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Increasing the intrinsic nutritional quality of crops, known as biofortification, is viewed as a sustainable approach to alleviate
micronutrient deficiencies. In particular, iron deficiency anemia is a major global health issue, but the iron content of staple crops
such as wheat (Triticum aestivum) is difficult to change because of genetic complexity and homeostasis mechanisms. To identify
target genes for the biofortification of wheat, we functionally characterized homologs of the VACUOLAR IRON TRANSPORTER
(VIT). The wheat genome contains two VIT paralogs, TaVIT1 and TaVIT2, which have different expression patterns but are both
low in the endosperm. TaVIT2, but not TaVIT1, was able to rescue the growth of a yeast (Saccharomyces cerevisiae) mutant
defective in vacuolar iron transport. TaVIT2 also complemented a manganese transporter mutant but not a vacuolar zinc
transporter mutant. By overexpressing TaVIT2 under the control of an endosperm-specific promoter, we achieved a greater
than 2-fold increase in iron in white flour fractions, exceeding minimum legal fortification levels in countries such as the United
Kingdom. The antinutrient phytate was not increased and the iron in the white flour fraction was bioavailable in vitro,
suggesting that food products made from the biofortified flour could contribute to improved iron nutrition. The single-gene
approach impacted minimally on plant growth and also was effective in barley (Hordeum vulgare). Our results show that by
enhancing vacuolar iron transport in the endosperm, this essential micronutrient accumulated in this tissue, bypassing existing
homeostatic mechanisms.

Iron is essential for plant growth and needed for a
range of cellular processes involving electron transfer or
redox-dependent catalysis (Kobayashi and Nishizawa,
2012). However, excess levels of iron are toxic to cells;
therefore, organisms have evolved tight regulation
and storage mechanisms. Plants store iron in ferritin
or sequestered in vacuoles, with different species and
tissues favoring one storage mechanism over another
(Briat et al., 2010). Iron stored in seeds provides for
essential iron enzymes during germination, before
the seedling develops a root and is able to take up iron
independently.

Iron is also an essential micronutrient for human
nutrition, and over a billion people suffer from iron-
deficiency anemia (WHO, 2008). Seeds such as rice
(Oryza sativa), wheat (Triticum aestivum), and pulses
are a major source of iron, especially in diets that are
low in meat. To combat iron deficiency, more than
84 countries have legislation for the chemical fortifi-
cation of flours milled fromwheat, corn (Zea mays), and
rice with iron salts or iron powder (www.ffinetwork.
org/global_progress/index.php). A more sustainable
approach is biofortification, or increasing the intrinsic
micronutrient content of crops through traditional
breeding or transgenic technology (Vasconcelos et al.,
2017).

A key gene involved in iron loading in seeds,
VACUOLAR IRON TRANSPORTER1 (VIT1), was first
identified in Arabidopsis (Arabidopsis thaliana; Kim
et al., 2006) as a homolog of yeast (Saccharomyces
cerevisiae) Ca2+-SENSITIVE CROSS-COMPLEMENTER
(CCC1), which transports iron into vacuoles (Li et al.,
2001) and manganese into Golgi vesicles (Lapinskas
et al., 1996). VIT1 is highly expressed in ripening Ara-
bidopsis seeds and targets iron to the vacuoles of the
endodermis and veins of the embryo (Kim et al., 2006;
Roschzttardtz et al., 2009). Expression of Arabidopsis
VIT1 also increases the manganese content of yeast
cells (Kim et al., 2006), and it has a supporting role in
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manganese transport in Arabidopsis embryos (Eroglu
et al., 2017). The VITs form a unique transporter family,
found in plants, fungi, and protists such as the malarial
parasite Plasmodium falciparum, but they are absent
frommetazoans (Slavic et al., 2016). VITs in plants share
a high degree of sequence similarity and the capacity to
transport iron, but their biological functions may differ.
For example, TgVIT1 in tulip (Tulipa gesneriana) is in-
volved in petal color determination (Momonoi et al.,
2009). Due to their roles in iron storage, VITs are
potentially good candidates for iron biofortification.
Indeed, the expression of VIT1 from Arabidopsis
controlled by a PATATIN promoter enhanced the iron
content of cassava (Manihot esculenta) tubers 3- to 4-fold
(Narayanan et al., 2015). Given the promise for bio-
fortification, it is surprising that very few VITs from
crop species have been characterized, particularly in
cereals. Two VIT genes have been identified in rice,
OsVIT1 and OsVIT2. These genes showed different
expression patterns throughout the plant and in re-
sponse to iron but were similar with respect to yeast
complementation results. Knockout mutants accumu-
lated more iron in the embryo, but this part of the grain
is lost during processing to obtain white rice. The effect
of overexpressing the OsVIT genes was not tested, and
in fact, virtually nothing is known about the wider
physiological effects of overexpressing VIT in plants
(Ravet et al., 2009).
For the biofortification of cereal crops, simply in-

creasing the iron content in grains is unlikely to increase
their nutritional quality. Micronutrients are concen-
trated in the aleurone and seed coat, which are com-
monly removed in the production of polished rice or
white wheat flour. The aleurone also is rich in phytate
(myoinositol-1,2,3,4,5,6-hexakisphosphate), a phos-
phate storage molecule that is a major inhibitor of
iron bioavailability in whole-grain products (Hurrell
and Egli, 2010). On the other hand, phytate is low in the
endosperm (O’Dell et al., 1972); therefore, this tissue
should be targeted to increase bioavailable dietary iron
in cereal food products. Previous biofortification strat-
egies in wheat include the overexpression of ferritin,
which increased iron levels 1.6- to 1.8-fold but with
large variations per line (Singh et al., 2017). Because
ferritin is localized in plastids, iron transport into
plastids also needs to be up-regulated, and this may be
a limiting factor in cereal grains. Elegant nanoscale
secondary ion mass spectrometry studies showed that
iron was concentrated in small vacuoles in the wheat
aleurone, colocalizing with phosphorus, most likely in
the form of phytate, but that some also localized in
patches in the endosperm (Moore et al., 2012). Other
biofortification strategies have focused on increasing
the mobility of iron through the overexpression of nic-
otianamine synthase genes for the production of che-
latormolecules to translocate iron(II) and other divalent
metals (Singh et al., 2017).
Here, we identified and functionally characterized

TaVIT1 and TaVIT2, the two VIT paralogs found in
the genome of bread wheat. The VIT genes differ in

expression patterns and their ability to complement
yeast metal transporter mutants. Based on these find-
ings, we selected TaVIT2 for overexpression in the
endosperm of wheat and barley (Hordeum vulgare),
resulting in more than twice as much iron in white
flour fractions but little impact on plant growth and
grain number. Our results suggest that, by drawing
iron into vacuoles in the endosperm, existing homeo-
stasis mechanisms can be bypassed for a successful
biofortification strategy.

RESULTS

Wheat Has Two Functionally Differentiated VIT Paralogs

The newly sequenced and annotated wheat genome
(Clavijo et al., 2017) offers the opportunity to make a
complete inventory of putative metal transporters in
wheat (Borrill et al., 2014). We found that wheat has
two VIT genes (TaVIT1 and TaVIT2) on chromosome
groups 2 and 5, respectively. As expected in hexa-
ploid wheat, each TaVIT gene is represented by
three copies (homoeologs) from the A, B, and D ge-
nomes that share 99% identity at the amino acid level
(Supplemental Table S1; Supplemental Fig. S1). TaVIT1
and TaVIT2 have ;87% amino acid identity with their
closest rice homologs, OsVIT1 andOsVIT2, respectively.
Phylogenetic analysis suggests an early evolutionary
divergence of the two VIT genes, as there are two dis-
tinctly branching clades in the genomes of monocotyle-
donous species, in contrast to one clade in dicotyledons
(Fig. 1A). The gene expression profiles of TaVIT1 and
TaVIT2were queried across 418RNA sequencing (RNA-
seq) samples (Supplemental Table S2). In general, all
homoeologs of TaVIT2weremore highly expressed than
TaVIT1 homoeologs (Fig. 1B). In the grains, TaVIT1 and
TaVIT2 are both expressed in the aleurone, correlating
with high levels of iron in this tissue, which is removed
fromwhite flours during themilling process. In contrast,
the expression of TaVIT1 and TaVIT2 is very low in the
starchy endosperm, the tissue from which white flour is
extracted. Taken together, differences in phylogeny and
expression pattern suggest that TaVIT1 and TaVIT2may
have distinct functions.

TaVIT2 Facilitates the Transport of Iron and Manganese

To test if the TaVIT proteins transport iron, the
TaVIT1-B homoeolog and TaVIT2-D homoeolog, here-
after referred to as TaVIT1 and TaVIT2, respectively,
were selected and expressed in yeast lacking the vacu-
olar iron transporter Ccc1. The Dccc1 yeast strain is
sensitive to high concentrations of iron in the medium
because of its inability to store iron in the vacuole.
TaVIT2 fully rescued the growth of Dccc1 yeast exposed
to a high concentration of FeSO4, but TaVIT1 was
no different from the empty vector control (Fig. 2A).
Yeast Ccc1 can transport both iron and manganese
(Lapinskas et al., 1996). Therefore, we carried out yeast
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complementation using the Dpmr1 mutant, which is
unable to transport manganese into Golgi vesicles and
cannot grow in the presence of toxic levels of this metal
(Lapinskas et al., 1995). We found that the expression of
TaVIT2 in Dpmr1 yeast partially rescued the growth
impairment on high concentrations of MnCl2, indicat-
ing that TaVIT2 can transport manganese (Fig. 2B). We
also tested if TaVIT1 and TaVIT2 are able to rescue
the growth of the yeast Dzrc1 strain, which is defective
in vacuolar zinc transport, but neither TaVIT gene
was able to rescue growth on high zinc concentrations
(Fig. 2C).

Western-blot analysis showed that both proteins
were produced in yeast but that TaVIT1 and TaVIT2
might differ in their intracellular distribution (Fig. 2D).
TaVIT2 was abundant in vacuolar membranes, cofrac-
tionatingwith the vacuolar marker protein Vph1. TaVIT1
also was found in the vacuolar membrane fraction,
but based on higher abundance in the total fraction, it
appeared that most of the TaVIT1 protein was tar-
geted to other membranes. Closer inspection of the
amino acid sequences revealed that TaVIT2 contains a
universally conserved di-Leu motif for targeting to
the vacuolar membrane (Bonifacino and Traub, 2003;
Wang et al., 2014), which is absent from TaVIT1
(Supplemental Fig. S1B). Therefore, TaVIT1 may be
able to transport iron but will not complement Dccc1
yeast. Instead, we tested if TaVIT1 was able to com-
plement the Dfet3 yeast mutant, which is defective in

high-affinity iron transport across the plasma mem-
brane.Dfet3mutants cannot growonmediumdepleted of
iron by the chelator bathophenanthrolinedisulfonic
acid (BPS), but the expression of TaVIT1 rescued
growth under these conditions (Supplemental Fig. S2).
These data indicate that both TaVIT1 and TaVIT2 are
able to transport iron but that their localization in the
cell may differ.

Overexpression of TaVIT2 in the Endosperm of Wheat
Specifically Increased the Iron Concentration in
White Flour

The functional characterization of TaVIT1 and TaVIT2
suggested that TaVIT2, as a bona fide iron transporter
localized to vacuoles, is a good candidate for iron
biofortification. We placed the TaVIT2 gene under the
control of the wheat endosperm-specific promoter of
the High Molecular Weight Glutenin-D1 (HMW) gene
(Lamacchia et al., 2001) and transformed the construct
together with a hygromycin resistance marker into the
wheat cv Fielder (Fig. 3A). A total of 27 hygromycin-
resistant plants were isolated, and the copy number of
the transgene was determined by quantitative PCR.
There were 10 lines with a single-copy insertion, and
the highest number of insertions was 30. The trans-
gene copy number correlated well with the expression
of TaVIT2 in the developing grain (R2 = 0.6, P , 0.01;

Figure 1. The wheat genome encodes twoVIT paralogs with different expression patterns. A, Phylogenetic tree of VIT genes from
selected plant species: At, Arabidopsis thaliana; Gm, Glycine max (soybean); Hv, Hordeum vulgare (barley); Os, Oryza sativa
(rice); Sl, Solanum lycopersicum (potato); Ta, Triticum aestivum (wheat); Vv, Vitis vinifera (grape); Zm, Zea mays (maize).
Numbers above or below branches represent bootstrapping values for 100 replications. B, Gene expression profiles of TaVIT1 and
TaVIT2 homoeologs using RNA-seq data from expVIP. Bars indicate mean transcripts per million (TPM) 6 SE. Full details and
metadata are given in Supplemental Table S2.
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Fig. 3B; Supplemental Fig. S3). TaVIT2 expression was
increased 3.86 0.2-fold in single-copy lines and more
than 20-fold in lines with multiple transgenes com-
pared with nontransformed controls.

Mature wheat grains from transgenic lines and non-
transformed controls were dissected with a platinum-
coated blade and stained for iron using Perls’ Prussian
Blue. In nontransformed controls, positive blue staining
was visible in the embryo, scutellum, and aleurone
layer, but the endosperm contained little iron (Fig. 4).
In lines overexpressing TaVIT2, the Perls’ Prussian
Blue staining was increased visibly, in particular
around the groove and in patches of the endosperm.
To quantify the amount of iron, grains from individ-
ual lines were milled to produce whole-meal flour,
which was sieved to obtain a white flour fraction,
followed by element analysis using inductively cou-
pled plasma-optical emission spectroscopy (ICP-OES;
Fig. 5A; Supplemental Table S3). Iron levels were

Figure 2. TaVIT2 facilitates iron and manganese transport. A to C, Yeast
complementation assays of TaVIT1 and TaVIT2 in Dccc1 (A), Dpmr1
(B), and Dzrc1 (C) compared with yeast that is wild type (WT) for these
three genes. The yeast (Sc) CCC1, PMR1, and ZRC1 genes were used as
positive controls. Cells were spotted in a 4-fold dilution series and
grown for 2 to 3 d on plateswith or without 7.5mM FeSO4 (Dccc1), 2 mM

MnCl2 (Dpmr1), or 5 mM ZnSO4 (Dzrc1). D, Immunoblots of total and
vacuolar protein fractions from yeast cells expressing hemagglutinin
(HA)-tagged TaVIT1 or TaVIT2. The HA tag did not inhibit the function
of TaVIT2, as it was able to complement Dccc1 yeast (data not shown).
Vhp1was used as a vacuolarmarker, and the absence of actin shows the
purity of the vacuolar fraction.

Figure 3. Expression of TaVIT2 in cisgenic lines. A, Diagram of the
transfer DNA construct: LB, left border; 35S, cauliflower mosaic virus 35S
promoter; HYG, hygromycin resistance gene; nosT, nos terminator;
HMW-GLU prom, high-molecular-weight glutenin-D1-1 promoter;
TaVIT2, wheat VIT2-D gene; RB, right border; nt, nucleotides. B,
Relative expression levels of TaVIT2 in developing grains at 10 d post-
anthesis as determined by quantitative real-time PCR and normalized
to housekeeping gene Traes_4AL_8CEA69D2F. Plant identification
numbers and copy numbers of the HMW-TaVIT2 gene are given
below the bars. Bars indicate means 6 SE of three independent bio-
logical replicates.
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consistently enhanced 2-fold in white flour, from
9.76 0.3 mg g21 in control lines to 21.76 2.7 mg g21 in
lines with a single copy of HMW-TaVIT2 (P , 0.05).
Additional transgene copies resulted in a similar 2-fold
increase in iron, whereas lines with 20 or more copies
contained 4-fold more iron than controls, to 41.5 6
8.2 mg g21 in white flour (P , 0.05). The iron content
of whole-meal flour of single-insertion lines was similar
to that of control lines but increased up to 2-fold in
high-copy lines (P , 0.01). No statistically significant
differences were found for other metals in single-copy
HMW-TaVIT2 wheat grains, such as zinc, manganese,
and magnesium (Supplemental Table S3), nor for
the heavy metal contaminants cadmium and lead
(Supplemental Table S4). In lines with 20 or more
copies of HMW-TaVIT2, significant increases in all ele-
ments except manganese and lead were seen (P, 0.05),
presumably as a secondary effect.

White Flour Has an Improved Iron-Phytate Ratio and the
Iron Is Bioavailable

Because the high phytate content of cereal grains in-
hibits the bioavailability of minerals, we measured
phytate levels in TaVIT2-overexpressing lines but
found no significant increase in phytate in white flour
(Fig. 5B), although there was a slight increase in phos-
phorus (Supplemental Table S3). There was also a small
increase in phytate in whole-meal flour produced from
those lines. Considering the 2-fold increase in iron, the

iron-phytate molar ratio was improved 2-fold in white
flour of HMW-TaVIT2 lines but unaffected in whole-
meal flour (Fig. 5C).

To investigate the potential bioavailability of the iron,
flour samples were subjected to simulated gastrointes-
tinal digestion and the digests were applied to Caco-2
cells, a widely used cellular model of the small intestine
(Glahn et al., 1998). For the purpose of this experiment,
the availability of iron was maximized by treating the
samples with phytase and by exposing the cells directly
to the digestate after heat inactivation of the lytic en-
zymes. The increase in ferritin protein in Caco-2 cells
after exposure to the digestate was used as a surrogate
measure of iron availability. Iron from white flour was
taken up by the Caco-2 cells, and more ferritin pro-
duction was observed in cells exposed to samples from
TaVIT2-overexpressing lines, although the values were
variable between wheat lines (Supplemental Fig. S4). In
contrast, the iron inwhole-meal flour, although twice as
high as in white flour, was not available for uptake, as
noted previously (Eagling et al., 2014). Further analysis
of breads baked from these flours is necessary to con-
firm that overexpression of TaVIT2 improves iron bio-
availability. These data suggest that relocating iron into
the endosperm may be more effective than increasing
total iron in the grain as a biofortification strategy.

The High-Iron Phenotype Has Little Impact on Plant
Growth and Is Maintained in T2 Grains

To investigate if TaVIT2 overexpression affected
plant growth, we measured plant height, tiller number,
grain size, number of grains per plant, and thousand-
grain weight in TaVIT2-overexpressing lines and con-
trols. None of these growth parameters was negatively
affected by the HMW-TaVIT2 transgene in the T0 gen-
eration grown in controlled environment rooms (Fig. 6;
Supplemental Table S5). Conversely, a statistically
significant increase in tiller number was seen in plants
containing two to 16 copies of the HMW-TaVIT2
transgene, to 15.3 6 1.2 compared with the control of
10.96 0.8 (P, 0.05, ANOVA; Supplemental Table S5).
Analysis of further generations and field trials are re-
quired to confirm this effect and its potential impact on
yield.

Seed from the first T0 transformant obtained (line
27-02, containing two copies of HMW-TaVIT2) was
planted in a greenhouse to investigate the high-iron
trait in the next generation (T1). The HMW-TaVIT2
transgene segregated in a 3:1 ratio (x2 = 0.29). The
growth of plants in the greenhouse was very different
from that in controlled environment chambers, but
there were no significant differences in growth and
yield component traits for HMW-TaVIT2 plants com-
pared with wild-type segregants or nontransformed
controls (Supplemental Table S6). Though iron levels
were overall higher in grain from greenhouse-grown
plants, T2 grain still contained a 2-fold increase in
iron in the white flour fraction compared to controls

Figure 4. Perls’ Prussian Blue staining for iron in grains transformed
with HMW-TaVIT2. Grains from T0 wheat plants were dissected lon-
gitudinally (left) or transversely (right). al, Aleurone; em, embryo; es,
endosperm; gr, groove; s, scutellum; sdc, seed coat. The transgene copy
numbers and line numbers are indicated at left. Bars = 1 mm.
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(P , 0.05; Supplemental Table S6). Taken together,
endosperm-specific overexpression of TaVIT2 has no
major growth defects, and the iron increase showed a
similar trend in the next generation despite different
growth conditions.

Expression of HMW-TaVIT2 in Barley Increases Grain Iron
and Manganese Content

We also transformed barley cv Golden Promise with
the HMW-TaVIT2 construct. The 12 transgenic plants
had either one or two copies of the transgene and were
indistinguishable from nontransformed controls with

regard to vegetative growth and grain development.
Staining with Perls’ Prussian Blue showed that, similar
to wheat, there was more iron in transformed grains
than in controls, and this tended to accumulate in the
subaleurone region of the endosperm. To quantify the
iron and other metals, lines B2 (one copy) and B3 (two
copies) were selected for ICP-OES analysis and found to
contain 2-fold more iron than the control in both white
andwhole-meal flour (Fig. 7). Thewhite flour produced
from barley contained relatively high levels of phos-
phorus, suggesting that there was some aleurone pre-
sent, so the differences in minerals between white
and whole-meal flours are not as pronounced as in
wheat. Interestingly, in barley, there was also a 2-fold
increase in manganese levels (Fig. 7). These results
indicate that the ability of TaVIT2 to transport man-
ganese, as observed in yeast (Fig. 2B), can be opera-
tional in plant tissue. Overall, our results indicate that

Figure 5. Iron and phytate content of flour milled from HMW-TaVIT2
wheat lines. A, Iron concentrations in white and whole-meal flour from
three control and six HMW-TaVIT2 lines. Bars represent means of two
technical replicates 6 SD. White flour from HMW-TaVIT2 lines has
significantly more iron than that from control lines (n = 3–4, P, 0.001;
for all data, see Supplemental Table S3). The dotted line at 16.5 mg g21

iron indicates the minimum requirement for wheat flour sold in the
United Kingdom. B, Phytate content of white and whole-meal flour of
control and HMW-TaVIT2-expressing wheat. Bars represent means of
two biological replicates 6 SD. C, Molar ratio of iron to phytate in
control and HMW-TaVIT2-expressing lines. Bars represent means of
two biological replicates 6 SD.

Figure 6. Growth parameters of HMW-TaVIT2 wheat. The number of
tillers (A) and seed output (B) of T0 wheat plants with indicated HMW-
TaVIT2 copy numbers are shown. Bars indicate means 6 SE of the fol-
lowing numbers of biological replicates: zero gene copies, n = 9; one
gene copy, n = 10; two to 16 gene copies, n = 9; 20 ormore gene copies,
n = 6. Further details are given in Supplemental Table S5. The asterisk
indicates a significant difference from the negative control (one-way
ANOVA with Tukey’s posthoc test: *, P , 0.05).
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endosperm-specific overexpression of TaVIT2 is a suc-
cessful strategy for increasing the iron content in differ-
ent cereal crop species.

DISCUSSION

The recently sequenced wheat genome greatly facil-
itates gene discovery in this economically important
but genetically complex crop species. In a previous
analysis (Borrill et al., 2014), we identified over 60 pu-
tative metal transporters and started with the func-
tional characterization of VITs. We selected TaVIT1-B
and TaVIT2-D for our studies. Each TaVIT gene has
three homoeologs, but these share 99% amino acid
identity, and those amino acids that differ are not con-
served; therefore, we believe that our results are rep-
resentative for all three homoeologs.

While TaVIT1 and TaVIT2 are ;87% identical with
OsVIT1 and OsVIT2, we found remarkable differences.
Each rice VIT has the di-Leu motif involved in vacuolar

targeting, and GFP fusion proteins showed vacuolar
localization when transiently expressed in Arabidopsis
protoplasts (Zhang et al., 2012). In wheat, only TaVIT2
has the di-Leu motif, and this correlated with the vac-
uolar localization of TaVIT2 in yeast. Another striking
difference between rice and wheat VITs is the yeast
complementation results. OsVIT1 and OsVIT2 partially
complemented mutants in iron transport (Dccc1) and
zinc transport (Dzrc1). In wheat, only TaVIT2 showed
complementation of Dccc1, and we saw no evidence of
zinc transport, similar to the metal specificity of the
yeast ortholog. The growth defect of Dccc1 was com-
pletely rescued by TaVIT2, indicating efficient iron
transport, in contrast to only weak complementation by
the rice VIT genes. Unfortunately, the production of the
rice VIT proteins in yeast was not verified by western-
blot analysis (Zhang et al., 2012). Our initial experi-
ments showed thatwheat TaVIT1was poorly expressed
in yeast, so the sequence was codon optimized to
remove codons that are rare in Saccharomyces cerevisiae
(Supplemental Fig. S5). This greatly improved the

Figure 7. Endosperm-specific overexpression
of TaVIT2 in barley. The TaVIT2-5DL gene
from wheat under the control of the wheat
HMW-GLU-1D-1 promoter (for full details,
see Fig. 3A) was transformed into barley
cv Golden Promise. Positive transformants
were selected by hygromycin. A, Mature
barley T1 grains of a control plant and two
transgenic lines stained with Perls’ Prussian
Blue for iron. B, Element analysis in white
and whole-meal flours from a control and
two HMW-TaVIT2-overexpressing barley
plants. The values are means of two tech-
nical replicates 6 SD.
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expression of TaVIT1 to even higher levels than TaVIT2,
but TaVIT1 still did not complement the yeast mutants
in vacuolar Fe, Zn, or Mn transport. TaVIT1, however,
did complement the Dfet3 yeast mutant (Supplemental
Fig. S2). Yeast FET3 is part of a complex directing high-
affinity Fe transport across the plasma membrane
(Askwith et al., 1994). This suggests that TaVIT1 is in-
deed a functioning iron transporter but that it localizes
mainly to a membrane other than the tonoplast. It will
be interesting to identify the amino acid residues that
determine metal specificity and/or localization in the
VIT family. However, currently, there is no crystal
structure of any of the VIT family members and no
other good structural homology models. Recently, a
first glimpse into the transport mechanism was pro-
vided, showing that P. falciparum VIT1 is an H+ anti-
porter with strong selectivity for Fe2+ (Slavic et al., 2016;
Labarbuta et al., 2017).
Overexpression of the vacuolar iron transporter

TaVIT2 in wheat endosperm was very effective in
raising the iron concentration in this tissue. We hy-
pothesize that increased sequestration of iron in the
vacuoles creates a sink that then up-regulates the relo-
cation of iron to that tissue. If the tissue normally stores
iron in vacuoles rather than in ferritin, proteins and
chelating molecules for iron mobilization into the vac-
uole already will be present. For a sink-driven strategy,
timely expression of the gene in a specific tissue is es-
sential: if the protein is produced constitutively, for
example using the cauliflower mosaic virus 35S pro-
moter, then it will draw iron into all tissues, not in one
particular tissue. Interestingly, knockout mutants of
VIT1 and VIT2 in rice accumulated more iron in the
embryo (Zhang et al., 2012). A likely scenario is that
iron distributed to the developing rice grain cannot
enter the vacuoles in the aleurone (Kyriacou et al., 2014)
and, thus, is diverted to the embryo. This finding fur-
ther supports the idea that VITs play a key role in iron
distribution in cereal grains. An additional advantage
of endosperm-specific expression is that possible growth
defects in vegetative tissues are likely to be avoided, as
found in our studies.
Wheat and barley transformed with the same HMW-

TaVIT2 construct showed surprising differences in the
accumulation of iron and manganese. Wheat had a
2-fold increase in iron in the endosperm only, whereas
barley contained 2-fold more iron in whole grains.
Barley grains also contained 2-fold more manganese,
but this element was not increased in wheat, even
though TaVIT2 was found to transport both iron and
manganese in yeast complementation assays. It is pos-
sible that the wheat HMW promoter has a different
expression pattern in barley. If the promoter is activated
in the aleurone cells in addition to the endosperm, this
may lead to the observed higher iron concentrations in
whole barley grains. The pattern of promoter activity
can be further investigated with reporter constructs or
by in situ hybridization specific for the transgene. It is
also possible that wheat and barley differ in iron and
manganese transport efficiency from roots to shoots,

thus affecting the total amount of iron and manganese
that is (re)mobilized to the grain.

In the Americas, Africa, and Asia, iron fortification of
flours ranges from 30 to 44 mg g21. In Europe, only
the United Kingdom has a legal requirement for forti-
fication: white and brown flours must contain at least
16.5 mg g21 iron. We have now achieved this iron con-
centration inwhite flour produced from the single-copy
HMW-TaVIT2 lines described here. More copies of
TaVIT2 increased iron levels further but resulted in
the accumulation of other metals. Moreover, with 20 or
more transgene copies, there were fewer grains per
plant. Combining endosperm-specific TaVIT2 over-
expression with constitutive NAS overexpression may
be one suitable approach to increase grain iron levels
further. A combination strategy using overexpression
of NAS2 and soybean (Glycine max) ferritin increased
iron levels in polished rice more than 6-fold, from 2 to
15 mg g21 in the field (Trijatmiko et al., 2016). However,
combining NAS and FER overexpression in wheat did
not show a synergistic effect: constitutive expression of
the rice NAS2 gene resulted in 2.1-fold more iron in
grains and 2.5-fold more iron in white flour, but cou-
pled with endosperm-specific expression of FER, grain
iron content was only 1.6- to 1.8-fold increased, similar
to FER alone (Singh et al., 2017). As noted before, iron in
wheat is mostly stored in vacuoles rather than ferritin,
so increasing iron transport into vacuoles combined
with increasing iron mobility is likely to be more ef-
fective. Nicotianamine also is reported to improve the
bioavailability of iron (Zheng et al., 2010), which is a
major determinant for the success of any biofortification
strategy.

On a societal level, a major question is whether wheat
biofortified using modern genetic techniques will be
accepted by consumers. Our strategy used wheat ge-
netic material (promoter and coding sequence) and,
therefore, could be considered cisgenic. The HMW-
TaVIT2 lines also contain DNA from species other than
wheat, such as a hygromycin resistance gene of bacte-
rial origin, but these regions can be removed using
CRISPR technology, leaving only wheat DNA. In ad-
dition, the wheat lines described here are valuable tools
to identify processes regulating the iron content of the
grain. Identification of the transcription factors that
control VIT expression would be helpful, but none has
been identified so far in any plant species. Once more
genetic components of the iron-loadingmechanism into
cereals have been identified, these can be targets of
nontransgenic approaches such as TILLING (Krasileva
et al., 2017).

MATERIALS AND METHODS

Identification of Wheat VIT Genes, Phylogenetic Analysis,
and Analysis of RNA-Seq Data

The coding sequences of thewheat (Triticum aestivum)VIT genes were found
by a BLAST search of the rice OsVIT1 (LOC_Os09g23300) and OsVIT2
(LOC_Os04g38940) sequences in Ensembl Plants (http://plants.ensembl.org).
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Full details of the wheat genes are given in Supplemental Table S1. Sequences of
VIT genes from other species were found by a BLAST search of the Arabidopsis
(Arabidopsis thaliana)AtVIT1 (AT2G01770) and rice (Oryza sativa)VIT sequences
against the Ensembl Plants database. Amino acid alignments were performed
using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). The tree
was plotted with BioNJ with the Jones-Taylor-Thornton matrix and rendered
using TreeDyn 198.3. RNA-seq data were obtained from the expVIP database
(Borrill et al., 2016; http://www.wheat-expression.com). Full details of the data
sets used are given in Supplemental Table S2.

Yeast Complementation

Coding DNA sequences for the wheat 2BL VIT1 homoeolog (TRIAE_
CS42_2BL_TGACv1_129586_AA0389520) and the 5DL VIT2 homoeolog
(TRIAE_CS42_5DL_TGACv1_433496_AA1414720) were synthesized and
inserted into pUC57 vectors by Genscript. The wheat VIT genes were first
synthesized with wheat codon usage, but TaVIT1was poorly translated in
yeast so was resynthesized with yeast codon usage including a 33 HA tag at
the C-terminal end. Untagged codon-optimized TaVIT1 was amplified from
this construct using primers TaVIT1co-XbaI-F and TaVIT1co-EcoRI-R (for
primer sequences, see Supplemental Table S7). TaVIT2-HA was cloned by
amplifying the codon sequence without the stop codon using primers
TaVIT2-BamHI-F and TaVIT2(ns)-EcoRI-R and by amplifying the HA tag
using primers HAT-EcoRI-F and HAT(Stop)-ClaI-R. The two DNA fragments
were inserted into plasmid p416 behind the yeast (Saccharomyces cerevisiae)
MET25 promoter (Mumberg et al., 1995).

Genes ScCCC1, ScFET3, ScPMR1, and ScZRC1 were cloned from yeast ge-
nomic DNA, using the primer pairs ScCCC1-BamHI-F and ScCCC1-EcoRI-R,
ScFET3-XbaI-F and ScFET3-XhoI-R, ScPMR1-SpeI-F and ScPMR1-XhoI-R, and
ScZRC1-XbaI-F andScZRC1-EcoRI-R, respectively. Following restriction diges-
tion, the DNA fragments were ligated into vector p416-MET25 and confirmed
by sequencing. All constructs were checked by DNA sequencing.

The Saccharomyces cerevisiae strain BY4741 (MATa his3D1 leu2D0 met15D0
ura3D0) was used in all yeast experiments. The wild type, Dccc1 (Li et al., 2001),
Dzrc1 (MacDiarmid et al., 2003), Dpmr1 (Lapinskas et al., 1995), or Dfet3
(Askwith et al., 1994) was transformed with approximately 100 ng of DNA
using the polyethylene glycol/lithium acetate method (Ito et al., 1983). Com-
plementation analysis was performed via drop assays using overnight cultures
of yeast grown in selective synthetic dextrose (SD) medium, diluted to ap-
proximately 1 3 106 cells mL21, spotted in successive 43 dilutions onto SD
plates containing appropriate supplements. Plates were incubated for 2 to 3 d at
30°C. Total yeast protein extraction was performed by alkaline lysis of over-
night cultures (Kushnirov, 2000).

Preparation of Vacuoles from Yeast

Preparation of yeast vacuoles was performed using cell fractionation over a
Suc gradient (Hwang et al., 2000; Nakanishi et al., 2001). Briefly, 1 L of yeast
was grown in selective SDmedium to an OD600 of 1.5 to 2 and then centrifigued
at 4,000g for 10 min, washed in buffer 1 (0.1 M Tris-HCl, pH 9.4, 50 mM

b-mercaptoethanol, and 0.1 M Glc), and resuspended in buffer 2 (0.9 M sorbitol,
0.1 M Glc, 50 mM Tris-MES, pH 7.6, 5 mM DTT, and 0.53 SD medium). Zymo-
lyase 20T (Seikagaku) was added at a concentration of 0.05% (w/v), and cells
were incubated for 2 h at 30°C with gentle shaking. After cell wall digestion,
spheroplasts were centrifuged at 3,000g for 10 min and then washed in 1 M

sorbitol before being resuspended in buffer 3 (40 mM Tris-MES, pH 7.6, 1.1 M

glycerol, 1.5% [w/v] polyvinylpyrrolidone 40,000, 5 mM EGTA, 1 mM DTT,
0.2% [w/v] BSA, 1mM phenylmethylsulfonyl fluoride [PMSF], and 13 protease
inhibitor cocktail [Promega]) and homogenized on ice using a glass homoge-
nizer. The homogenate was centrifuged at 2,000g for 10 min at 4°C, and the
supernatant was transferred to fresh tubes, while the pellet was resuspended in
fresh buffer 3 and centrifuged again. The supernatants were pooled and
centrifuged at 150,000g for 45 min at 4°C to pellet microsomal membranes.
For the preparation of vacuole-enriched vesicles, the pellet was resuspended in
15% (w/w) Suc in buffer 4 (10 mM Tris-MES, pH 7.6, 1 mM EGTA, 2 mM DTT,
25 mM KCl, 1.1 M glycerol, 0.2% [w/v] BSA, 1 mM PMSF, and 13 protease in-
hibitor cocktail), and this was layered onto an equal volume of 35% (w/w) Suc
solution in buffer 4 before centrifugation at 150,000g for 2 h at 4°C. Vesicles were
collected from the interface and diluted in buffer 5 (5mM Tris-MES, pH 7.6, 0.3 M

sorbitol, 1 mM DTT, 1 mM EGTA, 0.1 M KCl, 5 mM MgCl2, 1 mM PMSF, and 13
protease inhibitor cocktail). The membranes were centrifuged at 150,000g for
45min at 4°C and resuspended in aminimal volume of buffer 6 (5mM Tris-MES,

pH 7.6, 0.3 M sorbitol, 1 mM DTT, 1 mM PMSF, and 13 protease inhibitor
cocktail). Vesicles were snap frozen in liquid nitrogen and stored at 280°C.

Generation of Transgenic Plant Lines

The TaVIT2 gene was amplified using primers TaVIT2-NcoIF and TaVIT2-
SpeIR and cloned into vector pRRes14_RR.301 containing the promoter se-
quence comprising nucleotides 21,187 to 23 with respect to the ATG start
codon of the GLU-1D-1 gene, which encodes the high-molecular-weight
glutenin subunit 1Dx5 (Lamacchia et al., 2001). The promoter-gene frag-
ment was then cloned into vector pBract202 containing a hygromycin resis-
tance gene and left border and right border elements for insertion into the
plant genome (Smedley and Harwood, 2015). The construct was checked
by DNA sequencing. Transformation into wheat (cv Fielder) and barley
(Hordeum vulgare cv Golden Promise) was performed by the BRACT platform
at the John Innes Centre usingAgrobacterium tumefaciens-mediated techniques
as described previously (Wu et al., 2003; Harwood et al., 2009). Transgene
insertion and copy number in T0 plants were assessed by iDNA Genetics
using quantitative PCR with a Taqman probe. For the T1 generation, the
presence of the hygromycin resistance gene was analyzed by PCR with
primers Hyg-F and Hyg-R.

Plant Growth and Quantitative Analysis

The first generation of transgenic plants (T0) was grown in a controlled
environment room under 16 h of light (300 mmolm22 s21) at 18°C/8 h of dark at
15°C with 65% relative humidity. The next generation (T1) was grown in a
glasshouse kept at approximately 20°C with 16 h of light. Wheat and barley
plants were grown on amix of 40%medium-grade peat, 40% sterilized soil, and
20% horticultural grit and fertilized with 1.3 kg m23 PG Mix 14+16+18 (Yara
UK) containing 0.09% Fe, 0.16%Mn, and 0.04% Zn. Ears fromwheat and barley
plants were threshed by hand, and grain morphometric characteristics, mass,
and number were determined using aMARVIN universal grain analyzer (GTA
Sensorik).

RNA Extraction and Quantitative Real-Time PCR

Samples of developing grain were taken at 10 d postanthesis and frozen in
liquid nitrogen. RNA extraction was performed using phenol/chloroform ex-
traction (Box et al., 2011). Developing grains were ground with a pestle and
mortar under liquid nitrogen and mixed with RNA extraction buffer (0.1 M

Tris-HCl, pH 8, 5 mM EDTA, 0.1 M NaCl, 0.5% [w/v] SDS, and 1% [v/v]
2-mercaptoethanol) and the Ambion Plant RNA Isolation Aid (ThermoFisher).
Sampleswere centrifuged for 10min at 15,000g, and the supernatant was added
to 1:1 acidic phenol (pH 4.3):chloroform. After mixing and incubation at room
temperature for 10 min, the upper phase was added to isopropanol containing
0.3 M sodium acetate. Samples were incubated at 280°C for 15 min and
centrifuged for 30 min at 15,000g at 4°C. The supernatant was discarded, and
the pellet was washed twice in 70% (v/v) ethanol and dried before being
resuspended in RNase-free water. RNA was DNase treated using the TURBO
DNase-free kit (ThermoFisher) according to the manufacturer’s instructions.
DNase inactivation reagent was added, and the samples were centrifuged at
10,000g for 90 s. Supernatant containing RNA was retained. RNA was reverse
transcribed using oligo(dT) primer and SuperScript II reverse transcriptase
(ThermoFisher) according to the manufacturer’s instructions. Quantitative real-
time PCR was used to analyze the expression of TaVIT2 and the housekeeping
gene (HKG) Traes_4AL_8CEA69D2F, chosen because it was shown to have the
most stable gene expression across grain development in over 400 RNA-seq
samples (Borrill et al., 2016), using primer pairs qRT-TaVIT2-F/qRT-TaVIT2-R
and qRT-HKG-F/qRT-HKG-R, respectively. Samples were run in a CFX96 Real-
Time System (Bio-Rad) with the following conditions: 3min at 95°C; 35 cycles of
5 s at 95°C, 10 s at 62°C, and 7 s at 72°C; and melt curve of 5 s at 65°C and 5 s at
95°C. TaVIT2 expression levels were normalized to the expression levels of the
housekeeping gene and expressed as 2DCt.

Perls’ Prussian Blue Staining

Mature grains were dissected using a platinum-coated scalpel, stained for
45 min in Perls’ Prussian Blue staining solution (2% [w/v] potassium hex-
acyanoferate [II] and 2% [v/v] hydrochloric acid), and then washed twice in
deionized water.
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Flour Preparation, Element Analysis, and
Phytate Determination

Barley grains were dehulled by hand, and all grains were coarsely milled
using a coffee grinder and then ground into flour using a pestle and mortar.
White flour fractions were obtained by passing the material through a 150-mm
nylon mesh. Flour samples were dried overnight at 55°C and then digested for
1 h at 95°C in ultrapure nitric acid (55%, v/v) and hydrogen peroxide (6%, v/v).
Samples were diluted 1:11 in ultrapure water and analyzed by ICP-OES (Vista-
PRO CCD Simultaneous ICP-OES; Agilent) calibrated with standards: Zn, Fe,
andMg at 0.2, 0.4, 0.6, 0.8, and 1mg L21 andMn and P at 1, 2, 3, 4, and 5mg L21.
Soft winter wheat flour was used as a reference material (RM 8438; U.S. Na-
tional Institute of Standards and Technology) and analyzed in parallel with all
experimental samples. Phytate levels were determined using a phytic acid (total
phosphorus) assay kit (Megazyme).

Bioavailability Assays in Caco-2 Cells

Caco-2 cells (HTB-37)were obtained fromAmericanTypeCultureCollection
and cultured as described previously (Rodriguez-Ramiro et al., 2017). Wheat
flour samples were subjected to simulated gastrointestinal digestion as
described (Glahn et al., 1998) with minor modifications. One gram of flour
was added to 5 mL of pH 2 buffer saline solution (140 mmol L21 NaCl and
5 mmol L21 KCl) followed by the addition of pepsin (0.04 g mL21). Ascorbic
acid was added at a molar ratio of 1:20 to ensure the complete solubilization
of released iron. Additionally, phytase (Megazyme) was added to fully de-
grade phytate (myoinositol hexakisphosphate). Samples were incubated at
37°C on a rolling table for 90 min. Next, the pH of the samples was gradually
adjusted to pH 5.5, bile (0.007 g mL21) and pancreatin (0.001 g mL21) di-
gestive enzymes were added, the pHwas adjusted to 7, and the samples were
incubated for an additional 1 h. At the end of the simulated digestion,
samples were centrifuged at 3,000g for 10 min, the gastrointestinal enzymes
were heated inactivated at 80°C for 10 min and centrifuged as before, and the
resultant supernatant was used subsequently for iron uptake experiments
similar to Bodnar et al. (2013) with little modification. A volume of 0.5 mL of
wheat digestate was diluted in 0.5 mL of Eagle’s MEM and applied over
Caco-2 cell monolayers grown on collagen-coated 12-well plates. Samples
were incubated for 2 h at 37°C in a humidified incubator containing 5% CO2
and 95% air. After incubation, an additional 0.5 mL of MEMwas added, and
cells were incubated for a further 22 h prior to harvesting for ferritin anal-
ysis. To harvest the cells, the medium was removed by aspiration, and cells
were rinsed with 18 V MilliQ water and subsequently lysed by scraping in
100 mL of Cellytic M (Sigma-Aldrich). Cell pellets were kept on ice for
15 min and stored at 280°C. For analysis, samples were thawed and
centrifuged at 14,000g for 15 min. The supernatant containing the proteins
was used for ferritin determination using the Spectro Ferritin ELISA
(RAMCO) according to the manufacturer’s protocol. Ferritin concentrations
were normalized to total cell protein using the Pierce Protein BCA protein
assay (ThermoFisher).

All experiments were performed using the following controls: (1) a blank
digestionwithout anywheat sample or added iron, and (2) a reference digestion
of 50 mM ferrous sulfate heptahydrate (FeSO4∙7H2O) solubilized in 0.1 M HCl
with 1,000 mM ascorbic acid.

Statistical Analysis

Statistical analyses (F test, ANOVA, Student’s t test, Kruskal-Wallis test,
regression analysis, x2) were performed using Microsoft Excel 2010 and
Genstat 18th Edition. Unless stated otherwise in the text, P values were
obtained from Kruskal-Wallis tests with Dunnett posthoc tests. When rep-
resentative images are shown, the experiment was repeated at least three
times with similar results.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data libraries
under the following accession numbers: TaVIT1-A, TRIAE_CS42_2AL_TGACv1_094675_
AA0301300; TaVIT1-B, TRIAE_CS42_2BL_TGACv1_129586_AA0389520; TaVIT1-D, TRIAE_
CS42_2DL_TGACv1_159145_AA0533310; TaVIT2-A, TRIAE_CS42_5AL_TGACv1_
374137_AA1191460; TaVIT2-B, TRIAE_CS42_5BL_TGACv1_406234_AA1342560;
and TaVIT2-D, TRIAE_CS42_5DL_TGACv1_433496_AA1414720.
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vacuolar iron transporters.

Supplemental Figure S2. TaVIT1 complements a yeast mutant defective in
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copy number and the expression of TaVIT2.

Supplemental Figure S4. Ferritin formation in Caco-2 cells incubated with
phytase-treated flour digestates.
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Supplemental Table S1. Wheat VIT genes identified in this study.

Supplemental Table S2. Expression analysis of TaVIT genes.

Supplemental Table S3. Element analysis of control and HMW-TaVIT2
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