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Abstract

In the canonical model of frictionless markets, arbitrage is usually taken to force all trades
of homogeneous goods to occur at essentially the same price. In the real world, however,
arbitrage possibilities are often severely restricted and this may lead to substantial price het-
erogeneity. Here we focus on frictions that can be modeled as the bargaining constraints in-
duced by an incomplete trading network. In this context, the interplay among the architecture
of the trading network, the buyers’ valuations, and the sellers’ costs shapes the effective arbi-
trage possibilities of the economy. We characterize the configurations that, at an intertemporal
bargaining equilibrium, lead to a uniform price. Conceptually, this characterization involves
studying how the network positions and valuations/costs of any given set of buyers and sellers
affect their collective bargaining power relative to a notional or benchmark situation in which
the connectivity is complete. Mathematically, the characterizing conditions can be understood
as price-based counterparts of those identified by the celebrated Marriage Theorem in match-
ing theory.

Keywords: Bargaining, Frictions, Networks, Markets, Arbitrage
JEL classif. codes: D41, D61, D85, C78.

1 Introduction

In this note, we study the phenomenon of price formation in a context where (heterogeneous) buy-
ers and sellers are subject to trading constraints (based on geography, ethnic or language consider-
ations, trust, etc.) that limit their bargaining or/and trading possibilities. In order to highlight the
interesting interplay between such constraints and agents’ characteristics (valuations and costs), we
abstract from any other source of frictions and assume that both buyers and sellers enjoy complete
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information and are arbitrarily patient. In a nutshell, our aim is to characterize when, under the
aforementioned conditions, strategic bargaining leads to an outcome where all trade is conducted
at a uniform price.

Why is this question important? Its significance derives from the fact that such a price unifor-
mity is one of the key features associated to transparent and frictionless markets. It is, in a crucial
sense, a feature that underlies most of the properties of the market mechanism traditionally em-
phasized by economists such as, for example, those highlighted by the two so-called Fundamental
Welfare Theorems. There is the need, therefore, to understand whether such a uniform-pricing
outcome obtains even if trade is carried out in a decentralized manner and possibly subject to sub-
stantial frictions. For, as amply documented by empirical evidence, such frictions are substantial
in almost all economic domains.1

The general mechanism through which markets typically achieve price uniformity is arbitrage.
But, of course, a minimal requirement for arbitrage to remove all price disparities is that the trading
network be connected i.e. a path must exist between any buyer and every seller. Otherwise, the
trading network is effectively divided into separate independent sub-economies and, in general,
a uniform price could not be hoped for. At the opposite extreme, complete connectivity – with
every buyer being directly linked to every seller – is obviously enough to guarantee a unique price.
For, in this case, every price disparity would be readily exploited by some (perfectly informed and
infinitely patient) agent. Naturally, the middle ground between complete and minimal connectivity,
i.e., an incomplete connected network, represents the truly interesting case to study. This motivates
our concrete research question: Given any profile of buyers’ valuations and sellers’ costs, known
to all players, what is the family of networks that lead to a uniform equilibrium price?

To address this question, we model the bargaining setup as follows (a formal description is
postponed to Section 2). Bargaining proceeds over discrete periods and, in every one of them,
some buyers and sellers are randomly matched in pairs that are consistent with the given trading
network. For each such pair, one of the agents is chosen at random to make a proposal, which is
immediately implemented if accepted. The matched pairs who strike a deal leave the game and are
replaced by agents with identical characteristics, while all other players continue in the game and
move into the following period.

In the setup outlined, if buyers and sellers are all homogeneous, i.e. every buyer values the
single traded good equally and the (opportunity) cost of each seller is the same, a certain answer to
the question posed can be found in Manea (2011, 2016). He proves that bilateral bargaining in a
bipartite network leads to a uniform price (i.e., the network is non-discriminatory in his terminol-
ogy) if and only if for every subset of buyers, the ratio of the number of sellers linked to (at least)
one of these buyers to the number of buyers in the subset is greater than or equal to the seller-buyer
ratio in the entire network. Our main result generalizes this finding to heterogeneous agents.

1For example, Donna, Schenone, and Veramendi (2015) highlight the following cases: labor markets (Mortensen,
2005), eBay (Einav et al., 2015), and automobile markets (Morton et al., 2001).
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Naturally, since Manea’s model assumes that agents are homogeneous, the conditions he iden-
tifies are purely topological, i.e. concern only the architecture of the trading network. For example,
with an equal number of buyers and sellers, a uniform trading price is shown to arise at equilibrium
if, and only if, the trading network admits a so-called perfect matching, i.e. a network-consistent
pairing of agents where every buyer is associated to a single distinct seller.

The situation, however, is in general very different in a market environment that displays some
heterogeneity in agents’ characteristics. In particular, one expects that individual valuations and
costs should interplay in a crucial way with the network architecture to yield insights that go well
beyond topological considerations. For example, consider the following network.

Figure 1: A simple seller-buyer network.

Let us assume first that all buyers in the set B and all sellers in the set S are homogeneous,
the former having a unit valuation for the good and the latter a zero cost. Then, as agents become
infinitely patient (their discount rate converges to one), it can be easily shown that in any trading
component where all trade is conducted at a uniform price, this component-specific price simply
reflects the relative numbers of buyers and sellers involved.2 Furthermore, it can be shown that
the overall equilibrium leads to a segmentation of trade into the components labeled G1 to G3 in
Figure 1.

• In G1, which is balanced in the sense of including an equal number of buyers and sellers,
trade takes place at a common price p1 = 1/2.

• In G2, where the single buyer is in the “short side,” the trading price is p2 = 1/3.

• In G3, where the single seller is in the “short side,” the trading price is p3 = 2/3.

Next, we note that trade segmentation can be substantially reinforced or mitigated, depending
on sellers’ costs and buyers’ valuations. Suppose, for example, that under the same trading network

2See Section 5 for a detailed explanation of how equilibrium prices are determined when agents become infinitely
patient.
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as in Figure 1 the valuation of buyer 8 is changed to v8 = 10, all other costs and valuations being
kept as in the previous binary case. Then, four trading components arise in equilibrium. One of
them consists of the former G2 enlarged with sellers 2 and 5, i.e. it consists of the agents in the set
{2, 3, 4, 5, 8}. This leaves buyers 9 and 10 as isolated singletons – which means that they do not
trade – and induces a residual component consisting of the set {1, 6, 7}.

Possibly a more interesting situation, somewhat polar to the previous one, obtains if we modify
only the costs of sellers 3 and 4, raising them to c3 = c4 = 1/4, and the valuations of buyers 9
and 10, lowering them to v9 = v10 = 3/4. Then, at an equilibrium (with infinitely patient players),
all trade occurs at the uniform price p∗ = 1/2, which is in fact the price that would prevail if
buyers and sellers were connected by a complete bipartite network. That is, the resulting outcome
is equivalent to one with complete connectivity, even though the network architecture remains
unchanged and is therefore quite incomplete.

The previous discussion illustrates the potentially rich interplay between network structure
and type profile. In this light, our main contribution is to provide a full and general characteri-
zation of the environments – trading networks together with agents’ characteristics – that yield a
frictionless-like (uniform-price) outcome. As we shall see, this characterization relies on a collec-
tion of notional prices – notional in the sense of being purely “conceptual” or “algorithmic,” i.e.
not effectively implemented. These different prices, which are associated to the various possible
subnetworks of the overall original network, serve the purpose of assessing the equilibrium con-
sistency of the uniformly prevailing price. The need to resort to such notional prices in this case
derives from the fact that, when agents are heterogeneous, the bargaining options available to the
different agents must be evaluated in terms of the characteristics (costs and valuations) of their
possible partners and competitors to whom they are connected.

We close this introduction with a brief summary of related literature. The intertemporal bar-
gaining approach to price determination considered here was initiated by the seminal papers by
Rubinstein and Wolinsky (1985, 1990) and Gale (1987). Their models presume that, in every pe-
riod, agents are randomly matched afresh to bargain bilaterally with individuals on the other side
of the market. Their theoretical frameworks depend, therefore, on a complete social structure. Sub-
sequent literature (e.g. Corominas-Bosch (2004) and Kranton and Minehart (2001)) introduced an
incomplete structure into the analysis in the same way as we do here, i.e. by postulating that a
given social network restricts bilateral trading possibilities. A limiting feature of their approach is
that either the bargaining procedure or the matching mechanism exhibits a degree of coordination
that is at odds with the idea of decentralization that we associate to markets. The aforementioned
contributions by Manea (2011, 2016) – see also Abreu and Manea (2012) – do not suffer from this
drawback but they make the assumption that all agents are completely homogeneous except for
their connectivity. It abstracts, therefore, from the core focus of this paper, which is the study of
how the interplay between agents characteristics and network structure shapes the effect of trading
frictions. Nguyen (2015) generalizes Manea’s model by allowing for surplus creation in coalitions
larger than pairs and devises a simple method to solve this game in the limit as players become ar-
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bitrarily patient. In the proof of our Lemma 1, we show how his convex program computes payoffs
and prices in our context.

The rest of the paper is organized as follows. First, in Section 2 we present the model and, in
Section 3, the equilibrium notion. Then, the analysis in Section 4 starts with a brief discussion of
the extreme case where the trading network is complete. This context is analogous to that studied
by Gale (1987) and represents a useful benchmark for the analysis. We proceed in Section 5 to
the study of our main case of interest where bargaining takes place in an arbitrary trading network,
possibly quite incomplete. We characterize those configurations that lead to a uniform trading price
and compare our conditions to the classical ones obtained for a pure matching context. Section 6
concludes the main body of the paper with a summary of the main insights. For the sake smoothness
in the presentation, all proofs are included in the Appendix, although their main gist is informally
explained in the main text.

2 Model

There is a given set of sellers and a set of buyers. Each agent (buyer or seller) is connected to a
certain subset (possibly empty) of agents on the other side of the market (buyers or sellers, respec-
tively). Such connections are formalized through a bipartite trading network G = {S ∪B, L}
where S is the set of sellers, B is the set of buyers, and L ⊆ {sb : s ∈ S, b ∈ B} stands for the
set of undirected links sb (= bs) that connect some seller s to some buyer b. It is assumed that
every seller s ∈ S can produce at most one unit of the good being traded and incurs a (production
or opportunity) cost cs in doing so. On the other hand, each buyer b ∈ B cares for just one unit of
the good and has an idiosyncratic valuation vb for it.

Time is modeled discretely, t = 1, 2, .... At every t, the following two steps take place in
sequence:

First, a certain seller-buyer matching m = {s1b1 , s2b2 ..., sqbq} is selected according to
some probability distribution ϕG over all feasible matchings. For a matching to be feasible, it
must verify two properties: (i) every buyer and seller is included in at most one pair (possibly
in none); (ii) every matched pair corresponds to a link in the prevailing trading networkG. In
particular, m can be empty or it can contain the maximum number of non-intersecting edges
(maximum matching). We need not make any assumption on how the particular matching m
is selected (i.e. on the probability distribution ϕG) other than supposing that every link sb in
G is chosen with some (marginal) probability πsbG that is positive.

Second, for every pair sb ∈ m, one of the two agents is selected at random with equal
probability to make a proposal p on the price at which trade can be conducted.

(a) If this proposal is accepted, the good is transferred and the price paid. The buyer b earns
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vb− p and the seller p− cs. These two agents then leave the economy and are replaced
by another buyer and seller with the same characteristics who occupy the same network
positions next period, t+ 1.

(b) If the proposal is refused, then agents remain active in the same network position (with
the same set of connections) and participate in the new bargaining round taking place
at t+ 1.

The replacement assumption contemplated in (a) was already made by Rubinstein and Wolin-
sky (1990) and has become common in the recent literature on bargaining and networks (e.g.,
Manea, 2011). It is particularly useful because, in combination with (b), it allows to model the
situation in a stationary manner and hence consider stationary equilibria, as formulated in the next
section

3 Trading equilibrium

Given the bipartite networkG = {S∪B,L} and a corresponding set of costs (cs)s∈S and valuations
(vb)b∈B , the trading mechanism described above defines a sequential game form governing the
bargaining process, i.e. the “rules of the game.” Concerning preferences, we make the traditional
assumption that, for any t = 1, 2, ..., every agent active at t discounts the instantaneous payoffs
that might be obtained at some future t′ ≥ t with the factor δt

′−t, where the discount rate δ < 1 is
the same for all players. This intertemporal trading game is played under complete information on
all relevant details of the situation (i.e. the payoffs of all agents, the prevailing network, etc.)

As indicated, our analysis of the induced intertemporal game will focus on its Stationary Sub-
game Perfect Equilibria (SSPE), i.e. Subgame Perfect Equilibria where players’ strategies are
stationary and, hence, the behavior they prescribe within any given period t is independent of what
happened at any t′ < t. More precisely, a stationary strategy σi for any given agent i ∈ S ∪ B
embodies two distinct components. First, it includes, for every j such that ij ∈ L, a price pij at
which i offers to trade with j when the link ij is chosen by the matching mechanism and i is the
proposer. Thus, overall, agent i must have a vector of such proposals pi ≡ (pij)ij∈L for all his
partners. On the other hand, every agent i must have a function ψij : R → {A,R} that specifies
what price proposals from j he will accept (A) or not (R). All these conditional decisions may
be gathered in a vectorial function ψi ≡ (ψij)ij∈L that embodies the full range of agent i’s be-
havior as a responder. Combining this function with the aforementioned price offer pi, we arrive
at a (stationary) strategy σi = (pi,ψi) for every agent i ∈ S ∪ B.3 The corresponding strategy
profile σ ≡ (σi)i∈S∪B in turn induces a unique vector of expected payoffs that we shall denote by

3In principle, players’ strategies could also depend on the realized matching. However, equilibrium strategies will
not depend on it - as the SSPE condition (1) shows - due to their assumed stationarity and the fact that the market
composition is taken to be stationary as well.
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x(σ; G,θ, δ) ≡ (xi(σ; G,θ, δ))i∈S∪B , where θ ≡ ((cs)s∈S , (vb)b∈B) is simply a shorthand for
the combined vector of seller and buyer types. Thus, for the sake of clarity, our notation makes
explicit the dependence of payoffs on the strategy profile σ, the underlying network G, the agents’
types, and the discount factor δ.

Given the probability distribution ϕG that formalizes the matching mechanism operating on
the network G, recall that πijG stands for the marginal probability that the pair {i, j} is matched,
which we assumed positive if (and only if) ij ∈ L. For any such seller-buyer pair, denote by vij ≡
max{vi− cj , 0} the surplus that can be jointly produced by i and j. Then, the requirement that any
SSPE σ̃ is intertemporally self-consistent implies that the induced payoffs (x̃i)i∈S∪B must satisfy,
for every i ∈ N ≡ S ∪B, the following Bellman-like conditions:

x̃i =
∑
j:ij∈L

πijG

(
1

2
max{vij − δx̃j , δx̃i}+

1

2
δx̃i

)
+

1−
∑
j:ij∈L

πijG

 δx̃i. (1)

These conditions simply state that, at equilibrium, the payoff expectation of every agent i at any
general date t must equal the payoff to be expected if he and his matched partner react optimally at
that period and the same payoff is anticipated for agent i if he is still active the following period.
Nguyen (2015) and Polanski and Lazarova (2014) have shown that the system (1) has a unique
solution x̃(G,θ, δ) for any G and θ, provided δ < 1. In fact, as a generalization of Manea (2011),
their results imply that for sufficiently high δ (i.e. δ ≥ δ0 for some δ0 < 1) the subset of links that
trade with positive probability at equilibrium remains fixed and that the limit equilibrium payoff as
δ → 1:

x∗(G,θ) ≡ {x∗i (G,θ)}i∈S∪B ≡ lim
δ→1

x̃(G,θ, δ). (2)

is well-defined (and thus unique). We shall refer to x∗(G,θ) as the Limit Bargaining Outcome
(LBO). It is worth highlighting that the LBO is independent of the matching procedure (cf., The-
orem 2 in Nguyen, 2015). Hence, the LBO is the same for any ϕG such that the implied marginal
probabilities satisfy πijG > 0 for all ij ∈ L and πijG = 0 for all ij /∈ L. Associated to such LBO,
we define the prices p∗(G,θ) ≡ (p∗sb(G,θ))sb∈L at which trade is conducted, if at all, in each of
the links of G at any SSPE. Specifically, if trade is conducted at some link sb ∈ L with positive
probability, the uniquely associated price is given by,4

p∗sb(G,θ) = x∗s(G,θ) + cs = vb − x∗b(G,θ). (3)

Instead, if the probability that trade occurs at some link sb ∈ L is zero, we simply write p∗sb(G,θ) =
∅. In what follows, we will often drop the reference to G and θ and write simply x∗ and p∗ if no
confusion arises.

4From (3) it obviously follows that each trading pair sb exhausts the whole surplus vsb. That is, we have that
x∗s(G, θ) + x∗b(G, θ) = vb − cs = vsb.
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4 Complete trading network

We start our analysis with the case of complete bipartite networks. Essentially, this case is equiva-
lent to that studied by Gale (1987), where each buyer/seller matches afresh every period with some
randomly selected member of the other (continuum) population. Under these circumstances, the
equilibrium price p∗ at which all trades are conducted is given by the unique price at which the two
sides of the market obtain, in aggregate, the same share of the surplus (see Proposition 11 in Gale’s
paper).

To express formally the former condition, it is convenient to introduce the following notation.
Given any price p, let B(p) and S(p) stand for the set of buyers and sellers, respectively, who want
to trade at price p. Formally,

B(p) ≡ {b ∈ B : vb ≥ p}, S(p) ≡ {s ∈ S : cb ≤ p}. (4)

Then, particularized to our finite-population context, the aforementioned condition can be written
as follows: ∑

b∈B(p∗)

(vb − p∗) =
∑

s∈S(p∗)

(p∗ − cs), (5)

which provides an implicit (unique) determination of the equilibrium price p∗. This price de-
termines via (3) the limit payoffs x∗ of players in B(p∗) ∪ S(p∗) (all other agents earn zero).
Equivalently, these payoffs obtain as the unique solution to (1) with πijG > 0 for all ij ∈ S × B as
δ → 1.

The above condition represents a direct generalization of the well-known result of the bilateral
bargaining model studied by Rubinstein (1982) between a single seller and a single buyer that are
“infinitely patient”. In this case, the surplus is divided equally between the two agents if both have
the same ex-ante probability of being the proposer (and therefore being in a position to extract some
rents). Similarly, by virtue of the extreme patience of all agents, the two essential considerations in
our context can be summarized as follows:

(i) All trades must take place at the same price.

(ii) Given (i), from the point of view of any single agent, the opposite side of the market can be
suitably conceived as represented by an “average player.”

Hence if (as we have assumed) the probability of being the proposer in any matched pair is the
same for the two sides, then the surplus earned in total by each side of the market must be equal –
just as in the simple Rubinstein’s two-agent context. This is precisely what (5) asserts.

Note that the former reasoning is independent of how often any particular agent is selected to
be the proposer. As a whole, each side of the market enjoys the same probability and thus, also as a
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whole, both sides must earn the same share of the surplus.5 Note, further, that item (i) is of course
crucially dependent on the completeness of the network. In the absence of this completeness,
the considerations illustrated in Figure 1 come into play, with the interaction between network
architecture and the profile of types determining whether effective arbitrage possibilities are in
place. A full characterization of this problem is developed in the next section.

5 Price determination in general trading networks

We start with a definition of the key concept involved in our analysis.

Definition Given a profile of costs and valuations, θ = ((cs)s∈S , (vb)b∈B), and a bipartite network
G = {S ∪B, L}, the pair (G,θ) is said to be an Uniform-Price Configuration (UPC) if
the corresponding equilibrium price vector p∗(G,θ) = (p∗sb(G,θ))sb∈L obtained from (3)
satisfies for all links ij, kl ∈ L,

p∗ij(G,θ) 6= ∅ 6= p∗kl(G,θ)⇒ p∗ij(G,θ) = p∗kl(G,θ).

As illustrated in Figure 1, whether price uniformity prevails at equilibrium depends on how
the trading network interplays with the type profile of costs and valuations. Two polar cases are
straightforward. On the one hand, if the network is complete, the configuration must always in-
duce a uniform price whatever the type profile. In contrast, if the trading network is segmented
into several components, it is clear that only exceptionally (i.e. non-generically) one can expect
that trade will be conducted at a uniform price. In contrast to these two extreme cases, the most
interesting situations lie in the intermediate scenario in which the trading network is connected (i.e.
displays a single component) but is well below being complete. In those cases, understanding when
a uniform-price outcome obtains is not so clear. To address the problem, a general characterization
of uniform-price configurations is provided by the Proposition below.

To state our result formally, the following two pieces of notation are useful.

- First, given any subset of sellers S′ ⊆ S and buyers B′ ⊆ B, let p′ ≡ P(S′, B′) be the
(unique) price that satisfies:∑

b∈B(p′)∩B′
(vb − p′) =

∑
s∈S(p′)∩S′

(p′ − cs). (6)

5Obviously, this is a particular manifestation of the indicated general independence of the LBO on the matching
procedure given by ϕG. In the present case, where the network is complete, the intuitive basis for this conclusion is
easier to understand.
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A natural interpretation of p′ is the uniform price that would notionally prevail in a game in
which sellers in S′ were completely connected to buyers in B′ in the network G′ = {S′ ∪
B′, L′} with L′ = {sb : s ∈ S′, b ∈ B′}.

- Second, for any subset of sellers S′ ⊆ S denote by NG(S
′) the set of buyers b ∈ B that

are connected to some seller s ∈ S′ in the bipartite network G = {S ∪ B,L}. That is,
NG(S

′) ≡ {b ∈ B : ∃s ∈ S′ s.t. sb ∈ L}. Similarly, we define NG(B
′) ≡ {s ∈ S :

∃b ∈ B′ s.t. bs ∈ L}.

For the sake of formal simplicity, we assume also that all nodes have a partner with whom
they can conceivably trade at some mutually beneficial price – otherwise, the nodes for which this
condition does not apply are just “dummies” and can be safely ignored in the analysis. That is, we
make the following assumption:

Assumption PL (Profitable Links) For every seller s ∈ S there is some buyer b ∈ B such
that sb ∈ L and vb > cs. Similarly, for every buyer b ∈ B there is some seller s ∈ S such
that bs ∈ L and cs < vb.

We can now state and prove the following characterization result.

Proposition 1. Consider a bipartite network G = {S ∪B, L} and a type profile θ = ((cs)s∈S ,
(vb)b∈B) for which Assumption PL holds. Then, the following conditions are equivalent:

• (G,θ) is a Uniform-Price Configuration, (7a)

• ∀B′ ⊆ B,B′ 6= ∅, P(NG(B
′), B′) ≤ P(S,B), (7b)

• ∀S′ ⊆ S, S′ 6= ∅, P(S′, NG(S
′)) ≥ P(S,B). (7c)

Proof: See the Appendix.

Informally, our result indicates that any given configuration is an UPC if, and only if, any of
the following equivalent (and symmetric) conditions for buyers and sellers hold:

(i) For buyers, each subset of them must be collectively connected to relatively enough low-cost
sellers such that they cannot be forced into accepting prices that are higher than the price p∗

that all buyers would pay in the absence of trading frictions.

(ii) For sellers, each subset of them has to be collectively connected to relatively enough high-
valuation buyers such that they cannot be forced into accepting prices that are lower than p∗,
the price that all sellers would receive in the absence of trading frictions.
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To understand the intuition for the equivalence of (7a), (7b), and (7c) the essential argument
can be explained as follows. First, let us argue that either (7b) or (7c) separately imply (7a) –
i.e. uniform pricing. We start by the observation that if trading at equilibrium is not conducted at
a uniform price, then there must be two distinct prices, say pH and pL, that satisfy pH > p∗ ≡
P(S,B) > pL. This reflects the fact that whenever the creation of additional links leads to the
merger of two trading components6 into a single one, the induced (uniform) price lies at some
intermediate “compromise” between the two original prices (see Lemma 2). The key intuition here
is that, whenever any active links are formed across the formerly independent trading components,
the relatively weak part in each of those components (buyers in one, sellers in the other) cannot
become worse-off. Thus, in the single integrated component that results, the prevailing uniform
price must lie in between the two former prices. An analogous conclusion can be readily extended
to the general case of any number of trading components, with pH and pL now standing for the
highest and lowest prices prevailing across all components.

Then, to complete the explanation of this first part of the proposition, consider any configuration
(G,θ) where (7a) fails and denote by B′ the set of buyers who are in the component trading at
the highest price pH . If, hypothetically, these buyers were connected to the sellers in NG(B

′)
through a complete and isolated (bipartite) subnetwork, those buyers could not do any better than
in the original full network. Heuristically, the reason is that, under those circumstances, we are
“artificially” ignoring the additional bargaining options that the sellers in NG(B

′) actually enjoy
in the network G, i.e. their links to buyers outside B′. This, in effect, contradicts (7b) and thus
explains why (7a) implies (7b). A symmetric idea applies to (7c), the focus then turning to the
lowest price pL and the set of sellers trading at that price.

Finally, we explain the reciprocal statement that (7a) implies both (7b) and (7c). Since the
argument again applies to buyers and sellers symmetrically and separately, let us focus on the
condition (7b) that refers to buyers. Suppose that this latter condition fails and thus we have some
set of buyers B′ such that, if connected in a complete subnetwork to NG(B

′), the (uniform) price
p1 they would attain is higher than p∗ ≡ P(S,B). Let S′ stand for the set of sellers not connected
to B′ – i.e. S′ ≡ S \ NG(B

′) – and denote by p2 the uniform price that prevails in a trading
component where S′ is completely connected to B \B′. Applying again the reasoning used above,
p∗ must be conceived as a “compromise” between p1 and p2, and therefore p1 > p∗ > p2.

Consider then the network constructed as follows: all buyers inB′ are completely connected to
the sellers inNG(B

′) and all sellers in S\NG(B
′) are completely connected to the buyers inB\B′.

This, in short, is simply the complete bipartite network between the full sets B and S except for all
the links between buyers in B \ B′ and the sellers in NG(B

′). Let us refer to this network as G′,
and note that the original G is a subnetwork of it. It is clear that, on the configuration (G′,θ), an
equilibrium can be constructed where all sellers in NG(B

′) are only willing to trade with buyers in
B′ at price p1 > p∗, while all buyers in B \B′ are only willing to trade with sellers in S \NG(B

′)

6A trading component is simply defined as a component of the subnetwork of G consisting of all links that are active
at equilibrium, i.e. those that support trade with positive probability.
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at price p2 < p∗. Since G ⊂ G′, this contradicts the assertion that all trade at the configuration
(G,θ) is conducted at a uniform price.

A quite intuitive application of Proposition 1 arises for the particular case where costs and
valuations are homogeneous within each side of the market. In this case, (6) simplifies to,

P(NG(B
′), B′) =

#(B′)

#(B′) + #(NG(B′))
, P(S′, NG(S

′)) =
#(NG(S

′))

#(S′) + #(NG(S′))
, (8)

where #(·) represents the cardinality of the set in question. Hence, in particular, for a completely
connected component of the trading network (which, of course, also defines a single trading com-
ponent) the single price prevailing in it simply reflects the buyer-seller ratio in that component. For
example, in the network of Figure 1, p∗ ≡ P(S,B) = 1

2 since there are as many sellers as buyers
in that market. In contrast, if we consider for example the subset of buyers given by B′ = {9, 10},
we obtain:

P(NG(B
′), B′) = P({5}, {9, 10}) = 2/3 > p∗,

which violates Condition (7b). This indicates that the configuration given by the trading network
represented in Figure 1 with homogeneous costs and valuations induces price dispersion, i.e. it is
not a UPC.7

Within an homogeneous buyer and seller context, a straightforward observation is that Con-
ditions (7b) and (7c) are formally equivalent to those put forward by the celebrated Marriage
Theorem (see Hall, 1935, or Chartrand, 1985) to characterize the bipartite networks that admit a
so-called perfect matching – i.e. a matching where every node of either part (“man” or “woman”)
is suitably matched with one (and only one) node of the other part. To see this note that, once
the relevant prices have been computed from (8), the aforementioned conditions can be written as
follows:

∀B′ ⊆ B,B′ 6= ∅, #(B′)

#(NG(B′))
≤ #(B)

#(S)
,

∀S′ ⊆ S, S′ 6= ∅, #(S′)

#(NG(S′))
≤ #(S)

#(B)
.

Therefore, if #S = #B, they become:

∀B′ ⊆ B,B′ 6= ∅, #(B′) ≤ #(NG(B
′)),

∀S′ ⊆ S, S′ 6= ∅, #(S′) ≤ #(NG(S
′)).

7As a further illustration of Proposition 1, let us still focus on the trading network displayed in Figure 1 but now
consider, as we did in the Introduction, the heterogeneous environment obtained from the homogeneous one by changing
the valuation of buyer 8 to v8 = 10, while all other costs and valuations remain unchanged. Then (6) implies p∗ ≡
P(S,B) = 2 and we find that the subset S′ = {1} violates the Conditions (7c) as P({1}, {6, 7}) = 2/3 < p∗. Instead,
it may be easily checked that if the change involves c3 = c4 = 1/4, and v9 = v10 = 3/4 (another case considered in
the Introduction), Conditions (7b) and (7c) are satisfied, thus implying that the induced configuration yields a uniform
price.
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The above conditions simply specify that every subset of agents on one side of the market is con-
nected to a set on the other side that is at least as numerous. This are precisely the conditions
established by Hall’s Marriage Theorem as necessary and sufficient for a perfect matching.

In fact, the previous observation immediately follows from a result established by Manea
(2011). He shows that, for homogeneous buyer-seller networks, a uniform price arises out of
bargaining among infinitely patient agents if, and only if, the trading network admits a perfect
matching. Thus, in this light, what our above discussion suggests is that a natural interpretation of
Proposition 1 can be cast along the following lines. When one moves from a fully homogeneous
environment to an heterogeneous one with arbitrary cost and valuation profiles, uniform-price con-
figurations may be characterized by “economic conditions” that generalize those of the Marriage
Theorem through the consideration of suitably determined (endogenous) prices. These prices, in
essence, reflect the relative “scarcity” of valuable bargaining partners faced by every possible sub-
set of buyers or sellers.

6 Summing up

When the market consists of heterogeneous buyers and sellers, effective arbitrage possibilities de-
rive from a complex interaction of valuations, costs, and the architecture of the network of trading
possibilities. In this context, purely topological considerations cannot provide a suitable analysis
of the effective frictions impinging on the market. A proper understanding of the problem can
only be achieved by an integration of topological features and individual characteristics (costs and
valuations). This is precisely the approach pursued by our main result, which provides conditions
that characterize configurations that are frictionless in the sense of inducing a uniform price across
all trades. These conditions formally resemble those highlighted by the graph-theoretic matching
literature but introduce the canonical economic mechanism, prices, in assessing the effective bar-
gaining possibilities of agents that can be quite heterogeneous – not only in terms of their network
position but also in terms of their individual inherent characteristics.

Appendix

In this Appendix, we provide the formal proof of our main result, Proposition 1. The proof relies
on two separate Lemmas, which are stated and proven first.

Lemma 1. Let the bipartite network G = {B ∪ S,L} and type profile θ = ((cs)s∈S , (vb)b∈B)
define an UPC (G,θ) with a trading price p. Consider the network G′ = {B∪S, L∪{s′b′}}, with
s′ ∈ S, b′ ∈ B, and s′b′ /∈ L. Then, (G′,θ) defines an UPC with the same trading price p.

Proof : Let x∗(G,θ) be the LBO induced by the UPC (G,θ) where all trades occur at the price
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p. By Theorem 2 in Nguyen (2015), this outcome is the unique solution to the following (quadratic)
optimization problem:

min
x

(
∑

b∈B x
2
b +

∑
s∈S x

2
s), s.t. ∀sb ∈ L, xs + xb ≥ max{vb − cs, 0}. (9)

Consider any seller s and buyer b such that cs ≤ p ≤ vb. Their equilibrium payoffs must then be,
respectively, given by x∗s = p − cs and x∗b = vb − p. To see this, consider the case of the seller s.
Either some of her neighboring buyers inG trade at price pwith other buyers or they do not trade at
all. In the former case, seller s can also trade at price p. In the latter case, instead, by Assumption
1, there is some price at which s can trade profitably with some of his neighboring buyers. Thus,
seller s must be active at equilibrium and his trading price must also be p, since the configuration
(G,θ) is an UPC.

Note that the preceding argument applies to any seller-buyer pair (s, b), independently of
whether they are connected in G or not. Thus suppose that the link s′b′ added to G to obtain
G′ indeed satisfies cs′ ≤ p ≤ vb′ . Then, the solution to the optimization problem (9) must satisfy:

x∗s′ + x∗b′ = p− cs′ + vb′ − p = vb′ − cs′ , (10)

which implies that adding the constraint x∗s′ + x∗b′ ≥ vb′ − cs′ is redundant, and therefore x∗(G,θ)
is still a solution to the optimization problem obtained after adding this constraint. This means that
x∗(G′,θ) = x∗(G,θ).

Consider now the alternative case in which the link s′b′ added to G does not satisfy cs′ ≤ p ≤
vb′ . For concreteness, suppose that cs′ ≤ vb′ < p. Then seller s′ trades in G but the buyer b′ does
not. Hence the corresponding payoffs satisfy x∗s′ = p− cs′ , x∗b′ = 0 and, therefore,

x∗s′ + x∗b′ = p− cs′ > vb′ − cs′ .

Hence, again, if the link s′b′ is added toG and the constraint x∗s′+x
∗
b′ ≥ vb′−cs′ is added to (9) the

solution remains unchanged. Thus, as before, we find that x∗(G′,θ) = x∗(G,θ), which completes
the proof of the Lemma. �

Lemma 2. For any disjoint non-empty subsets S′, S′′ ⊆ S and B′, B′′ ⊆ B in the bipartite
network G = {B ∪ S,L} with the type profile θ = ((cs)s∈S , (vb)b∈B) it holds that,

P(S′, B′) < P(S′′, B′′)⇒ P(S′, B′) < P(S′ ∪ S′′, B′ ∪B′′) < P(S′′, B′′),

where P(.) is defined in (6).

Proof : By the definition (6) and by the fact that S′ ∩ S′′ = ∅ and B′ ∩ B′′ = ∅, it follows for
p = P(S′ ∪ S′′, B′ ∪B′′) that,∑

b∈B(p)∩B′
(vb − p) +

∑
b∈B(p)∩B′′

(vb − p) =
∑

s∈S(p)∩S′
(p− cs) +

∑
s∈S(p)∩S′′

(p− cs).
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We write the last equality as f(p;B′, S′) + f(p;B′′, S′′) = 0, where,

f(p; B̃, S̃) ≡
∑

b∈B(p)∩B̃

(vb − p)−
∑

s∈S(p)∩S̃

(p− cs), ∀B̃ ⊆ B, S̃ ⊆ S.

Clearly, the function f(p; .) is strictly decreasing in p ∈ R. Then, we have for p′ = P(S′, B′) <
p′′ = P(S′′, B′′) the following inequalities,

f(p′;B′, S′) = 0⇒ f(p′;B′, S′) + f(p′;B′′, S′′) = f(p′;B′′, S′′) > 0,

f(p′′;B′′, S′′) = 0⇒ f(p′′;B′, S′) + f(p′′;B′′, S′′) = f(p′′;B′, S′) < 0.

As the function f(p; .) is also continuous, it follows that there is a unique p ∈ R solving f(p;B′, S′)+
f(p;B′′, S′′) = 0 and p ∈ (p′, p′′). �

Proof of Proposition 1: We establish the desired equivalence by proving in turn a sufficient set of
different implications.

• (7b)⇒(7a):

For the sake of contradiction, assume that the condition (7b) holds but (G,θ) is not an UPC.
Then, there are at least two connected and disjoint subnetworks G′ and G′′ of G, where trade takes
place at the uniform prices p′ and p′′, respectively, such that p′ 6= p′′. We will call each such
subnetwork a trading component (TC). In each TC of G, we add all missing links until all buyers
and sellers in this component are connected by a complete subnetwork. By Lemma 1, this will
not affect the price in this component. Each node that does not belong to any TC (i.e., does not
trade in equilibrium) is connected to at least one trading node due to our Assumption PL. For any
such non-trading player v, we select one of her trading neighbors in some TC and connect v to all
players from the opposite side in this TC. Again, this operation will not change the price in G′ as v
will be still inactive. Thus, we obtain a collection of completely connected TCs that cover disjoint
sets of nodes, whose union is S ∪B, and each TC displays a uniform price.

If we now add all missing links between two completely connected TCs with the respective
prices p′ and p′′, then Lemma 2 implies that the price in the merged component lies in the interval
(p′, p′′). If we proceed in this way iteratively merging components, we will arrive at the completely
connected bipartite network with the set of nodes S ∪ B, where all trade takes place at the price
p∗ = P(B,S). By the iterative application of Lemma 2, this price must lie strictly between the
minimum pL and the maximum pH price of the initial completely connected TCs,

pL < p∗ = P(B,S) < pH .

Now, denote by H a trading component with the price pH . Furthermore, let HB and HS be,
respectively, the (non-empty) set of active buyers and sellers in H . Note that any active seller
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s ∈ NG(HB) (who must of course have her cost cs ≤ pH ) will sell at equilibrium only at the
highest price pH , since this price is available to her. Hence, we can write HS = NG(HB) and,
therefore,

P(HB, HS) = P(HB, NG(HB)) = pH > p∗,

which contradicts (7b).

• (7a)⇒(7b):

For the sake of contradiction assume that (G,θ) is UPC but (7b) does not hold. Then, there
exists a non-empty set B′ ⊆ B such that,

P(B′, NG(B
′)) = p1 > p∗ ≡ P(B,S). (11)

We add all missing links between B′ and NG(B
′) until these two sets are connected by a complete

subnetwork G1 and we do the same for the sets S′ = S\NG(B
′) and NG(S

′) obtaining the com-
plete subnetwork G2 (G1 and G2 are only connected by links between NG(S

′) and NG(B
′)). We

denote by G̃ the entire network that resulted from this link addition to G and note that (G̃,θ) is an
UPC by the Lemma 1.

Considering now G1 and G2 separately (i.e., ignoring all links between them), they cover
disjoint sets of nodes, whose union is S ∪B, and each subnetwork displays a uniform price due to
their completeness. Then, Lemma 2 and p1 > p∗ imply that p2 must verify,

p2 = P(NG(S
′), S′) < p∗.

Considering now the entire network G̃, trading at pk in its subnetwork Gk, k = 1, 2, and dis-
agreement (no trade) for any connected pair (s, b) ∈ G1 × G2 forms a limit SSPE with the
(unique) expected payoff vector x∗. In particular, it is optimal not to trade for each pair (s, b) ∈
NG(B

′) ×NG(S
′), i.e., s ∈ G1, b ∈ G2, as the sum of their expected payoffs is higher than their

joint surplus,

x∗s + x∗b = max{p1 − cs, 0}+max{vb − p2, 0} ≥ max{p1 − cs + vb − p2, 0} > vb − cs.

As the equilibrium trade in G̃ occurs at two different prices, p1 > p2, the configuration (G̃,θ)
cannot be an UPC.

Given the formal symmetry between buyers and sellers in the model, it is clear that it readily
follows that both (7a)⇒(7c) and (7c)⇒(7a). This establishes the equivalence among (7a), (7b),
and (7c), thus completing the proof. �
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