
Earth Syst. Sci. Data, 9, 471–495, 2017
https://doi.org/10.5194/essd-9-471-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Using ERA-Interim reanalysis for creating datasets
of energy-relevant climate variables

Philip D. Jones1,4, Colin Harpham1, Alberto Troccoli2,5, Benoit Gschwind3, Thierry Ranchin3,
Lucien Wald3, Clare M. Goodess1, and Stephen Dorling2

1Climatic Research Unit (CRU), School of Environmental Sciences,University of East Anglia,
Norwich, NR4 7TJ, UK

2School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
3MINES ParisTech, PSL Research University, O.I.E. – Centre Observation, Impacts, Energy,

06904 Sophia Antipolis, France
4Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University,

Jeddah, Saudi Arabia
5World Energy & Meteorology Council (WEMC), Norwich, NR4 7TJ, UK

Correspondence to: Philip D. Jones (p.jones@uea.ac.uk)

Received: 16 December 2016 – Discussion started: 6 January 2017
Revised: 11 May 2017 – Accepted: 25 May 2017 – Published: 21 July 2017

Abstract. The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim
reanalysis is presented. A number of different, variable-dependent, bias-adjustment approaches have been pro-
posed. Here we modify the parameters of different distributions (depending on the variable), adjusting ERA-
Interim based on gridded station or direct station observations. The variables are air temperature, dewpoint
temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity. These are available on
either 3 or 6 h timescales over the period 1979–2016. The resulting bias-adjusted dataset is available through the
Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S) and can be accessed at present
from ftp://ecem.climate.copernicus.eu. The benefit of performing bias adjustment is demonstrated by comparing
initial and bias-adjusted ERA-Interim data against gridded observational fields.

1 Introduction

Climate/weather information has been widely used in a num-
ber of climate-related impact sectors (e.g. agriculture, wa-
ter, and energy) for decades. Increasingly, users are moving
beyond the use of station observations to the use of grid-
ded products, especially meteorological reanalysis datasets.
These are reconstructions of past climate produced through
the blending of observations with physical/numerical mod-
els which have been developed explicitly for climate mon-
itoring and research (Compo et al., 2011; Dee et al., 2011;
Hersbach et al., 2015). How good ERA-Interim is for climate
monitoring has been extensively addressed recently by Sim-
mons et al. (2017). This study shows excellent agreement for
global- and continental-scale trends in surface air tempera-
tures over land with conventional station-based datasets (see
Jones, 2016, for details of these datasets).

Reanalyses have the specific advantage of being spa-
tially and temporally complete through the process of physi-
cal/dynamic representation of the climate system which pro-
vides internally consistent fields across most surface atmo-
spheric variables as well as in the atmospheric column up
to the stratosphere (Compo et al., 2011). The present pa-
per deals with the use of reanalysis for the production of
datasets of climate variables relevant to the energy sector.
The work took place within the European Climatic Energy
Mixes (ECEM) project, a Sectoral Information Service (SIS)
part of the Copernicus Climate Change Service (C3S). This
project is primarily focused on users in the energy sector
who are interested in sub-daily (e.g. 6 h) and daily variability
for the following variables at the near surface: air temper-
ature, dewpoint temperature, precipitation, solar radiation,
wind speed, and relative humidity. Despite this choice of
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variables being of primary relevance to the energy sector, it
is likely that the results will also be of use to other sectors
(particularly water and agriculture).

Because reanalyses are computed on a model grid, in-
evitably there will be differences when they are compared
to station observations. Differences are not solely related to
scales: reanalyses are dependent on the underlying weather-
forecast model and the amount of observational data enter-
ing the assimilation system used to produce them (see exam-
ple fields given in Dee et al., 2011, and we expand on this
in Sect. 2.6). Many users of reanalysis products attempt to
adjust them to observational distributions through a process
that is referred to using different terminology: bias adjust-
ment and calibration being the most commonly used terms
(Maraun et al., 2010). Here, the term bias adjustment is used.

The principal reason for performing a bias adjustment is
that reanalyses are potentially biased compared to direct sta-
tion observations (even when the station observations are
gridded to a comparable spatial resolution), more so for some
variables than others (e.g. precipitation compared to temper-
ature), and the bias may also vary in value, space, and time;
i.e. the bias may be larger for more extreme values or it might
be larger for regions or time periods of sparse station cover-
age. The importance of the bias depends to a large extent on
how the data will be used. For some variables, the monthly
average/totals will be important, but many other users require
that extremes of the distribution be well simulated. With
time, the complexity of approaches to bias adjustment has
developed from getting the monthly averages correct to the
present attempts to adjust the whole distribution and to even
account for the multivariate relationships between some vari-
ables (see, e.g., Vrac and Friederichs, 2015). These advances
reflect not only the greater expectations with each generation
of reanalysis but also the greater number of users in a greater
number of sectors.

A widely used bias-adjustment dataset was developed in
the WATCH project (Weedon et al., 2010, 2011, 2014). The
methodology applied to ERA-40 reanalysis data to create the
WATCH Forcing Data (Weedon et al., 2010, 2011) was used
later with ERA-Interim data to produce the WFDEI dataset
(WATCH Forcing Data methodology applied to ERA-Interim
data; Weedon et al., 2014). Bias adjustment in WFDEI was
undertaken on the monthly average scale for a number of
hydrological variables necessary to calculate evapotranspira-
tion, soil moisture, and runoff (so including air temperature,
rainfall, snowfall, long-wave and short-wave solar radiation,
wind speed, specific humidity, and surface pressure) and for
the period of analysis 1958–2001 (1979–2014) based on the
ERA-40 (ERA-Interim) reanalysis. The dataset was devel-
oped for forcing land surface models using meteorological
data (bias-adjusted reanalysis) and the WATCH project built
on earlier work (Cosgrove et al., 2003; Sheffield et al., 2006),
which also developed forcing datasets. The spatial coverage
for WFDEI is all land areas north of latitude 60◦ S. ECEM is
less spatially extensive covering the European Domain (27–

72◦ N, 22◦W–45◦ E). The current period of study is 1979–
2016 based on the ERA-Interim reanalysis with sub-daily
and daily timescales.

The aim of this paper is to present the construction of a
sub-daily bias-adjusted dataset of the climate variables listed
above, by using ERA-Interim reanalysis. The ECEM dataset
is freely available through the Climate Data Store (CDS) of
C3S (currently ftp://ecem.climate.copernicus.eu). The bene-
fit of performing bias adjustment is demonstrated by compar-
ing initial and bias-adjusted data against station observations
and gridded observation products. The ERA-Interim reanal-
ysis and the gridded and station observation-based datasets
used for bias adjustment are described in Sect. 2. Section 3
provides more information on the methods for bias adjust-
ment on the daily and sub-daily timescales with a focus on
the specific context of the energy sector. The selected tech-
niques are discussed in Sect. 4. Section 5 discusses issues
related to whether our bias adjustment is applicable to other
sectors. Different sectors have different user demands relat-
ing to the variables required, timescales, and the length of
historical reanalysis data needed. Section 6 gives details of
dataset access.

2 Data

This section provides details of ERA-Interim and the various
gridded and station observation datasets used to assess the
quality of this reanalysis. With gridded datasets, the spatial
resolutions may vary, so it is often necessary to regrid data
onto a common resolution (in this study a grid of 0.5◦×0.5◦

latitude×longitude).

2.1 ERA-Interim

The development of ERA-Interim is described by Dee et
al. (2011). Surface air temperature, precipitation, wind speed
at 10 m, surface downwelling solar irradiance, and relative
humidity data were extracted from ERA-Interim on its re-
duced Gaussian grid. The period is 1979–2016, and the tem-
poral resolution is either 3 h (forecast) or 6 h (analysis), de-
pending on the variable (see Dee et al., 2011, for details).
These five are Essential Climate Variables (ECVs) defined by
the Global Climate Observing System (Bojinski et al., 2014).
After extraction, the variables have been regridded onto a
latitude×longitude grid of 0.5◦×0.5◦ for the ECEM domain
using a bilinear interpolation technique. There are two prin-
cipal reasons for this regridding: (i) some of the observa-
tion datasets for the assessment of ERA-Interim are avail-
able on this regular latitude×longitude grid (e.g. E-OBS; see
next section), and (ii) potential users of the datasets devel-
oped here requested regular latitude×longitude grids with
cells size of 0.5◦ for practical reasons (in particular for ag-
gregation to the country scale). It is also preferable to regrid a
dataset without missing values, as opposed to an observation-
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based gridded product as these can contain missing values
when some station data were not available.

2.2 Gridded observation datasets

Among the available gridded products for air temperature
and precipitation, we used

– E-OBS for both variables (http://www.ecad.eu/, Hay-
lock et al., 2008),

– CRU TS for both variables (CRU TS 3.23, https://
crudata.uea.ac.uk/cru/data/hrg/, Harris et al., 2014) and

– GPCC (Global Precipitation Climatology Centre)
for precipitation (https://www.dwd.de/EN/ourservices/
gpcc/gpcc.html, Becker et al., 2013).

E-OBS, CRU TS, and GPCC data were downloaded for the
ECEM grid. All three datasets only cover land regions, so
any bias adjustment using these datasets will not include ma-
rine areas. E-OBS covers the period from 1951 to 2016, so
fully encompassing the 1979–2016 period of ERA-Interim.
CRU TS and GPCC cover the period from 1901 to 2016 (up
to 2013 for GPCCv5) but are both monthly averages/totals,
so can only provide an assessment on this timescale. These
additional two monthly gridded datasets are included as they
are used by the WATCH/WFDEI (Weedon et al., 2011, 2014)
dataset, and we will compare our bias-adjusted ERA-Interim
dataset with this dataset in Sect. 4.5.

2.3 HadISD

No gridded observed product is available for wind speed and
dewpoint temperature. Dewpoint temperature is necessary as
it can be combined with air temperature to calculate rela-
tive humidity, which is needed for energy calculations, such
as demand. Station data for wind speed at 10 m height and
dewpoint temperature were extracted from HadISD (http:
//www.metoffice.gov.uk/hadobs/hadisd/) for approximately
1500 stations across Europe. Station data were extracted ev-
ery 6 h at the SYNOP hours 00, 06, 12, and 18 for the period
1979–2014 (Smith et al., 2011; Dunn et al., 2012). We ad-
ditionally extracted air temperature data from HadISD, so
we could use this with the concurrent dewpoint tempera-
tures to calculate dewpoint depression (see later in Sect. 4.2).
HadISD has additionally been assessed for long-term homo-
geneity by Dunn et al. (2014). Variations in station coverage
within HadISD are considerably greater than the coverage
achieved for air temperature from E-OBS and precipitation
from E-OBS and GPCC. This indicates that it would be un-
wise to attempt spatial interpolation to a 0.5◦× 0.5◦ grid us-
ing the HadISD stations. Instead each station series will be
compared with that from the nearest ERA-Interim grid-box
series.

2.4 Surface solar irradiance from the World Radiation
Data Center and the Baseline Surface Radiation
Network

National meteorological services (NMSs) usually measure
surface solar irradiance at a limited number of sites. Data are
sent to the World Radiation Data Center (WRDC), a labora-
tory of the Voeikov Main Geophysical Observatory in Saint-
Petersburg, Russia, under the control of the World Meteo-
rological Organization (WMO). There, the data are archived
and published (http://wrdc.mgo.rssi.ru). Most of the data are
daily irradiation; hourly (or higher-frequency) irradiation is
available at very few sites. All data are scrutinized at WRDC
and quality-flagged before entering archives. Additionally,
six stations were added from the Baseline Surface Radiation
Network (BSRN, http://bsrn.awi.de/). Altogether, 55 stations
with high-quality daily irradiation data were kept, for which
mean daily irradiance was computed.

2.5 HelioClim-3v5 (HC3v5)

Boilley and Wald (2015) have shown the need to correct
ERA-Interim estimates of solar irradiance. As only a lim-
ited number of stations are available for solar irradiance over
Europe (but also globally), it was decided to exploit the
satellite-derived HelioClim-3v5 (HC3v5) dataset to correct
ERA-Interim. HC3v5 originates from the daily processing
of images acquired by the series of satellites Meteosat-MSG
by the Heliosat-2 method (Blanc et al., 2011; Rigollier et
al., 2004). In version 5 of HelioClim-3, a correcting table
was developed in 2015 between 15 min estimates made by
HelioClim-3 and data from the six BSRN stations. It has been
established by merging all data; i.e. it is a global correction
and not a local one. Inputs to the correcting table are the solar
zenith angle and the HelioClim-3 estimates; there is no local
input. In this respect, HC3v5 is independent of the surface
station data in BSRN and also data from WRDC.

HC3v5 does not cover the northern part of the ECEM
domain. The first estimates began on 1 February 2004,
and these have been compared satisfactorily with measure-
ments taken at ground stations (Eissa et al., 2015; Thomas
et al., 2016a, b; Marchand et al., 2017). HC3v5 data were
downloaded from the SoDa (Solar Radiation Data) Service
website (www.soda-pro.com) from which one may select the
timescale, here the daily mean of irradiance I . The HC3v5
product comprises the irradiance at the top of atmosphere
E0, from which one may compute the clearness index KT:

KT = I
/
E0 . (1)

KT is a good indicator of the optical state of the atmosphere
with a dependency on the position of the sun that is much less
pronounced than in I . KT greater than 0.7 signifies a clear
sky, while KT less than 0.2 signifies an overcast sky. The ad-
vantage of HC3v5 over the station series is that it provides
gridded data for the ECEM domain up to 60◦ N. The inde-
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pendent station data from WRDC and BSRN will be used in
Sect. 4.4 for assessing the performance of the bias adjustment
for solar irradiance.

2.6 Independence of the station/gridded observation
series versus ERA-Interim

In this study, we propose bias-adjusting ERA-Interim for the
five ECVs (wind speed, air temperature, dewpoint temper-
ature, precipitation, and irradiance). As stated in Sect. 2.1,
ERA-Interim assimilates many different climate datasets:
surface station data are just one set of several; satellite and ra-
diosonde data are also assimilated. In this section, we discuss
how independent the station observations and gridded prod-
ucts are that are used in this bias adjustment compared to the
surface station data assimilated into ERA-Interim. Precipita-
tion and irradiance data are totally independent as these data
are not assimilated. These variables are forecast outputs from
ERA-Interim (see Dee et al., 2011). Of the other three vari-
ables, near-surface air and dewpoint temperatures are assim-
ilated. For wind, the u and v components of the 10 m wind
speeds are assimilated. It is important to understand what is
assimilated and what importance may be given to these vari-
ables. The output for these three variables used is their value
in the analysis (referred to as an analysis variable), produced
every 6 h.

ERA-Interim does not provide details of all the specific
station data (and additional satellite and radiosonde data)
that are assimilated. Dee et al. (2011) give details of what
datasets are available for assimilation. ERA-Interim provides
a dynamically consistent estimate of the climate state at each
6 h time step, but it does not specifically give any details of
which potential information was used to produce the anal-
ysis variables. Through dynamical consistency, information
from satellites, radiosondes, and other surface variables (e.g.
pressure) are also used. Essentially, the quantity of surface
station data for Europe is similar to that available in the
HadISD database, which we know is about 1500 series, but
only about 800 are relatively complete over the 1979–2014
period (Dunn et al., 2012, 2014). Thus, for air temperature,
the ∼ 2000 additional daily Tx and Tn observations are not
assimilated. So our E-OBS dataset for air temperature con-
tains a much greater volume of additional temperature series
than assimilated within ERA-Interim. The wind speed and
dewpoint temperature from HadISD should have been avail-
able for assimilation, but the importance given to these obser-
vations is not as great as the importance given to the station
pressure observations.

The production of a reanalysis has occasionally been re-
ferred to as dynamic infilling, which is quite different from
the statistical spatial infilling techniques that are used to pro-
duce the E-OBS, CRU TS, and GPCC datasets. Spatial in-
filling techniques use a variety of statistical procedures (e.g.
inverse distance weighting and kriging) and are generally ap-
plied for each variable independently of other variables. In

data-sparse regions, statistical-infilling techniques will likely
spread information from the few available stations across the
unobserved areas. The effects of this are generally evident as
reduced variance in the generated fields. In contrast, a reanal-
ysis will make use of additional information (e.g. the large-
scale circulation and satellite information), potentially not
placing great emphasis on a specific observed variable (e.g.
wind observations). In addition, balances of mass, wind, and
energy fields mean that consistency between different vari-
ables is ensured, though this is particularly the case for fore-
cast variables at a few to several hours lead time. At anal-
ysis time, such balances might be not guaranteed, but this
depends on the specific data assimilation scheme used and
whether the scheme enforces physical/dynamical balances.

3 Bias-adjustment approaches

Bias adjustment and bias correction are widely used terms
for the assessment of climate model output (from both global
and regional climate models, GCMs and RCMs; see, e.g.,
Maraun et al., 2010; Maraun, 2012) generally through com-
parison with station observational data. In this context, the
biases compared to observations, are often much larger than
differences with recent reanalysis products. There are a num-
ber of studies where GCMs and RCMs are bias adjusted
against reanalyses, so the assumption is made there that re-
analyses are a true representation of the real climate. This
happens more in regions where observational datasets are
sparse and/or hard to access (Oyerinde et al., 2017, use
the MERRA reanalyses, Rienecker et al., 2011, for air tem-
perature, when bias-adjusting RCM simulations for western
Africa). Bias adjustment of reanalyses has been undertaken
for a number of years, though. An extensive exercise was car-
ried out by the WATCH project (http://www.eu-watch.org/,
see Weedon et al., 2011, 2014). This used the CRU TS
and GPCC datasets as the basis for adjusting ERA-40 and
ERA-Interim, and the adjustments are based on average
monthly differences treating each variable independently of
each other, as we will do.

Numerous and more complex (than Weedon et al., 2014)
methods for bias adjusting climate variables derived from cli-
mate models have been proposed. A number of review papers
have been published (e.g. Maraun et al., 2010; Maraun, 2013;
Vrac and Friedrichs, 2015). Among the various possibili-
ties are the cumulative distribution function (CDF) transform
method of Vrac et al. (2012), the distribution-based scal-
ing (DBS) method of Yang et al. (2010), empirical quantile
mapping (Themeßl et al., 2011, 2012; Wilcke et al., 2013),
and using the R package “qmap” used by MetNorway (Gud-
mundsson et al., 2012). Unlike the bias adjustment within
the WATCH project, the latest examples from the literature
attempt to address the issues of spatial dependence of the
bias (any bias in ERA-Interim for a variable is expected to
be relatively smooth) and temporal dependence (biases may
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be greater for certain types of weather, which has led to the
approaches improving the fit between the distributions), and
some attempt to adjust climate variables in a multivariate way
(e.g. Vrac and Friedrichs, 2015).

Research in the literature has tended to emphasize precipi-
tation (where bias adjustment can also be classed as a form of
downscaling). In ECEM, precipitation is less important, with
instead a greater emphasis on wind speed and solar irradi-
ance as well as temperature. As stated earlier, how good bias
adjustment has to be depends on how the adjusted data will
be used. Within ECEM, techniques were selected to be fit for
purpose, and that purpose is energy sector applications. Even
though users in the energy sector are a diverse group, they
are mainly interested in only one or two variables, and our
initial determination of their needs indicated that univariate
bias adjustment will be sufficient.

4 Bias adjustment and results

In the present work, the same univariate approach as Weedon
et al. (2014) was followed, and ERA-Interim was compared
against the gridded observational products on the monthly
timescale. The bias was computed as the mean of the differ-
ences (model minus observations). For both temperature and
precipitation (not shown), differences are generally greater
(but variable in sign) over mountainous regions and some
coastal areas (the Norwegian coast for temperature and most
west-facing coasts for precipitation). Users in the energy sec-
tor are much more interested in the extremes of the distribu-
tion, so the approach moved to adjusting the whole ERA-
Interim distribution on the daily and sub-daily timescales,
using a different statistical distribution for each variable. The
following sections begin with wind speed, then move to air
and dewpoint temperature, then precipitation, and finally a
new approach entirely for solar radiation.

4.1 Wind speed at 10 m

In this section, results from the univariate bias adjustment
are presented starting with wind speed at 10 m. For use in
the energy sector, wind speeds at hub heights (80–120 m)
are potentially more useful, but assessing ERA-Interim wind
speeds from these heights is only possible at a limited num-
ber of masts (Harpham et al., 2016). Assessment over the
whole domain is only possible using surface station mea-
surements which measure wind speeds at 10 m. The two-
parameter Weibull distribution is the most-used probability
distribution for representing wind speeds and is of strong rel-
evance in the energy sector. The Weibull distribution, with
scale parameter α > 0 and shape parameter β > 0, has a cu-
mulative distribution function for x > 0 given by

Pr (X ≤ x)= F (x;α,β)= 1− exp
[
−

(x
α

)β]
. (2)

The scale parameter α relates to the mean wind speed, and
β characterizes the skewness of the distribution; typical val-
ues of β range between 1 (highly variable wind speed) and 3
(fairly constant wind speed). The 2-parameter Weibull distri-
bution was fitted to 6 h wind speed data from ERA-Interim
on a monthly basis, i.e. a separate fit was made for each
month of the year, for each grid box using all the 6 h data for
1981–2010, irrespective of the wind direction. The same ap-
proach was applied for the wind data from 803 stations in the
HadISD dataset that have at least 66.6 % data completeness
for this 30-year period. The scale and shape parameters (α,
β) for the 803 stations were compared with the same param-
eters from the nearest ERA-Interim grid box. Figure 1 shows
differences (ERA-Interim minus observations) between the
scale and shape parameters for January across the European
domain. The maps indicate generally good agreement for
January, i.e. the values for the two parameters are gener-
ally within ±1 of each other. Exceptions may be found in
some mountainous regions and around west-facing coasts but
this is very dependent on the month (larger differences when
wind speeds are stronger). The similarity of the two distribu-
tions in terms of their scale and shape parameters indicates
that bias adjustment could be achieved by replacing the ERA-
Interim scale and shape parameters with those inferred from
the HadISD stations.

Equation (3) of Tye et al. (2014) provides a means to ad-
just the original variable X into a variable X∗ having scale
and shape parameters α∗ and β∗ by the following power-law
transfer function:

X∗ = α∗
(
X

α

)β/β∗
. (3)

Where stations are available, α∗ and β∗ are those of the
stations. The scale and shape parameters computed at sta-
tions were interpolated to each ERA-Interim grid box with
the bilinear INTERP function within the R Akima software
package. A bias-adjusted dataset of wind speeds for ERA-
Interim is obtained by applying Eq. (3). Figures 2 and 3
exhibit the smoothed distributions using the HadISD ob-
servations, original ERA-Interim, and bias-adjusted ERA-
Interim for the 12 calendar months for the stations Kirk-
wall, Scotland, and Maribor, Slovenia. These two locations
were chosen as one is maritime and the other more con-
tinental. The other 801 distributional fits are shown on the
ftp site with the unadjusted and adjusted ERA-Interim grids
(ftp://ecem.climate.copernicus.eu). The smoothed represen-
tations of the distributions are curtailed below zero wind
speed. It is clear from these two examples that the distribu-
tional fit for the stations has moved the adjusted ERA-Interim
data series towards the observational distribution, more so for
Kirkwall, which shows a much greater improvement than for
Maribor, where the distribution moves are a clear improve-
ment in winter months but less so for spring and early sum-
mer months. Bias adjustment is less successful than in the
examples shown for a few stations located in coastal areas
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Figure 1. Differences in scale and shape parameters of the Weibull distribution between ERA-Interim and HadISD station observations for
wind speed at 10 m. Based on all 6-hourly data for January for 1981–2010.

and a few sites in mountainous regions (see the full set of
distributional fits on the ftp site). Some observed distribu-
tions are a little erratic due to some years in the observed
data having wind speeds rounded to integer values. Similarly
to Fig. 1, but for bias-adjusted ERA-Interim minus observa-
tions, Fig. 4 shows differences between the scale and shape
parameters for January. Almost all stations across Europe ex-
hibit similar shape and scale parameters between the stations
and adjusted ERA-Interim. However, a few stations in coastal
areas and at high-elevation mountain locations still show dif-
ferences in parameters. The fit is not perfect as the estimation
of the shape and scale parameters for the ERA-Interim grid
boxes from HadISD is influenced by the station distribution.
In addition, the number of stations in some parts of Europe is
less dense and so involves greater extrapolation from stations
more distant from the grid boxes.

4.2 Surface air temperature, dewpoint temperature, and
relative humidity

Like wind speed, both surface air temperature and dewpoint
temperature are produced from ERA-Interim every 6 h. Un-
like 10 m wind, both these variables have a strong diurnal
cycle, which is generally slightly stronger in the summer. A
normal distribution was fitted using daily averages of tem-
perature, taking the average of the four 6 h data for each day.
E-OBS is the dataset on which ERA-Interim is to be adjusted
for air temperature. For dewpoint we use HadISD, but we
combine this with air temperatures from HadISD to calculate
dewpoint depression (DPD), the difference between air and
dewpoint temperature. To calculate DPD, we need to pair off
air and dewpoint temperature measurements taken every 6 h.
DPD will always be ≥ 0, so we use a Weibull distribution
to ensure that any bias adjustments always produce a DPD
that is ≥ 0. Means and standard deviations of the daily aver-
age of air temperature are calculated for each month of the
year for each 0.5◦ grid cell of ERA-Interim coincident with
the E-OBS grid box. The distributional parameters for DPD

are interpolated as for wind speed; then, based on air tem-
perature, a dewpoint temperature can be calculated. Data are
normalized as in Eq. (4) and transformed back by Eq. (5) for
air temperature.

T ′ERA =
TERA− T ERA

σERA
, (4)

T ∗ = T ′ERAσobs+ T obs, (5)

where T ′ is the normalized ERA-Interim temperature
anomaly, T ∗ is the bias-adjusted ERA-Interim temperature,
T is the mean temperature, and σ is the standard deviation.
Bias adjustment works by transforming the normalized ERA-
Interim grid-box time series back to air temperatures using
the means and standard deviations from E-OBS and interpo-
lations from station data in HadISD for DPD. Once daily av-
erages are adjusted, the difference between the original ERA-
Interim daily mean and the adjusted daily mean is added to
each of the four 6 h temperatures within each day. Therefore,
no alteration is made to each diurnal cycle of air tempera-
ture or DPD. This yields the final set of bias-adjusted 6 h
surface air and dewpoint temperatures (the latter calculated
from DPD) consistent with one another.

Figure 5 shows the differences in the mean and standard
deviation for air temperature for April as an example. There
is good agreement between estimates for ERA-Interim and
those calculated from E-OBS. As these are both gridded
datasets, the maps shown are fully coloured for each 0.5◦

grid box. Differences in Fig. 5 are likely related to eleva-
tional differences in the 0.5◦ grid boxes between E-OBS and
ERA-Interim. The significance of this is discussed more in
Sect. 4.5 when our adjusted ERA-Interim and the WFDEI
datasets are separately compared with E-OBS. Figures 6
and 7 exhibit the distributional fits of the E-OBS, original
ERA-Interim, and bias-adjusted ERA-Interim for the 12 cal-
endar months for the nearest land grid boxes that approxi-
mate the locations of Kirkwall and Maribor used for wind
speed. For Maribor, this is the 0.5◦ grid box where the city
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adjERA and ERA−Interim 6 hourly 10 m wind speed vs. Kirkwall Airport (UK, 59.0, −2.9) obs

Figure 2. Comparison of statistical distributions of wind speed at 10 m for Kirkwall, Scotland, for observations (black), ERA-Interim
(orange), and bias-adjusted ERA-Interim (green), based on all 6-hourly data for the 1981–2010 period.

is located. Kirkwall is on the Orkney Islands, so the near-
est grid box within E-OBS is located further south in north-
ern Scotland. The distributional fits for the Maribor grid box
were good for ERA-Interim, and bias adjustment brings mi-

nor improvement. For the Kirkwall grid box, the adjustments
improve the fits in all months but are less good for the cold
tail of air temperature in winter. The full set of results for the
4621 grid-box comparisons can be viewed on the ftp site. The
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Figure 3. Comparison of statistical distributions of wind speed at 10 m for Maribor, Slovenia, for observations (black), ERA-Interim (orange),
and bias-adjusted ERA-Interim (green), based on all 6-hourly data for the 1981–2010 period.

Kirkwall example and also most of the northern and eastern
Europe comparisons illustrate an issue with approximating
daily air temperature by a normal distribution for winter. For

these regions (see the full set of results), daily winter air tem-
peratures are often negatively skewed. This is even apparent
in monthly temperatures but is more clearly visible on the
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Figure 4. Differences in scale and shape parameters of the Weibull distribution between bias-adjusted ERA-Interim and HadISD station
observations for wind speed at 10 m. Based on all 6-hourly data for January for 1981–2010.
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Figure 5. Differences in means and standard deviations (SDs) between ERA-Interim and E-OBS for mean surface air temperature (Tmean).
Based on daily data for April for 1981–2010.

daily timescale. Horton et al. (2001) experimented with an
alternate distribution (an inverted gamma distribution), but
this adds an additional parameter to any bias-adjustment ap-
proach and fitting requires an interactive procedure. Figure 8
shows the differences between the means and standard de-
viations, but this time after adjustment, to allow comparison
with Fig. 5.

Figure 9 shows the differences in the Weibull distribu-
tion parameter plots for DPD for July. There is good agree-
ment between estimates from ERA-Interim and those cal-
culated from HadISD using DPD. This plot shows the sta-
tion locations in a similar fashion to that for wind speed
in Fig. 1. Figures 10 and 11 show the distributional fits of
the HadISD, original ERA-Interim, and bias-adjusted ERA-
Interim for DPD for the 12 calendar months for the loca-
tions of Kirkwall and Maribor. Both examples of distribu-
tional plots adjust ERA-Interim slightly, but the original fits
were quite good to start with. As with wind speed, the DPD
distributions are curtailed for values< 0. Similarly to Fig. 9,
Fig. 12 shows the differences between the Weibull distribu-
tion parameters for DPD but after adjustment.

With the adjustments for dewpoint temperature using
DPD, it is a simple task to then calculate relative humidity
(RH) using the adjusted air temperature. Performing the bias
adjustment this way, we are assured that all RH values are
between 0 and 100 %.

4.3 Daily precipitation totals

The same process was then used for daily precipitation to-
tals but using a gamma distribution, which has been found to
perform well in many studies (e.g. Wilks, 1995).

F (x;α,β)=
(
x

β

)α−1 exp
(
−
x
β

)
β0(α)

(6)

Gamma distributions have two parameters, shape (α) and
scale (β), and were fit to the daily precipitation totals for
each month for ERA-Interim and for E-OBS. In Eq. (6),
we show the probability density function where 0 is the
gamma function. Approaches to bias adjustment of precip-
itation have been extensively discussed (see, for example,
Piani et al., 2010a, b). Several experiments were made ignor-
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Figure 6. Comparison of statistical distributions of surface air temperature for northern Scotland (58.25◦ N, 3.75◦W), for observations
(black), ERA-Interim (orange), and bias-adjusted ERA-Interim (green), based on daily data for the 1981–2010 period.

ing all precipitation values below a fixed low daily precipita-
tion threshold over the whole domain. Thresholds of 0.4, 0.6,
0.8, and 1.0 mm were experimented with and best fits were
achieved with 1.0 mm. This implies that the gamma distribu-

tional fits are based only on days with precipitation values
greater than the threshold, with a different fit for each month.
This threshold ignores small precipitation totals, more so for
ERA-Interim than for E-OBS but, as both datasets are in

Earth Syst. Sci. Data, 9, 471–495, 2017 www.earth-syst-sci-data.net/9/471/2017/
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Figure 7. Comparison of statistical distributions of surface air temperature for the Maribor grid box (46.25◦ N, 15.75◦ E), for observations
(black), ERA-Interim (orange), and bias-adjusted ERA-Interim (green), based on daily data for the 1981–2010 period.

essence areal averages, more than would be the case for a
station rain gauge series. In the adjusted ERA-Interim all pre-
cipitation amounts below the threshold are set to zero, further
improving the agreement between E-OBS and ERA-Interim

in the number of dry days per month (i.e. days with rainfall
less than the 1.0 mm threshold). Adjustment is performed in
a similar way to the temperatures, by back-transforming the

www.earth-syst-sci-data.net/9/471/2017/ Earth Syst. Sci. Data, 9, 471–495, 2017
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Figure 8. Differences in means and standard deviations (SDs) between bias-adjusted ERA-Interim and E-OBS for mean surface air temper-
ature (Tmean). Based on all data for April for 1981–2010.
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Figure 9. Differences in means and standard deviations (SDs) between ERA-Interim and HadISD for dewpoint temperature (◦C). Based on
daily data for July for 1981–2010.

transformed ERA-Interim precipitation total with the scale
and shape parameters from the E-OBS dataset.

Figure 13 shows the differences in the scale and shape
parameters of the gamma distribution for October, by way
of example. There is good agreement between estimates for
ERA-Interim and those calculated from E-OBS. As these are
both gridded datasets, the maps shown are fully coloured for
each 0.5◦ grid box. Of the 4520 possibilities, Figs. 14 and 15
exhibit the distributional fits of the E-OBS, original ERA-
Interim, and bias-adjusted ERA-Interim datasets for the 12
calendar months for the nearest land grid boxes that approx-
imate the locations of Kirkwall and Maribor. The fits for the
northern Scotland grid box are considerably better than for
Maribor, where the distributional fits are slightly worse for
April–August. Here only two locations are shown as exam-
ples: the full set of results for the 4520 grid-box comparisons
can be viewed at the ftp site. The complete set uses common
scaling, which may be inappropriate in drier parts of Europe
and the fits (shown in the two examples in Figs. 14 and 15
are smoothed representations of the distributions curtailed
at zero rainfall). Although the gamma distribution is widely

used for rainfall data, it is not ideal in all climates and across
all seasons in Europe. Problems arise when there are too few
rainfall days within dry seasons (the southern Mediterranean
and the Middle East during summer). Similarly to Fig. 13,
Fig. 16 shows the differences between the scale and shape
parameters after adjustment.

4.4 Surface solar irradiance

For the sake of simplicity, the adjustment was performed on
the daily mean of irradiance. Three methods have been in-
vestigated: ratio, affine, and quantile mapping. Each method
may be applied to the clearness indices Kt as well. The pos-
sible improvement in bias delivered by each method was as-
sessed by comparing the original ERA-Interim estimates and
the bias-adjusted ERA-Interim with measurements from the
55 WRDC stations. The method “ratio” consists of comput-
ing the means of HC3v5 IHC3v5 and ERA-Interim IERA for
the calibration period of 2005–2014, then computing the ra-
tio of these means (IHC3v5 / IERA), and eventually multiply-
ing the ERA-Interim estimates by this ratio for the entire pe-
riod. The method “affine” consists in adjusting an affine func-
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Figure 10. Comparison of statistical distributions of DPD for Kirkwall, for HadISD observations (black), ERA-Interim (orange), and bias-
adjusted ERA-Interim (green), based on daily data for the 1981–2010 period.

tion between HC3v5 and ERA for the calibration period and
then applying this function to the ERA-Interim estimates.
The method “quantile mapping” was used here (applied to
the clearness index) and consists of adjusting the cumulative

distribution function of ERA-Interim to that of HC3v5 for
the calibration period, thus yielding an abacus that is used to
convert the ERA-Interim estimates into adjusted irradiances.
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Figure 11. Comparison of statistical distributions of DPD for Maribor, for HadISD observations (black), ERA-Interim (orange), and bias-
adjusted ERA-Interim (green), based on daily data for the 1981–2010 period.

Figure 17 exhibits the bias for ERA-Interim vs. ground
observations of daily mean of solar irradiance for the 55 sta-
tions. Downward triangles mean a negative bias of more than

−5 Wm−2, upward triangles mean a positive bias greater
than 5 Wm−2, and circles mean an absolute value of the bias
less than 5 Wm−2. The size of the triangles increases with

Earth Syst. Sci. Data, 9, 471–495, 2017 www.earth-syst-sci-data.net/9/471/2017/
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Figure 12. Differences in means and standard deviations (SDs) between bias-adjusted ERA-Interim and HadISD for dewpoint temperature
(◦C). Based on daily data for July for 1981–2010.
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Figure 13. Differences in scale and shape parameters of the gamma distribution between ERA-Interim and E-OBS for precipitation daily
totals> 1 mm. Based on daily precipitation totals for October for 1981–2010.

increasing absolute value of the bias. Bias is often positive:
i.e. ERA-Interim tends to overestimate the surface solar irra-
diance. Only 12 stations out of 55 exhibit an absolute bias of
less than 5 Wm−2.

HC3v5 does not cover latitudes north of 60◦ N. Two sta-
tions, Lerwick (Scotland) and Borlange (Sweden), are lo-
cated along this latitude (Fig. 17). No adjustment is per-
formed to the grid boxes which are outside the coverage
of HC3v5, except for the grid cells along the border where
the new irradiance values are set to the mean of the origi-
nal and adjusted irradiances to avoid spatial discontinuities.
Figure 18 exhibits the improvement of bias after bias ad-
justment for surface solar irradiance for the 55 sites. Ab-
solute values of the bias after adjustment are coded in
three colours: blue for absolute value < 5 Wm−2, yellow
for 5< value< 10 Wm−2, and red for value > 10 Wm−2.
Change in bias is coded by symbols: a circle for changes in
an absolute value less than 5 Wm−2, a downward triangle for
improvement in bias, and an upward triangle for degradation.
The size of the triangles increases with the improvement in
bias. For example, a green downward triangle means that the

bias has been decreased (downward triangle, i.e. improve-
ment) and that after bias adjustment, the absolute value of
the bias is less than 5 Wm−2. One may see that there is an
improvement or status quo for all stations; i.e. there is no up-
ward triangle, only circles and downward triangles. In total,
22 stations out of 55 exhibit a bias less than 5 Wm−2 in their
absolute values, which is a strong improvement compared to
the 12 for the original ERA-Interim data.

Once daily means are adjusted, the ratio between the orig-
inal ERA daily mean and the adjusted daily mean is applied
to each of the eight 3 h irradiances within each day. There-
fore, no alteration is made to the diurnal cycle of irradiance.
This yields the final set of bias-adjusted 3 h surface solar ir-
radiance.

4.5 Comparison of adjusted-ERA and WFDEI averages
against E-OBS monthly averages for the 1979–2014
period

In this section we plot differences for air temperature aver-
ages and precipitation totals for the four mid-season months
(January, April, July, and October) between our adjusted
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Figure 14. Comparison of statistical distributions of daily precipitation totals for northern Scotland (58.25◦ N, 3.75◦W), for observations
(black), ERA-Interim (orange), and bias-adjusted ERA-Interim (green), based on the 1981–2010 period.

ERA-Interim data compared with E-OBS values for 1979–
2014. Additionally, we plot differences between WFDEI and
E-OBS for the same 36-year average. Figures 19–22 show

the air temperature difference maps with Figs. 23–26 show-
ing the differences for precipitation totals. Each figure con-
tains two panels, first the adjusted ERA-Interim minus E-
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Figure 15. Comparison of statistical distributions of daily precipitation totals for the Maribor grid box (46.25◦ N, 15.75◦ E), for observations
(black), ERA-Interim (orange), and bias-adjusted ERA-Interim (green), based on the 1981–2010 period.

OBS and the second WFDEI minus E-OBS. All 12 monthly
difference maps are available at the ftp site, with details given
in Sect. 6. We have used E-OBS in our bias-adjustment pro-

cedure, so this ought to portray our results in a favourable
light with respect to WFDEI. Our reason for this is that
E-OBS uses many more station series than other possible
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Figure 16. Differences in scale and shape parameters of the gamma distribution between bias-adjusted ERA-Interim and E-OBS for precip-
itation daily totals> 1 mm. Based on daily precipitation totals for October for 1981–2010.
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Figure 17. Bias for ERA-Interim vs. ground observations of daily
mean of surface solar irradiance for 57 stations. Downward trian-
gles mean a negative bias less than −5 Wm−2, upward triangles
mean a positive bias greater than 5 Wm−2, and circles mean an ab-
solute value of the bias less than 5 Wm−2. The size of the triangles
increases with increasing absolute value of the bias.

choices (e.g. the CRU TS dataset used by WFDEI for air
temperature or the GPCC dataset used by WFDEI for precip-
itation totals). If our approach is used where a dataset of the
quality and temporal resolution of E-OBS is not available,
it would be necessary to use the WFDEI monthly-timescale
approach.

For air temperature, differences between our adjusted
ERA-Interim and E-OBS are mostly within ±1 ◦C except
at a few locations (Scandinavian mountains, southern Spain,
parts of Italy, the Balkans, and Turkey), more so in May
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Figure 18. Improvement of bias after bias adjustment for daily
mean of surface solar irradiance. Absolute values of the bias
after adjustment are coded in three colours: blue for absolute
value< 5 Wm−2, yellow for 5< value< 10 Wm−2, and red for
value > 10 Wm−2. A change in bias is coded by symbols: a cir-
cle for changes in absolute value less than 5 Wm−2, a downward
triangle for improvement in bias, and an upward triangle for degra-
dation. The size of the triangles increases with increasing absolute
value of the bias.

to August than in other months. Differences cover all of
Turkey and are related to an almost total lack of daily obser-
vational data for Turkey within E-OBS. Additionally, most of
the ≥ 1 ◦C differences that do occur are positive, so our ad-
justed ERA-Interim is slightly warmer than E-OBS. For the
WFDEI minus E-OBS difference maps, there is always more
colour implying greater differences, which are located more
in mountainous regions and also near some northern coasts.
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Figure 19. (a) Air temperature differences between adjusted ERA-Interim and E-OBS for January of the years 1979–2014 and (b) as (a) but
differences between WFDEI and E-OBS for January of the years 1979–2014.
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Figure 20. (a) Air temperature differences between adjusted ERA-Interim and E-OBS for April of the years 1979–2014; (b) as (a) but
showing differences between WFDEI and E-OBS for April of the years 1979–2014.
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Figure 21. (a) Air temperature differences between adjusted ERA-Interim and E-OBS for July of the years 1979–2014; (b) as (a) but
showing differences between WFDEI and E-OBS for July of the years 1979–2014.
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Figure 22. (a) Air temperature differences between adjusted ERA-Interim and E-OBS for October of the years 1979–2014; (b) as (a) but
showing differences between WFDEI and E-OBS for October of the years 1979–2014.
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Figure 23. (a) Precipitation total differences between adjusted ERA-Interim and E-OBS for January of the years 1979–2014; (b) as (a) but
showing differences between WFDEI and E-OBS for January of the years 1979–2014.
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Figure 24. (a) Precipitation total differences between adjusted ERA-Interim and E-OBS for April of the years 1979–2014; (b) as (a) but
showing differences between WFDEI and E-OBS for April of the years 1979–2014.
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Figure 25. (a) Precipitation total differences between adjusted ERA-Interim and E-OBS for July of the years 1979–2014; (b) as (a) but
showing differences between WFDEI and E-OBS for July of the years 1979–2014.
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Figure 26. (a) Precipitation total differences between adjusted ERA-Interim and E-OBS for October of the years 1979–2014; (b) as (a) but
showing differences between WFDEI and E-OBS for October of the years 1979–2014.

The adjusted ERA-Interim differences are relatively smooth,
but the WFDEI differences are often spotty, probably related
to differences in elevations between WFDEI and E-OBS.
As briefly discussed in Sect. 4.2, we stated that we did not
consider elevation differences between our adjusted ERA-
Interim and E-OBS, as both grids have relatively smooth el-
evation fields. For each 0.5◦× 0.5◦ grid box of E-OBS, the
temperature value is an average of the 25 interpolated values
on each 0.1◦ grid. Additionally, the elevation field is also an
average of all the elevation points available within the 0.5◦

grid.
For precipitation, the differences appear to be larger but

some of this may be due to expressing the differences as pre-
cipitation totals for each month (as opposed to the daily av-
erages for air temperature). The adjusted ERA-Interim mi-
nus E-OBS differences are greatest in the summer months
and relatively small in winter months. Differences are also
more positive than negative (i.e. adjusted ERA-Interim is
wetter than E-OBS). Somewhat in contrast, the WFDEI dif-
ferences with E-OBS are larger in the winter months com-
pared to summer months and their tendency is for WFDEI to
be drier than E-OBS. As with air temperature, the differences

are spottier than for adjusted ERA-Interim. Taken overall,
WFDEI appears to be slightly better than our adjusted ERA-
Interim for May–August, but WFDEI is markedly poorer in
the other months (particularly November–March). Elevation
differences (particularly over the Norwegian mountains, the
Alps, and also the Caucasus) are factors, but some could be
linked to differences in the elevation datasets used by E-OBS
(used in this paper) and GPCC (used by WFDEI). More con-
sideration of the differences between climatological averages
(e.g. the 1979–2014 averages for E-OBS, GPCC, and CRU
TS) is beyond the scope of this study. Absolute elevation val-
ues can be very dependent on the elevation dataset used (see
the discussion in Danielson and Gesch, 2010).

5 Data availability

ERA-Interim data were downloaded from http://apps.ecmwf.
int/datasets/data/interim-full-daily/levtype=sfc/, and our re-
gridded version at the 0.5◦×0.5◦ grid is available as the orig-
inal dataset (see Sect. 6).
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E-OBS for both daily air temperature and precipita-
tion grids is available at http://www.ecad.eu/download/
ensembles/ensembles.php.

CRU for both monthly air temperature and precipitation
grids (CRU TS 3.23) is available at https://crudata.uea.ac.uk/
cru/data/hrg/.

GPCC for monthly precipitation grids is available at https:
//www.dwd.de/EN/ourservices/gpcc/gpcc.html.

HadISD for sub-daily station data for wind speeds, dew-
point, and air temperatures is available at http://www.
metoffice.gov.uk/hadobs/hadisd/.

For all the above datasets, the data are freely available for
use, but this is qualified on some sites as use is sometimes
just for research and educational purposes and it may be nec-
essary to register to gain access.

Station data for surface solar irradiance were downloaded
from the website (www.wrdc.mgo.rssi.ru) of the World Radi-
ation Data Center (WRDC) after registration. Data are avail-
able only for research and educational communities of the
countries belonging to the WMO for non-commercial activi-
ties.

HelioClim-3v5 datasets were downloaded from the SoDa
Service website (http://www.soda-pro.com) managed by the
company Transvalor. Data are available to anyone for free
for the years 2004–2006 as a GEOSS Data-CORE (GEOSS
Data Collection of Open Resources for Everyone) and for a
fee for the most recent years, with the amount depending on
requests and requester.

6 Discussion

As stated earlier in the paper, the work reported here specifi-
cally targets energy sector applications; however, the bias ad-
justment carried out here could be applied to a wide range of
potential applications. ECEM and its users plan to use both
the adjusted and unadjusted ERA-Interim gridded products
through ESCIIs (Energy Sector Climate Impact Indicators),
which will relate the climate variables to energy-relevant in-
dices. Whether the bias adjustments improve agreement be-
tween these ESCIIs and the direct measures of energy pro-
duction (e.g. renewable energy from solar and wind farms) is
a simple way of assessing their effectiveness.

The WFDEI bias-adjusted datasets (Weedon et al., 2011,
2014) are similar datasets covering a much larger region
than the ECEM European window. The adjustments have
been performed on a monthly basis. Comparison with E-
OBS shows some seasonal differences in performances be-
tween WFDEI and the proposed dataset, with our dataset be-
ing better in the September to April months. WFDEI datasets
have been used extensively, based on citation counts. The
proposed dataset applies adjustments to the distributions of
a similar set of variables, providing daily and 6-hourly es-
timates. Outside the energy sector, the bias-adjusted datasets
could be used for driving hydrological and land surface mod-

els in a similar way to Orth and Seneviratne (2015). Our bias
adjustments, therefore, could be assessed beyond the energy
sector. For Europe, they could be compared with WFDEI
data (often referred to as forcing data in hydrology, as op-
posed to bias-adjusted reanalyses) through comparison of re-
sults from hydrologic and/or crop climate models (e.g. using
discharge or yield data). Bias adjustment ought to be an im-
provement, and this can be assessed in a similar way to the
ESCIIs within ECEM.

Is there a way of simultaneously bias adjusting all vari-
ables or at least adjusting pairs to start with? Whereas Wee-
don et al. (2014) and this paper have not attempted multi-
variate adjustment, this is being tested in the ECEM project.
However, as the number of variables increases, this becomes
more impractical. The usefulness of all bias-adjusted datasets
can be assessed through ESCIIs and discharge–yield data
(i.e. using variables external to reanalysis) which would be
expected to be best simulated just as if perfect observational
data were available. Multivariate bias adjustment was ex-
perimented with in ECEM (using wind speed and tempera-
ture), but the results are dependent on the availability of ade-
quate station data for variables measured together (Dekens et
al., 2017). Access to data is a crucial aspect of all the datasets
used in this study. ERA-Interim would be improved with
greater numbers of station input data, as would E-OBS and
the other data products considered in this paper. Improved
access, however, is unlikely to reduce the need for bias ad-
justment.

7 The ECEM dataset: its description and
how to access it

All the ERA-Interim (original and bias-adjusted) are avail-
able as netcdf files from the CDS of the Copernicus Climate
Data Service. As this CDS is currently being developed, this
ftp site (ftp://ecem.climate.copernicus.eu) can currently be
used to access all files discussed in this paper. This site cur-
rently has no password, but once on the CDS, there will likely
be a registration procedure. Datasets are named according
to the ECEM project. The original or unadjusted filenames
have “noc” in the file name. They are as follows for air tem-
perature (T2M), dewpoint temperature (DP), solar irradiance
(GHI, Global Horizontal Irradiation), wind speed (WS) and
precipitation (TP):

– H_ERAI_ECMW_T159_TA-_0002m_EUR1
_22E27N_45W72N_050d_IN_TIM_19790101_
20161231_06h _NA-_noc_org_NA_NA-.nc

– H_ERAI_ECMW_T159_DP-_0002m_EUR1
_22E27N_45W72N_050d_IN_TIM_19790101_
20161231_06h _NA-_noc_org_NA_NA-.nc

– H_ERAI_ECMW_T159_GHI_0000m_EUR1
_22E27N_45W72N_050d_IN_TIM_19790101_
20161231_03h _NA-_noc_org_NA_NA-.nc
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– H_ERAI_ECMW_T159_WS-_0010m_EUR1
_22E27N_45W72N_050d_IN_TIM_19790101_
20161231_06h _NA-_noc_org_NA_NA-.nc

– H_ERAI_ECMW_T159_TP-_0000m_EUR1
_22E27N_45W72N_050d_IN_TIM_19790101_
20161231_01d _NA-_noc_org_NA_NA-.nc.

The adjusted files are labelled similarly but include the dis-
tribution and “bc” instead of “noc”. So, for air temperature
and dewpoint, they include “nbc”, for solar irradiance “qbc”,
for wind speed “wbc”, and for precipitation “gbc”. A final
file contains the bias-adjusted relative humidity file.

– H_ERAI_ECMW_T159_TA-_0002m_EUR1_
22E27N_45W72N_050d_IN_TIM_19790101_
20161231_06h_NA-_nbc_org_NA_NA-.nc

– H_ERAI_ECMW_T159_DP-_0002m_EUR1_
22E27N_45W72N_050d_IN_TIM_19790101_
20161231_06h_NA-_nbc_org_NA_NA-.nc

– H_ERAI_ECMW_T159_GHI_0000m_EUR1_
22E27N_45W72N_050d_IN_TIM_19790101_
20161231_03h_NA-_qbc_org_NA_NA-.nc

– H_ERAI_ECMW_T159_WS-_0010m_EUR1_
22E27N_45W72N_050d_IN_TIM_19790101_
20161231_06h_NA-_wbc_org_NA_NA-.nc

– H_ERAI_ECMW_T159_TP-_0000m_EUR1_
22E27N_45W72N_050d_IN_TIM_19790101_
20161231_01d_NA-_gbc_org_NA_NA-.nc

– H_ERAI_ECMW_T159_RH-_0002m_EUR1_
22E27N_45W72N_050d_DR_TIM_19790101_
20161231_06h_NA-_nbc_org_NA_NA-.nc

Two example locations for each variable of the distributional
comparisons are given in the paper (Figs. 2, 3, 6, 7, 10,
11, 14, and 15). The ftp site also includes all the distribu-
tional comparisons as pdfs, with the stations ordered by their
WMO number when comparing with HadISD and by lati-
tude and then longitude when comparing with E-OBS. These
files have the following names, for air temperature (Tmean),
dewpoint temperature, wind speed (WS), and precipitation
(dly_precip), respectively:

– adjERA_and_ERA_vs_EOBS_dly_Tmean_PDFs_1981-2010.pdf

– adjERA_and_ ERA_vs_HadISD_dly_DPD_PDFs_1981-2010.pdf

– adjERA_and_ERA_vs_EOBS_dly_precip_PDFs_1981-2010_1p0.pdf

– adjERA_and_ERA_vs_HadISD_ws_PDFs_1981-2010.pdf.

Additionally, the ftp site includes all 12 monthly difference
plots, which are shown in Figs. 19–26 for the mid-season
months:

– adjERA-EOBS_Tmean_monthly_deltas_means.pdf

– adjERA-EOBS_Precip_monthly_deltas_means.pdf

– WFDEI-EOBS_Tmean_monthly_deltas_means.pdf

– WFDEI-EOBS_Precip_monthly_deltas_means.pdf.
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