclude that there is emerging evidence for 111 

multiple pathways of filamentous plant pathogen effector evolution, including that some families 112 

appear to have evolved from a common ancestor by duplication and diversification in the 113 

pathogen.  114 
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FILAMENTOUS PLANT PATHOGEN EFFECTORS THAT ENCODE ENZYMES AND 115 

PROTEASE INHIBITORS 116 

Structural studies of a number of bacterial plant pathogenic type III secreted effectors (T3SEs) 117 

have revealed similarity with proteins of known function, which suggested both how these 118 

proteins act, and experiments to test mechanisms (28-31). Remarkably, many of these proteins 119 

appear to be enzymes, encoding the potential to catalyse a wide variety of different reactions, 120 

such as E3 ligation, ADP ribosylation and proteolysis. In several cases, specific enzymatic 121 

activities have been demonstrated for these proteins (32). In contrast, a number of filamentous 122 

plant pathogen effectors have been predicted to have enzymatic activity, but only a few have had 123 

such activities confirmed experimentally. To date, there are no structures of filamentous plant 124 

pathogen effector enzymes, so these predictions typically rely primarily on sequence 125 

comparisons. 126 

 127 

Proteases and protease inhibitors 128 

Analysis of fungal genomes including Zymoseptoria tritici (33), Collectotricum sp. (34), and 129 

Sclerotinia sclerotiorum  (23), identified families of secreted proteases whose expression pattern 130 

supports a putative role as effectors, to promote colonization and growth of the pathogen. 131 

Fusarium oxysporum f. sp. lycopersicum secretes a serine protease, Sep1, and a metalloprotease, 132 

Mep1, that act synergistically to cleave host chitinases, preventing their activity in degrading 133 

fungal cell walls (35). A double mutant of Sep1 and Mep1 showed reduced disease on tomato, 134 

highlighting the importance of these proteins for full virulence. 135 

 136 
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The rice blast fungus Magnaporthe oryzae produces AVR-Pita, an effector with features typical 137 

of zinc metallproteases, including conserved residues known to mediate zinc co-ordination and 138 

catalysis in homologues from other organisms (9, 36). However, to date, actual protease activity 139 

for AVR-Pita has not been demonstrated.  140 

 141 

A remarkable case is the GIP glucanase inhibitors that are proteins secreted by Phytophthora 142 

spp. to inhibit the degradation of pathogen β-1,3/1,6 glucans and release of defense-eliciting 143 

oligosaccharides by host β-1,3 endoglucanases (37, 38). GIPs share significant sequence 144 

similarity with trypsin serine proteases but are predicted to be proteolytically nonfunctional 145 

because they carry mutated catalytic residues. 146 

 147 

Interestingly, filamentous plant pathogens also secrete protease inhibitors, which act on host 148 

pathogenesis-related proteases to prevent their activities. Examples include EPI1 and EPI10 of P. 149 

infestans which carry multiple domains with similarity to the Kazal family of serine protease 150 

inhibitors (39, 40). In addition, the Avr2 effector of the fungal pathogen Cladosporium fulvum 151 

(41), and the P. infestans effectors EPIC1 and EPIC2 (42) are unrelated in sequence but have 152 

convergently evolved to target the same host proteases (43, 44). The oomycete EPIC family of 153 

protease inhibitor effectors have similarity to the widespread cystatin domain (42) whereas C. 154 

fulvum Avr2 is a small cysteine-rich protein without any notable sequence similarity to other 155 

proteins (41). 156 

 157 

Fungal Cmu1, an enzyme interfering with metabolic flux 158 
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The maize smut fungus Ustilago maydis translocates a chorismate mutase, Cmu1, into plant 159 

cells. Cmu1 appears to benefit the pathogen by redirecting metabolic flux of chorismate away 160 

from the biosynthesis of salicylic acid, suppressing accumulation of this defence-related 161 

hormone during infection. Intriguingly, there is evidence to suggest that Cmu1 can move out of 162 

infected cells into neighbouring cells, where the enzyme’s activity can ‘prime’ the host tissue for 163 

infection (45). 164 

 165 

Translocated oomycete effectors include enzymes 166 

Oomycete plant pathogens encode putative enzymes in their effector repertoires. Phytophthora 167 

species have ~300-550 RXLR-type effectors that rarely have sequence similarity to know 168 

enzyme folds. Yet, P. infestans and P. sojae contain a sequence signature suggestive of Nudix 169 

hydrolase (phosphorylase) activity. The P. sojae effector Avr3b has been shown to possess ADP-170 

ribose/NADH pyrophosphorylase activity when expressed and epitope-purified from plant tissue 171 

(46). Further, the virulence activity of Avr3b was dependent on the conserved Nudix motif. 172 

Interestingly, the activity of Avr3b as a Nudix hydrolase is dependent on its modification by 173 

plant cyclophilins; when produced in E. coli, the protein is not active (47). Recently, a putative 174 

Nudix hydrolase effector (AvrM14) has been identified in the flax rust fungus Melampsora lini 175 

(48), but catalytic activity for this protein has yet to be shown.  176 

 177 

In addition to RXLR effectors, Phytophthora species also contain hundreds of ‘Crinkler’ 178 

effectors (CRNs) (13, 16, 49). CRNs are modular proteins, some of which induce cell death on 179 

expression in plant cells (13, 16). One C-terminal CRN domain has significant sequence 180 

similarity to protein Ser/Thr kinases of the RD (Arginine-Aspartate) class. Indeed, P. infestans 181 
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CRN8 was shown to be an active kinase present in an auto-phosphorylated state in plant cells 182 

(50). In planta expression of CRN8 enhanced the growth of P. infestans and this required the 183 

intact RD motif, suggesting that the enzymatic activity of this kinase is relevant for virulence. 184 

 185 

FILAMENTOUS PLANT PATHOGEN EFFECTORS CAN SHARE FOLDS WITH 186 

FUNCTIONALLY SIMILAR PROTEINS 187 

 188 

Chitin-binding LysM effectors 189 

Chitin is a major component of fungal cell walls, and detection of this homopolymer in the 190 

apoplast is used by plants as a strategy for initiating immune responses (51). Plants detect chitin-191 

derived oligosaccharides via cell surface receptors that contain extracellular lysin motif (LysM) 192 

domains. Plant LysM domains comprise ~50 amino acids and adopt an βααβ structural fold (52, 193 

53) (Figure 1). To protect themselves from detection by the plant immune system, fungi use 194 

LysM effectors to sequester chitin oligomers in the apoplast, outcompeting binding by host 195 

receptor domains. The crystal structure of the Cladosporium fulvum Ecp6 confirmed that this 196 

protein contained 3 modular LysM domains (54) (Figure 1). In a strategy to deliver high affinity 197 

ligand interaction, two of the Ecp6 LysM domains (LysM1 and LysM3) dimerise to ‘sandwich’ a 198 

chitin oligomer in a groove via multiple hydrogen bonds and hydrophobic interactions (Figure 199 

1A). To date, this ligand-induced LysM dimerization to increase binding affinity is unique to 200 

Ecp6, and highlights the propensity of pathogen effectors to adapt protein folds to acquire new 201 

activities (51). Interestingly, the ligand-binding capability of the LysM2 domain of Ecp6 was 202 

also shown to interfere with chitin-triggered immunity in planta, but the underlying mechanistic 203 

basis remains unclear (55). 204 
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 205 

Multi-domain LysM effectors are also found in other fungal plant pathogens including the wheat 206 

pathogen Zymoseptoria tritici, and the rice blast pathogen Magnaporthe oryzae, suggesting that 207 

they represent a widespread mechanism for suppression of plant immune system detection. 208 

However, unlike Ecp6, Z. tritici LysM effectors protect fungal hyphae against hydrolysis by host 209 

chitinases, although the mechanism by which they achieve this is not understood (55). 210 

 211 

CBM14-like Avr4 effectors 212 

In a second strategy to evade chitin-mediated recognition by the plant immune system, fungi can 213 

secrete effector proteins that bind to chitin in their cell wall and prevent the action of host 214 

chitinases in generating chito-oligosaccharide fragments. The Cladosporium fulvum effector 215 

Avr4 was predicted to adopt a carbohydrate binding module family 14 (CBM14)-like structure, 216 

based on its disulphide-bond pattern, and in vitro Avr4 protects chitin from hydrolysis by plant 217 

chitinases (56, 57). CBM14 proteins are defined as having chitin-binding activity, with one 218 

characterized as having anti-microbial properties (58). The structure of the CBM14 member 219 

tachycitin, from the horseshoe crab Tachypleus tridentatus, revealed a distorted β-sandwich fold 220 

flanked by short loops and turns, stabilized by disulphide bonds (59). Tachycitin was described 221 

as sharing some structural similarity to a domain found in the plant chitin-binding protein hevein 222 

(60). 223 

 224 

Avr4 homologues are found in a number of plant pathogenic fungal species. Recently, the crystal 225 

structure of Avr4 from the tomato pathogen Pseudocercospora fuligena confirmed that the Avr4 226 

family of effectors does adopt the CBM14-like fold (Figure 2), and this enabled investigation of 227 
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structure-function relationships in chitin-binding by these proteins (61). As predicted for 228 

tachycitin, the chitin binding site of Avr4 is located between two β-strands, and the connecting β-229 

hairpin, and is mediated by aromatic amino acids and adjacent polar residues. 230 

 231 

The evolutionary dynamics of CBM14 family proteins is complex (62). Whilst chitin-binding is 232 

a critical feature of this fold for fungal defence against the plant immune system, it is clear that 233 

other functions can be attributed to the wider family, given that CBM14 proteins occur in non-234 

pathogenic species and have previously been shown to have anti-microbial properties. 235 

 236 

NLPs 237 

NLPs (Necrosis- and ethylene-inducing peptide-1 like proteins) are a large family of secreted 238 

proteins found in plant-associated fungi, oomycetes and bacteria. NLPs were initially 239 

characterized by their ability to induce necrotic cell death in dicotyledonous plants (63), which is 240 

thought to be dependent on toxin-induced host cell damage  (64). However, it is now well 241 

established that not all NLPs share this activity (65, 66). Despite this, both cytotoxic and non-242 

cytotoxic NLPs can trigger cell-surface dependent immune responses in plant cells, and this 243 

activity has been localized to a 24 amino acid peptide (67, 68) recognized by a receptor complex 244 

comprising RLP23/SOBIR-1/BAK1 (69). Clues to the mechanism of NLPs cytolytic activity 245 

came from the crystal structures of NLPs from Pythium aphanidermatum and Moniliophthora 246 

perniciosa (Figure 3), which showed this family of proteins share a fold with the actinoporin 247 

pore-forming toxin stichoysin (64, 70). However, there is no experimental evidence for pore-248 

forming activity by NLPs, and their toxicity may be the result of NLP induced release of 249 

membrane damage factors that are then sensed by the plant (68). Interestingly the 24 amino acid 250 
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peptide, which acts as a MAMP for the activation of plant immunity, is largely buried within the 251 

core of the intact structure, with only a small number of residues displayed on the surface (67). 252 

This suggests that the protein is probably unfolded and/or digested for recognition by the 253 

receptor. 254 

 255 

THE THREE-DIMENSIONAL STRUCTURES OF FILAMENTOUS PLANT 256 

PATHOGEN EFFECTORS SHOW CONSERVED FOLDS WITHIN FAMILIES 257 

 258 

Oomycete effectors and the WY-fold 259 

The RXLR class of host-translocated oomycete effector proteins are defined by the presence of a 260 

conserved N-terminal RXLR motif and a diverse C-terminal domain that exerts effector activity 261 

inside the host cell (16, 71, 72). Analysis of the sequences of the RXLR repertoires of 262 

Phytophthora sojae and Phytophthora ramorum identified conserved motifs which were named 263 

‘W’ (Trp), ‘Y’ (Tyr), and ‘L’ (Leu), after the single letter amino acid code for a highly conserved 264 

residue in each sequence (73). Protein structural analysis subsequently revealed that the amino 265 

acids at the conserved ‘W’ and ‘Y’ positions were buried in the hydrophobic core of a three α-266 

helical bundle, and stacked against one another in an energetically favourable interaction (74) 267 

(Figure 2). Intriguingly, except for the Hyaloperonospora arabidopsidis effector ATR13 (75), 268 

all of the structures of oomycete RXLR effectors that have been determined to date adopt the 269 

‘WY-domain’ fold. Nonetheless, these proteins display significant primary sequence differences. 270 

They also show diverse structural adaptations, including N- and C-terminal extensions, loop 271 

regions, and domain duplication, that give rise to very different overall structures (74, 76-78) 272 

(Figure 2). HMM-sequence searches, based on the knowledge of the WY-domain structure, 273 
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predicted that nearly half of the RXLR effector complement of Phytophthora species would 274 

adopt this fold (74). 275 

 276 

The structure of P. infestans effector PexRD2 is comprised of five α-helices, three of which 277 

contribute to the WY-domain three α-helical bundle (Figure 4A). The additional helices (present 278 

between two helices of the core WY-domain) are instrumental in forming an extensive 279 

homodimeric interface in the PexRD2 structure, consistent with the observation that PexRD2 280 

self-associates in planta. The structures of P. capsici AVR3a4 and AVR3a11 comprise 281 

monomeric four helical bundles (Figure 4B), with an N-terminal helical extension to the WY-282 

domain fold (74). It is possible that the N-terminal helix is important for maintaining the stability 283 

of monomeric, single WY-domain proteins, although this has not been explicitly tested.  284 

 285 

The HMM-based sequence searches mentioned above revealed that these effectors could also 286 

comprise tandemly repeated WY-domains encoded in a single gene. The first crystal structure of 287 

a tandem WY-domain effector was that of ATR1 from Hyaloperonospora arabidopsidis (76) 288 

(Figure 4C). In ATR1, two WY-domains (each with an N-terminal helical extension) are 289 

connected through an additional helix, which acts as a linker. Recently, the crystal structure of 290 

PexRD54 reveals how five WY-domains can pack together in a stable structure with diverse 291 

domain-domain interactions (78) (Figure 4D). Within each of these tandem WY-domain 292 

structures the individual domains can be overlaid with high confidence, despite the limited 293 

sequence identity (76, 78). Interestingly, PexRD54 employs a short linear motif known as the 294 

ATG8 interacting motif (AIM) to engage with a host protein and to exert its virulence activity 295 

(79). The AIM motif is presented at the C-terminus of PexRD54 and is linked to the last WY-296 
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domain via a short helix. The structure of PexRD54 suggests that one function of tandem WY-297 

domains is to serve as a scaffold to present functional motifs for interaction with host proteins. 298 

The WY-domain fold serves as a chassis for evolution of novel functions in oomycete effectors, 299 

while maintaining their structural integrity. The fold presents a flexible platform that supports 300 

effector evolution and diversification via acquisition of short linear motifs, domain duplications 301 

and dimerization. Thus, the WY domain structure is not predictive of the precise function of the 302 

effectors but appears to provide enough plasticity for the effectors to bind different host proteins 303 

and evolve unrelated activities inside host cells.  304 

 305 

MAX effectors of Magnaporthe  306 

Recently, a new family of filamentous plant pathogen effectors has been described that also 307 

shares a conserved common structure, but displays diverse protein sequence. The Magnaporthe 308 

Avrs and ToxB-like (MAX) family was defined following structural work on effectors from the 309 

fungal pathogen M. oryzae, the causal agent of rice blast disease (80). Despite typically sharing 310 

less than 25% sequence identify, each member of this family which has had a structure 311 

determined (80-84), shares a characteristic six-stranded β-sandwich fold (Figure 5). This fold is 312 

stabilised by at least one di-sulphide bond, generally with Cys residues present in β1 and in, or 313 

immediately before, β5. In most cases one of the β-sheets is formed by strands β1, β2 and β6 and 314 

the second by strands β3, β4 and β5.  The length and orientation of the different structural 315 

elements is variable, in particular for strand β5 and for the various connecting loops, giving rise 316 

to proteins with distinct shapes and surface properties (80). In addition, the M. oryzae effector 317 

AVR-PikD contains an N-terminal extension to the six-stranded β-sandwich structure (Figure 318 

5A), and this region contains polymorphic residues that contribute to evasion of recognition by 319 
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the plant innate immune system (82, 85). Interestingly, M. oryzae effectors AVR-Pik, AVR-Pia 320 

and AVR1-CO39 all bind to heavy metal associated (HMA) domains that have integrated in 321 

intracellular plant immune receptors (NLRs) throughout evolution. This suggests that the 322 

conserved MAX effector family fold is well-suited to interact with such domains and may 323 

suggest a putative virulence target in host cells for these effectors. 324 

Intriguingly, the MAX effector family includes ToxB, a proteinaceous toxin from the fungus 325 

Pyrenophora tritici-repentis (86). This toxin shares the common three-dimensional structure of 326 

MAX effectors (Figure 5E,F), but its mode of action is unclear, and no interacting partner has 327 

been identified. However, the N-terminal region of ToxB has been shown to be essential for 328 

activity, while both the central and C-terminal parts are required for full activity (87), suggesting 329 

that the conserved structure is important for function. A naturally occurring non-toxic version of 330 

ToxB (toxB) shares 78% sequence identity with the active protein. These proteins share 331 

essentially the same structure, although toxB may overall be less stable than ToxB (81). 332 

PSI-BLAST followed by a hidden Markov model (HMM)-based profile searches have revealed 333 

that the majority of MAX effectors are found in Magnaporthe species (80). However, a small 334 

number of hits were detected in other fungal species such as Colletotrichum (80). Thus, the 335 

discovery of the MAX effectors enables a more robust prediction of candidate effectors in these 336 

fungal pathogens.  337 

 338 

RALPH effectors of powdery mildew 339 

Nearly 500 candidate effectors of the barley powdery mildew fungus Blumeria graminis f. sp. 340 

hordei (B. graminis) were predicted using bioinformatic tools from the genome sequence by 341 
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searching for genes with characteristics of effectors, particularly encoding small secreted 342 

proteins. Many of these candidate effectors have been shown to be expressed during infection 343 

(88-90).  344 

To further characterise B. graminis candidate effectors, their sequences were subjected to 345 

structural annotation using protein fold recognition methods. A sub-set of these candidate 346 

effectors are predicted to have structural similarities with ribonucleases, and were named 347 

RALPHs (RNase Like Proteins expressed in Haustoria (91)). Although confirmation that 348 

RALPHs do adopt ribonuclease-like folds awaits the determination of an experimentally derived 349 

structure, it is intriguing that many B. graminis effectors may share a common structural scaffold 350 

to each other, a feature common in other families of filamentous plant pathogen effectors. In 351 

another parallel with the MAX effectors, RALPHs have been predicted to contain a di-sulphide 352 

bond, with Cys residues largely conserved towards both the N-terminus (contained within a 353 

“YxC” motif) and C-terminus of the proteins. 354 

Recently, data has emerged showing that RALPH effectors function as both virulence and 355 

avirulence determinants in the B. graminis-barley and wheat interactions. Using host-induced 356 

gene silencing, five RALPHs were shown to be involved in formation of haustoria (92, 93). 357 

AVRA1
 and AVRA13 were shown to be required for disease resistance in barley mediated by the 358 

powdery mildew resistance loci Mal1 and Mla13, respectively (94), and AvrPm2 has recently 359 

been cloned as the cognate effector of the wheat Pm2 gene (95). Furthermore, B. graminis f. sp. 360 

tritici suppressor of avirulence effector SvrPm3a1/f1 (formerly called Bcg1avr) has been shown to 361 

suppress avirulence (96, 97). As with other host-translocated effectors, the ability of RALPHs to 362 

activate plant immune responses may help explain the strong diversifying selection seen in these 363 

proteins. 364 
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OTHER NOTABLE FILAMENTOUS PLANT PATHOGEN EFFECTOR STRUCTURES 365 

 366 

Flax rust effectors show divergent structures 367 

 368 

Melampsora lini causes rust disease on crop plants such as flax and linseed. Genomic analyses of 369 

M. lini predicted that this fungus has a large repertoire of putative effector proteins (22). Unlike 370 

oomycete RXLR and CRN effectors, but similar to effectors from other fungal species, no 371 

widely conserved sequence-based motifs have been identified for flax rust effectors thus far. To 372 

date, six M. lini effector proteins have been validated experimentally, based on their avirulence 373 

activity (AvrL567, AvrM, AvrP4, AvrP123, AvrL2 and AvrM14) (48, 98-101). These effectors 374 

trigger specific immune responses mediated by NLRs in the host cell. AvrL567, AvrM and their 375 

cognate NLRs exhibit polymorphisms giving rise to allelic variants of the effector and receptor 376 

with specific recognition profiles (98, 102). For example, AvrL567-A is recognized by the NLRs 377 

L5 and L6 whereas AvrL567-D is recognized by L6 but not L5. 378 

 379 

Crystal structures of AvrL567 alleles AvrL567-D and AvrL567-A revealed that the two proteins 380 

share the same architecture, adopting a β–sandwich fold comprising seven antiparallel β–strands 381 

(Figure 6A). Interestingly, the structures share some homology with ToxA (103), a host-382 

selective toxin of Pyrenophora tritici-repentis, which induces cell death in sensitive wheat 383 

cultivars. ToxA was described as having a distant relationship to mammalian fibronectin 384 

proteins, and an Arg-Glu-Asp (RGD) motif was found in a loop region of the protein that may 385 

mediate interactions with plant cell integrin-like receptors (103). This motif was subsequently 386 
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shown to be required for protein internalization (104), although the precise mechanism remains 387 

unclear. AvrL567 lacks the RGD motif, implying that it is internalized by a different mechanism. 388 

Both AvrL567-D and -A display two positively charged patches on the protein surface and have 389 

been shown to bind nucleic acid in vitro (105). However, the biological relevance of nucleic acid 390 

binding remains unknown. Structure-led mutagenesis revealed that multiple contacts mediate 391 

interaction between AvrL567 alleles and their cognate receptors (105). 392 

 393 

Crystal structures of C-terminal domains of two allelic variants of AvrM (AvrM-A and avrM) 394 

revealed an L-shaped α-helical fold comprising of two helical repeats (106) (Figure 6B). The 395 

structural repeat, another example of modularity in filamentous plant pathogen effectors, was not 396 

evident from sequence analysis and was only revealed after the structure was determined.  397 

 398 

AvrLm4-7, a lone effector structure with a novel fold 399 

AvrLm4-7 is a Cys-rich protein which is recognized by oilseed rape cultivars habouring Rlm4 400 

and Rlm7 resistance (107). The loss of AvrLm4-7 in the pathogen strong impacts pathogen 401 

fitness (108, 109). The crystal structure of AvrLm4-7 does not share significant homology with 402 

other structures in the Protein DataBank, and as such it has proven challenging to infer putative 403 

protein function (110). The crystal structure did identify the positions of the four disulphide 404 

bonds in the protein which, like for other effectors, are probably involved in stabilizing the 405 

structure. In addition, a strongly positive patch was identified on the protein surface that may 406 

represent a functionally relevant surface of the protein, although it has not been possible to show 407 

that this region binds a negatively charged ligand. A single amino acid polymorphism that 408 
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perturbs the recognition of the effector by the Rlm4 is located on a loop of the protein, exposed 409 

to the surface. It is therefore unlikely that this polymorphism affects the overall structure of the 410 

protein, but maybe important for a specific recognition site.  411 
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CONCLUSION 412 

The high complexity of the secretomes of filamentous plant pathogens points to a multitude of 413 

independent evolutionary pathways to generate effector proteins that target a diversity of host 414 

molecules and processes. Yet, despite this extraordinary sequence diversity, it is now evident that 415 

some conserved protein folds, such as the WY- and MAX-domains, define widespread families 416 

of effector proteins that occur across different plant pathogen taxa. There are both practical and 417 

theoretical implications of this finding. Structure-guided sequence similarity searches enable 418 

more precise and sensitive annotation of effector catalogues, notably of fungal effectors, which 419 

have proven more difficult to annotate compared to their oomycete counterparts. This should 420 

enable prioritisation of effectors for further study thus accelerating their functional 421 

characterization. In addition, the conserved structures provide a framework to unravel how rapid 422 

evolution of effector proteins has resulted in new host targeting activities, and tease out the 423 

physical and physiological constraints that these proteins face. In this regard, the next phase of 424 

research should go beyond the analyses of individual filamentous pathogen effector structures, 425 

and consider the structures of effectors in complex with host proteins (78, 82). In the future, we 426 

need to further improve our understanding of the biophysical properties of effector-host protein 427 

complexes to gain a comprehensive knowledge of effector structures and functions. 428 

  429 
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FIGURE LEGENDS 825 

 826 

 827 

Figure 1. The crystal structure of the LysM effector Ecp6 shows how modularity can be used by 828 

effectors to generate new functions (the three LysM domains are coloured red, blue and lilac 829 

respectively). The top panel shows how two Ecp6 LysM domains combine to bind to a chitin 830 

oligomer (shown in yellow). The bottom panel shows the superposition of the Ecp6 LysM 831 

domains on the plant (rice) LysM receptor protein MoCVNH3 (in grey, LysM domains coloured 832 

as above). The amino (N) and carboxyl (C) termini of the proteins are labelled. 833 

834 
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 835 

Figure 2. The CBM14-family structure of P. fuligena Avr4. The structures comprises an alpha 836 

helix (yellow) and five beta strands (green). The residues predicted to be involved in the 837 

interaction with chitin are shown in blue.  838 
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 839 

 840 

Figure 3. Crystal structures of the NLP family members NLPPya (A) and MpNEP2 (B), showing 841 

the central β-sandwich surrounded by 3 helices. The conserved structural elements are shown in 842 

cartoon representation, with residues contributing to disulphide bridges shown as sticks (in 843 

yellow), and loops in grey.   844 
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 845 

Figure 4. The structures of oomycete WY-domain effectors reveal how modularity and domain 846 

repeats give rise to different overall structures. For each panel, the region of the protein 847 

comprising the WY-domain fold is coloured in blue and the residues at the ‘W’ and ‘Y’ positions 848 

are shown as sticks (green carbon atoms). The panels show (A) Avr3a11 (Avr3a4 is essentially 849 

identical and not shown), (B) PexRD2 (monomer), (C) ATR1 (the region to the N-terminus that 850 

does not form a WY domain is not shown), and (D) PexRD54, with amino (N) and carboxyl (C) 851 

termini labelled. Avr3a11/4 and ATR1 carry an additional N-terminal helix (pink). The tandem 852 

WY-domains of ATR1 and PexRD54 are separated by a helix (brown) in ATR1, and loops 853 

(yellow) in PexRD54. PexRD54 carries a short helix (coral) at C-terminal end prior to the ATG8 854 

interacting motif (AIM, not seen as it was disordered in the crystals). All structure figures were 855 

prepared with ccp4mg (111). 856 
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 857 

Figure 5. The structures of MAX effectors reveals the shared β-sandwich fold. The conserved β-858 

strands are shown in cartoon representation for each protein, with residues contributing to 859 

disulphide bridges shown as sticks (in yellow), and loops are in grey. The panels show (A) AVR-860 

PikD, (B) AVR1-CO39, (C) AVR-Pia, and (D) AVR-Pizt, (E) ToxB, and (F) toxb, with amino 861 

(N) and carboxyl (C) termini labelled. 862 
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 863 

Figure 6. Divergent structures obtained for flax rust effectors. (A) a cartoon representation of 864 

AvrL567-A (the –D allele is essentially identical and not shown), showing β-sandwich fold. (B) 865 

a cartoon diagram of avrM, where the helical repeats, which have some resemblance to the 866 

oomycete WY-domain fold, are coloured in blue and separated by a loop (red). The amino (N) 867 

and carboxyl (C) termini of the proteins are labelled.  868 
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TABLES 869 

 870 

Table 1. Filamentous plant pathogen effectors that have sequence similarities with enzymes 871 

or enzyme inhibitors. 872 

Effector Class Hyphal Pathogen Example(s) Citation 
Chorismate mutases Ustilago maydis cmu1 (45) 

lipase effector Fusarium graminearum FGL1 (112) 

Enzyme inhibitors    
protease inhibitors Cladosporium fulvum Avr2 (41) 

cystatin-like protease 
inhibitor domains 

Phytophthora infestans EPIC1, EPIC2B (42) 

Chitinase inhibitor Cladosporium fulvum Avr4 (56) 

Proteases and peptidases   
Proteases Zymoseptoria tritici 

(Mycosphaerella graminicola) 
 (33) 

 Colletotrichum sp.  (34) 

Secreted peptidases Zymoseptoria tritici 
(Mycosphaerella graminicola) 

Astacin (Peptidase family 
M12A) 

Serine carboxypeptidase S28 

(113) 

serine protease Fusarium oxysporum 
f. sp. lycopersici 

Sep1 (35) 

Alkaline serine 
protease alp1 

sclerotiorum Peptidase inhibitor I9 (23) 

metalloprotease    
Zinc metalloprotease Magnaporthe oryzae AVRPita (AVR2-YAMO) (36, 114) 

Deuterolysin 
metalloprotease 

Sclerotinia sclerotiorum Deuterolysin metalloprotease 
(M35) family (PF02102) 
Homolog to M. oryzae 

AvrPita 

(23) 

metalloprotease Fusarium oxysporum 
f. sp. lycopersici 

Mep1 (35) 

Nudix hydrolases    
 Phytophthora sojae Avr3b (46) 
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 Colletotrichum truncatum CtNUDIX (115) 

 Melampsora lini AvrM14 (48) 

Crinklers    
kinase activity Phytophthora infestans CRN8 (50) 

 873 
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Table 2. Details of filamentous plant pathogen effectors that have had their structures determined. 874 

     Comparison to Known 
Structure 

  

Protein Origin Targeted Process Immune 
Receptor 

Fold RMSD, Å 
(no. of 

residues in 
overlay)1 

Sequence 
Identity 

(%)2 

PDB 
Code 

Refs 

Avr3a11 P. capsici Unknown - WY N.D. N.D. 3ZR8 (74) 
Avr3a4 P. capsici Unknown - WY 1.26 (42) 79.0 2LC2 (77) 
PexRD2 P. infestans MAPKKKƐ mediated 

immune signalling 
- WY 1.41 (40) 27.8 3ZRG (74) 

PexRD54 P. infestans Autophagy - WY 1.73 (41) 20.0 5L7S (78) 
ATR1 H. arabidopsdis Unknown RPP1 WY 2.37 (36) 23.7 3RMR (76) 

AvrL567-D M. lini Unknown L6 ToxA-like 2.74 (82) 22.2 2QVT (116) 
AvrL567-A M. lini Unknown L5 and L6 ToxA-like 2.58 (81) 19.7 2OPC (116) 

avrM M. lini Unknown - WY-like N.D. 26.1 4BJM (106) 
AvrM-A M. lini Unknown M WY-like N.D. 23.9 4BJN (106) 
Avr-PikD 

(in complex) 
M. oryzae Unknown Pik1/Pik2 MAX N.D. N.D. 5A6W (82) 

Avr1-CO39 M. oryzae Unknown RGA5/RGA4 MAX 1.36 (55) 17.2 2MYV (80) 
Avr-Pia M. oryzae Unknown RGA5/RGA4 MAX 2.24 (52) 16.4 2MYW (80) 
AvrPiz-t M. oryzae E3 ligase mediated 

immunity 
Piz-t MAX 2.33 (58) 15.6 2LW6 (84) 

Avr4 P. fuligena Chitin mediated 
immunity (PTI) /fungal 

derived chitin perception 

Cf-4 CBM14-
like 

1.98 (52) 22.2 4Z4A (61) 

Ecp6 C. fulvum Chitin mediated 
immunity (PTI) /fungal 

derived chitin perception 

- LysM 1 0.8 (45) 35.9 4B8V (54) 

Ecp6 C. fulvum   LysM 2 1.17 (43) 37.1 4B8V (54) 
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Ecp6 C. fulvum   LysM 3 1.51 (45) 20.8 4B8V (54) 
AvrLm4-7 L. maculans Production of plant 

hormones and hydrogen 
per oxide / Plant 

hormone mediated 
immunity 

Rlm4 and 
Rlm7 

Unique N.D. N.D. 4FPR (110) 

ToxA P. tritici-repentis Photosynthesis Tsn13 ToxA-like N.D. N.D. 1ZLE (103) 
ToxB P. tritici-repentis Photosynthesis  - MAX 2.25 (58) 25.4 2MM0 (81) 
toxb P. tritici-repentis inactive allele - MAX 2.33 (57) 19.7 2MM2 (81) 
NLP P. 

aphanidermatum 
Plasma membrane 

integrity 
- Actinoporin

-like 
2.34 (68) 21.9 3GNZ (64) 

NLP M. perniciosa Plasma membrane 
integrity 

- Actinoporin
-like 

2.24 (68) 19.3 3ST1 (70) 

1 Template proteins used for comparison are Avr3a11 (WY, WY-like), Avr-PikD (MAX), Tachycitin (CBM14-like), MoCVNH3 875 

(LysM), ToxA (ToxA-like), Sticholysin II (Actinoporin-like), N.D. (Not Determined, to either avoid comparison with self, or the 876 

comparison is not meaningful).  877 

2 N.D. (Not Determined, to either avoid comparison with self, or structure is unique) 878 

3 Tsn1 is a susceptibility factor 879 

881 
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