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Abstract

In this thesis, we consider questions relating to automorphisms and endo-

morphisms of countable, relational first-order structures M, with a particular

emphasis on bimorphism monoids.

We determine semigroup-theoretic results for three types of endomorphism

monoid onM, along with generation results whenM is the random graph R or

the discrete linear order (N,≤). In addition, we introduce three types of partial

map monoid ofM, and prove some semigroup-theoretic and generation results

in these cases.

We introduce the idea of a permutation monoid, and characterise the closed

submonoids of the infinite symmetric group Sym(N). Following this, we turn

our attention the idea of oligomorphic transformation monoids, and expand

on the existing results by considering a range of notions of homomorphism-

homogeneity as introduced by Lockett and Truss in 2012. Furthermore, we show

that for any finite group G, there exists an oligomorphic permutation monoid

with group of units isomorphic to G.

The main result of the thesis is an analogue of Fraı̈ssé’s theorem covering

twelve of the eighteen notions of homomorphism-homogeneity; this contains

both Fraı̈ssé’s theorem, and a version of this for MM-homogeneous structures

by Cameron and Nešetřil in 2006, as corollaries. This is then used to determine

the extent to which some well-known countable homogeneous structures are

also homomorphism-homogeneous.

Finally, we turn our attention to MB-homogeneous graphs and digraphs. We

begin by classifying those homogeneous graphs that are also MB-homogeneous.

We then determine an example of an MB-homogeneous graph not in this clas-

sification, and use the idea behind this construction to demonstrate 2ℵ0 many

non-isomorphic examples of MB-homogeneous graphs. We also give 2ℵ0 many

non-isomorphic examples of MB-homogeneous digraphs.
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1

Introduction

The study of automorphism groups of first-order structures has long been of

interest to mathematicians due to connections with model theory and infinite

permutation group theory [3, 37, 9, 43]. It follows from this connection that inter-

esting examples of infinite permutation groups arise as automorphism groups of

first-order structures with certain properties. For instance, if a countably infinite

first-order structureM is ℵ0-categorical, then Aut(M) has finitely many orbits on

Mn for each n ∈ N; in this instance, Aut(M) is called an oligomorphic permutation

group [9]. Examples of ℵ0-categorical structures often arise when considering

the model-theoretic notion of homogeneity (or ultrahomogeneity in some sources).

The celebrated theorem of Fraı̈ssé [32] completely determines when a structure

M is homogeneous, based on conditions on the class of finite substructures of

M. A large body of literature, in a range of subjects across mathematics, is de-

voted to the study of homogeneous structures [76, 49, 15, 54], and of properties

of automorphism groups of homogeneous structures [79, 46, 5, 27, 45, 56].

We need not restrict ourselves to just automorphisms of a first-order struc-

ture. A semigroup-theoretic analogue of the automorphism group of a first-

order structure M is the endomorphism monoid of M. In the same fashion as

above, the endomorphism monoid of a countably infinite structure provides in-

teresting examples of infinite transformation monoids; this is another widely

studied theme [7, 14, 59, 52, 23]. Furthermore, the concepts of oligomorphic per-

mutation group and homogeneity have been generalised to semigroup cases;

these are the concepts of an oligomorphic transformation monoid and homomorphism-

homogeneity developed in [61] and [14, 53] respectively. Finding analogues of re-
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sults about automorphism groups for endomorphism monoids is a motivating

factor in this subject; examples of these include the idea of generic endomorphisms

[52], and a version of Fraı̈ssé’s theorem for MM-homogeneous structures [14].

The automorphism group and the endomorphism monoid are not the only

monoids associated to a countably infinite relational structure M. In fact, by

placing restrictions on the type of underlying partial function from the domain

ofM to itself, seven more monoids of self-maps preserving structure inM can

be described. These are:

• Four endomorphism monoids contained between Aut(M) and End(M),

here called intermediate monoids:

– Bi(M), the monoid of all bijective endomorphisms ofM (the bimor-

phism monoid ofM);

– Emb(M), the monoid of all embeddings ofM (the embedding monoid

ofM);

– Mon(M), the monoid of all injective endomorphisms ofM (the monomor-

phism monoid ofM), and

– Epi(M), the monoid of all surjective endomorphisms ofM (the epi-

morphism monoid ofM).

• Three partial map monoids ofM:

– Part(M), the partial map monoid of all homomorphisms between

substructures ofM (the partial endomorphism monoid ofM);

– Inj(M), the partial map monoid of all monomorphisms between sub-

structures ofM (the partial monomorphism monoid ofM), and

– Inv(M), the partial map monoid of all isomorphisms between sub-

structures ofM (the symmetric inverse monoid ofM).

Together with the automorphism group Aut(M) and the endomorphism monoid

End(M), they form a collection of nine monoids associated with a countably

infinite relational structure M; these are diagrammatically represented in Fig-

ure 1.1.



Chapter 1: Introduction 12

Part(M)

Inj(M)End(M)

Inv(M)Epi(M) Mon(M)

Bi(M) Emb(M)

Aut(M)

partial map monoids

endomorphism monoids

intermediate monoids

Figure 1.1: A diagram indicating transformation monoids of a countable, rela-
tional first-order structureM. Containment is given by block lines. The thickly
dotted line separates partial map and endomorphism monoids. Intermediate
monoids lie between the three dotted lines.

Of these, the four intermediate monoids have been partially studied in di-

verse sources. For instance, epimorphisms of first-order structures preserve pos-

itive formulas [5], there exist generic endomorphisms of a countable set [52] and

interesting monomorphism monoids arise from MM-homogeneous structures

[14]. However, the general theory of these monoids for first-order structures is

still a subject in its relative infancy.

Partial maps of a first-order structure M are a common subject in model

theory as they are representative of local symmetry in M. However, the idea

of collecting these functions as partial map monoids has not been considered

previously; certainly not from a semigroup-theoretic point of view. Much as

the endomorphism monoid of a structureM is a structural analogue of the full

transformation monoid on a set, it follows that Inv(M) and Part(M) are the

structural analogues of the classical symmetric inverse monoid and the partial

transformation monoid on a set respectively. This forms the basis for our inter-

est.
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Summary of results

The aim of this thesis is to develop the theory of selected intermediate and par-

tial map monoids associated to countable, relational structures; with a partic-

ular emphasis on the bimorphism monoid Bi(M). We explore results relating

to these monoids in the settings of semigroup theory, model theory and graph

theory; preliminaries for each of these subjects can be found in Chapter 2. Be-

cause of the comparatively wide scope of this thesis, individual literature re-

views about the different areas of study appear at the beginning of the relevant

chapter. Similarly, any open questions that arise as a result of the work in a

particular setting appear in that chapter, rather than at the end of the thesis.

Chapter 3 provides some background knowledge of cofinality, strong cofi-

nality and the Bergman property (see [59]), as well as relative and Sierpiński

ranks of semigroups (see [35, 64]). We then detail some results related to these

concepts that will be useful in Chapters 4 and 5; including a novel result show-

ing that if a semigroup S has a certain ideal structure, then S has countable

strong cofinality (Proposition 3.1.11). The chapter concludes with an overview

of the monomorphism monoid of a countable set; this summary informs work

in Chapter 4.

In Chapter 4, we investigate those intermediate monoids of a countably infi-

nite relational structureM that are made up of injective endomorphisms; these

are Bi(M), Emb(M) and Mon(M). Because of the injectivity of maps in these

monoids, they are right-cancellative semigroups; furthermore, as Bi(M) is a

group-embeddable monoid, it is also left-cancellative. This in turn restricts the

behaviour of the underlying maps; so we can consider relational structures in

full generality, as opposed to specific examples. We determine some semigroup-

theoretic results of these three intermediate monoids, including idempotents,

ideal structure, and partial characterisations of Green’s relations. These results

are then used together with some of the work in Chapter 3 in order to show:

Theorem (Theorems 4.1.21, 4.1.25, 4.2.17, 4.2.21, 4.3.9, 4.3.12). LetR be the random

graph and T ∈ {Bi(R), Emb(R),Mon(R)}. Then T has countable strong cofinality and
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does not have the Bergman property.

Continuing the theme of semigroup-theoretic and generation results, Chap-

ter 5 introduces the concept of a partial map monoid of a first-order structure. As

with the intermediate monoids in Chapter 4, we consider the semigroup theory

relating to the partial map monoids consisting of injective maps; that is, Inv(M)

and Inj(M). The main result of this section (Theorem 5.2.1) presents a sufficient

structural condition onM for the three partial map monoids to have uncount-

able strong cofinality (and hence the Bergman property), as well as demonstrat-

ing finite Sierpiński rank in these cases. We also examine cofinality results for

the semilattice of idempotents E(Inv(M)) in Section 5.3.

We change tack slightly from the semigroup-theoretic first half of the the-

sis to consider model-theoretic results about intermediate monoids, with par-

ticular reference to homomorphism-homogeneity. In Chapter 6, we continue

our work on bimorphisms of first-order structures by considering the notion of

an infinite permutation monoid (Section 6.1); we prove some results about these

in context of the topology on Sym(N) (Propositions 6.1.1 and 6.1.3). Following

this, we build on work of Mašulovic and Pech [61] about oligomorphic transfor-

mation monoids by using the eighteen types of homomorphism-homogeneity

introduced by Lockett and Truss [53]; these are summed up in an umbrella defi-

nition of XY-homogeneity (Definition 6.2.4). The main result of this section is:

Theorem (Theorem 6.2.8). IfM is an XY-homogeneous countable first-order struc-

ture over a finite relational language, then Y(M), the monoid of all maps of type Y, is

an oligomorphic transformation monoid.

This result motivates the construction of XY-homogeneous structures in or-

der to find examples of oligomorphic transformation monoids. To this end,

following the generalisation of Fraı̈ssé’s theorem by Cameron and Nešetřil for

MM-homogeneous structures [14], Chapter 7 is devoted to demonstrating two

Fraı̈ssé-like theorems covering twelve of the eighteen possible instances of XY-

homogeneity. In the first case, where the extended map need not be surjective,

we require a forth-only construction similar to that of [14] and a single amalga-
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mation property.

Theorem (Theorem 7.0.1, see Subsection 7.2.1). Let XY ∈ {II, MI, MM, HI, HM,

HH}.

(1) IfM is an XY-homogeneous structure, then Age(M) has the relevant amalgama-

tion property.

(2) If C is a class of finite structures with countably many isomorphism types, is closed

under isomorphisms and substructures, has the JEP and the relevant amalgamation

property, then there exists a XY-homogeneous structureM with age C .

(3) Any two XY-homogeneous structures with the same age are equivalent up to a rele-

vant notion of equivalence.

Definition 6.2.4 provides an explanation for II, MI, etc. in this theorem. The

second case, where the extended map is surjective, requires a back-and-forth

construction like Fraı̈ssé’s theorem itself. Here, the back portion of the back-and-

forth is difficult to do because homomorphisms are not invertible in general; in

fact, the converse of a homomorphism may not even be a function. Our method

utilises a new notion of an antihomomorphism (Definition 7.1.1) to handle this

case, where two distinct amalgamation properties are needed.

Theorem (Theorem 7.0.2, see Subsection 7.2.2). Let XZ ∈ {IA, MA, MB, HA, HB,

HE}.

(1) IfM is an XZ-homogeneous structure, then Age(M) has the two relevant amalga-

mation properties.

(2) If C is a class of finite structures with countably many isomorphism types, is closed

under isomorphisms and substructures, has the JEP and the two relevant amalga-

mation properties, then there exists a XZ-homogeneous structureM with age C .

(3) Any two XZ-homogeneous structures with the same age are equivalent up to a rel-

evant notion of equivalence.
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As above, Definition 6.2.4 provides an explanation for IA, MA, etc. in this

result. Following the work of Chapter 6, any structure on a finite relational lan-

guage constructed in either of these results gives an example of an oligomorphic

transformation monoid. We conclude the chapter by defining the notion of a

maximal homomorphism-homogeneity class (Definition 7.3.3), and determine these

for a selection of known homogeneous structures.

We narrow our focus to a particular instance of XY-homogeneity in Chap-

ter 8; a structureM is MB-homogeneous if every finite partial monomorphism of

M extends to a bimorphism ofM. In this chapter, we conduct an in-depth in-

vestigation into MB-homogeneous graphs and digraphs. This includes a classifi-

cation of those MB-homogeneous graphs that are also homogeneous in the usual

sense (Theorem 8.1.4), and a construction of an example of an MB-homogeneous

graph (and digraph) that are not homogeneous in the usual sense (Examples

8.2.1, 8.3.6). We use strictly increasing sequences of natural numbers, along

with families of pairwise non-embeddable finite graphs (and oriented graphs),

to prove the main results of the section:

Theorem (Theorems 8.2.10, 8.3.11, 8.4.3, 8.4.6). There exist 2ℵ0 many non-isomorphic

countable MB-homogeneous graphs (oriented graphs, digraphs). Furthermore, there is

a bijective homomorphism from each of these examples to the random graph R (generic

oriented graph D, generic digraph D∗) and vice versa.

For the graph case, this is a direct contrast to the countably many countable

homogeneous graphs outlined in Lachlan and Woodrow’s classification [49]. In

this chapter, we also demonstrate the following theorem concerning oligomor-

phic permutation monoids:

Theorem (Theorem 8.2.11). For any finite group G, there exists an oligomorphic per-

mutation monoid T such that the group of units of T is isomorphic to G.
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Preliminaries

Throughout the thesis, functions act on the right of their subjects, and composi-

tion of functions should be read from left to right.

2.1 Relations and functions

Let X be a set. An n-tuple x̄ of X is some element of the set

Xn = {(x1, x2, ..., xn) : x1, x2, ..., xn ∈ X}.

A n-ary relation R on X is some subset of Xn. Throughout, we consider binary

relations on X ; a subset of ordered pairs on X . We say that a binary relation R

is

• reflexive if for all x ∈ X it follows that (x, x) ∈ R;

• irreflexive if for all x ∈ X we have that (x, x) /∈ R;

• symmetric if for all x, y ∈ X , (x, y) ∈ R implies that (y, x) ∈ R;

• antisymmetric if for all x, y ∈ X , (x, y) ∈ R and (y, x) ∈ R implies that

x = y;

• transitive if for all x, y, z ∈ X , (x, y), (y, z) ∈ R implies that (x, z) ∈ R;

• total if for all x, y ∈ X , (x, y) ∈ R or (y, x) ∈ R.

A binary relation ∼ ⊆ X × X is an equivalence relation of X if it is reflexive,

symmetric, and transitive. A binary relation ≤ of X is a partial order on X (or

that ≤ partially orders X) if ≤ is reflexive, antisymmetric and transitive; if this
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happens, write (X,≤) to mean the set X together with the partial order ≤. A

partially ordered set (X,≤) is called a linear order if ≤ is also a total relation on

X . Usually, we will write poset to mean partially ordered set.

We can also have binary relations between two sets X and Y ; similar to

above, this is some subset ofX×Y . For two relations φ ⊆ X×Y and ρ ⊆ Y ×Z,

the composition φ ◦ ρ ⊆ X × Z is defined to be the set {(x, z) : (∃y ∈ Y )((x, y) ∈

φ, (y, z) ∈ ρ)}

For two sets X and Y , we say that a relation f ⊆ X × Y is a partial function

from X to Y if for all x ∈ X and y, z ∈ Y , if (x, y) ∈ f and (x, z) ∈ f then

y = z. If f is a partial function such that for all x ∈ X there exists a y ∈ Y

such that (x, y) ∈ f , then we call f a function. Following standard convention,

write xf = y if (x, y) ∈ f and f : X −→ Y if f is a function from X to Y .

Denote the domain and image of f by dom f and im f respectively; in this case,

dom f = X and im f = {xf : x ∈ X} ⊆ Y . The preimage W ⊂ Y under

f−1 is defined to be the set Wf−1 = {x ∈ X : xf ∈ W}. Define the kernel

of f to be the set ker f = {(x, y) ∈ X × X : xf = yf}; this is an equivalence

relation. The kernel class of an element x of X is the set {y ∈ X : (x, y) ∈ ker

f}. If Z ⊆ X , we say that Zf = {xf : x ∈ Z} ⊆ Y is the image of Z under

f ; it follows that Xf = im f . Define the restriction of f to Z to be the function

f |Z : Z −→ Y . As functions are a special case of relations, we can compose

functions using the relation composition above. The relation composition of

two functions f : X → Y and g : Y → Z is a function f ◦ g : X → Z; this is well

known as function composition. Often, we will write fg to be the composition of

two such functions.

A function f : X −→ Y is surjective if and only if for all y ∈ Y there exists

x ∈ X such that xf = y; equivalently, f is surjective if and only if im f = Y .

Say that f is injective if for all x, y ∈ X , then xf = yf in Y implies that x = y;

equivalently, f is injective if its kernel classes are singletons. A function f is

bijective if and only if f is both injective and surjective. We note that if f : X →

Y and g : Y → Z are two surjective (injective, bijective) functions then their

composition h = fg : X → Z is a surjective (injective, bijective) function. It
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is well known that a function f : X −→ Y is bijective if and only if there exists

an inverse function f−1 : Y −→ X such that ff−1 = 1X and f−1f = 1Y , where

1X , 1Y are the identity functions on X and Y respectively.

2.1.1 Multifunctions

For a relation φ ⊆ X × Y , define the converse of φ to be the set φ∗ = {(y, x) :

(x, y) ∈ φ} ⊆ Y ×X . We say that a relation f∗ ⊆ Y ×X is a partial multifunction if

(y, x), (z, x) ∈ f∗ implies that y = z; and that f∗ is a multifunction if, in addition,

for all y ∈ Y there exists x ∈ X such that (y, x) ∈ f∗. It is easy to see that f∗

is a partial multifunction if and only if it is the converse of a partial function f ,

and that f∗ is a multifunction if and only if the partial function f is surjective. A

multifunction f∗ ⊆ Y ×X is surjective if for all x ∈ X there exists y ∈ Y such that

(y, x) ∈ f∗. Consequently, f∗ is a surjective multifunction if and only if it is the

converse of a surjective function f . It is clear that a (partial) multifunction f∗ is

a (partial) function if and only if it is the converse of a (partial) injective function

f . We adopt this asterisk notation throughout this chapter; if f ⊆ X × Y is a

function, denote the multifunction given by the converse of f by f∗ ⊆ Y × X ,

and vice versa. Note that (f∗)∗ = f .

Example 2.1.1. Let X = {1, 2, 3, 4}, Y = {a, b, c, d, e}, and suppose that f =

{(1, b), (2, b), (3, a), (4, c)} is a function. Then the converse f∗ of f is a partial

multifunction given by f∗ = {(b, 1), (b, 2), (a, 3), (c, 4)} (see Figure 2.1).

By restricting the codomain Y of f to its image im f , the resulting function

g : X → im f that behaves like f is a surjective function. In this case, the

converse g∗ : im f → X of g is a surjective and totally defined multifunction

(see Figure 2.2). This technique will be used frequently in Chapter 7.

If f∗ ⊆ Y ×X is a multifunction, we will abuse notation and write f∗ : Y −→

X where the context is clear. If y ∈ Y , define the set yf∗ = {x ∈ X : (y, x) ∈ f∗}.
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Figure 2.1: Example of a function f and its converse, the partial multifunction
f∗

For a tuple ȳ = (y1, ..., yn) ∈ Y n, write ȳf∗ to be the following set of tuples

ȳf∗ = {(x1, ..., xn) : xi ∈ yif∗ for all 1 ≤ i ≤ n}.

For a subset W of Y , we write

Wf∗ = {x ∈ X : (w, x) ∈ f∗ for some w ∈W} =
⋃
w∈W

wf∗.

For a multifunction f∗ : Y −→ X and a subset W ⊆ Y , we say that the multifunc-

tion f∗|W : W → X is the restriction of f∗ to W . If Y ⊂ B and X ⊂ A are sets,

and f∗ : Y → X and g∗ : B → A are two multifunctions, then we say that g∗

extends f∗ if yf∗ = yg∗ for all y ∈ Y .

Throughout, we would like to be able to compose functions with multifunc-

tions and vice versa; we achieve this by composing them as relations.
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Figure 2.2: Example of a surjective function g and its converse, the surjective
multifunction g∗

Lemma 2.1.2. Suppose that f∗ : X −→ Y and g∗ : Y −→ Z are multifunctions. Then

f∗ ◦ g∗ ⊆ X × Z is a multifunction.

Proof. Suppose that (x1, z), (x2, z) ∈ f∗ ◦ g∗; so there exists y1, y2 ∈ Y such that

(x1, y1), (x2, y2) ∈ f∗ and (y1, z), (y2, z) ∈ g∗. As g∗ is a multifunction, we have

that y1 = y2 = y. As f∗ is a multifunction, we have that (x1, y), (x2, y) ∈ f∗

implies that x1 = x2.

Remark. We previously noted that a function g is also a multifunction if and only

if it is injective; so by this lemma, the composition of a multifunction f∗ with

an injective function g (or vice versa) is again a multifunction. Furthermore,

the assumption of injectivity of the function g in this case is necessary for the

composition f∗ ◦ g to be a multifunction.

Lemma 2.1.3. Let f : A → B and g : B → C be two functions, and suppose that

fg : A → C is their composition. Then the converse map (fg)∗ : C → A is equal to

g∗f∗ : C → A, where g∗ and f∗ are composed as multifunctions.
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Proof. The proof is by containment both ways. Suppose that (c, a) ∈ (fg)∗; there-

fore, (a, c) ∈ fg. By definition of function composition, there exists b ∈ B such

that (a, b) ∈ f and (b, c) ∈ g. As this happens, (c, b) ∈ g∗ and (b, a) ∈ f∗; so

(c, a) ∈ g∗f∗. Now suppose that (c, a) ∈ g∗f∗; by relation composition, there

exists b ∈ B such that (c, b) ∈ g∗ and (b, a) ∈ f∗. Therefore, (a, b) ∈ f and

(b, c) ∈ g; implying that (a, c) ∈ fg. This means that (c, a) ∈ (fg)∗ and the proof

is complete.

2.2 Group and semigroup theory

The following definitions are standard, and can be found in [41] and [16].

2.2.1 Initial definitions

Let S be a set. A binary operation on S is any function ? : S × S −→ S; we write

(S, ?) to mean S together with the binary operation ?. We call (S, ?) a semigroup if

for all a, b, c ∈ S, then (a?b)?c = a?(b?c). We omit the binary operation symbol

where the meaning is clear, writing ab for a ? b, and writing an for the product

of a with itself n times. A semigroup S is a monoid if there exists 1 ∈ S such that

1a = a = a1 for all a ∈ S. Sometimes, it is necessary to turn a semigroup into a

monoid; say that S1 is the semigroup obtained by adjoining an identity element

to S if necessary. A monoid G is a group if for all g ∈ G there exists g−1 ∈ G

such that gg−1 = 1 = g−1g. We say that T ⊆ S is a subsemigroup if T is closed

under the binary operation inherited from S, and a subgroup if T is a group with

respect to this operation. For a semigroup S and a subset U ⊆ S, we define the

subsemigroup of S generated by U to be the set 〈U〉 of all products of elements of

U . If 〈U〉 = S, then U is called a generating set for S and we say that U generates

S.

An element e of a semigroup S is an idempotent if e2 = e. We say that a ∈ S

is regular if there exists an x ∈ S such that axa = a. Two elements a, b ∈ S are

inverses of each other if aba = a and bab = b. An element s of a monoid S is a

unit if there exists t ∈ S such that st = 1 = ts. Say that U is the group of units of
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a monoid S if it is the largest subgroup of S containing the identity element 1;

necessarily, U is the set of all units in S.

A semigroup S is a regular semigroup if all of its elements are regular; simi-

larly, S is an inverse semigroup if there exists a unique inverse for every element

of S. It follows that every inverse semigroup is regular. We say that a semi-

group S is left cancellative if for all a, b, x ∈ S we have that xa = xb implies a = b.

Right cancellative semigroups are defined in an analogous and dual manner, and

a semigroup S is cancellative if it is both left and right cancellative. It is straight-

forward to see that any subsemigroup T of a (left, right) cancellative semigroup

S is also (left, right) cancellative. In particular, as groups are cancellative, any

subsemigroup of a group is cancellative; however, not every cancellative semi-

group arises in this fashion [16]. Furthermore, it is easy to show that any finite

cancellative semigroup is a group.

Say that a non-empty subset I of a semigroup S is a left ideal if for all a ∈ S

and b ∈ I , then ab ∈ I . We define right and two sided ideals in an analogous

fashion. For shorthand, say that a subset I is an ideal if it is a two-sided ideal.

We prove a basic lemma about ideals that will be important in the thesis.

Lemma 2.2.1. Let T be a subsemigroup of a semigroup S, and suppose that V is an

ideal of S. If T ∩ V is non-empty, then it is an ideal of T .

Proof. Suppose that t ∈ T and v ∈ T ∩ V . As V is an ideal in S and t ∈ S by

definition, then tv ∈ V . But as v ∈ T and t ∈ T , then tv ∈ T as T is closed under

multiplication. So tv ∈ T ∩ V ; as V is two sided, vt ∈ T ∩ V as well.

If a is an element of a semigroup S, define the set Sa = {sa : s ∈ S}; we can

also define the sets aS and SaS in an analogous manner. The smallest left ideal

containing a is the subset Sa ∪ {a} ⊆ S; we denote this ideal by S1a and say it

is the principal left ideal generated by a. Similarly, aS ∪ {a} = aS1 is defined to be

the principal right ideal generated by a, and SaS ∪ Sa ∪ aS ∪ {a} = S1aS1 is the

principal two-sided ideal (or just principal ideal) generated by a. We now define five

equivalence relations central to the study of semigroup theory.

Definition 2.2.2. Let a and b be elements of a semigroup S. Then:
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• a is L -related to b (read aL b) if and only if S1a = S1b;

• a is R-related to b (read aRb) if and only if aS1 = bS1;

• a is J -related to b (read aJ b) if and only if S1aS1 = S1bS1;

• a is H -related to b (read aH b) if and only if aL b and aRb.

• a is D-related to b (read aDb) if and only if there exists a c in S such that

aL c and cRb.

Together, these are known as Green’s relations.

Remark. It can be shown that L ◦ R = R ◦L (see [41]), and this composition

of relations precisely describes D . This result is crucial in determining that D

is an equivalence relation; in fact, every type of Green’s relation above is an

equivalence relation. To this end, denote the L -class (R-class, H -class, D-class,

J -class) of an element a ∈ S by La (Ra, Ha, Da, Ja).

These definitions can be written in a form that emphasises their relation to

divisibility of elements. For example, aL b if and only if there exist x, y ∈ S1

such that xa = b and yb = a. A similar definition can be written for R-relations,

in that aRb if and only if there exist w, z ∈ S1 such that aw = b and bz = a.

Finally, we can write that aJ b if and only if there exist w, x, y, z ∈ S1 such that

wax = b and ybz = a. It is not hard to show that the two definitions given for

these relations here are equivalent. The general containment of these relations is

outlined in Figure 2.3.

J

D

RL

H

Figure 2.3: Containment of Green’s relations
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There are certain classes of semigroups where these relations coincide; for

instance, if S is a group, then H = L = R = D = J = S × S. We investigate

a generalisation of this case in our next result.

Lemma 2.2.3. Let S be a monoid with group of units U , and suppose that α, β ∈ S. If

there exists γ, δ ∈ U such that γαδ = β, then αDβ.

Proof. As δ is a unit, there exists δ−1 ∈ S such that δδ−1 = 1. Therefore (αδ)δ−1 =

α, and so αRαδ. Similarly, since γ is a unit, αδL γαδ = β. So αDβ by definition.

Remark. This lemma implies that Jα = Dα in this case.

Finally, for semigroups S, T , we say that a function ρ : S −→ T is a semi-

group homomorphism if for all s, t ∈ S it follows that (st)ρ = (sρ)(tρ). If S, T are

monoids, we define a monoid homomorphism in the same way, with the additional

caveat that 1Sρ = 1T . A group homomorphism is a monoid homomorphism be-

tween two groups. A homomorphism ρ : S −→ T is an embedding if it is injective

and an isomorphism if it is bijective.

2.2.2 Monoids of transformations

One of the main themes of semigroup theory is representing semigroups as col-

lections of transformations, permutations or partial maps from a set to itself. For

a set X , define the symmetric group Sym(X) to be the set of all bijective functions

from X to itself, with the binary operation given by composition of functions. It

is not hard to check that this is a group. Similarly, define the full transformation

monoid (or endomorphism monoid) End(X) to be the set of all functions from

X to itself, with the same binary operation as the symmetric group; it is easy

to show this is a monoid. It is worth noting that if X is any set, Sym(X) is the

group of units of End(X). If H is a subgroup of Sym(X) for some X , then we

say that H is a permutation group. Similarly, if T is a subsemigroup (submonoid)

of End(X) for some X , then we call T a transformation semigroup (monoid). The

following theorems from classical group and semigroup theory underline the

importance of these constructs to their respective subjects.
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Theorem 2.2.4 (Cayley, see [12]). Let G be a group. Then there exists an embedding

σ : G −→ Sym(G).

Theorem 2.2.5 (classical, see [41]). Let S be a semigroup. Then there exists an em-

bedding τ : S −→ End(S1).

Equivalently, these theorems mean that any group (semigroup) S can be rep-

resented as a permutation group (transformation semigroup) on the set S1.

There are other self-map monoids of sets worth considering. For instance,

the monomorphism monoid Mon(X) of X is the set of all injective functions (or

monomorphisms) fromX to itself with function composition. Similarly, define the

epimorphism monoid of X to be the monoid Epi(X) of all surjective self-maps (or

epimorphisms) of X . We quickly prove an easy lemma about cancellative proper-

ties of these monoids.

Lemma 2.2.6. Mon(X) is right cancellative, and Epi(X) is left cancellative.

Proof. Let x ∈ X . Suppose α, β, γ ∈ Mon(X) and that αγ = βγ. Then xαγ =

xβγ; since γ is injective, this implies that xα = xβ. Therefore, α = β. Now

suppose that δ, ε, ζ ∈ Epi(X) and that ζδ = ζε; then xζδ = xζε. Take y ∈ X to be

such that xζ = y; then yδ = yε. As ζ is surjective, this is true for all y ∈ X and so

δ = ε.

We need not restrict ourselves to total functions of X . Consider the set P (X)

of all functions p : dom p −→ im p, where dom p, im p ⊆ X . Note here that we

include the unique function ε : ∅→ ∅; this is known as the empty transformation.

Recall that the converse of p is the set p∗ = {(z, y) : (y, z) ∈ p}. As the converse

of a function, p∗ is a multifunction and hence p∗ is a function if and only if p is

injective. Now, for functions p, q in P (X), the domain and image of the function

composition p ◦ q is:

dom p ◦ q = [im p ∩ dom q]p∗ (2.1)

im p ◦ q = [im p ∩ dom q]q. (2.2)
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This is proved in Proposition 1.4.3 of [41]. If im p ∩ dom q = ∅, then we say

that p ◦ q = ε. The set P (X) together with this function composition forms a

monoid Part(X); this is known as the partial map monoid of X . We can similarly

take the collection of all partial bijections of X (with the empty transformation)

together with this composition to define Inv(X), the symmetric inverse monoid of

X . It can be shown that Part(X) is a regular semigroup, and that Inv(X) is an in-

verse subsemigroup of Part(X). Following the definition of inverse semigroup,

this means that for every element a ∈ Inv(X) there exists a unique b ∈ Inv(X)

such that ab is the identity map on dom a and ba is the identity map on dom b.

The importance of the symmetric inverse semigroup as a generalisation of the

symmetric group is underlined in another Cayley-esque theorem.

Theorem 2.2.7 (Vagner-Preston [80, 70], see Chapter 5 of [41]). Let S be an inverse

semigroup. Then there exists an embedding φ : S −→ Inv(S).

For the final results of this section, we detail some semigroup-theoretic prop-

erties of Inv(X) that will be of use in the thesis. All three are basic results, and

proofs for Lemma 2.2.8 and Lemma 2.2.10 can be found in Chapter 5 of [41].

Throughout, we write idA for the identity map on some subset A of X .

Lemma 2.2.8. Let p ∈ Inv(X). Then p is an idempotent if and only if p = idA for some

subset A of X .

Lemma 2.2.9. Suppose that α, β ∈ Inv(X) for some set X .

(1) If αβ = β, then α|dom β = iddom β .

(2) If βα = β, then α|im β = idim β .

Proof. (1) Suppose that αβ = β. Here, dom β = dom αβ ⊆ dom α by Equa-

tion 2.1. Suppose a ∈ dom β. Then aβ = aαβ; as β is injective, it follows that

a = aα for all a ∈ dom β. Hence α|dom β = iddom β .

(2) Suppose that βα = β. It follows that im βα = im β ⊆ dom α. Take

a ∈ dom β. By Equation 2.1, aβ ∈ im β∩dom α. In this case, (aβ)α = aβα = aβ,

and so α|im β = idim β .
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Lemma 2.2.10. Let X be a set, and suppose that f, g ∈ Inv(X). Then:

(1) fL g if and only if im f = im g;

(2) fRg if and only if dom f = dom g;

(3) fDg if and only if |im f | = | im g|, and;

(4) D = J .

2.2.3 Monoid actions

A central topic in group theory is the idea of a group acting on some structure. As

we will mainly be concerned with monoids acting on a structure, our definition

must consider the idea of a monoid action. The following definitions on monoid

actions can be found in [78]; references to partial monoid actions are given in the

discussion.

Let X be a set and suppose that S is a monoid with identity element 1S . We

define a right monoid action of S on X to be a function α : X × S → X , written

α(x, s) = xs, with the following properties:

• for all x ∈ X , x1S = x, and;

• for all x ∈ X and s, t ∈ S, (xs)t = x(st).

Note that if S is a group, this is the definition of a right group action [12]. There

is a one-to-one correspondence between monoid actions of S on the set X and

monoid homomorphisms φ : S → End(X) (see [78]); so these definitions can

be used interchangeably. A right monoid action is faithful if xs = ys implies

that x = y for all x, y ∈ X and s ∈ S; equivalently, the action is faithful if the

corresponding monoid homomorphism φ : S → End(X) is injective.

Whenever we have an action of a monoid S on a set X , define the forward

orbit of an element x ∈ X to be the set

F (x) = {y ∈ X : ∃s ∈ S, xs = y}.
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Define the strong orbit of an element x ∈ X to be the set

S(x) = {y ∈ X : ∃s, t ∈ S, xs = y and yt = s}.

If U is the group of units of S, define the group orbit of an element x ∈ X to be

the set

U(x) = {y ∈ X : ∃u ∈ U, xu = y}.

If S is a group acting on X , then we call U(x) the orbit of x. Finally, we define

the pointwise stabilizer of x ∈ X to be the set

Stab(x) = {s ∈ S : xs = x}.

Say that a monoid action of S on X is weakly transitive if F (x) = X for some

x ∈ X , and transitive if S(x) = X for some (and hence any) x ∈ S. Note that if

S is a group acting transitively on X , then this coincides with the usual notion

of transitivity for groups. The notion of a monoid action can be generalised to

tuples of a set X .

Definition 2.2.11. LetX be a set, S be a monoid and α : X×S → X be a monoid

action of S on X . Suppose that x̄ = (x1, ..., xn) ∈ Xn is an n-tuple of X . Then

the map ᾱ : Xn × S → Xn given by

ᾱ((x̄, s)) = (α((x1, s)), α((x2, s)), ..., α((xn, s))

is a monoid action on the set Xn. Say that ᾱ is the componentwise action of S with

respect to α.

When the context of the monoid action is clear (or not required), we say that

this is the componentwise action. As the componentwise action of S on Xn is

a monoid action, the definition of forward orbit, strong orbit, group orbit and

pointwise stabilizer for an element x̄ ∈ Xn all follow immediately. We now

prove an easy lemma about containments of these different definitions of orbits.
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Lemma 2.2.12. Let S be a monoid acting on a set X , and consider the componentwise

action of S on Xn. For any tuple x̄ ∈ Xn, we have the following:

(1) F (x̄) =
⋃
ȳ∈F (x̄) S(ȳ).

(2) S(x̄) =
⋃
ȳ∈S(x̄) U(ȳ).

Proof. (1) As S is a monoid, we have that F (x̄) ⊆
⋃
ȳ∈F (x̄) S(ȳ). To show the

reverse containment, we need only prove that S(ȳ) ⊆ F (x̄) for some tuple ȳ ∈

F (x̄). Indeed, as F (ȳ) ⊆ F (x̄) we have that S(ȳ) ⊆ F (ȳ) ⊆ F (x̄).

(2) As the identity element of S is in U , it follows that S(x̄) ⊆
⋃
ȳ∈S(x̄) U(ȳ).

Suppose that z̄ ∈ U(ȳ), so there exists a u ∈ U with ȳu = z̄. As u is a unit, we

have z̄u−1 = ȳ. Since ȳ ∈ S(x̄), there exists s, t ∈ S such that x̄s = ȳ and ȳt = s̄.

Now, x̄su = z̄ and z̄u−1t = x̄; therefore z̄ ∈ S(x̄) by definition.

We conclude this section with a discussion on partial monoid actions. There

are many differing notions of a partial monoid action in the literature [31, 71, 39];

for the purposes of this thesis, it suffices to define the strongest of these. Let X

be a set, and suppose that S is a monoid with identity element 1S . We define

a right partial monoid action to be a partial function π : X × S → X given by

π((x, s)) = xs such that:

• for all x ∈ X , (x, 1S) ∈ dom π and x1S = x, and;

• if x ∈ X and s, t ∈ S and (x, s) ∈ dom π, then (xs, t) ∈ dom π if and only

if (x, st) ∈ dom π, in which case (xs)t = x(st).

If this happens, we say that S partially acts on X . This definition of a right

partial monoid action is the one found in [71] as opposed to [31]. We choose this

definition because it is equivalent to the existence of a monoid homomorphism

ψ : S → Part(X) [39]; this fact will be useful in Chapter 5.

We can extend this definition to that of a right inverse monoid action. Here, a

right partial monoid action is a right inverse monoid action if xs = ys implies

that x = y for all x, y ∈ X and s ∈ S. This definition is equivalent to the existence

of a monoid homomorphism χ : S → Inv(X).
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Finally, we extend the notion of a componentwise action to partial monoid

actions. Let X be a set and suppose that S is a monoid acting via a partial map

π on the set X . Suppose that x̄ = (x1, ..., xn) ∈ Xn is an n-tuple of X . Then the

partial map π̄ : Xn×S → Xn, where (x̄, s) ∈ dom π̄ if and only if (xi, s) ∈ dom π

for all 1 ≤ i ≤ n, given by

π̄((x̄, s) = x̄s = (π((x1, s)), π((x2, s)), ..., π((xn, s))),

is a partial monoid action of S on Xn. Say that π̄ is the componentwise partial

action with respect to π. When the context of the partial monoid action is clear, we

say that this is the componentwise partial action.

2.2.4 Topology on Sym(N), End(N)

We can also view symmetric groups and endomorphism monoids on a count-

ably infinite set as topological spaces. Sources for these standard definitions are

[67, 9, 43, 44].

LetX be a set. A topology T onX is a collection of subsets ofX , containing∅

and X , that is closed under arbitrary unions and finite intersections of elements

of T ; we say that (X, T ) is a topological space. The elements of T are called open

sets; the complement X r Y of any open set Y is called a closed set. Note that

subsets of X can both be open, closed, both, or neither. If Y is a subset of a topo-

logical space (X, T ), then the subspace topology on Y is given by the collection

TY = {Y ∩ U |U ∈ T }; this is a topology and we say that (Y, TY ) is a subspace

of (X, T ). If B is a collection of open sets from a topology T such that every

element of T can be written as a union of elements in B, then we say that B is

a basis of open sets for T . A function f between two topological spaces X and Y

is called continuous if the preimage of an open set of Y is an open set of X . If

x ∈ X , then a neighbourhood of x is some open set U containing x. For a subset Z

of a topological space X , say that x ∈ X is a limit point of Z if (U r {x})∩Z 6= ∅

for any neighbourhood U of x. A subset Z of a topological space X is closed in

X if and only if Z contains all its limit points. A topological space X is perfect if
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every point in X is a limit point.

There is a natural topology on the symmetric group on a countably infi-

nite set Sym(N); known as the pointwise convergence topology. This is defined

by saying that a sequence of permutations (gn) tends to the limit g if and only

if kgn = kg for any k ∈ N and sufficiently large n. A basis for open sets in this

topology consists of the cosets of stabilizers of tuples; these are given by the sets

{g ∈ Sym(N) : āg = b̄}.

The pointwise convergence topology turns Sym(N) into a topological group;

a group in which both multiplication and inversion are continuous functions.

Furthermore, Sym(N) together with this topology is completely metrizable; that

is, there exists a metric on Sym(N) that makes it a complete metric space. This,

together with separability of Sym(N), makes it into a Polish space; a separable,

completely metrizable space. Any non-empty perfect Polish space has cardi-

nality 2ℵ0 [44]; as an example, every point of Sym(N) is a limit point and so

|Sym(N)| = 2ℵ0 .

In addition, there is a natural topology on the endomorphism monoid End(N).

This is the topology given by the basic open sets {f ∈ End(N) : āf = b̄}.

This means that the pointwise convergence topology on Sym(N) is the subspace

topology of the topology of End(N).

We finish this section by stating a result equivalent to the definition of the

subspace topology that will be useful in Chapter 6. If Y is a subspace of X , then

A is closed in Y if both A ⊂ Y and A is closed in the subspace topology of Y [67].

Theorem 2.2.13 (Theorem 17.2, [67]). Let Y be a subspace of a topological space X .

Then a set A is closed in Y if and only if A = B ∩ Y , where B is some closed set of

X .

2.3 Model theory

We now define a framework to investigate the different mathematical objects

present in the thesis. For more background on this material, see [37] and [43].
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2.3.1 Initial definitions

A first-order signature σ consists of a collection of relations {R̄i : i ∈ I} where R̄i

is an ni-ary relation for all i ∈ I , a collection of functions {f̄j : j ∈ J} where f̄j is

an mj-ary function for all j ∈ J , and a collection of elements {c̄k : k ∈ K} called

constants. We also stipulate that σ contains a list of variables v1, ..., vn (ranging

over some base set A) and logical operations, quantifiers and punctuation (=,

¬, ∨, ∧, →, ↔, ∀, ∃, (, ) ) with the usual meanings. A σ-structure A consists of

a set A (often called the domain), a set RAi ⊆ Ani interpreting each R̄i of σ, a

function fAj : Amj −→ A interpreting f̄ j of σ and elements cAk of A interpreting

each constant symbol c̄k of σ. As in Section 2.1, the n-tuple of a σ-structure A

is an element ā = (a1, ..., an) of An. For some relation Ri ∈ σ with arity ni and

some ni-tuple ā of A, say that Ri(ā) holds in A if and only if ā ∈ RAi .

Let σ be some first-order signature, and let A be a σ-structure. A σ-formula φ

is a finite string of symbols from σ. We say thatA satisfies a formula φ if for each

unquantified variable v1, ..., vn in φ there exists an assignment of values a1, ..., an

from A to these variables such that φ is true. If this happens, we write A |= φ. A

σ-sentence is a σ-formula in which there are no unquantified variables. We say

that a σ-structure A models a σ-sentence φ (or a set of σ-sentences Σ) if A |= φ.

A set Σ of σ-sentences is called a theory; a theory Σ is consistent if there exists a

model for Σ. For a σ-structureA, define the theory ofA to be the collection Th(A)

of σ-sentences modelled by A.

If a first-order signature σ has no other relations other than equality, we say

that σ is a functional signature and the corresponding σ-structure is an algebra. If

a signature σ has no function or constant symbols, we say that it is a relational

signature and a corresponding σ-structure is a relational structure. We will mainly

be concerned with relational structures throughout the thesis, so from now we

proceed with definitions involving relational structures only.

Example 2.3.1. Let σ consist of a single binary relation symbol E. Let Σ be a set
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consisting of the single σ-sentence

(∀x)(∀y)(¬E(x, x) ∧ (E(x, y)→ E(y, x)).

Any σ-structure Γ that models Σ is a simple, undirected graph (see Section 2.4).

LetA,B be two relational σ-structures. Say thatA is a substructure of B if and

only if A ⊆ B and for all Ri ∈ σ and for all ni-tuples x̄ ofA (where ni is the arity

of Ri), then x̄ ∈ RAi if and only if x̄ ∈ RBi . If this happens, we can also say that

B is an extension of A. The age of a structureM, denoted Age(M), is the class of

all finite substructures ofM.

2.3.2 Maps between structures

If f : A −→ B is a function and x̄ is an n-tuple ofA, we say that x̄f = (x1f, ..., xnf);

this is the componentwise action outlined in Subsection 2.2.3. If A,B are two

relational σ-structures, say that a function f : A −→ B is a homomorphism if when-

ever x̄ ∈ RAi , then x̄f ∈ RBi for all Ri ∈ σ. It is straightforward to show that if

we have two homomorphisms f : A → B and g : B → C, then their function

composition fg : A → C is also a homomorphism.

Say that f : A −→ B is a monomorphism if f is an injective homomorphism.

We say that f is an embedding if and only if f is a monomorphism and if x̄ /∈ RA

then x̄f /∈ RB. If f : A → B is a bijective embedding, then we say that it is an

isomorphism. It follows from these definitions that f : A → B is an isomorphism

if and only if the inverse function f−1 of f is a homomorphism from B to A.

The main focus of the thesis is collections of maps from some σ-structureM

to itself. A homomorphism α :M→M is called an endomorphism ofM. If α is

surjective, call it an epimorphism ofM; if it is injective, say α is a monomorphism of

M. An embedding ofM is a monomorphism ofM that preserves non-relations.

Say that α is a bimorphism of M if it is a bijective endomorphism. If α is an

endomorphism that is also an isomorphism, we say that α is an automorphism of

M. Finally, we say that a structureM is rigid if Aut(M) = {e}, the identity map.

It follows from facts about function and homomorphism compositions stated



Chapter 2: Preliminaries 35

above, for any type of endomorphism ofM outlined above, the set of all such

endomorphisms forms a monoid. Furthermore, the collections of all automor-

phisms of a structureM form a group. These are σ-structure analogues of var-

ious transformation monoids on a set as defined in Subsection 2.2.2. We detail

the six endomorphism monoids on a σ-structure below:

• End(M), the endomorphism monoid ofM;

• Epi(M), the monoid of all surjective endomorphisms of M (the epimor-

phism monoid ofM);

• Mon(M), the monoid of all injective endomorphisms ofM (the monomor-

phism monoid ofM);

• Bi(M), the monoid of all bijective endomorphisms ofM (the bimorphism

monoid ofM);

• Emb(M), the monoid of all embeddings of M (the embedding monoid of

M), and

• Aut(M), the automorphism group ofM.

It is well known (see [52]) that for any first-order structure M, Aut(M) is

the group of units of End(M). If Y(M) is any one of these monoids above,

then there is a natural, faithful action Y (M) on the domain M of M via the

inclusion map ι : Y (M) → End(M). We can define the componentwise action

(see Definition 2.2.11) of Y (M) onMn with respect to this natural action. Unless

stated otherwise, this is the action used throughout the thesis.

We now state two lemmas detailing scenarios where some of these monoids

coincide.

Lemma 2.3.2 ([53]). IfM is a finite first-order structure, then Epi(M) = Mon(M) =

Bi(M) = Emb(M) = Aut(M).

Lemma 2.3.3. IfM is a countably infinite setM , then Mon(M) = Emb(M) and Bi(M)

= Aut(M).
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Proof. As there are no relations in M , there are no non-relations either; so any

injective or bijective endomorphism must preserve non-relations of M .

We can also consider homomorphisms, monomorphisms and isomorphisms

between substructures of a σ-structureM; these sets form partial map monoids

on a σ-structureM with composition rules similar to the partial map monoids

in Subsection 2.2.2. We detail the three partial map monoids on a σ-structureM

below:

• Part(M), the partial map monoid of all homomorphisms between sub-

structures ofM (the partial endomorphism monoid ofM);

• Inj(M), the partial map monoid of all monomorphisms between substruc-

tures ofM (the partial monomorphism monoid ofM), and

• Inv(M), the partial map monoid of all isomorphisms between substruc-

tures ofM (the symmetric inverse monoid ofM).

As is the case for the six endomorphism monoids of M, each of the three

partial map monoids above has a natural partial monoid action on the structure

M. In the case of Part(M), this partial action is given by the inclusion map ι :

Part(M) → Part(M). In the case where I(M) ∈ {Inv(M), Inj(M)}, this partial

inverse action is given by the inclusion map ε : I(M) → Inv(M). As before, we

can extend these to the componentwise partial action of Part(M) on Mn with

respect to these natural actions. We use this action of partial map monoids of a

first-order structureM onM throughout the thesis, unless otherwise stated.

We can present an analogue of Lemma 2.3.3 for partial map monoids:

Lemma 2.3.4. IfM is a set M , then Inj(M) = Inv(M).

Proof. As there are no relations in M , there are no non-relations either; so any

injective partial map must preserve non-relations of M .

Remark. Note that there is no analogue of Lemma 2.3.2 for partial map monoids;

Inj(M) may not be the same as Inv(M) for some finite structureM.
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There is a natural containment order on the nine transformation monoids

listed above; for instance, every epimorphism of M is also a partial endomor-

phism ofM, so Epi(M) ⊆ Part(M). A diagram illustrating the containment of

all nine monoids listed in this section (for a σ-structureM) is given in Figure 2.4.

Part(M)

Inj(M)End(M)

Inv(M)Epi(M) Mon(M)

Bi(M) Emb(M)

Aut(M)

Figure 2.4: Some self-map monoids of a first-order structureM

2.3.3 Automorphism groups, ℵ0-categoricity and homogeneity

As ‘structure is exactly what is preserved by automorphisms’ [37], studying the

automorphism group of a first-order structureM can tell us a great deal about

the structureM itself. Furthermore, automorphism groups of first-order struc-

tures are interesting examples of (infinite) permutation groups; the first result

given here characterises the closed subgroups of Sym(N) under the pointwise

convergence topology outlined in Subsection 2.2.4.

Theorem 2.3.5 ([72], see [9]). Let H be a subgroup of the infinite symmetric group

Sym(N). Then H is closed under the pointwise convergence topology if and only if H is

the automorphism group of some countably infinite first-order structureM.

We can also say something about the cardinalities of automorphism groups

of first-order structures.
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Theorem 2.3.6 (folklore, [9]). LetM be a first-order structure. Then either |Aut(M)| ≤

ℵ0 or |Aut(M)| = 2ℵ0 , the first alternative holding if and only if the stabilizer of some

n-tuple ofM is the identity element.

Let Σ be a theory of σ-sentences. Say that Σ is ℵ0-categorical if there exists

a unique countable structure M that models Σ up to isomorphism. From this

point, we say that a structure M is ℵ0-categorical if Th(M) is ℵ0-categorical.

This strong condition on the theory of a first-order structureM is equivalent to a

strong property of its automorphism group Aut(M); this is the Ryll-Nardzewski

theorem [37].

Theorem 2.3.7 (Engeler, Ryll-Nardzewski, Svenonius, see [37]). LetM be a count-

ably infinite first-order structure. ThenM is ℵ0-categorical if and only if Aut(M) has

finitely many orbits on Mn for all n ∈ N.

In this case, we say that Aut(M) is an oligomorphic permutation group. This

equivalence indicates that we can study ℵ0-categorical structures by studying

oligomorphic permutation groups. Finding ℵ0-categorical structures and hence

oligomorphic permutation groups (or vice versa) is a central topic in model the-

ory [30]. This task is made considerably easier by the connection between ℵ0-

categoricity and the model-theoretic notion of homogeneity, which we describe

here.

Definition 2.3.8. LetM be a relational structure. Say thatM is homogeneous if

every isomorphism between finite substructures of M extends to an automor-

phism ofM.

Remark. This definition is referred to as ultrahomogeneity in some sources.

Say that a theory Σ has quantifier elimination if every first-order sentence in Σ

is logically equivalent to a first-order sentence without quantifiers.

Proposition 2.3.9 (see [37]). (1) An ℵ0-categorical structure M is homogeneous if

and only if Th(M) has quantifier elimination.
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(2) If σ is a finite signature and M is a homogeneous σ-structure, then M is ℵ0-

categorical.

So we can find oligomorphic permutation groups by finding homogeneous

structures. This is made easier by the following famous results of Fraı̈ssé ([32],

see [3]). Recall that the age of a first-order structure M is the class of all finite

substructures ofM. The following is known as the extension property (EP):

(EP) For all A,B ∈ Age(M) with A ⊆ B and isomorphism f : A −→

M, there exists a isomorphism g : B −→M extending f .

The next theorem demonstrates that the (EP) is a necessary and sufficient

condition for homogeneity.

Proposition 2.3.10 (Fraı̈ssé [32], see [3]). A countable structureM is homogeneous

if and only ifM has the EP.

Sketch of proof. The forward direction is shown by extending a partial isomor-

phism of M and restricting. Using countability of M, the converse direction

follows after a standard back-and-forth argument.

We now describe Fraı̈ssé’s main result. For a class C of finite first-order struc-

tures, Fraı̈ssé described four properties that C can have to enable the construc-

tion of a countably infinite homogeneous structure M with age C . Moreover,

any two constructions made in this fashion are isomorphic. The four conditions

are:

(1) C is closed under isomorphism.

(2) C is closed under substructures (the hereditary property).

(3) C has the joint embedding property (JEP):

(JEP) For all A,B ∈ C , there exists a structure D ∈ C such that

A,B jointly embed in D.
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(4) C has the amalgamation property (AP):

(AP) For all A,B1, B2 ∈ C and embeddings f1 : A → B1 and

f2 : A→ B2, there exists D ∈ C and embeddings g1 : B1 → D and

g2 : B2 → D such that f1g1 = f2g2 (see Figure 2.5).

D

B2B1

A

g2g1

f2f1

Figure 2.5: The amalgamation property (AP)

If C satisfies properties (1)-(4) above, we say that C is an amalgamation class.

Theorem 2.3.11 (Fraı̈ssé’s Theorem; [32], see [3]). (1) IfM is a countable homoge-

neous structure, then Age(M) is an amalgamation class.

(2) (i) Let C be an amalgamation class. Then there exists a countable structureM

with age C such thatM is homogeneous.

(ii) Any two homogeneous structuresM andN with the same age are isomorphic.

Sketch of proof. (1) It suffices to show the JEP and AP for Age(M). The union of

two finite substructures ofM is again a substructure ofM, showing the JEP.

To show that Age(M) has the AP, extend a finite partial isomorphism ofM

and restrict accordingly.

(2) (i) The proof is an inductive construction using the JEP to guarantee that

M exists and the AP to guarantee homogeneity. After the construc-

tion is complete, show thatM has the EP; thenM is homogeneous by

Proposition 2.3.10.

(ii) This is via a back-and-forth argument, constructing the isomorphism

betweenM and N .
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Remark. Generalising these results on the model-theoretic connection between

automorphism groups of first-order structures and infinite permutation groups

to the case of endomorphism monoids and infinite transformation monoids is

the focus of Chapters 6 and 7. A more rigorous proof of Fraı̈ssé’s theorem can

be found in Subsection 7.2.2.

If M is a homogeneous structure with age C , we say that M is the Fraı̈ssé

limit of the class of finite structures C . To demonstrate the power of Fraı̈ssé’s

theorem, we give two examples of homogeneous partial orders.

Example 2.3.12. Let C be the class of all finite linear orders. Then C is an amal-

gamation class and so there exists a countable homogeneous structureM with

age C . The Fraı̈ssé limit of C isM = (Q, <), the countable dense linear order

without endpoints. Fraı̈ssé’s theorem (2) (ii) asserts that (Q, <) is unique up to

isomorphism; re-proving a famous theorem of Cantor (see [3]).

Example 2.3.13. Let C be the class of all finite partial orders. Then C is an amal-

gamation class and so there exists a countable homogeneous structureM with

age C . The Fraı̈ssé limitM = P of C is known as the generic partial order. [54].

In fact, these examples provide two of the only five cases in which a partially

ordered set is homogeneous.

Theorem 2.3.14 (Schmerl [76], see [54]). Let P be a homogeneous, countably infinite

partially ordered set. Then P is isomorphic to one of the following:

• (Q, <), the countable dense linear order without endpoints;

• The infinite antichain Aω;

• The disjoint union Bn of n many copies of (Q, <), where n ≥ 2, with (a, p) ≤

(b, q) if and only if a = b and p < q;

• The disjoint union Cn of n many copies of (Q, <), where n ≥ 2, with (a, p) ≤

(b, q) if and only if p < q, or;

• The generic poset P .
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Classification results are held in high esteem by model theorists; this is be-

cause of their value in immediate identification of properties of a given struc-

ture. For instance, if Q is a countable partial order not isomorphic to some

P mentioned in Theorem 2.3.14, it is not homogeneous. We will mention two

more celebrated classification results for graphs ([49], see Theorem 2.4.10) and

digraphs ([15], see Theorem 2.4.11) in the next section.

2.4 Graph and digraph theory

The following are standard definitions from graph theory; a good source for

these is [21].

If X is a set, define the set [X]2 = {{x, y} : x 6= y ∈ X}. A graph Γ =

(V Γ, EΓ) is a set of vertices V Γ together with a set of edges EΓ ⊆ [V Γ]2. If v, w ∈

V Γ, we say that v and w are adjacent if {v, w} ∈ EΓ. Sometimes, we write v ∼ w

to indicate when two vertices v, w are adjacent, and write v � w if they are not.

Define the neighbourhood of v in Γ to be the set NΓ(v) = {w ∈ V Γ : {v, w} ∈ EΓ};

the extended neighbourhood of v ∈ Γ is the set NΓ(v) ∪ {v}. Say that the degree of a

vertex v is dΓ(v) = |NΓ(v)|; say that a graph is regular (n-regular) if every vertex

has the same degree (for some n ∈ N). Often, when we are working in a single

graph Γ, we write N(v) and d(v) for the neighbourhood and degree of a vertex

v ∈ V Γ respectively. A graph Γ is finite if V Γ is a finite set, and infinite if V Γ is

infinite. A graph Γ is locally finite if for all v ∈ V Γ then dΓ(v) = n for some n ∈ N;

that is, there are no vertices of infinite degree. The handshake lemma states that

the sum of all degrees of vertices in a finite graph Γ is twice the number of total

edges of Γ; a proof of this can be found in [21].

Let {v0, v1, ..., vk} = V ⊆ V Γ, and suppose that E = {{vi, vi+1} : 0 ≤ i ≤

k − 1} ⊆ EΓ; then the graph P = (V,E) is a path from v0 to vk. The length of the

path is defined to be |E|. A graph Γ is connected if for any two vertices v, w ∈ V Γ

there exists some path P from v to w. If a graph Γ is not connected, we say it is

disconnected. For a subset U of V Γ and a vertex v ∈ V Γ, say that v is connected

to U if for all u ∈ U , then {v, u} in EΓ. Conversely, v is independent of U if the
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opposite occurs; that is, for all u ∈ U then {v, u} /∈ EΓ.

Let Γ,∆ be two graphs. If V Γ∩V∆ = ∅, then the disjoint union of Γ and ∆ is

the graph on the vertex set Γ ∪∆ together with edge set EΓ ∪ E∆. We say that

• ∆ is a subgraph of Γ if V∆ ⊆ V Γ and E∆ ⊆ EΓ;

• ∆ is a spanning subgraph of G if V∆ = V Γ and E∆ ⊆ EΓ, and

• ∆ is an induced subgraph of Γ if V∆ ⊆ V Γ and E∆ = [V∆]2 ∩ EΓ.

In practice, the idea of an induced subgraph is more useful than a subgraph;

this is because an induced subgraph is the correct notion of ‘substructure’ for

graphs (see Section 2.3). From now on, any reference to ‘subgraph’ should be

taken to mean ‘induced subgraph’; except in the case of the phrase ‘spanning

subgraph’. For a graph Γ and a subset U of V Γ, we write Γ(U) to be the induced

subgraph on the vertex set U . As graphs are relational structures, every defini-

tion in Subsection 2.3.2 applies to graphs; for instance, a function φ : Γ → ∆ is

a homomorphism between two graphs if φ : V Γ → V∆ is a function and for all

{v, w} ∈ EΓ, then {vφ,wφ} ∈ E∆.

For a graph Γ, define the complement of Γ to be the graph Γ̄ with vertex set

V Γ and edge setEΓ̄ = [V Γ]2rEΓ. If n ∈ N∪{ℵ0}, define the complete graph on n

vertices to the the graph Kn on n = |V Kn| vertices with edge set [V Kn]2; that is,

every pair of vertices {v, w} where v 6= w ∈ V Kn is an edge. The complement

K̄n of Kn is known as the null or empty graph on n vertices; it is a graph on n

vertices but with no edges. We say that a subset U of a graph Γ is a clique if

Γ(U) ∼= K |U |; or that it is a independent set if Γ(U) ∼= K̄ |U |. Say that a clique (or

independent set) U of Γ is a maximum clique (independent set) if there does not

exist a subset W of Γ such that W is a clique or independent set with |W | > |U |.

As with any other first-order structure, graphs have automorphism groups

and these automorphism groups are useful in determining the properties of a

graph. For instance, an automorphism group acts transitively on the set of ver-

tices only if the graph is regular [50]. We state a useful result about automor-

phism groups of graphs.
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Theorem 2.4.1 (Frucht [33]). LetG be a finite group. Then there exist countably many

3-regular graphs Γ such that Aut(Γ) ∼= G.

2.4.1 The random graph

We now define an object of central importance to the thesis.

Example 2.4.2. Let C be the class of all finite undirected graphs. Then C is

closed under isomorphisms and substructures, and satisfies the JEP and AP, and

as there are countably many finite graphs, it has countably many isomorphism

types. Suppose that A,B ∈ C . It is easy to see that C has the JEP; the disjoint

union A ∪ B jointly embeds A and B. Now suppose A,B1, B2 ∈ C , and that

both B1 and B2 contain A as an induced subgraph. Define the graph C = (B1 r

A) ∪ B2, with edge set given by u ∼ v if and only if u ∼ v in B1 or u ∼ v in B2.

Note that there are no edges between B1rA and B2rA. Then C satisfies all the

requirements of the amalgamation property and so C is an amalgamation class.

Define R, the Fraı̈ssé limit of C , to be the countable universal homogeneous

graph; otherwise known as the random graph.

Remark. The unique countable homogeneous graphR is called the random graph

due to a famous theorem of Erdős and Renyı́ [29]; this states that a random graph

on a countably infinite set, formed by drawing in edges on pairs of vertices with

some probability 0 < p < 1, is almost surely isomorphic to R.

The random graph, due to its universality and the high amount of symmetry

it possesses, has a range of interesting properties. We detail a selection of these

here that will be useful through the thesis. The source for these, and for a lot

more on the random graph, is [11]. First, we define Alice’s restaurant property for

a graph Γ.

(ARP) For any finite, disjoint subsets U, V ⊆ V Γ, there exists x ∈ V Γ

such that x ∼ u for all u ∈ U and x � v for all v ∈ V . (See Figure 2.6

for a pictorial representation.)
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Γ

U V

x

Figure 2.6: Alice’s restaurant property in a countable graph Γ

This property turns out to be characteristic to the random graph.

Proposition 2.4.3 (Fact 2 [11]). Let Γ be a countable graph with ARP. Then G ∼=

R.

The fact that R has the ARP can be used to prove the following useful prop-

erties of the random graph.

Theorem 2.4.4 (Proposition 2, [11]). R has the property that you can add in any finite

set of edges, or remove any finite set of vertices, and the resulting graph is isomorphic to

R.

Theorem 2.4.5 (Proposition 3, [11]). Let X1 ∪ ... ∪ Xn be a partition of V R. Then

the induced subgraph on at least one of these Xi is isomorphic to R.

Theorem 2.4.6 (Proposition 6, [11]). R contains every countable graph as an induced

subgraph.

Finally, the following is a consequence of Theorem 2.3.6.

Theorem 2.4.7 (Proposition 13, [11]). |Aut(R)| = 2ℵ0 .

2.4.2 Digraphs and oriented graphs

A digraph D = (V D,AD) is a set of vertices V D together with a set AD ⊆ V D2

of ordered pairs, called arcs of the digraph. For two vertices x, y of D, we write
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x→ y if (x, y) ∈ AD, and x‖y if neither (x, y) nor (y, x) are in AD. Say that there

is a 2-cycle between x and y if and only if x→ y and y → x.

Most of the time, the digraphs in the thesis will be loopless; a digraph D is

loopless if for all x ∈ V D then (x, x) /∈ AD. We say that a loopless digraph D is

an oriented graph if for every pair of vertices x, y ∈ V D then at most one of (x, y)

and (y, x) are in AD; equivalently, a digraph D is an oriented graph if and only

if it does not contain any 2-cycles. This class of digraphs is so named as you can

‘orient’ a graph Γ by adding directions to each edge of Γ; see Figure 2.7 below.

Figure 2.7: A graph Γ together with an orientation G of Γ

Say that a digraph D is a tournament if for every pair of vertices x, y ∈ V D

then exactly one of (x, y) or (y, x) is in AD; equivalently, this is an orientation of

a complete graph Kn for some n ∈ N ∪ {ℵ0} (see Figure 2.8).

Figure 2.8: The complete graph K4, together with an orientation T , a tourna-
ment on 4 vertices

Let D be a digraph, let X ⊆ V D and suppose that y ∈ V D. We define the

following sets:

• X→(y) = {x ∈ X : x→ y}, the in-neighbourhood of y;

• X←(y) = {x ∈ X : y → x}, the out-neighbourhood of y;

• X�(y) = {x ∈ X : y → x and x→ y};

• X‖(y) = {x ∈ X : x‖y}.

IfX = V D, then these sets provide the digraph analogue of the neighbourhood

of a vertex. If X 6= V D and y ∈ V DrX , then the union of all these sets is equal
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toX . IfD is an digraph, then the indegree of a vertex y ∈ V D is given by |X→(y)∪

X�(y)|. Analogously, the outdegree of y ∈ V D is given by |X←(y) ∪X�(y)|.

We conclude this section with two examples of homogeneous digraphs. Note

that these are both natural analogues of the random graph for digraphs (see

Example 2.4.2) but they differ from each other slightly depending on whether

digraphs are considered to have 2-cycles or not.

Example 2.4.8. Let C be the class containing all finite oriented graphs. Then C

is closed under isomorphisms and substructures; as there are countably many

finite oriented graphs, it has countably many isomorphism types. Using a sim-

ilar argument to Example 2.4.2, we can show that C has the JEP and the AP;

therefore, C is an amalgamation class. Define D, the Fraı̈ssé limit of C , to be

the countable, universal homogeneous oriented graph, which we call the generic

oriented graph. Note that in most sources [15, 1] this structure D is known as the

generic digraph.

Using a similar argument to Proposition 2.4.3, it can be shown (see [1]) that

D has a characteristic extension property which we call the oriented Alice’s restau-

rant property (OARP). This is defined by:

(OARP) For any finite and pairwise disjoint sets of vertices U, V,W

of D, there exists a vertex x of D such that there is an arc from x to

every element of U , an arc to x from every element of V , and x is

independent of every vertex in W . (See Figure 2.9 for a diagram of

an example.)

Example 2.4.9. Let C be the class containing all finite digraphs (which here,

are permitted to have 2-cycles). Then C is an amalgamation class, for similar

reasons to Example 2.4.8. Define D∗, the Fraı̈ssé limit of C , to be the countable,

universal homogeneous digraph; which we call the generic digraph.

Again, using a similar argument to Proposition 2.4.3, it can be shown (see

[62]) that D has a characteristic extension property which we call the directed

Alice’s restaurant property (DARP). This is defined by:
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D

W

U V

x

Figure 2.9: Oriented Alice’s restaurant property in D

(DARP) For any finite and pairwise disjoint sets of verticesU, V,W,X

of D∗, there exists a vertex z of D∗ such that: there is an arc from z

to every element of U , an arc to z from every element of V , a 2-cycle

between z and every element of W , and z is independent of every

vertex in X . (See Figure 2.10 for a diagram of an example.)

D∗
W

U V

X

z

Figure 2.10: Directed Alice’s restaurant property in D∗
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2.4.3 Homogeneous graphs and digraphs

To conclude this section, we reproduce the seminal classifications of countably

infinite homogeneous graphs (Lachlan and Woodrow [49]) and homogeneous

digraphs (Cherlin, [15]). Examples of structures appearing in these catalogues

that are used in the thesis have been defined previously (such as the random

graph R, Example 2.4.2), or will be defined in the appropriate result.

Theorem 2.4.10 (Lachlan, Woodrow [49]). Let Γ be a countably infinite graph. Then

Γ is a homogeneous graph if and only if it is isomorphic to one of the following:

• The countably infinite disjoint union of complete graphs Kn where n is finite, or

its complement;

• Any countable disjoint union of infinite complete graphs Kℵ0 , or its complement;

• The generic graph omitting Kn where n ≥ 3, or its complement; or,

• The random graph R.

We present Cherlin’s classification of homogeneous digraphs in the style of

Macpherson [54]. Note here that in this classification, a digraph is not considered

to have 2-cycles.

Theorem 2.4.11 (Cherlin, [15]). Let D be a countably infinite digraph. Then D is a

homogeneous digraph if and only if it is isomorphic to one of the following:

• a homogeneous poset (see Theorem 2.3.14) when viewed as a digraph.

• a homogeneous tournament: the countable dense linear order without endpoints

(Q, <), the local order S(2), the generic tournament T .

• a Henson digraph: a digraph MT as the Fraı̈ssé limit of the class CT of digraphs

that do not embed any member of a set of pairwise non-embeddable finite tourna-

ments T (where |T | ≥ 3). Note that this definition includes omitting an empty

set of tournaments; this is the generic digraph D.

• a In-free digraph (n ≥ 3): the Fraı̈ssé limit of the class Cn of digraphs that do not

embed the independent set In.
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• a member of a countable collection of homogeneous digraphs with imprimitive

automorphism groups: including disjoint unions of homogeneous tournaments,

or random orientations of homogeneous n-partite graphs.

• an exceptional case: either the myopic local order S(3), or the homogeneous di-

graph P(3).



3

Cofinality, strong cofinality and the

Bergman property

As mentioned in the introduction, the automorphism group Aut(M) of a first-

order structureM provides many interesting examples of infinite permutation

groups. More recent developments in infinite permutation group theory ask

questions about the efficiency of generating these groups. This research stems

from an influential paper of Bergman [2] in which it was proved that for any

generating setU of Sym(N), there is some n ∈ N such that Sym(N) = U∪U2∪...∪

Un. This strong condition was subsequently generalised; an infinitely generated

group G has the Bergman property if for any generating set U of G, there exists

n ∈ N such that G = U ∪U2 ∪ ...∪Un. Droste and Holland [26] later described a

connection between the Bergman property and the cofinality of a group, a notion

previously studied by Sabbagh [74] and Macpherson and Neumann [55]. This

result utilised a new notion of strong cofinality. As some automorphism groups

of structures are examples of infinitely generated groups, cofinality and strong

cofinality results for some Aut(M) have been considered by many authors, often

from different perspectives [25, 18, 46].

There have also been extensive studies in the theory of generating infinite

semigroups. The rank of a semigroup S is defined to be the size of the smallest

generating set for S. Higgins, Howie and Ruškuc [36] defined the notion of a

relative rank of a semigroup S modulo some subset X of S; further results on rel-

ative ranks by the same authors (together with Mitchell) were presented in [35].

Soon after cofinality, strong cofinality and the Bergman property was defined
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for the case of groups, the analogous notions for semigroups were developed

by Maltcev, Mitchell and Ruškuc [59]. The connection made between these con-

cepts in [27] was also generalised; the statement of this theorem is reproduced

in Proposition 3.1.2. From here, and following work of Mesyan [63], they con-

sidered cofinality and generation results for examples of classical semigroups;

an example of such a result is:

Theorem 3.0.1 (Theorem 4.1, [59]). If X is an infinite set, then End(X), Inv(X),

Part(X) all have uncountable strong cofinality and hence the Bergman property.

This was proved by showing that the semigroups in question are strongly

distorted; a property which (with some extra work) implies uncountable strong

cofinality [59, Lemma 2.4].

Furthermore, related to these properties is the notion of a Sierpiński rank of

a semigroup S; this is the least natural number n (if it exists) in which every

countable sequence of elements of S is contained in an n-generated semigroup

[64]. It was in the process of investigating this property that Mitchell and Péresse

[64] determined that both the monomorphism and epimorphism monoids on a

countable set did not have the Bergman property. In the same paper, Mitchell

and Péresse [64] noted that the Sierpiński rank of a strongly distorted semigroup

is finite.

As with groups, examples of infinitely generated semigroups arise from first-

order structures M. Work of Dolinka [23, Theorem 2.2] extended the End(X)

part of Theorem 3.0.1 to first-order structures, and determined those monoids

that satisfied the conditions of Theorem 2.2 [23] had a Sierpiński rank of at most

3. By utilising techniques from category theory and the established literature

on homogeneous structures, as well as using homomorphism-homogeneity (a

notion of [14] and [60], see Chapter 6 and Chapter 7), he was able to determine

a selection of Fraı̈ssé limits whose endomorphism monoids had uncountable

strong cofinality.

This brief chapter contains a summary of useful results concerning cofinal-

ity, strong cofinality and the Bergman property in Section 3.1, with an initial case
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study of the monomorphisms of a countable set in Section 3.2. Whilst these sec-

tions contain basic lemmas and restatements of previously known results from

the literature (in particular [59] and [64]), these are included to aid the under-

standing of the work on intermediate monoids of a σ-structureM in Chapter 4.

This is because Emb(M) and Mon(M) can be viewed as subsemigroups of the

monomorphism monoid Mon(M) on the domain M ofM; properties described

in Section 3.2 will guide the investigations into Emb(M) and Mon(M) in Sec-

tion 4.2 and Section 4.3 respectively.

3.1 Definitions and general results

The following definitions can be found in [59]. We say that the cofinality of an

infinitely generated semigroup S is the least cardinal λ such that there exists

a chain of proper subsemigroups (Ui)i<λ where
⋃
i<λ Ui = S. We denote the

cofinality of S by cf(S), and we call the chain (Ui)i<λ a cofinal chain for S. The

strong cofinality of an infinitely generated semigroup S is the least cardinal κ

such that there exists a chain of proper subsets (Vi)i<κ such that for all i < κ

there exists a j < κ such that ViVi ⊆ Vj and S =
⋃
i<κ Vi. We denote the strong

cofinality of S by scf(S) and we call (Vi)i<κ a strong cofinal chain. It is clear that

cf(S) ≥ scf(S).

Definition 3.1.1. Let S be a non-finitely generated semigroup. Say that S is

semigroup Cayley bounded with respect to a set U that generates S as a semigroup

if S = U ∪U2 ∪ ...∪Un for some n ∈ N. We say that S has the semigroup Bergman

property if it is Cayley bounded for every generating set U of S.

Remarks. (i) As we do not consider the Bergman property for groups in this

thesis, we refer to the semigroup Bergman property as just the Bergman

property.

(ii) To show that S does not have the Bergman property, it is enough to find a

‘bad’ generating set U of S; that is, showing that there exists a generating

set U of S that is not Cayley bounded.
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As mentioned in the introduction, there is a connection between cofinality,

strong cofinality and the Bergman property for a semigroup. This was first

proved for the group case in [26]; this version is a result of [59].

Proposition 3.1.2 (Proposition 2.2, [59]). Let S be a non-finitely generated semi-

group. Then:

(i) scf(S) > ℵ0 if and only if S has the Bergman property and cf(S) > ℵ0;

(ii) If scf(S) > ℵ0, then scf(S) = cf(S).

For an non-finitely generated semigroup S, this theorem provides four pos-

sible cases regarding the cofinality of S and whether or not S has the Bergman

property:

(a) cf(S) ≥ scf(S) > ℵ0 and S has the Bergman property;

(b) cf(S) > scf(S) = ℵ0 and S does not have the Bergman property;

(c) cf(S) = scf(S) = ℵ0 and S has the Bergman property;

(d) cf(S) = scf(S) = ℵ0 and S does not have the Bergman property.

Examples of groups and semigroups that satisfy each of the above four cases

can be found in the literature; we summarise some below. For example, any

group that has uncountable strong cofinality also has the semigroup Bergman

property by [59, Corollary 2.5], and so satisfies (a); groups like Sym(N) [2], the

automorphism group of the countable dense linear order Aut(Q, <), and the

automorphism group of the random graph Aut(R) (both [26]). Semigroups that

satisfy (a) include the full transformation monoid End(N), the symmetric inverse

monoid on an infinite set Inv(N) (both [59]) and the endomorphism monoid of

the random graph End(R) [69]. A semigroup that satisfies (b) is the bounded

symmetric group onQ (see [25]); cofinality results are proved in [59], using results

from [25]. Examples of semigroups satisfying (c) include the infinitely generated

left/right zero semigroups and the infinitely generated rectangular band [59].

Additionally, there is also a group with countable cofinality and the Bergman
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property; this is a construction of Khelif given in [47]. Finally, groups and semi-

groups that satisfy (d) include free groups and semigroups of infinite rank, and

the Baer-Levi semigroup on the natural numbers (given by all injective maps that

leave out infinitely many elements from the image) [59].

Our first two cofinality results are basic and extend some ideas of [59].

Lemma 3.1.3. Let S be an infinitely generated countable semigroup. Then cf(S) = ℵ0.

Proof. Suppose that U = {u1, u2, ...} is a generating set for S; as S is countable,

so is U . Now consider the chain of subsemigroups V1 ⊆ V2 ⊆ V3 ⊆ ... where Vi

is the subsemigroup generated by 〈u1, u2, ..., ui〉. As S is not finitely generated

then Vi is a proper subsemigroup of S for all i ∈ N. It follows that
⋃
i∈N Vi is a

cofinal chain for S.

Lemma 3.1.4. Let S be an infinitely generated semigroup. Suppose that T is an in-

finitely generated subsemigroup of S and I is an ideal of S such that S = T t I . Then

cf(S) ≤ cf(T ).

Proof. Let
⋃
i<κ Ui = T be a cofinal chain for T . Then

⋃
i<κ(Ui t I) = S and so κ

is an upper bound for the cofinality of S.

Remark. With T ≤ S as in Lemma 3.1.4, we can note from this that if T has

countable cofinality, then so does S.

We can link the idea of cofinality of an infinite semigroup to the relative rank

of a semigroup; this is a definition of Higgins, Howie and Ruškuc [36].

Definition 3.1.5 ([36]). Suppose that S is a semigroup and A is a subset of S.

The relative rank rank(S : A) of S modulo A is the minimum cardinality of a set B

such that 〈A ∪B〉 = S.

For example, rank(End(N) : Sym(N)) = 2 [36], rank(Bin(N) : Mon(N)) = 1

and rank(Bin(N) : Epi(N)) = 2, where Bin(N) is the binary relation monoid on N

(both [35]). We can use the concept of relative rank of a semigroup S modulo a

subsemigroup T to connect the cofinality of T and S. The following is a special

case of [68, Proposition 6.1].
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Proposition 3.1.6 ([68]). Let T be a subsemigroup of an infinitely generated semigroup

S. If cf(T ) > ℵ0 and rank(T : S) is finite then cf(S) > ℵ0.

Example 3.1.7. As rank(End(N) : Sym(N)) = 2 [36], this result can be used to

show that End(N) has uncountable cofinality; re-proving a result of [63].

We now consider a different notion of rank on an infinitely generated semi-

group.

Definition 3.1.8 ([64]). Let S be an infinitely generated semigroup. The Sierpiński

rank of S is defined to be the smallest natural number n (if it exists) such that

any countable sequence (sn)n∈N of elements in S is contained in an n-generated

subsemigroup of S.

If there exists such an n, then say that S has finite Sierpiński rank; if it does

not exist, then S has infinite Sierpiński rank. This property is so named due

to a result of Sierpiński [77] in which he showed, for a countable set X , that

any countable sequence of elements of End(X) is contained in a 4-generated

subsemigroup of End(X); he later reduced this to a 2-generated subsemigroup

(for more on the history on this, see [64]).

For each integer m ≥ 1, there exists a semigroup with Sierpiński rank m: the

infinite monogenic semigroup has rank 1 [64], the symmetric inverse semigroup

on a countable set Inv(X) has rank 2 [42], the semigroup of increasing functions

f : [0, 1] → [0, 1] has rank 3 [65], and Mon(ℵn) has rank n + 4 for all n ∈ N0

[64]. Examples of semigroups with infinite Sierpiński rank include any infinitely

generated countable semigroup, the Baer-Levi semigroup on N and Mon(ℵω)

and Epi(ℵω) (all [64]).

Definition 3.1.9 ([59]). A semigroup S is strongly distorted if there exists a se-

quence (an)n∈N of natural numbers and NS ∈ N such that for all sequences

(sn)n∈N of elements from S there exist t1, t2, ..., tNS
∈ S such that each sn can be

written as a product of length at most an in the elements t1, t2, ..., tNS
.

Figure 3.1 helps to illustrate this definition. We say that
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Element of (sn)n∈N s1 s2 s3 ... sn ...

Length of product of
ti’s equal to sn

a1 a2 a3 ... an ...

Figure 3.1: Strong distortion

If S is strongly distorted then S has finite Sierpiński rank [64]. However,

the converse is not true; it may take arbitrarily long products of elements from

t1, t2, ..., tNS
to generate every element in the sequence (sn)n∈N. The next lemma

of [59] details the relationship between strong distortion and uncountable strong

cofinality.

Lemma 3.1.10 (Lemma 2.4 [59]). If S is non-finitely generated and strongly distorted,

then scf(S) > ℵ0.

Showing that a semigroup S is strongly distorted is a common way to show

that S has uncountable strong cofinality (and hence the Bergman property by

Proposition 3.1.2). Examples of strongly distorted semigroups include all monoids

mentioned in Theorem 3.0.1 [59] and the endomorphism monoid of the random

graph End(R) [69]. By generalising the example of End(R), Dolinka [23] deter-

mined sufficient conditions for endomorphism monoids of first-order structures

to be strongly distorted. These conditions applied to several Fraı̈ssé limits, in-

cluding (amongst others) the generic poset P and any infinite-dimensional vec-

tor space over a finite field.

Finally in this section, we turn our attention to a result that implies countable

strong cofinality of a semigroup S. This important proposition shows that if S

contains a certain ideal structure, then we can form a countable strong cofinal

chain for S.

Proposition 3.1.11. Let S be an infinitely generated semigroup. Suppose that S has an

infinite descending chain of ideals S = I0 ⊇ I1 ⊇ I2 ⊇ ... and assume that J =
⋂
i∈N Ii

is non-empty. Let Li = IirIi+1 and suppose also that LiLj ⊆ (
⋃h
n=0 Ln)∪J for some

h ∈ N. Then scf(S) = ℵ0.
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Proof. For any a ∈ N, define Wa = (
⋃a
n=0 Ln) ∪ J . Note that Wa is a chain of

proper subsets of S. Suppose that x, y ∈Wa. Our aim is to show that there exists

some b ∈ N where xy ∈ Wb. As J is an ideal, if x or y is in J then xy ∈ J ; as

each Wa contains J , it follows that xy ∈ Wa. Now, suppose that x and y are in⋃a
n=0 Ln. So x ∈ Li and y ∈ Lj for some i, j < k; by our assumption, there exists

a m such that xy ∈ (
⋃m
n=0 Ln)∪ J = Wm. As a is finite we can choose b ∈ N such

that xy ∈ (
⋃b
n=0)Ln ∪ J = Wb for all x ∈ Li, y ∈ Lj and 0 ≤ i, j ≤ k. Therefore,

for each a ∈ N there exists b ∈ N such that WaWa ⊆Wb and so scf(S) = ℵ0.

3.2 Initial example: Mon(N)

This section provides a brief semigroup-theoretic overview of Mon(N), the monomor-

phism monoid of a countable set. This includes basic facts such as regularity

and Green’s relations, and also considers cofinality and strong cofinality results.

Whilst some of the results in this section are known, we include them to add in-

sight to the later work on intermediate monoids of σ-structures in Sections 4.1,

4.2 and 4.3.

3.2.1 Semigroup-theoretic properties

We begin by stating a simple property of a monomorphism of N.

Definition 3.2.1 ([40]). Let α be an element of Mon(N). We define the defect of α

to be the set D(α) = Nrim α.

Our first, fundamental lemma explains the defect of the composition of two

monomorphisms. This result is folklore, but is mentioned in [16, Vol 2. Lemma

8.1]. The proof is included for completeness, and to illustrate similar techniques

in later sections.

Lemma 3.2.2. Let α and β be elements of Mon(N). Then D(αβ) = D(β) ∪ D(α)β,

and this is a disjoint union.

Proof. We show containment both ways. Suppose n ∈ D(αβ); so by definition

n cannot be in im αβ. On one hand, assume that there exists an m such that



Chapter 3: Cofinality, strong cofinality and the Bergman property 59

mβ = n. If this occurs, then m cannot be in im α as then mβ = n ∈ im αβ, which

is a contradiction. So m must be in D(α) and therefore n ∈ D(α)β. On the other

hand, if there is no such m such that mβ = n, then n is not in im β by definition;

hence n ∈ D(β).

Conversely, assume that n ∈ D(β); so there is no m ∈ N such that mβ = n.

As im α ⊆ N there must be no m ∈ im α such that this occurs; hence, n /∈ im

αβ and therefore n ∈ D(αβ). Now suppose that n ∈ D(α)β. Then there exists

an m ∈ D(α) such that mβ = n. As m /∈ im α and β is injective, it follows that

mβ /∈ im αβ and so n ∈ D(αβ).

Finally, as D(β) consists of elements not in im β by definition and D(α)β

consists of elements in the image of β, the union D(β) ∪D(α)β is disjoint.

Remark. Note that α ∈ Mon(N) is a bijection (and so α ∈ Sym(N)) if and only if

D(α) = ∅.

The fact that Lemma 3.2.2 is a disjoint union leads us to two easy corollaries

of the result.

Corollary 3.2.3. (1) Mon(N) is not regular.

(2) The only idempotent element in Mon(N) is the identity element.

Proof. (1) It is enough to show that any regular element is an element of Sym(N).

Suppose α ∈ Mon(N) is a regular element; so there exists a β ∈ Mon(N) such

that αβα = α. By Lemma 3.2.2, it follows that

D(α) = D(αβα) = D(α) ∪D(βα)α.

As this is a disjoint union of sets, it follows that D(βα)α = ∅ and soD(βα) = ∅.

Using Lemma 3.2.2 again gives D(α) ∪ D(β)α = ∅, and so D(α) = ∅. This

implies that α ∈ Sym(N).

(2) As every idempotent e of a semigroup is regular, it follows from (1) that

e ∈ Sym(N). But the only idempotent element of a group is the identity element,

proving the claim.
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Remark. In Lemma 2.2.6, we showed that Mon(N) is a right cancellative monoid;

in fact, the only idempotent of a right cancellative monoid is the identity. Fur-

thermore, a regular semigroup with a single idempotent is a group [16]; so a

right cancellative monoid is regular if and only if it is a group.

If D(α) is finite, we denote the cardinality of D(α) by d(α) ∈ N. If D(α) is

infinite, then we write d(α) =∞. Our next result is a special case of [35, Lemma

4.4].

Corollary 3.2.4. Let α and β be elements of Mon(N).

(1) If D(α) and D(β) are finite, then d(αβ) = d(α) + d(β).

(2) d(αβ) =∞ if and only if d(α) or d(β) is infinite.

Proof. (1) Lemma 3.2.2 asserts that D(β) ∪ D(α)β is a disjoint union. As β is

an injection we see that |D(α)β| = |D(α)| = d(α) and therefore d(αβ) =

d(α) + d(β).

(2) The forward direction follows from part (1); the converse from Lemma 3.2.2.

The previous result proves our next lemma concerning ideals of Mon(N).

Lemma 3.2.5. For k ∈ N, define the set Ik = {β ∈ Mon(N) | d(β) ≥ k}. Then Ik is

an ideal of Mon(N). Furthermore, I∞ = {γ ∈ Mon(N) | d(α) =∞} is also an ideal of

Mon(N).

Proof. Follows from Lemma 3.2.2 and Corollary 3.2.4.

Remark. It is important to see that if n ≤ m, then Im ⊆ In; furthermore, I∞ ⊆ Ik

for all k ∈ N. So this lemma provides an infinite descending chain of ideals of

Mon(N), where
⋂
k∈N Ik = I∞ is non-empty. We will say more on this in the

subsection on generation results.

We now move on to characterising Green’s relations in Mon(N). The next

results provide a blueprint of the approach we will take in determining Green’s

relations for injective endomorphisms of σ-structures. Recall from Section 2.2

that the group of units U of Mon(N) is the symmetric group Sym(N).
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Lemma 3.2.6. Let α, β ∈Mon(N).

(1) Suppose that αL β. Then for all γ, δ ∈Mon(N) such that γα = β and δβ = α, the

maps γ and δ are bijections.

(2) Suppose thatD(α) andD(β) are finite, and that αJ β. For all γ, δ, ε, ζ ∈Mon(N)

such that γαδ = β and εβζ = α, the maps γ, δ, ε, ζ are bijections.

Proof. (1) Suppose that γ, δ ∈Mon(N) are as in the statement. Therefore, γδβ =

β and δγα = α. As Mon(N) is right-cancellative, it follows that γδ = 1 = δγ;

by definition, γ, δ ∈ Sym(N).

(2) Assume that γ, δ, ε, ζ ∈ Mon(N) are such that γαδ = β and εβζ = α. As the

defects of α and β are finite, we can apply Corollary 3.2.4 twice to see that

d(γαδ) = d(γ) + d(α) + d(δ) and d(εβζ) = d(ε) + d(β) + d(ζ). Putting these

equations together gives:

d(β) = d(γαδ)

= d(γ) + d(α) + d(δ)

= d(γ) + d(ε) + d(β) + d(ζ) + d(δ).

Here, d(γ) + d(ε) + d(ζ) + d(δ) = 0 and so d(γ) = d(δ) = d(ε) = d(ζ) = 0;

therefore they are all bijections.

Remark. As part (2) of this lemma covers the J case, and J ⊇ D ⊇ R in

general, a similar result holds for the D and R relations.

Example 3.2.7. Lemma 3.2.6 (1) does not hold for the R-relation in general. For

example, define α, β ∈ Mon(N) by nα = 2n and nβ = 4n for all n ∈ N. Further-

more, set

nγ =


2n if n even

n if n odd
and nδ =


n/2 if n ≡ 0 mod 4

2n− (2k + 1) if n = 4k + r, r = 1, 2, 3
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Here, γ, δ ∈ Mon(N) are such that αγ = β and βδ = α; so αRβ. But d(α) =

d(β) = d(γ) =∞, and d(δ) = 0.

Our next lemma is straightforward yet important; placing restrictions on the

number of cases needed to characterise Green’s relations in Mon(N).

Lemma 3.2.8. Suppose that α, β ∈Mon(N) = S such that D(α) is finite and D(β) is

infinite. Then α and β are not J -related.

Proof. By assumption, β is in the ideal I∞ (see Lemma 3.2.5) and so S1βS1 ⊆ I∞.

But α /∈ I∞, so α /∈ S1βS1 and therefore α and β are not J -related.

We now have enough to describe the Green’s relations in Mon(N).

Proposition 3.2.9. Let α and β be monomorphisms of the natural numbers. Then:

(1) αL β if and only if D(α) = D(β);

(2) αRβ if and only if d(α) = d(β), and hence L = H ;

(3) αJ β if and only if d(α) = d(β), and hence R = D = J .

Proof. (1) Suppose that αL β. By Lemma 3.2.6 (1) there exist bijections γ and δ

such that γα = β and δβ = α. So then D(β) = D(γα) = D(α) ∪ [D(γ)]α. But

as D(γ) is empty, it follows that D(β) = D(α).

Conversely, assume that D(α) = D(β). As this occurs, im α and im β are the

same sets. So for each m ∈ N there exists an n ∈ N such that mα = nβ in im

α = im β. As both α and β are injective, such an n is unique. Now, define

a map γ : N −→ N that sends n to m whenever nβ = mα. This is a bijection

with γα = β. We can use a similar argument to find a δ ∈ Sym(N) such that

δβ = α and so αL β.

(2) Suppose that αRβ; so there exist monomorphisms γ and δ such that αγ = β

and βδ = α. If D(α) is finite, then D(β) must also be finite by Lemma 3.2.8.

By Lemma 3.2.6 (2), γ and δ must both be bijections. Using Lemma 3.2.2

gives D(β) = D(αγ) = D(γ) ∪ [D(α)]γ. Since γ is a bijection, D(β) = D(α)γ
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and therefore d(α) = d(β). If d(α) is infinite, then by Lemma 3.2.8 d(β) must

also be infinite; and so d(α) = d(β) =∞.

On the other hand, assume that d(α) = d(β). Then as the defects are the

same size, we can define a bijection f that takes D(α) to D(β). We can then

extend f to a map γ that sends mα to mβ for all m ∈ N. As the defect and

image are disjoint sets, this forms a bijection γ : N → N such that αγ = β.

As γ is a bijection, there exists a δ such that δγ = 1 = γδ. Using this gives

βδ = αγδ = α and so αRβ.

Furthermore, if D(α) = D(β) then d(α) = d(β), but the converse is not

necessarily true. Therefore, L ⊆ R and so H = L ∩R = L .

(3) Suppose that αJ β. By definition, there exist monomorphisms γ, δ, ε and ζ

such that γαδ = β and εβζ = α. If D(α) is finite, then D(β) is also finite

by Lemma 3.2.8. In this case, γ, δ, ε and ζ are bijections by Lemma 3.2.6 (2).

Using Lemma 3.2.2 twice and the fact that D(γ) = D(δ) = ∅ gives:

D(β) = D(γαδ) = D(δ) ∪ [D(γα)]δ

= [D(α) ∪ [D(γ)]α]δ

= [D(α)]δ.

Hence d(α) = d(β) as in the R-related case. Finally, if d(α) =∞, then d(β) =

∞ by Lemma 3.2.8 and we are done. Conversely, assume that d(α) = d(β).

Then αRβ by part (2) of this result; and so αJ β by definition.

Finally, as R = J in Mon(N) and R ⊆ D ⊆ J in general (see Figure 2.3),

it follows that R = D in Mon(N).

Remark. Note that by the construction in the proof of Proposition 3.2.9 (3), if

two elements α, β of Mon(N) are J -related then we can find bijections γ, δ ∈

Sym(N) such that αγ = β and βδ = α.
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3.2.2 Generation results for Mon(N)

Most of this subsection comprises a restatement of previously known results

from [64]; as with the rest of this section, we include them here as guidance

for our approach to similar problems involving intermediate monoids of infi-

nite σ-structures. Our first result states the relative rank of Mon(N) modulo the

symmetric group Sym(N); this is due to Mitchell and Péresse [64].

Proposition 3.2.10 (Proposition 4.2 [64]). rank(Mon(N) : Sym(N)) = 2.

Following this, and the fact that cf(Sym(N)) > ℵ0, we have enough informa-

tion to determine the cofinality and strong cofinality of Mon(N). This corollary

also re-proves an observation concerning the Bergman property of Mon(N) [64,

Proposition 4.2].

Corollary 3.2.11. cf(Mon(N)) > ℵ0 and scf(Mon(N)) = ℵ0. Furthermore, Mon(N)

does not have the Bergman property.

Proof. By Proposition 3.2.10, rank(Mon(N) : Sym(N)) = 2; therefore cf(Mon(N)) =

cf(Sym(N)) > ℵ0 by Proposition 3.1.6. For the strong cofinality, the ideal struc-

ture outlined in Lemma 3.2.5 satisfies the conditions of Proposition 3.1.11 and so

scf(Mon(N)) = ℵ0. So Mon(N) does not have the Bergman property by Proposi-

tion 3.1.2.

Finally, we conclude this section with a result concerning subsemigroups of

Mon(N) intersecting with the ideal structure of Mon(N) given in Lemma 3.2.5,

simplifying the conditions of Proposition 3.1.11 in these cases.

Proposition 3.2.12. Let T be an infinitely generated subsemigroup of Mon(N) such

that for all i ∈ N there exists an α ∈ T such that d(α) = i, and there exists β ∈ T such

that d(β) =∞. Then scf(T ) = ℵ0.

Proof. Taking Ik as written in Lemma 3.2.5, define Jk = T ∩ Ik for all k ∈ N;

by Lemma 2.2.1, every such Jk is an ideal. Since I1 ⊆ I2 ⊆ ... is a chain of

ideals, and there exists an α in T such that d(α) = i for all i ∈ N, none of the

Jk are empty and hence J1 ⊆ J2 ⊆ ... forms a chain of ideals. Furthermore,
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Mk = Jk r Jk+1 is nonempty; by Corollary 3.2.4, MkMl ⊆
⋃k+l
i=0 Mi. Finally,

we notice that I∞ ∩ T is non-empty as d(β) = ∞. So T has the ideal structure

outlined in Proposition 3.1.11 and therefore scf(T ) = ℵ0.



4

Intermediate monoids of first-order

structures

LetM be a first-order structure. As we have seen in Subsection 2.2.2, there are

four other monoids contained between Aut(M) and End(M). These are:

• Bi(M), the monoid of all bijective endomorphisms ofM (the bimorphism

monoid ofM);

• Emb(M), the monoid of all embeddings of M (the embedding monoid of

M);

• Mon(M), the monoid of all injective endomorphisms ofM (the monomor-

phism monoid ofM), and

• Epi(M), the monoid of all surjective endomorphisms of M (the epimor-

phism monoid ofM).

We call these intermediate monoids ofM. Our aim for this chapter is to study

the semigroup theory of intermediate monoids of a relational first-order struc-

ture M that are made up of injective endomorphisms of M; that is, Bi(M),

Emb(M) and Mon(M). As bimorphisms and embeddings are special cases of

monomorphisms, it makes sense to study Bi(M) and Emb(M) prior to the more

general Mon(M). Following Lemma 2.3.2, it makes no sense to talk about inter-

mediate monoids of finite structures. To that end, we takeM to be a first-order

structure over a relational language σ = {Ri : i ∈ I} on a countably infinite

domain M throughout the chapter. Furthermore, if γ ∈Mon(M), we write Mγ
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for the image set of the function γ, andMγ for the structure induced byM on

Mγ.

The bimorphism monoid of a σ-structureM is of particular interest here. As

a collection of bijective endomorphisms ofM, it is embeddable in the symmetric

group on the domain M ofM and so Bi(M) is a group-embeddable monoid. The

study of group-embeddable monoids was a principal interest of early semigroup

theorists; a typical result of this study is Ore’s Theorem [16]. A main focus of

the thesis continues the study of group-embeddable monoids from the point

of view of bimorphism monoids of relational first-order structures. Section 4.1

begins this study by considering the general semigroup theory of bimorphism

monoids, as well as representing group-embeddable monoids as bimorphism

monoids of σ-structures.

We will also look at results concerning cofinality, strong cofinality and the

Bergman property for intermediate monoids of some σ-structureM. Here, there

is no guarantee that the intermediate monoids considered are distinct from each

other; for instance, in the pure set case, Mon(N) = Emb(N) and Bi(N) = Sym(N).

Following this observation, we consider the random graphR (see Example 2.4.2);

here, Mon(R) 6= Emb(R) and Bi(R) 6= Aut(R) as a monomorphism of R need

not be an embedding. Furthermore, there is a body of literature on R outlin-

ing useful properties that we can use; Subsection 2.4.1 contains some examples.

To that end, we investigate generation results for intermediate monoids of R in

Subsections 4.1.4, 4.2.3 and 4.3.2. To avoid only looking at graphs, we also con-

sider cofinality and generation results for intermediate monoids of the discrete

linear order (N,≤); but as Epi(N,≤) = Bi(N,≤) = Aut(N,≤) = {e}, we only

consider Mon(N,≤) = Emb(N,≤) in Subsection 4.2.2.

The structure of this chapter is as follows. Section 4.1 presents an introduc-

tion to the semigroup theory of bimorphism monoids of σ-structures, including

idempotents, ideals, and Green’s relations. We then use the results established

in Subsection 4.1.1 and Subsection 4.1.2 to investigate bimorphisms of graphs in

Subsection 4.1.4, including cofinality results for the bimorphism monoid of the

random graph R. Similarly, Section 4.2 gives an introduction to the semigroup
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theory of monoids of embeddings of σ-structures, including cofinality results for

embeddings of the discrete linear order (N,≤) (Subsection 4.2.2) and the random

graph R (Subsection 4.2.3). Finally, we give a brief overview of the semigroup

theory of monomorphism monoids of σ-structures in Section 4.3, concluding

with cofinality results for Mon(R) in Subsection 4.3.2.

4.1 Bimorphisms of σ-structures

The first intermediate monoid of a σ-structureMwe study in this chapter is the

bimorphism monoid Bi(M); this is the collection of all bijective endomorphisms

of M. Whereas automorphisms are bijective maps that preserve relations and

non-relations, bimorphisms only preserve relations; they may change a num-

ber of non-relations to relations. Aside from presaging a future discussion on

monomorphisms ofM, bimorphism monoids are an interesting topic to study

in their own right for their similarities to groups; this is further explored in later

chapters. This section provides an introduction to the topic from a semigroup-

theoretic perspective.

4.1.1 Initial semigroup theory of Bi(M)

As mentioned in the introduction, each element of the bimorphism monoid is

a bijection from the domain M ofM to itself; therefore, Bi(M) is a submonoid

of Sym(M) and thus is a group-embeddable monoid. This fact leads on to our first

result on bimorphism monoids of first-order structures.

Lemma 4.1.1. LetM be a σ-structure. Then Bi(M) is a cancellative monoid.

Proof. As a collection of bijections, Bi(M) is a group-embeddable monoid via

some monoid embedding. As every subsemigroup of a group is cancellative

(see Section 2.2), Bi(M) is cancellative.

The facts that any cancellative monoid has only one idempotent element (the

identity) [16, Exercises §1.1], and any regular cancellative monoid is a group

(Thierrin, see [16, Exercises §1.9]) yields the following easy corollary.



Chapter 4: Intermediate monoids of first-order structures 69

Corollary 4.1.2. LetM be a σ-structure.

(1) The only idempotent element in Bi(M) is the identity.

(2) Bi(M) is a regular monoid if and only if Bi(M) = Aut(M).

As Aut(M) is the group of units of End(M), and Bi(M) ⊆ End(M), we can

deduce that:

Corollary 4.1.3. For any σ-structureM, the group of units of Bi(M) is the automor-

phism group Aut(M).

Remark. This statement holds for any intermediate monoid T such that Aut(M) ≤

T ≤ End(M) by a similar argument.

In our initial example on the intermediate monoid Mon(N), we used defects

of monomorphisms to determine semigroup-theoretic properties of this monoid;

such as the characterisation of Green’s relations for Mon(N) in Proposition 3.2.9.

Such an approach is not useful when working with bimorphisms; as bijections,

every α ∈ Bi(M) has an empty defect. In order to study similar results, it is

therefore necessary to introduce an analogous notion of defect on the level of

relations rather than vertices. Our next definition codifies this, formalising the

notion of a bimorphism “changing a non-relation to a relation”.

Definition 4.1.4. For a bimorphism α ofM, define a σ-structure A(α) with do-

main M and relations

ā ∈ RA(α)
i if and only if ā /∈ RMi and āα ∈ RMi

for all i ∈ I . We say that A(α) is the additional structure of α. Define the support

of α to be the set

S(α) = {x ∈M : x ∈ ā and ā ∈ RA(α)
i for some i ∈ I}.

As S(α) is a subset of M , we can induce a structureM[S(α)] on S(α) with rela-

tions fromM; call this the support structure of α.



Chapter 4: Intermediate monoids of first-order structures 70

Example 4.1.5. LetM be a graph with vertex set Z and adjacencies i ∼ j if and

only if i ≤ 0 and j = i− 1 (see Figure 4.1).

−3 −2 −1 0 1 2 3

Figure 4.1:M as in Example 4.1.5

Consider the bimorphism α ∈ Bi(M) defined by iα = i − 2 for all i ∈ Z.

Then A(α) is the graph on Z with the only two adjacencies given by 0 ∼ 1 and

1 ∼ 2, S(α) is the set {0, 1, 2}, andM[S(α)] is the null graph induced byM on

the vertex set S(α) (see Figure 4.2).

A(α)

−3 −2 −1 0 1 2 3

M[S(α)]

210

Figure 4.2: A(α) andM(S(α)) for α ∈ Bi(M) in Example 4.1.5

For two elements α, β of Bi(M) and some Ri ∈ σ with arity n, define the set

R
A(β)
i α−1 = {x̄ ∈Mn : x̄α ∈ RA(β)

i }.

We now consider a fundamental lemma, analogous to Lemma 3.2.2, that under-

pins many of the results in this section.

Lemma 4.1.6. Suppose that α, β ∈ Bi(M) and Ri ∈ σ. Then R
A(αβ)
i = R

A(α)
i ∪

R
A(β)
i α−1 and this is a disjoint union.

Remark. The idea here is that the set of relations added in by the product αβ is

the same set of relations given by first applying α and then β. This is reflected

in the two terms of the union; RA(α)
i is the set of relations added in by α, and

R
A(β)
i α−1 is the set of relations added in by β after α has been applied.
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Proof. The proof is by containment both ways. Suppose first that ā ∈ RA(α)
i ; so

ā /∈ RMi but āα ∈ RMi . As β preserves relations, āαβ ∈ RMi and so ā ∈ RA(αβ)
i .

Now suppose that ā ∈ R
A(β)
i α−1; so āα /∈ RMi and āαβ ∈ RMi . As α must

preserve relations, it follows that ā /∈ RMi and so ā ∈ RA(αβ)
i .

Conversely, assume that ā ∈ RA(αβ)
i . There are two cases to consider; either

āα ∈ RMi , or it isn’t. If āα is in RMi , then ā ∈ RA(α)
i and we are done. If it is not,

then aα /∈ RMi ; but as ā ∈ RA(αβ)
i , we have that āαβ ∈ RMi . So āα ∈ RA(β)

i and

hence ā ∈ RA(β)
i α−1; therefore the sets RA(αβ)

i and RA(α)
i ∪RA(β)

i α−1 are equal.

It remains to show that this is a disjoint union. Assume for a contradiction

that ā ∈ RA(α)
i ∩ RA(β)

i α−1. So āα ∈ RMi as ā ∈ RA(α)
i ; but as ā ∈ RA(β)

i α−1 we

have that āα ∈ RA(β)
i and so not in RMi . This is a contradiction and so the sets

are disjoint.

Remark. Here, the two terms of the disjoint union RA(α)
i ∪RA(β)

i α−1 describe the

relations added in by α and β respectively.

The fact that this is a disjoint union provides an immediate corollary. For

some bimorphism α ofM and relation Ri ∈ σ, define ei(α) = |RA(α)
i |, writing

ei(α) =∞ if RA(α)
i is infinite.

Corollary 4.1.7. Let α, β be bimorphisms of a σ-structureM, and suppose thatRi ∈ σ.

(1) If both ei(α) and ei(β) are finite then ei(αβ) = ei(α) + ei(β).

(2) ei(αβ) =∞ if and only if at least one of RA(α)
i or RA(β)

i is infinite.

Proof. (1) As α is a bijection, |RA(β)
i α−1| = |RA(β)

i | = ei(β). Since the union of

R
A(α)
i and RA(β)

i α−1 is disjoint by Lemma 4.1.6, it follows that

|RA(α)
i ∪RA(β)

i α−1| = |RA(α)
i |+ |RA(β)

i α−1| = ei(α) + ei(β).

(2) As with Corollary 3.2.4 (2), the forward direction is by part (1); the converse

follows from Lemma 4.1.6.
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Following this, we can write ei(α) + ei(β) <∞ to signify that both ei(α) and

ei(β) are finite. On the other hand, a bimorphism that changes no non-relations

to relations is an automorphism; hence we can say that α ∈ Aut(M) if and only

if RA(α)
i = ∅ (or that ei(α) = 0) for all Ri ∈ σ. We outline a simple application

of Corollary 4.1.7.

Corollary 4.1.8. Let M be a σ-structure, and let Ri ∈ σ and k ∈ N. and define

I(i, k) := {α ∈ Bi(M) | ei(α) ≥ k}. Then, if non-empty, I(i, k) is an ideal of Bi(M).

Furthermore, if I(i,∞) := {α ∈ Bi(M) | ei(α) = ∞} is non-empty, then it also an

ideal.

Proof. Follows immediately from Corollary 4.1.7.

4.1.2 Green’s relations of Bi(M)

We now focus our attention on determining the Green’s relations of Bi(M). As

Bi(M) is a group-embeddable monoid, and the Green’s relations for a group

are trivial, a description of Green’s relations for Bi(M) will depend on relation-

preserving properties of the maps rather than the underlying maps themselves.

To see this, note that if a, b, c ∈ Sym(M) are such that ac = b, then c = a−1b is

uniquely determined as Sym(M) is a group. As Bi(M) is embeddable in this

group, if α, β ∈ Bi(M) and γ ∈ Sym(M) such that αγ = β, then γ is uniquely

determined by the bijection α−1β; it is a bimorphism if and only if α−1β is an

endomorphism ofM. A similar result holds if δα = β; here, δ is uniquely deter-

mined by βα−1. This rigidity in choice of map therefore places strict conditions

on when two bimorphisms are L or R-related in Bi(M). This allows us to ob-

tain results for σ-structures in full generality. Our first result emphasises this

point.

Lemma 4.1.9. LetM be σ-structure and suppose that α, β ∈ Bi(M).

(1) Suppose that αL β. Then for all γ, δ ∈ Bi(M) such that γα = β and δβ = α, the

maps γ and δ are automorphisms.

(2) Suppose that αRβ. Then for all γ, δ ∈ Bi(M) such that αγ = β and βδ = α, the

maps γ and δ are automorphisms.
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(3) Suppose that ei(α) + ei(β) < ∞ for all Ri ∈ σ, and αJ β. For all γ, δ, ε, ζ ∈

Bi(M) such that γαδ = β and εβζ = α, the maps γ, δ, ε, ζ are automorphisms.

Proof. For (1), it follows from the assumptions that γδβ = β; as Bi(M) is can-

cellative by Lemma 4.1.1, this implies that γδ is the identity map. So by Corol-

lary 4.1.3, γ and δ are both automorphisms. The proof of (2) is similar.

To prove (3), assume that γ, δ, ε, ζ ∈ Bi(M) are as in the statement. Therefore

γεβζδ = β, and so ei(γεβζδ) = ei(β) for all Ri ∈ σ. As ei(β) is finite, so is

ei(γεβζδ); in particular, γ, δ, ε, ζ ∈ Bi(M) do not add infinitely many relations

for anyRi ∈ σ by Corollary 4.1.7 (2). As this happens, we can use Corollary 4.1.7

(1) four times to get:

ei(γ) + ei(ε) + ei(β) + ei(ζ) + ei(δ) = ei(β).

Since ei(β) is a natural number, this implies that ei(γ) = ei(ε) = ei(ζ) = ei(δ) = 0

for all Ri ∈ σ, and so γ, δ, ε, ζ are automorphisms.

An immediate consequence of this lemma is as follows.

Corollary 4.1.10. LetM be a σ-structure and α ∈ Bi(M). Suppose that ei(α) < ∞

for all Ri ∈ σ. Then Jα = Dα.

Proof. The proof follows from Lemma 4.1.9 and Lemma 2.2.3.

We now characterise L and R relations in the bimorphism monoid of a σ-

structureM.

Proposition 4.1.11. Let α, β ∈ Bi(M). Then αL β if and only if S(α)α = S(β)β and

the bimorphism αβ−1 induces an isomorphism fromM[S(α)] toM[S(β)].

Proof. First, suppose that αL β; so there exists γ = αβ−1 such that γβ = α. By

Lemma 4.1.9, γ is an automorphism. Due to this and Lemma 4.1.6 (1):

R
A(α)
i = R

A(γβ)
i = R

A(γ)
i ∪RA(β)

i γ−1 = R
A(β)
i γ−1

for all i ∈ N. By this, it follows that S(α) = S(γβ) = S(β)γ−1; as γ is an auto-

morphism,M[S(α)] ∼=M[S(β)] via this automorphism. It remains to show that
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S(α)α = S(β)β; here, as S(α)αβ−1 = S(α)γ = S(β), we have that S(α)αβ−1β =

S(α)α = S(β)β.

For the converse direction, let α, β ∈ Bi(M). We need to find bimorphisms

γ, δ such that γβ = α and δα = β. To do this, we show that the uniquely deter-

mined bijection γ = αβ−1 is a bimorphism ofM. Suppose that ā ∈ RMi . There

are two cases to consider; either ā ∈ RM[S(α)]
i , or it is not.

In the first case, suppose that ā ∈ R
M[S(α)]
i . Then āα ∈ R

M[S(α)α]
i which,

as S(α)α = S(β)β, means that āα ∈ R
M[S(β)β]
i . Hence, āαβ−1 ∈ S(β)n; as

αβ−1 induces an isomorphism betweenM[S(α)] andM[S(β)], we deduce that

āαβ−1 ∈ RM[S(β)]
i .

For the second case, note that if ā ∈ RMi and ā /∈ RM[S(α)]
i then ā /∈ S(α)n.

Since this happens, āα /∈ (S(α)α)n and hence āα /∈ (S(β)β)n. Therefore āαβ−1 /∈

S(β)n; because of this āαβ−1 /∈ RA(β)
i . As āα ∈ RMi we have that āαβ−1 ∈ RMi

by definition of the support structure.

In both of these cases, αβ−1 preserves relations and hence it is a bimorphism

of M. The proof that the map βα−1 = δ is a bimorphism is similar and so

αL β.

Remark. Note that these conditions imply that if two elements α and β are L -

related, then αβ−1 : A(α)→ A(β) is an isomorphism.

Proposition 4.1.12. Suppose that α, β ∈ Bi(M). Then αRβ if and only if A(α) =

A(β).

Proof. First, suppose that αRβ; by definition and Lemma 4.1.9 there are auto-

morphisms γ, δ such that αγ = β and βδ = α. By Lemma 4.1.6, we have that

R
A(β)
i = R

A(αγ)
i = R

A(α)
i ∪RA(γ)

i α−1; as γ is an automorphism, RA(γ)
i = ∅ for all

i ∈ I and so RA(β)
i = R

A(α)
i for all i ∈ I . This implies that A(α) = A(β).

For the converse direction, let α, β ∈ Bi(M) with A(α) = A(β). We need to

find bimorphisms γ, δ such that αγ = β and βδ = α. To do this, we show that the

uniquely determined bijection γ = α−1β is an endomorphism of M. Suppose

that ā ∈ RMi . There are two cases to consider; either ā ∈ RM[S(α)α]
i , or it is not.
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For the first case, we have that ā ∈ R
M[S(α)α]
i and so ā ∈ (S(α)α)n. As α

is a bijection, āα−1 ∈ S(α)n and therefore there are two further choices; either

āα−1 ∈ RMi or it isn’t. If it is the former, then āα−1β ∈ RMi and so the relation

is preserved. If it is the latter, then āα−1 ∈ RA(α)
i by definition. As A(α) = A(β),

we have that āα−1 ∈ RA(β)
i and so āα−1β ∈ RMi .

In the second case, ā /∈ R
M[S(α)α)]
i and so ā /∈ (S(α)α)n; implying that

āα−1 /∈ S(α)n. Now, if āα−1 /∈ RMi , then āα−1 ∈ RA(α)
i and so āα−1 ∈ S(α)n, a

contradiction. So āα−1 ∈ RMi and therefore so is āα−1β.

So γ preserves relations in both cases, and therefore α−1β = γ is a bimor-

phism ofM. The proof that β−1α = δ is a bimorphism is similar and so αRβ.

Remark. By definition of the H -relation and the above two propositions, two

bimorphisms α and β are H related if and only if A(α) = A(β), S(α)α = S(β)β

and the bimorphism αβ−1 induces an isomorphism fromM[S(α)] toM[S(β)].

We can use the previous two results to characterise the D relation for Bi(M).

Theorem 4.1.13. Let α, β ∈ Bi(M). Then αDβ if and only if there exists a bimorphism

η such that: ηβ−1 induces an isomorphism fromM[S(α)] toM[S(β)], α−1η induces

an isomorphism fromM[S(α)α] toM[S(β)β], and S(β)β = S(η)η.

Proof. First, suppose that αDβ; so there exists a bimorphism η such that αRη

and ηL β. By Lemmas 4.1.11 and 4.1.12 S(η)η = S(β)β, the bimorphism ηβ−1

induces an isomorphism from thatM[S(η)] toM[S(β)], and A(α) = A(η). As

A(α) = A(η), it follows that S(α) = S(η) and so M[S(η)] = M[S(α)]. There-

fore ηβ−1 induces an isomorphism from M[S(α)] to M[S(β)]. Now as αRη,

the uniquely defined bijection α−1η is an automorphism by Lemma 4.1.9 and

Proposition 4.1.12. Hence

M[S(α)α]α−1η =M[S(α)αα−1η] =M[S(α)η].
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Now, as S(α) = S(η), and S(η)η = S(β)β:

M[S(α)α]α−1η =M[S(α)η] =M[S(η)η] =M[S(β)β]

and so α−1η induces an isomorphism fromM[S(α)α] toM[S(β)β].

For the converse direction, we show that ηL β and αRη in that order. Note

first that η−1α induces an isomorphism fromM[S(β)β] toM[S(α)α]. Therefore,

M[S(α)α] =M[S(β)β]η−1α; since S(η)η = S(β)β by assumption,M[S(α)α] =

M[S(η)η]η−1α. As η−1α is an isomorphism,

M[S(η)η]η−1α =M[S(η)ηη−1α] =M[S(η)α] =M[S(α)α].

Since this occurs and α is bijective, S(η) = S(α). Now, as S(η) = S(α) and ηβ−1

induces an isomorphism from M[S(α)] to M[S(β)], it follows that M[S(η)] ∼=

M[S(β)] by the same isomorphism. From this, and our assumption that S(η)η =

S(β)β, it follows that βL η by Proposition 4.1.11.

Now suppose that ā ∈ RA(α)
i ; so ā ∈ S(α) by definition. Then āα ∈ RMi and

āα ∈ S(α)α. As α−1η describes an isomorphism fromM[S(α)α)] toM[S(β)β],

it follows that āαα−1η = āη ∈ RMi and so ā ∈ R
A(η)
i . We can use a similar

argument to show that if ā ∈ RA(η)
i then ā ∈ RA(α)

i ; hence A(α) = A(η) and so

αRη by Proposition 4.1.12.

Remark. If ei(α) < ∞ for all Ri ∈ σ, and β ∈ Bi(M) is such that there exists

Ri ∈ σ such that ei(β) = ∞, then it follows from this result that α is not D-

related to β.

We can use Theorem 4.1.13 and Corollary 4.1.10 in order to give a partial clas-

sification for J -relations in Bi(M); here, Dα = Jα if α adds in finitely many re-

lations for each Ri ∈ σ. On the other hand, if α adds in infinitely many relations,

then there is no guarantee that β ∈ Jα is J -related to α by automorphisms.

Subsequently, this is a far more difficult question and one we leave open.

Question 4.1.14. Classify Green’s J -relation in Bi(M).
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4.1.3 Representing group-embeddable monoids

It is a celebrated theorem of Frucht [33] that any finite group arises as the au-

tomorphism group of a finite undirected graph. Frucht’s theorem was later ex-

tended to any group arising as the automorphism group of some infinite graph;

this was independently proved by de Groot [20] and Sabidussi [75]. As bimor-

phism monoids provide natural examples of group-embeddable monoids, it is

natural to ask: does every group-embeddable monoid arise as the bimorphism

monoid of a structure?

This question is a natural generalisation of Frucht’s theorem; this can be seen

in considering the case where the group-embeddable monoid M is finite. If this

happens, thenM is a group as every finite cancellative semigroup is a group (see

Section 2.2). As the bimorphism monoid Bi(Γ) of a finite graph Γ is the automor-

phism group by Lemma 2.3.2, then the question reduces to Frucht’s theorem.

The infinite case is less straightforward. There are many examples of group-

embeddable monoids in the literature; a widely studied example is the free monoid

A∗ on some set A. These are monoids with elements given by strings of ele-

ments of A (called words), with the identity element given by the empty word ε.

The composition of two words is concatenation. Here, A∗ naturally embeds in

the free group on A [58]; the elements of which are reduced words over A ∪A−1,

where a word w is reduced if it does not contain a−1a or aa−1 for any a ∈ A.

It is well known that the free monoid on a singleton set is isomorphic to the

infinite monogenic semigroup with identity (N0,+). We present an example of

a graph Γ such that Bi(Γ) ∼= (N0,+).

Example 4.1.15. Consider a graph Γ with vertex set Z× {0, 1}, with adjacencies

given by

• (a, 0) ∼ (b, 1) if and only if a = b;

• (a, 0) ∼ (b, 0) if and only if |a− b| = 1, and;

• (a, 1) ∼ (b, 1) if and only if a ≤ 0 and |a− b| = 1.

This forms a graph given below in Figure 4.3.
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(−3,1) (−2,1) (−1,1) (0,1) (1,1) (2,1) (3,1)

(−3,0) (−2,0) (−1,0) (0,0) (1,0) (2,0) (3,0)

Figure 4.3: Construction of Γ

As (0, 1) is the only vertex of degree 2, any automorphism of Γ must fix (0, 1).

In addition, an automorphism of Γ cannot swap (0, 0) and (−1, 1), as (0, 0) has a

degree 1 vertex at distance 2 while (−1, 1) does not. So (0, 1) and (0, 1) are fixed,

and it follows from this that every vertex is fixed and so Γ is rigid. However,

there do exist bijections on V Γ such that only edges are preserved. Consider the

map α : Γ −→ Γ given by (a, x)α = (a− 1, x). This preserves all edges and sends

the non-edge between (0, 1) and (1, 1) to the edge between (−1, 1) and (0, 1). We

claim that the only bimorphisms of Γ are of the form αn.

Claim. Bi(Γ) ∼= (N0,+), the infinite monogenic semigroup with identity.

Proof of Claim. We show that the only bijective maps on vertices that preserve

edges are of the form β : Γ −→ Γ such that (b, x)β = (b−n, x); this is proved using

a case analysis. Consider the vertex (0, 1). There is no bimorphism α sending

some vertex (a, 0) to (0, 1); this is because deg((a, 0)) > deg((0, 1)) and every

bimorphism preserves edges. Similarly, no bimorphism sends (b, 1) to (0, 1) for

b < 0. So suppose that β ∈ Bi(Γ) maps some (b, 1) to (0, 1) for b ≥ 0.

It follows that β must send (b, 0) to either (1,−1) or (0, 0), in order to preserve

the adjacency (b, 0) ∼ (b, 1). Suppose that (b, 0)β = (−1, 1). This gives rise to

two cases:

Case 1: This is where (b + 1, 0)β = (−2, 1) and (b − 1, 0)β = (−1, 0). We

consider the image point of (b − 2, 0) under β. There are two choices; either

(b − 2, 0)β is (−2, 0) or (0, 0). Suppose initially that (b − 2, 0)β is (−2, 0). Since

β preserves edges, the only potential image point for the two vertices (b − 3, 0)

and (b− 2, 1) (both adjacent to (b− 2, 0)) is (−3, 0); as β is a bijection, this cannot

happen. So now suppose that (b−2, 0)β = (0, 0), the other potential choice. This
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means that (1, 0) is the only potential image point for the vertices (b − 3, 0) and

(b− 2, 1); another contradiction. Therefore, this case cannot occur.

Case 2: On the other hand, this is where (b−1, 0)β = (−2, 1) and (b+1, 0)β =

(−1, 0). In this case, we consider the image point of (b+ 2, 0) under β; as above,

this is either (−2, 0) or (0, 0). Assume that (b+2, 0)β = (−2, 0). Here, this would

leave (−3, 0) as the only potential image point for both vertices (b + 3, 0) and

(b + 2, 1); this is a contradiction as β is a bijection. So (b + 2, 0)β = (0, 0), which

means that (1, 0) is the only potential image point for both (b+3, 0) and (b+2, 1).

Therefore, this case also cannot occur; so it follows that (b, 0)β cannot be (−1, 1).

So (b, 0)β = (0, 0) and hence β maps the edge (b, 0) ∼ (b, 1) to the edge

(0, 0) ∼ (0, 1). We can use another, similar case analysis to show that (b+1, 0)β =

(1, 0). Finally, we can show that β cannot send (a, 0) to (b, 1) for b < 0 by another

similar argument; this implies that β must preserve the infinite two way line

{(a, 0) : a ∈ Z}. All of these results together imply that β must be a shift map

and so the only bijective homomorphisms are of the form (b, x)β = (b − n, x),

for n ≥ 0. It is not hard to see that αn = β and thus Bi(Γ) has a single generator.

As mentioned above, any infinite semigroup that is generated by one element is

isomorphic to (N,+); so Bi(Γ) ∼= (N,+).

This automatically proves Green’s relations of Bi(Γ); here, H = L = R =

D = J = {(a, a) : a ∈ Bi(Γ)}. It follows that Proposition 4.1.11, Proposi-

tion 4.1.12 and Theorem 4.1.13 all hold in this case; albeit in a rather trivial fash-

ion.

It seems to be somewhat more difficult to represent A∗ on larger sets as a

bimorphism monoid on a graph; for instance, this graph must be rigid as the

group of units of A∗ consists solely of the empty word ε. However, by relaxing

the restriction on the type of relational structure we consider, this problem can

be made easier. For instance, defining a structure based on the Cayley graph of

the free group on A (in this case, a labelled, directed graph), and adding extra

relations on the part of the graph corresponding to the positive free monoid in

that group, gives a rigid structure where each bimorphism may be representable
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as words in the free monoid. However, this remains to be proved, and would

represent only a partial solution to our overreaching problem.

Question 4.1.16. Does every countable group-embeddable monoid arise as the bimor-

phism monoid of some σ-structureM? In particular, is this question true whenM is

restricted to the class of graphs?

4.1.4 Bimorphisms of graphs

Recall from Example 2.3.1 that a simple, undirected graph can be expressed as

a σ-structure Γ, where σ consists of a single binary relation E, and Γ models

sentences expressing irreflexivity and symmetry for E. Because of this single

relation E, most of the previously considered definitions and results about bi-

morphisms of structures are simplified in the case of graphs. To begin with, we

rephrase Definition 4.1.4 in the language of graphs (see Section 2.4) for more

details).

Definition 4.1.17. Let α be a bimorphism of a graph Γ. The additional graph of α,

denotedA(α), is the graph on V Γ with adjacencies {a, b} ∈ EA(α) if and only if

{aα, bα} ∈ EΓ and {a, b} /∈ EΓ. The support of a bimorphism α of Γ is the vertex

set defined by

S(α) := {x ∈ VA(α) : degA(α)(x) 6= 0}.

Finally, we denote the number of edges in EA(α) by e(α); writing e(α) =∞

if α adds in infinitely many edges.

The following result is a rephrasing of Lemma 4.1.6 and Corollary 4.1.7 in

the setting of graphs.

Corollary 4.1.18. Let α and β be bimorphisms of a graph Γ.

(1) EA(αβ) = EA(α) ∪ EA(β)α−1, and this is a disjoint union.

(2) If e(α) and e(β) are both finite, then e(αβ) = e(α) + e(β).

(3) e(αβ) =∞ if and only if one of e(α) or e(β) is infinite.



Chapter 4: Intermediate monoids of first-order structures 81

Corollary 4.1.19. Let k be a natural number and define Ik := {α ∈ Bi(Γ) | e(α) ≥ k}.

Then Ik is an ideal of Bi(Γ). Furthermore, I∞ := {α ∈ Bi(Γ) | e(α) = ∞} is also an

ideal.

Proof. Follows immediately from Corollary 4.1.8.

Generation properties of Bi(R)

Recall from Example 2.4.2 that the random graph R is the unique countable, uni-

versal, homogeneous graph. As Bi(R) contains the automorphism group of R,

which has cardinality of the continuum by Theorem 2.4.7, it is certainly not

finitely generated and therefore we can consider looking at cofinality results.

We begin by determining the strong cofinality of Bi(R). First, we use the ARP

characteristic of R (see Proposition 2.4.3) to prove a strong statement about the

random graph. The proof of this result is slightly more intricate than it needs

to be, but it demonstrates an important property that we will need in deter-

mining the strong cofinality of Bi(R). Recall from the introduction that a first-

order structure M is MB-homogeneous if every monomorphism between finite

substructures ofM extends to a bimorphism ofM.

Proposition 4.1.20. The random graph R is MB-homogeneous.

Proof. The idea for the proof is to extend a monomorphism f : A → B between

two finite graphs to a bimorphism α ∈ Bi(R) using a back-and-forth argument.

Set f = f0, A = A0 and B = B0, and suppose that we have extended f to a

monomorphism fk : Ak → Bk, where Ai ⊆ Ai+1 and Bi ⊆ Bi+1 for all 0 ≤ i ≤

k − 1. As R is countable, we can write V R = {v0, v1, ...}.

If k is even, select a vertex vi ∈ V R where i is the smallest number such

that vi /∈ dom fk. Let Vi be the finite set Vi = {a ∈ A : a ∼ vi}, and note

that Vifk ⊆ Bk. Using the ARP for R, there exists a vertex w ∈ V R such that

w ∼ afk for all afk ∈ Vifk and w � x for all x ∈ Bk r Vifk. Now, define

fk+1 : A ∪ {vi} → B ∪ {w} to be the map acting like fk on A and sending vi to

w. This map extends fk and is a monomorphism as every edge from vi to A is

preserved by fk+1.
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If k is odd, select a vertex vj ∈ V R where j is the smallest number such that

vj /∈ im fk. Let Vj be the finite set Vj = {b ∈ B : b ∼ vj}; it follows that Vjf−1
k ⊆

Ak. Using the ARP for R, there exists a vertex w ∈ V R such that w ∼ bf−1
k for

all bf−1
k ∈ Vjf−1

k and w � y ∈ Ak r Vjf−1
k . Define fk+1 : A ∪ {w} → B ∪ {vj} to

be the map acting like fk on A and sending w to vj . This map extends fk and is

a monomorphism since every edge is preserved.

Repeating this process infinitely many times, ensuring that each vi ∈ V R

appears at both an odd and even step, extends f to a bijective homomorphism

α : R→ R.

Remarks. (i) As mentioned above, there is a reason for this very particular con-

struction. Here, this method ensures that any monomorphism f between

two finite graphs of R can be extended to a bimorphism α where the edges

added by α are precisely those added by f ; that is, α acts like an automor-

phism outside of f . This means that for all n ∈ N, there exists a bimorphism

β of R such that e(β) = n. Note that we cannot rely on Theorem 2.4.4 to

demonstrate this directly. Changing a finite number of non-edges of R to

edges produces a graph Γ on V R where Γ ∼= R, but the identity map on

V R between R and Γ is not an isomorphism.

(ii) The concept of MB-homogeneity is one that is discussed at length in Chap-

ters 6 and 7. More examples of MB-homogeneous graphs are given in

Chapter 8.

From the first remark, this means that the ideal Ik ⊆ Bi(R) is non-empty for

all k ∈ N; furthermore, Lk = Ik r Ik+1 is non-empty for all k ∈ N. It can also

be shown that there exist bimorphisms of R that add in infinitely many edges.

Following this, we can prove that:

Theorem 4.1.21. scf(Bi(R)) = ℵ0.

Proof. The ideal structure of Bi(R) given in Corollary 4.1.19 is an infinite de-

scending chain of ideals by Proposition 4.1.20. For some k ∈ N, set Lk =

Ik r Ik+1; this is the set of all bimorphisms β of R such that e(β) = k. It fol-
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lows from Corollary 4.1.18 that LiLj ⊆ Li+j . So Bi(R) satisfies the conditions

outlined in Proposition 3.1.11 and therefore scf(Bi(R)) = ℵ0.

We now show that Bi(R) does not have the Bergman property by demon-

strating the existence of a ‘bad’ generating set (see remarks following Defini-

tion 3.1.1). It is a consequence of Lemma 4.1.6 that we can generate a bimor-

phism with an arbitrary finite additional graph given the automorphisms and all

the bimorphisms that add in one edge. The next lemma shows that we need only

include one such bimorphism to generate them all. Recall from Example 2.4.2

that R is homogeneous; that is, any isomorphism between finite substructures of

R extends to an automorphism of R.

Lemma 4.1.22. The set X = {α ∈ Bi(R) | e(α) = 1} forms a J -class of Bi(R).

Proof. Suppose that α ∈ Bi(R) is a bimorphism such that e(α) = 1; it follows

that R[S(α)] ∼= K̄2, the empty graph on two vertices and R[S(α)α] ∼= K2, the

complete graph on two vertices. As e(α) is finite, it is enough to show that

X = Dα by Corollary 4.1.10.

So suppose that β is any bimorphism of R where e(β) = 1; so R[S(α)] ∼=

R[S(β)] and R[S(α)α] ∼= R[S(β)β]. Using homogeneity of R, extend the isomor-

phism f : R[S(α)] → R[S(β)] to a automorphism γ of R, and define a bimor-

phism η = γβ. As γ is an automorphism, it has an inverse and so γ−1η = β;

therefore ηL β. Note also that the bimorphism η sends the non-edge R[S(α)] to

the edge R[S(β)β], and acts like an automorphism everywhere else.

We now show that αRη. Consider the uniquely defined bijective map η−1α :

R → R, and suppose that {x, y} is an edge of R. There are two cases; either

{x, y} is the edge added by η or it isn’t. If {x, y} /∈ R[S(β)β], then {xη−1, yη−1}

is an edge of R because η−1 acts like an automorphism outside of R[S(β)β].

As α is a bimorphism, {xη−1α, yη−1α} is an edge of R. If {x, y} = R[S(β)β],

then {xη−1, yη−1} = R[S(α)] is an non-edge of R; but then {xη−1α, yη−1α} is an

edge. Therefore, η−1α preserves edges and so η−1α is a bimorphism such that

η(η−1α) = α. We can use a similar argument to show that the uniquely defined
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map α−1η is a bimorphism such that α(α−1η) = η and so αRη. Therefore, αDβ

and so X = Dα.

This serves as a base case for our next result. In the style of Corollary 4.1.19,

we denote the ideal of bimorphisms of R that add in infinitely many edges by

I∞. Note that as a consequence of Lemma 4.1.6 and Corollary 4.1.18, the set

Bi(R)r I∞ is a submonoid of Bi(R).

Proposition 4.1.23. Let U = Aut(R) ∪ {β}, where β ∈ Bi(R) such that e(β) = 1.

Then U generates the monoid Bi(R)r I∞.

Proof. By Corollary 4.1.10 and the fact that Aut(R) ⊆ U , it is enough to show

that we can generate at least one element α in each J -class not contained in I∞;

this means generating a bimorphism with any finite additional graph on any

support graph. To do this, we use proof by induction on e(α) = k. The base case

where e(α) = 0 is easy as Aut(R) is contained in U . The case where e(α) = 1 is

covered by Lemma 4.1.22.

For the inductive step, assume that we can generate any γ ∈ Bi(R) such that

e(γ) = k. Now suppose that α ∈ Bi(R) r I∞ such that e(α) = k + 1, with

additional graph A(α) and support graph R[S(α)]; our aim is to generate α. Let

Γ be the graph created by removing an edge {a, b} from A(α). By the inductive

hypothesis, we can generate a bimorphism γ such that EA(γ) = EΓ. Note here

that S(γ) ∪ {a, b} = S(α).

As {a, b} is not an edge in A(γ), it follows that {aγ, bγ} is a non-edge of R.

Using homogeneity of R and Lemma 4.1.22, we can find a bimorphism η of R

with e(η) = 1 such that {aγ, bγ} ∈ EA(η). By Lemma 4.1.6, this means that

{a, b} ∈ A(γη). As {a, b} is the only element of EA(η)γ−1, it follows that A(γη)

is the graph on V R with edges EA(γ) ∪ {a, b}. The support graph of γη is the

graph R[S(γ) ∪ {a, b}]. So we have generated a bimorphism γη with additional

graph A(α) and support graph R[S(α)], completing the proof of the inductive

step.

This result leads to an immediate corollary.
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Corollary 4.1.24. cf(Bi(R)r I∞) > ℵ0.

Proof. Proposition 4.1.23 shows that rank(Bi(R)r I∞ : Aut(R)) = 1. As Aut(R)

has uncountable cofinality [26], it follows that cf(Bi(R) r I∞) > ℵ0 by Proposi-

tion 3.1.6.

Finally in this section, we investigate. With U = Aut(R) ∪ {β} as in Propo-

sition 4.1.23, define V to be the set U ∪ I∞. Since U generates Bi(R) r I∞ by

Proposition 4.1.23, then it follows that V generates Bi(R). We show that Bi(R) is

not Cayley bounded with respect to this generating set V .

Theorem 4.1.25. Let τ = t1t2t3...tk be a product of bimorphisms from the set V =

Aut(R) ∪ {β} ∪ I∞, where β ∈ Bi(R) is such that e(β) = 1. Then either e(τ) ≤ k or

it is infinite.

Proof. We note that if any of the ti’s (where 1 ≤ i ≤ k) are in I∞, then the

product is in I∞. It remains to show that if τ = t1t2t3...tk (where each ti /∈ I∞)

then e(τ) ≤ k; the proof is by induction on length of product. In the base case

where k = 1, then τ = t1; as a result τ is either an automorphism (in which case

e(τ) = 0) or τ = β and so e(τ) = 1.

For the inductive step, suppose that the above statement is true. Multiply

τ = t1t2t3...tk on the right by tk+1 to get τtk+1 = t1t2...tktk+1. It follows from

Corollary 4.1.18 that

e(t1t2...tktk+1) = e(τtk+1) = e(τ) + e(tk+1).

Now, either tk+1 is an automorphism of R or it is β. If tk+1 ∈ Aut(R), then

e(tk+1) = 0 and so e(τ) + 0 ≤ k by the inductive hypothesis. If tk+1 = β, then

e(tk+1) = 1 and so e(τ) + 1 ≤ k + 1 by the inductive hypothesis.

So Bi(R) is not Cayley bounded with respect to the generating set V ; prov-

ing that Bi(R) does not have the Bergman property. There is one question left

over; we have not been able to determine the exact cofinality of Bi(R). Referring

back to the list on page 54, as scf(Bi(R)) = ℵ0 it follows that Bi(R) is in either
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case (b) or (d). We conjecture that cf(Bi(R)) is uncountable (i.e. case (b)) due to

Corollary 4.1.24, but we leave this as an open problem.

Question 4.1.26. Is cf(Bi(R)) > ℵ0?

4.2 Embeddings of σ-structures

As an injective endomorphism of a σ-structureM, a general elementα ∈Mon(M)

may change non-relations to relations and the image set Mα of α may not be

equal to M . We have studied maps β ∈Mon(M) such that Mβ = M and where

β may change non-relations to relations; these are bimorphisms ofM. In order

to understand more about Mon(M), we now study those maps γ ∈ Mon(M)

where γ preserves non-relations, but Mγ is some infinite subset of M . These are

the embeddings of M; as in Subsection 2.3.2, we denote the monoid of embed-

dings of M by Emb(M). Recall from the introduction to this chapter that for

some γ ∈Mon(M), we writeMγ for the image set of the function γ, andMγ for

the structure induced byM on Mγ. As γ in this case is an embedding, it follows

thatMγ ∼=M.

4.2.1 Semigroup theory of Emb(M)

As each embedding ofM is an injective map from the domain M ofM to itself,

it follows that Emb(M) embeds in Mon(M) via an inclusion mapping. As this

happens, Emb(M) is a right-cancellative monoid for every σ-structure M. As

M in this chapter is countably infinite, we can use definitions and results from

Section 3.2 to help describe the behaviour of embeddings ofM. The following

is the σ-structure analogue of Definition 3.2.1.

Definition 4.2.1. LetM be a countably infinite σ-structure, and takeα ∈ Emb(M).

Define the defect of α to be the set O(α) = M rMα. We define the omitted struc-

ture of α to be O(α) = M[O(α)]. Furthermore, define o(γ) = |O(γ)|, writing

o(γ) =∞when O(γ) is infinite.

We immediately note that O(α) = ∅ if and only if o(α) = 0 if and only if α
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is an automorphism. Definition 4.2.1 leads into a straightforward restatement of

both Lemma 3.2.2 and Corollary 3.2.4.

Lemma 4.2.2. Let M be a countably infinite σ-structure, and suppose that α, β ∈

Emb(M).

(1) O(αβ) = O(β) ∪O(α)β and this is a disjoint union.

(2) If both o(α) and o(β) are finite, then o(αβ) = o(α) + o(β).

(3) o(αβ) =∞ if and only if o(α) or o(β) is infinite.

Remark. We can use Lemma 4.2.2 to define the omitted structure of αβ; here,

O(αβ) =M[O(β) ∪O(α)β]. Note that in general,

M[O(β) ∪O(α)β] 6=M[O(β)] ∪M[O(α)β].

In this case, equality only occurs ifO(β) andO(α)β are independent of each other

inM; that is, for all Ri ∈ σ, no tuple x̄ ∈ M with RMi (x̄) meets both O(β) and

O(α)β; see [56].

Following Lemma 4.2.2 and in a similar fashion to bimorphisms, we write

o(α) + o(β) <∞ to mean that both o(α) and o(β) are finite. We now summarise

two results that immediately follow from the fact that Emb(M) is a subsemi-

group of Mon(M).

Corollary 4.2.3. LetM be a countably infinite σ-structure.

(1) The only idempotent element in Emb(M) is the identity.

(2) If Emb(M) 6= Aut(M), then Emb(M) is not regular.

Proof. (1) Follows immediately from Corollary 3.2.3 (2).

(2) As every regular element of Mon(M) is a bijection by Corollary 3.2.3 (1), it

follows that any regular element of Emb(M) must be an automorphism.
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Corollary 4.2.4. LetM be a countably infinite σ-structure. For a natural number k,

define Jk := {ε ∈ Emb(M) : o(ε) ≥ k}. Then, if non-empty, Jk is an ideal of Emb(M).

Furthermore, if non-empty, J∞ = {ε ∈ Emb(M) : o(ε) =∞} is an ideal of Emb(M).

Proof. Let k ∈ N. As M is infinite, Mon(M) has ideals Ik identical to those in

Lemma 3.2.5. In this case, Jk = Ik∩ Emb(M) and so Jk is an ideal of Emb(M)

by Lemma 2.2.1. The same argument applies for J∞.

We can now move towards characterising Green’s relations of Emb(M). Here,

note that two elements α, β are J -related in Emb(M) only if αJ β in Mon(M);

however, we should not expect the converse to be true in general. This fact helps

to prove our next result.

Lemma 4.2.5. LetM be a σ-structure, and suppose that α, β in Emb(M).

(1) Suppose that αL β. Then for all γ, δ ∈ Emb(M) such that γα = β and δβ = α,

the maps γ and δ are automorphisms.

(2) Suppose that o(α) + o(β) < ∞ and αJ β. For all γ, δ, ε, ζ ∈ Emb(M) such that

γαδ = β and εβζ = α, the maps γ, δ, ε, ζ are automorphisms.

Proof. For both parts (1) and (2), if two embeddings of M are Green’s related

then they must also be Green’s related as monomorphisms of the domain M . By

Lemma 3.2.6, this only happens (in both cases) if the monomorphisms relating

α and β are bijections. As a bijective embedding is an automorphism, we are

done.

As a consequence of this, we can immediately characterise the L -relation in

Emb(M).

Lemma 4.2.6. Let α, β ∈ Emb(M). Then αL β if and only if O(α) = O(β).

Proof. Suppose that αL β. By Lemma 4.2.5, there exist automorphisms γ and

δ such that γα = β and δβ = α. By Lemma 4.2.2, it follows that O(γα) =

O(α) ∪O(γ)α. As O(γ) = ∅, it follows that O(α) = O(γα) = O(β).

Conversely, suppose that O(α) = O(β); because of this, Mα = Mβ. As

this happens, for every m ∈ M there exists a unique n ∈ M such that mα =
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nβ. Define γ = αβ−1 to be the unique bijection from M to itself sending m

to n. As α : M → Mα is an isomorphism, and Mα = Mβ, it follows that

α :M→Mβ is an isomorphism. Since β :M→Mβ is an isomorphism, there

exists an inverse isomorphism β−1 : Mβ → M. So γ = αβ−1 : M → M is an

isomorphism, and hence an automorphism ofM. We can use a similar argument

to show that there exists an automorphism δ ofM such that δβ = α.

For the R-relations, we take a slightly different approach to that of Proposi-

tion 3.2.9. Recall from Lemma 4.3.5 that R = D in Mon(M); this fact transfers

to Emb(M).

Proposition 4.2.7. Let α, β ∈ Emb(M). Then αRβ if and only if αDβ.

Proof. Since D is the smallest equivalence relation containing L and R, then

αRβ implies that αDβ.

Conversely, assume that αDβ; so there exists γ ∈ Emb(M) such that αL γ

and γRβ. As R is a transitive relation, it will suffice to show that αRγ. To that

end, write Emb(M) = S and consider the right ideal αS1. If ε is any embedding,

then

O(αε) =M[O(ε) ∪O(α)ε]

and so O(αε) embeds O(α) as an induced substructure via ε. Therefore, every

element of αS embeds O(α). Now consider γη ∈ γS1, where η is any embed-

ding. Since αL γ by assumption, it follows that O(γ) = O(α) by Lemma 4.2.6.

So by Lemma 4.2.2,

O(γη) = O(η) ∪O(γ)η = O(η) ∪O(α)η.

Therefore, O(γη) =M[O(η) ∪O(α)η] embeds O(α) via the embedding η and so

γη ∈ αS1; proving that γS1 ⊆ αS1. The proof that αS1 ⊆ γS1 is symmetric and

so αRγ.

Proposition 4.2.8. Suppose that α, β ∈ Emb(M).
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(1) If there exists an isomorphism betweenO(α) andO(β) that extends to an automor-

phism ofM, then αRβ.

(2) Assume further that o(α) + o(β) < ∞. If αRβ, then there exists an isomorphism

between O(α) and O(β) that extends to an automorphism ofM.

(3) If o(α) <∞, then Lα = Hα and Rα = Dα = Jα.

Proof. (1) By assumption, extend the isomorphism between O(α) and O(β) to

an automorphism ν of M. Define an embedding γ = αν. Since ν is an

automorphism we can write α = γν−1 and thus γRα. By Lemma 4.2.2, and

the fact that ν is an automorphism sending O(α) to O(β) gives

O(γ) = O(αν) = O(ν) ∪O(α)ν = O(αν) = O(β).

We see that O(γ) = O(β) and hence βL γ by Lemma 4.2.6. So βDα and

therefore βRα by Proposition 4.2.7.

(2) Assume that αRβ. As o(α) + o(β) < ∞, Lemma 4.2.5 (2) implies that they

must be R-related by automorphisms. In particular, there exists an auto-

morphism γ of M such that αγ = β. It follows from Lemma 4.2.2 that

O(β) = O(αγ) = M[O(γ) ∪ O(α)γ]. As γ ∈ Aut(M), O(γ) = ∅ and so

M[O(α)γ] = O(β). Furthermore, we have that M[O(α)]γ = O(β). There-

fore O(α)γ = O(β) and so there exists an isomorphism between O(α) and

O(β) that extends to an automorphism.

(3) Since R = D in general in Emb(M) by Proposition 4.2.7, and since any

element in Jα must be J -related to α by automorphisms, we can apply

Lemma 2.2.3 to see that Rα = Dα = Jα in this case. As Lα ⊆ Dα = Rα, the

fact that Hα = Lα follows by definition.

Example 4.2.9. Note that the condition of Proposition 4.2.8 (1) that the two omit-

ted structures must be isomorphic is necessary; providing a distinction between

Emb(M) and Mon(M). For example, let M be the random graph R and let
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α : R → Rα be an embedding that omits an edge {a, b}, and β : R → Rβ that

omits a non-edge {c, d}. By Theorem 2.4.4, both images are isomorphic to R, but

there is no automorphism of R sending Rα to Rβ and {a, b} to {c, d}.

As with the bimorphism case in Lemma 4.1.9, we are only able to give a

partial characterisation of J -relations in Emb(M); this is illustrated in Propo-

sition 4.2.8 (2) and (3). It is a possibility, in some structureM, that two elements

α, β ∈ Emb(M) where o(α) = o(β) =∞ are J -related by embeddings that add

in infinitely many edges. As with the case of the bimorphisms, we leave this

question open.

Question 4.2.10. Classify Green’s R = D and J -relations in Emb(M). In particular,

does R = D = J , as in Mon(N)?

4.2.2 Embeddings of (N,≤)

The first of our two examples concerning embeddings of σ-structures is the dis-

crete linear order (N,≤), the natural numbers together with the natural ordering.

This structure is rigid; the only order-preserving bijection of the natural num-

bers is the identity map. However, there do exist non-identity order-preserving

monomorphisms of N. As this structure is a linear order, there are no non-

relations to change and so every order-preserving monomorphism of N is an

embedding of (N,≤). From this, Emb(N,≤) is contained in the monomorphism

monoid of the domain N; this means we can use theory developed in both Sub-

section 4.2.1 and Section 3.2 to determine cofinality results for Emb(N,≤). First,

we begin with a fundamental lemma.

Lemma 4.2.11. Let A be any set of natural numbers such that |N r A| = |N|. Then

there exists a unique α ∈ Emb(N,≤) such that O(α) = A.

Proof. Suppose that β, γ ∈ Emb(N,≤) are two different embeddings such that

O(β) = O(γ), and let k be the least natural number such that kβ 6= kγ. Assume

without loss of generality that kβ < kγ. As nβ = nγ for all n < k, and β

and γ preserve order, there must be no a ≥ k such that aγ = kβ. This means
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that kβ ∈ O(γ). But kβ is in the image of β; therefore, kβ /∈ O(β). This is a

contradiction as we assumed that O(β) = O(γ).

Let Jk, J∞ ⊆ Emb(N,≤) be as in Corollary 4.2.4; these are both ideals of

Emb(N,≤) by the same result.

Corollary 4.2.12. (1) F = Emb(N,≤)r J∞ is a countable submonoid of Emb(N,≤).

(2) |J∞| = 2ℵ0 .

Proof. (1) Since F contains a unique function for each finite subset of the nat-

urals by Lemma 4.2.11, it follows that there is a bijective correspondence

between F and the set Y of all finite subsets of N. As Y is countable, F must

also be countable.

(2) Let Z = {A ⊆ N : |A| = |N r A| = |N|}. By Lemma 4.2.11, there exists a

unique function in J∞ for all A in Z; so |J∞| = |Z| = 2ℵ0 .

We now investigate generation results for Emb(N,≤). A generating set for

this monoid must be uncountable as Emb(N,≤) is uncountable. The idea, as in

the case of bimorphisms of the random graph R, is to show that Emb(N,≤) is

not Cayley bounded with respect to some ‘bad’ generating set U ; proving that

Emb(N,≤) does not have the Bergman property. Before we begin, denote the

unique map that has singleton defect {k} by αk.

Proposition 4.2.13. Let F ⊆ Emb(N,≤) be as in Corollary 4.2.12. Then any generat-

ing set for F contains αk for all k ∈ N.

Proof. Suppose that B is any generating set for F ; so B must generate αk for

every k ∈ N. By Corollary 4.2.4, B must generate each αk via elements β with

o(β) = 1. By Lemma 4.2.2 (2), and the fact that the only bijection in Emb(N,≤)

is the identity map, B must contain every αk.

Proposition 4.2.13 forms a base case for our next result concerning generation

of Emb(N,≤).
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Proposition 4.2.14. Let K = {αk : k ∈ N}, and let e be the identity element of

Emb(N,≤). Then X = K ∪ J∞ ∪ {e} generates Emb(N,≤).

Proof. It is enough to show thatX generatesF ; the proof, as in Proposition 4.1.23,

is by induction. The case where k = 0 or k = 1 is easy as X ⊇ K ∪ {e}. So as-

sume that all functions with defect of size k have been generated; we want to

show that we can generate every function with defect of size k + 1. Suppose

that β is such a function with O(β) = {b1, ..., bk, bk+1}. By the inductive hypoth-

esis, we can generate γ, the unique map with defect O(γ) = {b1, ..., bk}. Since

bk+1 /∈ O(γ), there exists some c ∈ N such that cγ = bk+1. Now, take the product

αcγ. Lemma 4.2.2 (1) implies that

O(αcγ) = O(αc)γ ∪O(γ)

= {c}γ ∪ {b1, ..., bk}

= {b1, ..., bk, bk+1} = O(β).

As β is the unique function with this defect, it follows that αcγ = β and we are

done.

Our next result shows that Emb(N,≤) is not Cayley bounded with respect to

X .

Proposition 4.2.15. LetX be as in Proposition 4.2.14, and let t = t1t2...tn be a product

of elements of X . Then the size of the defect of t is either infinite or at most n.

Proof. The proof is by induction on length of product. For the base case t =

t1, either t1 = e, or t1 = αk for some k ∈ N, or t1 ∈ J∞; any choice here

adheres to the conclusion of the statement. For the inductive step, assume that

the statement holds for a product t = t1t2...tn and multiply on the right by

an extra element tn+1 ∈ X . If tn+1 = e then we are done by the inductive

hypothesis. If tn+1 ∈ J∞, then as J∞ is an ideal, ttn+1 ∈ J∞. So it remains to

examine the case when tn+1 = αk for some k ∈ N. At most, αk only adds a single

element to the defect and therefore o(ttn+1) ≤ n+ 1.
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This shows that Emb(N,≤) is not Cayley bounded with respect to X ; as a

consequence, Emb(N,≤) does not have the Bergman property. We can also de-

termine the cofinality and strong cofinality of Emb(N,≤).

Theorem 4.2.16. cf(Emb(N,≤)) = scf(Emb(N,≤)) = ℵ0.

Proof. From Corollary 4.2.12, Emb(N,≤) is the disjoint union of a countable sub-

monoid F and an uncountable ideal J∞. Since F is not finitely generated by

Proposition 4.2.13, Lemma 3.1.3 implies that cf(F ) = ℵ0. We can use Lemma 3.1.4

to see that cf(Emb(N,≤)) is at most ℵ0; as it cannot be less, we are done. By

Proposition 3.1.2, scf(Emb(N,≤)) = ℵ0.

Remark. We could have used Proposition 3.2.12 to show that scf(Emb(N,≤)) =

ℵ0.

4.2.3 Generation results for Emb(R)

As Emb(R) contains the automorphism group of R (which is uncountable by

Theorem 2.4.7) it must itself be uncountable; in particular it is not finitely gen-

erated. Following this, we can investigate cofinality and generation results for

Emb(R).

Theorem 4.2.17. scf(Emb(R)) = ℵ0.

Proof. We show that Emb(R) meets the conditions of Proposition 3.2.12. First,

Emb(R) is a subsemigroup of Mon(V R). As outlined in Theorem 2.4.4, remov-

ing any finite number of vertices of R leaves a graph R′ such that R ∼= R′. So

there exists an α ∈ Emb(R) such that Mα = V R′. It follows that for each n ∈ N,

there exists β ∈ Emb(R) such that o(β) = n. Now, partition V R into two in-

finite pieces X1 and X2. By Theorem 2.4.5, the induced subgraph on one of

these parts is isomorphic to R; without loss of generality, assume this is R[X1].

Therefore, there exists an γ ∈ Emb(R) such that Mγ = R[X1]; and so there is

a γ ∈ Emb(R) such that o(γ) = ∞. Therefore, Emb(R) meets the conditions of

Proposition 3.2.12 and so has countable strong cofinality.
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As with the bimorphism monoid of R, we show that Emb(R) does not have

the Bergman property by fabricating a generating set for Emb(R) that is not

Cayley bounded. Our first result uses Lemma 4.2.5 and Proposition 4.2.8 to

detail an important fact.

Lemma 4.2.18. The set B = {α ∈ Emb(R) : o(α) = 1} forms a J -class of Emb(R).

Proof. Let α, β ∈ B. Since O(α) and O(β) are just single vertices in R, they

are isomorphic. By homogeneity of R, this partial isomorphism extends to an

automorphism of R; so by Proposition 4.2.8 (2) and (3), α and β are J -related.

This lemma shows that with the automorphisms of R and just one embed-

ding with singleton defect, we can generate all embeddings with a singleton

defect. Similarly to Proposition 4.1.23, we use this as a base case in order to

show that we can generate all embeddings with a finite defect. Recall that J∞ ⊆

Emb(M) (as in Corollary 4.2.4) is the ideal of all embeddings of a σ-structureM

with infinite defect. By Lemma 4.2.2 (2) the set Emb(R)r J∞ of all embeddings

of R that omit finitely many vertices is a submonoid of Emb(R).

Proposition 4.2.19. Let C = Emb(R) r I∞, and let β ∈ Emb(R) be an embedding

such that o(β) = 1. Then X = Aut(R) ∪ {β} generates C.

Proof. Let α ∈ C; the proof is by induction on the size of defect o(α) = k. The

case when k = 0 is trivial as Aut(R) ⊆ X . Here, Lemma 4.2.18 covers the case

where k = 1; so we can generate every element of B using X .

For the inductive step, assume that we have generated all embeddings of R

with defect of size k. Assume that β ∈ C with O(β) = {b1, b2, ..., bk, bk+1}; our

aim is to generate β. By Lemma 4.2.6, and the fact that Aut(R) ⊆ X , it suffices to

show that we can generate some δ ∈ Emb(R) such that O(δ) = O(β). Using the

inductive hypothesis, we can generate α ∈ Emb(R) such thatO(α) = {b1, ..., bk}.

As bk+1 /∈ O(α), there exists v ∈ V R such that vα = bk+1. Now, select some γ ∈
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Emb(R) with O(γ) = {v}, and set δ = γα. Then, using Lemma 4.2.2 (1):

O(δ) = O(γα) = O(γ)α ∪O(α)

= {v}α ∪ {b1, ..., bk}

= {b1, ..., bk, bk+1} = O(β)

and we are done.

As an immediate corollary of this result, we get:

Corollary 4.2.20. cf(Emb(R)r I∞) > ℵ0.

Proof. Similar to Corollary 4.1.24.

Finally, suppose that X is as in Proposition 4.2.19. It follows that the set

Y = X ∪ I∞ generates Emb(R).

Theorem 4.2.21. Let τ = t1t2t3...tk be a product of embeddings from Y . Then o(τ) is

either less than k or it is infinite.

Proof. The proof follows exactly the same steps as Theorem 4.1.25 with bimor-

phisms replaced by embeddings.

By this result, Emb(R) is not Cayley bounded with respect to the generating

set Y ; hence Emb(R) does not have the Bergman property. As with the bimor-

phism case, we have not been able to determine the cofinality of Emb(R); fol-

lowing the observation of Corollary 4.2.20, we conjecture that cf(Emb(R)) > ℵ0

and leave it as an open question.

Question 4.2.22. Is cf(Emb(R)) > ℵ0?

4.3 Monomorphisms of σ-structures

Following the investigations into Bi(M) and Emb(M), our attention turns to

the more general case of Mon(M). As monomorphisms are much more gen-

eral than bimorphisms and embeddings, it follows that we will not be able to
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prove as many statements in full generality; this is reflected in the statements

on Green’s relations in Mon(M). Nevertheless, we can use the machinery of ad-

ditional and omitted structures developed in these studies to help describe the

basic semigroup theory of Mon(M).

4.3.1 Semigroup theory of Mon(M)

We begin with a straightforward generalisation of Definitions 4.1.4 and 4.2.1.

Definition 4.3.1. Let α be a monomorphism of a countably infinite σ-structure

M. Define the defect of α to be the set O(α) = M rMα and the omitted structure

to beO(α) =M[O(α)]. For a monomorphism α ofM, define a σ-structureA(α)

on M with ā ∈ RA(α)
i if and only if ā /∈ RMi and āα ∈ RMα

i for all Ri ∈ σ; call

this the additional structure of α.

Furthermore, for α ∈Mon(M), define the support of α to be the set:

S(α) = {x ∈M : x ∈ ā, ā ∈ RA(α)
i for some Ri ∈ σ}.

As S(α) is a subset of M , we can induce a structureM[S(α)] on S(α) with rela-

tions fromM; call this the support structure of α.

In a similar fashion to Section 4.1 and Section 4.2, for some monomorphism α

ofM, define ei(α) = |RA(α)
i | for all Ri ∈ σ and o(α) = |O(α)|, writing ei(α) =∞

if RA(α)
i is infinite and o(α) =∞ if O(α) is infinite.

Lemma 4.3.2. LetM be a σ-structure, and suppose that α, β ∈Mon(M). Then:

(1) • O(αβ) = O(β) ∪O(α)β;

• R
A(αβ)
i = R

A(α)
i ∪RA(β)

i α−1 for all Ri ∈ σ;

• both of these are disjoint unions.

(2) • If o(α) and o(β) are both finite, then o(αβ) = o(α) + o(β).

• If ei(α) and ei(β) are both finite for someRi ∈ σ, then ei(αβ) = ei(α)+ei(β).

• o(αβ) = ∞ if and only if o(α) or o(β) is infinite; similarly, for Ri ∈ σ,

ei(αβ) is infinite if and only if ei(α) or ei(β) is infinite.
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Proof. For (1), Mon(M) is contained in Mon(M); so the conclusion thatO(αβ) =

O(β) ∪O(α)β (and this is a disjoint union) follow from Lemma 3.2.2. The proof

that RA(αβ)
i = R

A(α)
i ∪ RA(β)

i α−1 for all Ri ∈ σ (and this is a disjoint union)

is alike to that of Lemma 4.1.6. As both the unions in (1) are disjoint, the first

two items follow. The proof of the third item is analogous to similar results in

Corollary 4.1.7 and Lemma 4.2.2.

Remarks. (i) Let α ∈Mon(M). If ei(α) = 0 for all Ri ∈ σ, then α is an embed-

ding. If o(α) = 0, then α is a bimorphism ofM. If both happen, then α is

an automorphism ofM.

(ii) As in Lemma 4.2.2, O(αβ) =M[O(β) ∪O(α)β] and in general,

M[O(β) ∪O(α)β] 6=M[O(β)] ∪M[O(α)β].

As Mon(M) is a subsemigroup of Mon(M), we can write the same results

for monomorphisms as we did for embeddings in Corollary 4.2.3 and Corol-

lary 4.2.4.

Corollary 4.3.3. LetM be a countably infinite σ-structure.

(1) The only idempotent element in Mon(M) is the identity.

(2) If Mon(M) 6= Aut(M), then Mon(M) is not regular.

Proof. (1) Follows immediately from Corollary 3.2.3.

(2) As every regular element of Mon(M) is a bijection by Corollary 3.2.3 (1),

it follows that any regular element of Mon(M) must be an bimorphism.

Corollary 4.1.2 (2) asserts that every regular element of Bi(M) is an auto-

morphism.

This next corollary is important in showing strong cofinality results later in

the section.
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Corollary 4.3.4. LetM be a countably infinite σ-structure. For k ∈ N, define Ik =

{ε ∈ Mon(M) : o(ε) ≥ k}. Then, if non-empty, Ik is an ideal of Mon(M). Further-

more, if non-empty, I∞ = {ε ∈Mon(M) : o(ε) =∞} is an ideal of Mon(M).

Proof. Similar to Corollary 4.2.4.

Remark. This corollary does not describe all the ideals of Mon(M). For instance,

the set I(i, k) = {ε ∈ Mon(M) : ei(ε) ≥ k} is also an ideal of Mon(M) by

Lemma 4.3.2 (2).

We now look at Green’s relations in Mon(M) in general. Writing down all-

encompassing characterisations for Green’s relations is somewhat difficult as

we need to consider both ways in which a general monomorphism ofM affect

a structure. However, we can use the fact that Mon(M) is right-cancellative, as

well as some previous results for bimorphisms and embeddings, to narrow our

consideration slightly.

Lemma 4.3.5. LetM be a σ-structure, with α, β ∈Mon(M).

(1) Suppose that αL β. Then for all γ, δ ∈ Mon(M) such that γα = β and δβ = α,

the maps γ and δ are automorphisms.

(2) Suppose that o(α) + o(β) < ∞ and αJ β. For all γ, δ, ε, ζ ∈Mon(M) such that

γαδ = β and εβζ = α, the maps γ, δ, ε, ζ are automorphisms.

Proof. (1) Suppose that γ, δ ∈Mon(M) are as in the statement. It follows γδα =

α; as Mon(M) is right-cancellative, we have that γδ = 1. Furthermore, the

fact that δγβ = β implies that δγ = 1. So both γ and δ are units; in other

words, they are automorphisms.

(2) The proof of this is similar to both Lemma 4.1.9 (2) and Lemma 4.2.5 (2).

Following Lemma 4.3.5 (1), we can at least offer a characterisation of L -

relations in Mon(M).

Proposition 4.3.6. Let α, β ∈ Mon(M). Then αL β if and only if O(α) = O(β),

S(α)α = S(β)β andM[S(α)] ∼=M[S(β)] via the isomorphism induced by αβ−1.
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Proof. Suppose that αL β; so by Lemma 4.3.5 (1), there exist automorphisms γ, δ

ofM such that γβ = α and δα = β. The fact that γ is an automorphism implies

that O(γ) = ∅; using Lemma 4.3.2 (1), we get

O(β) = O(γβ) = O(α) ∪O(γ)β = O(β).

As this happens, Mα = Mβ; so in a similar fashion to Lemma 4.2.6, define

ν = αβ−1 as a bijection from M to itself. Note that ν is therefore an element of

Sym(M). Since γ, α, β ∈Mon(M), we have α = γβ = νβ; by right-cancellativity

of Mon(M), it follows that that γ = ν and so ν is an automorphism. Now, by

Lemma 4.3.2 (1), we have

R
A(α)
i = R

A(γβ)
i = R

A(γ)
i ∪RA(β)

i γ−1 = R
A(β)
i γ−1

for all Ri ∈ σ. From this, S(α) = S(γβ) = S(β)γ−1. Since γ = αβ−1 is an

automorphism, M[S(α)] ∼= M[S(β)] via this automorphism. The proof that

S(α)α = S(β)β in this case is the same as the one given in Proposition 4.1.11.

Now assume the converse; thatO(α) = O(β), S(α)α = S(β)β andM[S(α)] ∼=

M[S(β)] via the isomorphism induced by αβ−1. As O(α) = O(β) we can define

the bijection αβ−1 : M → M as illustrated in the previous part of the proof. All

that remains to show is that αβ−1 is a monomorphism; the proof of this is almost

exactly that of the similar direction of Proposition 4.1.11. Hence (αβ−1)β = α.

We can define βα−1 and show it is a monomorphism in a similar fashion to find

that (βα−1)α = β; so αL β.

We now turn our attention to determining R-relations in Mon(M). The fol-

lowing is a generalised version of the R-relations case of Proposition 3.2.9.

Proposition 4.3.7. Let α, β ∈ Mon(M). Then αRβ if and only if there exists a

monomorphism f : O(α) → O(β) that extends to a monomorphism η ofM such that

η|Mα = α−1β : Mα → Mβ; and there exists a monomorphism g : O(β) → O(α)

that extends to a monomorphism θ ofM such that θ|Mβ = β−1α :Mβ →Mα.

Proof. Suppose that αRβ in Mon(M). So there exist monomorphisms γ, δ of
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M such that αγ = β and βδ = α. Then, γ|Mα : Mα → Mβ is a bijective

monomorphism from Mα to Mβ. Now, as α : M → Mα and β : M → Mβ

are bijections, there exists a unique bijection α−1β : Mα → Mβ. So if aα ∈ Mα

then (aα)γ = aαγ = aβ and therefore γ|Mα = α−1β :Mα→Mβ. Also, γ sends

M rMα to M rMβ; so by Definition 4.3.1 γ sends O(α) to O(β). The map

γ|O(α) : O(α)→ O(β) is a monomorphism that clearly extends to γ.

Now suppose the converse conditions, and let η ∈Mon(M) be as described

above. Then αη : M → Mβ first sends a ∈ M to aα inMα; then sends aα to

aαη = aαα−1β = aβ. So η is a monomorphism such that αη = β. We can do the

same in the other direction to see that θ is a monomorphism such that βθ = α;

and so αRβ.

Remarks. (i) As mentioned above, ifM is a countable set, then both of these

propositions reduce to Proposition 3.2.9.

(ii) Note that if α, β are bijections (and hence bimorphisms), then Propositions

4.3.6 and 4.3.7 reduce to Propositions 4.1.11 and Proposition 4.1.12 respec-

tively. Similarly, if α, β are embeddings then these two results reduce to

Lemma 4.2.6 and Proposition 4.2.8 respectively.

(iii) If both O(α) and O(β) are finite (and non-empty), then αRβ if and only

if O(α) ∼= O(β) and this isomorphism and its inverse both extend to bi-

morphisms of M; this is a consequence of Lemma 3.2.6. If, in addition,

ei(α) + ei(β) <∞ for all Ri ∈ σ, then the isomorphism between O(α) and

O(β) must extend to an automorphism ofM; this is by Lemma 4.3.2 (2).

We finish on the following questions, which we have not been able to deter-

mine in general due to time constraints. Note that we showed that R = D in

Mon(N), the monomorphism monoid on a countable set, motivating the second

question.

Question 4.3.8. Characterise Green’s D and J -relations in Mon(M). In particular,

does R = D in Mon(M)?
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4.3.2 Generation properties of Mon(R)

We can use similar techniques to those in Subsection 4.2.3 to determine gener-

ation and cofinality results for Mon(R). Let α ∈ Mon(R). As R is a graph, we

write e(α) to mean the number of edges added in by α as in Subsection 4.1.4.

Our first result is a straightforward application of Proposition 3.2.12.

Theorem 4.3.9. scf(Mon(R)) = ℵ0.

Proof. As Mon(R) contains Emb(R), it follows from Theorem 4.2.17 that Mon(R)

contains maps γk such that o(γk) = k for all k ∈ N. Furthermore, there exists

a δ ∈ Mon(R) such that o(δ) = ∞. By Corollary 4.3.4, Mon(R) satisfies the

conditions for Proposition 3.2.12 and so scf(Mon(R)) = ℵ0.

Following proofs that Bi(R) and Emb(R) do not have the Bergman property,

we show that Mon(R) does not have the Bergman property. In a similar fash-

ion to these cases, our aim is to demonstrate an inefficient generating set for

Mon(R). To do this, we define a subset FMon(R) of Mon(R) that contains all

monomorphisms of R with a finite additional and a finite omitted graph. By

Lemma 4.3.2 (1), FMon(R) is a submonoid of Mon(R).

Theorem 4.3.10. Let Y = Aut(R) ∪ {β} ∪ {ε}, where β ∈ Bi(R) such that e(β) = 1

and ε ∈ Emb(R) such that o(ε) = 1. Then Y generates FMon(R).

Proof. It suffices to generate an element α ∈ FMon(R) with any additional graph

(on any support graph) and any omitted graph. Suppose θ ∈ Bi(R) adds in

finitely many edges and φ ∈ Emb(R) omits finitely many vertices. As Y contains

all the automorphisms and a bimorphism that adds in a single edge, we can

generate θ by Proposition 4.1.23. Similarly, since Y contains an embedding that

omits a single vertex, we can generate φ by Proposition 4.2.19. Suppose that γ is

an automorphism, and define a monomorphism α = θγφ ∈ FMon(R). Then by

Lemma 4.3.2 (1):

A(α) = A(θγφ) = A(θ) ∪ A(γφ)θ−1 = A(θ)
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as γφ is an isomorphism. This means that S(α) = S(θ). Similarly by Lemma 4.3.2

(1):

O(α) = O(θγφ) = O(φ) ∪O(θγ)φ = O(φ)

as θγ is a bijection. So we have generated a monomorphism α with additional

graph A(θ), support S(θ), and omitted graph O(φ). Now, for some automor-

phisms δ, ζ of R, the monomorphism δαζ has isomorphic additional, support

and omitted graphs to α by Lemma 4.3.2 (1). As Aut(R) ⊆ Y , we can generate

any such monomorphism and we are done.

Similar to Corollary 4.1.24 and Corollary 4.2.20, we have a straightforward

corollary of Theorem 4.3.10.

Corollary 4.3.11. cf(FMon(R)) > ℵ0.

Proof. Theorem 4.3.10 shows that rank(FMon(R) : Aut(R)) = 2. As cf(Aut(R)) >

ℵ0, the result follows from Proposition 3.1.6.

Now, define the set Z = {α ∈Mon(R) : e(α) =∞ or o(α) =∞}. By remarks

following Lemma 4.3.2, this is an ideal of Mon(R). It follows that Mon(R)r

FMon(R) = Z, and so Y ∪ Z generates Mon(R) by Theorem 4.3.10. In the

next result, we determine that Y ∪ Z is not a Cayley bounded generating set

for Mon(R).

Theorem 4.3.12. Let ρ = ρ1ρ2...ρk be a product of elements from Y ∪Z. Then e(ρ) +

o(ρ) ≤ k or it is infinite.

Proof. We can see that if any of the ρi’s are in Z, then e(ρ) or o(ρ) is infinite and

we are done. So assume that each of the ρi’s are in Y . We can now perform

an induction on the length of product; the proof follows in the same fashion as

Theorem 4.1.25 and Theorem 4.2.21.

Similarly to Bi(R) and Emb(R), this final proposition shows that the gener-

ating set Z of Mon(R) is not Cayley bounded and therefore Mon(R) does not

have the Bergman property. We have not been able to determine the cofinality
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of Mon(R); however, we conjecture that this is uncountable due to the uncount-

able cofinality of Aut(R) and Corollary 4.3.11. This needs to be verified and so

we leave it as an open question.

Question 4.3.13. Is cf(Mon(R)) > ℵ0?

Furthermore, whilst we have investigated semigroup-theoretic properties of

injective endomorphisms in general, we have not considered the case of a gen-

eral surjective endomorphism. A study along the lines of those conducted in this

chapter would provide an interesting future direction for research.

Question 4.3.14. Develop the theory of epimorphism monoids of first-order structures.



5

Partial map monoids of first-order

structures

The focus of Chapter 4 was the study of several types of endomorphism monoid

on a σ-structureM; determining semigroup-theoretic properties in general and

generation properties of these monoids in some special cases. As mentioned in

the introduction, there is a body of literature on semigroup-theoretic properties

of endomorphism monoids of first-order structures [7, 8, 66, 24, 23]; studies have

also been made with connections to constraint satisfaction problems [4, 5] and

topological applications [52, 6].

Studies have been conducted into the partial map monoid and symmetric

inverse monoid on a set X ; ranging from semigroup-theoretic properties [41] to

representation theory [34] and geometry [51]. Furthermore, there is literature on

studying partial homomorphisms and isomorphisms of first-order structures,

both in classical model theory [28, 37] and inverse semigroups acting on first-

order structures [71]. To our knowledge however, no explicit study has been

made on the semigroup theory of partial map monoids of first-order structures;

which is the subject covered in this chapter.

The endomorphism monoids onM considered in Chapter 4 only represent

a section of all self-map monoids onM. For instance, as the composition of two

homomorphisms f : A → B and g : B → C is a homomorphism fg : A → C and

this composition is associative, we can form a semigroup (with zero) of all homo-

morphisms between substructures of a first-order structureM. This semigroup

represents a natural analogue of the partial map monoid Part(X) on a set X ; we
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say that this is the partial homomorphism monoid Part(M) of a first-order structure

M. In a similar fashion, we can define the symmetric inverse monoid Inv(M) to be

the partial map monoid consisting of all isomorphisms between substructures

ofM. This is the structural analogue of the classical symmetric inverse monoid

Inv(X) on a set X . Moreover, Inv(M) is also an inverse semigroup; as isomor-

phisms are invertible, it follows that for every element g in Inv(M) there exists

a unique h in Inv(M) such that ghg = g and hgh = h.

IfM is a relational first-order structure, then a bijective endomorphism from

M to itself may not be an automorphism; this formed the basis for the investiga-

tion of bimorphism monoids in Chapter 4. This can be generalised to all bijective

homomorphisms between substructures ofM; these are not necessarily isomor-

phisms. As the composition of two injective maps is injective, it follows that

the collection of partial monomorphisms ofM forms a monoid Inj(M), which

we shall call the partial monomorphism monoid of M. Note that if M is a set,

then Inj(M) = Inv(M). As every isomorphism is a monomorphism and ev-

ery monomorphism is a homomorphism, it follows that Inv(M) ⊆ Inj(M) ⊆

Part(M). Section 5.1 details some basic facts about these three partial map

monoids including idempotents, cardinality, and Green’s relations for Inv(M)

and Inj(M).

One of these results (Corollary 5.1.3) says that if M is a countably infinite

structure, then each of the monoids Part(M), Inj(M) and Inv(M) is uncount-

able. Because of this, they are infinitely generated and so there is a chance

that these monoids have uncountable cofinality and strong cofinality and/or the

Bergman property, depending on the structureM. The objective of Section 5.2

is to modify Dolinka’s approach in order to find a similar result to [23, Theorem

2.2] for partial map monoids of first-order structures.

However, Part(M), Inj(M) and Inv(M) are not the only partial map monoids

on a first-order structure. For any inverse semigroup S, there is a commutative

subsemigroup E(S) of S consisting of all idempotents of S; this is often referred

to as the semilattice of idempotents. For the endomorphism monoids considered in

Chapter 4, E(S) consists of the identity endomorphism ofM by Corollary 3.2.3
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and Corollary 4.1.2. This is a different story for the symmetric inverse monoid on

M; the identity mapping on any substructure ofM is an idempotent in Inv(M).

By Lemma 5.1.2, these are the only idempotents of Inv(M). We perform a study

on this monoid similar to any other self-map monoid considered in this thesis;

this is the subject of Section 5.3.

As in Chapter 4, σ = {Ri : i ∈ I} is a relational signature and M will be

a σ-structure on a countable domain M throughout the chapter unless other-

wise stated. We write the domain and image of a partial homomorphism α of

M as dom α and im α respectively; we denote the substructures induced on

dom α and im α byM as 〈dom α〉 and 〈im α〉 respectively. The identity map on

some subset A of M is written as idA. Any partial map monoid of a first-order

structure M acts on n-tuples of M via the componentwise partial monoid ac-

tion given in Subsection 2.2.3. For a bijective homomorphism α : A → B, the

inverse function will be written α−1 : B → A, regardless of whether or not α−1

is a homomorphism. If α is an isomorphism, then α−1 is the unique semigroup

theoretic inverse for α.

5.1 Semigroup-theoretic properties

As Part(M) embeds in the partial map monoid Part(M) of the domain of M,

it follows that Equation 2.1 and Equation 2.2 (on page 26) hold for any α, β ∈

Part(M); the same is true for Inv(M) embedding in the symmetric inverse

monoid Inv(M). As a collection of partial bijections, Inj(M) embeds in the sym-

metric inverse monoid Inv(M); so Equation 2.1 and Equation 2.2 hold in Inj(M)

too. However, Inj(M) is not an inverse semigroup; for instance, a bimorphism

of M (which is a partial monomorphism) sending a non-relation to a relation

does not have an inverse by Corollary 4.1.7. This means that Inj(M) is an inverse

semigroup-embeddable monoid; a partial map analogue of the bimorphism monoid

of a first order structureM.

Recall (from Section 2.1) that for a map α : dom α → im α, the converse

α∗ : im α→ dom α is a multifunction; furthermore, if α∗ is a multifunction then
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b̄α∗ = {ā : āα = b̄}. The next result generalises Proposition 1.4.5 of [41] to the

case of partial map monoids of σ-structures.

Lemma 5.1.1. LetM be a σ-structure, and suppose that α ∈ Part(M). Then α∗ is in

Part(M) if and only if α is a partial isomorphism.

Proof. As α∗ is in Part(M), it must be a surjective map in its own right; this only

happens if α is both injective and surjective (see Section 2.1). Now, letRi be an n-

ary relation of σ, and suppose ā ∈ (dom α)n. Since α is a partial homomorphism,

if ā ∈ R
〈dom α〉
i then āα = b̄ ∈ R

〈im α〉
i . Note that as α is injective, ā = b̄α∗ by

definition. As α∗ ∈ Part(M) by assumption, we have that b̄α∗ is in R〈im α〉
i ; and

so ā ∈ R〈dom α〉
i . Hence ā ∈ R〈dom α〉

i if and only if āα ∈ R〈im α〉
i ; therefore, α is an

isomorphism.

Now suppose that α is a partial isomorphism. This means that α is bijective

and so α∗ is a bijective function by remarks in Section 2.1. We now check that

α∗ is a homomorphism. Suppose that āα ∈ R〈dom α∗〉
i = R

〈im α〉
i ; as α is a partial

isomorphism, this implies that ā ∈ R
〈dom α〉
i = R

〈im α∗〉
i . Since āαα∗ = ā, it

follows that α∗ is a partial homomorphism and therefore α∗ ∈ Part(M).

Remark. Note here that if α is a partial bijection, then α∗ = α−1, the unique

semigroup-theoretic inverse for α in Inv(M).

Recall that idempotents of the symmetric inverse monoid Inv(X) on a set X

were characterised in Lemma 2.2.8; we can use this result to characterise idem-

potents in two of our three considered partial map monoids.

Lemma 5.1.2. Let ε ∈ Inj(M). Then ε is an idempotent if and only if ε is the identity

map on some substructure ofM.

Proof. As Inj(M) embeds in the symmetric inverse monoid Inv(M), we can

show that any idempotent in Inj(M) is an idempotent of Inv(M) via a similar

argument to that of Corollary 4.1.2. By Lemma 2.2.8, the idempotents of Inv(M)

are precisely the identity maps on subsets.

Remark. This result also holds in the case where ε ∈ Inv(M). However, Lemma 5.1.2

may not hold for the case where ε ∈ Part(M). For instance, the partial map
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monoid of the random graph Part(R) contains the endomorphism monoid End(R);

this was shown to have 2ℵ0 many primitive idempotents (notably, including ex-

amples that do not arise as identity maps on substructures) by Bonato and Delić

[7].

Corollary 5.1.3. Suppose thatM is a countably infinite first-order structure with do-

main M . Then |Inv(M)| = |Inj(M)| = |Part(M)| = 2ℵ0 .

Proof. As the power set P(M) of a countable set is uncountable, the fact that

Inv(M) contains an identity map for each subset of M implies that |Inv(M)| =

2ℵ0 . As Inv(M) ⊆ Inj(M) ⊆ Part(M), the result follows.

Similarly to the bimorphism, embedding and monomorphism monoids of a

first order structureM, we can look at Green’s relations for Inv(M) and Inj(M).

Using classical semigroup-theoretic results together with Lemma 2.2.10, we can

easily characterise Green’s relations for the symmetric inverse monoid.

Lemma 5.1.4. LetM be a σ-structure, and suppose α, β ∈ Inv(M). Then:

(1) αL β if and only if im α = im β;

(2) αRβ if and only if dom α = dom β;

(3) αDβ if and only if 〈im α〉 ∼= 〈im β〉, and;

(4) D = J .

Proof. As Inv(M) is an inverse subsemigroup of Inv(M), it is also a regular sub-

semigroup of Inv(M). As this happens, the Green’s relations of Inv(M) are the

restrictions of the Green’s relations of Inv(M). The results for L and R for

f, g ∈ Inv(M), and the fact that D = J , follow directly from Lemma 2.2.10.

From that same result two functions α, β in Inv(M) are D-related if and only if

|im α| = |im β|; this means there is a bijection γ taking im α to im β. This only

happens in Inv(M) if γ is also an isomorphism; so 〈im α〉 ∼= 〈im β〉.

Remark. We notice the similarities between this result and the characterisation of

Green’s relations for regular elements of endomorphism monoids of ∆-structures
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(not necessarily first-order) in Magill and Subbiah [57], and the corresponding

special case for σ-structuresM in [24, Lemma 2.5].

For Inj(M), the monoid of all partial monomorphisms of a σ-structure M,

slightly more care must be taken in determining Green’s relations. As partial

monomorphisms may change relations to non-relations, it follows that Inj(M)

may not be a regular monoid (as it contains Bi(M); see Corollary 4.1.2 (2)) and

hence is not a regular submonoid of Inv(M). However, as a partial map ana-

logue of the bimorphism monoid, we can adapt some of our existing knowledge

of bimorphisms from Section 4.1 to the setting of partial monomorphisms. Our

first definition generalises Definition 4.1.4 to elements of Inj(M).

Definition 5.1.5. For a partial monomorphism α ofM, define a σ-structureA(α)

with domain dom α and relations given by ā ∈ RA(α)
i if and only if ā /∈ R〈dom α〉

i

and āα ∈ R〈im α〉
i for all i ∈ I . We call this the additional structure of α.

For α ∈ Inj(M), define the support of α to be the set

S(α) = {x ∈ dom α : x ∈ ā and ā ∈ RA(α)
i for some i ∈ I}.

As S(α) is a subset of dom α, we can induce a structureM[S(α)] on S(α) with

relations from M; call this the support structure of α. For two elements α, β of

Inj(M) and some Ri ∈ σ with arity n, define the set

R
A(β)
i α−1 = {x̄ ∈ (dom α)n : x̄α ∈ RA(β)

i }.

The next result is a partial map analogue of Lemma 4.1.6.

Lemma 5.1.6. Suppose that α, β ∈ Inj(M). Then

R
A(αβ)
i = (R

A(α)
i ∪RA(β)

i α−1) ∩ (dom αβ)n

and the first term of the intersection is a disjoint union.

Remark. As in Lemma 4.1.6, the idea here is that the set of relations added in by

the product αβ is the same set of relations given by first applying α and then
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β. Here, RA(α)
i is the set of relations added in by α, and R

A(β)
i α−1 is the set of

relations added in by β after α has been applied.

Proof. The proof is by containment both ways. We show that (R
A(α)
i ∪RA(β)

i α−1)∩

(dom αβ)n ⊆ R
A(αβ)
i by proving that both RA(α)

i ∩ (dom αβ)n and R
A(β)
i α−1 ∩

(dom αβ)n are contained in RA(αβ)
i .

Suppose that ā ∈ RA(α)
i ∩ (dom αβ)n. Since ā ∈ (dom αβ)n, it follows that

āαβ ∈ (im αβ)n. As ā ∈ R
A(α)
i , we have that ā /∈ R

〈dom α〉
i but āα ∈ R

〈im α〉
i .

Therefore, āαβ ∈ R〈im αβ〉
i , since āαβ ∈ (im αβ)n. So ā ∈ RA(αβ)

i .

Now, assume that ā ∈ RA(β)
i α−1 ∩ (dom αβ)n. As this happens, āα ∈ RA(β)

i ;

by definition, āα /∈ R〈dom α〉
i but āαβ ∈ R〈im β〉

i . Since ā ∈ (dom αβ)n = ((im α ∩

dom β)α∗)n, we have that āα ∈ (im α ∩ dom β)n, and so āα /∈ R
〈im α∩dom β〉
i .

This means that āαβ ∈ R〈im α∩dom β〉β
i = R

〈im αβ〉
i , and so ā ∈ RA(αβ)

i .

For the reverse containment, suppose that ā ∈ RA(αβ)
i ; so, ā ∈ (dom αβ)n =

((im α ∩ dom β)α∗)n by Equation 2.1. Similar to Lemma 4.1.6 there are two

cases; either āα ∈ R〈im α∩dom β〉
i or it is not. If ā ∈ R〈im α∩dom β〉

i , then ā ∈ RA(α)
i

and so this case is true. If āα /∈ R〈im α∩dom β〉
i , then as āαβ ∈ R〈im αβ〉

i it follows

that āα ∈ RA(β)
i . By definition, ā ∈ RA(β)

i α−1 and we are done.

The proof that (R
A(α)
i ∪RA(β)

i α−1) is a disjoint union is similar to the disjoint

union portion of Lemma 4.1.6.

Remark. It is easy to see that Lemma 4.1.6 follows as a direct consequence of this

result.

It is clear that α ∈ Inj(M) is a partial isomorphism (and hence in Inv(M)) if

and only if RA(α)
i = ∅ for all Ri ∈ σ. The next three results determine Green’s

L ,R and D-relations for Inj(M).

Proposition 5.1.7. LetM be a σ-structure, and suppose α, β ∈ Inj(M). Then αL β

if and only if im α = im β, and the resulting map αβ−1 is an isomorphism sending

M[S(α)] toM[S(β)], and S(α)α = S(β)β.

Proof. For the converse direction, we need to find partial monomorphisms γ, δ ∈

Inj(M) such that γβ = α and δα = β. As α and β are in Inj(M), they are
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in Inv(M) and so are partial bijections. As this occurs, and im α = im β, we

can uniquely define a bijection γ = αβ−1 : dom α→ dom β. Using the assump-

tions that αβ−1 induces an isomorphism fromM[S(α)] toM[S(β)] and S(α)α =

S(β)β, we can show that γ is also a monomorphism using a similar argument

to Proposition 4.1.11. Similarly, the bijection δ = βα−1 : dom β → dom α is

uniquely defined and can be shown to be a monomorphism in the same fashion.

Now, suppose that αL β; so there exists γ, δ ∈ Inj(M) such that γβ = α

and δα = β. As α, β ∈ Inv(M), they have to be L -related in Inv(M); so

Lemma 2.2.10 implies that im α = im β. Now, as γβ = α and δα = β, it

follows that γδα = α. By Lemma 2.2.9, this means that γδ|dom α = iddom α.

So there exists a subset X of im γ such that γ|dom α : dom α → X composed

with δ|X : X → dom α is the identity element on dom α. This implies that

δ|X is an inverse for γ|dom α; by the remark following Lemma 5.1.1, they are

both isomorphisms. Similarly, we can show that as δγβ = β, then δ|dom β is an

isomorphism. Using the fact that im α = im β, there exists a unique bijection

αβ−1 : dom α→ dom β such that (αβ−1)β = α. Since γβ = α, we can conclude

that γ|dom α = αβ−1 and so αβ−1 is an isomorphism. We can now show that

αβ−1 sendsM[S(α)] toM[S(α)] and that S(α)α = S(β)β via a similar argument

to Proposition 4.1.11, where we use Lemma 5.1.6 in place of Lemma 4.1.6.

Proposition 5.1.8. LetM be a σ-structure, and suppose α and β are in Inj(M). Then

αRβ if and only if dom α = dom β and A(α) = A(β).

Proof. Suppose that dom α = dom β and A(α) = A(β). As α, β are partial

bijections and dom α = dom β, we can find a uniquely defined bijection γ =

α−1β : im α → im β such that γα = β. We can use a similar argument to

Proposition 4.1.12 in order to show that γ is a monomorphism from 〈im α〉 to

〈im β〉. Similarly, the bijection δ = β−1α : im β → im α can be shown to be a

monomorphism in the same fashion.

Conversely, suppose that αRβ. Therefore, there exists γ, δ ∈ Inj(M) such

that αγ = β and βδ = α. As α and β must be R-related in Inv(M), it follows that

dom α = dom β. Now, let Ri ∈ σ and suppose that ā ∈ RA(α)
i ; so in particular,
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ā /∈ R
〈dom α〉
i = R

〈dom β〉
i by assumption. Here, āβ = āαγ and as ā ∈ R

A(α)
i ,

it follows that āα ∈ R
〈im α〉
i . Since γ is a monomorphism, āαγ = āβ ∈ R

〈im β〉
i

and so ā ∈ R
A(β)
i by definition. Using a similar argument and the fact that

δ is a monomorphism, we can show that any b̄ ∈ R
A(β)
i is in R

A(α)
i ; and so

R
A(α)
i = R

A(β)
i by containment both ways. This is true for all Ri ∈ σ and so

A(α) = A(β).

Proposition 5.1.9. LetM be a σ-structure, and suppose α and β are in Inj(M). Then

αDβ if and only if there exists a partial monomorphism η such that

• dom α = dom η and im η = im β;

• ηβ−1 induces an isomorphism fromM[S(α)] toM[S(β)], and α−1η induces an

isomorphism fromM[S(α)α] toM[S(β)β], and;

• S(β)β = S(η)η.

Proof. Suppose that αDβ in Inj(M); so there exists a partial monomorphism η

such that αRη and ηL β. By Proposition 5.1.7, it follows that im η = im β,

and ηβ−1 induces an isomorphism sending M[S(η)] to M[S(β)]. By Propo-

sition 5.1.8, dom α = dom η and A(α) = A(η). As this happens, it follows

that S(η) = S(α), and so ηβ−1 induces an isomorphism sending M[S(α)] to

M[S(β)]. From this

S(η)ηβ−1 = S(β)

and so, as β is injective, S(η)η = S(β)β. It remains to show that α−1η induces

an isomorphism sending M[S(α)α] to M[S(β)β]. We can show that α−1η in-

duces an isomorphism from M[S(α)α] to M[S(β)β] using a similar argument

to Proposition 5.1.7. Finally, as S(α) = S(η), and S(η)η = S(β)β:

M[S(α)α]α−1η =M[S(α)η] =M[S(η)η] =M[S(β)β]

and so α−1η induces an isomorphism sending M[S(α)α] to M[S(β)β]. This

covers all conditions stated and so this direction is proved.
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Now suppose that α, β ∈ Inj(M) and that there exists a η ∈ Inj(M) such that

the above conditions hold. The proof that αRη and ηL β is similar to that of

Theorem 4.1.13.

Remark. As a set of partial monomorphisms from M to itself, Bi(M) is a sub-

monoid of Inj(M). Note that there are similarities between the characterisation

of Green’s relations in Inj(M) and the characterisation of Green’s relations of the

bimorphism monoid Bi(M) in Section 4.1. In fact, all of the extra conditions re-

quired for the partial monomorphism case were inherited from being related as

partial maps in the symmetric inverse monoid Inv(M). This further underlines

the viewpoint of Inj(M) as the partial map analogue of Bi(M).

Notice here that we have not examined the partial homomorphism monoid

Part(M) of a first-order structure in much detail here; we leave some work on

this as an open question.

Question 5.1.10. Characterise Green’s relations of Part(M).

We note that the theory of partial map monoids of first-order structures is a

nascent subject of semigroup theory; we feel that many more results on endo-

morphism monoids as exhibited in the introduction to this chapter may have

some interesting analogues in the setting of partial map monoids.

Question 5.1.11. Further develop the semigroup theory of partial map monoids of first-

order structures.

5.2 Generation results

We now aim to generalise the rest of Theorem 3.0.1 to the case of first-order

structures. Our next result extends the ideas of [23, Theorem 2.2] to the case of

partial map monoids of first-order structures. This is achieved by using similar

structural conditions to [23, Theorem 2.2] to show that the semigroup in question

is strongly distorted (see Definition 3.1.9). Throughout this section, we write ω to

mean the set of natural numbers together with 0.
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Theorem 5.2.1. LetM be a countable first-order structure. Suppose thatM has the

following properties:

(a) M contains substructuresMi (where i ∈ ω) withMi
∼= M, and it also contains

a substructure Nk =
⋃
i≥kMi such that for all i 6= j, we have that Mi ∩Mj = ∅;

(b) there exists an isomorphism between N0 and N1 mapping eachMi toMi+1, and

(c) for any countable sequence (f̂i)i∈ω where each f̂i is a partial isomorphism of Mi,

the union
⋃
i∈ω f̂i :

⋃
i∈ω dom f̂i −→

⋃
i∈ω im f̂i is a partial isomorphism ofM.

Then Inv(M) has uncountable strong cofinality. Furthermore, we have that when re-

placing partial isomorphism with partial homomorphism or partial monomorphism re-

spectively in condition (c) above, Part(M) and Inj(M) respectively have uncountable

strong cofinality.

Proof. Our aim is to prove that Inv(M) is a strongly distorted semigroup. To do

this, we need to show that there is N ∈ N and a sequence of natural numbers

(ai)i∈N such that for every countable sequence of elements f0, f1, ... ∈ Inv(M),

there exists g1, ..., gN ∈ Inv(M) such that each fn can be written as a product of

length at most an in the elements g1, ..., gN . Let N = 5 and ak = 2k+ 3 for all k ∈

N. Here, it is important to note that N and the sequence (ai)i∈N depend on the

structureM and not on the countable sequence of elements f0, f1, ... ∈ Inv(M).

We present the argument for Inv(M) and note that we can interchange Inv(M)

for Part(M) (or Inj(M)) and partial isomorphism for partial homomorphism (or

partial monomorphism) throughout to achieve the other results.

Let g1 : M −→ M0 be any isomorphism; so g1 is contained in Inv(M). The

existence of the isomorphism fromN0 toN1 in condition (b) ensures that the re-

lations betweenMi andMj (for i, j ∈ ω) contained inN0 is preserved; therefore

Np ∼= Nq for any natural numbers p and q. Denote the isomorphism between

N0 and N1 by g2; an inductive argument shows that gn2 is an isomorphism with

domain N0 and image Nn. It follows that their composition g1g
n
2 : M −→ Mn

is an element of Inv(M). As both g1 and g2 are elements of Inv(M), there exist

unique semigroup-theoretic inverses to g1 and g2; call these g4 and g5 respec-
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tively. We can use an inductive argument to show that gn5 g4 :Mn −→M defines

the semigroup-theoretic inverse for g1g
n
2 in Inv(M).

It remains to define the partial isomorphism that contains enough informa-

tion to recover any element of the countable sequence (fi)i∈ω. By using the two

isomorphisms g1g
n
2 : M −→ Mn and gn5 g4 : Mn −→ M, we define a partial iso-

morphism f̂n = (gn5 g4)fn(g1g
n
2 ) of Mn. Here, the partial isomorphism f̂n acts

like fn but has its domain and image inMn. Then as Mi ∩Mj = ∅ for all i 6= j

in ω, we have that dom f̂i∩ dom f̂j = ∅ and im f̂i∩ im f̂j = ∅. From this, define

a function g3 =
⋃
i∈ω f̂i with domain

⋃
i∈ω dom f̂i and image

⋃
i∈ω im f̂i, acting

as f̂i on eachMi. As each f̂i is a partial isomorphism ofMi it follows that g3 is

a partial isomorphism by condition (c) and hence g3 ∈ Inv(M).

We now show that fk ∈ 〈g1, g2, g3, g4, g5〉 for any k ∈ ω, and fk can be written

as a product of length ak = 2k + 3. To do this, consider the product g1g
k
2g3g

k
5g4;

we claim that the domain and image of this product are identical to those of fk

and that it behaves like the partial isomorphism fk. Using Equation 2.1, and that

the converse (g1g
k
2 )∗ of g1g

k
2 is its semigroup theoretic inverse gk5g4, gives:

dom g1g
k
2g3g

k
5g4 = [im g1g

k
2 ∩ dom g3(gk5g4)](gk5g4).

Here, dom g3g
k
5g4 = [im g3∩ dom gk5g4]g∗3 = [im g3 ∩Mk]g

∗
3 = [im f̂k]g

∗
3 = dom

f̂k. Therefore, the equation becomes:

dom g1g
k
2g3g

k
5g4 = [im g1g

k
2 ∩ dom f̂k]g

k
5g4

= [Mk ∩ dom f̂k]g
k
5g4

= [dom f̂k]g
k
5g4

= dom fk.

Using Equation 2.2 we can prove that im g1g
k
2g3g

k
5g4 is equal to im fk in a similar

fashion. All that remains to show is that the product g1g
k
2g3g

k
5g4 reduces to fk.
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As im g1g
2
k = Mk, it follows that g3 acts like f̂k in this product. Therefore:

g1g
k
2g3g

k
5g4 = (g1g

k
2 )f̂k(g

k
5g4)

However f̂k = (gk5g4)fk(g1g
k
2 ) as defined earlier. Using this,

g1g
k
2g3g

k
5g4 = (g1g

k
2 )(gk5g4)fk(g1g

k
2 )(gk5g4)

But (g1g
k
2 )(gk5g4) = idM, as they are semigroup-theoretic inverses of each other.

Therefore:

g1g
k
2g3g

k
5g4 = idMfkidM = fk

and we are done. Moreover, each fk is written as a product of length ak = 2k+3;

this provides a bounding sequence (ak)k∈N on the length of product and hence

Inv(M) is strongly distorted.

Remarks. (i) IfM satisfies conditions (a)-(c), then by this result and Lemma 3.1.10

both the cofinality and strong cofinality of Inv(M), Inj(M) and Part(M) are un-

countable. In this case, all three monoids have the Bergman property by Propo-

sition 3.1.2.

(ii) As any generating set for an inverse semigroup generates using inverses

of the elements, we do not need to include g4 or g5 when generating Inv(M) as

an inverse semigroup. Therefore, ifM satisfies conditions (a)-(c), then Inv(M)

has Sierpiński rank of at most 3 by definition. Furthermore, Inj(M) and Part(M)

have Sierpiński ranks of at most 5 with these assumptions. Whether or not these

results are exact is an open question.

Below are a few examples (and a non-example) of structures where this the-

orem holds.

Example 5.2.2. We show that the random graph R (see Example 2.4.2) satisfies

conditions (a)-(c) of Theorem 5.2.1. Let Γ0 =
⋃
i∈ω Ri such that Ri ∼= R for all

i ∈ ω, where V Ri ∩ V Rj = ∅ for i 6= j, and for any vertices ai ∈ Ri and aj ∈ Rj

with i 6= j, we have that {ai, aj} /∈ ER. As a countable union of countable sets is
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countable, Γ0 is a countable graph. Since R is universal for countable graphs by

Theorem 2.4.6, Γ0 embeds in R and condition (a) is satisfied. In addition, there

exists an isomorphism from Γ0 to Γ1 =
⋃
i≥1Ri and so condition (b) is satisfied.

R2R1R0 R3 ... Rk ...

R

Figure 5.1: Γ in R

Any union of partial isomorphisms fi, where dom fi, im fi ⊆ Ri, is also a partial

isomorphism due to the independence of Ri and Rj where i 6= j. Hence condi-

tion (c) is satisfied and thus Inv(R) has uncountable strong cofinality. Similarly,

the partial homomorphism (and partial monomorphism) version of condition

(c) is satisfied and so Part(R) (and Inj(R)) have uncountable strong cofinality.

Remarks. (i) We can use a similar argument to this to show that the generic ori-

ented graph D, and the generic digraph D∗ (see Examples 2.4.8 and 2.4.9),

both satisfy conditions (a)-(c). Therefore, the following monoids have un-

countable strong cofinality; Inv(D), Inv(D∗), Inj(D), Inj(D∗), Part(D) and

Part(D∗).

(ii) Note here that this argument only used the fact that the random graph R

was universal for all countable graphs, and does not rely on some of its

more distinct properties (like the ARP, or homogeneity). From this, we can

use a similar argument to show that if Γ is a countably infinite graph that

is universal for all countable graphs, then Inv(Γ), Inj(Γ) and Part(Γ) have

uncountable strong cofinality.
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Example 5.2.3. The countable dense linear order (Q, <) (see Example 2.3.12) sat-

isfies the three conditions of Theorem 5.2.1. Note that as every partial homomor-

phism is a partial isomorphism in (Q, <), we have that Inv(Q, <) = Inj(Q, <) =

Part(Q, <).

LetQ0 =
⋃
i∈ω Qi be a disjoint union of open intervals Qi = (ai, bi) such that

bi < ai+1 for all i ∈ ω. Since each Qi is an open interval in (Q, <), there exists

an isomorphism from (Q, <) to Qi. Since Q0 is itself a countable linear order,

and the fact that (Q, <) contains all countable linear orders, Q0 is an induced

substructure of (Q, <). Therefore, condition (a) is satisfied. We can also find an

isomorphism fromQ0 toQ1 =
⋃
i≥1Qi; this isomorphism satisfies condition (b).

Finally, let f̂i be a partial isomorphism of Qi; here f̂i is order-preserving for

every i ∈ ω. We can see that every element of im f̂i is less than every element

of im f̄i+1 as bi < ai+1 for all i ∈ ω. The union of all these f̂i’s is an order-

preserving isomorphism that sends
⋃
i∈ω dom f̂i to

⋃
i∈ω im f̂i, acting like f̂i

on every Qi. Hence condition (c) is satisfied and we are done; Inv(Q, <) has

uncountable strong cofinality.

Remark. The same argument also works for the structure (Q,≤). Here, as every

partial monomorphism is an isomorphism, Inv(Q,≤) = Inj(Q,≤); and Inv(Q,≤)

has uncountable strong cofinality. Furthermore, Part(Q,≤) satisfies the partial

homomorphism conditions of Theorem 5.2.1 and so this monoid has uncount-

able strong cofinality as well.

Example 5.2.4. The generic poset P (see Example 2.3.13) also satisfies conditions

(a)-(c).

For condition (a), we define P0 to be an infinite antichain of Pi’s such that

Pi ∼= P for all i ∈ ω and each pair Pi and Pj is disjoint for all i 6= j ∈ ω.

Note that P0 is a countable partial order; so P0 is an induced substructure of P ,

satisfying condition (a). Furthermore, there exists an isomorphism taking P0 to

P1 =
⋃
i≥1 Pi; so condition (b) is satisfied.

Now for condition (c), note that if ai ∈ Pi and aj ∈ Pj with i 6= j, then

ai and aj are incomparable elements. Take a countable sequence of partial iso-
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morphisms (f̂i)i∈ω where dom f̂i, im f̂i ⊆ Pi. Note that every element of dom

f̂i is incomparable to every element of dom f̂j with i 6= j; this is also the case

for im f̂i and im f̂j . Therefore the union of any set of such functions preserves

the incomparability between domains and images of f̂i and f̂j . As each f̂i is a

partial isomorphism of P , the union f =
⋃
i∈ω f̂i :

⋃
i∈ω dom f̂i −→

⋃
i∈ω im f̂i

is a partial isomorphism of P . So condition (c) is satisfied and therefore Inv(P )

has uncountable strong cofinality. Finally, note that both Part(P ) and Inj(P ) sat-

isfy the relevant conditions and therefore these also have uncountable strong

cofinality.

Remark. As with Example 5.2.2, we can use a similar argument to show that if

P is a countably infinite poset that is universal for all countable posets, then

Inv(P), Inj(P) and Part(P) have uncountable strong cofinality.

Example 5.2.5. Contrary to the above three examples, the discrete linear order

(N,≤) (see Subsection 4.2.2) satisfies conditions (a) and (b) but does not satisfy

(c).

To show this, letN be a disjoint union of countably many isomorphic copies

Ni of (N,≤), with min(Ni) ≤ min(Ni+1) for all i ∈ ω. Let f̂2 be a partial iso-

morphism of N2 and assume without loss of generality that dom f̂2 is finite. As

it is so, we have that im f̂2 is finite and hence has a maximal element n. Now,

define f̂1 to be a partial isomorphism with singleton domain {x} such that x is

less than every element of dom f̂2 (such an x exists due to our conditions on N )

and singleton image {y} such that y > n (such a y exists as A1 is infinite). Hence

the union f̂1 ∪ f̂2 is a function that sends x to y and sends dom f̂2 to a set of

elements strictly less than y; but this is not order preserving and is hence not a

partial isomorphism of (N,≤). So (N,≤) does not satisfy condition (c).

5.3 The semilattice of idempotents of Inv(M)

Finally in this section, we consider a fourth example of a partial map monoid

on a countable first-order structureM; one generated by identity maps on sub-
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structures of M. The following definitions are standard, and can be found in

[19] or [41].

Let (X,≤) be a partial order, and let Y be a subset of X . An element a ∈ Y

is called minimal if for all y ∈ Y , whenever y ≤ a then y = a, and it is called

maximal if for all y ∈ Y , whenever a ≤ y then y = a An element b ∈ Y is called

a minimum if b ≤ y for all y ∈ Y , and a maximum if y ≤ b for all y ∈ Y . If Y is a

non-empty subset of X , say that c ∈ X is a lower bound of Y if c ≤ y for all y ∈ Y .

If the set of lower bounds of Y is non-empty, and has a maximum element d,

then say that d is the greatest lower bound or meet of Y . If such a d exists, it is

unique, and we write d =
∧
{y : y ∈ Y }; or d = a ∧ b if Y = {a, b}.

If (X,≤) is such that a ∧ b exists for all a, b ∈ X , then we say that (X,≤)

is a lower semilattice. If (X,≤) is a lower semilattice, then for a, b, c ∈ X , both

(a∧ b)∧ c and a∧ (b∧ c) are greatest lower bounds for {a, b, c}; as greatest lower

bounds are unique,

(a ∧ b) ∧ c = a ∧ (b ∧ c)

and so (X,∧) is a semigroup. As a ∧ a = a for all a ∈ X , and a ∧ b = b ∧ a

for all a, b ∈ X , the semigroup (X,∧) is commutative, and consists entirely of

idempotents.

Conversely, if (E, ·) is a commutative semigroup consisting entirely of idem-

potents, then there is a natural partial order on E defined by a ≤ b if and only if

ab = a. Furthermore, the product ab of any two elements a, b of E is the meet of

those two elements with respect to this partial order. As the collection of idem-

potents E(S) of any inverse semigroup S is a commutative subsemigroup of S

[41], every inverse semigroup contains a semilattice of idempotents. Therefore,

contained in any symmetric inverse monoid S of an infinite first-order structure

M is a semilattice of idempotents, denoted by E(S).

In this case, the idempotents are the identity maps on subsets of the domain

M of a first-order σ-structureM (by Lemma 5.1.2), with the meet operation on
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identity maps idx and idy for subsets x and y of M given by

idx ∧ idy =


idx∩y if x ∩ y 6= ∅

∅E if otherwise
(5.1)

where ∅E is the empty transformation of E(S). This operation corresponds

to the composition of partial maps as seen in Equation 2.1 from page 26. By

Lemma 5.1.2 and the proof of Corollary 5.1.3, it follows that |E(S)| = 2ℵ0 . Fur-

thermore, this construction is independent of the structureM; depending only

on the size of the domain. So the symmetric inverse monoid of any countably

infinite first-order structure M has a semilattice of idempotents isomorphic to

E(S); justifying the use of the definite article in the section title. From now, we

simply refer to the semigroup E(S) by E; this monoid forms the focus of this

section.

SinceE is an uncountable and hence infinitely generated submonoid of Inv(M)

for any infinite first-order structureM, we can investigate cofinality results for

E. To further our investigation into properties of this semigroup, we can split E

into constituent parts as shown in Figure 5.2, where B, C and D are subsets of

E. The natural partial order on E (see above) is inherited from containment on

subsets of P(M). It is clear that idM is the maximal element of this partial order,

and ∅E is the minimal element. Under this partial order, every element in B is

greater than every element in C and every element in C is greater than every

element in D. This is reflected in Figure 5.2.

In order to look at results involving this semigroup, we need to study the prod-

ucts of elements of E in more detail. Instead of looking at the images as in Equa-

tion 5.1, we can instead look at the identity functions on complements of subsets

of M . Some set theory tells us that

M r (x ∩ y) = (M r x) ∪ (M r y) (5.2)

As |(M r x) ∩ (M r y)| = |M r x| if x ⊆ y, and a similar result holds if y ⊆ x,
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idM

B = {idx ∈ E : |x| is cofinite }

C = {idx ∈ E : |x| is infinite, |M r x| is infinite}

D = {idx ∈ E : |x| is finite }

∅E

Figure 5.2: The semilattice of idempotentsE, decomposed into constituent parts,
ordered by the natural partial order on E.

it follows that |M r (x ∩ y)| is at least max(|M r x|, |M r y|). This means that

we cannot reduce the size of the complement of the sets when composing two

identity functions; proving our next result.

Lemma 5.3.1. Let Ik := {idx ∈ E : |M r x| ≥ k} ⊆ E. Then Ik is an ideal of E.

Furthermore, I∞ := {idy ∈ E : |M r y| = ℵ0} is also an ideal of E.

Similar to the case of the discrete linear order (N,≤) (see Subsection 4.2.2),

there is a unique identity function on each subset of M . Therefore, we can pro-

ceed along similar lines; motivating our next result.

Lemma 5.3.2. Let B be as in Figure 5.2. Then B is a countable, infinitely generated

submonoid of E.

Proof. Suppose that idx and idy are in B. Then M r (x ∩ y) is a union of finite

sets by Equation 5.2, and so is finite; hence idx∩y = idxidy ∈ B. As |M rM |

is finite, it follows that idM ∈ B. Since the set B consists of all elements idx

where x has a finite complement, and idx is unique for every subset x of M ,

there exists a bijection between B and the set of cofinite subsets of A. Since this

set is countable, B is countable.

Assume now that B is generated by some set F . Here, F must generate all

the idempotent elements idx with |Mrx| = 1. By Lemma 5.3.1 we cannot reduce

the size of the complement of one of these idempotents, so F must generate each

idx with |Mrx| = 1 via elements with complement size 1. As there exist unique

functions for each such x, and the only map that has complement size 0 is idM ,
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it follows that F must contain all idx such that |A r x| = 1. So B is infinitely

generated.

We can sum up cofinality results of E and determine whether or not E satis-

fies the Bergman property. First, note that E = B t (E \B), and that cf(B) = ℵ0

by Lemma 3.1.3.

Proposition 5.3.3. cf(E) = scf(E) = ℵ0.

Proof. E has the ideal structure specified in the conditions for Proposition 3.1.11

by Lemma 5.3.1; hence scf(E) = ℵ0. By Lemma 3.1.3 and Lemma 3.1.4, the

cofinality ofE is at most ℵ0; but since it cannot be less than this, we are done.

By using a similar argument to Proposition 4.2.14 and its following deduc-

tion, the countable submonoid B in Lemma 5.3.2 can be generated by the set

U = {idM} ∪ {idx ∈ E : |M r x| = 1}. We now determine whether or not E has

the Bergman property.

Proposition 5.3.4. Let idt = idt1idt2 ...idtk be a product of elements from U t (E \B).

Then |M r t| is either at most k or it is infinite.

Proof. We prove the statement by induction on the length of product. Note that

if any of the elements of the product idt1idt2 ...idtk is in C, it follows that |M r t|

is immediately infinite by Equation 5.2. So we only consider cases where each

element in the product is contained in U .

For the base case, if k = 1 then we have that idt = idt1 . By the fact that each

identity function is unique we have that t = t1 and so either t = t1 = M (in

which case |M r t| = 0) or |M r t| = 1 by definition. This proves the base case.

Suppose now that that the inductive hypothesis holds. Multiplying on the

right by idtk+1
gives idtidtk+1

= idt1idt2 ...idtkidtk+1
. If idtk+1

is in C then |A r

t ∩ tk+1| is immediately infinite; so suppose that idtk+1
is in U . If idtk+1

= idM

then we are done as idtidtk+1
= idt and therefore |M r t ∩M | = |M r t| ≤ k. If

|Mr tk+1| = 1, then by Equation 5.2 |Mr t∩ tk+1| takes a maximal value if t and

tk+1 are disjoint; so this means that |M r t∩ tk+1| = |M r t|+ |M r tk+1| ≤ k+ 1

by the inductive hypothesis.
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Therefore U tC is a generating set of E that is not Cayley bounded; hence E

cannot possibly have the Bergman property.



6

Oligomorphic transformation monoids

As mentioned in Section 2.3 and Chapter 3, the automorphism group Aut(M)

of a first-order structureM is an important concept of understanding the model

theory of a structureM. Furthermore, they have an important role to play in the

theory of infinite permutation groups. One such example is given by a result of

Reyes ([72], reproduced in Theorem 2.3.5) which says that closed subgroups of

Sym(N) under the pointwise convergence topology (see Subsection 2.2.4) are

precisely automorphism groups of countable first-order structures. As this hap-

pens, we can view Aut(M) as a topological group; since is a closed subset of the

Polish space Sym(N), Aut(M) is a Polish group. There have been extensive stud-

ies of automorphisms of first order structures as topological groups; particu-

larly in the field of generic automorphisms [79, 46] and the small index property

[22, 38, 46].

Cameron and Nešetřil [14] demonstrated that endomorphism monoids play

a similar role for infinite transformation monoids; endomorphism (monomor-

phism) monoids of countable first-order structures are precisely the closed sub-

monoids of End(N) (Mon(N)) under the product topology. This in turn stim-

ulated studies into topological monoids; some results concerning reconstruction

problems [6] and generic endomorphisms [52] have been shown.

One of the strongest model-theoretic properties a first-order structureM can

have is ℵ0-categoricity (see Subsection 2.3.3). The celebrated theorem of Engeler,

Ryll-Nardzewski and Svenonius (Theorem 2.3.7) proves that a structure M is

ℵ0-categorical if and only if Aut(M) has finitely many orbits onMn via the com-

ponentwise action on tuples. This means the natural action of Aut(M) onM is
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oligomorphic; if such an action exists, we say that Aut(M) is an oligomorphic per-

mutation group. This equivalence implies that finding ℵ0-categorical structures

gives examples of oligomorphic permutation groups, and vice versa. As out-

lined in Proposition 2.3.9, finding ℵ0-categorical structures is made easier by the

connection with homogeneity; in turn, prompting the use of Fraı̈ssé’s theorem

(Theorem 2.3.11) to find oligomorphic permutation groups.

The notion of homogeneity has been extended to cases where the maps in-

volved are not isomorphisms. The idea of homomorphism-homogeneity was de-

veloped by Cameron and Nešetřil [14]; in this sense, a first-order structureM is

HH-homogeneous if every finite partial homomorphism ofM extends to an endo-

morphism ofM. This idea was subsequently generalised by the two papers of

Lockett and Truss [52, 53]; detailing eighteen different varieties of homomorphism-

homogeneity based on three types of finite partial maps extending to the six

types of endomorphism as outlined in Subsection 2.2.2. An example of one of

these is MB-homogeneity, a notion previously introduced in Subsection 4.1.4.

Using this work on HH-homogeneity, Mašoluvic and Pech [61] developed

the notion of an oligomorphic transformation monoid. In this paper, they showed

that ifM is a HH-homogeneous structure over a (residually) finite relational lan-

guage, then End(M) is an oligomorphic transformation monoid. Following on

from this, and the fact endomorphisms ofM preserve positive formulas (that is,

those well-formed formulas without negation symbols), they went on to demon-

strate some model-theoretic results for HH-homogeneous structures concerning

positive formulas.

The purpose of this brief chapter is a further generalisation of results men-

tioned in Subsection 2.3.3, as well as motivating the work of Chapters 7 and 8;

which are devoted to developing machinery to find oligomorphic transforma-

tion monoids and finding examples of MB-homogeneous graphs respectively.

In Section 4.1, we saw that the bimorphism monoid of a σ-structureM is an

example of a group-embeddable monoid. By definition, any group-embeddable

monoid can be viewed as a monoid of permutations contained in some symmet-

ric group. If M is countably infinite, then there is a natural embedding from



Chapter 6: Oligomorphic transformation monoids 128

Bi(M) into Sym(N), and so we can view bimorphism monoids as submonoids

of Sym(N); we call these infinite permutation monoids. Section 6.1 establishes a

connection between bimorphism monoids of structures and infinite permuta-

tion monoids, akin to that of automorphism groups and infinite permutation

groups.

Section 6.2 is devoted to extending some of the work of [61] by consider-

ing the notions of homomorphism-homogeneity outlined in [53]. We restate

the definition of oligomorphic transformation monoid from [61], and then present

some results determining sufficient conditions for one of the six endomorphism

monoids mentioned in Subsection 2.2.2 to be an oligomorphic transformation

monoid.

Some of the work in this chapter, and Chapters 7 and 8, forms joint work

with David Evans and Robert Gray in [17].

6.1 Infinite permutation monoids

LetM be a σ-structure. As mentioned in the introduction to Chapter 4, Bi(M) is

embeddable in Sym(M) via the natural inclusion mapping. As this happens, it is

a submonoid of Sym(M) and so we can view Bi(M) as a monoid of permutations,

or simply a permutation monoid. Note here that ifM is finite, then Bi(M) is finite

and hence a group; to rescue this section from triviality, we stipulate thatM is

countably infinite. In this case, we say that Bi(M) expressed in this fashion is an

infinite permutation monoid.

Our first result is analogous to those of Reyes ([72], see Theorem 2.3.5) and

Cameron and Nešetřil [14]; it characterises closed submonoids of the symmetric

group. The proof is along similar lines; we define a canonical structure on some

infinite permutation monoid T .

Theorem 6.1.1. Let M be a countable set. A submonoid T of Sym(M) is closed under

the pointwise convergence topology if and only if it is the bimorphism monoid of some

countable first-order structureM on M .

Proof. We begin with the converse direction. Suppose that T = Bi(M) is the
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bimorphism monoid of a structureM on a countably infinite domain M . Then

Bi(M) is the intersection of the closed monoids End(M) and Sym(M) in the

topology on End(M). As Sym(M) is a subspace of End(M), it follows from

Theorem 2.2.13 that Bi(M) is closed in Sym(M).

For the forward direction, assume that T is a closed submonoid of Sym(M).

We define an n-ary relation Rx̄ by:

ȳ ∈ Rx̄ if and only if (∃s ∈ T )(x̄s = ȳ)

for each n ∈ N and x̄ ∈ Mn. Let M be the relational structure on M with

relations Rx̄ for all n ∈ N and all tuples x̄ ∈ Mn. The proof that T = Bi(M) for

this structureM is by containment both ways.

As every element of T is already a permutation of the domain M of M,

proving that that T acts as endomorphisms onM is enough to show that T ⊆

Bi(M). Assume then that s ∈ T and ȳ ∈ Mn such that Rx̄(ȳ) holds. As this

happens, there exists s′ ∈ T such that x̄s′ = ȳ; therefore x̄s′s = ȳs. This means

that Rx̄(ȳs) holds and so T ⊆ End(M) by definition; hence T ⊆ Bi(M).

It remains to show that Bi(M) ⊆ T ; so assume that α ∈ Bi(M). Here, it is

enough to show that α is a limit point of T ; as T is closed, it contains all its limit

points. Note that each n-tuple x̄ defines a neighbourhood of α, consisting of all

functions β such that x̄α = x̄β. As T is a monoid, it follows thatRx̄(x̄) holds and

so Rx̄(x̄α) also holds. By definition of Rx̄, there exists t ∈ T such that x̄α = x̄t;

hence α is a limit point of T . Therefore α ∈ T and so Bi(M) ⊆ T .

Remark. It is a well-known result from descriptive set theory that any closed

subset of a Polish space is itself a Polish space (see [44]). As Sym(M) is a Polish

space, it follows that Bi(M) is also a Polish space; so bimorphisms of first order

structures provide natural examples of Polish monoids. We leave this area of

investigation open for now.

Example 6.1.2. In Example 4.1.15, we constructed a graph Γ such that Bi(Γ) ∼=

(N,+), the infinite monogenic semigroup with identity. By Theorem 6.1.1, it
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follows that T ⊆ Sym(N), where T ∼= (N,+), is a closed submonoid of Sym(N).

Remark. A positive answer to Question 4.1.16 would confirm that every count-

able group-embeddable monoid arises as a closed permutation monoid.

Our aim now is to determine a cardinality result for closed submonoids of

Sym(X). For any x̄ ∈ Xn, recall that the pointwise stabilizer of x̄ is the set St(x̄) =

{α ∈ Bi(M) : x̄α = x̄}.

Theorem 6.1.3. For any countably infinite first-order structureM, either |Bi(M)| ≤

ℵ0 or |Bi(M)| = 2ℵ0 , the first alternative holding if and only if the pointwise stabilizer

of some tuple is the identity e ∈ Bi(M).

Proof. Assume that St(x̄) = {e} for some x̄ ∈ Mn. Let γ1, γ2 ∈ Bi(M) where

x̄γ1 = x̄γ2 = ȳ. As Bi(M) embeds in Sym(M) = G, the action of Bi(M) onM

extends to an action ofG onM. As a consequence, there exists a unique γ−1
1 ∈ G

such that γ1γ
−1
1 = e. As ȳγ−1

1 = x̄, it follows that x̄γ2γ
−1
1 = x̄γ1γ

−1
1 = x̄. But

St(x̄) = {e} and so γ2γ
−1
1 = e; hence γ1 = γ2. By the fact there are only countably

many tuples in F (x̄), we are forced to conclude that Bi(M) is countable in this

case.

On the other hand, suppose that St(x̄) 6= {e} for all tuples x̄ ∈ Mn. AsM is

countably infinite, we can enumerate elements ofM = {x1, x2, ...}. Using this

enumeration, we define a sequence of tuples (x̄k)k∈N where x̄k = (x1, ..., xk) for

all k ∈ N. Since St(x̄) 6= {e} for all tuples x̄ ofM, then for each element x̄k of

(x̄k)k∈N there exists tk ∈ Bi(M) such that tk 6= e and x̄ktk = x̄k. This in turn

induces a sequence (tk)k∈N of non-trivial elements of Bi(M). As the sequence

of tuples (x̄k)k∈N will eventually encapsulate every element ofM, the sequence

of bimorphisms (tk)k∈N approaches the pointwise stabilizer of M. This is the

identity element and so e is a limit point of Bi(M).

Now, consider the sequence (tkα)k∈N, where α is some bimorphism of M.

Here, tkα 6= α for any k ∈ N; for if tkα = α for some k, then cancellativity of

Bi(M) implies that tk = e, contradicting our earlier observation. It follows that

α is a limit point for the sequence (tkα)k∈N, and so every element of Bi(M) is a
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limit point. This means that Bi(M) is a perfect set and thus has cardinality 2ℵ0

([44], see Subsection 2.2.4).

This section has served as a brief introduction to infinite permutation monoids

viewed as topological spaces. We can ask about permutation monoid analogues

for established results concerning the topology of infinite permutation groups.

As stated above, every closed infinite permutation group is a Polish space; and

so automorphism groups of first-order structures provide examples of Polish

groups. Since Bi(M) is closed in Sym(N), it is an example of a Polish monoid.

Following the significant body of literature on Polish groups (see [79, 46] for two

instances), we conjecture that there are analogous results for Polish monoids.

Question 6.1.4. Further develop the theory of Polish monoids.

6.2 Oligomorphic transformation monoids

Recall that a permutation group G ⊆ Sym(X) acts oligomorphically on X if and

only if there are finitely many orbits onXn for every n ∈ N [9]. If the componen-

twise action ofG on tuples ofX is oligomorphic, we say thatG is an oligomorphic

permutation group. The next definition, originally of [61], reformulates these con-

cepts in the context of transformation monoids. Recall the notion of a strong orbit

of a monoid action on a set from Subsection 2.2.3.

Definition 6.2.1 (Definition 2.1, [61]). We say that a transformation monoid T ⊆

End(X) acts oligomorphically on X if and only if there are finitely many strong

orbits on Xn for every n ∈ N. If the componentwise action of T on X is oligo-

morphic, we say that T is an oligomorphic transformation monoid.

Remarks. (i) We note that if T is itself a group, then the strong orbits are the

group orbits and the definitions coincide; so any oligomorphic permuta-

tion group is an oligomorphic transformation monoid.

(ii) If T is a group-embeddable monoid, then T ⊆ Sym(X) and so T is a permu-

tation monoid. If the componentwise action of T on Xn is oligomorphic,

we say that T is an oligomorphic permutation monoid.
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Our next result, a generalisation of [61, Lemma 2.10], provides more connec-

tions between oligomorphic permutation groups and oligomorphic transforma-

tion monoids.

Proposition 6.2.2. Let T ⊆ End(X) be a transformation monoid with group of units

U . If U is an oligomorphic permutation group then T is an oligomorphic transformation

monoid.

Proof. AsU is an oligomorphic permutation group, there are finitely many group

orbits U(ȳ) with y ∈ Xn for every n ∈ N. As every strong orbit S(x̄) arises as the

union of group orbits U(ȳ) by Lemma 2.2.12, we conclude that there are at most

finitely many strong orbits of T acting on Xn for every natural number n.

Remark. The Ryll-Nardzewski theorem (Theorem 2.3.7) states that U is an oligo-

morphic permutation group if and only if it is the automorphism group of some

ℵ0-categorical structureM. By Proposition 6.2.2 and the fact that Aut(M) acts

as the group of units for any endomorphism monoid ofM, we conclude that if

M is ℵ0-categorical then T ∈ {End(M), Epi(M), Mon(M), Bi(M), Emb(M)} is

an oligomorphic transformation monoid.

Example 6.2.3. There are many examples of homogeneous structures through-

out the thesis so far. As posets, graphs and digraphs are first-order structures

over a finite relational language, then Aut(M) is oligomorphic for each structure

M in the three classification results for posets (Theorem 2.3.14), graphs (Theo-

rem 2.4.10) and digraphs (Theorem 2.4.11) by Proposition 2.3.9. This means that

T ∈ {End(M), Epi(M), Mon(M), Bi(M), Emb(M)} is an oligomorphic trans-

formation monoid. In particular, Bi(M) in all these cases is an oligomorphic

permutation monoid. It may be that these monoids coincide for some structure

M, reducing the range of examples. For instance, Aut(Q, <) = End(Q, <).

These examples of oligomorphic transformation monoids are closely related

to ℵ0-categorical structures via their group of units. Our next proposition dis-

tances the notion of oligomorphicity in monoids from ℵ0-categoricity by provid-

ing a differing source of suitable examples; but first we detail some preliminary
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conditions. In the same way that homogeneous structures over a finite language

provide examples of ℵ0-categorical structures (and hence examples of oligomor-

phic permutation groups), we turn to homomorphism-homogeneity to provide ex-

amples of oligomorphic transformation monoids.

We recall the eighteen different notions of homomorphism-homogeneity as

developed in the two papers of Lockett and Truss [52, 53]. Following the lead

of [53] we denote each type of endomorphism outlined in Subsection 2.2.2 by

a symbol: H for endomorphism, E for epimorphism, M for monomorphism, B

for bimorphism, I for embedding and A for automorphism. We cannot assert

that a finite partial map is surjective; there is no well defined notion of a finite

partial epimorphism, for instance. Therefore, there are only three types of finite

partial map of a structure: H for homomorphism, M for monomorphism, and

I for embedding. Without loss of generality, maps between finite substructures

can be taken to be surjective.

Definition 6.2.4. LetM be a first-order structure, and take X ∈ {H,M, I} and Y

∈ {H,E,M,B, I,A}. Say thatM is XY-homogeneous if every finite partial map of

type X ofM extends to a map of type Y ofM. We denote the collection of all

notions of homomorphism-homogeneity by H.

Furthermore, we denote the class of all XY-homogeneous structures by XY, and

say that H is the set of all homomorphism-homogeneity classes.

Remark. It is important to make the distinction between a notion of homomorphism-

homogeneity and a homomorphism-homogeneity class. For countable struc-

tures, it was shown in [53] that a structure is II (MI, HI)-homogeneous if and

only if it is IA (MA, HA)-homogeneous; that is, II = IA, MI = MA and HI = HA

as classes of homomorphism-homogeneous structures. While all the structures

in this thesis are countable (and hence subject to this result), it is crucial that we

treat the notions of homomorphism-homogeneity separately. This is apparent in

Chapter 7, where we re-prove this result from a Fraı̈ssé-theoretic perspective.

As we have seen, a structure M is MB-homogeneous if every finite partial

monomorphism of M extends to a bimorphism of M. Regular homogeneity
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(as in Definition 2.3.8) corresponds to IA-homogeneity using this notation. All

possible types of homomorphism-homogeneity given in Definition 6.2.4 are out-

lined in Figure 6.1.

isomorphism (I) monomorphism (M) homomorphism (H)

End(M) (H) IH MH HH

Epi(M) (E) IE ME HE

Mon(M) (M) IM MM HM

Bi(M) (B) IB MB HB

Emb(M) (I) II MI HI

Aut(M) (A) IA MA HA

Figure 6.1: Table of XY-homogeneity: M is XY-homogeneous if a finite partial
map of type X (column) extends to a map of type Y (row) in the associated
monoid.

It follows that some notions of homomorphism-homogeneity are stronger

than others. For instance, as every bimorphism is a monomorphism, it fol-

lows that every MB-homogeneous structure is also MM-homogeneous. This

natural containment induces a partial order on the set H of homomorphism-

homogeneity classes; see Figure 6.2 for a diagram of this order.

HA

MA HI HB

IA MI MB HM HE

II IB MM ME HH

IM IE MH

IH

Figure 6.2: The set H of homomorphism-homogeneity classes partially ordered
by inclusion for countable first-order structures. Lines indicate inclusion, double
lines indicate equality.
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As an isomorphism is both a monomorphism and a homomorphism, it fol-

lows that if a structure M is XY-homogeneous then it is also IY-homogeneous

(see Figure 6.2). For shorthand, denote the monoid of maps of type Y by Y(M)

for some structureM; for instance, End(M) becomes H(M) in this notation.

Our aim now is to determine the strong orbits of Y(M) on M where M is

an XY-homogeneous structure, in order to show that Y(M) is an oligomorphic

transformation monoid in this case. To do this, we first state and prove two

preliminary lemmas. The first lemma is a restatement of (2.3) of [9]. Here, we

note that an n-tuple (a1, ..., an) defines a partition of the set {1, ..., n}, where i, j

are in the same part if ai = aj . Furthermore, for any n-tuple ā = (a1, ..., an) there

exists a k-tuple ā′ = (a′1, ..., a
′
k) formed by the distinct elements of ā in order of

first appearance, where 1 ≤ k ≤ n.

Lemma 6.2.5 (2.3, [9]). Let ā = (a1, ..., an) and b̄ = (b1, ..., bn) be two n-tuples of

M . Then there exists a partial isomorphism f ofM such that āf = b̄ if and only if the

partitions defined by ā, b̄ are equal, and there exists a partial isomorphism f ′ ofM such

that ā′f ′ = b̄′.

The next lemma demonstrates that if there is a bijective homomorphism

sending a finite σ-structure A to B and vice versa, then these are isomorphisms.

The proof of this uses an observation of [53] (see Lemma 2.3.2); stating that an

endomorphism of a finite first-order structure is an automorphism if and only if

it is a bijection.

Lemma 6.2.6. If A and B are finite σ-structures and f : A −→ B and g : B → A are

bijective homomorphisms, then A ∼= B and f, g are isomorphisms.

Proof. The composition map fg : A −→ A is a bijective endomorphism of A; by

Lemma 2.3.2, fg must be an automorphism of A. For some ā ∈ Ani , if ¬RAi (ā)

andRBi (āf), thenRAi (āfg) since g is a homomorphism. This is a contradiction as

fg is an automorphism ofA and must preserve non-relations. Therefore, f must

preserve non-relations and so is an isomorphism. A similar argument shows

that g is an isomorphism.
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Remark. As we will see in Chapter 8, this result is far from being true if the

structures involved are infinite.

This is enough to determine the strong orbits of Y(M) for an XY-homogeneous

structureM.

Proposition 6.2.7. LetM be an XY-homogeneous σ-structure. Then two tuples ā =

(a1, ..., an) and b̄ = (b1, ..., bn) are in the same strong orbit of Y(M) if and only if there

exists a partial isomorphism f ofM such that āf = b̄.

Proof. Suppose that α, β ∈ Y(M) are maps such that āα = b̄ and b̄β = ā respec-

tively; so aiα = bi and biβ = ai for 1 ≤ i ≤ n. If α sends elements ai 6= aj of ā

to elements aiα = ajα of b̄, then aiαβ = ajαβ and so ai = aj ; a contradiction.

Hence the restrictions α|ā and β|b̄ are injective maps and so they are also bijec-

tions. Now, we consider the homomorphisms α|ā : A −→ B and β|b̄ : B −→ A,

whereA,B are the structures induced byM on ā, b̄ respectively. By Lemma 6.2.6,

it follows thatA ∼= B and so we can define f = α|ā to be the required partial iso-

morphism. Conversely, assume that f is an isomorphism between the structures

A and B. By XY-homogeneity (and hence IY-homogeneity) ofM, we extend f

to a map α ∈ Y(M) such that āα = b̄. Similarly, we can extend the isomorphism

f−1 : B −→ A to a map β ∈ Y(M) such that b̄β = ā. Therefore, ā and b̄ are in the

same strong orbit.

Theorem 6.2.8. IfM is an XY-homogeneous structure over a finite relational language,

then Y(M) is an oligomorphic transformation monoid.

Proof. By Proposition 6.2.7 and Lemma 6.2.5, the strong orbit S(ā) of ā consists

of all those n-tuples b̄ such that the partitions defined by ā, b̄ are equal, and

there exists a partial isomorphism f ′ ofM such that ā′f ′ = b′. AsM is over a

finite relational language, it has finitely many isomorphism types on n-tuples of

distinct elements for any n ∈ N. As the number of partitions of n into k pieces is

finite, we conclude that there are finitely many strong orbits of ā in Y(M).

Remark. IfM is an XB-homogeneous structure, then Bi(M) is an oligomorphic

permutation monoid. In Chapter 8, we explore examples of MB-homogeneous
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graphs and digraphs, producing a range of examples of oligomorphic permuta-

tion monoids.

Using this corollary, we can find examples of structures with oligomorphic

transformation monoids that are not ℵ0-categorical; for instance, Y(P) for any

XY-homogeneous poset P not in Schmerl’s classification (Theorem 2.3.14, see

[60] and [53]) is an oligomorphic transformation monoid. Furthermore, Exam-

ple 2.11 of [61] asserts that the discrete linear order (N,≤) (see Subsection 4.2.2)

is HH-homogeneous; therefore, (N,≤) is an example of a σ-structure where

Aut(N,≤) is trivial but End(N,≤) is an oligomorphic endomorphism monoid.

This example also provides a converse to Proposition 6.2.2. We present an ex-

ample of where this occurs for a graph Γ.

Example 6.2.9. Cameron and Nešetřil [14] demonstrated an example of a HH-

homogeneous (and MM-homogeneous) graph Γ̄ with trivial automorphism group,

where Γ̄ is the complement of a rigid, locally finite graph Γ (see Figure 6.3 for a

reproduction of this graph).

Figure 6.3: Γ, a rigid locally finite graph whose complement Γ̄ is HH and MM-
homogeneous.

Here, Aut(Γ̄) = {e}, but both End(Γ̄) and Mon(Γ̄) are oligomorphic trans-

formation monoids by Theorem 6.2.8.

The aim of Chapter 7, and particularly of Chapter 8, is to find more examples

of homomorphism-homogeneous structures, widening the range of oligomor-

phic transformation monoids and oligomorphic permutation monoids. We also

investigate several semigroup-theoretic questions related to oligomorphic trans-

formation monoids as well; for instance, for any countable group G, does there
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exist an oligomorphic transformation monoid T with group of units isomorphic

to G? We answer this question in the affirmative for finite groups in Chapter 8

(see Theorem 8.2.11); however, the general countable case remains open.

There are other questions we can ask, particularly in model theory. In part,

the initial development of oligomorphic transformation monoids in [61] was to

facilitate a discussion on model-theoretic properties of HH-homogeneous struc-

tures. As endomorphisms preserve positive formulas, the properties developed

were focused on these; for example, an analogous result to Proposition 2.3.9

in [61] asserts that if M is a first-order structure with oligomorphic endomor-

phism monoid, then homomorphism-homogeneity is equivalent to Th(M) hav-

ing quantifier elimination for positive formulas. We can then ask the same ques-

tions about the oligomorphic transformation monoids presented here.

Question 6.2.10. If M is a structure, let Y(M) ∈ {Epi(M), Mon(M), Bi(M),

Emb(M)} be an oligomorphic transformation monoid. Using this assumption, develop

the model theory associated withM. In particular, is XY-homogeneity ofM equivalent

to some kind of quantifier elimination in Th(M)?



7

Homomorphism-homogeneous first-order

structures

Examples of oligomorphic permutation groups are sought because of their close

connection to the theory of ℵ0-categorical structures (Theorem 2.3.7). As out-

lined in Proposition 2.3.9, oligomorphic permutation groups can arise as au-

tomorphism groups of homogeneous structures. Homogeneous structures are

completely characterised by Fraı̈ssé’s theorem (2.3.11); so finding Fraı̈ssé lim-

its provides examples of oligomorphic permutation groups. Our aim in this

chapter is to find a generalisation of Fraı̈ssé’s theorem in order to provide more

examples of oligomorphic transformation monoids, in line with the connection

detailed in Theorem 6.2.8. We begin with a discussion of this aim.

Throughout this chapter, let σ be a relational signature. Suppose that C is a

class of finite σ-structures. The proof of part of Fraı̈ssé’s theorem relies on in-

ductively constructing a structureM whose age is C and is also homogeneous.

This proof relies on properties belonging to C and the constructed structureM.

One is the joint embedding property (JEP); this property ensures that we can con-

struct a countable σ-structure M with age C . The second is the amalgamation

property (AP), a condition held by a class of finite σ-structures C that ensures

that the countable σ-structureM with age C is homogeneous. This is verified

by showing thatM has the extension property, a necessary and sufficient condi-

tion for a countable σ-structureM to be homogeneous. Fraı̈ssé’s theorem also

states that any two homogeneous σ-structures with the same age are isomor-

phic; this is achieved using a back and forth argument constructing the desired
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isomorphism. The forth part of the argument ensures that the extended map is

totally defined; the back part ensures its surjectivity.

In 2006, Cameron and Nešetřil [14] proved an analogue of Fraı̈ssé’s theo-

rem for MM-homogeneity (see Figure 6.1). This proof necessitated modifica-

tion of the amalgamation property to ensure MM-homogeneity; resulting in

the mono-amalgamation property (MAP). In a slight departure to the technique

used to prove Fraı̈ssé’s theorem, the proof of the analogous theorem for MM-

homogeneity in [14] utilised a forth alone argument; this is because the ex-

tended map need not be surjective. It was also realised in [14] that two MM-

structures with the same age may be non-isomorphic; instead detailing that two

such structures were unique up to a weaker notion called mono-equivalence. The

proof of this again only required forward steps. Further insights were made by

Dolinka [23], who detailed the notion of a homo-amalgamation property (HAP).

However, the HAP was used in providing examples of oligomorphic endomor-

phism monoids in order to determine whether or not they had the Bergman

property, and not studied from a Fraı̈ssé-theoretical point of view.

In the case of MB-homogeneity, a forth alone approach does not suffice. As

the extended map must be surjective, we are required to use a back and forth ar-

gument. The fact that monomorphisms are not invertible in general necessitates

the use of a second amalgamation property alongside the MAP of [14]; this was

defined by Coleman, Evans and Gray [17] using antimonomorphisms in the bi-

amalgamation property (BAP). In a similar situation to [14], two MB-homogeneous

structures with the same age may not be isomorphic but instead are unique up

to bi-equivalence; the proof of this also requires back and forth steps.

In light of these previous generalisations of Fraı̈ssé’s theorem, and the mul-

titude of types of homomorphism-homogeneity in H (see Definition 6.2.4), the

natural aim would be to find an “umbrella” version of Fraı̈ssé’s theorem; one

that encapsulates all possible notions of homomorphism-homogeneity. This

result would supply Fraı̈ssé’s theorem, and the versions of [14] and [17], as

corollaries. Such a theorem could determine the extent to which a structure is

homomorphism-homogeneous with reference to the classes in H. In turn, this
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will provide a rich source of oligomorphic transformation monoids by Theo-

rem 6.2.8.

However, a compromise must be reached between idealism and practicality

for two reasons. First, as discussed above, differing approaches are required if

the extended map is surjective; see the contrast between MM-homogeneity and

MB-homogeneity for a case in point. In the forth alone case, we can utilise a

single modified amalgamation property in order to construct the structure and

extend the map. But as monomorphisms and homomorphisms are not “invert-

ible” in general, in the back and forth case we need two modified amalgamation

properties; one for the forth part and one for the back part. Second, some kinds

of homomorphism-homogeneity are easier to deal with than others. There is a

distinct dichotomy in H, split between those whose extended maps are not nec-

essarily the same “type” as the partial map (such as MH-homogeneity, in that

a homomorphism is not necessarily an monomorphism), and those whose ex-

tended maps are definitely of the same type than the partial map (such as MM,

or MI-homogeneity). The former case causes issues in inductively constructing

a structure due to the lack of certainty about the extended map; this is discussed

in further detail in Section 7.2.

The first of these reasons therefore necessitate two similar but markedly dif-

ferent theorems (Theorem 7.0.1 and Theorem 7.0.2) based on whether or not the

proof uses forth alone or a back and forth argument. The second allows the two

theorems to cover twelve of the eighteen different notions of homomorphism-

homogeneity. What constitutes the “relevant” amalgamation property and no-

tion of equivalence will be explained in Section 7.2.

Theorem 7.0.1. Let XY ∈ {II, MI, MM, HI, HM, HH}.

(1) If M is an XY-homogeneous σ-structure, then Age(M) has the relevant amalga-

mation property.

(2) If C is a class of finite σ-structures with countably many isomorphism types, is

closed under isomorphisms and substructures, has the JEP and the relevant amal-

gamation property, then there exists a XY-homogeneous σ-structure M with age
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C .

(3) Any two XY-homogeneous σ-structures with the same age are equivalent up to a

relevant notion of equivalence.

Theorem 7.0.2. Let XZ ∈ {IA, MA, MB, HA, HB, HE}.

(1) IfM is an XZ-homogeneous σ-structure, then Age(M) has the two relevant amal-

gamation properties.

(2) If C is a class of finite σ-structures with countably many isomorphism types, is

closed under isomorphisms and substructures, has the JEP and the two relevant

amalgamation properties, then there exists a XZ-homogeneous σ-structureM with

age C .

(3) Any two XZ-homogeneous σ-structures with the same age are equivalent up to a

relevant notion of equivalence.

Whilst not the ideal “umbrella” theorem, these two results are still useful in

determining the extent to which a structure is homomorphism-homogeneous;

thus providing examples of oligomorphic transformation monoids.

To that end, this chapter is dedicated to the proof of these two theorems;

as well as determining a complete picture of homomorphism-homogeneity for

some well-known structures. Section 7.1 introduces the concept of an antiho-

momorphism between two σ-structures; this will be important machinery in the

back part of the eventual back-and-forth argument in the proof of Theorem 7.0.2.

We split Section 7.2 into two pieces proving Theorem 7.0.1 and Theorem 7.0.2

in turn. Finally, Section 7.3 defines the notion of a maximal homomorphism-

homogeneity class of a structure, and determines these for some previously seen

homogeneous structures.

7.1 Antihomomorphisms

As mentioned in the introduction, homomorphisms are not “invertible” in gen-

eral. For instance, there could be a homomorphism between two relational σ-

structures α : A → B sending a non-relation of A to a relation in B; that is, such
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that ā /∈ RAi but āα ∈ RAi . Furthermore, there is no guarantee that the homo-

morphism is even injective; so α could send two points in A to the same point

in B. In establishing a suitable ‘back’ amalgamation property for our Fraı̈ssé-

style theorem, both of these considerations must be taken into account. To that

end, we adapt the concept of a multifunction (see Section 2.1) to the setting of

relational first-order structures.

Definition 7.1.1. Suppose that A,B are two σ-structures and that f∗ : B −→ A is

a multifunction. We say that f∗ is an antihomomorphism if for all Ri ∈ σ, we have

that if ¬RBi (b̄) in B then ¬RAi (ā) in A for all ā ∈ b̄f∗.

Remark. This definition is equivalent to saying that f∗ : B → A is an antihomo-

morphism if for all Ri ∈ σ and for all ā ∈ b̄f∗, then RAi (ā) implies that RBi (b̄).

The motivation behind this definition is explained by the following alter-

nate characterisation of antihomomorphisms. We use the notation adopted in

Section 2.1: if f : A → B is a function, denote its converse multifunction by

f∗ : B → A. It immediately follows that (f∗)∗ = f .

Lemma 7.1.2. Let A,B be two σ-structures. Then f∗ : B −→ A is a surjective antiho-

momorphism if and only if f : A −→ B is a surjective homomorphism.

Proof. Assume that f : A −→ B is a surjective homomorphism. As f : A −→ B is a

surjective function we have that f∗ : B −→ A is a surjective multifunction. Now

suppose that ¬RBi (b̄). As f must preserve relations, we have ¬RAi (ā) whenever

āf = b̄; this is precisely when ā ∈ b̄f∗. Conversely, suppose that f∗ : B −→ A

is a surjective antihomomorphism; therefore f : A −→ B is a surjective function.

Suppose also that RAi (ā) holds. As f∗ is an antihomomorphism, it follows that

ā /∈ b̄f∗ for every b̄ such that ¬RBi (b̄). Since f is a function, it must be that ā ∈ b̄f∗

for some b̄ such that RBi (b̄); so f is a homomorphism.

Remark. If f : A −→ B is any homomorphism, we can restrict the codomain to

the image to see that f : A −→ Af is a surjective homomorphism; and hence, by

the above proposition, f∗ : Af −→ A is a surjective antihomomorphism. This

technique will be used regularly in Subsection 7.2.2.
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This result leads to an immediate corollary; an analogue of Lemma 2.1.3 for

σ-structures.

Corollary 7.1.3. Let A,B, C be σ-structures, and f : A → B and g : B → C are

surjective homomorphisms. Then (fg)∗ = g∗f∗ is a surjective antihomomorphism.

Proof. The multifunctions (fg)∗ : C → A and g∗f∗ : C → A are equal by

Lemma 2.1.2. As fg is a surjective homomorphism, it follows that (fg)∗ is a

surjective antihomomorphism by Lemma 7.1.2.

Note that if f : A −→ B is a bijective homomorphism, then f∗ : B −→ A is an

bijective function from B to A that preserves non-relations; this is the definition

of an antimonomorphism f̂ : B −→ A (see [17]). Furthermore, if f : A −→ B is a iso-

morphism, then f∗ : B −→ A is exactly f−1, the inverse isomorphism of f . In the

style of Lemma 2.1.2, we prove a composition lemma for antihomomorphisms.

Proposition 7.1.4. Let A,B, C be σ-structures. Suppose that f∗ : A −→ B and

g∗ : B −→ C are antihomomorphisms. Then their composition f∗g∗ : A −→ C is an

antihomomorphism.

Proof. From Lemma 2.1.2, the relation composition of the underlying multifunc-

tions f∗ : A −→ B and g∗ : B −→ C is again a multifunction f∗g∗ : A −→ C.

Now suppose that ¬RAi (ā) holds. As f∗ is an antihomomorphism, ¬RBi (b̄) holds

for all b̄ ∈ āf∗. As g∗ is an antihomomorphism, ¬RCi (c̄) holds for all c̄ ∈ b̄g∗.

Therefore ¬RCi (c̄) holds for all c̄ ∈
⋃
b̄∈āf∗ b̄g

∗ = āf∗g∗ and so f∗g∗ is an antiho-

momorphism.

Remarks. We note that as every antimonomorphism and isomorphism is also an

antihomomorphism, the product f∗g∗ of any antihomomorphism f∗ with any

antimonomorphism or isomorphism g∗ is again an antihomomorphism. This

fact turns out to be crucial in the statement of a suitable amalgamation property

for the back part of the back-and-forth argument. Furthermore, the product

of two antimonomorphisms (or an antihomomorphism and an isomorphism) is

again an antimonomorphism.
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Finally in this section, we prove a straightforward yet important fact about

epimorphisms of an infinite first order structureM.

Lemma 7.1.5. Let M be a σ-structure, with A a finite substructure of M. Then for

any α ∈ Epi(M), there exists a finite structure B ⊆M such that Bα = A.

Proof. As α is surjective, there exists some set B′ such that B′α = A, where A

is the domain of A. For A = {a1, ..., an}, B′ is partitioned into kernel classes B′i

such that B′iα = ai for 1 ≤ i ≤ n. By selecting one representative bi from each

B′i, we induce a structure B on the finite set B = {b1, ..., bn} with relations from

M. As α is a homomorphism, Bα = A.

7.2 Two Fraı̈ssé-style theorems

For the rest of the chapter, we will abuse notation slightly and write A,B to

mean finite σ-structures on domains A,B respectively.

We recall the collection H of notions of homomorphism-homogeneity out-

lined in Definition 6.2.4. As mentioned in the introduction to this chapter, it is

necessary to partition H into two pieces based on whether or not the extended

map is surjective. This represents the division between cases where a forth alone

argument will suffice and the other when we require a back and forth construc-

tion. Furthermore, there are some elements of H that are weaker notions of ho-

mogeneity than others. These are of the form XY where a map of type Y does

not necessarily imply that it is a map of type X; for instance, a homomorphism

is not necessarily a monomorphism. These phenomena motivate the division of

H into the following:

• forth alone F = {XY ∈ H : X,Y ∈ {H, M, I}};

• back and forth B = {XZ ∈ H : X ∈ {H, M, I}, Z ∈ {E, B, A}};

• no implication N = {IH, IE, IM, IB, MH, ME};

• implication I = HrN.
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These choices partition H into four parts based on the intersections of B,F with

N, I (see Figure 7.1, where the boxes represent intersections).

HA

MA

HI HB

IAMI MB

HM HE

II

IB

MM

ME

HH

IM IEMHIH

F B

N

I

Figure 7.1: F, B, N, and I in H

Here, it is necessary to note here that II-homogeneity and IA-homogeneity

represent two different notions of homomorphism-homogeneity under consid-

eration. As outlined in Figure 6.1, II-homogeneity is where every finite partial

isomorphism extends to an embedding; IA-homogeneity is where every finite par-

tial isomorphism extends to an automorphism (that is, standard homogeneity

from Definition 2.3.8). As stated in Chapter 6, Lockett and Truss proved that the

classes II and IA coincide [53]. For the purposes of our work in this chapter, we

focus on the notions of homomorphism-homogeneity as opposed to the classes

of homomorphism-homogeneous structures. This allows us to re-prove these

results of Lockett and Truss from a Fraı̈ssé-theoretic standpoint.

7.2.1 Forth alone

This section is devoted to the proof of Theorem 7.0.1. It deals with types of

homomorphism-homogeneity in F (see Figure 7.1); those that only require a

forth construction to prove. Consequently, we have that X,Y∈ {H, M, I} through-

out this subsection. When we say a map of type X, we are referring to this in-

stance; so if α is a map of type H, it is a homomorphism. Notice that I ⊆ M ⊆

H; as every isomorphism is also a monomorphism, and every monomorphism

a homomorphism.
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Our eventual aim is to construct a countable structureMwith age C , where

M is XY-homogeneous. The JEP (see Subsection 2.3.3) is required to construct

any countable structure M with age C ; it has nothing to do with the homo-

geneity of the structure M. It is the amalgamation property that is central to

homogeneity of a Fraı̈ssé limit; so this must be generalised in order to ensure

XY-homogeneity. So to construct such anM with age C , the class C must have

the JEP and some generalised amalgamation property.

Since different types of homogeneity require different amalgamation proper-

ties, it would make sense to define an “umbrella” amalgamation property; one

that encompasses all the amalgamation properties required. This is presented as

the XY-amalgamation property, where X,Y ∈ {H, M, I}:

(XYAP) Let C be a class of finite structures. Then C has the XYAP

if for all A,B1, B2 ∈ C , map f1 : A −→ B1 of type X and embedding

f2 : A −→ B2, there exists a D ∈ C , embedding g1 : B1 −→ D and map

g2 : B2 −→ D of type Y such that f1g1 = f2g2 (see Figure 7.2).

∃D

B2B1

A

g2g1

f2f1

Figure 7.2: The XY-amalgamation property (XYAP)

Based on choices for X and Y, the XYAP yields nine different amalgamation

properties; one for each notion of XY-homogeneity in F. For instance, the IIAP

is the standard amalgamation property, the MMAP is the MAP in [14] and the

HHAP is the HAP from [23]. A similar “umbrella” extension property is re-

quired for a structureMwith age C ; this is defined as the XY-extension property:

(XYEP) A structureMwith age C has the XYEP if for allA ⊆ B ∈

C and maps f : A −→M of type X, there exists a map g : B −→M of

type Y extending f .
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Ideally, we would like to have a straight generalisation of Proposition 2.3.10;

that a structureM is XY-homogeneous if and only ifM has the XYEP. However,

complications occur in the proof of the converse direction; this is due to the

inductive construction of the extended map. For example, suppose thatM has

the IMEP and that f : A −→ B is an isomorphism. Extending this using the IMEP

gives a monomorphism g : A′ → B′ where A ⊆ A′ and B ⊆ B′. However, g

is a monomorphism between finite substructures; and so we may not be able to

extend g to another monomorphism h between finite substructures. The only

way we can continue extending is if the map of type Y is also of type X. This

behaviour is the motivating factor in splitting H into I and N. In light of this,

we show that the XYEP is a necessary condition for XY-homogeneity in general,

and that it is also sufficient when the extended map of type Y is also a map of

type X.

Proposition 7.2.1. LetM be a countable σ-structure with age C .

(1) Suppose that XY ∈ F. IfM is XY-homogeneous, thenM has the XYEP.

(2) Suppose that XY ∈ F ∩ I. IfM has the XYEP, thenM is XY-homogeneous.

Proof. (1) Let A ⊆ B ∈ C and f : A→M be a map of type X. As Age(M) = C ,

there exists an isomorphism θ : B → Bθ ⊆ M. Therefore, θ−1f : Bθ → Af is

a map of type X between finite substructures ofM. AsM is XY-homogeneous,

extend θ−1f to a map α : M → M of type Y. Hence, θα : B → M is a map of

type Y. It remains to show that θα extends f ; indeed, for any a ∈ A,

af = aθθ−1f = aθα

as α extends θ−1f . ThereforeM has the XYEP.

(2) Suppose that f : A −→ B is a map of type X between finite substructures of

M. We use a forth argument to extend f to a map α of type Y. AsM is countable,

we enumerate the points of M = {m0,m1, ...}. Set A = A0, B = B0 and f = f0

and assume that we have extended f to a map fk : Ak −→ Bk, where Ai ⊆ Ai+1
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and Bi ⊆ Bi+1 for all 0 ≤ i ≤ k − 1. At most, we can assume that fk is a map

of type Y. Select mi ∈ M r Ak, where i is the least natural number such that

mi /∈ Ak. We can see that Ak ∪ {mi} ⊆ M belongs to C . As XY ∈ I, the fk of

type Y is also of type X; so use the XYEP to find a map fk+1 : Ak ∪ {mi} −→ M

of type Y extending fk. Repeating this process infinitely many times, ensuring

that each mi appears at some stage, extends f to a map α : M −→ M of type Y;

soM is XY-homogeneous.

Our next result demonstrates Theorem 7.0.1 (1).

Proposition 7.2.2. Suppose that XY ∈ F. If a σ-structure M is XY-homogeneous,

then Age(M) has the XYAP.

Proof. Suppose that A,B1, B2 ∈ Age(M), f1 : A −→ B1 is a map of type X and

f2 : A −→ B2 is an embedding. Without loss of generality, suppose that f2 is the

inclusion map and that A,B1, B2 ⊆ M. Using XY-homogeneity of M, extend

f1 : A −→ B to a map α : M −→ M of type Y. Set D = B1 ∪ B2α and induce

the structure on D with relations fromM. Finally, take g1 : B1 −→ D to be the

inclusion map and define the map g2 = α|B2 : B2 −→ D of type Y. We can see that

f1g1 = f2g2 and so these choices verify the XYAP for Age(M).

Now, we proceed with the proof of Theorem 7.0.1 (2). Recall from Section 2.3

that a class of finite structures C has the joint embedding property (JEP) if for all

A,B ∈ C there exists a D ∈ C such that D jointly embeds A and B.

Proposition 7.2.3. Suppose that XY ∈ F ∩ I. Let C be a class of finite σ-structures

that is closed under isomorphism and substructures, has countably many isomorphism

types, and has the JEP and XYAP. Then there exists a XY-homogeneous σ-structureM

with age C .

Proof. We build a structure inductively over countably many steps. As C has

countably many isomorphism types, we can enumerate C = {C0, C1, ...}. As-

sume that a structure Mk has already been constructed.

If k is even, select Ci ∈ C where k = 2i. Use the JEP to find a structure

D ∈ C that jointly embeds Mk and Ci; and define this structure D to be Mk+1.
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Now suppose that k is odd. Select a triple (A,B, f), where A ⊆ B ∈ C and

f : A −→ Mk is some map of type X. Using the XYAP, we find a structure Mk+1,

an embedding ek : Mk →Mk+1 and a map g : B −→Mk+1 of type Y that extends

f . As C has countably many isomorphism types, and there are only finitely

many maps f from A into Mk of type X at each stage, we can arrange the steps

such that:

• each structure Ci in C appears at an even step, and:

• each triple (A,B, f) appears at an odd step k, where for every such k, for

every A ⊆ B ∈ C and every map f : A → Mk there exists ` ≥ k and

embedding ek,` : Mk → M` such that f extends to a map g : B → M` of

type Y.

Arranging the steps this way ensures that every possible amalgamation is per-

formed. As each Mk ⊆ Mk+1 due to the embedding ek, we can define the

structure M =
⋃
k∈NMk. We check that C = Age(M) and that M is XY-

homogeneous.

Due to our construction at even steps, Ci ∈ Age(M) for every i ∈ N, and so

C ⊆ Age(M). We also ensured at every step that each Mk is a member of C ;

as C is closed under substructures, it follows that Age(M) ⊆ C and so they are

equal. For XY-homogeneity, as XY ∈ F ∩ I it suffices to show that M has the

XYEP by Proposition 7.2.1. So assume that A ⊆ B ∈ C and that f : A −→ M

is a map of type X. From the arrangement of steps above, there exists a k such

that Af ⊆ Mk. From the construction, there exists an M` ⊇ Mk and a map

g : B −→ M` of type Y extending f . Hence M has the XYEP and is therefore

XY-homogeneous by Proposition 7.2.1.

All that remains to show is part (3) of Theorem 7.0.1. It was previously men-

tioned in [14] that two MM-homogeneous structures with the same age need not

be isomorphic, but are instead mono-equivalent. This inspires a new definition.

Definition 7.2.4. LetM,N be σ-structures and suppose that Y ∈ {H, M, I}. Say

thatM and N are Y-equivalent if Age(M) = Age(N ) and every embedding f :
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A→ N from a finite substructure A ofM can be extended to a map g :M→N

of type Y, and vice versa.

Note that if two structures M,N are M-equivalent, then they are mono-

equivalent in the sense of [14]. If two structures M,N are I-equivalent, then

they are mutually embeddable.

Proposition 7.2.5. LetM,N be countable σ-structures, and suppose that XY ∈ F∩I.

(1) Suppose that M,N are Y-equivalent. Then M is XY-homogeneous if and only if

N is.

(2) IfM,N are XY-homogeneous and Age(M) = Age(N ) thenM,N are Y-equivalent.

Proof. (1) It suffices to show that N has the XYEP by Proposition 7.2.1 (2). Sup-

pose then that A ⊆ B ∈ Age(N ) and there exists a map f : A −→ A′ ⊆ N of

type Y. Note that A need not be isomorphic to A′. As Age(M) = Age(N ), there

exists a copy A′′ of A′ in M; fix an embedding e : A′ → A′′ between the two.

Therefore, e−1 : A′′ → A′ is a isomorphism from a finite substructure ofM into

N ; as the two are Y-equivalent, we extend this to a map α : M → N of type Y.

Now, define a map h = fe : A → A′′; this is a map of type Y from A into M.

SinceM is XY-homogeneous, it has the XYEP by Proposition 7.2.1 (1) and so we

extend h to a map h′ : B →M of type Y. Now, the map h′α : B −→ N is a map of

type Y; we need to show it extends f . So using the facts that α extends e−1 and

h′ extends h = fe, we have that for all a ∈ A:

af = afee−1 = ah′α.

Therefore N has the XYEP.

(2) Let A ⊆ M, B ⊆ N and suppose that f : A −→ B is an embedding;

trivially, f is also a map of type X. We extend f to a map α : M −→ N of type

Y via an inductive argument. As M is countable, we enumerate its elements

M = {m0,m1, ...}. Set A = A0, B = B0 and f = f0, and suppose that fk : Ak −→

Bk is a map of type Y where Ai ⊆ Ai+1 and Bi ⊆ Bi+1 for all 0 ≤ i ≤ k − 1.
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As XY ∈ F ∩ I, fk is also a map of type X. Select a point mi ∈ M r Ak, where

i is the least natural number such that mi /∈ Ak. We see that Ak ∪ {mi} is a

substructure ofM and is therefore an element of Age(N ) by assumption. As N

is XY-homogeneous, by Proposition 7.2.1 (1) it has the XYEP. Using this, extend

fk : Ak −→ N to a map fk+1 : Ak ∪ {mi} −→ N of type Y. As XY ∈ F ∩ I, we

can repeat this process infinitely many times; by ensuring that every mi ∈ M is

included at some stage, we can extend the map f to a map α : M −→ N of type

Y as required. We can use a similar argument to construct a map β : N →M of

type Y; thereforeM and N are Y-equivalent.

Remark. Although we have stated that σ is a relational signature in this chapter,

this assumption is only used in the definition of an antihomomorphism. These

are not used in the proof of Theorem 7.0.1; so it follows that this result should

hold for first-order structures in general. With this in mind, Propositions 4.1 and

4.2 of [14] are direct corollaries of Theorem 7.0.1.

7.2.2 Back and forth

We now move on to discussing extension to surjective endomorphisms; this is

when XZ ∈ B. Due to the lack of symmetry when working with homomor-

phisms as opposed to isomorphisms, we must provide a backwards condition

to achieve the back part of the required back-and-forth argument. Similar to the

more conventional amalgamation properties, this backwards condition is de-

fined on finite structures. This will involve using the concept of antihomomor-

phisms outlined in Section 7.1 in three distinct case; antihomomorphisms (H) for

homomorphisms (H), antimonomorphisms (M) for monomorphisms (M), and

inverse isomorphisms (I) for isomorphisms (I) (although these notions are the

same in this case).

We will write f̄ : B −→ A to mean some multifunction of type X ∈ {H,M, I}

from B to A (see Figure 7.3). This notation is used in another manner: if f :

A → B is a surjective homomorphism of type X, we write f̄ : B → A to be the

corresponding surjective antihomomorphism of type X: this is uniquely deter-
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Type Map Converse type (M) Converse map (H)

H homomorphism H antihomomorphism

M monomorphism M antimonomorphism

I isomorphism I isomorphism

Figure 7.3: Types of finite partial map

mined by Lemma 7.1.2. The context of when we use this will usually be clear.

We also recall Proposition 7.1.4 and its following remarks; the composition of

two multifunctions of type H,M, I is again a multifunction of type H,M, I. Note

also that the classes I and I coincide; we use the barred version when applicable

throughout for notational simplicity. It can be seen that I ⊆M ⊆ H.

We note that if Z = E then it is a surjective map of type Y = H; likewise, when

Z = B we have that Y = M and when Z = A we have that Y = I. This relation is

codified by the following set of pairs:

S = {(E,H), (B,M), (A,I)}. (7.1)

It follows that any XZ-homogeneous structureM is also XY-homogeneous, where

the two are related by the relevant pair (Z,Y) ∈ S . Therefore, we need to ensure

that any XZ-homogeneous structure M we construct is also XY-homogeneous

for the appropriate Y; so results in Subsection 7.2.1 should be satisfied byM.

As mentioned previously, new properties are required to take care of exten-

sion and amalgamation in the backwards direction to ensure the map is surjec-

tive. This is achieved by looking at types of antihomomorphisms; which are

denoted by X,Y ∈ {H,M, I}. We must pair these together with standard homo-

morphisms to ensure the correct properties. For instance, if X = H then X = H,

and so on; see Figure 7.3 for corresponding pairs. Throughout, we let X,Y ∈ {H,

M, I}, X,Y ∈ {H,M, I}, and Z ∈ {E, B, A}. To avoid any potential confusion,

whenever we refer to a map of type Z being a surjective map of type Y, the sym-

bol Z is always related to Y in the manner illustrated in S (see Equation 7.1), in

the sense that (Z,Y) ∈ S .

We proceed by stating our new amalgamation property to accommodate the
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back portion of a back-and-forth argument; this is the XY-amalgamation property:

(XYAP) Let C be a class of finite structures. We say that C has

the XYAP if for all A,B1, B2 ∈ C , multifunction f̄1 : A −→ B1 of type

X and embedding f2 : A −→ B2, there exists a D ∈ C , embedding

g1 : B1 −→ D and multifunction ḡ2 : B2 −→ D of type Y such that

f̄1g1 = f2ḡ2 (see Figure 7.4).

∃D

B2B1

A

ḡ2g1

f2f̄1

Figure 7.4: The XY-amalgamation property (XYAP)

Note that this property represents nine different amalgamation conditions.

This corresponds to one for each class XZ ∈ B, where (Z,Y) ∈ S (see Equa-

tion 7.1 on the previous page) and X and X are related as in Figure 7.3. For

examples, the IIAP is the standard amalgamation property, and the MMAP is

the BAP of [17]. Along similar lines, we can state the XY-extension property:

(XYEP) Suppose that M is a structure with age C . For all A ⊆

B ∈ C and a multifunction f̄ : A −→ M of type X, there exists a

multifunction ḡ : B −→M of type Y extending f̄ .

We now turn our attention to necessary and sufficient conditions for XZ-

homogeneity, to be used throughout the proof of Theorem 7.0.2. As stated above,

we need to ensure that any XZ-homogeneous structure we construct is also XY-

homogeneous for the appropriate Y. It follows that such a structure must satisfy

all the conditions outlined in Proposition 7.2.1; in particular, XY must be in I for

part (2). With these restrictions in mind, and a desire to obtain the most general

result possible, we show that both the XYEP and XYEP are necessary conditions

for XZ-homogeneity in general, and that it these are also sufficient when the

extended map of type Y is also a map of type X.
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Proposition 7.2.6. LetM be a σ-structure with age C .

(1) Suppose that XZ ∈ B. IfM is XZ-homogeneous, thenM has both the XYEP and

the XYEP.

(2) Suppose that XZ ∈ B ∩ I. If M has the XYEP and the XYEP, then M is XZ-

homogeneous.

Proof. (1) AsM is XZ-homogeneous, it is also XY-homogeneous and so it has the

XYEP by Proposition 7.2.1 (1). Now, suppose that A,B ∈ C and f̄ : A −→M is a

multifunction of type X. As C is the age ofM, it follows thatM contains copies

A′ ⊆ B′ of A and B and there are isomorphisms θ : B → B′ and θ−1 : B′ → B.

Restrict the codomain of f̄ to its image to find a map f̄ ′ : A −→ Af̄ ; as this is a

surjective multifunction of type X, we have that θ−1f̄ ′ = h∗ : A′ −→ Af̄ is also a

surjective multifunction of type X. By Lemma 7.1.2, the converse h : Af̄ → A′

of θ|−1
A f̄ ′ is a surjective map of type X; asM is XZ-homogeneous, extend h to a

map β : M → M of type Z. So βθ−1 : M → B is a surjective map of type Y;

by Corollary 7.1.3, define ḡ = θβ̄ : B → M to be the corresponding surjective

multifunction of type Y. We need to show it extends f̄ . As β extends h, then β̄

extends h∗. So for all a ∈ A:

af̄ = aθθ−1f̄ = aθh∗ = aθβ̄

and henceM has the XYEP.

(2) Now suppose that XZ ∈ B ∩ I; so a multifunction of type Y implies that

it is also a multifunction of type X. Suppose also thatM has the XYEP and the

XYEP, and that f : A −→ B is a map of type X between substructures ofM. We

use a back-and-forth argument to show thatM is XZ-homogeneous.

Set A = A0, B = B0 and f0 = f , and assume that we have extended f to a

surjective map fk : Ak −→ Bk of type Y (and hence of type X, by assumption),

where Ai ⊆ Ai+1 and Bi ⊆ Bi+1 for all 0 ≤ i ≤ k − 1. Furthermore, as M is

countable we can enumerate the elements of M = {m0,m1, ...}.
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If k is even, select a point mi ∈ M r Ak where i is the smallest number

such that mi /∈ Ak, so Ak ∪ {mi} ⊆ M. Using the XYEP, extend fk to a map

f ′k+1 : Ak ∪ {mi} −→ B′k of type Y; by restricting the codomain of f ′k+1 to its

image, it follows that fk+1 : Ak ∪ {mi} −→ Bk ∪ {mif
′
k+1} is a surjective map of

type Y extending fk.

If k is odd, we select a point mi ∈ M r Bk where i is the smallest number

such that mi /∈ Bk; so Bk ∪ {mi} ⊆ M. Note that as fk is a surjective map

of type X, we have that f̄k : Bk −→ Ak is a surjective multifunction of type X.

Using the XYEP, extend f̄ to a multifunction f̄ ′k+1 : Bk ∪ {mi} → M of type

Y. Restricting the codomain of f̄k+1 to its image gives a surjective multifunction

f̄k+1 : Bk ∪ {mi} → Ak ∪mif̄k+1 of type Y, where mif̄k+1 = {y ∈ M : (y,mi) ∈

f̄k+1} is a non-empty set. As f̄k+1 is a surjective multifunction of type Y, we have

that fk+1 : Ak ∪mif̄k+1 → Bk ∪ {mi} is a surjective map of type Y extending fk.

Since XZ ∈ B ∩ I, a map of type Y is also a map of type X; so we can use

the XYEP and XYEP to repeat this process infinitely many times. By ensuring

that each point of M appears at both an odd and even step, we extend f to a

surjective map β of type Y; which is of course a map of type Z and so M is

XZ-homogeneous.

Remark. Together, Proposition 7.2.1 and Proposition 7.2.6 re-prove [53, Lemma

1.1], which states that a countable structureM is II (MI, HI)-homogeneous if and

only if it is IA (MA, HA)-homogeneous. For if a structureM is HI-homogeneous,

then it has the HIEP by Proposition 7.2.1; this implies that every homomorphism

between finite substructures of M is an isomorphism. Since this happens, it

follows that every antihomomorphism between finite substructures ofM is an

isomorphism. Finally, asM has the HIEP it must have the HIEP as well and so

M is HA-homogeneous by Proposition 7.2.6. A similar argument works for the

equality concerning MI-homogeneous structures. In the II case, the IIEP is the

standard extension property (EP) from Proposition 2.3.10, and so any structure

Mwith the IIEP is homogeneous by the same result.

We now prove Theorem 7.0.2 (1).
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Proposition 7.2.7. Suppose that XZ ∈ B. If a structureM is XZ-homogeneous, then

Age(M) has the XYAP and the XYAP.

Proof. As M is XZ-homogeneous then it is XY-homogeneous and so has the

XYAP by Proposition 7.2.2. To show that Age(M) has the XYAP, suppose that

A,B1, B2 ∈ Age(M), f̄1 : A −→ B1 is a multifunction of type X and f2 : A −→ B2

is an embedding. We can assume without loss of generality that A,B1, B2 are

actually substructures ofM and that f2 is the inclusion mapping.

By restricting the codomain of f̄1 to its image, f̄1 : A −→ Af̄1 is a surjective

multifunction of type X; hence the converse f1 : Af̄1 −→ A of f̄1 is a surjective

map of type X. Use XZ-homogeneity to extend f1 to a map β :M −→M of type

Z; and so a surjective map of type Y. We see that B1β is a structure containing A,

and that β|B1 : B1 −→ B1β extends f1. Define D = B1β ∪ B2. As β is surjective,

there exists a finite substructure C such that Cβ = D by Lemma 7.1.5. Now,

define the map g1 : B1 −→ C to be the inclusion map. Since β is a surjective map

of type Y, β̄ : M −→ M is a surjective multifunction of type Y by Lemma 7.1.2.

Therefore β̄|B2 : B2 −→ B2β̄ is a surjective multifunction of type Y; furthermore,

B2β̄ ⊆ C as B2 ⊆ D. Define ḡ2 : B2 −→ C to be the multifunction β̄|B2 of type Y.

It is easy to check that f̄1g1 = f2ḡ2 and so Age(M) has the XYAP.

We now show the existence portion of Theorem 7.0.2. Note that the previ-

ously described inductive construction of an infinite structure in Proposition 7.2.3

used even and odd steps to achieve different stages of the construction at differ-

ent times. Because we have two amalgamation properties, as well as the JEP to

ensure a countable structure exists, we proceed using an inductive argument at

steps congruent to 0,1,2 mod 3 to accommodate different stages of the construc-

tion.

Proposition 7.2.8. Suppose that XZ ∈ B ∩ I. Let C be a class of finite σ-structures

that is closed under substructures and isomorphism, has countably many isomorphism

types and has the JEP, XYAP and the XYAP. Then there exists a XZ-homogeneous σ-

structureM with age C .



Chapter 7: Homomorphism-homogeneous first-order structures 158

Proof. We build the structure iteratively over countably many steps, achieving

different goals at each stage of the construction. Assume that Mk has been con-

structed for some k ∈ N, and as C has countably many isomorphism types, we

can enumerate C = {C0, C1, ...}.

If k ≡ 0 mod 3, select Ai ∈ C such that k = 3i. Since C has the JEP, we can

find D ∈ C that jointly embeds Mk and Ai; define this structure D to be Mk+1. If

k ≡ 1 mod 3, select a triple (A,B, f) where A ⊆ B ∈ C and f : A −→ Mk. Using

the fact that C has the XYAP, we can find a structure Mk+1 ∈ C , embedding

ek : Mk → Mk+1 and map g : B −→ Mk+1 of type Y extending f . If k ≡ 2

mod 3, then select a triple (P,Q, f̄), where P ⊆ Q ∈ C and f̄ : P −→ Mk is a

multifunction of type X. As C has the XYAP, we can find a structure Mk+1 ∈ C ,

embedding ek : Mk −→ Mk+1 and a multifunction ḡ : Q −→ Mk+1 of type Y

extending f̄ .

As C has countably many isomorphism types, there are only finitely many

maps f : A → Mk of type X at each stage, and there are finitely many multi-

functions f̄ : P → Mk of type X at each stage, we can arrange the steps such

that:

• every structure Ai ∈ C appears at a 0 mod 3 stage;

• every triple (A,B, f) appears at a k ≡ 1 mod 3 stage, where for every such

k, for every A ⊆ B ∈ C and every map f : A → Mk of type X, there

exists ` ≥ k and embedding ek,` : Mk → M` such that f extends to a map

g : B →M` of type Y.

• every triple (P,Q, f̄) appears at a k ≡ 2 mod 3 stage, where for every such

k, for every P ⊆ Q ∈ C and every multifunction f̄ : P → Mk of type X

there exists ` ≥ k and embedding ek,` : Mk → M` such that f̄ extends to a

multifunction ḡ : Q→M` of type Y.

Arranging the steps this way ensures that every possible amalgamation is

performed. Since Mk ⊆Mk+1 for all k ∈ N via the embedding ek, we can define

M =
⋃
k∈NMk. All that remains to show is that M has age C and that M is

XZ-homogeneous.
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As we ensured that every Ai ∈ C was embedded into Mk+1 at some 0 mod

3 stage, we have that C ⊆ Age(M). At any stage k, our construction ensured

that each Mk ∈ C ; as C is closed under substructures, Age(M) ⊆ C and so they

are equal. As XZ ∈ B ∩ I, it is enough to show thatM has the XYEP and the

XYEP by Proposition 7.2.6 (2). So suppose that A ⊆ B ∈ C and that f : A −→M

is a map of type X. From the arrangement of steps above, there exists a k such

that Af ⊆ Mk. From the construction, there exists an M` ⊇ Mk and a map

g : B −→M` of type Y extending f ; soM has the XYEP. Similarly, let P ⊆ Q ∈ C

and suppose that f̄ : P −→ M is a multifunction of type X. Then there exists

k ∈ N such that P f̄ ⊆ Mk. Therefore, there exists an ` ∈ N with M` ⊇ Mk such

that f̄ : P −→Mk extends to a multifunction ḡ : Q −→M` of type Y. SoM has the

XYEP and thereforeM is XZ-homogeneous.

Finally, we show part (3) of Theorem 7.0.2. Using the fact that XZ-homogeneous

structures have two extension properties, we can ensure that a map between two

of them is surjective by using a back-and-forth argument. This motivates a new

definition, building on that of Y-equivalence.

Definition 7.2.9. Let M,N be σ-structures, and suppose that Z ∈ {E, B, A}

corresponds to the surjective map of type Y ∈ {H, M, I} by the relation in Equa-

tion 7.1 (on page 153). Say thatM and N are Z-equivalent if Age(M) = Age(N )

and every embedding f : A −→ N from a finite substructure A of M into N

extends to a surjective map g :M−→ N of type Y, and vice versa.

For an example,M,N are B-equivalent means that they are bi-equivalent in

the sense of [17]. Note that if two structures M and N are Z-equivalent, then

they are also Y-equivalent where (Z,Y) ∈ S (from Equation 7.1).

Proposition 7.2.10. Suppose that XZ ∈ B ∩ I.

(1) Assume thatM,N are Z-equivalent. ThenM is XZ-homogeneous if and only if

N is.

(2) If M,N are XZ-homogeneous and Age(M) = Age(N ), then M and N are Z-

equivalent.
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Proof. (1) AsM,N are Z-equivalent they are also Y-equivalent and asM is also

XY-homogeneous, so is N by Proposition 7.2.5; so N has the XYEP by Propo-

sition 7.2.1. We show now that N has the XYEP. Suppose then that A ⊆ B ∈

Age(N ) and there exists a multifunction f̄ : A −→ A′ ⊆ N of type X. Note that A

need not be isomorphic to A′. As Age(M) = Age(N ) there exists a copy A′′ of

A′ inM; fix an isomorphism e : A′ → A′′ between the two. Therefore, e is a iso-

morphism from a finite structure of N intoM; as the two are Z-equivalent, we

extend this to a surjective map α : N →M of type Y. This in turn induces a sur-

jective map ᾱ :M −→ N by Lemma 7.1.2. Note that ᾱ extends the isomorphism

e−1 : A′′ → A′. Now, define a multifunction h̄ = f̄ e : A→ A′′ of type X; this is a

multifunction of type X from A intoM. SinceM is XZ-homogeneous, it has the

XYEP by Proposition 7.2.6 and so we extend h̄ to a multifunction h̄′ : B →M of

type Y. Here, the multifunction h̄′ᾱ : B −→ N is also of type Y; we need to show

it extends f̄ . As h̄′ extends h̄ = f̄ e, it follows that:

af̄ = af̄ee−1 = af̄eᾱ = ah̄′ᾱ

for all a ∈ A. Therefore N has the XZEP.

(2) It is enough to show that N has the XYEP and the XYEP by Proposi-

tion 7.2.6. We utilise a back and forth argument constructing the surjective map

over infinitely many stages. Let f : A −→ B be a bijective embedding from a

finite structure A ⊆ M to a finite substructure B ⊆ N . Set A = A0, B = B0 and

f = f0 and assume that fk : Ak −→ Bk is a surjective map of type Y (and so of

type X by assumption) extending fk. Note that as bothM and N are countable,

then there exists enumerationsM = {m0,m1, ...} and N = {n0, n1, ...}.

If k is even, select a mi ∈ M r Ak, where i is the smallest natural number

such that mi /∈ Ak. So Ak ∪ {mi} ⊆ M, and is also in Age(N ) by assumption.

As N is XZ-homogeneous it has the XYEP by Proposition 7.2.1 and we use this

to extend fk to a map f ′k+1 : Ak ∪ {mi} −→ N of type Y. Restricting the codomain

of f ′k+1 to its image yields a surjective map fk+1 : Ak ∪ {mi} −→ Bk ∪ {mifk+1}

of type Y. If k is odd, select a ni ∈ N r Bk such that i is the smallest natural



Chapter 7: Homomorphism-homogeneous first-order structures 161

number such that ni /∈ Bk. Hence Bk ∪ {ni} ⊆ N and thus it is an element

of Age(M) by assumption. As fk is a surjective map of type Y, its converse f̄k :

Bk −→ Ak is a surjective multifunction of type Y by Lemma 7.1.2, and of type X by

assumption. AsM is XZ-homogeneous it has the XYEP and so we can extend f̄k

to a multifunction f̄ ′k+1 : Bk ∪ {ni} −→M of type Y. By restricting the codomain

of f̄ ′k+1 to its image, we obtain a surjective multifunction f̄k+1 : Bk ∪ {ni} −→

Ak ∪ nif̄ ′k+1 of type Y, where nif̄ ′k+1 = {(ni, y) : y ∈ M} is a non-empty set. So

by Lemma 7.1.2, there exists a surjective map fk+1 : Ak ∪ nif̄ ′k+1 → Bk ∪ {ni}

of type Y extending fk. By our earlier assumption, as a map of type Y is also

a map of type X, we can repeat this process infinitely many times. By ensuring

all points inM appear at even stages and all points in N appear at odd stages,

we construct a surjective map α : M −→ N of type Y as required. We can use a

similar method to show that we can extend any embedding g : A −→ B where

A ∈ N and B ∈ M to a surjective map of type Y; proving that M and N are

Z-equivalent.

Note that unlike Theorem 7.0.1, the use of antihomomorphisms means that

we cannot just drop the assumption that σ is a relational signature; this is be-

cause antihomomorphisms are defined on relational structures only. The only

time we can do this is if we are dealing with isomorphisms, as the converse f̄

of an isomorphism f is the inverse isomorphism f−1. This means that Theo-

rem 7.0.2 works for any first-order structure in the case where XZ = IA; this is

Fraı̈ssé’s theorem. This remark motivates an open question.

Question 7.2.11. Can we expand Theorem 7.0.2 to include all first-order structures?

Of course, the other open problem that arises from this section is:

Question 7.2.12. Can we expand Theorem 7.0.1 and Theorem 7.0.2 to include those

homomorphism-homogeneity classes in B?



Chapter 7: Homomorphism-homogeneous first-order structures 162

7.3 Maximal homomorphism-homogeneity classes

This section is devoted to determining the extent to which well known examples

of homogeneous structures are also homomorphism-homogeneous. In some

cases, verifying that a structureM is homogeneous involves using a property of

M to determine thatM has the EP, and so is homogeneous by Proposition 2.3.10.

Good examples of such properties are the density of (Q, <), and the ARP char-

acteristic of R (see Figure 2.6 and Proposition 2.4.3). In the homomorphism-

homogeneity case, this idea was used by Cameron and Lockett [13] and Lockett

and Truss [53] to classify homomorphism-homogeneous posets and determine

their position relative to the natural containment order on H. In addition to this,

Dolinka [23] used properties of known homogeneous structure to show that they

satisfied the one-point homomorphism extension property (1PHEP), a necessary and

sufficient condition for HH-homogeneity. Our approach in this section is sim-

ilar to that of Section 3 of [23]; by defining necessary and sufficient conditions

for XY, XZ-homogeneity and using properties of structures to show that these

are satisfied or not satisfied. As in Subsection 7.2.2, we let X,Y ∈ {H, M, I},

X,Y ∈ {H,M, I}, and Z ∈ {E, B, A} throughout this section. Furthermore, the

pair (Z,Y)∈ S is related as in Equation 7.1.

So to begin this section, we define the one-point XY-extension property, and the

one-point XY-extension property:

(1PXYEP) We say that a σ-structureMwith age C has the 1PXYEP

if for all A ⊆ B ∈ C with |B r A| = 1 and maps f : A −→M of type

X, there exists a map g : B −→M of type Y extending f .

(1PXYEP) Suppose thatM is a σ-structure with age C . Say that

M has the 1PXYEP if for all A ⊆ B ∈ C with |B r A| = 1, and

a multifunction f̄ : A −→ M of type X, there exists a multifunction

ḡ : B −→M of type Y extending f̄ .

For an example, the 1PHHEP is the same thing as the 1PHEP of [23]. These

properties, together with the next proposition, provide some of the theoretical
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basis for the examples that follow.

Proposition 7.3.1. Suppose that XY ∈ I. A countable σ-structureM has the XYEP /

XYEP if and only if it has the 1PXYEP / 1PXYEP.

Proof. The forward direction for both the XYEP and XYEP cases is clear. We

now aim to show that ifM has the 1PXYEP thenM has the XYEP. Assume that

A ⊆ B with |BrA| = n, and f : A→M is a map of type X. We prove the result

by induction on the size of this complement; the base case (where n = 1) is true

by the assumption thatM has the 1PXYEP.

So suppose that for some k ∈ N, for any A ⊆ B ∈ C where |B r A| = k

and any map f : A → M of type X can be extended to a map g : B → M of

type Y. Take P ⊆ Q ∈ C where |Q r P | = k + 1 and f ′ : P → M to be some

map of type X. There exists S ∈ C containing P such that |Q r S| = 1. By the

inductive hypothesis, we can extend f ′ to a map h : S → M of type Y. As XY

∈ I, it follows that h is also a map of type X. Now, using the 1PXYEP, extend h to

a map g′ : Q →M of type Y. Since P ⊆ S ⊆ Q and g′ extends h which extends

f ′, we have that g′ extends f ′ and so we are done. Using a similar argument, we

can show that ifM has the 1PXYEP then it has the XYEP.

Remark. Let XY ∈ I. Together with Proposition 7.2.1, this lemma states that a

countable structure M has the 1PXYEP if and only if M is XY-homogeneous.

Similarly, by Proposition 7.2.6 a countable structure M is XZ-homogeneous if

and only if it has the 1PXYEP and the 1PXYEP, where (Z,Y) are as in S (Equa-

tion 7.1).

By considering properties of partial maps and endomorphisms of structures,

our next result places restrictions on certain types of homomorphism-homogeneity.

The latter consideration looks at structures known as cores; a structure M is a

core if every endomorphism ofM is an embedding. Every ℵ0-categorical struc-

tureM contains a core as the image of an endomorphism ofM, andM is homo-

morphically equivalent to a model-complete core [4]. Cores play an important

role in the theory of constraint satisfaction problems; see [5] for a introduction to

the topic. Widely studied examples of cores include the countable dense linear
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order without endpoints (Q, <), the complete graph on countably many vertices

Kℵ0 and its complement K̄ℵ0 . We note that in these three cases every finite par-

tial monomorphism of these structures is an isomorphism, and in the cases of

(Q, <) and Kℵ0 every homomorphism between finite structures is an isomor-

phism. This straightforward result includes a restatement of Lemma 1.1 of [53].

Lemma 7.3.2. (1) A structureM is MI and MA-homogeneous (HI and HA-homogeneous)

if and only ifM is IA-homogeneous and every finite partial monomorphism (homomor-

phism) ofM is an isomorphism.

(2) If a structureM is HM or HB-homogeneous, then every finite partial homomor-

phism ofM is also a monomorphism.

(3) LetM be a core. If there exists a finite partial monomorphism ofM that is not

an isomorphism, thenM is not MH-homogeneous.

Proof. (1) is contained in Lemma 1.1 of [53]; notice that we cannot extend a map

that is not a partial isomorphism ofM to an isomorphism of the entire structure

M. The converse direction is clear. To show (2), note that if h is a finite par-

tial homomorphism ofM that is not injective, then we cannot possibly extend

this to an injective map and so M does not have the HMEP. For (3), let h be a

finite partial monomorphism of a core M that is not an isomorphism. As any

endomorphism ofM is an embedding, we cannot extend h.

Remark. Note that (1) and (2) also follow from Theorem 7.0.1 and Theorem 7.0.2.

Following the approach of [53] in classifying homomorphism-homogeneous

posets, the idea of this section is to look at properties of structures to deter-

mine “maximal” homomorphism-homogeneity classes with respect to the con-

tainment order on H. We formally define what we mean by “maximal”.

Definition 7.3.3. LetM be a first order structure. A homomorphism-homogeneity

class XY ∈ H is maximal for M if M is XY-homogeneous and M is not PQ-

homogenenous, where PQ ⊆ XY in H. If this happens, we say that XY is a maxi-

mal homomorphism-homogeneity class (shortened to maximal hh-class) forM.
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Remark. While this definition describes a minimal element in the poset H, it

is so named because of the strengths of different notions of homomorphism-

homogeneity. For instance, HA-homogeneity is a stronger condition than IA-

homogeneity, but HA ⊆ IA in H. In fact, there is an inverse correspondence

between the relative strength of notions of homomorphism-homogeneity in H

and containment of classes in H.

For example, if M is MB-homogeneous but not MA or HB-homogeneous,

then MB is a maximal hh-class for M. A structure M may have more than

one maximal hh-class. Furthermore, the set of maximal hh-classes forM com-

pletely determines the extent of homomorphism-homogeneity satisfied by M;

we therefore denote this set by H(M). As an example H((Q, <)) = {HA}; this

example arose from the classification of homomorphism-homogeneous posets

in [53].

IfM is a countable σ-structure where there exists a finite partial monomor-

phism ofM that is not an isomorphism, and a finite partial homomorphism of

M that is not an monomorphism, then Lemma 7.3.2 implies that the “best pos-

sible” maximal hh-classes forM are IA, MB and HE. As an aside, these classes

have important roles to play in the theory of generic endomorphisms [52].

7.3.1 Examples

In this section, we look at a selection of countable homogeneous structures en-

countered throughout the thesis in order to determine sets of maximal-hh classes

for these structures. By restricting ourselves to classes XY ∈ I, we can re-

call Proposition 7.3.1 and the remark that follows it; to show that M is XY-

homogeneous it suffices to show thatM has the 1PXYEP, and to show thatM is

XZ-homogeneous it suffices to show that it has the 1PXYEP and the 1PXYEP.

Example 7.3.4. It is well-known (see Theorem 2.4.10) that the complete graph

on countably many vertices Kℵ0 is homogeneous. Suppose that h : A −→ B is a

homomorphism between two finite substructures of Kℵ0 . Then as h preserves

edges, it cannot send two distinct vertices x1, x2 ∈ V A to a single point v ∈ V B;
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hence h is injective. As there are no non-edges to preserve, it must preserve

non-edges and so h is an embedding. It follows from Lemma 7.3.2 (1) that Kℵ0

is HA-homogeneous and so H(Kℵ0) = {HA}.

Its complement K̄ℵ0 , the infinite null graph, is also homogeneous and as ev-

ery finite partial monomorphism of K̄ℵ0 preserves non-edges, it is MA-homogeneous

by Lemma 7.3.2 (1). We note that there exist non-injective finite partial homo-

morphisms of K̄ℵ0 and hence it is not HM or HB-homogeneous by Lemma 7.3.2

(3). So if h : A −→ B is any finite partial homomorphism, we can define a bijec-

tive map g : K̄ℵ0 r A −→ K̄ℵ0 r B and note that the map α : K̄ℵ0 −→ K̄ℵ0 that

acts like h on A and g everywhere else is an epimorphism of K̄ℵ0 ; so K̄ℵ0 is HE.

Hence H(K̄ℵ0) = {MA, HE}.

Example 7.3.5. Recall from Section 2.4 that a tournament is defined to be an ori-

ented, loopless complete graph. By a similar argument to the complete graph

in Example 7.3.4, every finite partial homomorphism of a tournament is an em-

bedding. It follows from Lemma 7.3.2 (1) that every countable homogeneous

tournament is HA-homogeneous. Therefore, the three countable homogeneous

tournaments as classified by Lachlan [48], namely (Q, <), the random tourna-

ment T , and the local order S(2) (see Theorem 2.4.11), are all HA-homogeneous.

So HA is the unique maximal hh-class for these three examples.

Example 7.3.6. Let R be the random graph (see Example 2.4.2). Note that there

exist finite partial monomorphisms of R that are not isomorphisms and finite

partial homomorphisms of R that are not monomorphisms; hence R is not MI

or HM-homogeneous by Lemma 7.3.2. We proved that R is MB-homogeneous

in Proposition 4.1.20; here, we show that R is HE-homogeneous. To do this, we

rely on the ARP characteristic of R (see Proposition 2.4.3).

Let A ⊆ B ∈ Age(R) with B r A = {b} and suppose that f : A −→ R is a ho-

momorphism. Using ARP, we can find a vertex v ∈ V R such that v is adjacent to

everything in im f . Let g : B −→ R be the function such that bg = v and g|A = f ;

this is a homomorphism as all edges from A to b are preserved and so R has the

1PHHEP. The proof to show that R has the 1PHHEP is similar; in this case, we
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use ARP to find a vertex w ∈ V R that is independent of the image of the some

antihomomorphism f̄ : A → R. The resulting multifunction g is an antihomo-

morphism as it preserves all non-edges. Therefore, R is HE-homogeneous by

Proposition 7.3.1 and Proposition 7.2.6. We conclude that H(R) = {IA, MB, HE}

Remark. It was shown in [52, Theorem 5.3] that R has a generic endomorphism.

As R is HE-homogeneous, it follows from Theorem 2.1 of the same source that

this generic endomorphism must be in Epi(R).

Example 7.3.7. As in Example 2.4.8, let D be the generic oriented graph. From

that example, D has a characteristic extension property called the oriented Al-

ice’s restaurant property (OARP, see Figure 2.9). We show thatD is MB-homogeneous

using the OARP.

Suppose that A ⊆ B ∈ Age(D) with B r A = {b} and that f : A −→ D is a

monomorphism. Decompose A into three disjoint sets b−→ = {a ∈ A : b −→ a},

b←− = {a ∈ A : b ←− a} and b‖ = {a ∈ A : b ‖ a}. The injectivity of f means

that the sets b−→f, b←−f and b‖f are pairwise disjoint subsets of V D. Using the

OARP, select a vertex x ∈ V D such that x has an arc to all elements of b−→f , an

arc from all elements of b←−f and is independent of all elements of b ‖ f . Define

g : B −→ D to be the map such that bg = x and g|A = f ; due to our choice of

x, this is a monomorphism and so D has the 1PMMEP. The proof that D has

the 1PMMEP also is analogous to the proof that R has the 1PMMEP; hence D is

MB-homogeneous.

However, D is not even HH-homogeneous. To see this, consider an endo-

morphism γ of D, and suppose there exists v ‖ w ∈ V D such that vγ = wγ. As

D is universal and homogeneous, there exists an oriented graph A = {v, w, x}

such that x −→ v and w −→ x. The image of A under γ is a 2-cycle and this is

a contradiction as D does not embed 2-cycles. It follows that every endomor-

phism of D is a monomorphism. As there exist finite partial homomorphisms of

D that are not monomorphisms, by Lemma 7.3.2 (2) D is not HM-homogeneous

and hence it is not HH-homogeneous. We conclude that the maximal hh-classes

of D are IA and MB.
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Example 7.3.8. As in Example 2.4.9, letD∗ be the generic digraph. Recall thatD∗

has a characteristic extension property known as the directed Alice’s restaurant

property (DARP, see Figure 2.10). Using this, we show that D∗ is MB and HE-

homogeneous.

Let A ⊆ B ∈ Age(D∗) with B r A = {b} and suppose that f : A −→ D∗ is a

monomorphism. As im f is finite, we can use DARP to find a vertex v ∈ V D∗

such that there is a 2-cycle between v and every element in im f . Let g : B −→ D∗

be the injective map such that bg = v and g|A = f ; this is a monomorphism as

all arcs from A to b are preserved. Therefore D∗ has the 1PMMEP. The proof to

show that D∗ has the 1PMMEP is similar; we use DARP to instead find a vertex

w ∈ V D∗ that is independent of the finite set im f . The resulting injective map

g is an antimonomorphism as it preserves all non-relations. Therefore, D∗ is

MB-homogeneous by Proposition 7.3.1 and Proposition 7.2.6.

As with Example 7.3.6, we can use a similar argument (by replacing monomor-

phism, antimonomorphism with homomorphism, antihomomorphism respec-

tively) to show that D∗ has the 1PHHEP and the 1PHHEP, and so H(D∗) = {IA,

MB, HE}.

Remark. Note the difference between the maximal hh-classes of D, the generic

digraph without 2-cycles, and D∗, the generic digraph with 2-cycles.

Example 7.3.9. Let G be the countable homogeneous Kn-free graph for n ≥

3. Results of Mudrinski [66] show that G is a core for all such n. Roughly,

this is because if an endomorphism adds a single edge or shrinks a single non-

edge down to a point, it creates a subgraph isomorphic to Kn. Hence, as there

are finite partial monomorphisms of G that are not isomorphisms (sending any

non-edge to an edge, for instance) we have that G is not MH-homogeneous by

Lemma 7.3.2 (3) and so H(G) = {IA}.

Example 7.3.10. As introduced in Theorem 2.4.11, the oriented graph analogues

of the homogeneous Kn-free graphs are the Henson digraphs MT . These are the

Fraı̈ssé limits of the class of all digraphs not embedding elements of some set T

of finite tournaments. We show that MT is a core for any non-empty T contain-
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ing tournaments of three or more vertices.

Suppose for a contradiction there exists a γ ∈ End(MT ) such that for some

independent pair of vertices v, w we have that vγ = wγ. Select a tournament

Y ∈ T with the least number of vertices, and choose x, y ∈ Y such that x −→ y.

Create a oriented graph Y ′ by removing the arc between x and y, adding an

extra vertex x′ and drawing an arc x′ −→ y; see Figure 7.5 for an example.

Y

x y

Y ′

yx

x′

Figure 7.5: Construction of Y ′ from Y in Example 7.3.10

Note that there is no tournament on any |Y |-set of vertices of Y ′; so Y ′ ∈

Age(MT ). By homogeneity of MT , we find a copy Y ′′ of Y ′ with v, w in place

of x, x′ respectively, and a vertex u in place of y. The image of Y ′′ under γ is a

oriented graph on |Y | vertices with vγ → uγ, that preserves all arcs involving v

and u. It follows that Y ′′γ ∼= Y ; this is a contradiction as Y does not belong to

the age of MT . So γ must be injective.

Now assume that there exists an independent pair of vertices v, w ∈MT such

that vγ −→ wγ. Select a Y ∈ T in the same fashion as before, choose two vertices

x −→ y of Y and remove this arc to obtain a oriented graph Z that embeds in

MT . Via homogeneity, we find an isomorphic copy of Z with v, w in place of

x, y respectively. Hence the image of Z under γ induces a copy of Y in MT ;

a contradiction as Y does not belong to the age of MT . So MT is a core for

any such set of tournaments T ; therefore, by Lemma 7.3.2 (3), MT is not MH-

homogeneous. We deduce that the maximal hh-class of MT is IA for any such

T .

Example 7.3.11. Let S(3) be the myopic local order introduced in Theorem 2.4.11.

Define S(3) as follows. Distribute ℵ0 many points densely around the unit circle
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such that for every point a there are no points b and c such that arg(a, b) =

arg(b, c) = arg(c, a) = 2π
3 . Draw an arc a −→ b if and only if arg(a, b) < 2π/3;

note that this means that S(3) embeds no directed 3-cycles. We show that this

structure is a core.

Assume that there is an endomorphism γ of S(3) with aγ −→ bγ for some in-

dependent pair of points a, b ∈ S(3). As this occurs, both arg(a, b) and arg(b, a) >

2π/3. As arg(a, b) = 2π − arg(b, a), it follows that arg(b, a) < 4π/3. From this,

there exists a point c such that arg(b, c) = arg(c, a) < 2π/3 and so b −→ c and

c −→ a. The endomorphism γ then creates a directed 3-cycle (or a loop) and this

is a contradiction. Now suppose that for some non-related pair a, b ∈ S(3), there

is an endomorphism γ such that aγ = bγ. As before, we can find a point c ∈ S(3)

such that b −→ c and c −→ a. Since γ is an endomorphism, it must preserve these

relations and so bγ −→ cγ and cγ −→ aγ = bγ. This creates a directed 2-cycle and

so is obviously false; therefore, S(3) is a core. Applying Lemma 7.3.2 (3) again

implies that S(3) is not MH-homogeneous and so H(S(3)) = {IA}.

Example 7.3.12. Let H be the complement of the homogeneous Kn-free graph

for n ≥ 3. Suppose that A ⊆ B ∈ Age(H) with B r A = {b} and suppose that

f : A −→ H is a monomorphism. As Af ∈ Age(H) and H is universal for graphs

not embedding an independent set of size n, there exists a graph G contained

in H that is isomorphic to the graph of Af together with an element x adjacent

to all vertices in Af . As there is a partial isomorphism θ between G r {x} and

Af , using homogeneity we can extend θ to an automorphism of H sending x to

some vertex y that is adjacent to everything in Af . Now, let g : B → H be the

map extending f and sending b to y; this is a monomorphism and so H has the

1PMMEP. A result of [23] shows thatH has the 1PHHEP, and so is both MM and

HH-homogeneous.

We now show that H does not have the 1PMMEP and hence cannot be MB-

homogeneous. So let A be the complete graph on n− 1 vertices, and let B be the

disjoint union of A with a vertex b. Note that A ⊆ B ∈ Age(H). Let f̄ : A −→ H

be an antimonomorphism sending A to an independent set of n − 1 vertices
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in H ; such a substructure exists by construction. Then as antimonomorphisms

preserve non-edges, a potential image point for b in H must be independent of

Af̄ ; this cannot happen as then H would induce an independent n-set. So H

does not have the 1PMMEP. We can also show (using a similar extension argu-

ment) that H does not have the 1PHHEP is not HE-homogeneous. Therefore,

H(H) = {IA, MM, HH}.

Remark. By using an analogous argument, we can show that the In-free digraphs

for n ≥ 3 have the same maximal hh-classes as H .
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MB-homogeneous graphs and digraphs

All of the examples considered in Section 7.3 are known to be IA-homogeneous

structures. Finding homomorphism-homogeneous structures that differ from

IA-homogeneous structures has been a point of interest from the advent of the

subject; for instance, Cameron and Nešetřil gave an example of a HH-homogeneous

graph Γ such that Aut(Γ) = {e} (Corollary 2.2 [14], see also Example 6.2.9).

Following subsequent work of Mašulović and Pech [61], this is a graph with

an oligomorphic endomorphism monoid whose group of units is trivial. Using

Theorem 6.2.8, finding examples of structures that are in some way homomorphism-

homogeneous whilst not being IA-homogeneous provides examples of oligo-

morphic transformation monoids without an oligomorphic group of units; for

if Aut(M) is oligomorphic, thenM is ℵ0-categorical. Therefore, following com-

ments made at the end of Chapter 6, one of the two aims of this chapter is to find

more examples of oligomorphic transformation monoids that are not based on

ℵ0-categorical structures. In particular, we would like to find examples of closed

permutation monoids arising as examples of bimorphism monoids of first-order

structures; this follows from Theorem 6.1.1.

Typically, finding examples of homogeneous structures relies on strong prop-

erties of the structure at hand to demonstrate that isomorphisms between finite

substructures extend to an automorphism; a good example would be the ARP

characteristic toR (Example 2.4.2). Machinery to find examples of homomorphism-

homogeneous structures was the main theme of Chapter 7. Verifying instances

of homomorphism-homogeneity in the literature and Section 7.3 usually relied

on these characteristic properties of homogeneous structures; however, there
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are cases that use demonstrably weaker properties. For instance, any countable

graph that contains the random graph as a spanning subgraph (see Section 2.4)

is MM-homogeneous [14]. This approach is codified by Lockett and Truss in

[53]; their wide-ranging classification of homomorphism-homogeneous posets

was based on whether or not the posets considered satisfied three structural

conditions.

In the case where the considered structure is a graph, such a classification re-

sult is extremely ambitious; particularly in the finite case [73]. In addition to this

present predicament, there are a lot more examples than in the homogeneous

case (see Corollary 8.2.9) and due to [14, Proposition 4.2], two homomorphism-

homogeneous graphs with the same age may not be isomorphic. However,

there are some positive results for countable graphs. The paper of Rusinov and

Schweitzer [73] built on the work of [14]; showing that the two classes MH and

HH coincide for graphs and that the only MH-homogeneous graphs that are not

MM-homogeneous are disjoint unions of cliques. In the same paper [73], they

also provided examples of HH-homogeneous graphs that do not contain R as

a spanning subgraph. Following on from the approach of [14], [73] and [53],

our second aim is to continue classification work on countable homomorphism-

homogeneous graphs, and to develop general theory about homomorphism-

homogeneous oriented graphs and digraphs.

Our attention here focuses on classes of homomorphism-homogeneity not

yet considered in the case for graphs; MB-homogeneity and HE-homogeneity.

As outlined in Chapter 7, MB and HE-homogeneity require satisfaction of ‘back’

conditions in order to ensure the extended map is surjective; in addition to the

structure adhering to the relevant ‘forth’ conditions. Therefore, as we are able

to write down a property of a graph Γ that implies MM (or HH) homogeneity

([14] and [23]), we should be able to deduce a property of Γ to imply the back

condition as well; this is considered with Proposition 8.1.6. Furthermore, as we

have seen in Theorem 7.0.2, classifying these graphs up to isomorphism is not an

option; so an appropriate equivalence condition must be developed and used.

This is the notion of bimorphism equivalence defined in Definition 8.1.7; every
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graph with properties outlined in Proposition 8.1.6 is bimorphism equivalent

to R. This investigation eventually culminates in the construction of 2ℵ0 non-

isomorphic MB (and HE)-homogeneous graphs in Corollary 8.2.9; presenting

a stark contrast to the countably many IA-homogeneous graphs up to isomor-

phism detailed in Theorem 2.4.10. Furthermore, each of these examples is bimor-

phism equivalent to the random graph R (see Section 2.4). We also modify tech-

niques considered in this study to investigate properties of MB-homogeneous

oriented graphs and digraphs; this leads to a construction of 2ℵ0 non-isomorphic

MB-homogeneous oriented graphs in Corollary 8.3.10 and digraphs in Theo-

rem 8.4.3 and Theorem 8.4.6.

In addition, finding examples of MB-homogeneous graphs, oriented graphs

and digraphs satisfies our first aim as well. An in-depth study not only pro-

vides examples of oligomorphic permutation monoids that do not have a large

group of units (as in Proposition 8.2.5) but also provide a range of interesting

closed submonoids of the symmetric group on a countably infinite set. Fur-

thermore, we answer a question asked at the end of Chapter 6; we construct

a MB-homogeneous structure with an arbitrary finite automorphism group in

Theorem 8.2.11, providing an example of an oligomorphic permutation monoid

with any finite group of units.

The structure of this chapter is as follows. Section 8.1 details properties of

MB-homogeneous graphs, provides a classification of MB-homogeneous graphs

that are also IA-homogeneous (Theorem 8.1.4), and defines the two relevant

structural properties (Proposition 8.1.6) and notion of equivalence (Definition 8.1.7)

used throughout the chapter. In Section 8.2, we construct first one example of a

MB-homogeneous graph that is not IA-homogeneous (Example 8.2.1), and then

uncountably many non-isomorphic MB-homogeneous graphs (Corollary 8.2.9);

all of which are bimorphism equivalent to the random graph R. Also, we prove

that for any finite group G, there exists an MB-homogeneous graph Γ such that

Aut(Γ) = G (Theorem 8.2.11). In Section 8.3, we define sufficient conditions

for an oriented graph to be MB-homogeneous (Example 8.3.6), and then con-

struct uncountably many non-isomorphic MB-homogeneous oriented graphs
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(Corollary 8.3.10). Finally, in Section 8.4 we use the previous sections’ work

for graphs and oriented graphs to present uncountably many non-isomorphic

MB-homogeneous digraphs (Theorem 8.4.3 and Theorem 8.4.6).

8.1 Properties of MB-homogeneous graphs

Recall that the examples of MB-homogeneous graphs we have seen so far are:

the random graph R (Example 7.3.6), the infinite complete graph Kℵ0 , and the

infinite null graph K̄ℵ0 (both Example 7.3.4). Here, Kℵ0 and K̄ℵ0 are comple-

ments of each other, and R is a self-complementary graph [11]. Our first result

shows that this behaviour is true in general.

Proposition 8.1.1. Let Γ be an MB-homogeneous graph. Then its complement Γ̄ is also

MB-homogeneous.

Proof. We note that A ∈ Age(Γ) if and only if Ā ∈ Age(Γ̄). Furthermore, as Γ

is MB-homogeneous, it has the MMEP and MMEP by Proposition 7.2.6. Now

suppose that A ⊆ B ∈ Age(Γ) and that f̄ : A −→ Γ is an antimonomorphism.

Any such f̄ preserves non-edges and may change edges to non-edges; so f̄ :

Ā −→ Γ̄ is a monomorphism. As Γ has the MMEP, f̄ can be extended to an

antimonomorphism ḡ : B −→ Γ; this in turn induces a monomorphism ḡ : B̄ −→ Γ̄

and hence Γ̄ has the MMEP. The proof that Γ̄ has the MMEP is similar.

Following this, we can guarantee that certain subgraphs appear in an MB-

homogeneous graph. Cameron and Nešetřil prove that every MM-homogeneous

graph must contain an infinite complete subgraph [14, Proposition 2.5]; we ex-

tend this result.

Corollary 8.1.2. Any infinite non-complete, non-null MB-homogeneous graph Γ con-

tains both an infinite complete and an infinite null subgraph.

Proof. Any MB-homogeneous graph is necessarily MM-homogeneous and hence

it contains an infinite complete subgraph from the aforementioned result of [14].

By Proposition 8.1.1, Γ̄ is also MB-homogeneous and so contains an infinite com-

plete subgraph; the result follows from this.
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Remark. A straightforward consequence of this argument is that any countably

infinite MB-homogeneous graph Γ is neither a locally finite graph nor the com-

plement of a locally finite graph.

We now examine cases where the graph Γ is disconnected. The case where

Γ has no edges was considered in Example 7.3.4. It is shown in [14] that any

disconnected, non-null MH-homogeneous graph is a disjoint union of complete

graphs, all of which are the same size. By this and Corollary 8.1.2, the only can-

didates for a disconnected non-null MB-homogeneous graph must be disjoint

unions of more than one infinite complete graph. The next result shows that

there is only one disconnected, non-null MB-homogeneous graph; re-proving

and extending a remark of Rusinov and Schweitzer [73].

Proposition 8.1.3. Let Γ =
⊔
i∈I Ki, where Ki

∼= Kℵ0 for all i in some index set I .

(1) If I is finite with size n > 1, then Γ is MM-homogeneous but not MB-homogeneous.

(2) If I is countably infinite, then Γ is MB-homogeneous.

Proof. In both cases, every A ∈ Age(Γ) can be decomposed as finite disjoint

union of finite complete graphs; so we can write that A =
⊔k
j=1Cj , where Cj is

a complete graph of some finite size.

(1) As |I| = n we note that k ≤ n for all A =
⊔k
j=1Cj in the age of Γ.

Suppose that A ⊆ B ∈ Age(Γ) with B r A = {b}. There are two cases for b;

either b is completely independent of A or b is related to exactly one Cj for some

1 ≤ j ≤ k. If it is the former, we can extend any monomorphism f : A −→ Γ to

a monomorphism g : B −→ Γ by sending b to any vertex v ∈ V Γ r A. If it is the

latter, then we can extend any monomorphism f : A −→ Γ to a monomorphism

g : B −→ Γ by sending b to a vertex v ∈ Ki r Cj , where j is defined as above.

Hence Γ has the MMEP by Proposition 7.3.1. However, note that Γ does not

embed an independent set of size n + 1 and so Γ is not MB-homogeneous by

Corollary 8.1.2.

(2) The proof that Γ has the MMEP when I is infinite is as above. Assume

then that A ⊆ B ∈ Age(Γ) with B r A = {b}, and let f̄ : A −→ Γ be an anti-

monomorphism. We note that as A is finite then Af̄ is finite; since I is infinite,
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there exists i ∈ I such thatKi ∩Af̄ = ∅. Therefore, regardless of how b is related

toA, we can extend f̄ to an antimonomorphism ḡ : B −→ Γ by mapping b to some

v ∈ Ki, where i is as stated above. Hence Γ has the MMEP by Proposition 7.3.1

and so is MB-homogeneous by Proposition 7.2.6.

Remark. By Proposition 8.1.3 and Proposition 8.1.1, the complement Γ̄ of Γ =⊔
i∈NK

ℵ0
i , where Γ̄ is the complete multipartite graph with infinitely many par-

titions each of infinite size, is also MB-homogeneous.

This proposition completes the classification of countable homogeneous graphs

that are also MB-homogeneous.

Theorem 8.1.4. Let Γ be an infinite IA and MB-homogeneous graph. Then Γ is iso-

morphic to one of the following:

• Kℵ0 and its complement Kℵ0 ;

•
⊔
i∈NK

ℵ0
i and its complement

⊔
i∈NK

ℵ0
i ;

• the random graph R.

Proof. We check every item in the classification of countably infinite, undirected

homogeneous graphs given in Theorem 2.4.10 [49]. We showed that the graphs

on the list above are MB-homogeneous in Example 7.3.4, Proposition 8.1.3 and

Example 7.3.6 respectively. Any other disconnected homogeneous graph must

be the a countable union of finite complete graphs of the same size or a finite

union of infinite complete graphs; these are not MB-homogeneous by Proposi-

tion 8.1.3. The only other countable homogeneous graphs are theKn-free graphs

and their complements; these are not MB-homogeneous by Example 7.3.9 and

Example 7.3.12 respectively.

The proof that Γ =
⊔
i∈NK

ℵ0
i is MB-homogeneous in Proposition 8.1.3 re-

lies on the existence of an independent element to every image of a finite anti-

monomorphism; more simply, to every finite set of vertices in Γ. Our aim now

is to obtain some sufficient conditions for MB-homogeneity along these lines in

order to construct some new examples.
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Definition 8.1.5. Let Γ be an infinite graph.

• Say that Γ has property (4) if for every finite setU ⊆ V Γ there exists u ∈ V Γ

such that u is adjacent to every member of U .

• Say that Γ has property (∴) if for every finite set V ⊆ V Γ there exists v ∈ V Γ

such that v is non-adjacent to every member of V .

(See Figure 8.1 for a diagram of an example.)

Γ

property (4)

U

u

property (∴)

V

v

Figure 8.1: A diagram of Definition 8.1.5

Remark. In the language of [73], properties (4) and (∴) are the same as a cone

and anti-cone respectively. If a graph Γ has property (4) then it is algebraically

closed (see [24]). Due to the complementary nature of these properties, it follows

that Γ has property (∴) if and only if its complement Γ̄ is algebraically closed.

Note that these properties are what was required to prove that R is both MB

and HE-homogeneous in Example 7.3.6. We show that this is true in all cases.

Proposition 8.1.6. Let Γ be an infinite graph. If Γ has both properties (4) and (∴)

then Γ is both MB and HE-homogeneous.

Proof. Suppose that A ⊆ B ∈ Age(Γ) with B r A = {b}, and that f : A −→

Γ is a monomorphism. As A is finite, Af is a finite set of vertices in Γ. By

property (4), there exists a vertex v of Γ such that v is adjacent to every element

of Af . This means that v is a potential image point of b; so the map g : B −→ Γ

extending f and sending b to v is a monomorphism. Hence, Γ has the MMEP by

Proposition 7.3.1. Using property (∴) in a similar fashion shows that Γ has the

MMEP and so is MB-homogeneous by Proposition 7.2.6.
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The proof that Γ has the HHEP and HHEP is similar.

Remarks. (i) The converse of this result is not true. The infinite disjoint union

of infinite complete graphs in Proposition 8.1.3 (2) is an example of an MB-

homogeneous graph with property (∴) but not property (4). Its comple-

ment (the complete multipartite graph with infinitely many partitions of

infinite size) is an example of an MB-homogeneous graph with property

(4) but not property (∴).

(ii) While both properties are not required for MB-homogeneity, we cannot

show that a graph with exactly one of property (4) or property (∴) is MB-

homogeneous. For example, the infinite disjoint union of finite complete

graphs (of all the same size) has property (∴), but is not MB-homogeneous

by Proposition 8.1.3 (1). Its complement has property (4), but cannot be

MB-homogeneous by Proposition 8.1.1.

This shows that if the complement Γ̄ of an algebraically closed graph Γ is

also algebraically closed, then Γ is MB and HE-homogeneous.

We will see below that it is sometimes possible to start with a countable

graph Γ, add some edges to obtain a graph ∆ � Γ, and then add in edges to

∆ to obtain a graph Ω such that Γ ∼= Ω. In this situation, Γ and ∆ will be bimor-

phism equivalent. We formalise this notion of equivalence below, extending an

idea of [24].

Definition 8.1.7. Let Γ,∆ be two graphs. We say that Γ is bimorphism equivalent

to ∆ if there exist bijective homomorphisms α : Γ −→ ∆ and β : ∆ −→ Γ.

Remarks. This is a weaker version of the idea of B-equivalence introduced in

Proposition 7.2.10; every pair of B-equivalent graphs are bimorphism equiva-

lent by definition, but the converse is not true (see Corollary 8.1.10 and Exam-

ple 8.2.1). Note also that this definition is equivalent to saying that Γ, ∆ contain

each other as spanning subgraphs.

Justifying the name, this is an equivalence relation of graphs (up to isomor-

phism); we denote this relation by ∼b. The product αβ : Γ −→ Γ of the two
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bimorphisms induces a bimorphism on Γ, and so if Bi(Γ) = Aut(Γ) we have that

α and β are necessarily isomorphisms. In this case, [Γ]∼b is a singleton equiv-

alence class. We now show that bimorphism equivalence preserves properties

(4) and (∴), and that any two graphs with properties (4) and (∴) are bimor-

phism equivalent.

Proposition 8.1.8. Let Γ,∆ be bimorphism equivalent graphs via bijective homomor-

phisms α : Γ −→ ∆ and β : ∆ −→ Γ. Then Γ has properties (4) and (∴) if and only if ∆

does.

Proof. Suppose that Γ has property (4) and X ⊆ V Γ. From this, there exists a

vertex v ∈ V Γ adjacent to every element ofX . As α is a homomorphism,Xα is a

finite subset of V∆ and vα is adjacent to every element ofXα; since α is bijective,

every finite subset Y of V∆ can be written as Xα for some X ⊆ V Γ. These

observations show that ∆ has property (4). As α is a bijective homomorphism,

there exists a bijective antihomomorphism ᾱ : ∆ −→ Γ by Lemma 7.1.2. Since Γ

has property (∴), for any finite X ⊆ V Γ there exists a vertex w ∈ Γ independent

of every element in X . Due to the fact that ᾱ preserves non-edges, any Y ⊆ V∆

has a vertex x ∈ V∆ independent of every element of Y ; and as α is bijective this

happens for every finite set X ⊆ V Γ and so ∆ has property (∴). The converse

direction is symmetric.

Proposition 8.1.9. If Γ,∆ are two graphs with properties (4) and (∴), then Γ and ∆

are bimorphism equivalent.

Proof. Assume that Γ,∆ are two graphs with properties (4) and (∴). We use

a back and forth argument to construct a bijective homomorphism α : Γ → ∆

and a bijective antihomomorphism β̄ : Γ → ∆, which by Lemma 7.1.2 will be

the converse of a bijective homomorphism β : ∆ → Γ. Suppose that f : {c} →

{d} is a function sending a vertex c of Γ to a vertex d of ∆; this is a bijective

homomorphism. Now set {c} = C0, {d} = D0, f = f0, and assume that we have

extended f to a bijective homomorphism fk : Ck → Dk, where Ci and Di are

finite and Ci ⊆ Ci+1 and D ⊆ Di+1 for all 0 ≤ i ≤ k − 1. Furthermore, as both
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Γ and ∆ are countable, we can enumerate their vertices as V Γ = {c0, c1, ...} and

V∆ = {d0, d1, ...}.

If k is even, select a vertex cj ∈ Γ where j is the smallest number such that

cj /∈ Ck. As ∆ has property (4), there exists a vertex u ∈ ∆ such that u is adja-

cent to every element ofDk. Define a map fk+1 : Ck∪{cj} → Dk∪{u} sending cj

to u and extending f ; this map is a bijective homomorphism as any edge from cj

to some element of Ck is preserved (see Figure 8.2 for a diagram of an example).

Γ ∆

Ck

cj
fk+1

Dk

u

Figure 8.2: k even in proof of Proposition 8.1.9

Now, if k is odd, choose a vertex dj ∈ ∆ where j is the smallest number such

that dj /∈ Dk. As Γ has property (∴), there exists a vertex v ∈ Γ such that v is

independent of every element of Ck. Define a map fk+1 : Ck ∪ {v} → Dk ∪ {dj}

sending c to dj and extending fk. Then fk+1 is a bijective homomorphism as fk

is and every edge between c and Ck is preserved; because there are none. See

Figure 8.3 for a diagram of an example of this stage.

Γ ∆

Ck

v
fk+1

Dk

dj

Figure 8.3: k odd in proof of Proposition 8.1.9
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Repeating this process infinitely many times, ensuring that each vertex of Γ

appears at an even stage and each vertex of ∆ appears at an odd stage, defines a

bijective homomorphism α : Γ→ ∆. We can construct a bijective antihomomor-

phism β̄ : Γ → ∆ in a similar fashion; replacing homomorphism with antiho-

momorphism and using property (∴) of ∆ at even steps and property (4) of Γ

at odd steps. So the converse map β : ∆ → Γ is a bijective homomorphism and

so Γ and ∆ are bimorphism equivalent.

These two statements mean that any graph with properties (4) and (∴) is

bimorphism equivalent to any other graph with the same properties. Finally

in this section, the next result extends [14, Proposition 2.1 (i)] and establishes a

complementary condition to the graph case of [24, Corollary 2.2].

Corollary 8.1.10. Suppose that Γ is a countable graph. Then Γ has properties (4) and

(∴) if and only if it is bimorphism equivalent to the random graph R.

Proof. AsR has both properties (4) and (∴), the converse direction follows from

Proposition 8.1.8, and the forward direction follows from Proposition 8.1.9.

Remark. These three results show that the equivalence class [R]∼b is precisely the

set of all countable graphs Γ with properties (4) and (∴).

8.2 Examples of MB-homogeneous graphs

Now, we use properties (4) and (∴) to find an MB-homogeneous graph that is

not IA-homogeneous.

Example 8.2.1. Let P = (pn)n∈N0 be an infinite binary sequence with infinitely

many 0’s and 1’s. Define the graph Γ(P ) on the infinite vertex set V Γ(P ) =

{v0, v1, ...} with edge relation vi ∼ vj if and only if pmax(i,j) = 0. From this, we

can observe that:

• if pi = 0 then vi ∼ vj for all natural numbers j < i;

• if pi = 1 then vi � vj for all j < i;
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where < is the natural ordering on N. Say that Γ(P ) is the graph determined

by the binary sequence P . An example (where P = (0, 1, 0, 1, ...)) is given in

Figure 8.4.

v0 v1 v2 v3 v4 v5 v6 v7 v8

Figure 8.4: Γ(P ), with P = (0, 1, 0, 1, ...).

As P has infinitely many 0’s and 1’s, it follows that for every finite subse-

quence A = {ai1 , ..., aik} of P there exist natural numbers c, d > ik such that

pc = 0 and pd = 1. This, together with the manner of the construction, ensures

that Γ(P ) has both properties (4) and (∴) and is therefore MB-homogeneous by

Proposition 8.1.6.

We now show that Γ(P ) is distinct from the other MB-homogeneous graphs

already considered. Note that Γ(P ) contains both an edge and a non-edge; so

it is neither the infinite complete nor the infinite null graph. As Γ(P ) has both

properties (4) and (∴) it is neither
⊔
i∈NK

ℵ0
i nor its complement

⊔
i∈NK

ℵ0
i by

the remarks following Proposition 8.1.6. Finally, as no term p of P can be both

0 and 1 simultaneously, there is no vertex vp that is adjacent to {v0} and non-

adjacent to {v1}. Hence Γ(P ) does not satisfy ARP; so by Proposition 2.4.3, it is

not the random graph. So for any sequence P with infinitely many 0’s and 1’s,

Γ(P ) is an example of an MB-homogeneous graph that is not IA-homogeneous

by Theorem 8.1.4.

Remarks. (i) Any infinite binary sequence P with infinitely many 0’s and 1’s

contains every finite binary sequence X as a subsequence. The finite in-

duced subgraphs Γ(X) of Γ(P ) are those induced on V Γ(X) by the edge
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relation of P . As this is true for all such binary sequences P and Q, we

conclude that Γ(P ) and Γ(Q) have the same age. It can be shown from

here that for any two such sequences P and Q, then Γ(P ) and Γ(Q) are

B-equivalent (see Proposition 7.2.10).

(ii) Throughout the rest of this section, any binary sequences P,Q have in-

finitely many 0’s and 1’s. This guarantees that any graph Γ(P ) determined

by P has properties (4) and (∴).

Many natural questions arise from this construction. Perhaps the most press-

ing is: to what extent does the isomorphism type of Γ(P ) depend on the bi-

nary sequence P ? Answering this question will help to tell us how many MB-

homogeneous graphs there are of this kind. However, there is a notable dif-

ficulty in deciding this question in that two graphs Γ(P ),Γ(Q) determined by

binary sequences P,Q respectively have the same age; so deciding whether

the two graphs are isomorphic or not requires some thought. Our method of

achieving a partial solution to this problem is by investigating the automor-

phism group as an invariant of Γ(P ). Our first lemma establishes a convention

for the zeroth place of such a sequence.

Lemma 8.2.2. Suppose that Γ(P ) and Γ(Q) are the graphs on the vertex sets V =

{v0, v1, ...} and W = {w0, w1, ...} determined by the binary sequences P = (pn)n∈N0

and Q = (qn)n∈N0 respectively. Furthermore assume that pi = qi for all i > 0. Then

Γ(P ) ∼= Γ(Q).

Proof. If p0 = q0 the binary sequences are the same and we are done. If p0 6= q0,

note that the graph induced on {v1, v2, ...} by Γ(P ) is isomorphic to the graph

induced on {w1, w2, ...} by Γ(Q). Then the graph induced on N(v0) = {vj ∈

V Γ(P ) : pj = 0, j ≥ 1} by Γ(P ) and the graph induced onN(w0) = {wj ∈ V Γ(P )

: qj = 0, j ≥ 1} by Γ(Q) are isomorphic. As pj = qj for all j ≥ 1, the map

θ : Γ(P ) −→ Γ(Q) sending vi to wi for all i ∈ N is an isomorphism.

Following this, we can take p0 = p1 for any binary sequence P without loss

of generality; we adopt this as convention for the rest of the section. Now, if P is
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a binary sequence, denote the kth consecutive string of 0’s and 1’s by Ok and Ik

respectively, and denote the vertex sets corresponding to these subsequences by

V Ok and V Ik (see Figure 8.5). Furthermore, denote the graph induced by Γ(P )

on any subset X of V Γ by Γ(X). The next pair of lemmas deal with what graphs

induced on neighbourhoods of vertices in some Γ(P ) look like.

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

1 1 0 0 1 1 1 0 0 1 0 ...

I1 O1 I2 O2 I3 O3

V I1 V O1 V I2 V O2 V I3 V O3

Figure 8.5: Γ(P ), with P = (1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, ...), illustrating the defini-
tion of Ok, Ik, and V Ok, V Ik.

Lemma 8.2.3. Let P = (pn)n∈N0 be a binary sequence, and let Γ(P ) be the graph

determined by P . Suppose that vj is a vertex in V In for some n ∈ N. Then Γ(N(vj)) ∼=

Kℵ0 .

Proof. From the assumption that pj = 1, the observation of Example 8.2.1, and

the definition of an edge in Γ(P ), we have that vj ∼ vk if and only if j < k and

pk = 0; so N(vj) = {vk ∈ V Γ(P ) : k > j, pk = 0}. As there are infinitely many

0’s in P and j is finite, it follows that N(vj) is infinite. Now, take va, vb ∈ N(vj).

Here, va ∼ vb ∈ Γ(N(vj)) if and only if pmax(a,b) = 0; but pa = pb = 0 and so any

two vertices of Γ(N(vj)) are adjacent.

Lemma 8.2.4. Let P = (pn)n∈N0 be a binary sequence, and let Γ(P ) be the graph

determined by P . Suppose that v, w are vertices in some V Ok = {vk1 , ..., vkn} cor-

responding to some Ok = {pk1 , ..., pkn}. Then N(v) ∪ {v} = N(w) ∪ {w} and

Γ(N(v)) ∼= Γ(N(w)).
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Proof. Define the sets X = {vj ∈ V Γ(P ) : j < i1} and Y = {vk ∈ V Γ(P ) :

k ≥ i1, ak = 0}. Due to the construction of Γ in Example 8.2.1, N(v) ∪ {v} =

X ∪ Y = N(w) ∪ {w}. For all u ∈ V Γ(V Ok), it is easy to see that N(u) =

X ∪ (Y r {u}). Using a similar argument to the proof of Lemma 8.2.3, it follows

that Γ(Y r {u}) is an infinite complete graph for any u ∈ Γ(V Ok), and every

element in Y is adjacent to every element of X . For any v, w ∈ V Ok define

a map f : X ∪ (Y r {v}) −→ X ∪ (Y r {w}) fixing X pointwise and sending

(Y r {v}) to (Y r {w}) in any fashion; this is an isomorphism from Γ(N(v)) to

Γ(N(w))..

Before our next proposition, recall that if there exists γ ∈ Aut(Γ) such that

vγ = w, then the graphs induced on N(v) and N(w) are isomorphic.

Proposition 8.2.5. Let P = (pn)n∈N0 be a binary sequence, and let Γ(P ) be the graph

determined by the binary sequence P . Then

Aut(Γ(P )) =
∏
k∈N

(Aut(Γ(Ok))× Aut(Γ(Ik))),

the infinite direct product of automorphism groups on each Γ(Ok) and Γ(Ik).

Proof. Using Lemma 8.2.2, we set the convention that p0 = p1 throughout; hence

either O1 or I1 (depending on whether P starts with a 0 or 1) has size at least

2. For some i, write Oi = {pi1 , ..., pin} and Ii = {qi1 , ..., qim}, and we write

V Oi = {vi1 , ..., vin} and V Ii = {wi1 , ..., wim}.

We first show that any automorphism of Γ(P ) fixes both V Ok and V Ik set-

wise for all k ∈ N, using a series of claims. Then, we prove that any bijective

map from Γ(P ) to itself fixing every point except those in a single V Ok (or V Ik),

and acting as an automorphism on that V Ok (or V Ik), is an automorphism of

Γ(P ). We begin with our first claim.

Claim 1. If v ∈ V Oi and w ∈ V Oj with i 6= j, then Γ(N(v)) � Γ(N(w)).

Proof of Claim 1. We write V Oi = {vi1 , ..., vin} and V Oj = {vj1 , ..., vjm}. Without

loss of generality, suppose that i < j; so i1 < i2 < ... < in < j1 < j2 < ... < jm.
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We define the following sets:

Xi = {vk ∈ V Γ(P ) : k < i1}

Xj = {vk ∈ V Γ(P ) : k < j1}

Yi = {vk ∈ V Γ(P ) : k ≥ i1, pk = 0}

Yj = {vk ∈ V Γ(P ) : k ≥ j1, pk = 0}.

Lemma 8.2.4 asserts that N(v) = Xi ∪ (Yi r {v}) and N(w) = Xj ∪ (Yj r {w}).

By reasoning outlined in the proof of Lemma 8.2.4, if va � vb ∈ Γ(N(v)) then

va, vb ∈ Xi. Note also that both Xi and Xj are both finite sets, and so any maxi-

mum independent set of Xi, Xj (and hence of N(v), N(w)) must be finite. Con-

sider the setsA = {va : a < i1, pa = 1}∪{v0} andB = {vb : b < j1, pb = 1}∪{v0},

contained in Xi and Xj respectively. So if va, vd ∈ A, then pmax(a,d) = 1 and so

va � vd. Now, if vc ∈ Xi r A then pc = 0, and as vc 6= v0 it follows that

pmax(c,0) = 0 and so vc ∼ v0. Hence A is the maximum independent set in Xi;

using a similar argument, we can show that B is the maximum independent set

in Xj . Since i < j there exists an Ik between Oi and Oj ; so there is a e ∈ Nwhere

in < e < j1 and pe = 1. Hence ve ∈ B r A and so |B| > |A|. Therefore, as

Γ(N(v)) and Γ(N(w)) have maximum independent sets of different sizes, they

are not isomorphic and this concludes the proof of Claim 1.

This shows that there is no automorphism α of Γ(P ) sending a vertex v ∈ V Oi

to a vertex w ∈ V Oj where i 6= j, as they have non-isomorphic neighbourhoods.

We move on to our next claim.

Claim 2. Suppose that v ∈ V Oi (with i ≥ 2) and w ∈ V Ij . Then there is no

automorphism of Γ(P ) sending v to w.

Proof of Claim 2. Set V Oi = {vi1 , ..., vin}, and define the set A = {va : a < i1, pa =

1} ∪ {v0} as in the previous claim. As i ≥ 2, there exists a c such that 0 < c < i1

with pc = 1. Hence we have that |A| ≥ 2 and so Γ(N(v)) has at least one non-

edge. However, Γ(N(w)) ∼= Kℵ0 by Lemma 8.2.3 and so there cannot possibly
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be an automorphism of Γ(P ) sending v to w. This proves the second claim.

From these claims, any automorphism α of Γ(P ) fixes V Oi setwise for i ≥ 2.

Now, for k ≥ 2, any V Ik (or V Ik+1) sandwiched between V Ok and V Ok+1,

as V Ik (or V Ik+1) are the only vertices not adjacent to any vertex in V Ok and

adjacent to every vertex in V Ok+1. As V Ok and V Ok+1 are fixed setwise, we

conclude that V Ik (or V Ik+1) is fixed setwise for k ≥ 2.

Claim 3. V O1 and V I1 are fixed setwise by any automorphism of Γ(P ).

Proof of Claim 3: There are two cases to consider; where P either begins with a 0

or a 1.

Case 1 (p0 = 0). Suppose for a contradiction that there exists an α ∈ Aut(Γ)

sending some v ∈ V O1 to some w ∈ V I1. The assumption in this case implies

that |V O1| ≥ 2 and so Γ(V O1) has an edge from v to some u ∈ V O1. Butw ∈ V I1

and thus is independent of everything in V O1 ∪ V I1; so the edge between v and

u is not preserved by α and so V O1 is fixed setwise. Here, V I1 are the only

vertices not adjacent to any vertex in V O1 and adjacent to every vertex in V O2.

As V O1 and V O2 are fixed setwise, then V I1 is also fixed setwise.

Case 2 (p0 = 1). From this assumption, we have that |V I1| ≥ 2 and so Γ(V I1)

contains a non-edge. Hence for some v ∈ V O1, the graph Γ(N(v)) contains a

non-edge. Therefore, from Lemma 8.2.3 and Claim 1, Γ(N(v)) � Γ(N(w)) for

some w ∈ V Γ(P )r V O1 and so V O1 is fixed setwise. As this happens, both V I1

and V I2 are fixed setwise. This concludes the proof of Claim 3.

So for any k ∈ N, we have that V Ok and V Ik are fixed setwise by any auto-

morphism of Γ(P ). It remains to prove that any automorphism of Γ(V Ok) or

Γ(V Ik) whilst fixing every other point in Γ(P ) is an automorphism of Γ(P ).

Here, as Γ(V Ok) is a complete graph and Γ(V Ik) is a null graph, it follows that

Aut(Γ(V Ok)) ∼= Sym(|V Ok|) and Aut(Γ(V Ik)) ∼= Sym(|V Ik|) for all k ∈ N.

So suppose that f : Γ(P ) −→ Γ(P ) is a bijective map that acts as an auto-

morphism on some Γ(V Ok) (that is, some permutation of the set V Ok) and fixes
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V Γ r V Ok. By Lemma 8.2.4, any two elements v, w ∈ V Ok have the same ex-

tended neighbourhood N(v) ∪ {v} = N(w) ∪ {w} (and Γ(N(v)) ∼= Γ(N(w))).

Here, f preserves all edges and non-edges between V Ok and V Γ(P )r V Ok and

so it is an automorphism of Γ(P ). The proof that the bijective map g : Γ(P ) −→

Γ(P ) that acts as an automorphism of some Γ(V Ik) and fixes every other point

is similar.

Remarks. (i) This proposition guarantees the existence of at least countably

many non-isomorphic MB-homogeneous graphs. For instance, define a

binary sequence Pn = (pi)i∈N by the following:

pi =


1 if i = 0, 1, 2, ..., n− 1, n+ 1, n+ 3, ...

0 if i = n, n+ 2, ...

So Pn is a sequence of nmany 1’s followed by alternating 0’s and 1’s. It fol-

lows that Aut(Γ(Pn)) is the infinite direct product of one copy of Sym(n)

together with infinitely many trivial groups; so Aut(Γ(Pn)) ∼= Sym(n).

This is true for all n ≥ 2. So if m 6= n, then Aut(Γ(Pm)) � Aut(Γ(Pn))

and so Γ(Pm) � Γ(Pn).

(ii) If Γ(P ) is the graph determined by the binary sequence P = (0, 1, 0, 1, ...)

(as exhibited in Example 8.2.1), then this result implies that Aut(Γ(P )) ∼=

C2. Using this and MB-homogeneity of Γ(P ), one can show that Γ(P ) is

an example of a structure such that |Aut(Γ(P ))| ≤ ℵ0 but |Bi(Γ(P ))| = 2ℵ0 ;

demonstrating that Theorem 6.1.3 is not a natural consequence of Theo-

rem 2.3.6.

Furthermore, it is straightforward to see that if two monoids S, S′ have non-

isomorphic groups of units U,U ′ respectively, then S � S′. Hence we have con-

structed several examples of non-isomorphic oligomorphic permutation monoids

on B-equivalent structures. By Proposition 6.2.7, this means that each of these

oligomorphic permutation monoids have the same strong orbits. Finally, we

note from a remark made earlier that any Γ(P ) constructed in this manner is
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also HE-homogeneous; therefore, we have constructed countably many non-

isomorphic HE-homogeneous graphs.

8.2.1 From countably many to uncountably many

We now aim to use the theory established here to construct 2ℵ0 non-isomorphic

examples of MB-homogeneous graphs. The idea now is to add in pairwise non-

embeddable finite structures into the age of some Γ(P ) to ensure uniqueness up

to isomorphism, without adversely affecting properties (4) and (∴).

To this end, let A = (an)n∈N be a strictly increasing sequence of natural num-

bers. We use A to recursively define a binary sequence PA = (pi)i∈N as follows:

Base: 0 followed by a1 many 1’s.

Inductive: Assuming that the nth stage of the sequence has been constructed,

add a 0 followed by an+1 many 1’s to the right hand side of the sequence.

For instance, if A = (2, 3, 5, ...) then PA = (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, ...). As

PA has infinitely many 0’s and 1’s then Γ(PA), the graph determined by PA, is

MB-homogeneous.

The eventual plan is to draw finite graphs onto the independent sets induced

on Γ(PA) by strings of consecutive 1’s in PA. By selecting a suitable count-

able family of pairwise non-embeddable graphs that do not appear in the age

of Γ(PA), we ensure a collection of graphs with different ages. The family of

graphs we use are the cycle graphs. These are graphs Cn on n vertices with n

edges such that the degree of each vertex v ∈ V Cn is 2 (see Figure 8.6 for an

example on four vertices). The next pair of lemmas demonstrate that the family

of cycle graphs have the properties we require.

Figure 8.6: The cycle graph C4
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Lemma 8.2.6. Let Cm and Cn be two cycle graphs with m,n ≥ 3. Then Cm embeds in

Cn (and vice versa) if and only if m = n; in which case they are isomorphic.

Proof. Without loss of generality suppose that thatm < n; it is clear that Cn does

not embed in Cm. Now suppose for a contradiction there is an embedding θ :

Cm −→ Cn. Asm < n, we select a vertex vi ∈ V Cnr im θ such that vi ∼ vj , where

vj is in the image of θ. However, as θ is an embedding, vj is adjacent to two

separate members of im θ and so vj has degree 3 in Cn. This is a contradiction

as every vertex of Cn has degree 2. The converse direction is trivial.

Lemma 8.2.7. Let P be any binary sequence, and let Γ(P ) be the graph determined by

P . Then Γ(P ) does not embed any cycle graph of size m ≥ 4.

Proof. Let P ′ = (pi1 , pi2 , ..., pim) and V X = {vi1 , ..., vim} ⊆ V Γ(P ), with m ≥ 4.

Let X be the graph on V X with edges induced by the subsequence P ′ of Γ(P ),

and suppose X is an m-cycle. As each vertex in a cycle graph has degree 2, it

follows that pij 6= 0 for ij > i3. But this means that pi4 = ... = pim = 1 and so vi4

has degree 0 in X . This is a contradiction and so X is not an m-cycle.

Hence C = {Cn : n ≥ 4} is a countable family of pairwise non-embeddable

graphs such that Age(Γ(PA)) ∩ C = ∅. So for a strictly increasing sequence of

natural numbers A = (an)n∈N with ai ≥ 4, construct Γ(PA) in the usual fashion.

Here, the size of each Ik in PA is ak = m. For each independent set of vertices

V Ik = {vi1 , ..., vim}, draw an m-cycle on its vertices by vi1 ∼ vim and vij ∼ vij+1

for 1 ≤ j ≤ m− 1, thus creating a new graph Γ(PA)′ (see Figure 8.7). When we

construct a graph Γ(PA)′ as we have done here, we say that Γ(PA)′ is the graph

determined by PA with cycles induced.

In particular, note that even with these additional structures, Γ(PA)′ is still

MB-homogeneous as it has properties (4) and (∴). This is because adding in

edges does nothing to alter property (4), and the cycles remain independent of

each other so we can still find an independent vertex for every finite set, pre-

serving property (∴). However, since we have added so many structures to the
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Figure 8.7: Γ(PA)′ corresponding to the sequence A = (4, 5, 6, ...), with added
cycles highlighted in red.

age, we must be careful that there are no extra cycles of sizes not expressed in

the sequence A. The next proposition alleviates this concern.

Proposition 8.2.8. Suppose that A = (an)n∈N is a strictly increasing sequence of

natural numbers with a1 ≥ 4, and suppose that m ≥ 4 is a natural number such that

m 6= an for all n ∈ N. Then the graph Γ(PA)′ determined by PA with cycles induced

does not contain an m-cycle as an induced subgraph.

Proof. Suppose that M ⊆ Γ(PA)′ is an m-cycle. Then the edge set of M is a

combination of the edges of the graph on VM = {vi1 , ..., vim} determined by

the finite subsequence Q = (qi1 , ..., qim) of PA (where i1 < i2 < ... < im), and

the edges from cycles added to Γ(PA) to make Γ(PA)′. We aim to show that

M = Γ(In) for some n ∈ N; that is, the only cycles of size ≥ 4 in Γ(PA)′ are

precisely those we added. As m ≥ 4, it follows that M cannot embed a 3-cycle

by Lemma 8.2.6.

First, assume that Q contains a 0. If qin = 0 for some 3 < n ≤ m, then by

construction of Γ(PA)′, dM (vin) ≥ n− 1 ≥ 3. As M is an m-cycle, dM (v) = 2 for

all v ∈ M ; so this is a contradiction and qin 6= 0 for some 3 < n ≤ m. Therefore

qi4 = ... = qim = 1 and the only elements of Q that can be 0 are qi1 , qi2 and qi3 .

We now split our consideration into cases.

Case 1 (qi3 = 0). As we assume this, vi3 is adjacent to both vi1 and vi2 . If qi2 = 0,

then vi2 ∼ vi1 , creating a 3-cycle; this is a contradiction asM does not embed a 3-

cycle. Therefore, qi2 = 1 and so vi1 is adjacent to some vij where 3 < j ≤ m. Since

qij = 1 for all ij > i3, it follows that the edge between vi1 and vij was induced
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by an added cycle. This implies that vi1 , vij ∈ V Γ(Ik) for some k. Therefore,

(bi1 , ..., bij ) is a sequence of 1’s where i1 < i2 < ... < ij are consecutive natural

numbers; a contradiction as i1 < i3 < ij and so 1 = qi3 = 0. Hence, qi3 6= 0.

Case 2 (qi2 = 0). Since this happens, vi2 is adjacent to vi1 and some vertex vij 6=

vi1 ; so ij > i2. If qij is 1, then vij is non-adjacent to any vertex vik with ik < ij

and qik = 0, as the construction of Γ(PA)′ ensures that no edges are drawn in

this case. But this is a contradiction as qi2 = 0 and vij ∼ vi2 . So qij must be 0 in

this case; but ij > i2 and so qij = 1 by Case 1 and the argument preceding Case

1. This is a contradiction and so qi2 = 1.

A similar argument to that of Case 2 holds for when qi1 = 0 and so no ele-

ment ofQ is 0. Hence, Q is made up of 1’s; however, these may be from different

Ik’s. As no element of Q is 0, we conclude that two vertices in M have an edge

between them only if they are contained in the same V Ik and have an edge be-

tween them in Γ(Ik). As M is connected, it follows that M ⊆ Γ(Ik) for some k.

Finally, as Γ(Ik) is an ak-cycle embedding an m-cycle, we are forced to conclude

that m = ak by Lemma 8.2.6 and so we are done.

We can now draw our main conclusions.

Corollary 8.2.9. Suppose thatA = (an)n∈N andB = (bn)n∈N are two different strictly

increasing sequences of natural numbers with a1, b1 ≥ 4. Then Γ(PA)′ � Γ(PB)′.

Proof. As A and B are different sequences of natural numbers, there exists a

j ∈ N such that aj 6= bj ; without loss of generality assume that aj < bj . Hence

Γ(PA)′ embeds an aj-cycle; but as aj /∈ B, by Proposition 8.2.8 Γ(PB)′ does

not embed an aj-cycle. Hence Age(Γ(PA)′) 6= Age(Γ(PB)′) and so they are not

isomorphic.

This result proves the following:

Theorem 8.2.10. There exists 2ℵ0 many non-isomorphic, non-bi-equivalent MB and

HE-homogeneous graphs, each of which is bimorphism equivalent to the random graph

R.
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Proof. As there are 2ℵ0 strictly increasing sequences of natural numbers, we

have continuum many non-isomorphism examples of Γ(PA)′ by Corollary 8.2.9.

Since these graphs have different ages, this means we have constructed 2ℵ0

many non-B-equivalent graphs. Furthermore, as each these examples has prop-

erty (4) and (∴), they are MB and HE-homogeneous by Proposition 8.1.6 and

bimorphism equivalent to R by Corollary 8.1.10.

Remark. As a consequence of this, |[R]∼b | = 2ℵ0 .

Finally in this subsection, we can utilise this technique of overlaying finite

graphs in order to prove a striking result. Recall that Frucht’s theorem (see [10])

states that any finite group H arises as the automorphism group of some graph

Γ. This has been extended (by Frucht himself, [33]) to state that there are count-

ably many 3-regular graphs G such that Aut(G) ∼= H .

Theorem 8.2.11. Any finite group H arises as the automorphism group of an MB-

homogeneous graph Γ.

Proof. By Theorem 2.4.1 there exist countably many graphsG such that Aut(G) ∼=

H where dG(v) = 3 for all v ∈ V G. As there are only finitely many graphs of

size less than or equal to 5, there exists a graph ∆, where |V∆| = n ≥ 6 and

d∆(v) = 3 for all v ∈ V∆, such that Aut(∆) ∼= H . By the handshake lemma

(see Section 2.4), such a graph must have a total of 3n/2 edges out of a total of

(n2 − n)/2 possible edges; as n ≥ 6, this means that ∆ must induce at least 6

nonedges.

Define a binary sequence P = (pi)i∈N by the following:

pi =


1 if i = 0, 1, 2, ..., n− 1, n+ 1, n+ 3, ...

0 if i = n, n+ 2, ...

So P is a sequence of n many 1’s followed by alternating 0’s and 1’s; and so has

infinitely many of each. Using the notation established above for Lemma 8.2.2,

it follows that |I1| = n and |Ok| = |Im| = 1 for k ≥ 1 and m ≥ 2. Let Γ(P )

be the graph determined by P on V Γ(P ) = {v0, v1, ...}, and draw in edges on
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V I1 in any fashion such that Γ(V I1) ∼= ∆. We then obtain a graph Γ(P )′ (see

Figure 8.8).

v0 v1 v2 vn−2 vn−1 vn vn+1 vn+2 vn+3 vn+4

Figure 8.8: Γ(P )′, with ∆ highlighted in red

In a similar fashion to Proposition 8.2.5, we aim to show that V Oi and V Ii

are fixed setwise for any automorphism α of Γ(P )′ through a series of claims.

Claim 1. If va ∈ V Oi and vb ∈ V Oj with i 6= j, then Γ(N(v)) � Γ(N(w)).

Proof of Claim 1. As |V Ok| = 1 for all k ∈ N, we have that V Oi = {va} and

V Oj = {vb}. Assume without loss of generality that a < b. We define the

following sets:

Xa = {vk ∈ V Γ(P )′ : k < a}

Xb = {vk ∈ V Γ(P )′ : k < b}

Ya = {vk ∈ V Γ(P )′ : k ≥ a, pk = 0}

Yb = {vk ∈ V Γ(P )′ : k ≥ b, pk = 0}.

Lemma 8.2.4 applies in this situation; so we have that N(va) = Xa ∪ Ya and

N(vb) = Xb∪Yb. As in the proof of Proposition 8.2.5, any maximum independent

set of Γ(N(va)),Γ(N(vb)) is contained in Xa, Xb respectively. Now, as Γ(V I1) ∼=

∆ is a 3-regular graph on more than six vertices, there exists some maximum

independent set M ⊆ V I1 of Γ(V I1) with size greater than or equal to 2.
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Now we consider the sets

A = {vc ∈ V Γ(P )′ : n− 1 < c < a, pc = 1} ∪M

and

B = {vc ∈ V Γ(P )′ : n− 1 < c < b, pc = 1} ∪M,

the maximum independent sets of Xa and Xb respectively. As i < j, there exists

d such that a < d < b with pd = 1. Hence vd ∈ B r A and so |B| > |A|. Since

A,B are maximum independent sets of Γ(N(va)) and Γ(N(vb)) respectively with

different sizes, we conclude that Γ(N(va)) � Γ(N(vb)). This ends the proof of

Claim 1.

This shows that there exists no automorphism γ of Γ(P )′ sending any v ∈ V Oi

to w ∈ V Oj with i 6= j.

Claim 2. There exists no automorphism sending v ∈ V Ok to w ∈ V Im for all

k,m ∈ N.

Proof of Claim 2. We split the proof into two cases; wherem = 1 and wherem ≥ 2.

For the latter, Γ(N(w)) ∼= Kℵ0 for any w ∈ V Im with m ≥ 2 by Lemma 8.2.3. But

as Γ(V I1) is not a complete graph, we have that Γ(V Ok) contains a non-edge

for all k ∈ N and so Γ(N(v)) � Γ(N(w)) in this case. It remains to show that

there is no automorphism sending v ∈ V Ok to w ∈ V I1. In this case Γ(N(w))

is the union of an infinite complete graph K and G = Γ(NΓ(V I1)(w)), with ev-

ery vertex of K connected to every vertex of G. This means any non-edge of

Γ(N(w)) must be induced by G; as |NΓ(V I1)(w)| = 3, there are at most 3 of them

for any w ∈ V I1. However, as Xa contains V I1, we have that Γ(N(v)) contains

∆ as an induced subgraph. By the reasoning above, ∆ has at least 6 non-edges

and therefore so does Γ(N(v)). This means that Γ(N(v)) � G(N(w)) for any

v ∈ V Ok and any w ∈ V I1 and so we are done.

Here, V Ok is fixed setwise for all k ∈ N; as |V Ok| = 1 for all such k we have
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that they are also fixed pointwise. As in the proof of Proposition 8.2.5, it follows

that any V Ik sandwiched between V Ok−1 and V Ok are the only vertices not ad-

jacent to every vertex in V Ok and adjacent to every vertex in V Ok+1. As V Ok

and V Ok+1 are fixed setwise, we deduce that V Ik is fixed setwise (and hence

pointwise) for k ≥ 2. We conclude that V I1 is fixed setwise under automor-

phisms of Γ(P )′.

Finally, we show that any bijective map γ : Γ(P )′ → Γ(P )′ acting as an

automorphism on V I1 and fixing everything else is an automorphism of Γ(P )′.

As every v ∈ V Ok for all k is connected to each u ∈ V I1, and every w ∈ V Im for

all m is independent of each u ∈ V I1, it follows that γ preserves all edges and

non-edges of Γ(P )′ and so γ ∈ Aut(Γ(P )′).

Remark. Using this together with Theorem 6.2.8, it follows that for any finite

group U there exists an oligomorphic permutation monoid with group of units

isomorphic to U .

We finish this section with a question concerning bimorphism equivalence of

MB-homogeneous graphs in general. A positive answer to this would constitute

the best classification result possible for MB-homogeneous graphs, given the

amount and range of examples above.

Question 8.2.12. Is every countable MB-homogeneous graph bimorphism equivalent

to one of the five graphs in Theorem 8.1.4?

Related to this question is the following, slightly more general question:

Question 8.2.13. Are there only countably many MB-homogeneous graphs up to bi-

morphism equivalence?

Finally, we proved in Proposition 8.1.6 that every graph with properties (4)

and (∴) is both MB and HE-homogeneous. As every MB-homogeneous graph

we have constructed here has properties (4) and (∴) is also HE-homogeneous

graph, we can ask:

Question 8.2.14. Is there a countably infinite MB-homogeneous graph that is not
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HE-homogeneous? Conversely, is there a HE-homogeneous graph that is not MB-

homogeneous?

8.3 MB-homogeneous oriented graphs

8.3.1 Properties of MB-homogeneous oriented graphs

Recall from Section 2.4 that an oriented graph is a loopless digraph that does

not contain a 2-cycle. Following on from the work in Section 8.1 and Section 8.2,

our aim in this section is to provide a range of examples of MB-homogeneous

oriented graphs. As before, we begin searching for a new pair of properties

implying MB-homogeneity that an oriented graph may have; these properties

must ensure that both the 1PMMEP and the 1PMMEP hold for such an oriented

graph. In this case, the 1PMMEP is the easier of the two; we can take a version

of property (∴); for the 1PMMEP, some more thought is required.

Definition 8.3.1. Let G be an oriented graph. Say that G has property (�) if for

all finite, disjoint subsets U, V of V G there exists x ∈ V G such that x→ u for all u

in U and v → x for all v ∈ V . Say that G has property (∴) if for every finite subset

W ⊆ V G there exists a y ∈ V G such that w‖y for all w in W . (See Figure 8.9 for a

diagram illustrating property (�).)

Remark. Note that a straight generalisation of property (4) into two digraph

conditions (one with arrows to the set, and one with arrows from) would not

suffice. The idea behind defining this property is to find suitable image points

to extend functions; with two digraph conditions, this task is not achievable due

to both in and out relations that need to be preserved, and mapped to a single

vertex (see proof of Lemma 8.3.2 for more details).

These two properties together are sufficient conditions for MB-homogeneity.

Lemma 8.3.2. Let G be an oriented graph with both properties (�) and (∴). Then G is

MB-homogeneous.
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G

U V

x

Figure 8.9: Property (�)

Proof. It suffices to show that G has both the 1PMMEP and 1PMMEP from Propo-

sition 7.3.1. So suppose that A ⊆ B ∈ Age(G) where B r A = {b} and that

f : A → G is a monomorphism. As outlined in Section 2.4, we can decompose

A into three sets of vertices based on the relation with b in B: A→(b), A←(b)

and A‖(b). Take the union of A→(b) with A‖(b). As f is injective, the subsets

(A→(b)∪A‖(b))f and A←(b)f of V G are both finite and disjoint. Using property

(�), find a vertex x such that x→ af for all af ∈ (A→(b)∪A‖(b))f and a′f → x

for all a′f ∈ A←(b). We can define a monomorphism g : B → G extending f and

sending b ∈ B to the vertex x ∈ V G; hence G has the 1PMMEP. Now suppose

that f̄ : A → G is an antimonomorphism. As G has property (∴), there exists a

vertex w ∈ V G such that w‖af for all af ∈ Af . Define an antimonomorphism

ḡ : B → G extending f and sending b ∈ B to the vertex w ∈ V G; so G has the

1PMMEP and we are done.

Remark. Unlike the analogous case for undirected graphs (Proposition 8.1.6), an

oriented graph G having properties (�) and (∴) does not imply that G is HE-

homogeneous. For example, the generic oriented graph D (see Example 2.4.8)

has properties (�) and (∴) but is not HE-homogeneous by Example 7.3.7.

In a similar fashion to Definition 8.1.7, we can say that two countably infi-

nite oriented graphs G and H are bimorphism equivalent if there exists bijective

homomorphisms α : G → H and β : H → G.

Proposition 8.3.3. Suppose that G and H are bimorphism equivalent oriented graphs

via the bijective homomorphisms α : G → H and β : H → G. Then G has properties
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(∴) and (�) if and only ifH does.

Proof. Suppose that G has property (�), and that X,Y are two finite, disjoint

subsets of V G. By property (�), there exists a vertex v such that v → x for

all x ∈ U and y → v for all y ∈ Y . Since α is a function, Xα and Y α are

finite subsets of H and as α is injective, these two sets are also disjoint. As α

is a homomorphism, the vertex vα ∈ VH is a vertex such that vα → xα for

all xα ∈ Xα and yα → vα for all y ∈ Y α. Finally, because α is surjective,

every finite subset Z ⊆ VH can be written as Wα for some finite W ⊆ V G by

Lemma 7.1.5. These observations prove thatH has property (�).

Now suppose that G has property (∴). As β : H → G is a bijective homo-

morphism, the converse map β̄ : G → H is a bijective antihomomorphism by

Lemma 7.1.2. Select a finite subset W ⊆ V G. As G has property (∴), there exists

a vertex y that is independent of W . As β̄ is a bijective antihomomorphism (and

therefore a function), we have that;

• Wβ̄ is a finite subset of VH;

• yβ̄ is a single vertex that is independent of Wβ̄ inH, and;

• Every finite Y ⊆ VH can be written as some finite Xβ̄, where W is a finite

subset of V G.

These observations show that H has property (∴). The proof of the converse

direction is symmetric.

Proposition 8.3.4. If G,H are two oriented graphs with properties (�) and (∴), then

G andH are bimorphism equivalent.

Proof. Suppose that G,H are two graphs with properties (�) and (∴). Similar

to Proposition 8.1.9, we use a back-and-forth argument to construct a bijective

homomorphism α : G → H and a bijective antihomomorphism β̄ : G → H,

which by Lemma 7.1.2 will be the converse of a bijective homomorphism β :

H → G. Assume that f : {x} → {y} is some function sending a vertex x of G to

a vertex y of H; this is a bijective homomorphism. Now set {x} = X0, {y} = Y0,
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f = f0, and suppose that we have extended f to a bijective homomorphism

fk : Xk → Yk, where Xi, Yi are finite and Xi ⊆ Xi+1 and Y ⊆ Yi+1 for all

0 ≤ i ≤ k − 1. In addition to this, since both G and H are countable, we can

enumerate their vertices as V G = {x0, x1, ...} and VH = {y0, y1, ...}.

If k is even, select a vertex xj ∈ G where j is the smallest number such that

xj /∈ Xk. As this happends, we can decompose Xk into the three neighbour-

hood sets X→(xj), X←(xj) and X‖(xj). As fk is bijective, the subsets (X→(xj)∪

X‖(xj))fk and X←(xj)fk of V Yk are both finite, disjoint, and their union is V Yk.

As H has property (�), there exists a vertex u ∈ H such that afk → u for

all afk ∈ (X→(xj) ∪ X‖(xj))fk and u → afk for all X←(xj)fk. Define a map

fk+1 : Xk ∪ {xj} → Yk ∪ {u} sending xj to u and extending f ; this map is a

bijective homomorphism as any relation between xk and some element of Yk is

preserved (see Figure 8.10 for a diagram of an example).

G H

Xk

X→(xj) ∪X‖(xj) X←(xj) (X→(xj) ∪X‖(xj))fk X←(xj)fk

xj
fk+1

Yk

u

Figure 8.10: k even in proof of Proposition 8.3.4

Now, if k is odd, choose a vertex yj ∈ Hwhere j is the smallest number such

that yj /∈ Yk. As G has property (∴), there exists a vertex v ∈ G such that v is

independent of every element of Xk. Define a map fk+1 : Xk ∪ {v} → Yk ∪ {yj}

sending v to yj and extending fk. Then fk+1 is a bijective homomorphism as fk

is and every relation between v and Xk is preserved by the fact that there are

none (see Figure 8.11 for a diagram of an example of this stage).

We can repeat this process infinitely many times, ensuring that each vertex of
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G H

Xk

xj
fk+1

Yk

u

Figure 8.11: k odd in proof of Proposition 8.3.4

G appears at an even stage and each vertex ofH appears at an odd stage. Doing

this defines a bijective homomorphism α : G → H. We can construct a bijective

antihomomorphism β̄ : G → H in a similar fashion; replacing homomorphism

with antihomomorphism and using property (∴) of H at even steps and prop-

erty (�) of G as above at odd steps. So the converse map β : H → G is a bijective

homomorphism; proving that G andH are bimorphism equivalent.

Corollary 8.3.5. An oriented graph G has properties (�) and (∴) if and only if G is

bimorphism equivalent to the generic oriented graph D (see Example 2.4.9).

Proof. As D has both properties (�) and (∴), the converse direction follows

from Proposition 8.3.3 and the forward direction is a consequence of Proposi-

tion 8.3.4.

Inspired by the construction of the random graph R outlined in Péresse [69,

Lemma 3.10.2], we use this machinery to demonstrate an example of a countable

MB-homogeneous oriented graph that is not isomorphic to the generic oriented

graph D (see Example 2.4.8).

Example 8.3.6. Let G be a finite oriented graph with at least one vertex. We de-

fine an oriented graph H(G) inductively over countably many steps Hi where

i ∈ N. To begin with, let H0 be the oriented graph G, and assume that Hn has

been constructed. For every finite subset A ⊆ V Hn, add a vertex vA and draw

arcs from vA to every v ∈ A and draw arcs to vA from every w ∈ V Hn r A.

Additionally, add a vertex un+1 such that un+1‖u for all u ∈ V Hn, and un+1‖vA
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for all finite subsets A ⊆ V Hn. Say that the resulting digraph is Hn+1; this is

countable as each Hn is finite. As Hn+1 contains Hn for every n ∈ N, define

H(G) =
⋃
i∈NHi. Then H(G) is a countably infinite oriented graph with proper-

ties (∴) and (�); so it is MB-homogeneous by Lemma 8.3.2.

A diagram illustrating the construction of H(G) at the H2 stage, when G is

the oriented graph on a single vertex {v}, is given in Figure 8.12.

H1 H2

Figure 8.12: H2 in the construction ofH(G), where G is a single vertex

We show that H(G) does not have the extension property characteristic of

the countable generic oriented graph (see Example 2.4.9). So as |V H0| ≥ 1, it

follows that |V H1 r V H0| ≥ 3 via a counting argument. Now, take X = V H0,

Y = {y} (where y ∈ V H1rV H0) and Z = V H1r (V H0∪{y}); therefore, X,Y, Z
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are a trio of non-empty, finite and pairwise disjoint sets. As H(G) has property

(�), we can find a vertex v ∈ V Hn for some n ≥ 2 such that v → u for all u ∈ U

and z → v for all z ∈ Z. As y ∈ V H1 r V H0, then either v → y or y → v due

to our construction. Therefore, there is no vertex v ∈ V Hn satisfying the OARP

characteristic of D for these sets X,Y, Z; henceH(G) � D.

Remark. Note that the construction ofH(G) did not depend on the size of the ini-

tial oriented graph G. As we add a vertex for each finite subset A of V Hn at each

Hn+1 step, it follows that we add at most countably many vertices. So if G were

countably infinite, thenH(G) when constructed in this fashion is also countably

infinite. This means we can build a countable MB-homogeneous oriented graph

H′ with any countable oriented graph G as an induced subgraph. Whether or

not this H(G) is isomorphic to D or not is unclear, given the amount of freedom

in the choice of G; for instance, taking G = D may present issues.

8.3.2 Uncountably many MB-homogeneous oriented graphs

As in the undirected case, the idea is to construct uncountably many exam-

ples of MB-homogeneous oriented graphs by using a countable family of pair-

wise non-embeddable oriented graphs and incorporating them into some MB-

homogeneous construction based on strictly increasing sequence of natural num-

bers. Similar to before, cycle graphs are the family we utilise; however, in the

oriented case there are two distinct notions (see Figure 8.13):

• an oriented cycle graph on n vertices, an orientation of some cycle graph Cn;

• the cycle digraphDn on n vertices, the unique orientation of the cycle graph

Cn where every v ∈ Dn has indegree and outdegree 1.

In our consideration, we use the cycle digraphs. The first result is the ori-

ented graph analogue of Lemma 8.2.6.

Lemma 8.3.7. Let Dm be the cycle digraph on m vertices, and let G be some oriented

cycle graph on n vertices, where m,n ≥ 3. Then G embeds in Dm if and only if m = n

and G is a cycle digraph; in which case they are isomorphic.



Chapter 8: MB-homogeneous graphs and digraphs 205

D4 G

Figure 8.13: The cycle digraph D4 and an oriented cycle graph G on 4 vertices

Proof. Assume first that m < n; it is clear in this case that G does not embed

in Dm. Now suppose that n < m and assume for a contradiction there is an

embedding θ : G −→ Dm. As n < m, we select a vertex vi ∈ V Dmr im θ such

that vi ∼ vj , where vj is in the image of θ. However, as θ is an embedding, vj has

arcs to two separate members of im θ and so the sum of indegree and outdegree

of vj in G is 3. This is a contradiction as this sum is at most 2 for every vertex vk

of G; so m = n. Now, if G is an oriented cycle graph that is not a cycle digraph,

then there exists at least one vertex v ∈ V G such that either the indegree or the

outdegree of v in G is 2. As there are no such vertices in a cycle digraph, G cannot

embed in Dm. The converse direction is trivial.

As any cycle digraph is an oriented cycle graph, it follows from this lemma

that the collection of cycle digraphs (Dn)n≥3 are a countable family of pairwise

non-embeddable digraphs. Our next lemma investigates the intersection of this

collection with the age ofH(G) as described in Example 8.3.6.

Lemma 8.3.8. Let G be an oriented graph on one vertex, and suppose that H(G) is

constructed as in Example 8.3.6. Then H(G) does not embed any odd cycle digraphs of

size ≥ 5.

Proof. Suppose that C is an cycle digraph of size ≥ 5. We show that C can only

contain vertices from only two Hi’s, and then deduce that this is only possible

when C is a cycle digraph of even size. So let x1, x2, x3 ∈ C, where x1 ∈ Hi,

x2 ∈ Hj r Hi and x3 ∈ Hk r Hj , where i < j < k. There are two cases to

consider; where x3 is independent of x1 and x2, and where there is some arc in

either direction between x3 and one of x1, x2.

Case 1. If x3 is independent of x1 and x2, it is independent of every other vertex
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in Hk by construction of H(G). As |V C| ≥ 5, there exists a vertex y ∈ C where

either y → x3 or x3 → y. As this happens, y ∈ Hn for some n > k by construc-

tion. From this, and in either of these scenarios, there must be an arc in either

direction between y and x1, and also an arc in either direction between y and x2.

So the sum of the indegree and outdegree of y in C is at least 3; a contradiction

and so x3 is not independent of x1 and x2.

Case 2. Now suppose that there is some arc in either direction between x3 and

one of x1, x2. By construction, this means that there is an arc in either direction

between x3 and both x1 and x2. There are then two further cases as x1, x2, x3 ∈ C;

either x1 → x3 and x3 → x2, or x2 → x3 and x3 → x1. Assume the former. Now,

it must be true that x2 is independent of x1; as if there was an arc in either

direction between x1 and x2, this would create an oriented cycle graph of size

3 contained in C which is impossible by Lemma 8.3.7. As this happens, there

exists a y ∈ C such that x2 → y; as y ∈ H(G), it follows that y ∈ Hn and n > j

by construction. But in this case, there is an arc in either direction between y

and x1; this then creates an oriented cycle graph M on 4 vertices. However, this

cannot happen asM would then be an induced subgraph of C; this is impossible

by Lemma 8.3.7.

This completes the proof that any cycle digraph C of size ≥ 5 contains only

vertices from two Hi’s. By construction, any pair of vertices u, v ∈ Hi for some i

are independent of each other; we can then deduce that C can be represented as a

bipartite digraph. By a result of graph theory (see [21]), a cycle graph is bipartite

if and only if the order is even; this result is applicable in the cycle digraph case.

So C must be of even order and hence no odd cycle digraphs of size ≥ 5 embed

inH(G).

We can now describe a modified construction of Example 8.3.6. Let S =

(si)i∈N be a strictly increasing sequence of odd natural numbers where s1 ≥

5, and let G be some finite oriented graph. Define an oriented graph H(G, S)

inductively as follows. Take G = H0, and assume that Hn has been constructed

for some n ∈ N0. As in Example 8.3.6, for every finite subsetA ofHn add a vertex



Chapter 8: MB-homogeneous graphs and digraphs 207

vA, and add arcs where vA → a for all a ∈ A and b → vA for all b ∈ V Hn r A.

In addition to this, when i = n + 1, add si many vertices independent of every

element inHn and every vA, and draw a cycle digraph of size si on these vertices.

Call the resulting oriented graph Hn+1 and note that as Hn ⊆ Hn+1 for every

n ∈ N0, we can defineH(G, S) =
⋃
j∈NHj . A diagram outlining a portion of this

construction when G is a single vertex and S = (5, 7, ...) is given in Figure 8.14.

Note that H(G, S) has properties (�) and (∴) for any G and any S and so is

MB-homogeneous by Figure 8.9.

H0 H1 H2

Figure 8.14: H2 in the construction of H(G, S), where G is a single vertex and S
is the sequence (5, 7, ...), with added cycles coloured in red

Lemma 8.3.9. Let G be the oriented graph on one vertex. Suppose that S = (si)i∈N is a

strictly increasing sequence of odd natural numbers with a1 ≥ 5 and that m ≥ 5 is an
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odd natural number such that m 6= si for all i ∈ N. Then the oriented graph H(G, S)

does not embed a cycle digraph of size m.

Proof. Let Mi denote the cycle digraph added at the ith stage of construction,

and suppose that C is a cycle digraph of size m, where m ≥ 5 is an odd natural

number. It suffices to show that that C = Mi for some i ∈ N; so assume for a

contradiction that C 6= Mi for any i. It follows from Lemma 8.3.7 that any such

cycle digraph C must contain at least one arc from some Mi. As this happens,

there must be at least two vertices in V C ∩ VMi. Furthermore, as C 6= Mi,

there exists an arc in either direction between some v in Mi and w ∈ V C r

VMi. Without loss of generality, we can also assume that there is an arc in either

direction between this v ∈ Mi and some u ∈ Mi. By construction, this means

that w ∈ Hn, where n > i. From this, there is an arc between w and every

element in C ∩Mi; in particular, there is an arc in either direction between w and

u. So then there exists at least one oriented cycle graph of size 3 contained in C;

a contradiction. Therefore, C = Mi for some i ∈ N.

Corollary 8.3.10. Let G be the oriented graph on one vertex. Suppose that S = (si)i∈N

and T = (ti)i∈N are two different strictly increasing sequences of odd natural numbers

with s1, t1 ≥ 5. ThenH(G, S) � H(G, T ).

Proof. The proof is almost exactly as in Corollary 8.2.9, with cycle graphs re-

placed by cycle digraphs.

Theorem 8.3.11. There are 2ℵ0 many pairwise non-isomorphic, non-B-equivalent ori-

ented graphs, each of which is bimorphism equivalent to the generic oriented graph D.

Proof. As there are 2ℵ0 many strictly increasing sequences of odd natural num-

bers, there are 2ℵ0 pairwise non-isomorphic oriented graphs H(G, S) by Corol-

lary 8.3.10. For S 6= T , as each H(G, S) has a different age from H(G, T ), they

are non-B-equivalent. As each example H(G, S) has properties (�) and (∴), it

follows from Corollary 8.3.5 that it is bimorphism equivalent to D.

This section, along with those oriented graphs studied in Section 7.3, barely

scratch the surface of the study of homomorphism-homogeneous oriented graphs.
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We therefore ask the following two questions, the oriented graph analogues of

those posed at the end of Section 8.2:

Question 8.3.12. Analogously to Theorem 8.1.4, classify the IA-homogeneous oriented

graphs that are also MB-homogeneous.

Question 8.3.13. Is every MB-homogeneous oriented graph bimorphism equivalent to

an MB and IA-homogeneous oriented graph? How many MB-homogeneous oriented

graphs are there up to bimorphism equivalence?

8.4 MB-homogeneous digraphs

Finally in this chapter, we modify techniques from previous sections in order

to show similar results for digraphs. Unlike the oriented graph case, we can

directly transfer some of the theory in Section 8.1 and Section 8.2 to the case for

digraphs; this is because of the existence of 2-cycles.

Definition 8.4.1. Let D be an infinite digraph.

• Say that D has property (↑↓) if for every finite set U ⊆ VD there exists

u ∈ VD such that there is a 2-cycle between u and every member of U .

• Say that D has property (∴) if for every finite set W ⊆ VD there exists

w ∈ VD such that w is independent of every member of V .

D

property (↑↓)

U

u

property (∴)

W

w

Figure 8.15: A diagram of Definition 8.4.1

Remark. Property (↑↓) in Definition 8.4.1 is a restatement for what it means for a

digraph to be algebraically closed [62]. In the same source, McPhee noted that this
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notion of algebraic closure for digraphs is the same notion as algebraic closure

for graphs; hence, any graph that is algebraically closed in the class of graphs is

also algebraically closed in the class of digraphs.

We now state a lemma analogous to Proposition 8.1.6 and Lemma 8.3.2.

Lemma 8.4.2. Let D be a digraph with properties (↑↓) and (∴). Then D is MB and

HE-homogeneous.

Proof. The proof of this is a similar argument to Proposition 8.1.6, with digraph

in place of graph, property (↑↓) instead of property (4), and 2-cycle in place of

adjacency.

We now utilise a technique of [24, Section 4]. Consider an undirected graph

Γ. By Example 2.3.1, Γ interprets a binary relation E ⊆ V Γ × V Γ, and models

the first-order formulae expressing irreflexivity and symmetry of that relationE.

Hence for any two vertices a and b in an undirected graph Γ, it follows that {a, b}

is an edge of Γ if and only if (a, b), (b, a) ∈ E. Therefore, we can view any simple,

undirected graph Γ = (V Γ, EΓ) as a loopless digraph D(Γ) = (V Γ, AD(Γ))

where

{a, b} ∈ EΓ⇔ (a, b), (b, a) ∈ AD(G).

So D(Γ), consists solely of non-arcs and 2-cycles, where there is a 2-cycle be-

tween vertices a and b in D(Γ) if and only if there is an edge between a and b in

Γ. See Figure 8.16 for a diagram of this idea.

Figure 8.16: The cycle graph C4 and its corresponding digraph D(C4)

It is easy to see that any infinite undirected graph Γ has properties (4) and

(∴) if and only if the digraph D(Γ) has properties (↑↓) and (∴). Furthermore,

we can check to see that Lemma 8.2.6, Lemma 8.2.7 and Proposition 8.2.8 hold

when we view graphs as digraphs. Thus, we can prove the following:
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Theorem 8.4.3. There exists 2ℵ0 many non-isomorphic, non-B-equivalent MB and HE-

homogeneous digraphs.

Proof. It follows from Corollary 8.2.9 that we can construct 2ℵ0 many non-isomorphic,

non-B-equivalent digraphs. As each example of an undirected graph Γ de-

scribed in Corollary 8.2.9 has properties (4) and (∴), its corresponding digraph

D(Γ) has properties (↑↓) and (∴) and so is MB and HE-homogeneous by Lemma 8.4.2.

Whilst we have uncountably many examples of MB-homogeneous digraphs

here, they are simply a restatement of what we have already found. Ideally, we

would like some examples of MB-homogeneous digraphs that cannot be viewed

as undirected graphs. We can do this by using the technique of overlaying di-

rected cycles on graphs constructed in the manner of Figure 8.7.

Example 8.4.4. LetA = (an)n∈N be a strictly increasing sequence of natural num-

bers with a1 ≥ 4, and let PA be the associated binary sequence as defined at the

start of Subsection 8.2.1. Construct the undirected graph Γ(PA) in the fashion

of Example 8.2.1, and take E(PA) = D(Γ(PA)) to be its corresponding digraph.

As before, there are independent sets induced on vertices V Ik = {vi1 , ..., vin}

corresponding to the kth string of 1’s in the binary sequence PA. On each V Ik,

induce a directed cycle of length k by vim → vi1 and vij → vij+1 for 1 ≤ j ≤ m− 1

to obtain the digraph E(PA)′ (see Figure 8.17 for a diagram).

Figure 8.17: E(PA)′ corresponding to the sequence A = (4, 5, 6, ...), with added
cycles highlighted in red.
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Here, E(PA)′ has both properties (↑↓) and (∴) and so is an MB-homogeneous

digraph by Lemma 8.4.2. However, because of the presence of directed cycles

on independent sets. E(PA)′ cannot be viewed as an undirected graph Γ.

Analogously to Proposition 8.2.8, it follows (using Lemma 8.3.7) that any

digraph E(PA)′ defined in this fashion does not embed a directed cycle graph

other than those added in the construction. Using this observation, we can prove

that:

Corollary 8.4.5. Suppose thatA = (an)n∈N andB = (bn)n∈N are two different strictly

increasing sequences of natural numbers with a1, b1 ≥ 4. Then E(PA)′ � E(PB)′.

Proof. As in Corollary 8.2.9, with cycles replaced by directed cycles.

The next result follows as an immediate consequence of this.

Theorem 8.4.6. There exists 2ℵ0 many non-isomorphic, non-bi-equivalent MB and

HE-homogeneous digraphs that cannot be viewed as an undirected graph Γ.

Finally in this section, we extend the notion of bimorphism equivalence to

digraphs, using this to prove a digraph version of to Corollary 8.1.10 and Corol-

lary 8.3.5. In a similar way to Definition 8.1.7, say that two digraphs D and E

are bimorphism equivalent if there exist bijective homomorphisms α : D → E and

β : E → D.

Proposition 8.4.7. LetD, E be bimorphism equivalent digraphs via bijective homomor-

phisms α : D → E and β : E → D. Then D has properties (↑↓) and (∴) if and only if

∆ does.

Proof. Follows from a similar argument to Proposition 8.1.8, replacing property

(4) by property (∴), adjacency with 2-cycle, and non-edge with non-arc.

Proposition 8.4.8. If D, E are two digraphs with properties (↑↓) and (∴), then D and

E are bimorphism equivalent.

Proof. Assume thatD, E are two digraphs with properties (↑↓) and (∴). As in the

proof of Proposition 8.1.9, we will use a back and forth argument to construct a
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bijective homomorphism α : D → E and a bijective antihomomorphism β̄ : D →

E , which by Lemma 7.1.2 will be the converse of a bijective homomorphism

β : E → D. So assume that f : {c} → {d} is a function sending a vertex c of D to

a vertex d of E ; this is a bijective homomorphism. Now set {c} = C0, {d} = D0,

f = f0, and assume that we have extended f to a bijective homomorphism

fk : Ck → Dk, where Ci and Di are finite and Ci ⊆ Ci+1 and D ⊆ Di+1 for all

0 ≤ i ≤ k − 1. Furthermore, as both D and E are countable, we can enumerate

their vertices as VD = {c0, c1, ...} and V E = {d0, d1, ...}.

If k is even, select a vertex cj ∈ D where j is the smallest number such that

cj /∈ Ck. As E has property (↑↓), there exists a vertex u ∈ E such that there is a

2-cycle between u and every element of Dk. Define a map fk+1 : Ck ∪ {cj} →

Dk∪{u} sending cj to u and extending f ; this map is a bijective homomorphism

as any arc between cj and any element of Ck in either direction is preserved (see

Figure 8.18 for a diagram of an example).

D E

Ck

cj
fk+1

Dk

u

Figure 8.18: k even in proof of Proposition 8.4.8

Now, if k is odd, choose a vertex dj ∈ E where j is the smallest number such

that dj /∈ Dk. As D has property (∴), there exists a vertex v ∈ D such that v is

independent of every element of Ck. Define a map fk+1 : Ck ∪ {v} → Dk ∪ {dj}

sending c to dj and extending fk. Then fk+1 is a bijective homomorphism as

fk is and every arc between c and Ck is preserved; because there are no arcs to

preserve. See Figure 8.19 for a diagram of an example of this stage.

Repeating this process infinitely many times, ensuring that each vertex of D
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D E

Ck

v
fk+1

Dk

dj

Figure 8.19: k odd in proof of Proposition 8.4.8

appears at an even stage and each vertex of E appears at an odd stage, defines

a bijective homomorphism α : D → E . We can construct a bijective antiho-

momorphism β̄ : D → E in a similar fashion; replacing homomorphism with

antihomomorphism and using property (∴) of E at even steps and property (↑↓)

of D at odd steps. So the converse map β : E → D is a bijective homomorphism

and so D and E are bimorphism equivalent.

Finally, recall from Example 2.4.9 that D∗ is the generic digraph with charac-

teristic extension property DARP. Note that the DARP of D∗ implies that D∗ has

both properties (↑↓) and (∴). We therefore have the digraph version of Corol-

lary 8.1.10 and Corollary 8.3.5:

Corollary 8.4.9. Suppose that D is a countable digraph. Then D has properties (↑↓)

and (∴) if and only if D is bimorphism equivalent to the generic digraph D∗.

This means that any countable digraph D that arises as an example in either

Theorem 8.4.3 or Theorem 8.4.6 is bimorphism equivalent to the generic digraph

D∗.

We end on natural generalisations of the conjectures given in Question 8.3.12

and Question 8.3.13.

Question 8.4.10. (1) Classify the IA-homogeneous digraphs that are also MB-homogeneous.

(2) Is every MB-homogeneous digraph bimorphism equivalent to an MB and IA-homogeneous

digraph? How many MB-homogeneous digraphs are there up to bimorphism equiv-

alence?
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