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Abstract. In 1959, P. Hall introduced the locally finite group U , today known as Hall’s
universal group. This group is countable, universal, simple, and any two finite isomorphic
subgroups are conjugate in U . It can be explicitly described as a direct limit of finite symmetric
groups. It is homogeneous in the model-theoretic sense since it is the Fräıssé limit of the class of
all finite groups. Since its introduction Hall’s group, and several natural generalisations, have
been widely studied. In this article we use a generalisation of Fräıssé’s theory to construct
a countable, universal, locally finite semigroup T , that arises as a direct limit of finite full
transformation semigroups, and has the highest possible degree of homogeneity. We prove
that it is unique up to isomorphism among semigroups satisfying these properties. We prove
an analogous result for inverse semigroups, constructing a maximally homogeneous universal
locally finite inverse semigroup I which is a direct limit of finite symmetric inverse semigroups
(semigroups of partial bijections). The semigroups T and I are the natural counterparts
of Hall’s universal group for semigroups and inverse semigroups, respectively. While these
semigroups are not homogeneous, they still exhibit a great deal of symmetry. We study the
structural features of these semigroups and locate several well-known homogeneous structures
within them, such as the countable generic semilattice, the countable random bipartite graph,
and Hall’s group itself.

1. Introduction

In his beautiful 1959 paper [15] Philip Hall proved that there is a unique countable universal
locally finite homogeneous group U . Here universal means that every finite group arises as a
subgroup of U , and the word homogeneous is in the sense of Fräıssé (see [23, Chapter 6]), and
means that in Hall’s universal group any isomorphism between finite subgroups extends to an
automorphism of U . Indeed, the class of finite groups forms an amalgamation class and Hall’s
group is the unique Fräıssé limit of this class. In addition to proving the existence of this group,
Hall showed that U has many interesting properties including:

• It may be obtained concretely as a direct limit of symmetric groups by repeated applications
of Cayley’s Theorem in the following way. Take any group G0 of order at least three. Then
Cayley’s Theorem can be applied to embed G0 as a subgroup of the symmetric group
G1 = SG0 . This process can then be repeated, embedding G1 into the symmetric group
G2 = SG1 and so on.
• Any two isomorphic finite subgroups of U are conjugate in U . In fact, any isomorphism

between finite subgroups of U is induced by an inner automorphism.
• For any m > 1 the set of all elements of order m forms a single conjugacy class, and every

element of U can be written as a product of two elements of order m. This implies that U
is a simple group.
• It contains 2ℵ0 distinct copies of each countable locally finite group.

In their book [29, Chapter 6] Kegel and Wehrfritz remark that a universal locally finite group
is in some sense a universe in which to do finite group theory.

Hall’s group is both a direct limit of symmetric groups, and a universal locally finite simple
group. It thus provides an example of central importance in the theory of infinite locally finite
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groups; see [21, 29]. Other related work on locally finite simple groups, and direct limits of
symmetric groups, may be found in [22, 30, 32, 40]. Sylow subgroups of Hall’s group were
investigated in [6]. The Grothendieck group of finitely generated projective modules over the
complex group algebra of Hall’s group was considered in [7]. More recently Hall’s group has
arisen in work relating to the Urysohn space [2, 8]. In [8] it is shown that there exists a universal
action of Hall’s locally finite group on the Urysohn space U by isometries. Hall’s group appears
as an example in the work of Samet [38] on rigid actions of amenable groups, and in the
topological Galois theory developed in [3]. Interesting new results on the automorphism group
of U have been obtained in very recent work of Paolini and Shelah [36].

The work of the present article begins with a question posed by Manfred Droste at the in-
ternational conference “The 83rd Workshop on General Algebra (AAA83)”, Novi Sad, Serbia,
March 2012, who asked whether there is an analogue of Hall’s universal group for semigroups.
The analogue of the symmetric group in semigroup theory is the full transformation semigroup
Tn of all maps from an n-element set to itself under composition. One would expect, therefore,
the correct semigroup-theoretic analogue of Hall’s group to be a limit of finite full transforma-
tion semigroups. By Cayley’s Theorem for semigroups (see [26, Theorem 1.1.2]) every finite
semigroup is a subsemigroup of some Tn, hence any infinite limit of finite full transformation
semigroups will be universal and locally finite. On the other hand such a semigroup cannot be
homogeneous. In fact by Fräıssé’s Theorem, no countable universal locally finite semigroup can
be homogeneous since the class of finite semigroups does not form an amalgamation class [5,
Section 9.4]. This leads naturally to the question of how homogeneous a countable universal
locally finite semigroup can be. As we shall see, there is a well-defined notion of the maximal
amount of homogeneity that such a semigroup can possess. We call such semigroups maximally
homogeneous.

In more detail, if S is a semigroup and T is a subsemigroup of S, we say that Aut(S) acts
homogeneously on copies of T if for any subsemigroups T1, T2 ≤ S, if T1 ∼= T ∼= T2 then every
isomorphism φ : T1 → T2 extends to an automorphism of S. For fixed S we can consider the
class C(S) of isomorphism types of finite semigroups T on which Aut(S) acts homogeneously.
The class C(S) provides a measure of the level of homogeneity of S. As S ranges over all
countable universal locally finite semigroups, the classes C(S) form a partially ordered set under
inclusion, which (as we shall see in Proposition 3.1 and Theorem 3.3) has a maximum element
B. A countable universal locally finite semigroup S is said to be maximally homogeneous if
C(S) = B. We shall prove that, up to isomorphism, there is a unique countable universal locally
finite semigroup T , which is a limit of finite full transformation semigroups, and is maximally
homogeneous.

For inverse semigroups, the analogue of the symmetric group is the symmetric inverse semi-
group In of all partial bijections from an n-element set to itself under composition of partial
maps (see [31] for a general introduction to inverse semigroup theory). As for the case of
semigroups, there is a well-defined notion of maximally homogeneous universal locally finite in-
verse semigroup. We shall prove that there is a unique countable universal locally finite inverse
semigroup I, which is a limit of symmetric inverse semigroups, and is maximally homogeneous.

The semigroups T and I are the natural counterparts of Hall’s universal group for semi-
groups and inverse semigroups, respectively. While these semigroups are not homogeneous,
they exhibit a great deal of symmetry and richness in their algebraic and combinatorial struc-
ture. Since they are not homogeneous they cannot be constructed using Fräıssé’s Theorem.
We instead make use of a well-known generalisation of Fräıssé’s theory called the Hrushovski
construction which, among other things, was used as the basis of the construction of some
important counterexamples in model theory; see [27]. We refer the reader to [13, Section 3]
for a description of this method. This generalisation of Fräıssé’s theory allows one to construct
structures where the automorphism group acts homogeneously only on a privileged class of
substructures; see [33, Section 2.4]. Further generalisations are possible, including a general
category-theoretic version of the Fräıssé construction which can be found in [10] and [11]. In
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particular, the machinery from the paper [11] could also be applied to obtain the existence and
uniqueness results which we give in Section 4.

After proving the existence and uniqueness of T and I, the rest of the article will be devoted
to investigating their structure. In particular we shall see that several well-known homoge-
neous structures may be found in the subgroup and idempotent structure of these semigroups,
including the countable generic semilattice, the countable random bipartite graph, and Hall’s
universal group itself.

This paper is comprised of nine sections including the introduction. In Section 2 we introduce
all the necessary definitions and notation from semigroup and model theory needed for what
follows. The notions of maximally homogeneous semigroup and inverse semigroup are discussed
in Section 3 together with the connection to the notion of an amalgamation base. Section 4 is
devoted to proving the existence and uniqueness of T and I. In Section 5 we prove our main
results about the structure of I (Theorem 5.1). The main results about the structural properties
of T are given in Sections 6 and 7 (summarised in Theorem 6.1). In Section 8 we make some
comments about the problem of determining which infinite semigroups arise as subsemigroups
of T , and the corresponding question for I. Finally, in Section 9 we discuss the relationship
between T and full transformation limit semigroups obtained by iterating Cayley’s Theorem,
and the analogous question for I.

2. Preliminaries

2.1. Locally finite groups and semigroups. A group G is said to be locally finite if every
finite subset of G generates a finite subgroup. For a comprehensive introduction to the theory
of locally finite groups we refer the reader to the book [29]. Here we recall just a few basic facts.

If Gi (i ∈ N) is a countable collection of finite groups such that Gi is a proper subgroup of
Gi+1 for all i ∈ N, then the union G =

⋃
i≥0Gi of this chain

G0 ≤ G1 ≤ G2 ≤ . . .

is a countably infinite locally finite group. Formally, we have a sequence of finite groups
G0, G1, . . . and embeddings (that is, injective homomorphisms) σi : Gi → Gi+1 and the

union G =
⋃
i≥0Gi is the direct limit of the direct system {Gi, αji}, where αji is defined to

be σiσi+1 . . . σj−1 for i < j. For basic concepts in group theory we refer the reader to [37]. In
particular, the definition of the direct limit of a direct system of groups may be found in [37,
Chapter 1, pages 22-23].

Conversely, if G is a countably infinite locally finite group then by enumerating the elements
of G = {g0, g1, g2, . . .} and considering the sequence of subgroups Hi (i ∈ N), where Hi is the
subgroup of G generated by {g0, g1, . . . , gi}, it is not difficult to see that there exists a countable
collection of finite subgroups Gi (i ∈ N) of G, such that Gi ≤ Gi+1 for all i, and G =

⋃
i≥0Gi.

For a proof of this see [29, Lemma 1.A.9].
When we have a sequence of finite groups Gi (i ∈ N) and embeddings σi : Gi → Gi+1 we

shall sometimes omit specific reference to the names of the mappings σi and talk about a chain
of embeddings of finite groups

G0 → G1 → G2 → . . .

and speak of the direct limit of this chain which, as discussed above, may be thought of as
being the union of this countable collection of finite groups, with respect to this sequence
of embeddings. In the special case that each of the groups Gi is isomorphic to some finite
symmetric group, we say that the direct limit is an Sn-limit group. So an Sn-limit group is a
direct limit of some chain

Si1 → Si2 → Si3 → . . . .

of embeddings of finite symmetric groups where i1 < i2 < i3 < · · · . The Sn-limit groups have
been well studied in the theory of infinite locally finite groups [34]. In particular they give one
interesting source of examples of infinite locally finite simple groups.
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In this article, we shall say that a group is universal if it embeds every finite group. By
Cayley’s Theorem every finite group embeds in some finite symmetric group. From this it is
easily seen that any countably infinite Sn-limit group is universal. Hall’s group, which was
discussed in the introduction above, is a particularly nice example of a countably infinite Sn-
limit group. As explained above, Hall’s group U may be constructed by iterating Cayley’s
Theorem. Namely, let G0 = G be any finite group with at least 3 elements. Then it embeds,
via the right regular representation g 7→ ρg where xρg = xg for all x ∈ G, into the symmetric
group G1 = SG, which in turn embeds into G2 = SG1 , and so on. In this way, we obtain a chain
of embeddings of finite symmetric groups

G0 → G1 → G2 → . . .

and Hall’s group U is the direct limit of this chain.
A semigroup S is called locally finite if every finitely generated subsemigroup of S is finite.

In the same way as for groups, the direct limit of a countable chain of embeddings of finite
semigroups

S0 → S1 → S2 → . . .

is a countable locally finite semigroup, and every countable locally finite semigroup arises in this
way. Given a non-empty set X, the collection of all mappings from X to X together with the
operation of composition of maps forms a semigroup called the full transformation semigroup
TX on X. In the case that X = [n] = {1, 2, . . . , n} we write Tn for TX . In the special case that
each of the semigroups Si in the above chain of embeddings is isomorphic to some finite full
transformation semigroup, we say that the direct limit is a Tn-limit semigroup, or alternatively
a full transformation limit semigroup. So a full transformation limit semigroup is a direct limit
of some chain

Ti1 → Ti2 → Ti3 → . . .

of embeddings of finite full transformation semigroups. We shall call a semigroup universal if
it embeds every finite semigroup. By Cayley’s Theorem for finite semigroups every countably
infinite full transformation limit semigroup semigroup is universal.

The symmetric inverse semigroup IX on a non-empty set X consists of all partial bijections
from X to X under composition of partial maps. In the case that X = [n] = {1, 2, . . . , n}
we write In for IX . Inverse semigroups obtained as direct limits of chains of embeddings of
symmetric inverse semigroups

Ii1 → Ii2 → Ii3 → . . .

where i1 < i2 < i3 < . . . will be called symmetric inverse limit semigroups, or In-limit in-
verse semigroups. Any symmetric inverse limit semigroup is locally finite. The Vagner–Preston
Theorem [26, Theorem 5.1.7] implies that any finite inverse semigroup embeds in some finite
symmetric inverse semigroup, and from this it follows that any symmetric inverse limit semi-
group is universal, in the sense that it embeds every finite inverse semigroup.

2.2. Homogeneous structures. The main objects of interest for us in this paper are struc-
tures, both algebraic and combinatorial (relational), with a high degree of symmetry. Excellent
recent surveys on the subject of homogeneous structures are [13], and [33] for relational struc-
tures, and our notation and conventions follow closely the paper [13].

Let L be a countable first-order language. Given an L-structure M we shall use M to denote
both the structure and its domain. We use Aut(M) to denote the automorphism group of
M . An L-structure M is called homogeneous if whenever A1, A2 ⊆ M are finitely generated
substructures of M , and f : A1 → A2 is an isomorphism, then there is an automorphism
g ∈ Aut(M) extending f . A non-empty class C of finitely generated L-structures is called
an amalgamation class if it is closed under isomorphisms, and has three properties called the
Hereditary Property (HP), Joint Embedding Property (JEP), and the Amalgamation Property
(AP); see [13, Definition 1.3]. We shall not repeat all of these definitions here since we shall
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give a generalisation of these ideas in Section 4 below. It would be good however to recall the
definition of the amalgamation property here:

(AP) if A0, A1, A2 ∈ C and f1 : A0 → A1 and f2 : A0 → A2 are embeddings, then there is a
B ∈ C and embeddings g1 : A1 → B and g2 : A2 → B such that f1g1 = f2g2.

Throughout the paper, the order of composition of functions is left-to-right. Consequently, we
write functions to the right of their arguments.

The age of an L-structure M , denoted Age(M), is the class of all structures isomorphic
to some finitely generated substructure of M . Fräıssé’s theorem [13, Theorem 1.6] (see also
[23, page 163-4]) says that the age of a homogeneous structure is an amalgamation class and,
conversely, if C is an amalgamation class of countable finitely generated L-structures, with
countably many isomorphism types, then there is a countable homogeneous L-structure M
with age C. The structure M is determined uniquely up to isomorphism by C and is called the
Fräıssé limit of C, or the generic structure of the class C. The following well-known examples
of Fräıssé limits will play an important role in this article.

• The class of finite linear orders is an amalgamation class with Fräıssé limit (Q,≤).
• The class of finite semilattices is an amalgamation class. Its Fräıssé limit is denoted Ω.
• The class of finite bipartite graphs is an amalgamation class. Its Fräıssé limit is the countable

random bipartite graph. This is the unique countable bipartite graph such that each part of
the bipartition is infinite, and for any two finite disjoint sets U and V from one part, there is
a vertex w in the other part such that w is adjacent to every vertex of U and to no vertices
of V . The random bipartite graph is not a homogeneous graph, but is homogeneous in the
language of bipartite graphs which has an additional binary relation symbol interpreted as
the bipartition.
• The class of finite groups is an amalgamation class. Its Fräıssé limit is Philip Hall’s universal

locally finite group U .

2.3. Amalgamation of semigroups and inverse semigroups. It is well known that the
class of finite semigroups does not form an amalgamation class, and this applies to the class
of finite inverse semigroups as well. The first example showing this for semigroups was given
in the 1957 PhD thesis of Kimura; see [5, Section 9.4] where Kimura’s example is reproduced.
For the class of finite inverse semigroups see [16, 18] where a simple counterexample is credited
to C. J. Ash. It is then an immediate consequence of Fräıssé’s Theorem that there does not
exists a countable universal locally finite homogeneous semigroup, and there does not exist a
countable universal locally finite homogeneous inverse semigroup. One is then naturally led to
ask the question: How homogeneous can a countable universal locally finite semigroup be? We
also have the analogous question for inverse semigroups.

Let S be a countable universal locally finite semigroup and let T be a finite semigroup. If
Aut(S) acts homogeneously on copies of T then what restriction does this put on T? We
know that Aut(S) cannot act homogeneously on every finite T , but we would like S to act
homogeneously on as many of its subsemigroups as possible. This can be made precise via the
notion of an amalgamation base, as we now explain.

Let C be a class of structures of a fixed signature. An amalgam in C consists of a triple of
structures A0, A1, A2 ∈ C and a pair of embeddings f1 : A0 → A1 and f2 : A0 → A2. Often we
suppress the names of the mappings and simply talk about the amalgam

A1 ← A0 → A2.

We call A0 the base of this amalgam. If there exists a structure B ∈ C and embeddings
g1 : A1 → B and g2 : A2 → B such that f1g1 = f2g2, then we say that the original amalgam
A1 ← A0 → A2 can be embedded into some structure from C. In this language, the class C has
the amalgamation property if any amalgam in C can be embedded into some structure from C.
Furthermore, a structure A0 from C is said to be an amalgamation base for C if every amalgam
in C with base A0 can be embedded into some structure from C.
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Now, as already remarked above, finite groups have the amalgamation property, so every
finite group is an amalgamation base for the class of finite groups. However, this fails for
finite semigroups, and thus the class of amalgamation bases for finite semigroups is a proper
subclass of finite semigroups. Similarly, there exist finite inverse semigroups which are not
amalgamation bases for the class of finite inverse semigroups. Let A denote the class of all
amalgamation bases for finite inverse semigroups, and let B be the class of all amalgamation
bases for finite semigroups.

We note in passing that there is a stronger notion of amalgamation for semigroups and inverse
semigroups which has also received attention in the literature, namely, that of being a strong
amalgamation base. A finite semigroup S is a strong amalgamation base for the class of finite
semigroups if every amalgam A1 ← S → A2 of finite semigroups with base S can be embedded
into some finite semigroup B in such a way that the intersection of the images of A1 and A2

in B is equal to the image of S in B. There is an analogous definition for inverse semigroups.
Of course, by definition, any strong amalgamation base is an amalgamation base. Throughout
this paper we shall always work with the weaker notion of amalgamation base defined above,
and never with strong amalgamation bases.

It follows from results in [17, 18] and [35] that a finite inverse semigroup S belongs to A if
and only if S is J -linear, i.e. the set of principal ideals of S form a chain under inclusion. In
particular, the symmetric inverse semigroup IX belongs to A for any finite set X.

2.4. Properties of the class B. A characterisation of the finite semigroups in B is not yet
known. In this subsection we will list some examples that are known to belong to this class.
Of particular importance to the results in this paper is that the full transformation semigroup
Tn and its opposite T oppn both belong to B. We recall that for a semigroup S, Sopp denotes the
semigroup defined on the set S with the operation ∗ given by x ∗ y = yx for all x, y ∈ S. This
is called the opposite semigroup of S.

Lemma 2.1. If S is an amalgamation base for the class of all finite semigroups then so is Sopp.

Proof. It is easy to see that, in general, if φ : A → B is a homomorphism between semigroups
then φ : Aopp → Bopp is also a homomorphism. Now, consider an amalgam T ← Sopp → V with
embeddings f and g, respectively. Then using the same mappings T opp ← S → V opp is also an
amalgam of finite semigroups. Since S is assumed to belong to B, there is a finite semigroup
W and embeddings h : T opp → W and k : V opp → W embedding this amalgam into W . Then
h, k embed the initial amalgam into the finite semigroup W opp. Hence, Sopp ∈ B. �

The results of Shoji [39] together with this lemma show that Tn and T oppn belong to B. It
is also known that any member of B must be J -linear [19], and that B includes semigroup
reducts of all members of A. More generally, if S is a J -linear semigroup and the algebra CS
is semisimple then S ∈ B; see [35]. In particular any J -linear finite inverse semigroup, and so
any finite group, belongs to B. Throughout the paper we will make repeated use of the fact
that the semigroups mentioned in this paragraph all belong to the class B. On the other hand,
not all J -linear finite semigroups belong to B: for example, it was proved in [20] that a finite
completely simple semigroup belongs to B if and only if it is a group.

2.5. Semigroup theory notation and definitions. For general background in semigroup
theory we refer the reader to [26]. If S is a semigroup we write T ≤ S to mean that T is a
subsemigroup of S, and write T < S to mean that T ≤ S and T 6= S. Green’s relations are an
important tool for studying the ideal structure of semigroups. Given a semigroup S, we define
for a, b ∈ S:

a R b⇔ aS1 = bS1, a L b⇔ S1a = S1b, a J b⇔ S1aS1 = S1bS1,

where S1 denotes S with an identity element adjoined, unless S already has one. Furthermore,
we let H = R ∩L and D = R ◦L , and remark that D is the join of the equivalence relations
R and L because it may be shown that R ◦ L = L ◦ R. In general H is a subset of
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both R and L , while R and L are both subsets of D , which is in turn a subset of J . In
general the relations D and J are distinct, but for periodic semigroups they coincide; see [26,
Proposition 2.1.4]. Recall that a semigroup S is called periodic if for every s ∈ S there are
natural numbers m and n such that sm+n = sm. Clearly every finite semigroup, and every
locally finite semigroup, is periodic. In particular J = D in every locally finite semigroup.
The R-class of an element a is denoted by Ra, and in a similar fashion we use the notation
La, Ja, Ha and Da. An H -class Ha of a semigroup is a group if and only if it contains an
idempotent. The group H -classes are exactly the maximal subgroups of the semigroup.

In situations where there is more than one semigroup under consideration we shall sometimes
use the notation KS

a and K S for K ∈ {R,L, J,H,D} and K ∈ {R,L ,J ,H ,D}, to specify
that we are taking the relation, or equivalence class, in the semigroup S.

The inclusion relation between principal ideals naturally gives rise to quasi-order relations
≤K on a semigroup S for K ∈ {R,L ,J }: for example, we write a ≤R b if aS1 ⊆ bS1, and
similarly we define ≤L and ≤J . Also, for two K -classes C and C ′ we write C ≤K C ′ if
a ≤K b for some a ∈ C and b ∈ C ′.

Green’s relations in in the full transformation semigroup TX are easy to characterise (see e.g.
[26, Exercise 2.6.16]). For f, g ∈ TX we have: f R g if and only if ker(f) = ker(g); f L g if
and only if im(f) = im(g); and f J g if and only if f D g if and only if rank(f) = rank(g).
Here rank(f) = | im(f)|, and ker(f) is the equivalence relation on [n] where (i, j) ∈ ker(f) if
and only if if = jf . Consequently, f and g belong to the same H -class if and only if both
their kernels and images coincide. Let X be a non-empty set and choose and fix some κ ≤ |X|.
Let Dκ denote the D-class in TX of all transformations of rank κ. The R-classes of Dκ are
then indexed by the set of partitions of X into κ non-empty parts, while the L -classes are
indexed by the set of subsets of X of cardinality κ. Given a partition P with κ non-empty
parts, and a subset A of X of cardinality κ, we shall use HP,A to denote the H -class given by
intersecting the corresponding R- and L -classes of Dκ. It is well known, and easy to prove,
that the H -class HP,A is a group if and only if the set A is a transversal of the partition P ,
that is, there is exactly one element from the set A in each part of the partition P . We shall
write A ⊥ P to denote that A is a transversal of P . If A ⊥ P then HP,A is isomorphic to the
symmetric group SA.

An element a of a semigroup S is regular if there exists b ∈ S such that aba = a. A semigroup
S is regular if all of its elements are regular. The full transformation semigroup TX is an example
of a regular semigroup. We say that an element a′ is an inverse of an element a in a semigroup
S if both aa′a = a and a′aa′ = a′. It may be shown that a semigroup is regular if and only
if every element has at least one inverse. An inverse semigroup is a semigroup in which each
element has exactly one inverse. Inverse semigroups are most naturally viewed as algebraic
structures in the (2,1)-signature {·,−1}, where x−1 denotes the unique inverse of x. Thus, we
have xx−1x = x and x−1xx−1 = x−1. In addition, it may be shown that −1 is an involution
satisfying (xy)−1 = y−1x−1, and that the set of all idempotents of an inverse semigroup form
a commutative subsemigroup; see [26, Section 5]. An inverse subsemigroup T of an inverse
semigroup S is a subsemigroup T of S which is closed under taking inverses. This is equivalent
to saying that T is a substructure of S in the (2,1)-signature.

The Vagner–Preston Theorem [26, Theorem 5.1.7] shows that any inverse semigroup is a
subsemigroup of some symmetric inverse semigroup. In more detail, if S is an inverse semigroup,
the map from S to IS which sends each x ∈ S to the partial bijection ρx : Sx−1 → Sx, where
tρx = tx for all t ∈ Sx−1, gives an embedding of S into IS .

In the symmetric inverse semigroup IX , the inverse α−1 of the element α is the inverse of
the mapping α, in the usual sense. The L -, D- and J -relations in IX are just the same as
in TX , while we have f R g if and only if f and g have the same domain, which we write as
dom(f) = dom(g). Hence, for Hf to be a group we must have dom(f) = im(f) from which it
follows that Hf is isomorphic to the symmetric group on dom(f).
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A J -class J in an arbitrary semigroup S gives rise to the associated principal factor J∗ =
J ∪ {0}, with multiplication:

a · b =

{
ab if a, b, ab ∈ J
0 otherwise.

It is known that J∗ is either a 0-simple semigroup or a semigroup with zero multiplication;
see [26, Theorem 3.1.6]. Under some additional finiteness hypotheses, such as being periodic, a
regular 0-simple principal factor J∗ will be completely 0-simple in which case the Rees Theorem
[26, Theorem 3.2.3] states that it will be isomorphic to a Rees matrix semigroup M0[G; I,Λ;P ].
See [26, Subsection 3.2] for more details on completely 0-simple semigroups and the Rees matrix
semigroup construction. We use B(I,G) to denote the Rees matrix semigroup M0[G; I, I;P ]
where P is the I×I identity matrix. This is called a Brandt semigroup over G. It is a completely
0-simple inverse semigroup, and every completely 0-simple inverse semigroup arises in this way;
see [26, Theorem 5.1.8].

2.6. Graphs, posets, and semilattices. We view graphs as structures with a single sym-
metric irreflexive binary relation, denoted by ∼. If Γ is a graph we use V Γ to denote its vertices
and EΓ its set of edges which are the 2-sets {u, v} such that u ∼ v and v ∼ u.

A semigroup is called a semilattice if it is commutative and all of its elements are idempotents.
A meet-semilattice is a poset (P,≤) such that any pair of elements x, y ∈ P has a well-defined
greatest lower bound x∧y. These two definitions are equivalent: if a semigroup S is a semilattice
then the partial order ≤ given by e ≤ f if and only if ef = fe = e is a meet semilattice,
and conversely given a semilattice (P,≤) the semigroup (P,∧) is a commutative semigroup of
idempotents; see [26, Proposition 1.3.2].

2.7. Combinatorial structures in semigroups. Let D be a D-class of a semigroup S. Since
D = R ◦L = L ◦R, we can label the R-classes and the L -classes contained in D by index
sets I and Λ, respectively, so that each H -class contained in D is of the form Hiλ = Ri ∩ Lλ.
To record the distribution and structure of the idempotents of S within D, following [14, 24]
we define a bipartite graph associated with D, denoted GH(D), called the Graham–Houghton
graph of D. The graph GH(D) is defined to be the bipartite graph with vertex set the disjoint
union I ·∪Λ, where I and Λ are the two parts of the bipartition, and where i ∈ I is adjacent to
λ ∈ Λ if and only if Hiλ is a group. Equivalently, i and λ are adjacent in GH(D) if and only if
Ri ∩ Lλ contains an idempotent.

Semilattices arise naturally within inverse semigroups. The set of idempotents E(S) of an
inverse semigroup S is a commutative subsemgrioup of S, and therefore is a semilattice, which
we shall call the semilattice of idempotents of the inverse semigroup S.

3. Universal maximally homogeneous semigroups

As discussed above, there is no countable universal locally finite homogeneous semigroup,
and there is no such inverse semigroup either. The results in this section will describe the
maximum degree of homogeneity that can be possessed by a countable universal locally finite
semigroup or inverse semigroup.

Let S be a semigroup and let T be a subsemigroup of S. Recall from above that we say that
Aut(S) acts homogeneously on copies of T if for any subsemigroups T1, T2 ≤ S, if T1 ∼= T ∼= T2
then every isomorphism φ : T1 → T2 extends to an automorphism of S.

Proposition 3.1. Let S be a countable universal locally finite semigroup and let T be a finite
semigroup. If Aut(S) acts homogeneously on copies of T , then T belongs to the class B of all
amalgamation bases for finite semigroups.

Proof. Let f1 : T → U1 and f2 : T → U2 be embeddings where U1, U2 are finite semigroups.
Since S is universal there are embeddings g1 : U1 → S and g2 : U2 → S. Set V1 = U1g1 and
V2 = U2g2. Since Aut(S) acts homogeneously on copies of T it follows that the isomorphism
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g−11 f−11 f2g2 : Tf1g1 → Tf2g2 extends to an automorphism α ∈ Aut(S). Let W be the sub-
semigroup of S generated by V1α ∪ V2. Then the mappings g1α : U1 → W and g2 : U2 → W
complete the amalgamation diagram, and the proof. �

Note that the universality hypothesis is necessary in this proposition. For example, the
universal countable homogeneous semilattice Ω is a countable locally finite semigroup, while
Aut(Ω) acts homogeneously on all finite semilattices, some of which are not J -linear and thus
do not belong to the class B.

The following analogue for inverse semigroups may be shown in a similar way.

Proposition 3.2. Let I be a countable universal locally finite inverse semigroup and let T be
a finite inverse semigroup. If Aut(I) acts homogeneously on copies of T , then T belongs to the
class A of all amalgamation bases for finite inverse semigroups, that is, T is J -linear.

We call a universal locally finite semigroup S maximally homogeneous, or B-homogeneous, if
Aut(S) it acts homogeneously on copies of T for every T in B. Similarly we talk about universal
locally finite inverse semigroups which are maximally homogeneous, also called A-homogeneous,
meaning their automorphism group acts homogeneously on copies of T for all T in A.

We would like to identify universal locally finite maximally homogeneous semigroups, and
inverse semigroups, and study their properties. The most natural class of universal locally
finite semigroups is given by full transformation limit semigroups, defined in Subsection 2.1.
Our first main result shows that maximally homogeneous semigroups exist, and in the class of
full transformation limit semigroups there is a unique example up to isomorphism.

Theorem 3.3. There is a unique maximally homogeneous full transformation limit semigroup.

This result will be proved in Section 4. We call the semigroup in this theorem the maximally
homogeneous full transformation limit semigroup, and denote it by T . For inverse semigroups
we have the following analogous result.

Theorem 3.4. There is a unique maximally homogeneous symmetric inverse limit semigroup.

This result will also be proved in Section 4. We call the inverse semigroup in this theorem
the maximally homogeneous symmetric inverse limit semigroup and denote it by I.

Remark 3.5. If S is a homogeneous inverse semigroup then it is obvious that its semilattice
of idempotents E(S) is a homogeneous semilattice. It is important to stress that I is not a
homogeneous inverse semigroup, so it is not immediate that E(I) is homogeneous. Moreover,
it is not possible to prove that E(I) is homogeneous simply by considering the action of Aut(I)
on E(I). Indeed, since the only semilattices in A are chains, and since I is universal for
finite inverse semigroups and thus in particular embeds all finite semilattices, it follows from
Proposition 3.2 that Aut(I) does not act homogeneously on all of its finite subsemilattices.
Similarly, the action of Aut(T ) on E(T ) will certainly not give a proof that the Graham–
Houghton graphs of T are homogeneous. Indeed, Aut(T ) will not act homogeneously on copies
of the 2-element left zero semigroup L2 inside a given D-class since L2 is not in B. This is because
the only finite completely simple semigroups that belong to B are finite groups [20]. The action
of Aut(T ) induces an action on the set of idempotents which by restricting to a particular
D-class gives an action of Aut(T ) on the Graham–Houghton graph. In terms of this action, the
above observation says that Aut(T ) does not act two-arc transitively on the Graham–Houghton
graph. In fact, even homogeneous semigroups can have Graham–Houghton graphs which are
not homogenous. Indeed1 if S is the combinatorial completely 0-simple semigroup represented
as a Rees matrix semigroup with structure matrix

P =

(
1 1 0 0
0 0 1 1

)
1We thank Thomas Quinn–Gregson of the University of York for bringing this example to our attention.
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then S is homogeneous, but its Graham–Houghton graph is the disjoint union of two copies of
the complete bipartite graph K1,2 which is not a homogeneous bipartite graph.

4. Fräıssé amalgamation and the proofs of the
existence and uniqueness of T and I

In this section we shall make use of a generalisation of Fräıssé’s Theorem called the Hrushovski
construction. We follow the description of this method given in [13, Section 3]. We work with
a class K of finite L-structures and a distinguished class of substructures A v B, which is
expressed by saying ‘A is a nice substructure of B’. If B ∈ K then an embedding f : A→ B is
called a v-embedding if f(A) v B. We shall assume that v satisfies the following conditions:

(N1) If A ∈ K then A v A (so isomorphisms are v-embeddings).
(N2) If A v B v C for A,B,C ∈ K then A v C (so, if f : A → B and g : B → C are

v-embeddings then fg : A→ C is also a v-embedding).

Note that whether an embedding f : A→ B is a v-embedding just depends on the substructure
induced on f(A). In particular, if f : A→ B is a v-embedding then so is αf : A→ B for any
α ∈ Aut(A). We say that (K,v) is an amalgamation class if:

• K is closed under isomorphisms, has countably many isomorphism types, and countably
many embeddings between any two members of K;
• K is closed under v-substructures;
• K has the JEP for v-embeddings: if A1, A2 ∈ K then there exists B ∈ K and v-

embeddings fi : Ai → B (i = 1, 2);
• K has the AP for v-embeddings: if A0, A1, A2 ∈ K and f1 : A0 → A1 and f2 : A0 → A2

are v-embeddings then there exists B ∈ K and v-embeddings gi : Ai → B (i = 1, 2)
with f1g1 = f2g2.

Now it will be useful to extend the notion of a nice substructure to certain countable structures.
Suppose M is a countable L-structure such that there are finite substructures Mi of M (i ∈ N)
with

M1 vM2 vM3 v . . . and M =
⋃
i∈N

Mi.

For a finite A ≤ M we define A v M if A v Mi for some i ∈ N. This does not depend on the
choice of substructures Mi above provided the following condition holds:

(N3) Let A v B ∈ K and A ⊆ C ⊆ B with C ∈ K. Then A v C.

Theorem 4.1 (Theorem 3.2 in [13]). Suppose (K,v) is an amalgamation class of finite L-
structures and v satisfies (N1) and (N2). Then there is a countable L-structure M and finite
substructures Mi ∈ K (i ∈ N) such that

(1) M1 vM2 vM3 v . . . and M =
⋃
i∈NMi;

(2) every A ∈ K is isomorphic to a v-substructure of M ;
(3) (Extension property) if A v M is finite and f : A → B ∈ K is a v-embedding then

there is a v-embedding g : B →M such that afg = a for all a ∈ A.

Moreover, M is determined up to isomorphism by these properties and if A1, A2 v M and
h : A1 → A2 is an isomorphism then h extends to an automorphism of M (which can be taken
to preserve v).

We call this latter property v-homogeneity and M is the generic structure of the class (K,v).
As in Fräıssé’s original theorem, this result also has a converse; see [13, Theorem 3.3].

4.1. Proof of Theorem 3.4. In this section we shall apply the above theorem to prove Theo-
rem 3.4. For Theorem 3.3 we just give a sketch of how it may be proved using the same general
approach.

Definition 4.2. For S, T ∈ A write S v T if and only if S is an inverse subsemigroup of T .
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Note that if S v T applies then necessarily S and T are both J -linear.

Lemma 4.3. (A,v) is an amalgamation class and v satisfies (N1) and (N2).

Proof. Since v is just the restriction of ≤ to the members of A (in the (2,1)-signature), (N1)
holds trivially, and (N2) is immediate. Also, since the structures in A are finite and the language
L is finite, A is closed under isomorphisms, contains only countably many isomorphism types
and countably many embeddings between any pair of elements of A. We have already seen
that, vacuously, A is closed under v.

To see that (A,v) is an amalgamation class, we need to verify that it satisfies the JEP
and the AP with respect to nice embeddings. Indeed, given A1, A2 ∈ A, by applying the
Vagner–Preston Theorem we obtain embeddings fi : Ai → IAi , i = 1, 2. Furthermore, let
gi : IAi → IA1 ·∪A2 be the obvious natural embeddings; so Ai (i = 1, 2) embeds into B = IA1 ·∪A2

via figi. These are v-embeddings because IA1 ·∪A2 ∈ A.
To complete the proof, we must verify that A has the amalgamation property for v-embed-

dings. Let A0, A1, A2 ∈ A and f1 : A0 → A1, and f2 : A0 → A2 be v-embeddings. Then since
A0 ∈ A there is a finite inverse semigroup B and embeddings gi : Ai → B (i = 1, 2) such that
f1g1 = f2g2. Now by the Vagner–Preston Theorem there is an embedding h : B → IB. Then
gih : Ai → IB are v-embeddings since Ai ∈ A by assumption and IB belongs to A. �

Combining the above lemma with Theorem 4.1 gives a countable (2,1)-algebra I and finite
inverse semigroups Pi ∈ A (i ∈ N) such that P1 v P2 v . . . and I =

⋃
i∈N Pi. This implies I

is an inverse semigroup; furthermore, it is universal for the class of finite inverse semigroups.
Moreover, it also follows from Theorem 4.1 that I is A-homogeneous, and is the unique count-
able A-homogeneous inverse semigroup which can be written as such a union of members Pi
of A. To complete the proof of Theorem 3.4 we need to show that I is an In-limit inverse
semigroup by converting the chain P1 v P2 v . . . into a chain of finite symmetric inverse
semigroups.

Lemma 4.4. Let S be an A-homogeneous inverse semigroup. The following are equivalent:

(i) S is universal for finite inverse semigroups and there are finite inverse subsemigroups
Si ∈ A (i ∈ N) such that S1 < S2 < . . . and S =

⋃
i∈N Si;

(ii) S is an In-limit inverse semigroup, i.e. there are inverse subsemigroups Ti of S (i ∈ N)
such that T1 < T2 < . . . and S =

⋃
i∈N Ti where each Ti ∼= Ini for some ni ∈ N.

Proof. (ii)⇒(i): It follows from the Vagner–Preston Theorem that S =
⋃
i∈N Ti is universal for

finite inverse semigroups, whence (i) is achieved since each Ti ∼= Ini belongs to A.
(i)⇒(ii): We claim that for each i ∈ N there is an inverse subsemigroup Ui of S such that Ui

contains Si as an inverse subsemigroup and Ui ∼= ISi . To see this, first embed Si into ISi by
the Vagner–Preston Theorem. By universality of S there is an embedding ISi → S; let Vi be
the image of ISi under this embedding. Then Vi is an inverse subsemigroup of S which in turn
contains a subsemigroup S′i such that S′i

∼= Si. Since Si ∈ A we can apply A-homogeneity to
get an automorphism α of S such that S′iα = Si, and then set Ui = Viα, completing the proof
of the claim.

Now since each Ui is finite and S =
⋃
i∈N Si there exist 1 = i0 < i1 < i2 < . . . such that

S1 = Si0 ≤ Ui0 ≤ Si1 ≤ Ui1 ≤ Si2 ≤ Ui2 ≤ . . .

Hence, we have Ui0 ≤ Ui1 ≤ . . . and S =
⋃
j∈N0

Uij , where Uij
∼= I|Sij

|. The proof is now

completed by setting Tj = Uij−1 for all j ≥ 1. �

This lemma tells us that I is indeed an In-limit inverse semigroup, which completes the
existence part of Theorem 3.4. Uniqueness now also follows from Theorem 4.1. Indeed, the
conditions (1) and (2) of that theorem are clearly satisfied. The extension property (3) holds as
a consequence of the assumption of A-homogeneity. This completes the proof of Theorem 3.4.
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4.2. Proof of Theorem 3.3. The proof of Theorem 3.3 is similar to the proof of Theorem 3.4.
For S, T ∈ B we write S v T if and only if S is a subsemigroup of T . Then using Cayley’s
Theorem for semigroups, and the definition of B, it may be seen that (B,v) is an amalgamation
class and v satisfies (N1) and (N2). Applying Theorem 4.1 gives a countable universal locally
finite semigroup T which is B-homogeneous, that is, it is maximally homogeneous. Moreover,
there is a sequence of finite semigroups Pi ∈ B (i ∈ N) such that P1 v P2 v . . . and T =

⋃
i∈N Pi.

The proof of Theorem 3.3 is then completed by the following lemma which is proved in the same
way as Lemma 4.4 but with Tn in place of In, and Cayley’s Theorem for semigroups applied
instead of the Vagner–Preston Theorem. Also, for the (ii)⇒(i) direction of the proof of the
following result we need to appeal to the fact that for all n the full transformation semigroup
Tn belongs to B.

Lemma 4.5. Let S be a B-homogeneous semigroup. The following are equivalent:

(i) S is universal for finite semigroups and there are finite subsemigroups Si ∈ B (i ∈ N)
such that S1 < S2 < . . . and S =

⋃
i∈N Si;

(ii) S is a Tn-limit semigroup, i.e. there are subsemigroups Ti of S (i ∈ N) such that
T1 < T2 < . . . and S =

⋃
i∈N Ti where each Ti ∼= Tni for some ni ∈ N.

5. Homogeneous structures within the inverse semigroup I

The aim of this section is to prove the following result which gives several structural properties
of the semigroup I.

Theorem 5.1. Let I be the maximally homogeneous symmetric inverse limit semigroup. Then

(1) I is locally finite and universal for finite inverse semigroups.
(2) I/J is a chain with order type Q.
(3) Every maximal subgroup is isomorphic to Hall’s group U .
(4) The semilattice of idempotents E(I) is isomorphic to the universal countable homoge-

neous semilattice.
(5) J = D and all principal factors are isomorphic to the Brandt semigroup B(N,U).

We note that (I/R,≤R), (I/L ,≤L ) and (E(I),≤) are all isomorphic, since I is an inverse
semigroup, so part (4) also serves as a description of the R and L orders of I. The rest of this
section will be devoted to proving Theorem 5.1. Part (4) takes the most work, so we shall deal
with it last. Part (1) was established in the proof of Theorem 3.4.

5.1. The order type of I/J . First note that since I is a union of J -linear inverse semi-
groups it follows that I/J is a chain. This chain is certainly countable since I is countable.
To show that it has order type (Q,≤) it would now suffice to show that it is dense and without
end-points. For that it suffices to observe that Aut(I) acts 2-homogeneously on I/J . In fact
Aut(I) acts k-homogeneously on I/J for any k, as we now show.

First we record a general fact about inverse semigroups.

Lemma 5.2. Let S be an inverse semigroup and let J,K be J -classes of S with J ≤ K. Then
for any f ∈ E(K) there exists e ∈ E(J) such that ef = fe = e.

Proof. Pick an arbitrary idempotent g ∈ J . There exist s, t ∈ S1 such that sft = g. Thus

g = sft = ss−1sftt−1t = s(s−1gt−1)t,

so s−1gt−1 J g. Now, e = s−1gt−1 = (ss−1)f(t−1t) is an idempotent, it belongs to J , and we
have fe = ef = (ss−1)f(t−1t)f = (ss−1)f2(t−1t) = (ss−1)f(t−1t) = e. �

This immediately generalises to

Corollary 5.3. Let S be an inverse semigroup and let J0 < J1 < · · · < Jk be a chain of
J -classes of S. Then there exist ei ∈ Ji, 0 ≤ i ≤ k, such that {e0, e1, . . . , ek} ≤ S with
e0 < e1 < · · · < ek, i.e. eiej = ejei = emin(i,j) for all i, j.
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Corollary 5.4. Given any two chains J0 < J1 < · · · < Jk and J ′0 < J ′1 < · · · < J ′k of J -classes
in I there is an α ∈ Aut(I) such that Jiα = J ′i for all 0 ≤ i ≤ k.

Proof. This follows from the previous corollary together with the condition of A-homogeneity,
since the isomorphism between finite chains of idempotents e0 < e1 < · · · < ek and e′0 <
e′1 < · · · < e′k extends to an automorphism of I, and automorphisms map J -classes onto
J -classes. �

Theorem 5.1(2) now follows since Corollary 5.4 implies that (I/J ,≤) is a countable dense
linear order without endpoints, and thus must be isomorphic to (Q,≤).

5.2. Maximal subgroups. By A-homogeneity, Aut(I) acts transitively on the set E = E(I)
as each idempotent forms a trivial subsemigroup which is J -linear. It follows that for all
e, f ∈ E, He

∼= Hf i.e. all maximal subgroups of I are isomorphic. Now fix e ∈ E. Since I is
universal, it embeds every finite group. Each of these embeddings is into some group H -class
of I which, since all such groups are isomorphic, implies that He is universal. Local finiteness of
He follows from local finiteness of I. We claim that He is homogeneous. Indeed, if φ : G1 → G2

is an isomorphism between finite subgroups of He then eφ = e. Since groups are J -linear, by

A-homogeneity φ extends to φ̂ ∈ Aut(I). Since eφ̂ = e it follows that φ̂ �He∈ Aut(He) and
it extends φ. Thus He is the countable universal locally finite homogeneous group U . This
completes the proof of part (3) of Theorem 5.1.

5.3. Principal factors. Since I is locally finite, and thus periodic, it follows that J = D and
that every principal factor of I is isomorphic to a completely 0-simple semigroup. Transitivity
of Aut(I) on E(I) implies that any two principal factors of I are isomorphic. This shows every
principal factor is isomorphic to a Brandt semigroup over U (by [26, Theorem 5.1.8]). Let J be
a J -class of I. For every n ∈ N the finite inverse semigroup B({1, . . . , n}, 1G) embeds in I,
since I is universal, and thus it embeds in J . From this it follows that J has infinitely many
R- and L -classes. Since I is countable, this proves that J∗ ∼= B(N,U). This completes the
proof of part (5) of Theorem 5.1.

5.4. The semilattice of idempotents. The rest of this section will be devoted to proving
part (4) of Theorem 5.1. This requires more work than the other parts of Theorem 5.1 due
to the fact that Aut(I) does not act homogeneously on the semilattice E(I) of idempotents;
see Remark 3.5. We shall make use of the following characterisation of the countable universal
homogeneous semilattice Ω.

Theorem 5.5. ([1, Theorem 4.2], cf. [9, Theorem 2.5]) Let (Ω,∧) be a countable semilattice.
Then Ω is the universal homogeneous semilattice if and only if the following conditions hold:

(i) no element is maximal or minimal;
(ii) any pair of elements has an upper bound;

(iii) Ω satisfies the following axiom (∗) depicted in Figure 1: for any α, γ, δ, ε ∈ Ω such that
δ, ε ≤ α, γ 6≤ δ, γ 6≤ ε, α 6≤ γ, and either δ = ε, or δ ‖ ε and γ ∧ ε ≤ γ ∧ δ, there exists
β ∈ Ω such that δ, ε ≤ β ≤ α and β ∧ γ = δ ∧ γ (in particular, β ‖ γ).

Here the notation α ‖ β means that α and β are incomparable, where α and β are elements
of a poset.

Let ψ : S → IS where xψ = ρx be the embedding given by the Vagner–Preston Theorem.
In the particular case when x = e ∈ E(S) we have ρe = idSe . When S = In and ε ∈ S is an
idempotent, it follows that ε is the identity mapping on the subset dom ε = im ε of {1, . . . , n},
and then

im ρε = Inε = {γ ∈ In : im γ ⊆ im ε}.
This motivates us to define, for each X ⊆ {1, . . . , n}, the set

X̂ = {γ ∈ In : im γ ⊆ X},
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⇒ ∃β

α

δε

γ
α

β

δε

γ

β ∧ γ = δ ∧ γδ ∧ γ

ε ∧ γ

Figure 1. Illustration of property (∗) in the characterisation of the countable
universal homogeneous semilattice.

so that we have îm ε = im ρε. The operation ̂ defines an injective map̂ : P({1, . . . , n})→ P(In),

X 7→ X̂. (Here we use the notation P(A) to denote the power set of all subsets of a set A.) It

is easy to see that for all X,Y ⊆ {1, . . . , n} we have X̂ ∩ Y = X̂ ∩ Ŷ , from which it follows that̂ is a semilattice embedding from E(S) into E(IS).
In the special case that S = In, the semilattice E(In) is isomorphic to (P({1, . . . , n}),∩) via

the map ε 7→ im ε and, similarly, E(IIn) is isomorphic to (P(In),∩). We conclude that ̂ gives
rise to a semilattice embedding of E(In) into E(IIn).

Proposition 5.6. Suppose we have A,C,D,E ⊆ {1, . . . , n} such that the conditions of the
left-hand side of axiom (∗) are satisfied, that is D∪E ⊆ A, C 6⊆ D, C 6⊆ E, A 6⊆ C, and either

D = E, or D ‖ E and C ∩ E ⊆ E ∩D. Then setting B = D̂ ∪ Ê ⊆ In we have D̂ ⊆ B ⊆ Â,

Ê ⊆ B and B ∩ Ĉ = D̂ ∩ Ĉ.

Proof. Both D̂ ⊆ B and Ê ⊆ B are obvious from the definition of B. Since D ⊆ A we have

D̂ ⊆ Â, and since E ⊆ A we have Ê ⊆ Â, thus B = D̂∪ Ê ⊆ Â. To complete the proof, observe
that

B ∩ Ĉ = (D̂ ∪ Ê) ∩ Ĉ = (D̂ ∩ Ĉ) ∪ (Ê ∩ Ĉ) = D̂ ∩ C ∪ Ê ∩ C.
If D = E then this equals D̂ ∩ C = D̂∩ Ĉ. Otherwise, D ‖ E and E∩C ⊆ D∩C which implies

Ê ∩ C ⊆ D̂ ∩ C and so again we obtain B ∩ Ĉ = D̂ ∩ C = D̂ ∩ Ĉ. �

Proof of Theorem 5.1 (4). Since I is an In-limit inverse semigroup it follows that for any e, f ∈
E(I) there exists g ∈ E(I) such that g ≥ e and g ≥ f . Since Aut(I) acts transitively on E(I)
it follows that there are no maximal or minimal idempotents. So it just remains to verify
property (∗). Suppose α, γ, δ, ε ∈ E(I) satisfy the conditions of the left-hand side of axiom
(∗). Since I is an In-limit inverse semigroup there exists S ≤ I with S ∼= In for some n and
{α, γ, δ, ε} ⊆ S. Let ψ : S → IS be the Vagner–Preston embedding. It follows from Proposition
5.6 that there is an element β ∈ E(IS) such that ρα, ργ , ρδ, ρε, β (where ρx = xψ) satisfy the
right-hand side of (∗). Since S ∼= In and IS are both J -linear we can apply the extension
property of I (Theorem 4.1 part (3)) to obtain S ≤ V ≤ I where V ∼= IS and β′ ∈ E(V ) such
that α, γ, δ, ε, β′ satisfy the right-hand side of axiom (∗). Now by Theorem 5.5 it follows that
E(I) is the countable universal homogeneous semilattice. �

6. Homogeneous structures within the semigroup T

In this section we shall prove some results about the structure of the universal maximally
homogeneous full transformation limit semigroup T .
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Theorem 6.1. Let T be the maximally homogeneous full transformation limit semigroup. Then

(1) T is locally finite and universal for finite semigroups.
(2) T /J is a chain with order type Q.
(3) Every maximal subgroup is isomorphic to Hall’s group U .
(4) T is regular and idempotent generated, J = D and all principal factors are isomorphic

to each other.
(5) The Graham–Houghton graph of every D-class of T is isomorphic to the countable

random bipartite graph.

In the process of proving part (5) of Theorem 6.1, another interesting structural property of
T that we shall establish is that it is isomorphic to its opposite; see Theorem 7.5. Parts (1),
(3) and (4) are the most straightforward to prove, so we begin with them.

Proofs of parts (1), (3) and (4) of Theorem 6.1. Part (1) is an immediate consequence of the
definition of T and Cayley’s Theorem for semigroups.

(3) The argument is very similar to Theorem 5.1(3). Every finite group belongs to B. In
particular the trivial group belongs to B which implies Aut(T ) acts transitively on E(T ). It
follows that all the maximal subgroups of T are isomorphic to each other. Fix and idempotent
e in T and consider the group He. The group He is universal and locally finite because T has
both of these properties. Since every finite group belongs to B, we can then see that the group
He is homogeneous as a consequence of B-homogeneity of T .

(4) Since a union of regular semigroups is regular, and Tn is regular, it follows that T is
regular. To see that T is idempotent generated first recall that, by [25], for every n ∈ N we
have 〈E(Tn)〉 = (Tn \Sn)∪{id[n]}. Let n > 1 and consider the embedding f : Tn−1 → Tn where
for each α ∈ Tn−1 the mapping αf is given by

i(αf) =

{
iα if 1 ≤ i ≤ n− 1

n if i = n.

Since the full transformation semigroup is in B the map f is a v-embedding and hence by the
extension property, for every embedding Tn−1 v T there is a v-embedding g : Tn → T such
that afg = a for all a ∈ Tn−1. Since T is a Tn-limit semigroup, for every element s ∈ T there
is a subsemigroup U ≤ T with s ∈ U and U ∼= Tk. Setting n = k + 1 this gives an embedding
Tn−1 v T such that the image of Tn−1 contains the element s. But now since

f(Tn−1) ⊆ Tn \ Sn ⊆ 〈E(Tn)〉
it follows that s ∈ 〈E(Tng)〉. Since s was arbitrary this proves that T is an idempotent generated
semigroup. Since T is locally finite, it is periodic, and hence J = D . Finally, transitivity of
Aut(T ) on E(T ) implies that any two principal factors of T are isomorphic. �

6.1. Proof of Theorem 6.1(2). Clearly, a union of J -linear semigroups is J -linear, and
thus in particular every Tn-limit semigroup S has the property that S/J is a chain. To show
that T /J has order type Q, we first observe that as a consequence of [19, Theorem 1] we have
the following lemma.

Lemma 6.2. If φ : S → T is an embedding of regular semigroups and x, y ∈ S are such that
JSx > JSy then JTxφ > JTyφ.

Now we prove a result analogous to the one holding for I regarding the action of the auto-
morphism group on chains of J -classes, but with a different argument.

Lemma 6.3. Let r < m ≤ n ∈ N. In Tn, for any f ∈ E(Dm) there is an e ∈ E(Dr) such that
ef = fe = e.

Proof. Assume that

f =

(
A1 A2 · · · Am
a1 a2 · · · am

)
,
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where ai ∈ Ai. This notation means that f is a transformation from Tn with image {a1, a2, . . . , am}
such that, for each i, the preimage of ai is the set Ai. Since f is an idempotent it follows that
ai ∈ Ai for all i. Now if we set set

e =

(
A1 A2 · · · Ar−1 Ar ∪ · · · ∪Am
a1 a2 · · · ar−1 ar

)
,

then e is an idempotent since ar ∈ Ar ∪ · · · ∪Am, we have e ∈ Dr since | im(e)| = r, and it may
then easily be verified that ef = fe = e. �

Corollary 6.4. Given a chain Ji1 < Ji2 < · · · < Jim of J -classes in Tn, for all 1 ≤ j ≤ m
there exist eij ∈ Jij such that {ei1 , . . . , eim} is a subsemigroup isomorphic to an m-element
chain.

Lemma 6.5. For any two chains J0 < J1 < · · · < Jk and J ′0 < J ′1 < · · · < J ′k of J -classes in
T there exists α ∈ Aut(T ) such that Jiα = J ′i for all 0 ≤ i ≤ k.

Proof. In T , choose representatives ai ∈ Ji and bi ∈ J ′i , 0 ≤ i ≤ k. Since T is a Tn-limit
semigroup, it is a union of its subsemigroups T =

⋃
j≥0 Tj such that Tj ∼= Tij . So there is an

m ∈ N such that a0, a1, . . . , ak, b0, b1, . . . , bk ∈ Tm ∼= Tim . Now, by Corollary 6.4, within Tm we
have idempotents eiJ ai and fiJ bi such that e0 < e1 < · · · < ek and f0 < f1 < · · · < fk. Now
φ : {e0, . . . , ek} → {f0, . . . , fk}, eiφ = fi, is an isomorphism between two members of B, since

by [35] any chain semilattice belongs to B, and thus it extends to φ̂ ∈ Aut(T ) with Jiφ̂ = J ′i
for 0 ≤ i ≤ k. �

Since T is countably infinite, Theorem 6.1(2) is now an immediate consequence of Lemma 6.5.

7. The Graham–Houghton graph of J -classes in T

In this section we prove part (5) of Theorem 6.1. Since the principal factors of T are all
isomorphic to each other, there is (up to isomorphism) only one Graham–Houghton graph
Γ = Γ(T ) to investigate. Our aim in this section is to show that Γ is isomorphic to the
countable random bipartite graph. This bipartite graph was defined in Subsection 2.2 above.
We shall find it useful to make use of the following alternative characterisation of the countable
random bipartite graph.

Let Γ be a bipartite graph with bipartition V Γ = X ·∪ Y . We say Γ satisfies property (�) if

(1) |X| = |Y | = ℵ0,
(2) for every pair of non-empty finite subsets A and B of X with A ∩ B = ∅ there is a

vertex y ∈ Y such that y ∼ a for all a ∈ A, and y 6∼ b for all b ∈ B, and
(3) for every pair of non-empty finite subsets C and D of Y with C ∩ D = ∅ there is a

vertex x ∈ X such that x ∼ c for all c ∈ C, and y 6∼ d for all d ∈ D.

It is easy to see that this is equivalent to the defining property of the countable random bipartite
graph given in Subsection 2.2. Thus, any countable bipartite graph satisfying property (�) is
isomorphic to the random bipartite graph.

Throughout, let D be a fixed D-class of T . We use Λ to denote the set of all L -classes of D,
while I will stand for the set of R-classes of D. Recall from Subsection 2.7 that Γ = GH(D)
has V Γ = I ·∪ Λ and edges (i, λ) ∈ EΓ if and only if Hiλ is a group.

Our aim is in fact to prove that Γ is has property (�), namely:

(a) |I| = |Λ| = ℵ0;
(b) for any non-empty subsets Ω,Σ ⊆ Λ with Ω ∩ Σ = ∅ there exists i ∈ I such that all

Hiω (ω ∈ Ω) are groups and none of the Hiσ (σ ∈ Σ) are groups;
(c) the dual of (b) with I and Λ interchanged.

We will show that property (a) follows from the construction of T . We will prove (b) directly,
while we will provide an indirect proof of (c) by showing that T ∼= T opp and then appeal to (b).
Proving (b) relates to the following combinatorial question. Recall that if P is a partition of
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A′1

A′2

. . .
A′k

B′1

B′2

. . .
B′l

M

Figure 2. Illustration of Lemma 7.1. The set Y decomposes into the disjoint
union of the shaded part M , the head, and the non-shaded parts A′i and B′i, the
petals.

[m] = {1, 2, . . . ,m}, and A is a susbet of [m], we write P ⊥ A to mean that A is a transversal
of P . Let A1, A2, . . . , Ak, B1, B2, . . . , Bl be a family of distinct t-element subsets of [m]. Then
one can ask under what conditions on these sets can we guarantee that there is a partition P
of [m] into t non-empty parts, such that P ⊥ Ai for all 1 ≤ i ≤ k and P 6⊥ Bj for all 1 ≤ j ≤ l?
For example, if the sets Ai, Bj are all pairwise disjoint then it is easy to find such a partition P .
More generally, we can give a sufficient condition for such a set P to exist, given by measuring
the extent to which the sets Ai, Bj overlap with each other.

Lemma 7.1 (Flower Lemma). Let A1, A2, . . . , Ak, B1, B2, . . . , Bl be a family of distinct t-
element subsets of [m] with k, l ≥ 1 and t ≥ 2.

For each 1 ≤ i ≤ k set

A′i = Ai \ (A1 ∪ . . . ∪Ai−1 ∪Ai+1 ∪ . . . ∪Ak ∪B1 ∪ . . . ∪Bl),
and for 1 ≤ j ≤ l set

B′j = Bj \ (A1 ∪ . . . ∪Ak ∪B1 ∪ . . . ∪Bj−1 ∪Bj+1 ∪ . . . ∪Bl).

Let Y = A1 ∪ . . .∪Ak ∪B1 ∪ . . .∪Bl, let Y ′ = A′1 ∪ . . .∪A′k ∪B′1 ∪ . . .∪B′l and set M = Y \Y ′.
If |M | < t then there exists a partition P of [m] into t non-empty parts, such that P ⊥ Ai for
all 1 ≤ i ≤ k and P 6⊥ Bj for all 1 ≤ j ≤ l.

Proof. We call Y the flower, M the flower head and the sets A′i, B
′
j the petals; see Figure 2.

The definitions in the statement decompose the flower into a disjoint union of its head and
petals as follows:

Y = M ·∪A′1 ·∪ . . . ·∪A′k ·∪B′1 ·∪ . . . ·∪B′l.
Since |Ai| = |Bj | = t and |M | < t it follows that each of the petals A′i and B′j is non-empty.

Note that in general Y could be a proper subset of [m]. We construct a partition P with
the desired properties in the following way. Begin with sets P1, P2, . . . , Pt all empty. We will
describe an algorithm for adding all the elements from [m] to these sets, in such a way as to
create non-empty sets P1, P2, . . . , Pt defining the required partition P of [m].

(i) Place the elements from M in distinct sets, say P1, . . . , P|M |. This is possible since t > |M |.
(ii) For each 1 ≤ i ≤ k the elements from Ai \A′i have already been distributed among the Pi,

each one in a distinct set. We now add the remaining elements from A′i to the sets Pi in
such a way that Ai is a transversal of the sets Pi. This is possible since there are t sets,
and |Ai| = t.

(iii) For each 1 ≤ j ≤ l, add all of the elements from B′j to the classes in such a way that Bj
is not a transveral of the family of sets Pi. If B′j = Bj , since |Bj | = t ≥ 1 this may done
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by assigning all of the elements to the set P1. Otherwise, choose b ∈ Bj \ B′j and put all

of the elements from the non-empty set B′j into the unique set Pj which contains b.

(iv) Put all of the elements from [m] \ Y into the class P1.

It is now easy to see that the partition P with parts P1, P2, . . . , Pt has the property that Ai ⊥ P
for all 1 ≤ i ≤ k while P 6⊥ Bj for all 1 ≤ j ≤ l. �

The main vehicle for proving (b) above (and thus Theorem 6.1(5)) is the following result
about finite full transformation semigroups.

Proposition 7.2. Let n ∈ N be such that n ≥ 3 and let 1 < r < n. Then there is an m ∈ N
and an embedding φ : Tn → Tm such that for any collection of elements a1, . . . , ak, b1, . . . , bl ∈
Dr ⊆ Tn, with k ≥ 1 and l ≥ 1, all coming from distinct L -classes, there exists an element
c ∈ Tm such that in Tm we have cDa1φ and cDb1φ, and Rc ∩ Laiφ is a group for all 1 ≤ i ≤ k
while Rc ∩ Lbjφ is not a group for all 1 ≤ j ≤ l.

Proof. Set X = {1, . . . , n}; also, let Y be a finite non-empty set with Y ∩ X = ∅. Define
ι : TX → TX∪Y such that αι is given by

z(αι) =

{
zα if z ∈ X,
z if z ∈ Y.

Note that ι is an injective semigroup homomorphism, and that for any α ∈ TX we have
rank(αι) = rankα+ |Y |.

Fix e ∈ E(Dr) in TX . Let Re be the R-class of e in TX . Set ε = eι ∈ TX∪Y . The semigroup
TX acts on the set Rε ∪ {0} where the action (Rε ∪ {0})× TX → Rε ∪ {0} is given by

γ · α =

{
γ(αι) if γ(αι) ∈ Rε,
0 otherwise.

Here, γ(αι) is simply a product of two elements of TX∪Y . Using the fact that ι is a homomor-
phism, it follows easily that this is a right action of TX on Rε ∪ {0}.

Set Z = Rε ∪ {0}. The semigroup TX acts on X in the obvious way and it also acts on Z
as above; thus TX acts on X ·∪ Z. This action gives rise to a homomorphism ψ : TX → TX∪Z
where for α ∈ TX the mapping αψ is given by

u(αψ) =

{
uα if u ∈ X,
u · α if u ∈ Z = Rε ∪ {0}.

The homomorphism ψ is injective since if α, β ∈ TX with α 6= β then there is an x ∈ X with
xα 6= xβ. Consequently, x(αψ) 6= x(βψ), so αψ 6= βψ.

Lemma 7.3. Let α ∈ Dr ⊆ TX . Then

im(αψ) = imα ∪HTX∪Yαι ∪ {0}.

Proof. The restriction of αψ to X gives Xα = imα. Now consider the set Z(αψ), that is,
the image of the set Z = Rε ∪ {0} under αψ. For any q ∈ Rε if q(αψ) = q · α 6= 0 then
q · α = q(αι) ∈ HTX∪Yαι . Therefore Z(αψ) ⊆ HTX∪Yαι ∪ {0}.

Conversely, since TX∪Y is regular, there is an idempotent f in the R-class of αι in T . Now
f(αι) = αι and hence by Green’s Lemma [26, Lemma 2.2.1], in TX∪Y , right multiplication by αι
defines a bijection Lf → Lαι which maps the H -class Rε ∩ Lf bijectively onto the set HTX∪Yαι .

Thus HTX∪Yαι ∪ {0} ⊆ Z(αψ). This completes the proof. �

Claim. Let α, β ∈ Dr ⊆ TX . If (α, β) 6∈ L then HTX∪Yαι ∩HTX∪Yβι = ∅.

Proof of claim. Since TX∪Y is a regular semigroup and TX is a regular subsemigroup of TX∪Y , if
(αι, βι) ∈ L it would follow that (α, β) ∈ L (see [26, Proposition 2.4.2]), a contradiction. �
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Note that
|HTX∪Yαι | = (rank ε)! = (r + |Y |)!

In particular, this can be made arbitrarily large by varying Y .
Now choose Y so that (r + |Y |)! > n + 1 and let a1, . . . , ak, b1, . . . , bl ∈ Dr ⊆ TX = Tn be

as in the statement of Proposition 7.2. Further, let Ai = im ai and Bi = im bi for all i. Set
Ci = Haiι and Di = Hbiι. By the claim immediately above for any i, j we have Ci ∩ Cj = ∅,
Ci ∩Dj = ∅ and Di ∩Dj = ∅ whenever the sets are distinct. By Lemma 7.3, we have

im(aiψ) = Ai ∪ Ci ∪ {0}, im(biψ) = Bi ∪Di ∪ {0},
and since all ai and bj are elements of Tn it follows that

|A1 ∪ · · · ∪Ak ∪B1 ∪ · · · ∪Bl ∪ {0}| ≤ n+ 1.

We are now in a position to apply Lemma 7.1. Set Ai = im(aiψ) = Ai∪Ci∪{0} for 1 ≤ i ≤ k
and Bi = im(aiψ) = Bi ∪Di ∪ {0} for 1 ≤ i ≤ l. For i 6= j we have

Ci ∩ Cj = ∅, Ci ∩Dj = ∅ and Di ∩Dj = ∅,
and for all i we have

Ci ∩ (A1 ∪ · · · ∪Ak ∪B1 ∪ · · · ∪Bl ∪ {0}) = ∅,
and

Di ∩ (A1 ∪ · · · ∪Ak ∪B1 ∪ · · · ∪Bl ∪ {0}) = ∅.
In the terminology of Lemma 7.1 the sets Ci and Dj are subsets of the petals. Specifically, for
all i and j we have Ci ⊆ A′i and Dj ⊆ B′j . Also in the terminology and notation of Lemma 7.1
we have the head of the flower M satisfies

M ⊆ A1 ∪ · · · ∪Ak ∪B1 ∪ · · · ∪Bl ∪ {0}
and since Ai = im(ai), Bj = im(bj) with ai, bj ∈ Dr we have M ⊆ {1, 2, . . . , n} ∪ {0} and so
|M | ≤ n+ 1. We chose Y so that (r + |Y |)! > n+ 1. It follows that

|Ai| = |Bi| = r + (r + |Y |)! + 1 > (r + 1) + (n+ 1) ≥ (r + 1) + |M | > |M |.
So we have a family of subsets Ai, Bj of X ∪ Z all of size

|Ai| = |Bi| = r + (r + |Y |)! + 1.

such that |Ai| = |Bj | > |M | for all i and j. Thus the conditions of Lemma 7.1 are satisfied.
Applying Lemma 7.1 we conclude that there exists a partition P of X ∪Z into r+ (r+ |Y |)! +1
non-empty parts, such that P ⊥ Ai for all 1 ≤ i ≤ k and P 6⊥ Bj for all 1 ≤ j ≤ l. Let c ∈ TX∪Z
be a mapping with ker(c) = P . Then we have X = {1, 2, . . . , n} and we have constructed an
injective homomorphism ψ : TX → TX∪Z , and found an element c ∈ TX∪Z such that cDa1ψ
and cDb1ψ and Rc ∩ Laiψ is a group for all 1 ≤ i ≤ k and Rc ∩ Lbjψ is not a group for all
1 ≤ j ≤ l. This completes the proof of Proposition 7.2. �

7.1. Proof of Theorem 6.1(5). We need to show that the Graham–Houghton graph Γ has
property (�). For this we need to show that the conditions (a), (b) and (c) all hold. Recall that
D is a fixed D-class of T , Λ is the set of all L -classes of D, and I is the set of R-classes of D.
The bipartite graph Γ has V Γ = I ·∪ Λ and edges (i, λ) ∈ EΓ if and only if Hiλ is a group.

Property (a), that |I| = |Λ| = ℵ0, follows easily from the construction of T . Indeed, since,
as already observed, all the principal factors are isomorphic to each other, and T is regular
and universal for finite semigroups, every finite right zero semigroup embeds in D and since
in any such semigroup all the elements must belong to distinct H -classes it follows that D
has infinitely many L -classes. Similarly, since arbitrary finite left zero semigroups embed, D
also has infinitely many R-classes. There are countably many in each case since T itself is
countable.

To prove property (b) we shall apply Proposition 7.2. Let Ω and Σ be disjoint non-empty
subsets of Λ. Let α1, . . . , αk be a transversal of the L -classes Ω, and β1, . . . , βl be a transversal of
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the L -classes Σ. Since T is a Tn-limit semigroup, there exists a subsemigroup S ≤ T such that
S ∼= Tn for some n and with O = {α1, . . . , αk, β1, . . . , βl} ⊆ S. Since the elements from the set O
all come from distinct L -classes if T and S ≤ T , it follows that the elements from O all belong
to distinct L -classes of the semigroup S. Applying Proposition 7.2 to α1, . . . , αk, β1, . . . , βl in
Tn we conclude that there is an m ∈ N and an embedding ψ : S → Tm such that there exists
c ∈ Tm such that in S we have cDα1ψ, cDβ1ψ, Rc ∩ Lαiψ is a group for all 1 ≤ i ≤ k, and
Rc ∩ Lβjψ is not a group for all 1 ≤ j ≤ l. Now by the extension property there exists an
embedding θ : Tm → T such that ψθ = idS . Let i0 ∈ I be the index of the R-class of cθ in
T . We claim that (b) is satisfied by taking i0 ∈ I. For this, we use the following general fact
about periodic semigroups.

Lemma 7.4. Let S and T be periodic semigroups and let f : S → T be an embedding. Then
for all x ∈ S, HS

x is a group if and only if HT
xf is a group.

Proof. Since S is periodic, HS
x is a group if and only if xk = x for some k > 1. However, since

f is an isomorphism between S and Sf , the latter condition holds if and only if (xf)k = xf ,
which holds if and only if HT

xf is a group. �

Applying this lemma it follows that in T we have that Rcθ ∩ Lαi is a group for all 1 ≤ i ≤ k
and Rcθ ∩ Lβj is not a group for all 1 ≤ j ≤ l. This completes the proof of (b).

To prove (c) it will suffice to show T ∼= T opp. Recall that from Lemma 2.1 in Subsection 2.4
it follows that for any n ≥ 1 both Tn and T oppn belong to the class C.

Theorem 7.5. Let T be the maximally homogeneous full transformation limit semigroup. Then
T ∼= T opp.

Proof. Upon writing T =
⋃
j∈N Tj as a union of subsemigroups such that Tj ∼= Tij for some

ij we easily conclude that T opp =
⋃
j∈N T

opp
j where T oppj

∼= T oppij
. Hence, T opp is a direct

limit of semigroups from B. The semigroup T opp is also clearly countable and is universal for
finite semigroups by the left Cayley Theorem for semigroups. It now follows from Lemma 4.5
that if T opp is B-homogeneous then T opp ∼= T . We now prove that T opp is B-homogeneous by
verifying that it has the B-extension property, which is equivalent to B-homogeneity since T opp
is countable.

Let S be a finite subsemigroup of T opp with S ∈ B. Then S is a subsemigroup of T oppj for
some j, implying that Sopp ∈ B is a subsemigroup of Tj ∼= Tij . Observe that the domains of S
and Sopp are equal. Consider an embedding S → U ∈ B; the same mapping is an embedding
Sopp → Uopp ∈ B. Now apply the extension property for T to conclude that there is an
embedding U → T , which is the identity mapping when restricted to the set Sopp. But now
this same map is an embedding Uopp → T opp which is the identity mapping when restricted to
the set S. This completes the proof. �

Condition (c) now follows from (b) by applying Theorem 7.5. Indeed, choose and fix an
isomorphism θ : T → T opp. Fix a D-class of T . Since Aut(T opp) acts transitively on the set of
idempotents in T opp, and T opp is regular, we may choose θ so that the image of the set D ⊆ T
under θ is equal to the same set D ⊆ T opp. Restricted to the set D the map θ maps E(D)
bijectively to E(D) in such a way that for any pair of idempotents e, f we have eRf in T if
and only if eθL fθ in T opp, and dually eL f in T if and only if eθRfθ. It follows that the
mapping θ induces an automorphism of the Graham–Houghton graph of D which swaps the
two parts of the bipartition. The existence of this automorphism, together with the fact that
we have already established property (b) for Γ, implies that Γ also satisfies property (c). This
completes the proof that Γ is the countable universal homogeneous bipartite graph and thus
concludes the proof of Theorem 6.1.

Note that one consequence of the argument given in the previous paragraph is the following
combinatorial result about finite transformation semigroups, which is the natural left-right dual
to Proposition 7.2.
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Corollary 7.6. Let n, r ∈ N with n ≥ 3 and 1 < r < n. Let a1, . . . , ak, b1, . . . , bl ∈ Dr (where
k, l ≥ 1) be representatives of distinct R-classes of Dr ⊆ Tn. Then there exists m ∈ N and an
embedding ψ : Tn → Tm such that there is a c ∈ Tm with the property that Raiψ ∩ Lc is a group
for all i and Rbjψ ∩ Lc is not a group for all j.

It is not obvious how we would prove this corollary directly and combinatorially (i.e. how to
find m, ψ and c) except by going via the argument above which uses the isomorphism T ∼= T opp.
It relates to the following general combinatorial problem: Let P1, P2, . . . , Pk, Q1, Q2, . . . , Ql be a
family of distinct partitions of [m] = {1, 2, . . . ,m} each with exactly t non-empty parts. Under
what conditions on these partitions can one guarantee that there is a t-element subset A of [m]
such that A ⊥ Pi for all 1 ≤ i ≤ k and A 6⊥ Qj for all 1 ≤ j ≤ l?

7.2. The principal factors of T . We have seen that all the principal factors of T are isomor-
phic to each other, and that their Graham–Houghton graphs are isomorphic to the countable
random bipartite graph. Let J be a fixed J -class of T . We do not currently have any char-
acterisation of the principal factor J∗. Since T is locally finite, and T is regular, it follows
that J∗ is a completely 0-simple semigroup. If CS is the class of all finite completely 0-simple
semigroups then (CS,v) is an amalgamation class, in the sense of Theorem 4.1, where v de-
notes the subsemigroup relation restricted to semigroups from CS. This is straightforward to
prove by combining results from [28] with [4, Theorem 4]. The class CS also clearly satisfies
(N1)–(N3) and from this, combined with Theorem 4.1 the following result readily follows.

Theorem 7.7. Up to isomorphism, there is a unique countable universal CS-homogeneous
completely 0-simple semigroup S.

Problem 1. Is it true that every principal factor of T is isomorphic to the semigroup S?

7.3. The right and left ideal structure of T . We have seen that the J -classes of T have
order type (Q,≤). For I we proved that the semilattice of idempotents is isomorphic to the
countable universal homogeneous semilattice. Since I is an inverse semigroup it follows that
both I/R and I/L are also isomorphic to the countable universal homogeneous semilattice.
It is reasonable to ask whether either or both of the posets (T /R,≤R) or (T /L ,≤L ) admit
a similar nice description in terms of homogeneous structures. First of all, since T ∼= T opp, we
have a poset isomorphism (T /L ,≤L ) ∼= (T /R,≤R). One natural guess might have been that
this is the countable generic partially ordered set, that is, the Fräıssé limit of the class of finite
partially ordered sets. The same could be conjectured for the Rees order of idempotents of T ,
(E(T ),≤), defined by e ≤ f if and only if ef = fe = e.

These conjectures turn out not to be true. Namely, we have:

Proposition 7.8. Neither (T /L ,≤L ) nor (E(T ),≤) is isomorphic to the countable universal
homogeneous poset.

Proof. Since T is universal we can find distinct e, f, g ∈ E(T ) with ef = fe = g (i.e. a copy of
V3, the non-chain 3-element semilattice, in T ). Then ge = g = gf , so Lg < Le, Lg < Lf and
Le ‖ Lf . Now suppose, for the sake of a contradiction, that P = (S/L ,≤L ) is isomorphic to the
countable universal homogeneous poset. It follows from [1, Axiom 1φ

2
0] that there is an element

h ∈ E(T ) such that Lh ≤ Le, Lh ≤ Lf and Lh ‖ Lg. If we had such an h then h ≤L e would
imply he = h and similarly we would conclude hf = h. It would follow hg = hef = hf = h,
that is h ≤L g, a contradiction.

This argument easily adapts to the Rees order of idempotents of T . �

We currently do not know a good characterisation of the poset (T /L ,≤L ). It may be shown
that this poset has the following properties: (i) it is universal, (ii) it is dense and without
minimal or maximal elements, and (iii) Aut(T ) acts transitively on finite chains of L -classes.
It may also be shown that the Rees order of E(T ) has the properties analogous to (i)–(iii).

Problem 2. Give descriptions of the posets (T /L ,≤L ) and (E(T ),≤). Are they isomorphic to
restricted Fräıssé limits of some kind, in the sense of Theorem 4.1?
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8. Subsemigroups of T and I

In the main results above, Theorems 5.1 and 6.1, we saw that I embeds every finite inverse
semigroup, and T embeds every finite semigroup. As mentioned in the introduction above,
Hall’s group U not only embeds every finite group, but also embeds every countable locally
finite group. Given this, it is natural to ask: which semigroups embed into T , and which
inverse semigroups embed into I? These are more difficult questions than the corresponding
question for U . We shall discuss the problem for T . The situation for I is similar.

Every subsemigroup of T is of course countable and locally finite. We do not know whether
the converse is true.

Problem 3. Does every countable locally finite semigroup embed into T ?

Let S be a countably infinite locally finite semigroup. We can write S =
⋃
i≥0 Si where the

Si are distinct finite subsemigroups of S with Si ⊆ Si+1 for all i. Since each Si is finite we
know that for each i ≥ 0 there is an embedding φi : Si → T . If each Si belonged to the class B
then using the extension property from Theorem 4.1 it is not hard to see that the embeddings
φi could be chosen in such a way that for each i, the map φi : Si → T is the restriction of
φi+1 : Si+1 → T . In this way the union of the maps φi for i ≥ 0 would define an embedding
of S into T . Let us say that a semigroup S is a B-limit semigroup if S is the direct limit of a
countable chain of embeddings of distinct finite semigroups

S0 → S1 → S2 → . . .

where Si ∈ B for all i ≥ 0. The above discussion shows that every B-limit semigroup embeds
into T . Of course, more generally, any subsemigroup of a B-limit semigroup embeds into T .
This leads to the following straightforward result.

Proposition 8.1. Let S be a countably infinite semigroup. The following are equivalent:

(1) S embeds into T ;
(2) S embeds into some Tn-limit semigroup;
(3) S embeds into some B-limit semigroup.

Proof. Since T is a Tn-limit semigroup, and since Tn ∈ B for all n, it follows that (1) implies
(2) and that (2) implies (3). The fact that (3) implies (1) follows from the discussion preceding
the statement of the proposition. �

By Cayley’s Theorem every finite semigroup embeds into some finite full transformation
semigroup. From above we are led to the following related question:

Problem 4. Is every countable locally finite semigroup isomorphic to a subsemigroup of some
full transformation limit semigroup?

Related to the question of which semigroups embed into T , more generally we do not know
the answer to the following very natural question:

Problem 5. Does there exist a countable semigroup which embeds every countable locally finite
semigroup?

For the inverse semigroup I the obvious analogue of Proposition 8.1 holds, and we have the
corresponding open questions.

Problem 6. Does every countable locally finite inverse semigroup embed into I?

9. The semigroups Cn and Vn
As explained in the introduction, P. Hall’s universal group in not only an Sn-limit group, but

it can be expressed as an Sn-limit in a particularly nice way via successive embeddings arising
from repeated application of Cayley’s Theorem. It is natural to look for correspondingly nice
descriptions of T as a Tn-limit semigroup, and of I as a In-limit inverse semigroup. We
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currently do not know of any such nice descriptions. The purpose of this section is to explain
why the obvious approach of trying to obtain T by repeated iteration of Cayley’s Theorem for
semigroups does not work, and the corresponding observation for I.

Fix a natural number n. Let S0 = Tn and then define the directed chain of full transformation
semigroups

S0 → S1 → S2 → . . .

where for each i ≥ 0 we have Si+1 = TSi and the embeddings are given in each case by taking the
right regular representation. We use Cn to denote the direct limit of this chain of semigroups. It
is easy to see that for all natural numbers n the semigroup Cn is a monoid. On the other hand,
the semigroup T is not a monoid. Indeed, since T is universal it contains at least two distinct
idempotents. Also, since Aut(T ) acts transitively on members of B in T it follows that Aut(T )
acts transitively on the set of idempotents E(T ) of T . This would be impossible if T were a
monoid, since any automorphism of a monoid must clearly fix its identity element. Therefore
T cannot be isomorphic to Cn for any value of n. However, there is a natural monoid analogue
T ′ of the semigroup T with the same definition but working in the category of monoids, and
working with submonoids. One could then ask whether or not T ′ and Cn are isomorphic for
some value of n. In a similar way as for the semigroup T , one may show that every maximal
subgroup of T ′ is isomorphic to Hall’s universal homogeneous group. We shall now show that
this is not true of the semigroup Cn, and thus T ′ and Cn cannot be isomorphic.

To this end, let S = Tn and let ψ : S → TS be the right regular representation map where
αψ = ρα. For any α ∈ Tn set

fixα = {i ∈ [n] : iα = i} and fix ρα = {γ ∈ Tn : γα = γ}.
For any α ∈ Tn we have

fix ρα = {γ ∈ Tn : im γ ⊆ fixα}.
This is because γα = γ holds if and only if α acts as the identity on im γ, that is, im γ ⊆ fixα.
The size of the set fix ρα is of course just the number of maps from an n-element set into a set
of size | fixα|. From this it immediately follows that if | fixα| < |fixβ| then |fix ρα| < | fix ρβ|.
Now suppose 1 < r < n and r ≥ 5. Fix an idempotent

e =

(
1 2 3 · · · r r + 1 · · · n
1 2 3 · · · r r · · · r

)
.

Fix two elements of order two in the maximal subgroup He defined as follows:

α =

(
1 2 3 4 · · · r r + 1 · · · n
2 1 3 4 · · · r r · · · r

)
, β =

(
1 2 3 4 5 · · · r r + 1 · · · n
2 1 4 3 5 · · · r r · · · r

)
.

We use the shorthand α = (12) and β = (12)(34) for these elements of the maximal subgroup
He. The elements α and β both have order 2, but they are not conjugate in He since they have
a different number of fixed points. By the observations above, αψ and βψ are two elements in
the H -class Heψ of TTn both of order two, but they are not conjugate in Heψ since they have
different numbers of fixed points. Repeating this argument, we conclude that for every i ≥ 1 the
images of the elements α and β under the embeddings S0 → . . .→ Si are not conjugate inside
the unique maximal subgroup of Si to which they both belong. It follows that the elements that
α and β represent in Cn both have order two, but are not conjugate in the maximal subgroup
of Cn to which they belong. But in Hall’s group any two elements of order two are conjugate
to each other. It follows that the maximal subgroup of Cn containing e ∈ S0 ⊆ Cn is not
isomorphic to Hall’s group. This argument can easily be extended to prove the same result
starting with any e ∈ S0 = Tn of rank r, where 2 ≤ r ≤ n− 1. Thus for all n ≥ 2 the semigroup
Cn is not isomorphic to the universal maximally homogeneous locally finite monoid T ′. An easy
adaptation of the above argument can be used to prove that the inverse semigroup Vn is never
isomorphic to the universal locally finite maximally homogeneous inverse monoid I ′

We do not know much about the semigroups Cn and Vn.
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Problem 7. Do we have Cn ∼= Cm for all n,m ≥ 1? We ask the same question for Vn.

It is not too hard to prove that for any n ≥ 2, both (Cn/J ,≤) and (Vn/J ,≤) are isomorphic
to 1 +Q+ 1. Also, the ideas in the proof of Theorem 5.1(4) suffice to prove that the semilattice
(E(Vn),≤) satisfies condition (∗) in part (iii) of Theorem 5.5. However, E(Vn) does have unique
maximal and minimal idempotents. By applying results and arguments from [9], [1] and [12,
pages 33-34] it may be shown that E(Vn) is isomorphic to any nontrivial interval in Ω, which
in turn is isomorphic to the countable universal homogeneous semilattice monoid with zero.
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[35] J. Okniński and M. S. Putcha. Embedding finite semigroup amalgams. J. Austral. Math. Soc. Ser. A,
51(3):489–496, 1991.

[36] G. Paolini and S. Shelah. The automorphism group of Hall’s Universal Group. arXiv:1703.10540, 2017.
[37] D. J. S. Robinson. A course in the theory of groups. Graduate Texts in Mathematics, 80. Springer-Verlag,

New York-Berlin, 1982.
[38] I. Samet. Rigid actions of amenable groups. Israel J. Math., 173:61–90, 2009.
[39] K. Shoji. The full transformation semigroups of finite rank are amalgamation bases for finite semigroups.

Comm. Algebra, 44(8):3278–3289, 2016.
[40] S. Thomas and R. Tucker-Drob. Invariant random subgroups of strictly diagonal limits of finite symmetric

groups. Bull. Lond. Math. Soc., 46(5):1007–1020, 2014.

Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića
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