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ABSTRACT

Submarine canyons are common bathymetric features incising the shelf edge and are

known to trap and focus internal waves leading to high levels of turbulent mixing.

Whittard Canyon, located at the Celtic Sea shelf edge, is a dendritic canyon where

little is known about the internal tide, yet where it is postulated to have a huge

impact on biology within the canyon and also play a role in the generation of

nepheloid layers. High-resolution simulations of the M2 tide in Whittard Canyon

using a modified version of the Princeton Ocean Model are used to determine the

generation, propogation, spatial structure and dissipation of the internal tide within

the canyon. Shamrock canyon and Brenot Spur are identified as key remote sources

of internal tide generation, which modulate local generation in a flux-conversion

feedback mechanism which causes the observed assymmetry in barotropic-to-

baroclinic conversion within the canyon limbs. Depth-integrated baroclinic energy

flux within the canyon is elevated, but variably so in different limbs, with values

reaching >8 kW m−1. The eastern limb of the canyon is notable for being particularly

energetic. Enhancement of near-bottom baroclinic tidal currents are seen within

the canyon with velocities reaching 0.4 m s−1. The three-dimensional structure

exhibits bottom intensification due to topographic focusing by the steep canyon

walls, and the dominantly supercritical limb heads. Within the upper canyon the

internal tide exhibits a typical mode-1 structure. Cores of baroclinic energy flux, in

a dominantly up-canyon direction, form over the depth range of 1000-2500 m and

are correlated with potential source regions for nepheloid layers. The sensitivity

of the model to bathymetric resolution is tested and it is found that using 500 m

resolution bathymetry results in domain-averaged conversion rates higher than for

the smoothed bathymetries tested, highlighting the need for high-quality, high-

resolution bathymetric datasets.
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1
INTRODUCTION

Shelf seas are considered highly productive regions, as even though they cover

less than 10% of the oceans surface area, they contribute 15 to 30% to the total

oceanic primary production (Hickman et al., 2012). Understanding the biological and

physical processes that control shelf sea primary productivity is therefore of great

interest from both an academic, and economic point of view. The Celtic Sea shelf

edge is a region notable for its highly productive fisheries and it is hypothesised that

higher mixing rates, driven by internal waves, drive vertical nitrate fluxes which fuel

new phytoplankton production (Sharples et al., 2009). The geometry at the Celtic

Sea shelf break is complex, due to its incision by multiple submarine canyons, thus

providing multiple internal wave generation locations and propagation pathways.

The generation and reflection of internal waves is dependant on topographic slope.

Therefore the presence of submarine canyons, are likely to create a complex internal

wave field through both generation and reflection. However, observational data

within canyons needed in order to investigate these dynamics are difficult and

expensive to obtain. Numerical models are therefore vital tools to utilise in order to

begin to understand the internal wave fields within submarine canyons.

One of the major canyons that incise the Celtic Sea shelf break is Whittard Canyon.

This canyon, with its complex dendritic morphology, is home to a diverse range of

habitats (Huvenne et al., 2011; Johnson et al., 2013), but the conditions that enable

these habitats to flourish is not fully understood. Internal waves are associated with

1
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enhanced near-bottom energy, and this has been identified as a major mechanism

in the production and the maintenance of nepheloid layers, particularly in sloping

environments and canyons (e.g. McPhee-Shaw and Kunze, 2002; McPhee-Shaw et al.,

2004; Puig et al., 2004). This may provide nutrient pathways for habitats, therefore,

any insights into the spatial variability of internal waves within Whittard Canyon

obtained from numerical models, are also of interest for researchers in a wide range

of fields, from sedimentology to ecology.

Submarine canyons are common incisions along the shelf edge globally (Harris

and Whiteway, 2011), however, internal waves have previously only been well studied

using numerical models within submarine canyons that are simple incisions (e.g.

Gregg et al., 2011, Ascension Canyon) or meandering (e.g. Hall and Carter, 2011; Lee

et al., 2009, Monterey and Gaoping Canyon, respectively). This work provides the

first numerical modelling study of internal wave dynamics within a dendritic canyon.

The results of this study therefore have implications for global estimates of mixing at

the shelf edge (e.g. Carter and Gregg, 2002), which previously have only accounted for

shelf edges incised by canyons with much simpler morphologies.

1.1 INTERNAL WAVES

Internal waves propagate beneath the ocean surface and are generated when the

stratification of the ocean is disturbed. Internal waves with tidal frequencies

are termed internal tides. They form when horizontal tidal currents encounter

submarine obstacles such as ridges, causing the water to be forced up over the

obstacle (Carter et al., 2012). If the water is stratified, then the surfaces of constant

density (isopycnals) near the obstacle oscillate with tidal frequency, resulting in

isopycnal disturbances that propagate outwards from that region as internal gravity

waves. The deviation of the isopycnal disturbances from almost horizontal, isobaric

surfaces mean that the velocity and pressure field perturbations caused by internal

waves are baroclinic (Carter et al., 2012). Hence, the internal tides propagating away

from the disturbance can be referred to as baroclinic tides whilst surface tides are

termed barotropic.

If stratification varies continuously, internal waves propagate vertically as well as

horizontally. The angle of the of the wavenumber vector (k) and by definition the
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phase velocity vector (c) with the vertical, θ, and also the ratio of horizontal to vertical

wavenumber, tanθ = kh/kz , is given by the internal wave dispersion relation,

ω2 = f 2 cos2θ+N 2 sin2θ (1.1)

where ω is the angular frequency of the wave, f = 2Ωsinφ is the inertial (or Coriolis)

frequency, where Ω is the angular rotational frequency of the Earth and φ is latitude

and and N = [−(g /ρ0)(dρ/d z)]
1
2 is the buoyancy frequency, where ρ0 is a reference

density, and dρ/d z is the vertical potential density gradient. The dispersion relation

implies that internal waves can only exist between a range of frequencies, namely the

inertial frequency and the buoyancy frequency, i.e. f <ω< N .

1.1.1 INTERNAL WAVE REFLECTION

The reflection of internal waves differs from internal wave generation in that the

behaviour is entirely dependant on the topographic slope (Hall and Carter, 2011).

The onshore-offshore propagation direction of deep water internal waves that have

encountered a topographic slope can be calculated using the ratio of the topographic

slope to the internal wave characteristic slope,

α= stopog

sw ave
= ∂H/∂x[(

ω2 − f 2
)

/
(
N 2 −ω2

)]1/2
(1.2)

where H is the total depth, x across-slope distance, ω the angular frequency of the

wave, f the inertial frequency and N the buoyancy frequency. If α < 1 (subcritical),

after reflection, waves will continue to shoal. If α > 1 (supercritical), waves will

travel back into deeper water after reflection. If α= 1 (critical), nonlinear effects and

potential wave breaking can occur.

1.1.2 INTERNAL WAVE GENERATION AND MODIFICATION WITHIN

SUBMARINE CANYONS

The continental shelves and slopes of continental margins are often incised by

submarine canyons (Harris and Whiteway, 2011). They are common features and are

often similar in scale to canyons seen on land such as the Grand Canyon ( ∼ 10-30
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km wide and ∼ 2 km deep) (Hickey, 1995). There can be marked differences between

the slopes of the canyon walls, floor and the adjacent continental slope, therefore

there are multiple sites where the generation and reflection of internal tides can occur

(Hickey, 1995).

Scattering of the barotropic tides from the sloping topography can generate

internal tides (Baines, 1982) whilst reflection can lead to trapping and focusing of

internal waves from outside the canyon towards the head of the canyon (Gordon and

Marshall, 1976; Hotchkiss and Wunsch, 1982). Super- critical reflection of internal

waves from the steep canyon walls results in the internal waves above the canyon rim

being focused towards the canyon floor (Gordon and Marshall, 1976). In addition,

submarine canyon floors are typically gently sloping and subcritical reflection along

this surface results in offshore internal waves being focused towards the canyon head

(Hotchkiss and Wunsch, 1982) (Figure 1.1).

Figure 1.1: (a) Supercritical reflection between internal waves, entering from above the
canyon rim, and the steep canyon walls result in the internal waves being focused towards
the canyon floor (b) Subcritical reflection between offshore internal waves and the (typically)
gently sloping canyon floors result in the internal waves being focused towards the canyon
head. Adapted from Hotchkiss and Wunsch (1982)

During reflection the separation between adjacent internal wave characteristics

narrows, resulting in a concentration of the energy into a smaller region (Hall

and Carter, 2011). Therefore, during both the subcritical and supercritical
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examples mentioned above, energy density increases. Internal wave energy density

enhancement has been observed in a number of canyons, for example, Hudson

Canyon (Hotchkiss and Wunsch, 1982) and Gaoping Canyon off Taiwan (Lee et al.,

2009). This enhanced tidal and internal wave energy within canyons results in

extremely large amounts of mixing. For example, diffusivity within Monterey Canyon

has been measured at 0.05 m2s−1 near the canyon axis and only a factor of 10 times

smaller towards the rim depth (Carter and Gregg, 2002). In the case of near-critical

reflection (' 1), the energy is trapped against the boundary resulting in non-linear

effects such as wave breaking, internal bores and turbulent mixing (e.g., Nash et al.,

2004).

The short horizontal scale of submarine canyons result in them being avoided

by coastal observation programmes as they are difficult to characterize with a small

number of point measurements (Kunze et al., 2002). Obtaining measurements from

within the canyons is also made difficult by the steep canyon walls which make

obtaining CTD profiles safely difficult, and also comprise the accuracy of deploying

moored arrays (Hickey, 1995). Hence, models that can be validated with relatively

few measurements are vitally important to fully understand the behaviour of internal

waves within submarine canyons.

1.2 CELTIC SEA

The Celtic Sea, located off the south coast of Ireland, is approximately 400km wide

and is a 100 - 200 m deep shelf sea that is notable for the presence of a combination of

large tidal currents and strong seasonal fluctuations in surface cooling and heating

(Green et al., 2008). The supply of freshwater to the Celtic Sea is small, therefore

temperature dominates stratification and during the summer a strong seasonal

stratification is established over areas where stirring by tides and wind is small

compared to buoyancy input (Green et al., 2008).

The shelf break (Figure 1.2) has a west-northwest to east-southeast trend from the

eastern margin of the Goban Spur to the Brenot Spur (Bourillet and Mulder, 2006).

The slope break occurs between depths of 170 m and 300 m, with the landward

shelf morphology displaying relative smoothness compared to the corrugated margin

(Cunningham et al., 2005). The margin is deeply incised by a number of submarine
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canyons that are typically orientated NNW SSE and NNE SSW (Cunningham et al.,

2005). The main canyons are Shamrock Canyon, Whittard Canyon, Black Mud

Canyon and King Arthur Canyon, and feed sand into the Celtic Deep Sea Fan.

Figure 1.2: Map of the Celtic Sea shelf edge

1.2.1 INTERNAL WAVE GENERATION AND MODIFICATION AT THE CELTIC

SEA SHELF

Barotropic tidal flow over the shelf edge forces the stratified water to move up and

down the slope, generating internal waves and a baroclinic energy flux. Close to

the shelf edge, the majority of the internal tide is dissipated, causing vertical mixing

which drives a nutrient flux which maintains a subsurface chlorophyll maximum

observed at the Celtic Sea shelf edge (Green et al., 2008). The remaining internal

tide energy propagates onto the shelf, thus providing the stratified regions of the

inner Celtic Sea shelf with a small but significant source of energy (Simpson, 1998b).

The primary energy source for mixing in the pycnocline of large areas of stratified

shelf such as the Celtic Sea is not well understood, however, it has been suggested

that internal waves that are generated at the shelf edge may be one of the main

contributors to this mixing (Green et al., 2008). Another source of energy for
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mixing at the shelf edge arises from remotely generated internal tides which, upon

encountering the shelf edge, are reflected and depending on whether supercritical,

subcritical or critical reflection takes place, leads to higher mixing rates (Sharples

et al., 2009). Within the Celtic Sea, this increased vertical mixing drives vertical

nitrate fluxes which fuel new phytoplankton production (Sharples et al., 2009). This

internal tide driven productivity may help explain the high fish and fish larva densities

observed at Celtic Sea shelf edge (Sharples et al., 2009).

1.3 WHITTARD CANYON

A recent review of Whittard Canyon (Amaro et al., 2016) provides an overview of

research carried out in the canyon, including preliminary results from this work.

However, key points about the canyon pertinent to this work are summarised here.

1.3.1 MORPHOLOGY

The cross-sectional profiles of canyons along the Celtic Shelf are typically V-shaped

towards the head of the canyon and increasingly U-shaped down-slope (Cunningham

et al., 2005). This may be due to a down-slope change from erosive to depositional

processes or due to the canyons acting as conduits by which sediment can bypass

the continental shelf on to the abyssal plain (Cunningham et al., 2005). Irrespective

of the cause of the change in morphology, the difference has implications for the

modification and generation of internal waves due to the variability in canyon wall

slope along the length of the canyon. The canyons that have historically been well

studied with regards to internal waves (e.g. Monterey Canyon) comprise of a single

canyon, however, globally many submarine canyons are dendritic, with many smaller

canyons branching off the primary canyon. Harris and Whiteway (2011) classify

canyon dendricity as the number of canyon limbs per unit area, excluding the primary

canyon thalweg (a line denoting the lowest points along the length of a canyon). With

this scheme they determined that the mean concentration of dendritic canyon limbs

was 3.3 limbs per 100,000 km2 for canyons occurring on passive margins like the Celtic

Sea Shelf. Whittard Canyon itself comprises of four main branches, with numerous

minor branches. No studies of the effect of dendritic canyons on the internal wave
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field appear to have been made.

1.3.2 HYDROGRAPHY

Along the Celtic Margin, the upper-water column (0 - 1500 m) is characterised

by central and intermediate water masses originating from sub-tropical latitudes.

Eastern North Atlantic Water (ENAW), a winter mode water occupying the layer above

the permanent thermocline, is a relatively warm and saline water sourced in the SW

Bay of Biscay region (e.g Pérez et al., 1995; Pollard et al., 1996). Below the ENAW lies

Mediterranean Outflow Water (MOW) (e.g van Aken, 2000). In deeper waters (1600-

2200 m) Labrador Sea Water layers are present (Bower et al., 2002). The European

Slope Current (ESC) carrying the ENAW and boundary flows associated with the

MOW (Van Rooij et al., 2010) dominate flow characteristics in this region Pingree and

Le Cann (1990). Near the seabed, observed currents generally have a tidally induced

downslope mean component (Pingree and Le Cann, 1989).

1.3.3 INTERNAL TIDES

As previously discussed, internal waves and tides are generated at the shelf break

by across-slope tidal flow along the Celtic Sea shelf edge (Pingree et al., 1986; Holt

and Thorpe, 1997). The direction of the propagating internal waves onto the shelf,

however, is quite random (Holt and Thorpe, 1997), which is in contradiction to the

generally accepted view that across-shelf internal wave energy flux is controlled by

the orientation of the shelf break (Garrett and Kunze, 2007). Near Whittard Canyon,

internal solitary waves with amplitudes reaching a maximum of 105 m have been

reported (Vlasenko et al., 2014). The internal tide generated at the shelf break has

been observed as a coherent signal up to 170 km onto the Celtic Sea shelf (Inall et al.,

2011). However, much of the energy generated at the shelf edge is dissipated near

the shelf break as indicated by a shoreward energy decay scale of 42 km (Inall et al.,

2011). Understanding the effect of the Whittard Canyon on the internal wave field is

therefore important in understanding the internal wave dynamics within the region.
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1.3.4 INTERDISCIPLINARY LINKS

The internal tide within Whittard Canyon has been postulated to have a potentially

huge impact on the biology within the canyon (Robert et al., 2015) and also play a

role in the generation of nepheloid layers, which are layers of suspended sediment

and organic material along density surfaces (Wilson et al., 2015b). Vertical walls

dominated by cold water corals, clams and deap sea oysters, as identified in Whittard

Canyon (Huvenne et al., 2011; Johnson et al., 2013), are a novel habitat and the

environment that promotes their presence is not yet known. It has been suggested

that nutrient supply and internal tide dynamics may have a role to play (Wilson et al.,

2015b; Johnson et al., 2013; Huvenne et al., 2011). The depth distribution of corals has

been related to regions where internal waves cause enhanced productivity through

vertical mixing and nutrient fluxes, and by elevating near seabed shear stresses and

hence generating enhanced organic fluxes in the benthic boundary layer (Frederiksen

et al., 1992). This enhanced near-bottom energy associated with internal waves has

also been identified as a major mechanism in the production and the maintenance

of nepheloid layers, particularly in sloping environments and canyons (e.g. McPhee-

Shaw and Kunze, 2002; McPhee-Shaw et al., 2004; Puig et al., 2004). The insights into

the spatial variability of the internal tide within Whittard Canyon, are therefore also

of interest for researchers in a wide range of fields, from sedimentology to ecology.

1.4 MOTIVATION AND AIMS

The potential influence of internal tides on the dynamics, sedimentation patterns

and biology within submarine canyons cannot be overstated, however, observational

data across large canyon systems is difficult and expensive to obtain. The research

presented here uses numerical simulations in order to provide a first comprehensive

study of the M2 internal tide within Whittard Canyon. The specific aims of this thesis

are to:

• Identify the key generation sites for the internal tide in Whittard Canyon

• Describe the spatial variability of the internal tide within Whittard Canyon and

suggest possible mechanisms to explain this variability
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• Estimate an energy budget for Whittard Canyon

• Assess the effect of varying bathymetric resolution on modelling of the internal

tide within Whittard Canyon

• Create resources for marine biologists in order to help them assess the effect of

internal tide hydrodynamics on benthic habitats

1.5 STRUCTURE OF THESIS

This thesis contains five main chapters. In Chapter 2 the model setup is explained

and the sensitivity of the model to both run length and domain size tested to identify

the ideal control run setup to model the internal tide in Whittard Canyon. In Chapter

3 the model is validated against observational data in the canyon. In Chapter 4 the

generation and propogation of the internal tide in Whittard Canyon are discussed

and a crude energy budget for the canyon calculated. In Chapter 5, the model is run

with different bathymetric resolutions to see how this affects barotropic-to-baroclinic

conversion and the resulting internal tide field within the model. In Chapter 6 the

preliminary attempt at integrating internal tide hydrodynamics within predictive

habitat models is described. Key results from the work are presented in Chapter 7

along with recommendations for future work.



2
MODEL SETUP

2.1 INTRODUCTION

This chapter details how the control run of the Whittard Canyon region is defined.

The objective is to insure that the model parameters are set so that the M2 internal

wave field is accurately represented by the simulations. The general model setup and

diagnostic tools to be used are outlined in section 2. In section 3 model sensitivities

to domain size and run length are tested.

2.2 METHODS

2.2.1 THE PRINCETON OCEAN MODEL

We use the Princeton Ocean Model (POM), which is a hydrostatic, three-dimensional,

primitive equation numerical model employing a sigma-coordinate system in the

vertical direction (Blumberg and Mellor, 1987). The use of a sigma vertical-

coordinate system results in terrain-following vertical levels where the grid lines

follow bathymetry and the free surface, and are spaced uniformly through the water

column (Figure 2.1). This provides good resolution of the surface and bottom

boundary layers, the latter of which is important, as the bottom-following current

is an important part of internal tide generation (Carter et al., 2012).

11
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Figure 2.1: Comparison between sigma- and z-co-ordinate systems. Adapted from Carter
et al. (2012).

2.2.2 MODEL SETUP

The simulations are run for an integer number of M2 tidal cycles using 51 sigma levels

from a quiescent state with vertically varying but horizontally uniform temperature

and salinity. The open boundary forcing is ramped up from zero to full strength over

2 tidal cycles. Harmonic analysis over the last 11 tidal cycles of model output are used

to obtain M2 current amplitudes and phases (u, v , w).

BATHYMETRIC GRID

A 500 m bathymetric grid derived from the Integrated Mapping for the Sustainable

Development of Ireland’s Marine Resources (INFOMAR) ∼ 500 m resolution

bathymetry and the General Bathymetric Chart of the Oceans (GEBCO) 30 arc-second

global grid (Becker et al., 2009) is used in all simulations. The high resolution

bathymetry only covered the areas of Whittard Canyon within Irish waters, so GEBCO

data were used to fill any gaps. Both datasets were gridded in terms of a fixed

number of arcseconds (INFOMAR - 18 arcseconds, GEBCO - 30 arcseconds), resulting

in variable horizontal distances between grid points due to the curvature of the

Earth’s surface. Fixed horizontal resolutions are favourable for later bathymetry

manipulation, hence both sources were resampled to a fixed horizontal resolution

of 500 m, using the southwestern corner as a reference point, and then combined.

The join between the two data was inspected and in regions of slowly varying

topography, such as that found at the abyssal plain and the shelf, the join was not

readily observable. In the vicinity of rapidly changing topography, such as the shelf

break, discontinuities were found. Discontinuities are not desirable as they may cause



2.2. METHODS 13

false internal tide generation. Inspection of the two original datasets showed that

they were offset from one another (Figure 2.2 (a)). A correction was applied to the

GEBCO data (Figure 2.2 (b)), with the data shifted 0.015◦ to the west and 0.005◦ to

the south (Figure 2.2 (c)). Despite this, discontinuities were still found when the data

were combined (Figure 2.3 (a)) and hence a 3 x 3 grid point mean smoothing filter was

applied along the join boundary (Figure 2.3 (b)). The join boundary is defined by the

location of any grid points from one dataset with at least one neighbouring grid point

from another dataset.
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47°N
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0.005

(a)

(b) (c)
Figure 2.2: (a) GEBCO (blue) and INFOMAR (red) bathymetric contours plotted every 500
m (b) Offset between and GEBCO and INFOMAR bathymetry with correction used (degrees)
shown in the bottom left hand corner (c) GEBCO and INFOMAR data after correction applied.
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Figure 2.3: (a) Location of discontinuities found within combined bathymetry, highlighted by
red boxes. (b) The same location as in (a) after smoothing carried out along the join boundary.
Bathymetric contours are plotted every 100 m

MODEL TIME STEPS

The model operates using a split time step: the external mode portion of the model

is two-dimensional and uses a short time step based on the external wave speed,

whilst the internal mode is three-dimensional and uses a longer time step based on

the internal wave speed. This helps to deal with the rapid propogation of the external

gravity wave relative to the much slower internal wave, thus improving computational

efficiency. High horizontal resolution is necessary to resolve internal tide activity

over Whittard Canyon, where the canyon varies in width from 30 km at the canyon

mouth to 2 km at the canyon head. To achieve model stability, the high horizontal

resolution requires a short external mode time step. The external mode time step

(∆tE ) is limited by the two-dimensional advective form of the Courant-Friedrichs-

Levy (CFL) condition for computational stability (Blumberg and Mellor, 1987)

∆tE ≤C−1
t

(
∆x−2 +∆y−2)− 1

2 (2.1)

where∆x and∆y are the horizontal resolutions and Ct = 2
(
g H

) 1
2 +Umax where Umax

is the expected maximum velocity. There are other restrictions on the time step,

however in practice the CFL criterion is the most rigorous (Blumberg and Mellor,
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1987). With ∆x and ∆y = 500m and Hmax = 4860 m, the maximum external time step

required is ≈ 0.8 s. A ∆tE value of 0.7 s is therefore used within all simulations.

The internal time step,∆tI , has less stringent constraints because the fast external

mode effects have been removed. The criteria is similar to that for the external mode

and is given by

∆tI ≤C−1
T

(
∆x−2 +∆y−2)− 1

2 (2.2)

where CT = 2C +Umax ; where C is the maximum internal gravity wave speed and

Umax is the maximum advective speed. The ratio of the time steps∆tI /∆tE for coastal

conditions is typically 30 - 80 (Blumberg and Mellor, 1987). For this study, the ratio is

set to 40, giving a ∆tI of 28 s.

BOUNDARY CONDITIONS/FORCING

The model is forced at each boundary with the M2 (period 12.42 hours, angular

frequency 1.405×10−4 rad s−1) barotropic velocities and surface elevations extracted

from the TPXO 7.2 inverse model of Egbert and Erofeeva (2002). A Flather boundary

condition (Flather, 1976) is applied to the elevations and barotropic velocities at the

domain boundaries, to let barotropic signals out of the domain, and a relaxation

layer (10 grid cells) applied to the baroclinic velocities and isopycnal displacements

to absorb baroclinic signals as per the method of Carter and Merrifield (2007). Both

work to stop wave reflection back into the domain.

STRATIFICATION

The supply of freshwater to the Celtic Sea is small, therefore density is dominated

by temperature variability and during the summer, strong seasonal stratification is

established over areas where stirring by tides and wind is small compared to buoyancy

input (Green et al., 2008). Although this seasonal stratification is not investigated in

this work, two different potential temperature (θ(z)) and salinity profiles (S(z)), winter

and summer, are provided for reference. Two CTD profiles (vertical resolution of 2 m)

located over the abyssal plain close to the mouth of Whittard Canyon were obtained

from two different sources (Table 2.1). These profiles were linearly extrapolated to

the maximum depth observed within the domain (4860 m) and smoothed using a 25-

point gaussian window running mean. The resulting profiles are shown in Figure 2.5,

however only the summer profile is used in all simulations.
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Table 2.1: Details of CTD profiles used to create summer and winter stratification profiles

Stratification Latitude Longitude Depth Date Source

summer 48◦15’56”N 10◦11’55”W 3525 m 12/07/09 JC36 cruise

(NOC

Southampton)

winter 48◦31’51”N 11◦31’9”W 3447 m 27/01/94 OMEX I cruise

(BODC)

12°W 11°W 10°W

48°N

49°N

Figure 2.4: Locations of CTD profiles used to create summer (red) and winter (blue)
stratification profiles.
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Figure 2.5: Potential temperature, salinity, buoyancy frequency and potential density profiles
for summer (red) and winter (blue) stratification cases.

Fifty-one evenly distributed sigma levels are used within all simulations. High

vertical resolution is obtained by using this number of sigma levels, resulting in

resolutions of less than 1 m on the shelf and up to 97 m over the abyssal plain.

This appears to adequately represent most of the variation in the salinity and

temperature fields (Figure 2.6 (a,b)) throughout the full depth of the water column.

The thermocline that is developed within the summer months is not as well resolved

as the rest of the water column. An alternative would be to use a logarithmic

distribution with more sigma levels concentrated within the upper water column.

Although this would help to better resolve the upper water column thermal structure,

information would be lost throughout the rest of the water column. For internal tide

processes, as much detail about the middle part of the water column is required as at

the surface, hence evenly distributed sigma levels are desirable. In shallower water, at

depths encountered within Whittard Canyon (e.g. 2000 m), the thermocline is better

resolved (Figure 2.6 (c,d)).
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Figure 2.6: Comparison between measured salinity and temperature profiles (black) and
profiles averaged over 51 sigma levels (red) for: (a,b) Full depth profiles and (c,d) Profile
depths of 2000 m (representative of canyon head depths)
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2.2.3 DIAGNOSTICS

BAROCLINIC ENERGY FLUX

Baroclinic energy flux F is a useful metric with which to quantify internal tide

energetics and is given by

F = 〈u′p ′〉 (2.3)

where u′ is the baroclinic velocity perturbation, p ′ is the pressure perturbation

induced by the passage of internal tides and 〈〉 indicates an average over a tidal cycle

(Kunze et al., 2002; Nash et al., 2005). The total horizontal velocity in the model, utot ,

may be decomposed as

utot = u′
tot +utot (2.4)

where u′
tot is the horizontal velocity perturbation caused by the passage of surface

and internal tides and utot is the time averaged, or residual, horizontal flow. In

both cases, u = [u, v], where u is the zonal velocity (positive eastward) and v is the

meridional velocity (positive northward). An M2 period harmonic fit is made to utot

using least-square methods and the harmonic constants, amplitude (subscript amp)

and phase (φ), outputted as per the relationship shown in Figure 2.7 (a). The time-

dependant nature of the harmonic fit means that only the velocity perturbation (u′
tot ),

and not the constant residual flow (utot ), are characterised by the harmonic output.

The M2 barotropic horizontal velocity perturbation, u′
B t , is estimated as the depth-

averaged horizontal velocity perturbation,

u′
B t =

1

H

∫ 0

−H
u′

tot d z (2.5)

where H is the water depth. This study is mainly concerned with the M2 baroclinic

perturbations, u′, defined as

u′ = u′
tot −u′

B t (2.6)

For ease of calculation later, u′ is complex-demodulated into real and imaginary parts

as per the relationship show in Figure 2.7 (b) and hence,

u′ = [u′, v ′] = [(u′
amp ,φu′), (v ′

amp ,φv ′)] = [(u′
r ,u′

i ), (v ′
r , v ′

i )] (2.7)
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.

Re

Im

U(t) = Uamp cos(ωt - ϕU)

t

U(t)

Ur = Uamp cos ϕU
Ui = Uamp sin ϕU

ϕU = tan
-1 (Ui / Ur)

Uamp = √(Ui
2 + Ur

2)

Ui

Ur
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U = ur + uii

(a)

(b)

Uamp

Figure 2.7: (a) Schematic showing a time-series of a generic velocity U and how a harmonic
fit to the signal can be represented using amplitude, Uamp , phase, φU and ω, the frequency of
the signal (rad s−1) (b) Schematic showing the relationship between a generic velocity U , its
real and imaginary components, Ur and Ui and phase and amplitude, φU and Uamp

The pressure perturbation is calculated by assuming a hydrostatic balance,

0 =−∂p ′

∂z
+b (2.8)

where b is buoyancy. This assumption is valid for frequencies ω¿ N and so should

be appropriate for the semidiurnal fluctuations focused on in this study. Integrating

Equation (2.8) with depth following Kunze et al. (2002) gives

p ′ (z) =−
∫ 0

−z
b

(
z ′)d z ′+p ′

sur f (2.9)

The buoyancy term b = −ρ0N 2ξ and is calculated using ρ0, the density of

seawater (1025 kg m−3), N 2(z), the model stratification, and ξ (z), vertical isopycnal

displacement profiles, which are estimated from M2 vertical velocity profiles w (z)

(positive upwards) using,

[ξr ,ξi ] = [−wi , wr ]/ω (2.10)
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whereω is the angular frequency of the M2 internal tide (1.405×10−4 rad s−1) and the

subscripts r and i indicate the real and imaginary parts of the complex-demodulation

of w where

w = (wamp ,φw ) = (wr , wi ) (2.11)

The constant of integration in Equation (2.9), psur f , can be constrained by using the

baroclinicity condition for pressure,
∫ 0
−H p ′d z = 0 (Kunze et al., 2002) giving

p ′ (z) = ρ0

∫ 0

z
N 2 (

z ′)ξ(
z ′)d z ′− ρ0

H

∫ 0

−H

∫ 0

z
ρN 2 (

z ′)ξ(
z ′)d z ′d z (2.12)

Finally, the horizontal components of the baroclinic energy flux are defined as

Fx = 1

2

[
p ′

r u′
r +p ′

i u′
i

]
(W m−1) (2.13)

Fy = 1

2

[
p ′

r v ′
r +p ′

i v ′
i

]
(W m−1) (2.14)

BAROCLINIC FLUX DIVERGENCE

Baroclinic flux divergence (∇ · F) is a measure of the amount of baroclinic energy

that is radiated from a geographic point (Carter et al., 2008). The domain-averaged

baroclinic energy flux divergence is given by

∇·F = 1

A

∫
∇·Fd xd y (W m−2) (2.15)

where A is the domain area. The domain-integrated baroclinic energy flux divergence

is therefore A∇·F and is a measure of the rate at which baroclinic energy radiates out

of the domain. Negative values imply positive convergence, i.e. the concentration of

baroclinic energy within a region.

BAROTROPIC-TO-BAROCLINIC ENERGY CONVERSION

The magnitude of barotropic to baroclinic tidal energy conversion is given by

Econv = 〈p ′ (−H) wB t 〉 (W m−2) (2.16)

where 〈〉 indicates an average over a tidal cycle, p ′(−H) is the pressure perturbation at

the bottom and wB t is the barotropic vertical velocity at the bottom (Niwa and Hibiya,

2001; Zilberman et al., 2009). The vertical velocity, wB t , is caused by barotropic flow
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across sloping topography, and is given by

wB t =−u′
B t .∇H (2.17)

where u′
B t is the depth-averaged velocity from the harmonic output of the model

(Equation (2.5)) and H is the water depth (Garrett and Kunze, 2007). Positive values

of Econv indicate the transfer of energy from the barotropic tide to the baroclinic tide,

whilst negative values are a measure of energy transfer due to the pressure work done

on the barotropic tide by the baroclinic tide (Zilberman et al., 2009). We define the

domain-averaged energy conversion as

E conv = 1

A

∫
Econv d xd y (W m−2) (2.18)

where A is the domain area. The domain-integrated energy conversion is therefore

AE conv .

INTERNAL WAVE KINETIC AND POTENTIAL ENERGY

Baroclinic horizontal kinetic energy (HKE) density is calculated using

HKE = 1

4
ρ0

(
u′2

amp + v ′2
amp

)
(2.19)

where u′
amp and v ′

amp are perpendicular baroclinic velocity amplitudes. Baroclinic

available potential energy (APE) density is approximated using linear theory (Kang

and Fringer, 2012) as

APE = 1

4
ρ0N 2ξ2

amp (2.20)

where ξamp is the amplitude of vertical displacement caused by the internal tide

calculated from vertical velocity profiles as per Equations (2.10, 2.11). For linear

progressive internal waves with frequencies ω ¿ N (Gill, 1982), the theoretical

relationship between HKE and APE is

HKE/APE = ω2 + f 2

ω2 − f 2
(2.21)

The theoretical value of HKE/APE for a latitude representative of this study region

(48◦N) is 3.99.
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2.3 CONTROL RUN

For the purposes of defining the control run, the summer stratification case was used

in all simulations and all simulations initially run for 21 M2 tidal cycles. To make

descriptions clearer, Figure 2.8 outlines the numbering convention for the various

Whittard Canyon limbs that is used in this study.

11°W 10°W 9°W

48°N
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Dangeard Canyon

Shamrock Canyon
System
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pu
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Whittard Canyon
System

Figure 2.8: The Whittard Canyon system and surrounding region. Contours are plotted every
300 m

2.3.1 DOMAIN SIZE SENSITIVITY

The sensitivity of the model to domain size was considered by running the model

with small (wc01), medium (wc02) and large (wc03) domain sizes as defined in

Table 2.2 and shown in Figure 2.9. To accurately simulate the internal wavefield

within Whittard Canyon, the domain must contain all the major generation sites

within the region, however, the larger the domain size, the more computationally

expensive each simulation becomes. Baroclinic energy conversion and baroclinic

energy flux divergence are integrated and averaged over each domain, and also over

the Whittard Canyon and Shamrock Canyon systems as shown in Figure 2.10 (c). Note

that the Whittard Canyon system region is slightly smaller than wc01 and hence values
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integrated and averaged over the entire domain are different to those calculated for

just the canyon.
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Figure 2.9: Domain sizes for model runs wc01, wc02, wc03 mapped onto cartesian space (top)
and geographic latitude and longitude (bottom). Contours are plotted every 300 m
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Model run Lx (km) Ly (km) Grid size Run time
wc01 150 230 301 x 461 9 hours
wc02 270 330 541 x 661 38 hours
wc03 390 430 781 x 861 46 hours

Table 2.2: Model runs for diagnosing domain size including run time on GRACE (High
powered computing cluster)

BAROTROPIC-TO-BAROCLINIC ENERGY CONVERSION

The spatial pattern of barotropic-to-baroclinic energy conversion in all three model

runs is similar (Figure 2.10), positive and negative conversion occurs predominantly

at the shelf break where the topography is most complex, whilst there is little or

no conversion in the rest of the domain. There is roughly twice as much positive

conversion as there is negative conversion within the canyon for all domain sizes;

total negative conversion as a percentage of total positive conversion within Whittard

Canyon for the different domain sizes is 41.5% (wc01), 45.2% (wc02) and 45.2% (wc03).

Negative conversion typically indicates multiple generation sites, and arises from the

phase differences between locally and remotely generated internal tides (Zilberman

et al., 2009; Kelly and Nash, 2010). Areas of positive conversion within the canyon do

appear to lie adjacent to “shadow regions” of negative conversion, therefore internal

tide generation is at least partially balanced by pressure work done on the barotropic

tide by the baroclinic tide. Within the wc01 model run, the main areas of barotropic-

to-baroclinic energy conversion occur over the region covered by limb 4 of Whittard

Canyon and the uppermost reaches of limb 2 (Figure 2.10a). This pattern is replicated

in both the wc02 and wc03 model runs (Figures 2.10 (b,c)), however another major

generation site is introduced by extending the domain to the east, towards Shamrock

Canyon.
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Figure 2.10: M2 barotropic to baroclinic energy conversion, Econv , for model runs: (a) wc01,
(b) wc02 and (c) wc03 . Depth contours are plotted every 500 m.

The domain-integrated barotropic-to-baroclinic energy conversion within each

model run increases with increasing domain size, from 0.35 GW in wc01, to 1.17

GW in wc03 (Table 2.3). However, the domain-averaged barotropic-to-baroclinic
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energy conversion within each model run decreases with increasing domain size,

from 11.3 mW m−2 in wc01, to 7.3 mW m−2 in wc03 (Table 2.3). These opposing

trends are likely due to the large areas of little or no conversion that dominate when

the larger domain sizes are used. When the region containing only Whittard Canyon

is considered, however, both the area-integrated and area-averaged conversion are

largest in the wc02 model run (0.35 GW and 14.2 mW m−2, respectively, Table 2.3),

but only marginally so. Significant generation also occurs over Shamrock Canyon;

in model run wc03 (the only model run to contain the entire Shamrock Canyon

system), the area-integrated conversion over the Shamrock Canyon region is 0.34

GW, identical to the conversion within Whittard Canyon for the same model run. To

identify whether any of the baroclinic energy generated in Shamrock Canyon enters

Whittard Canyon, the baroclinic energy fluxes must be considered.

Model run Region
Area-integrated

Econv

(GW)

Area-averaged
Econv

(mWm−2)

wc01
Entire domain 0.35 11.3
Whittard Canyon 0.33 14.6
Shamrock Canyon - -

wc02
Entire domain 0.65 7.8
Whittard Canyon 0.35 14.2
Shamrock Canyon (partial) 0.17 33.8

wc03
Entire domain 1.17 7.3
Whittard Canyon 0.34 16.0
Shamrock Canyon 0.34 34.2

Table 2.3: Area-integrated and area-averaged barotropic to baroclinic energy conversion in
the wc01, wc02 and wc03 model runs for each entire domain, and within each domain, the
Whittard Canyon region and the Shamrock Canyon region (only wc03 contains this complete
region).

BAROCLINIC ENERGY FLUX

The spatial pattern of depth-integrated baroclinic energy flux within model runs wc02

and wc03 (Figures 2.11 (b,c)) is similar; however there is a very different pattern in

the wc01 run (Figure 2.11 (a)). The smallest domain wc01 is clearly missing a key

generation site (Shamrock Canyon) and is thus not an appropriate domain size to use

for this study. Peak depth-integrated baroclinic energy fluxes occur within Whittard

Canyon in every model run (7.5, 12.8 and 11.2 kW m−1 in wc01, wc02 and wc03,
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respectively), with the highest value occuring in wc02. When the spatial pattern

of baroclinic energy flux in the region covered by Whittard Canyon is looked at in

more detail, wc01 (Figure 2.12 (a)) is still markedly different to the other two model

runs, both of which show a similar spatial pattern. The northwest propogating beam

appears strongest in wc02 (Figure 2.12 (b)) compared to wc03 (Figure 2.12 (c)). When

the baroclinic energy flux magnitude from the wc02 run is subtracted from that of

wc01 , there is significantly less baroclinic energy along the eastern shelf edge and

limb 4 of the canyon in the smallest domain size run (Figure 2.12 (d)), indicating

that the generation sites to the east are important to include, in order to model

the dynamics of the internal tide in this region accurately. When the baroclinic

energy flux magnitude from the wc03 run is subtracted from that of wc02 , there is

significantly more baroclinic energy along the eastern shelf edge and limb 4 of the

canyon and a reduction in energy in other parts of the canyon, most noticeably along

the lower reaches of limb 1 (Figure 2.12 (e)).

Model run Region
Area-integrated

∇·F
(GW)

Area-averaged
∇·F

(mWm−2)

wc01
Entire domain 0.07 2.21
Whittard Canyon 0.05 2.20
Shamrock Canyon - -

wc02
Entire domain 0.12 1.50
Whittard Canyon -0.04 -1.90
Shamrock Canyon (partial) 0.11 17.7

wc03
Entire domain 0.22 1.40
Whittard Canyon -0.05 -2.20
Shamrock Canyon 0.12 12.1

Table 2.4: Area-integrated and area-averaged baroclinic energy flux divergence in the wc01,
wc02 and wc03 model runs for the Whittard Canyon region (bold) and the whole domain.

The domain-integrated baroclinic energy flux divergence (the amount of

baroclinic energy radiating out of the domain) increases with increasing domain size;

from 0.07 GW in wc01, to 0.22 GW in wc03 (Table 2.4). When only Whittard Canyon

is considered, in wc01 there is positive divergence (0.05 GW) in the canyon region,

indicating that baroclinic energy is leaving the canyon. In runs wc02 and wc03, there

is negative divergence within the canyon (-0.04 and -0.05 GW, respectively), indicating

that baroclinic energy is converging on the canyon and also providing evidence

that Shamrock Canyon is an important source of baroclinic energy to Whittard
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Canyon. However, the similarity between the baroclinic energy flux divergence within

Whittard Canyon for runs wc02 and wc03 seems to suggest that although wc02 only

contains a portion of Shamrock Canyon, it contains the key generation sites that

contribute baroclinic energy to Whittard Canyon. This can be seen in Figure 2.11

(c) where it clear that a large proportion of baroclinic energy from Shamrock Canyon

is not diverted northwards along the shelf edge, but instead travels southwestwards

onto the abyssal plain. Given the computational expense of running a larger domain

size, it seems appropriate to use the wc02 domain size, as it appears to capture the

main generation regions and features of the internal wavefield within this region

despite its smaller size.



2.3. CONTROL RUN 31

13°W 12°W 11°W 10°W 9°W 8°W

47°N

48°N

49°N

50°N

0 2 4 6 8

48°N

49°N

11°W 10°W

kW m-1

5 kW m-1

12°W 11°W 10°W 9°W

47°N

48°N

49°N

(a)

(b)

(c)

Figure 2.11: Depth-integrated baroclinic M2 energy flux for model runs (a) wc01, (b) wc02
and (c) wc03. Vectors are plotted every 40 model grid points (≈ 20 km) in each direction. The
underlying colour is the energy flux magnitude. Depth contours are plotted every 300 m.
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Figure 2.12: Depth-integrated baroclinic M2 energy flux in Whittard Canyon for model runs: (a) wc01, (b) wc02 and (c) wc03. Vectors are plotted every
10 model grid points (≈ 5 km) in each direction. The underlying colour is the energy flux magnitude. Depth contours are plotted every 300 m. The
difference in energy flux magnitude between wc01 and wc02 (wc01 - wc02) is shown in (d). The difference in energy flux magnitude between wc02 and
wc03 (wc02 - wc03) is shown in (e).
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2.3.2 RUN LENGTH SENSITIVITY

The initial ‘control’ run length (21 tidal cycles) was extended by a further 22 tidal

cycles, reaching a maximum of 43 tidal cycles, to check whether steady state

conditions are reached within 21 tidal cycles (used for all preceding simulations)

and to observe whether an identifiable pressure gradient error develops within the

domain. The sigma-coordinate pressure gradient error is a disadvantage of using a

sigma-coordinate system (Mellor et al., 1994). It arises because the sigma lines are

not coincident with lines of constant density, therefore the coordinates can’t recreate

the condition of zero horizontal hydrostatic pressure gradient when a horizontally

uniform free surface and density field are present (Carter et al., 2012). This produces

across-slope flow which can be of similar magnitude to that of weak internal wave

currents, even though there should be no flow. The size of this error is dependant

upon the topographic slope, therefore smoothing the domain can reduce the error

(Carter et al., 2012).

VELOCITY TIME-SERIES

Model ‘virtual moorings’ were placed at 48◦N 10.2◦W and 48.5◦N 9.94◦W so that

a time series of the velocity fields, rather than the harmonic constants, would be

output. The two locations were chosen as they lie within the canyon: the first within

the deeper part of the canyon, and the second within the upper reaches, where the

high topographic variability makes it more likely that the pressure gradient error may

develop.

The time-series of northward and eastward velocity (Figures 2.13 and 2.14) at both

virtual mooring locations show that roughly a steady state has been reached by the

point over which the harmonic analysis for the 21 tidal cycle run is calculated (10 to 21

tidal cycles). Furthermore, there is no indication within the time series that a pressure

gradient error is developing. To confirm this, zero-forcing simulations were run;

without any forcing there should be no baroclinic motion, therefore any baroclinic

activity occuring within such a simulation would indicate a pressure gradient error.

Zero-forcing simulations run for 21, 32 and 43 tidal cycles show no baroclinic activity,

suggesting no pressure gradient error.
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Figure 2.13: Horizontal current velocity time series from virtual mooring at location 1 (48◦N 10.2◦W)
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BAROTROPIC-TO-BAROCLINIC ENERGY CONVERSION

As expected, increasing the simulation run length doesn’t change the pattern

of barotropic-to-baroclinic conversion seen in Figure 2.10 (b) due its primary

dependence on topographic slope, which remains the same for all run lengths.

The domain-integrated and domain-averaged barotropic-to-baroclinic energy

conversion values for all run lengths are within 1% of one another (Table 2.5) and,

although not clearly apparent in the velocity time series (Figures 2.13 and 2.14), show

that the model reaches steady state by 32 cycles.

Model run Region
Area-integrated

Econv

(GW)

Area-averaged
Econv

(mWm−2)

21 cycles

Entire domain 0.65 7.8
Whittard Canyon 0.33 14.2
Shamrock Canyon 0.17 33.8

32 cycles

Entire domain 0.66 7.9
Whittard Canyon 0.32 14.2
Shamrock Canyon 0.17 33.5

43 cycles

Entire domain 0.66 7.9
Whittard Canyon 0.32 14.2
Shamrock Canyon 0.17 33.5

Table 2.5: Domain-integrated and domain-averaged barotropic to baroclinic energy
conversion in the 21, 32 and 43 tidal cycle model runs for each entire domain, and within
each domain, the Whittard Canyon region and the Shamrock Canyon region.

BAROCLINIC ENERGY FLUX

The spatial pattern of depth-integrated baroclinic energy flux in Whittard Canyon is

similar for all run lengths (Figure 2.15), however there are regions (upper reaches of

limb 2 and mid-limb 4) where the magnitude is increased in the 32 cycle and 43 cycle

runs (Figures 2.15 (b,c)). When the difference in baroclinic energy flux magnitude

between the 21 cycle and 32 cycle runs is calculated (Figure 2.15 (d)), the variations

in baroclinic energy magnitude between the two are clearer; there are decreases in

magnitude of up to 3 kW m−1 as well as increases in magnitude of up to 6 kW m−1.

The domain-integrated and domain-averaged barotropic-to-baroclinic energy flux

divergence values for all run lengths are within 1% of one another (Table 2.6) and

as with Section 2.3.2 show that the model reaches steady state by 32 cycles. The
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’standard’ run length of 21 cycles is therefore extended to 32 cycles for all following

simulations.

Model run
21 cycles 32 cycles 43 cycles

Domain-integrated ∇·F (GW) -0.04 / 0.12 -0.03 / 0.14 -0.03 / 0.14
Domain-averaged ∇·F (mW m−2) -1.90 / 1.50 -1.50 / 1.70 -1.50 / 1.70

Table 2.6: Domain-integrated and domain-averaged baroclinic energy flux divergence in the
21, 32 and 43 tidal cycle runs model runs for the Whittard Canyon region (bold) and the whole
domain.
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Figure 2.15: Depth-integrated baroclinic M2 energy flux in Whittard Canyon for model runs:
(a) 21, (b) 32 and (c) 43 tidal cycles. Vectors are plotted every 10 model grid points (≈ 5 km)
in each direction. The underlying colour is the energy flux magnitude. Depth contours are
plotted every 300 m. The difference in energy flux magnitude between 32 and 21 tidal cycles
(32 cycles - 21 cycles) is shown in (d).
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2.4 DISCUSSION AND CONCLUSIONS

Accurately representing seafloor bathymetry is a vital part of the modelling procedure

to ensure that the internal tide field in the simulations is as close to reality as possible.

A complete bathymetric dataset of the Whittard Canyon and surrounding area at

the right resolution required for this work was not available, and therefore two data

products were required to create one complete bathymetry input file. Combining

GEBCO and INFOMAR data highlighted the difficulty of using products which may

be geolocated differently, may have undergone different processing procedures and

are of different resolutions. The effect of bathymetric resolution/smoothing on the

internal wavefield is investigated in Chapter 6.

The correct domain size and run length are also important to diagnose. The

run length chosen must also be long enough for the model to reach a steady state.

Increasing the run length of the model does not seem to have a large impact on the

calculated energetics of the internal tide within Whittard Canyon, with the model

reaching steady state by 32 tidal cycles. This run length is therefore chosen as the

‘control’ simulation run length. The right domain size must be selected so that all the

key generation sites are present, however too large a domain size is computationally

expensive. The results of domain size sensitivity testing indicate that a domain

that only includes Whittard Canyon does not include all of the generation sites that

contribute to the internal tide field in the canyon itself. Shamrock Canyon is identified

as a key generation site and a domain size including part the canyon is chosen as

the ‘control’ domain size. Changing the domain size also has an interesting impact

on the calculated energetics within the region; domain-integrated barotropic-to-

baroclinic conversion and barotropic flux divergence show an increase with domain

size, however when only the Whittard Canyon region is considered, both metrics are

highest for the medium domain size, wc02. This result highlights the complexity of

the internal tide in this region, which will be further investigated in Chapter 4.





3
MODEL VALIDATION

3.1 INTRODUCTION

This chapter assesses the current models skill through comparison of model output

with observational data from Whittard Canyon, namely data from a 2015 Seaglider

deployment and also ADCP measurements taken in 2014. This chapter details the

data used and any data processing carried out. Error (absolute and relative) estimates

between the model and observations are calculated and the results are discussed.

3.2 INSTRUMENTATION

Two different sets of data are used to assess model skill: ADCP data and Seaglider

data. The ADCP data consists of two time series collected during the Celtic Explorer

cruise to Whittard Canyon (CE14009) over the period of the 10th-17th June 2014. Two

different instruments with different frequencies were used, as detailed in Table 3.1,

and were located within 2 km of one another, as shown in Figure 3.1. The Seaglider

data1 comprises of eight roughly 36-hour tide-resolving stations (with two repeat

stations) collected during the RRS James Cook cruise to Whittard Canyon (JC125) over

the period of the 15th August - 6th September using an iRobot Seaglider. Locations of

1Processed by Rob Hall.

41
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the stations (‘virtual moorings’) are shown in Figure 3.1 and detailed in Table 3.2.

Table 3.1: Location, dates, depth and instrument used at each ADCP station

Location Dates Depth (m) Instrument
First bin

height (m)

adcp1
48◦42’16”N

10◦33’31”W
11-17/06/14 1347

RDI 600 kHz

40 m range

2 m bins

4

adcp2
48◦42’48”N

10◦34’00”W
10-16/06/14 938

Nortek 1 MHz

14.5 m range

0.5 m bins

1

Table 3.2: Location of glider stations

Glider station Latitude Longitude

VM1 48◦24.0’N 09◦59.7’W

VM2 48◦29.1’N 09◦59.7’W

VM3a,b 48◦34.5’N 09◦56.4’W

VM4 48◦38.4’N 10◦01.5’W

VM5 48◦42.3’N 10◦05.4’W

VM6a,b 48◦37.2’N 09◦49.8’W

VM7 48◦33.6’N 10◦08.4’W

VM8 48◦29.1’N 10◦04.8’W
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Figure 3.1: Locations of observations used for assessment of model skill. The 1000 m contour
is marked in bold and contours are plotted every 200 m

3.3 METHODOLOGY

The model was run with an arbitrary start date (1st January 2012) and so must be

synced to the time period covered by the observations. Comparison between the

barotropic M2 surface elevation over the canyon in the current model, and the TPXO

7.2 inverse model of Egbert and Erofeeva (2002) for the same time period of the model

run (Figure 3.2), show that the model output should broadly replicate the TPXO 7.2

output for the same time period. Hence, adjusting the model phase so that barotropic

M2 surface elevation matches that of TPXO 7.2 data extracted over a different time

period should sync the model to that new time period. Surface elevation phase does

not vary much over the canyon (Figure 3.2), hence barotropic M2 surface elevation

amplitude and phase from the middle of the domain (48◦30’N 10◦W) were extracted

from TPXO 7.2 for the two different periods when the ADCP and Seaglider data were

obtained. This was then compared to the model surface elevation, also extracted from

that location, and a phase correction (ADCP data, 0.16 rad; Seaglider data, 1.90 rad)

applied to the model output to sync the model with observations.
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Figure 3.2: M2 barotropic surface elevation amplitude and phase (radians) for the current
model (left) and TPXO 7.2 model (right). Bathymetric contours are plotted every 200 m using
the different models respective bathymetries.

3.3.1 HARMONIC TIDAL ANALYSIS

Harmonic tidal analysis is used to calculate the amplitude and phases of the M2 tidal

constituent in both the ADCP and Seaglider time series so that the data can be directly

compared with the harmonic output from the model. The general form of harmonic

tidal analysis for a time series x(t ) is

x (t ) = x +
N∑

i=1
[Ai cos(ωi t )+Bi sin(ωi t )]+xr (t ) (3.1)

where x is the mean value of the time series, xr (t ) is the residual time series with

zero time-mean, i is the tidal constituent and ωi is the angular freguency of the

constituent (Thomson and Emery, 2014). Linear least-squares regression is used to

find the constants x, Ai and Bi and hence the amplitude of the tidal constituent,

x0i =
(

A2
i +B 2

i

)1/2
, and the phase lag, φi = tan−1 (Bi /Ai ), can be calculated. Equation
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(3.1) can then be rewritten as,

x (t ) = x +
N∑

i=1
[x0i cos

(
ωi t −φi

)
]+xr (t ) (3.2)

The number of tidal constituents that can be resolved is dependant on the length

(T ) of the time-series. Two constituents can be clearly seperated if

|∆ω|T /2π> 1 (3.3)

where |∆ω| is the difference in angular frequency between the two constituents. The

respective lengths of both the Seaglider station time series (∼ 36 hours) and ADCP

time series (∼ 6 days) are long enough so that the M2 and K1 consituents of the tide

can be seperately resolved. However, both time series are too short to seperate the S2

and O1 constituents from the M2 and K1 constituents respectively. Only the M2 and

K1 constituents (Table 3.3) are therefore included in the regression.

Table 3.3: Details of the tidal constituents fit by harmonic analysis to the observational data.

Constituent Period (hours)
Angular frequency

(x 10−5 rad s−1)

Principal lunar semi-diurnal, M2 12.42 14.05

Luni-solar diurnal, K1 23.93 7.29

As the semi-diurnal M2 and diurnal S2 constituents of the equilibrium tide cannot

be seperately resolved for both sets of observational data, it becomes necessary to

apply an amplitude modulation factor to account for the position of each observation

in the spring-neap cycle so that the observations can be compared directly with the

model. The spring-neap cycle of the internal tide for both sets of data was removed by

assuming it was phase-locked to the spring-neap cycle of the surface tide. Using the

TPXO 7.2 inverse model, the spring-neap modulation of surface elevation, modsn , is

approximated as

modsn (t ) = 1+ AS2

AM2

cos( 2πt
Tsn

−φsn) (3.4)

where AS2 and AM2 are the respective amplitudes of the S2 and M2 tide, Tsn is the

period of the spring-neap cycle (14.8 days) and φsn is the phase of the spring-neap

cycle (2.5 rad). The modulation was then used to create a correction factor (1/modsn)
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which can be applied to a signal to remove the influence of the S2 tide.

3.3.2 ERROR ESTIMATES

To compare the model ouput and observations, we use a single error estimate

calculated by combining amplitude and phase (Cummins and Oey, 1997; Carter et al.,

2008),

E =
√

1

2
(A2

o + A2
m)− Ao Amcos(φo −φm) (3.5)

where subscripts o and m indicate observed and modelled phases (φ) and amplitudes

(A). This error estimate is equivalent to the root mean square (rms) difference

between the model and observations over one tidal cycle (Cummins and Oey, 1997)

or the rms of the real and imaginary vector differences (Carter, 2010). The average

rms error (E) can then be calculated using E = n−1 ∑
n E , where n is the number of

observations. As per Cummins and Oey (1997), the relative rms error is defined as

RE = E

Ao
(3.6)

and hence the average relative rms error RE = n−1 ∑
n RE .

To gain an understanding of the physical basis for different values of E and RE ,

some idealised scenarios (as shown in Figure 3.3) are considered. If both the observed

and modelled signals are identical in phase but differ in amplitude so that Am = 1
2 Ao

(Figure 3.3(a)), E can be shown to equal ao

2
p

2
and hence RE = 35.4%. For a scenario

where the amplitude of both signals is identical but there is a phase shift (φo −φm) of

π (Figure 3.3(b)), E is equal to
p

2Ao and hence RE = 141%.
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Phase shift = π
(φo- φ m = π)

t

Uo,m(t) = Ao,mcos(ωt - φ o,m)

t

U(t)

Am = 0.5Ao

Ao

(a)
U(t)
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Figure 3.3: Schematic showing time-series of observed (solid line) and modelled (dashed line)
signals where (a) the observed amplitude is twice the modelled amplitude and (b) where there
is a phase shift of π between the observed and modelled signal.

3.4 MODEL AND OBSERVATIONAL DATA COMPARISON

3.4.1 ADCP DATA

The horizontal velocity time series for the two ADCPs detailed in Section 3.2 are

shown in Figures 3.4 and 3.5. The meridional and zonal components of velocity from

the instruments was rotated to along- and across canyon directions determined using

the local orientation of the thalweg. Both time series start after neap tide, with spring

tide occuring on day 164. A semi-diurnal signal is observed in both along- and across-

canyon directions for adcp2, whilst adcp1 has a less sinusoidal semi-diurnal signal in

the along canyon direction only.
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Along-canyon velocities recorded by adcp1 show a strong semi-diurnal signal,

however, this signal is absent in the across-canyon velocities (Figure 3.4). During

springs, maximum along-canyon velocities are 0.2 m s−1 in a down canyon direction

(southwest) whilst across-slope velocities are smaller, ∼ 0.05 m s−1, and not oriented

in a particular direction. In contrast, both along- and across-canyon velocities

recorded by adcp2 show a strong semi-diurnal signal (Figure 3.5). During springs,

maximum along-canyon velocities are 0.3 m s−1, and similar to adcp1, in a down

canyon direction. Across-slope velocities are smaller (∼ 0.1 m s−1) and in no

prevailing direction.

To compare the ADCP data with the velocity amplitudes and phases of the bottom

sigma layer in the model, vertical averages of observed velocity are calculated. The

depth range covered by adcp1 is larger (40 m) than the thickness of the bottom sigma

level (25.9 m) in the model at the deployment location. Only the first 12 bins (26 m)

are therefore vertically-averaged. As adcp2 is higher in frequency, its range is only ∼
14.5 m, and hence it doesn’t cover the depth range of the bottom sigma layer within

the model at that location (18.5 m). The velocity data are thus vertically-averaged over

the entire dataset and are assumed to be representative of the entire sigma level. One

matter of concern however is the discrepancy between ADCP depth (calculated from

pressure records) and the model depth at the deployment location. The model depth

for adcp1 is 1294 m, significantly shallower than the deployment depth of 1346 m. The

difference for adcp2 is not as serious; model depth is 926 m whilst the deployment

depth is 938 m. This raises questions about how well the model bathymetry actually

replicates the actual structure of the canyon, due to small scale bathymetry not being

resolved.

An M2 harmonic fit was made to the vertically-averaged velocities over the period

±18 hours either side of the spring tide (36 hours) and a spring-neap correction factor

(1/modsn , Section 3.3.1), applied (0.75 at spring tide). As shown in Figure 3.4, the

M2 fit to the along- and across-canyon velocities for adcp1 are out of phase with the

model by approximately π/2, and the along-canyon velocity amplitudes differ by up

to 44%. The harmonic fit to the across-canyon velocity is not expected to be very

accurate however as the signal is quite a low amplitude and incoherent. The M2

fit to the adcp2 data compares more favourably with the model output (Figure 3.5):

with only a small phase difference and similar amplitudes to the model. The phase
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between the along- and across-canyon observed velocities suggests a rectilinear tide

that is not orientated along or across canyon.
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Figure 3.4: adcp1 time-series of along- and across-canyon velocities and depth-averaged
along- and across-canyon velocities (blue lines). M2 harmonic fits to both the observations
(black), with a spring-neap correction applied, and model output (red) at the adcp1 location
are also shown.



50 MODEL VALIDATION
z
(m
)

162 163 164 165 166 167
0

5

10

15

162 163 164 165 166 167
−0.5

0

0.5
Along−canyon velocity − observations (blue), M2 fit to observations (black) and model (red)

Across−canyon velocity

z
(m
)

162 163 164 165 166 167
0

5

10

15

162 163 164 165 166 167
−0.5

0

0.5
Across−canyon velocity − observations (blue), M2 fit to observations (black) and model (red)

(m
s−

1 )

Along-canyon velocity

-0.5

0

0.5

(m
s−

1 )

-0.5

0

0.5

(m
s−

1
)

(m
s−

1
)

Year day

Figure 3.5: adcp2 time-series of along- and across-canyon velocities and depth-averaged
along- and across-canyon velocities (blue lines). M2 harmonic fits to both the observations
(black), with a spring-neap correction applied, and model output (red) at the adcp2 location
are also shown.

ERROR ESTIMATES

Absolute and relative rms error estimates between the observational data and model

are calculated using the method detailed in Section 3.3.2 and presented in Table 3.4

alongside the model and ADCP M2 amplitudes and phases. The relative rms error

for adcp1 is much larger than that of adcp2 for both the along- and across-canyon

velocities, reaching a maximum of 233.3% in the along-canyon direction. The value

of RE for both the along- and across-canyon velocity components in adcp2 are very

similar (40.5% and 43.6%, respectively), whilst for adcp1 they are quite different
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(223.3% and 139.4%, respectively). Why adcp1 is so different to the model, yet adcp2

is so similar, is not fully clear and is discussed further in Section 3.5.

Table 3.4: Comparison of M2 velocity amplitudes and phases between the model and ADCPs.

Modelled Observed

Station Orientation
A

(ms−1)

P

(◦)

A

(ms−1)

P

(◦)

E

ms−1
RE

adcp1
Along-canyon 0.1724 -1.0651 0.0768 2.5796 0.1715 223.3%

Across-canyon 0.0207 2.3570 0.0213 -0.8324 0.0297 139.4%

adcp2
Along-canyon 0.1129 -1.1437 0.1244 -0.5413 0.0504 40.5%

Across-canyon 0.0438 -1.2346 0.0931 -0.7716 0.0406 43.6%

3.4.2 SEAGLIDER DATA

An iRobot Seaglider was deployed over Whittard Canyon for 22 days, primarily over

Limb 4 (Figure 2.8), and occupied 8 stations with two stations (VM3a and VM3b)

occupied twice (roughly at spring and neap tide). Each station occupation was at

least 35 hours during which time the glider made 13-20 dives to 1000 m or the seabed

(whichever was shallower) 2. Profiles of temperature and salinity were measured

during both the glider’s ascent and descent and processed separately yielding 26-40

profiles over 35-42 hours for each station occupation. This is adequate to separately

resolve the M2 and K1 internal tides (Nash et al., 2005). Almost all the profiles were

within 2.5 km of the target locations, based on GPS fixes when the glider was at the

surface. Subsurface sample locations were approximated by linearly interpolating

latitude and longitude onto sample time. The temperature and salinity profiles were

averaged in 5-m depth-bins and potential density profiles calculated using the TEOS-

10 equation of state (McDougall and Barker, 2011).

For each station occupation, the time-average potential density profile and N2

profile were calculated then vertical isopycnal displacement calculated from the

density perturbations. A M2 and K1 harmonic analysis was applied to isopycnal

displacement at each depth level, yielding profiles of M2 and K1 displacement

amplitudes and phases 3. K1 displacement amplitude was small during all station

2Only 9 dives over 22 hours at VM8.
3Only a M2 harmonic analysis for VM5 and VM.
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occupations so only the M2 internal tide is considered here.

The spring-neap cycle of the internal tide was removed using a spring-

neap correction factor (1/modsn , Section 3.3.1) calculated from the spring-neap

modulation interpolated onto the time of the average time of each station occupation.

The resulting correction factor for each station occupation (0.75 to 1.47) was applied

to observed vertical isopycnal displacement amplitude in order to remove the

influence of the S2 tide. Vertical isopycnal displacement amplitude was extracted

from the model at each station location, after a +0.005◦ shift was applied to model

latitudes and longitudes to account for the offset between model bathymetry and the

bathymetry measured by the altimeter on the Seaglider. The resulting profiles are

shown in (Figures 3.7-3.7).

There is a reasonably good fit between observed and modelled

isopycnal displacement, however, the model generally underestimates displacement

amplitude. The relationship between observed and modelled phases however is not

so clear; some profiles are almost identical in phase (e.g. VM2 and VM3b), some show

a consistent phase offset (e.g. VM4 and VM5) and some have very different structures

(e.g. VM1).
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Figure 3.6: Comparison between M2 isopycnal displacement amplitude (left panel) and phase
(centre panel) for glider stations VM1, VM2, VM3a, VM3b, VM4 and VM5 (blue) and the
current model (black). The depth structure of relative rms error, RE , is shown in the right
panel.



54 MODEL VALIDATION

VM6a VM6b

VM7 VM8

Glider
Model

0 50 100 150
−1000

−800

−600

−400

−200

0

Amplitude (m)

z
(m

)

−π 0 π 2π

Phase (rad s−1)

0 100 200
R

E
%

0 50 100 150
−1000

−800

−600

−400

−200

0

Amplitude (m)

z
(m

)

−π 0 π 2π

Phase (rad s−1)

0 100 200
R

E
%

0 50 100 150
−1000

−800

−600

−400

−200

0

Amplitude (m)

z
(m

)

−π 0 π 2π

Phase (rad s−1)

0 50 100
R

E
%

0 50 100 150
−1000

−800

−600

−400

−200

0

Amplitude (m)

z
(m

)

−π 0 π 2π

Phase (rad s−1)

0 100 200
R

E
%

Figure 3.7: Comparison between M2 isopycnal displacement amplitude (left panel) and phase
(centre panel) for glider stations VM6, VM7, VM8a and VM8b (blue) and the current model
(black). The depth structure of relative rms error, RE , is shown in the right panel.
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3.4.3 ERROR ESTIMATES

The depth-averaged absolute and relative rms error estimates between the

observational data and model are calculated using the method detailed in

Section 3.3.2 and presented in Table 3.5. The depth-averaged relative rms errors

ranges from 38.7% to 165.6% with an average value of 82.0%. The depth structure

of RE is shown in the righthand panel of Figures 3.6-3.7 and highlights how variable

the rms error is with depth. No consistent relationship between error and depth is

found.

Table 3.5: Average RMS error (E) and average relative RMS error (RE ) between the model and
Seaglider data.

E (m) RE

VM1 10.5 165.6 %

VM2 13.7 38.7 %

VM3a 16.0 73.8 %

VM3b 13.7 54.4 %

VM4 32.0 122.6 %

VM5 31.1 92.6 %

VM6a 38.9 85.3 %

VM6b 16.5 65.1 %

VM7 31.7 70.8 %

VM8 20.5 51.1 %
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3.5 DISCUSSION AND CONCLUSIONS

The calculated error between the model output and observational data at first glance

appears high, however previous work in Monterey Canyon by Carter (2010) using

POM found similar RMS errors, ranging between 30% - 209%. The interpretation of

the model-data comparison presented here should take into consideration that all

the validation locations used are within topographically complex regions. Vertical

wall and rocky overhangs are key geomorphological features within Whittard Canyon

(Huvenne et al., 2011; Johnson et al., 2013), however, the resolution of the model used

here (500 m) limits how much of this structure can actually be resolved. Furthermore,

the morphology of the canyon is likely to be evolving constantly due to erosional and

depositional processes (e.g. Amaro et al. (2015)). The bathymetry used within the

model is therefore an approximation of the actual canyon morphology, and hence the

model is not expected to resolve all the features of the internal tide within the canyon

that observations may record. For example, the complex structure in isopycnal

displacement phase observed by the Seaglider (Figures 3.6-3.7), but not replicated in

the model output, is likely due to the inability of the model to resolve higher modes,

with a limit set by bathymetric resolution (Zilberman et al., 2009).

The discrepancy between model bathymetry and observations exists for both the

ADCP and Seaglider datasets. ADCP depths, calculated from ROV pressure records,

and the model depth at deployment location vary for both adcp1 and adcp2, with

differences of 52 m and 12 m respectively. This could be accounted for by the model

not resolving the bathymetry sufficiently. Altimeter records for the Seaglider data

indicated that recorded depths at a given location were shallower than those in the

model bathymetry. When compared with other available bathymetric datasets it was

determined that the model bathymetry was offset, and hence a latitude and longitude

shift applied to correct for this. When the original model bathymetry was produced

(Section 2.2.2), shifts were applied to the GEBCO portion of data to correct the

offset between it and the higher resolution INFOMAR data, with the assumption that

the INFOMAR data was correctly geolocated. Although some of this manipulation

explains the observed offset in the Seaglider dataset, it doesn’t explain all of it, raising

questions about the accuracy of geolocation within widely available data products.
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A significant difference was observed between not only the calculated errors,

but also the raw recorded velocities at adcp1 and adcp2, despite their geographic

proximity. Figure 3.8 shows that velocity phase, and to a lesser extent amplitude, in

the model in the region of the ADCP deployments is highly variable. This may explain

some of the differences observed between the two measurements and the resulting

errors, however, the quality of the adcp1 is still suspect due to its incoherent nature.

An in-depth analysis of the dataset to assess quality, however, is beyond the scope

of this project. The variability in phase within the model also has implications for

error calculations with the Seaglider data too. The data were distributed in a 5 km

watch circle and compared with the model output at the centre of the watch circle.

Given that there is variability in the model in phase over that length scale, the errors

calculated are therefore reasonable.

The assumption that the spring-neap cycle of the surface tide and the internal

tide are phase-locked was used to sync model output with the observations, however,

this assumes local internal tide generation. As Gerkema (2002) states, the phase

of the baroclinic spring-neap cycle is dependant on the phase difference between

the M2 and S2 internal tide, and hence will not always be synchronous with the

barotropic spring-neap cycle. Evidence for phase-locking is provided by the Seaglider

observations at VM3a and VM3b (taken at different parts of the spring-neap cycle),

which after modulation, display similar amplitudes.

In conclusion, the errors calculated between the model and observations are

reasonable when the shortcomings of the model and observations are considered.

Bathymetric resolution is a key determinant of model skill, however increasing

bathymetric resolution to sufficiently resolve the complex bathymetry encountered

in Whittard Canyon is too computationally expensive and still would not be able to

resolve features such as overhangs. Given the length scales of the M2 internal tide, it

may not be necessary to have such high bathymetric resolution to be able to resolve

the key features of the internal tide (further investigated in Chapter 5), however, finer

scale features of interest to biologists and geologists (Chapter 6) will not be resolved.



4
INTERNAL TIDES IN WHITTARD CANYON

4.1 INTRODUCTION

This chapter investigates the dynamics of the internal tide within Whittard Canyon

using the control model setup as defined in Chapter 2 (32 tidal cycles, summer

stratification and the medium domain size). The internal tide within Whittard Canyon

has been postulated to have a potentially huge impact on the biology within the

canyon (Robert et al., 2015) and also play a role in the generation of nepheloid layers

(Wilson et al., 2015b). However, although internal tides around the Celtic Sea shelf

edge region have been well studied, information about internal tides within Whittard

Canyon are limited. Internal tides within sinuous submarine canyons have been

modelled using POM previously (e.g. Hall and Carter, 2011; Gregg et al., 2011) but to

our knowledge, no previous attempt at modelling the internal tide within a branched

canyon has been made before. This study therefore provides a view on a different type

of canyon than is often studied.

In this chapter, the key generation sites for the internal tide within the canyon

are identified, and the three-dimensional structure of the internal tide described. A

crude energy budget is calculated and the propogation of the internal tide on-shelf

investigated. A more complicated canyon limb naming scheme than Figure 2.8 is used

in this chapter, and is shown in Figure 4.1.

59
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Figure 4.1: Location of limbs and along-thalweg sections used. Distance along each thalweg,
referenced to the 1000-m isobath (positive shallower than 1000 m, negative deeper than 1000
m) is marked in either 20-km or 10-km intervals.

In Section 4.2 the main generation sites for the internal tide within Whittard

Canyon are identified. In Section 4.3 the spatial structure and variability of the

internal tide within Whittard Canyon are discussed and an initial energy budget

calculated. In Section 4.5 the internal tide propogation on-shelf is examined.
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4.2 INTERNAL TIDE GENERATION

The sloping topography of Whittard Canyon and its surrounding area provide many

potential internal tide generation sites through the scattering of the barotropic

tide (Bell, 1975; Baines, 1982). As shown by Rainville et al. (2010), internal tides

originating from different sources lead to complex patterns of constructive and

destructive interference, with beams of depth-integrated energy flux appearing and

dissapearing, making it difficult to interpret internal tide generation. However,

realistic interpretation about internal tide generation can be made by comparing

depth-integrated baroclinic M2 fluxes (Figure 4.2 (a)) with barotropic-to-baroclinic

M2 energy conversion (Figure 4.2 (b)) (e.g. Monterey Canyon (Hall and Carter, 2011)).

4.2.1 REMOTE GENERATION

Much of the internal tide energy entering Whittard Canyon appears to originate from

the region to the east of the canyon, where the depth-integrated energy fluxes are

consistent with regions of high (>0.2 W m−2) barotropic-to-baroclinic conversion.

Internal tide generation to the east of the canyon can be roughly divided into two

areas: the upper limbs of Shamrock Canyon to the east of Brenot Spur, and also the

western flank of Brenot Spur, which is incised by the Explorer and Dangeard Canyons

(as described by Stewart et al. (2014)). Baroclinic energy appears to radiate from these

major generation sites: a strong and narrow beam of baroclinic energy propogates

northwest around Brenot Spur and onto the shelf via Limb 4a, whilst a second strong,

but wider, beam of baroclinic energy propogates southwest from Shamrock Canyon

onto the abyssal plain. As discussed in Section 2.3.1, the strength of the northwest

propogating beam appears to be due to the interaction between generation within

the canyon, generation to the west of Brenot Spur and at Shamrock Canyon. When

a domain size excluding the Shamrock Canyon region is considered, the pattern of

depth-integrated baroclinic energy flux is very different, with the strong, northwest

propagating beam being largely absent (Figure 2.11 (a)).

The northwest propogating beam appears to be constrained by the morphology

of Limb 4a: large depth-integrated baroclinic energy fluxes (>8 kW m−1) are directed

northwest up-canyon along its upper reaches (-30 km along the thalweg referenced
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to the 1000-m isobath, Figure 4.1) and the beam is greatly reduced in strength by the

corrugated western flank of Limb 4a. Values of depth-integrated baroclinic energy

throughout the rest of the canyon are much lower in comparison to those in Limb

4a, indicating either a lesser, or completely absent, influence on the canyon from the

remote generation sites to the east.

4.2.2 LOCAL GENERATION

Internal tide generation also occurs within the canyon and is identifiable by regions

of positive barotropic-to-baroclinic conversion corresponding to both up and down-

canyon depth-integrated baroclinic energy fluxes e.g. the western flank of Limb

4a along its lower reaches, Limbs 2b and 2c, the upper reaches of Limb 2a, the

western flank of Limb 3a and Limb 1b. In the upper reaches of Limb 4a and Limb

2a, regions of strongly positive (>0.8 W m−2) and negative (<-0.8 W m−2) conversion

occur adjacent to one another, implying that local internal tide generation is in part

balanced by baroclinic energy loss to the barotropic tide. Negative energy conversion

originates from the phase difference between remote and locally generated internal

tides (Zilberman et al., 2009; Kelly and Nash, 2010) indicating that there are multiple

generation sites. This ‘twinning’ of positive and negative energy conversion also

occurs in Limb 1a and Limb 3a, but the magnitude of the energy conversion involved

is much lower (<-0.4 W m−2, >0.4 W m−2). The spatial distribution of energy

conversion is fairly consistent throughout the canyon, with positive conversion

tending to occur on the western flanks of the canyon limbs and negative conversion

tending to occur on the eastern flanks.
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4.3 INTERNAL TIDE PROPOGATION THROUGH WHITTARD

CANYON

In the upper reaches of Whittard canyon, depth-integrated baroclinic M2 energy

fluxes are generally up-canyon, as expected by topographic focusing of an offshore

generated internal tide. However, there are clear examples of down-canyon values

too e.g. Limb 1b.

4.3.1 BAROCLINIC TIDAL CURRENTS

Near-bottom horizontal baroclinic M2 tidal current ellipses along the canyon

thalwegs are shown in Figure 4.3. In the lower reaches of all the main limbs, current

velocities are low (<0.1 m s−1) and the tidal ellipses fairly circular. Moving up-canyon

the semimajor axes of the ellipses becomes increasingly orientated along the canyon

axis and highly rectilinear (i.e. the semiminor axis is insignificant compared to the

semimajor axis) in the upper reaches of all the main limbs. The correlation between

semimajor axis orientation and the thalweg suggests topographic steering of the

internal tide. In the upper limbs of the canyon, the semimajor axes of the near-bottom

tidal ellipses increases, with values up to 0.4 m s−1 being reached.

Observations of bottom currents within the canyon are limited, however those

that exist appear to be in agreement with the modelled currents. The deepest

measurements (>4000 m) have recorded bottom currents displaying weak semi-

diurnal frequencies and velocities ≤10 cm s−1 (Van Weering et al., 2000; Amaro et al.,

2015). Measurements in shallower regions indicate increasingly energetic bottom

currents with reducing depth e.g. 0.16 m s−1 recorded by Reid and Hamilton (1990)

(3752 m) and maximum speeds greater than 0.24-0.40 m s−1 measured by Duros et al.

(2011) (1000 m).
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Figure 4.3: Modelled near-bottom horizontal baroclinic M2 tidal current ellipses. Current
ellipses shallower than 300 m are omitted for clarity. Depth contours are plotted every 200 m.

4.3.2 KINETIC AND POTENTIAL ENERGY

Baroclinic horizontal kinetic energy (HKE) density is calculated as per the method in

Section 2.2.3. Depth-integrated HKE within the canyon is maximum (∼10 kJ m−2)

in Limbs 4a, 2a and 1b (Figure 4.4 (a)) and closely mirrors the spatial distribution

of depth-integrated baroclinic energy flux as shown in Figure 4.2 (a). HKE is also

elevated in the region to the east of Brenot Spur, identified as a key generation site.

Available potential energy (APE) density is calculated as per the method in

Section 2.2.3. Depth-integrated APE is intensified over a larger proportion of the

canyon than HKE, reaching a maximum (>12 kJ m−2) in Limbs 4a, 2a, 2b and 1b and

also the region to the east of Brenot Spur (Figure 4.4 (b)). The background value of
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depth-integrated APE across the whole domain, however, is reduced in comparison

to depth-integrated HKE; depth-integrated HKE is elevated (∼3 kJ m−2) over much of

the shelf slope in between canyon limbs, whereas depth-integrated APE is not.
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(a) HKE (b) APE

(kJ m-2)
Figure 4.4: (a) Depth-integrated baroclinic M2 HKE in Whittard Canyon. (b) Depth-integrated
M2 APE. Depth contours are plotted every 200 m.

The ratio HKE/APE is calculated for the upper reaches of Whittard Canyon and

averaged within the regions outlined in Figure 4.15. The calculated values (Table 4.1)

are significantly smaller than the theoretical value for a freely propagating M2 internal

tide in this region (3.99, Section 2.2.3). This discrepancy has previously seen in other

canyons e.g. Monterey Canyon, and it was hypothesised by Petruncio et al. (1998)

that excess APE was a consequence of across-canyon motion being constrained by

the canyon topography. The morphology of Whittard Canyon could potentially have

a similar effect, however, HKE/APE throughout the upper reaches is <1 (APE > HKE),

inconsistent with free hydrostatic internal waves.

The excess APE suggests that either the internal tide is inherently nonlinear or,
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as argued by Kunze et al. (2002), that the vertical isopycnal displacement caused by

barotropic tidal flow over seafloor topography is the cause; in Monterey Canyon,

removing the barotropic contribution to isopycnal displacment before calculating

APE increased HKE/APE closer to the theoretical value (Hall and Carter, 2011). To

account for this, we follow the method of Kunze et al. (2002) and calculate the

barotropic contribution to isopycnal displacement (ξbt ) using a linear least squares

fit to ξ (z) (Equation (6.2)), with zero at the surface. The barotropic contribution ξbt

is then subtracted from ξ (z) and APE recalculated. Although the ratio is increased for

all regions and is >1, it is in most cases <50% of the theoretical value.

Table 4.1: HKE and APE (italics indicates recalculation of APE after the barotropic
contrubution to isopycnal displacment has been removed) integrated over the regions shown
in Figure 4.15 and the resulting HKE/APE ratio (italics indicate where recalculated APE has
been used).

HKE

(TJ)

APE

(TJ)
HKE/APE

Limb1a 0.33 0.34/0.15 0.66/1.44

Limb1b 0.41 0.56/0.23 0.73/1.83

Limb2 1.87 2.96/1.29 0.63/1.44

Limb3 0.82 1.01/0.41 0.81/1.99

Corrugation 1.90 2.19/0.88 0.87/2.16

Limb4 0.99 1.50/0.66 0.66/1.51

Another possible explanation for excess APE is that partly standing internal waves

are present within the canyon. Partially standing waves (the superposition of two free

waves, with the same frequency but different amplitudes) result in the oscillation of

HKE/APE between zero and infinity over the length of half of the wavelength of the

waves (Martini et al., 2007). Down-canyon energy fluxes are observed in the depth-

integrated maps of baroclinic energy flux (Figure 4.2 (a)) and also near the bottom

of the canyon thalweg in the across- and along-canyon sections in Section 4.3.3. It

is possible that superposition of the internal tide propogating up-canyon, and waves

reflected from the supercritical canyon walls propogating down canyon form partially

standing waves. This is further discussed in Section 4.3.3 using depth-integrated

baroclinic M2 HKE and APE with distance along the canyon.
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4.3.3 3D STRUCTURE OF THE M2 INTERNAL TIDE

The three-dimensional structure of the internal tide is shown using along-canyon and

across-canyon sections as defined in Figure 4.1. The thalwegs were picked manually

using minimum slope and the depth contours to guide the picking. Distance along

the canyon is referenced to the 1000-m isobath; positive distances are towards the

head of the canyon and negative distances are towards the mouth of the canyon. For

the along-canyon sections, both the along-canyon and across-canyon components of

the baroclinic energy flux are shown, respectively defined as the energy flux tangential

and normal to the localised thalweg orientation. Distance across the canyon is

referenced to the thalweg; positive values are on the right when looking up canyon.

ALONG-CANYON SECTIONS

Along-canyon sections of depth-integrated along-canyon baroclinic M2 energy flux,

HKE and APE, along-canyon and across-canyon baroclinic M2 energy flux, HKE and

APE are shown in Figures 4.5 to 4.8. Sections for the minor limbs are provided in

Appendix B.

With regards to the across- and along-canyon baroclinic fluxes, it is important to

note that the colourbars used for limb 2a and 4b are different as they are much more

energetic than limb 1a and 3a and so a different scale was appropriate. The across-

canyon baroclinic energy flux, shown in panel (c) of Figures 4.5 to 4.8 is of a smaller

magnitude than the along-canyon energy flux for all limbs. The small-scale spatial

structure can mainly be attributed to the meandering path of the thalweg rather than

a change in the direction of the energy flux, and possibly an artefact of interpolation.

The along-canyon sections of baroclinic energy flux (shown in panel (b) of Figures 4.5

to 4.8) however show clear patterns of near-bottom intensification over the depth

range of 1000 to ∼2500 m, suggesting that topographic focusing is occuring within the

canyon in all of the limbs (e.g. Gordon and Marshall, 1976). The clearest examples of

near-bottom intensification however occur in limbs 1a, 3a and 4b, where there is also

high along-canyon baroclinic energy flux near the surface and the seabed with near-

zero at mid-depth. This is expected mode-1 structure. Much of the along-canyon

baroclinic energy fluxes are positive i.e. up-canyon. However there are clear examples

where down-canyon energy fluxes occur, such as in limb 1a where limbs 1b and 1c

join limb 1a, where limb 2b joins 2a and limb 4b joins 4a, suggesting internal tide
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generation within all of these minor limbs, which is then propogating down-canyon

into the main limb.

Near-bottom elevated HKE and APE in across-sections of HKE and APE (shown in

panels (d) and (e) of Figures 4.5 to 4.8) correspond to areas of bottom intensification

in along-canyon baroclinic energy flux for all limbs. When HKE and APE are depth-

integrated, a coherent pattern between all limbs is difficult to identify. However, some

similarities can be seen between limbs 2a and 4a where HKE and APE are in roughly

in phase with one another, whereas in limbs 1a and 3a this is not the case. The

difference in phase could imply the presence of partially standing waves, however

the meandering canyon path of the thalweg complicates the signal and it is beyond

the scope of this study to determine whether this is the case.
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Figure 4.5: Limb 1a along-canyon sections (a) Depth-integrated along-canyon baroclinic M2 energy flux (blue), HKE (green) and APE (red) with
distance along the thalweg. (b) Along-canyon and (c) across-canyon baroclinic M2 energy flux with distance along the thalweg. Positive along-canyon
values are towards the head of the canyon. Positive across-canyon values are to the left when looking up canyon. (d) Along-canyon HKE. (e) Along-
canyon APE. Distance along the canyon is referenced to the 1000-m isobath; positive distances are towards the head of the canyon and negative
distances are towards the mouth of the canyon.
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Figure 4.6: Limb 2a along-canyon sections. See Figure 4.5 for explanation. Note that the
vertical scales are different.
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Figure 4.7: Limb 3a along-canyon sections. See Figure 4.5 for explanation. Note that the
vertical scales are different.
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Figure 4.8: Limb 4a along-canyon sections. See Figure 4.5 for explanation.
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ACROSS CANYON SECTIONS

Limb 4 is a particularily energetic internal tide hotspot in Whittard Canyon, therefore

across-sections of baroclinic energy flux for Limb 4a are provided (Figure 4.9). The

across-canyon sections are generally not as informative as the along-canyon sections

for the other limbs, they do demonstrate bottom-intensification of baroclinic energy

flux, however due to the meandering path of the thalweg and the interpolation

required to extract the sections, they are somewhat suspect. The across-canyon

sections show that moving towards the head of the canyon, the baroclinic energy

flux is bottom-intensified, with a typically mode-1 structure becoming dominant

(Figure 4.9 (b)) but that the core of baroclinic energy flux propogating up the limb

is absent by the 1000-m isobath (Figure 4.9 (a)). There is also some observable

assymmetry in the core of baroclinic energy flux, but perhaps this is not that

surprising as the cross-section of the canyon limbs are not symmetrical. The negative

baroclinic energy flux observed in Figure 4.9 (c) appears to be linked to the limb, not

part of the Whittard Canyon proper, that intersects the limb here.
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Figure 4.9: Along-canyon baroclinic M2 energy at across-sections located at (a) -60 km, (b) -40
km, (c) -20 km, and (d) 0 km along the thalweg of Limb 4a (referenced to the 1000-m isobath).
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canyon.
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4.3.4 INTERNAL TIDE REFLECTION

As seen in the along- and across-canyon sections, bottom intensification of the

internal tide occurs throughout the upper reaches of the canyon. The reflection

of internal waves can lead to trapping and focusing of internal wave energy within

canyons (Gordon and Marshall, 1976; Hotchkiss and Wunsch, 1982) resulting in

bottom intensification. We therefore examine the reflective behaviour of the internal

tide approaching the sloping canyon thalweg and walls to assess whether reflection

of the internal tide within the canyon can explain the spatial patterns of baroclinic

energy flux observed in Section 4.3.

The onshore-offshore propagation direction of deep water internal waves that

have encountered a topographic slope can be calculated using the ratio of the

topographic slope to the internal wave characteristic slope (criticality),

α= stopog

sw ave
= ∂H/∂x[(

ω2 − f 2
)

/
(
N 2 −ω2

)]1/2
(4.1)

where H is the total depth, x across-slope distance, ω the angular frequency of the

wave, f the inertial frequency and N the buoyancy frequency. If α < 1 (subcritical),

after reflection, waves will continue to shoal. If α > 1 (supercritical), waves will

travel back into deeper water after reflection. If α= 1 (critical), nonlinear effects and

potential wave breaking can occur.

The map of criticality for the current model run (Figure 4.10) shows that much

of the upper reaches of Whittard Canyon (depths less than 1000 m) are supercritical

with respect to the M2 tide, whereas the abyssal plain, shelf and thalwegs of the lower

reaches of the canyon (where they are typically U-shaped) are subcritical. The regions

of the canyon bathymetry which are critical with respect to the M2 are not shown as

they are not visible at this scale, however this region forms a thin band between the

subcritical and supercritical regions.
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Figure 4.10: Map of the ratio of the topographic slope to the M2 characteristic slope, α
(criticality). Depth contours are plotted every 500 m.

The ocean, however, is inherently three-dimensional in nature. Therefore it is

more instructive to think of internal waves as sheets intersecting topography (Carter

and Merrifield, 2006). The slope of an internal tide beam that encounters topography

is dependant on the orientation of the section with respect to the internal wave sheet.

If the section is in the same plane as the sheet, the slope of the beam will equal

sw ave . If the section is perpendicular to the sheet, the beam will be horizontal. To

get a true measure of criticality it is therefore important to also know the direction

of propogation of the internal tide. We therefore calculate α for the along thalweg

sections defined in Figure 4.1 assuming that the internal tide is propogating up-

canyon, following a direct path along the thalweg. In reality, the internal tide is
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unlikely to follow the small-scale meandering path of the thalweg, and more likely

to travel a more direct path and cut across topography. A path that follows the

thalweg will have a gentler topographic slope than one travelling a more direct path,

and therefore the values of α presented here are likely to be underestimates as the

topographic gradients used in the calculation are lower than in reality. We use the

experimental results of McPhee-Shaw and Kunze (2002) to define a ‘near-critical’

regime where topographic slopes match the condition 0.8 <α <1.3. This broader

definition of the critical regime is also less limiting than a strict definition of critical

slopes only occuring atα = 1; the shortcomings of interpolating along the meandering

thalweg, and also the somewhat unrealistic stratifications used, make such an exact

value meaningless. The value of α is then further smoothed using a running mean

filter (5km) to aid diagnosis. The signal is likely noisy due to N 2 profile used.

The along-canyon sections of α are shown alongside the along-canyon baroclinic

energy flux in Figures 4.11 to 4.14. Limb 1a, 2a and 4a are all similar in that the

regions where α is dominantly critical corresponds to where baroclinic energy flux

is bottom intensified. Furthermore, the upper reaches of limb 1a, 2a and 4a are

all supercritical with respect to the M2 characteristic slope. Limb 3a is markedly

different for a number of reasons: firstly, it is concave in appearance compared to

the other limbs, secondly, the head of the canyon is not supercritical and thirdly, the

region of elevated baroclinic energy flux doesn’t correspond to values of α that are

critical. Investigations of internal tide reflection from convex slopes and concave

slopes, however, do not show a reduction in mixing due to reflection for concave

slopes as compared with the other slopes (Legg and Adcroft, 2003). It is therefore

likely that it is the lack of a supercritical head that results in baroclinic energy not

being focused as much in this limb.

For limb 4a, M2 internal tide characteristic slopes are calculated using the internal

wave dispersion relation (Equation 1.1) and plotted on top of the section. They show

that supercritical reflection at the head of the canyon reflects internal tide energy back

into the canyon, the lack of such a mechanism in limb 3a may help to explain it’s

reduced energy in comparison to the other limbs.
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Figure 4.11: Limb 1a: (a) Along-canyon baroclinic M2 energy flux, with distance along the thalweg for Limb 1a. Positive along-canyon values are
towards the head of the canyon. (b) α with distance along the thalweg (blue) and α smoothed with a running mean using a ∼5 km filter (black). The
grey shaded region denotes the ‘near-critical region’ (0.8 <α <1.3).
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Figure 4.12: Limb 2a (see Figure 4.11 for explanation)
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Figure 4.13: Limb 3a (see Figure 4.11 for explanation)
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Figure 4.14: Limb 4a (see Figure 4.11 for explanation). An M2 internal tide characteristic slope
for an internal tide propogating up canyon is calculated using the internal wave dispersion
relation and is plotted over the section.

To better assess the differences in slope criticality between the main limbs, the

fraction of the thalweg slope depth (between 500 m and 3000 m) that is subcritical,

supercritical and near-critical for each main limb is calculated (Table 4.2). It becomes

clearer that there are two main regimes: almost half of the thalweg slope by depth for

limb 2a and limb 4a is supercritical to the M2 internal tide, whilst for Limb 1a and

Limb 3a less than a third of the slope is supercritical to the M2 internal tide. Limb3a

is notable for having the largest fraction of near-critical slope (0.49), followed by limb

1a.

Table 4.2: Fraction of depth between 500 m and 3000 m depth that are subcritical,
supercritical and near-critical for the main limbs within Whittard Canyon.

α <0.8 0.8<α <1.3 α >1.3

Limb 1a 0.35 0.37 0.28

Limb 2a 0.25 0.28 0.47

Limb 3a 0.21 0.49 0.30

Limb 4a 0.26 0.27 0.48
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4.4 CANYON ENERGY BUDGET

As discussed previously, different patterns of modelled barotropic-to-baroclinic

energy conversion and baroclinic energy flux are seen in the various limbs. To

investigate these differences in more detail, and to estimate dissipation within the

canyon, the upper canyon was divided into 6 regions (Figure 4.15). Each region was

defined using the spatial pattern of depth-integrated baroclinic energy flux as a guide,

and also the 300-m isobath, which was used to define the northernmost extent of each

region. For each region, baroclinic energy flux divergence (net energy flux out of the

region) and net barotropic-to-baroclinic energy conversion are calculated (Table 4.3).

Assuming that all net energy (net energy conversion minus energy flux divergence)

into each region is dissipated, baroclinic energy dissipation can then be calculated.
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Figure 4.15: Depth-integrated baroclinic M2 energy flux in the Whittard Canyon region.
Vectors are plotted every 40 model grid points (≈ 20 km) in each direction. The underlying
colour is the energy flux magnitude. Depth contours are plotted every 200 m. The regions used
to calculate the canyon energy budget are outlined in black and correspond to the canyon
limb naming convention used in this thesis. A corrugated region (corr.) is also used. The
Brenot Spur section is also included and the arrow indicates the direction of the flux calculated
(44 MW).
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Table 4.3: Model baroclinic energy estimates integrated over the regions shown in Figure 4.15,
including: baroclinic energy flux divergence, barotropic to baroclinic energy conversion and
baroclinic energy dissipation.

Conversion Dissipation

Flux

Divergence

(MW)

Positive

(MW)

Negative

(MW)

Net

(MW)

Total

(MW)

Rate

(x 10−8 W kg−1)

Limb1a -1.8 15.9 8.0 7.9 9.7 3.79

Limb1b 7.7 15.5 3.0 12.5 4.8 2.10

Limb2 2.9 101.7 31.3 70.3 67.4 5.20

Limb3 -2.9 32.6 15.9 16.8 19.7 2.65

Corrugation -35.2 65.8 28.9 36.9 72.1 7.65

Limb4 -15.4 81.6 60.4 21.3 36.7 6.37

As anticipated from the cessation of the northwest propogating beam of depth-

integrated baroclinic energy flux (Figure 4.2), baroclinic energy flux divergence is

strongly negative (i.e. convergent) in Limb4 and the Corrugation region (-15.4 MW

and -35.2 MW, respectively). The positive value of energy flux divergence in Limb1b,

corresponds to the down-canyon depth-integrated baroclinic energy fluxes seen in

Figure 4.2, indicating that baroclinic energy is leaving the canyon and entering

Limb1a. However, it is not as easy to diagnose as obvious a cause of the positive value

of flux divergence in Limb2 from the pattern of depth-integrated baroclinic energy

flux.

All regions within Whittard Canyon display positive net energy conversion, with

the largest value occuring in Limb2 (70.3 MW). Positive conversion implies local

internal tide generation whilst negative values indicate work done on the barotropic

tide by the baroclinic tide (Zilberman et al., 2009), therefore it is instructive to also

look at the positive and negative components of energy conversion. The largest value

of positive energy conversion occurs in Limb2 (101.7 MW), although both Limb4 and

the Corrugation region also have large amounts of positive conversion (81.6 and 65.8

MW, respectively). Local internal tide generation in association with positive energy

conversion is partially compensated by negative energy conversion occuring within

these regions, although the degree to which this occurs varies spatially. For example,

74% of positive energy conversion is compensated for by negative energy conversion
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within Limb4a whilst in Limb1b only 19% is compensated for.

Total baroclinic energy dissipation in the upper canyon (sum of all 6 regions),

inferred from both baroclinic energy flux divergence and barotropic-to-baroclinic

energy conversion, is 0.21 GW. Net energy conversion in the upper canyon is 0.17

GW (81% of total energy), and so has a significant effect on total baroclinic energy

dissipation. The resulting dissipation (net energy conversion minus flux divergence)

is largest in the Corrugation region (72.1 MW) and Limb2 (67.4 MW). However, to

compare individual regions it is important to take into account the relative size of

each region by dividing total dissipation by the mass of seawater in each region (using

a constant seawater density of 1025 kg m−3). The dissipation rate is highest in the

Corrugation region (7.65 x 10−8 W kg−1) and Limb4 (6.37 x 10−8 W kg−1), providing

further evidence that they are significant sinks of the baroclinic energy entering the

canyon from the generation regions to the east (Section 4.2). It is interesting to note

that dissipation is high in Limb2 and Limb4 but for very different reasons: residual

energy in Limb2 is primarily due to local internal tide generation (large positive net

energy conversion) whilst for Limb4 negative flux divergence contributes as much

to total dissipation as positive net energy conversion. Dissipation rates in the other

limbs (Limb1a, Limb1b and Limb3) are smaller as a result of lower flux divergence and

energy conversion.
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4.5 INTERNAL TIDE PROPOGATION ON SHELF

Depth-integrated baroclinic energy fluxes on the continental shelf (defined here as

any depths less than 300 m) are typically an order of magnitude smaller than those

throughout Whittard Canyon (<0.5 kW m−1) (Figure (4.16 (a)). However, there are

regions of elevated energy fluxes (>1 kW m−1) near the head of the canyon, notably

at the head of Limb 3, where energy fluxes >2 kW m−1 occur. There appears to be no

consistent orientation for the energy fluxes along the shelf break, with the orientation

changing from on-shelf to off-shelf over short distances e.g. between 50 and 100 km

along the 300-m isobath (Figure (4.16 (a)).
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Figure 4.16: (a) Depth-integrated baroclinic M2 energy flux on the continental shelf. Vectors
are plotted every 5 model grid points (≈ 2.5 km) in each direction. The underlying colour is
the energy flux magnitude. Depth contours are plotted every 200 m and the black line is the
300-m isobath, the approximate depth of the shelf break. Distance along the 300-m isobath is
marked with a cross at 50 km intervals (b) Depth-integrated across-slope baroclinic M2 energy
flux with distance along the 300-m isobath. Positive values indicate a flux onto the shelf.
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The baroclinic energy flux across the shelf edge is defined here as the baroclinic

energy flux normal to the 300-m isobath (Figure 4.16 (b)). The resulting energy

flux is noisy because of the meandering path of the isobath, similar to the situation

encountered with the along canyon sections (Section 4.3.3). Along most of the 300-m

isobath the depth-integrated energy flux typically fluctuates between ±100 W m−1,

however, at the head of Limb 4 the depth-integrated energy flux is elevated and

fluctuates between ±300 W m−1. Peaks in on-shelf depth-integrated energy flux

of order 700 W m−1 occur at the head of Limb 2 and Limb 3. Peaks in off-shelf

depth-integrated energy flux of order 700 W m−1 occur over the head of Limb 4, and

smaller off-shelf fluxes ( 600 W m−1) occur over the heads of Limb 1b and Limb 2.

Integrated along the length of the 300-m isobath, the net on-shelf baroclinic energy

flux is 3.38 MW. However, when split into positive (28.7 MW) and negative (-25.3 MW)

components, it becomes clear that a significant amount of energy is not only going

on-shelf, but is also entering the canyon from generation on the shelf.
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4.6 DISCUSSION AND CONCLUSIONS

Within this section, the above results are discussed and overall conclusions made

about the generation, propogation and dissipation of the baroclinic M2 internal tide

in Whittard Canyon.

4.6.1 INTERNAL TIDE GENERATION

Following on from the sensitivity studies in Chapter 2, Shamrock Canyon and the

western flank of Brenot Spur are identified as a key generation site where elevated

depth-integrated baroclinic energy fluxes (> 0.2 W m−2) occur in parallel with regions

of high barotropic-to-baroclinic conversion ( > 6 kW m−1). A beam of baroclinic

energy flux propogates northwest from these source areas and onto the shelf via limb

4a, seemingly constrained by the limbs morphology. The strength of the northwest

propogating beams appears to be due to the interaction between local generationg

within the canyon and it’s original remote source, resulting in baroclinic energy fluxes

within limb 4a that are > 8 kW m−1.

Internal tide generation also occurs locally, but variably so in different limbs:

limb 2 and limb 4 show more positive barotropic-to-baroclinic conversion occuring

within them than in limb 1 and 3. Limbs 2a and 4a also display ‘twinning’ of regions

of strongly positive and negative barotropic-to-baroclinic energy conversion. This

assymmetric conversion over the upper canyon limbs, where negative conversion

occurs on the eastern side, and positive conversion occurs over the western side has

been observed previously in numerical models of canyons. Petruncio et al. (2002)

observed assymmetric conversion in simulations of Monterey Canyon, suggesting

that the assymetrical form of conversion was due to the Earth’s rotation. However,

a more recent idealised canyon modelling study by Zhang et al. (2014) of symmetric

canyons also found that barotropic-to-baroclinic energy conversion rates were

typically asymmetric. They suggest that the cross-canyon asymmetrical pattern is

caused by multiple-scattering effects on one canyon side slope, caused by the phase

variation in the internal-tide sources.

Areas of negative energy conversion (energy transfer from the baroclinic tide

back to the barotropic tide) in our model can be explained by a flux-conversion
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feedback. The p ′ term occurs in both the energy flux and conversion equations,

however it has both local (p ′
local ) and remote (p ′

r emote ) components. Depending on

the phase of p ′
r emote , it can either enhance or supress local Econv (Kelly and Nash,

2010). The remote source of pressure perturbation over the canyon can be considered

fixed, however the vertical velocity, wB t , caused by barotropic flow across sloping

topography will vary over the canyon width and the resulting p ′
l ocal will also have

a phase offset from this term. Therefore if the resulting p ′ term is approximately 180◦

out of phase with wB t , then conversion will be negative. If the resulting p ′ term is

approximately 0◦ out of phase with wB t , then conversion will be positive (Figure 4.17)

The assymetry observed implies that local internal tide generation is modulated by

remote generation sites, and as such, the domain size of the model needs to be

sufficiently large enough to contain all the remote generation sites that can impact

local generation within the canyon. This conversion-feedback mechanism is also

expected to affect the along shelf propogation of internal waves.
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4.6.2 INTERNAL TIDE PROPOGATION THROUGH WHITTARD CANYON

The internal tide within Whittard Canyon is topographically steered, with enhanced

internal tide bottom currents reaching 0.4 m s−1 in the upper reaches of the canyon,

in broad agreement with published values (Amaro et al., 2016). Depth-integrated

baroclinic energy fluxes are dominantly up-canyon, however, some occurences of

down-canyon fluxes occur too, primarily in minor limbs e.g. limb 1b. Depth-

integrated baroclinic energy flux within the canyon is elevated, but variably so in

different limbs. Limb 4 is the most energetic, and this is attributed to it being directly

in the path of the northwest propogating beam of baroclinic energy flux originating

in the Shamrock Canyon and Brenot Spur region. HKE and APE are also elevated

over the upper reaches of the canyon, however, excess APE suggests that partially

standing waves, caused by the superposition of waves, may be present within the

canyon. However, it is hard to diagnose whether they are definitely present using the

diagnostics used in this thesis.

Along-canyon sections of the various limb also indicate different internal tide

regimes within the canyon: limb 2a and 4a are more energetic than limbs 1a and

3a. However, all limbs show near-bottom intensification of the internal tide over the

depth range of 1000 to 2500 m, suggesting that topographic focusing of the internal

tide occurs in all limbs. Limbs 1a, 3a and 4b also display a clear mode-1 structure,

which is also seen in across-canyon sections of limb 4a. Negative baroclinic energy

fluxes are also encountered, however they predominantly occur in the minor limbs.

The reflective behaviour of internal waves in the different limbs is also different,

as indicated by along-canyon sections of criticality. Cores of baroclinic energy flux

are correlated with the depths over which the thalweg slope is dominantly critical

with respect to the internal tide characteristic slope for most of the limbs with the

head of the canyon heads typically being supercritical. This further helps to explain

the near bottom intensification of the internal tide within the canyon. A three-

dimensional focusing mechanism has been proposed by Vlasenko et al. (2016) in the

minor canyons to the east of Whittard Canyon, and it is therefore likely that a similar

process is acting here.

It is important to note that the current model doesn’t capture the variability in

stratification that has been observed in the different limbs (Wilson et al., 2015b),
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due to the use of a horizontally uniform stratification across the whole domain.

Diffusivities in the model are set to zero so that stratification is not lost due to mixing

in the absence of a restoring bouyancy flux, this means that stratification in the model

cannot evolve as it would in the canyon limbs in reality. Changes in stratification can

change the propagation behaviour of an internal tide (Mohn et al., 2014), therefore in

reality the propogation of the internal tide is likely to differ in the upper reaches of the

canyon limbs where stratification breaks down.

4.6.3 CANYON ENERGY BUDGET

The dissipation rates along the shelf in our model are highly variable, even over just

the region occupied by Whittard Canyon, varying between 2.10 × 10−8 W kg−1 and

7.65 × 10−8 W kg−1. Dissipation rates calculated for other canyons using POM forced

only by the M2 tidal constituent are comparable to the results presented here e.g. 3.99

x 10−8 W kg−1 for Monterey Canyon (Hall and Carter, 2011) and 7.66 x 10−8 W kg−1

for Ascension Canyon (Gregg et al., 2011). The highly variable dissipation results

calculated here across different limbs in the canyon have implications for mixing

parameterisations at the shelf edge in models, and offer an opportunity to refine such

parameterisations by including the effect of dendritic canyons at the shelf edge.

4.6.4 INTERNAL TIDE PROPOGATION ON SHELF

The depth-integrated across-slope baroclinic energy flux along the 300-m isobath,

is highly variable along the length of the shelf edge occupied by Whittard Canyon,

with positive and negative on-shelf fluxes being observed. Values reaching up

to 700 W m−1 are reached, however the interpolation along the winding 300-m

isobath creates a noisy signal which oscillates from negative to positive values.

Observations of energy flux onto the shelf from Whittard Canyon are limited, however,

measurements taken to the east of Whittard Canyon show that the semi-diurnal tide

drives 28-48 W m−1 of energy on-shelf (Hopkins et al., 2014) with the positive on-

shelf energy flux also being modulated by nonlinear interactions with the vertical

shear of inertial oscillations, leading to increases of 25-43 W m−1 in the energy flux.

There appears to be no constant orientation for the energy fluxes along the shelf

break. The across-shelf internal wave energy flux is often assumed to be controlled
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by the orientation of the shelf break (Garrett and Kunze, 2007), however, observations

show that the propogation of internal waves onto the Celtic Sea Shelf is in random

directions (Holt and Thorpe, 1997; Pingree et al., 1981), in agreement with our model.

This is likely due to the corrugated nature of the shelf edge, as has been shown in

other regions e.g. the Virgina continental slope (Nash et al., 2004).

The internal tide generated at the Celtic Sea shelf break has been observed as a

coherent signal up to 170 km onto the shelf (Inall et al., 2011). Much of the energy

generated at the shelf edge is dissipated at or near the shelf break with an estimated

shoreward energy decay scale of 42 km (Inall et al., 2011). The decay scale in our

model is likely to not be realistic due to non-linear effects not being resolved in the

model, they can only be inferred.

It is likely that changes in stratification would change the propogation of

the internal tide onto the shelf. Reduced near-surface stratification in a winter

stratification scenario is likely to inhibit the baroclinic energy flux released onto

the shelf. This could be investigated quite easily in the future by changing the

stratification in the model.

4.6.5 CONCLUSIONS

The internal tide within Whittard Canyon is spatially complex, however, through

this work the key generation sites have been identified. Shamrock Canyon and the

region to the west of Brenot Spur are key remote sources of baroclinic energy. Local

generation also occurs within the canyon, but is modulated by a flux-conversion

feedback that is dependant on the phase of the remotely generated internal waves.

The results presented here highlight how important choosing the correct domain size

is for barotropic-to-baroclinic conversion to be estimated accurately, as if key remote

sources are omitted, even local generation is affected. The Bay of Biscay to the east,

and the corrugate slope to the north of Whittard Canyon may be a source of farfield

generation for Whittard Canyon, so it is advised that a much larger domain size be

used to identify whether this is the case. Furthermore, internal tide barotropic-to-

baroclinic conversion is also dependant upon bathymetry, therefore sufficiently high

resolution topography is required to accurately estimate conversion. The effect of

smoothing the bathymetry is examined in Chapter 5, following the work of Zilberman
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et al. (2009).

The internal tide is enhanced throughout all limbs in the canyon, but variably so,

relating to different remote sources of internal tides and differing reflection regimes.

The propogation of the internal tide is dominantly up-slope and the corresponding

baroclinic energy flux is bottom intensified along depths of 1000-2500 m which

correlates with the position of the permanent thermocline within the region. The

permanent thermocline associated with the MOW is likely to act as a waveguide for

freely propogating internal waves, focusing energy at the seabed (Puig and Palanques,

1998). This work provides confirmation that internal wave activity is enhanced over

the region associated with the permanent thermocline, with implications for biology

(Amaro et al., 2016) and the formation of nepheloid layers (Wilson et al. (2015b).





5
EFFECTS OF BATHYMETRIC RESOLUTION

ON THE MODELLING OF INTERNAL TIDES

5.1 INTRODUCTION

The length scales at which internal waves operate over (kilometres) and which

topography can vary over are vastly different. High resolution bathymetry, on

the order of metres is available for the Whittard Canyon, however, increasing

bathymetric resolution within POM is computationally expensive and it is unclear

what topographic resolution the model requires to accurately simulate the internal

wave field. Previous work by Zilberman et al. (2009) on the Mid-Atlantic Ridge

identified the importance of using high resolution bathymetry to accurately model

barotropic-to-baroclinic energy conversion over such topography using POM. To our

knowledge, however, no such sensitivity study has been carried out for canyon-type

morphologies.

This chapter investigates how changing the resolution of the bathymetry used

affects modelled barotropic-to-baroclinic energy conversion, baroclinic energy flux

and inferred dissipation and whether, given the scale of internal tides, such high

resolution bathymetry is needed.

95
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5.2 BATHYMETRIC GRIDS

A number of bathymetric grids were created by smoothing the medium domain size

bathymetry (outlined in Section 2.2.2) using a 1.5 km, 5.5 km and 15 km square

mean filter. The first value (1.5 km) was chosen as this is just below the resolution

of the GEBCO 30 arcsecond bathymetry, smoothing using this filter therefore results

in bathymetry where less of the topographic variability and roughness within the

canyon is resolved than in the 500 m bathymetric grid. The second value (5.5 km)

was chosen as this is greater than the width of most of the upper canyon limbs,

hence, smoothing using this filter results in bathymetry that still resolves the major

canyon limbs. The dominant features in the 500-m resolution bathymetry (Figure 5.1

(a)) are retained in both the 1.5-km and 5-km bathymetries; the individual limbs of

Whittard Canyon can be identified. In the 15-km smoothed bathymetry, however, the

individual limbs cannot be identified (Figure 5.1 (b)). The final value (15 km) therefore

results in bathymetry that begins to resemble an idealised shelf profile with no canyon

incising it, and so begins to demonstrate how different the internal wave field around

the shelf edge would be without a canyon. The resulting bathymetries are named

after the square mean filter used to smooth them, hence, in this chapter the medium

model run is referred to as the 500-m bathymetry and the other bathymetries as the

1.5-km, 5.5-km and 15-km bathymetries.
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Figure 5.1: The model bathymetries used in the (a) 500 m and (b) 15 km runs.

It is difficult to visually identify the more subtle differences between the

bathymetries using 3D plots, therefore to quantify the differences, the topographic

height and slope spectra 1 for the different bathymetries are computed as per the

method of Zilberman et al. (2009). The spectra are functions of
(
κ,φ

)
, where k =

(k, l ) = κ(
cosφ, sinφ

)
is the horizontal wavenumber, integrated over φ (Figure 5.2).

The topographic height spectra for all bathymetries are similar over the scale

range corresponding to internal modes 1 to 3 (0.5 x 10−4 rad m−1 and 116.4 km to 1.6

x 10−4 rad m−1 and 39.3 km). Beyond this range, the 5.5-km bathymetry is different to

the other bathymetries over scales corresponding to internal modes 5 (2.7 x 10−4 and

1The 2D power spectrum is radially averaged
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23.3 km) and above. The topographic spectra for the 500-m and 1.5-km bathymetries

are very similar, only exhibiting differences over scales corresponding to internal

modes 20 (1.1 x 10−3 and 5.7 km) and above. The topographic slope spectra for the

500-m and 1.5-km runs are also very similar, only differing over scales corresponding

to internal modes 30 (1.6 x 10−3 and 3.9 km) and above. The topographic slope

spectra for the 1.5-km and 5.5-km bathymetries differ from the 500-m and 1.5-km

bathymetries spectra over all scales.
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Figure 5.2: Topographic height and slope spectra for the 500 m, 1500 m, 5500 m and 15 km
bathymetries. The equivalent internal mode wavenumbers are shown for reference.

5.2.1 CRITICALITY

Smoothing bathymetry is likely to change the reflection behaviour of internal waves,

due to the behaviours dependance on topographic slope amplitude (Equation 4.1,

Section 4.3.4). The reflection behaviour of an internal wave encountering bathymetry,

characterised by the ratioα, is shown for all four model runs (Figure 5.3). As expected,

due to the steep nature of canyon walls, much of the upper reaches of Whittard

Canyon in the 500-m run are supercritical with respect to the M2 internal tide,
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whereas the abyssal plain, shelf and thalwegs of the lower reaches of the canyon

(where they are U-shaped) are subcritical. With smoothing, the area of the domain

that is supercritical decreases, as does the maximum value of α. The 1.5-km run is

broadly similar to the 500-m run, however a significant difference arises in the 5.5-km

run; the head of the canyons are no longer supercritical. Instead the entire length of

the thalweg, from canyon mouth to head is subcritical with respect to the M2 internal

tide. The pattern ofα in the 15-km run bears little resemblance to the original pattern

in the 500-m run, however, the region to the west of Brenot Spur is still supercritical

with respect to the M2 internal tide.
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Figure 5.3: Maps of α for the (a) 0.5 km gridded bathymetry (b) bathymetry smoothed with a
5.5 km mean filter. Depth contours are plotted every 500 m.

Smoothing the bathymetry increases the percentage of the domain that is

subcritical and decreases the percentage of the domain that is supercritical

(Table 5.1), however the percentage of the domain that is near-critical (defined as
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0.8 < α < 1.3) remains fairly constant. The mean supercritical value is similar for the

500-m and 1.5-km model runs (2.8 and 2.7, respectively), however, with increased

smoothing, this drops to 1.6 for the 15-km case. Similarily, the maximum supercritical

value decreases significantly from 18.2 in the 500-m run to 4.5 in the 15-km runs.

Subcritical
α <0.8

Near-critical
0.8<α <1.3

Supercritical
α >1.3

Mean
supercritical

value

Maximum
supercritical

value
500-m 85.5 % 5.5 % 9.0 % 2.8 18.2
1.5-km 86.5 % 5.4 % 8.1 % 2.7 14.0
5.5-km 89.6 % 5.2 % 5.2 % 2.1 10.0
15-km 94.7 % 3.4 % 1.9 % 1.6 4.5

Table 5.1: Percentage of domain that is sub-critical, near-critical (defined as 0.9 <α< 1.1) and
supercritical for the 0.5 km, 1.5 km and 5.5 km model.

5.3 MODELLING RESULTS

All model runs use a similar setup to the control run as defined in Chapter 2 i.e. 32

tidal cycles, summer stratification and the medium domain size, but with different

bathymetries, namely the 500-m, 1.5-km, 5.5-km and 15-km grids.

5.3.1 BAROTROPIC-TO-BAROCLINIC ENERGY CONVERSION

The spatial pattern of barotropic-to-baroclinic energy conversion is similar for the

500-m and 1.5-km model runs (Figures 5.4 (a,b)) but with reduced amplitude in

the 1.5-km case. With increased smoothing, the amplitudes of conversion are

further reduced and regions of positive conversion in the 500-m and 1.5-km runs,

namely conversion in Limbs 1 and 3, are absent in both the 5.5-km and 15-km runs

(Figures 5.4 (c,d)). The spatial pattern of barotropic-to-baroclinic energy conversion

closely mirrors the distribution of supercritical regions for each model run, as shown

in Figure 5.3. The main positive conversion sites within Whittard Canyon are localised

over the steep flanks of the canyon limbs. Positive energy conversion in Shamrock

Canyon and the region to the east of Whittard Canyon is a persistent feature of

all model runs, further confirming the findings of Chapter 4 that this region is an

important source of baroclinic energy within this area. Negative conversion is also
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reduced in both the 5.5-km and 15-km runs in comparison to the higher resolution

runs. Negative energy conversion originates from the phase difference between

remote and locally generated internal tides (Zilberman et al., 2009; Kelly and Nash,

2010), hence a reduction in negative conversion perhaps indicates that smoothing of

the bathymetry results in the reduction of local generation sites in the limbs of the

canyon.
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Figure 5.4: M2 barotropic-to-baroclinic energy conversion, Econv , for the (a) 500-m, (b) 1.5-
km, (c) 5.5-km and (d) 15-km model runs. Depth contours are plotted every 500 m.

Domain averaged and domain integrated barotropic-to-baroclinic energy

conversion decrease with smoothing from 7.9 mW m−1 and 0.66 GW, respectively, in

the 500-m run to 4.4 mW m−1 and 0.37 GW, respectively, in the 15-km run (Table 5.2).

Domain-averaged conversion in the 500-m model run is 9.3%, 22.2% and 78.4%
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higher than that for the 1.5-km, 5.5-km and 15-km runs. The total amount of

conversion occuring in the Shamrock Canyon region, however, stays fairly consistent

despite smoothing (0.17 GW in the 500-m run to 0.14 GW in the 5-km run). Once

again, the conversion in the 500-m and 1.5-km runs is broadly similar; over the

Whittard Canyon region the area-integrated conversion for the 500-m and 1.5-km

runs are 0.32 and 0.31 GW, respectively.

Model run Region
Area-integrated

Econv

(GW)

Area-averaged
Econv

(mWm−2)

500 m
Entire domain 0.66 7.9
Whittard Canyon 0.32 14.2
Shamrock Canyon 0.17 33.5

1.5 km
Entire domain 0.63 7.5
Whittard Canyon 0.31 13.5
Shamrock Canyon (partial) 0.17 33.5

5.5 km
Entire domain 0.54 6.5
Whittard Canyon 0.26 11.3
Shamrock Canyon 0.17 32.9

15 km
Entire domain 0.37 4.4
Whittard Canyon 0.16 7.0
Shamrock Canyon 0.14 27.5

Table 5.2: Area-integrated and area-averaged barotropic-to-baroclinic energy conversion for
the 500-m, 1.5-km, 5.5-km an 15-km model runs for each entire domain, and within each
domain, the Whittard Canyon region and the Shamrock Canyon region.

5.3.2 BAROCLINIC ENERGY FLUX

The spatial patterns of depth-integrated baroclinic energy flux for all model runs

are suprisingly similar on a broad scale (Figure 5.5), given the significant differences

observed in baroclinic energy conversion (Figure 5.4). All model runs show a beam of

baroclinic energy flux propogating southwest from Shamrock Canyon, and another

beam propogating northwest along the western flanks of Brenot Spur and into Limb4.

The spatial patterns in the 500-m and 1.5-km runs on a finer scale, however, are more

complex, with the orientations of baroclinic energy flux vectors being more variable.

With increased smoothing, baroclinic energy flux is more or less absent from the

western part of Whittard Canyon in the 1.5-km and 15-km model runs. However,

the maximum baroclinic energy flux magnitudes increase with smoothing; the largest
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fluxes are found in the 15-km run, reaching values >10 kW m−1 over Limb4.
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Figure 5.5: Depth-integrated baroclinic M2 energy flux for the (a) 500-m, (b) 1.5-km, (c) 5.5-
km and (d) 15-km model runs. Vectors are plotted every 40 model grid points (≈ 20 km) in each
direction. The underlying colour is the energy flux magnitude. Depth contours are plotted
every 300 m.

Both domain integrated and domain averaged baroclinic flux divergence decrease
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with smoothing (Table 5.3). However, when individual regions are looked at, this

is not the case. Smoothing the bathymetry appears to increase the area-integrated

baroclinic flux divergence over Shamrock Canyon, from 0.13 GW in the 500-m run

to 0.16 GW in the 5.5-km run. In the 15-km run, it decreases back down to 0.14 GW.

Over the Whittard Canyon, the pattern is the opposite; smoothing the bathymetry

appears to decrease the area-integrated baroclinic flux divergence over Whittard

Canyon, from -0.05 GW in the 500-m run to -0.07 GW in the 5.5-km run. In the 15-km

run, it increases back up to -0.06 GW. The percentage of the converted barotopic-to-

baroclinic energy that is radiated out of the domain increases with smoothing: 16.4%,

17.1% and 20.3% in the 500 m, 1.5 km and 5.5 km runs, respectively. However, the

percentage of the total barotropic-to-baroclinic energy conversion within the domain

that is converging on the Whittard Canyon region increases with smoothing, 5.5%,

5.7% and 9.4% in the 500 m, 1.5 km and 5.5 km runs, respectively.

Model run Region

Area-integrated

∇·F

(GW)

Area-averaged

∇·F

(mWm−2)

500 m

Entire domain 0.14 1.70

Whittard Canyon -0.05 -2.20

Shamrock Canyon 0.13 25.7

1.5 km

Entire domain 0.12 1.50

Whittard Canyon -0.06 -2.50

Shamrock Canyon (partial) 0.13 26.4

5.5 km

Entire domain 0.13 1.50

Whittard Canyon -0.07 -3.20

Shamrock Canyon 0.16 30.9

15 km

Entire domain 0.10 1.20

Whittard Canyon -0.06 -2.50

Shamrock Canyon 0.14 27.2

Table 5.3: Area-integrated and area-averaged baroclinic energy flux in the 500-m, 1.5-km,
5.5-km and 15-km model runs for each entire domain, and within each domain, the Whittard
Canyon region and the Shamrock Canyon region (only wc03 contains this complete region).
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5.3.3 BAROCLINIC ENERGY DISSIPATION

Assuming that all net energy (net baroclinic-to-barotropic energy conversion minus

baroclinic energy flux divergence) into each region is dissipated, baroclinic energy

dissipation can be calculated. Inferred dissipation for the entire domain in each

model run decreases with smoothing, from 0.52 GW in the 500-m run to 0.27 GW in

the 15-km run (Table 5.4). Baroclinic dissipation within the Whittard Canyon region

accounts for most of the dissipation in each model run. Furthermore, the percentage

of total dissipation that the Whittard Canyon accounts for increases with smoothing,

from 71.1% in the 500-m run, to 81.5% in the 15-km run. In contrast, baroclinic

dissipation within Shamrock Canyon is small and the percentage of total dissipation

that it accounts for decreases with smoothing (7.7%, 7.8%, 2.4% and 0.5% of total

dissipation in the 500-m, 1.5-km, 5.5-km and 15-km runs, respectively).

Model run Region
Total

dissipation
(GW)

500 m
Entire domain 0.52
Whittard Canyon 0.37
Shamrock Canyon 0.04

1.5 km
Entire domain 0.51
Whittard Canyon 0.37
Shamrock Canyon (partial) 0.04

5.5 km
Entire domain 0.41
Whittard Canyon 0.33
Shamrock Canyon 0.01

15 km
Entire domain 0.27
Whittard Canyon 0.22
Shamrock Canyon 0.00

Table 5.4: Inferred dissipation in the 500-m, 1.5-km, 5.5-km and 15-km model runs for each
entire domain, and within each domain, the Whittard Canyon region and the Shamrock
Canyon region (only wc03 contains this complete region).
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5.4 DISCUSSION AND CONCLUSIONS

The barotropic-to-baroclinic energy conversion estimates calculated here for model

runs using differing resolutions of bathymetry highlight the importance of using

the highest resolution bathymetry available. Using a 500-m gridded bathymetric

dataset results in domain-averaged conversion rates that are 5.3%, 21.5% and 79.5%

higher than model estimates using the 1.5-, 5- and 15 km smoothed bathymetries,

respectively. Similar reductions in conversion with decreasing topographic resolution

have been calcuated when assessing tidal conversion at the Hawaiian islands (Carter

et al., 2008) and at the Mid-Atlantic Ridge (Zilberman et al., 2009).

The main conversion sites in Whittard Canyon are located at near-critical and

supercritical sites. Smoothing the bathymetry not only decreases the proportion of

slopes which are supercritical, but also decreases the maximum value of supercritical

slope observed. Hall et al. (2013) found that partially supercritical slopes reflected

a similar proportion of internal wave energy as entirely supercritical slopes, and

that the fraction reflected was dependent only on maximum slope criticality. The

smoothed bathymetry is therefore likely to underestimate generation and also not

accurately model the reflective behaviour of internal tides within this region.

The bathymetric resolution used also affects the ratio of baroclinic energy that

is radiated versus local dissipation. The ratio of converted energy that is dissipated

within the domain is 78.8 %, 81.0 %, 75.9 % and 70.3 % in the 500-, 1.5-,5- and

15-km model runs. bathymetries. We hypothesise that as the roughness of the

topography is resolved, increased topographic scattering from low to high modes

occurs (e.g. Müller and Xu, 1992) The small vertical wavelengths and high shear of

high mode internal tides make them more susceptible to mixing than their low mode

counterparts (St. Laurent and Garrett, 2002), resulting in increased dissipation within

the domain. To confirm this hypothesis it would be pertinent to follow the method of

Zilberman et al. (2009) and analyse the modal structure of conversion and dissipation

within the region. Figure 5.2 certainly indicates that with increased smoothing there is

less variability of the topographic height and slope over spatial scales where scattering

of low mode number internal waves are present. Bell (1975, 1974) state that tidal flow

over high horizontal wavenumber vertical topography generates high wavenumber

internal tides. Therefore, if high horizontal wavenumber bathymetry is not resolved
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in the smoothed model runs then the modal structure of conversion will also differ.

It may not be intuitive to non-modellers that in fact, high resolution bathymetry

can also be a hindrance. As shown in Chapter 4, the complex bathymetry

results results in correspondingly complex patterns of local and remote generation

(Section 4.2), reflection of internal waves (Section 4.3.4) and feedback between

conversion and flux (Section 4.6.1), resulting in an internal tide field that is not easy

to decipher. Using lower resolution bathymetry results in simplified bathymetry that

approaches the idealised modelling approach (e.g. Petruncio et al., 2002; Zhang et al.,

2014) whereby, due to the limited number of parameters and simplified scenarios,

processes can be elucidated more clearly. For example, depth-integrated baroclinic

energy flux in the model run with the most smoothed bathymetry (Figure 5.5 (d))

shows that Shamrock Canyon and Brenot Spur are key generation sites without noise

from baroclinic flux originating from conversion elsewhere in the canyon. This model

run would therefore be a good starting point to analyse to unpick exactly why this

region is such an effective generator of internal tides.

Obtaining high quality and complete high resolution bathymetric datasets can be

difficult due to the onerous nature of data collection, leading to a reliance on global

products. As discussed in Chapter 2, there was an incomplete high resolution (5̃00 m)

bathymetric dataset that had to be completed using the GEBCO 30-arcsecond grid,

leading to artefacts. If accurate estimates of barotropic-to-baroclinic conversion are

required, however, high resolution datasets are needed. To this end, we recommend

that although the 1.5-km model is similar to the 500-m model run, for the purposes

of understanding the 3D structure in the canyon, the bathymetric resolution needs

to be as high as possible. However, if a larger domain size was needed, for

example, to diagnose far field generation, it would be reasonable to use the 1.5-

km model bathymetry to reduce the computational expense of running the model

In conclusion, the choice of bathymetric resolution to be used in oceanographic

simulations requires a degree of pragmatism.





6
INTERNAL TIDE LAYERS FOR PREDICTIVE

HABITAT MODELS

6.1 INTRODUCTION

Submarine canyons are often termed ’biodiversity hotspots’ (De Leo et al., 2010) and

it is thought that oceanographic processes within canyons, such as internal tides, can

contribute to habitat heterogeneity and hence modulate biological abundance and

diversity. One way of testing whether internal tides are a control on habitats is to carry

out an observational programme where data on both the biology and oceanography

are collected simultaneously and then relationships inferred, however, this is time

intensive and expensive. Within Whittard Canyon, Robert et al. (2015) have used

predictive habitat models (PHMs) to link spatial variation in observed biological

characteristics with bathymetry-derived environmental variables (e.g., slope, depth,

aspect and roughness), however, they suggest that the addition of hydrodynamic

variables related to internal tides may reduce the amount of unexplained variation

and help to start identifying what specific processes cause the internal tide to

modulate biology within the canyon.

In this chapter we discuss what variables can be extracted from POM and how they

can be adapted to be used in PHMs, specifically looking at isopycnal displacement as

an example. The resulting layers can then be utilised within PHMs developed and

111
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described in Robert et al. (2015) so that the impact of internal tides on habitats within

Whittard Canyon can be assessed. All layers produced use the control model setup

as defined in Chapter 2 i.e. 32 tidal cycles, summer stratification and the medium

domain size.

6.2 PRELIMINARY RESULTS

To determine whether incorporating modelled output was feasible, a layer consisting

of a ‘snapshot’ of the modelled near-bottom velocity was produced. By ‘snapshot’, we

mean the magnitude and direction of velocity at an arbitrary point of time. The layer

produced combined both the baroclinic (M2 internal tide) and barotropic (surface

tide) components of near-bottom velocity. This layer was then included within a

PHM1 of Whittard Canyon. The preliminary results suggest that the inclusion of tidal

near-bottom velocities can help improve the model’s skill in predicting megafaunal

abundance, species richness and diversity (Figure 6.1). Although the results are

promising, they do not specifically test the impact of the internal tide on habitats

solely, nor, as a simple snapshot, does the layer robustly represent the temporal

variability of internal tides within the region.

1Predictive habitat modelling work carried out by Kathleen Robert (NOC)
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Figure 6.1: (a) Improvement in PHM performance through the inclusion of modelled near-
bottom velocity as shown in (b). (b) Snapshot of modelled near-bottom velocity (barotropic
plus baroclinic) used as a layer in the PHM. Vectors are plotted every 15 model grid points
(7.5 km) and vectors shallower than 300 m are omitted for clarity. Depth contours are plotted
every 300 m.

6.3 HYDRODYNAMIC VARIABLES SELECTION

Data for all variables to be used are taken from the near-bottom layer of the three-

dimensional model, an approximation of the benthic boundary layer. The variables

include:

• Horizontal flow parameters i.e. current speed and direction for both the

barotropic and baroclinic components of velocity

• Vertical flow parameters, including the resulting barotropic and baroclinic

isopycnal displacments (See Section 6.4)

• Variability in temperature and salinity derived from isopycnal displacements

(See Section 6.4)

• Criticality, α i.e the ratio of the topographic slope to the internal wave
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characteristic slope as defined in Section 4.3.4

• Internal wave specific diagnostics i.e. baroclinic energy flux, barotropic-to-

baroclinic energy conversion, HKE and APE as defined in Section 2.2.3

The dynamical scaling parameters and criticality require no further processing to

be usuable by PHMs as they are not time varying. POM, as described in Section 2.2.3,

applies harmonic fits to the model and outputs amplitudes and phases. This is

necessary as it would be too computationally expensive to output the raw values. For

the purpose of producing layers, the maximum amplitude is therefore used.

6.4 ISOPYCNAL DISPLACEMENT

Creating a layer which captured isopycnal displacement caused by both the internal

and surface tide is more involved than some of the other variables. However it was

important to create such a layer as isopycnal displacements can advect the local

stratification introducing variability in other parameters.

6.4.1 BAROTROPIC ISOPYCNAL DISPLACEMENT

The barotropic vertical velocity at the sea floor bottom, wB t , is caused by barotropic

flow across sloping topography (Niwa and Hibiya, 2001; Zilberman et al., 2009), and

is given by

wB t =−u′
B t .∇H (6.1)

where u′
B t is the depth-averaged horizontal velocity from the harmonic output of

the model (Equation (2.5)) and H is the water depth (Garrett and Kunze, 2007). The

associated isopycnal displacement can then be calculated using

[
ξBTr ,ξBTi

]= [−wBTi , wBTr

]
/ω (6.2)

The resulting maps of barotropic isopycnal displacement amplitude and phase

(Figure 6.2) show that barotropic isopycnal displacement is enhanced over the upper

limbs of the canyon and is particularily high over Limb 4, with amplitudes up to 300 m

being reached. The phase of barotropic isopycnal displacement phase is coherent,
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but this should be expected as the barotropic forcing in the model doesn’t vary much

and is dependant on the topographic slope.

11°W 10°W

48°N

49°N

11°W 10°W

48°N

49°N

0 100 200 300 -π π-π/2 π/20

Isopycnal displacment amplitude (m) Isopycnal displacment phase (rad)

Figure 6.2: Barotropic isopycnal displacment amplitude (left) and phase (right). Contours are
plotted every 300m

6.4.2 BAROCLINIC ISOPYCNAL DISPLACEMENT

Determining baroclinic isopycnal displacement in the model is not as simple as for

the barotropic case. Using the baroclinic vertical velocity, w , at the sea floor bottom

in the model to calculate isopycnal displacement is not possible as the model output

for w goes to zero at the bathymetric boundaries. It is therefore not possible to

calculate the baroclinic isopycnal displacment “seen” by a given point on the seafloor.

Instead we consider what is happening around the point and use an algorithm to

average the baroclinic vertical velocities in a horizontal plane around each point on

the seafloor through the sigma-coordinate grid. For this purpose, we use two square

mean filters: a 3 × 3 grid point window (1 km) and a 5 × 5 grid point window (2.5

km). The two square mean filters are used as the values for w at the boundaries next



116 INTERNAL TIDE LAYERS FOR PREDICTIVE HABITAT MODELS

to the bathymetry in the model are more suspect, hence by increasing the window

over which values are averaged, we reduce the likelihood of erroneous values. The

associated isopycnal displacement can then be calculated using

[
ξBCr ,ξBCi

]= [−wBCi , wBCr

]
/ω (6.3)

The resulting maps of baroclinic isopycnal displacement amplitude and phase

(Figure 6.3) have areas of missing data where the the average was taken around a

point that is a topographic depression. The horizontal plane through the surrounding

bathymetry therefore passes beneath the bathymetric grid’s bottom boundary. The

amount of missing data decreases with a larger square mean filter (Figure 6.3 (b)) as

the average is calculated from more data points, so more of the horizontal plane being

averaged over is likely to be above the bottom of the model’s bathymetric grid.

Similar to barotropic isopycnal displacment, the baroclinic component is also

enhanced over the upper limbs of the canyon, with amplitudes up to 300 m being

reached. The phase of barotropic isopycnal displacement phase is incoherent

(Figure 6.4), a product of the likely interaction between remotely and locally

generated internal tides as discussed in Section 4.6.1.
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Figure 6.3: Baroclinic isopycnal displacement amplitude using (a) 1 km square average and
(b) 2.5 km square average. Contours are plotted every 300 m.
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Figure 6.4: Baroclinic isopycnal displacement phase using (a) 1 km square average and (b) 2.5
km square average. Contours are plotted every 300 m.
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6.4.3 TOTAL ISOPYCNAL DISPLACEMENT

Total isopycnal displacement due to both the barotropic and baroclinic tide can

be calculated by summing the real and imaginary components of ζBT and ζBC .

Limb4 has been identified as being particularily energetic (Chapter 4) and hence

the total isopycnal displacement amplitude is provided for this region for reference

(Figure 6.5).



6
.4

.IS
O

P
Y

C
N

A
L

D
IS

P
L

A
C

E
M

E
N

T
119

9°45'W10°W

48°30'N

48°45'N

0 100 200 300
Isopycnal displacement amplitude (m)

(a) (b) (c)

Figure 6.5: Isopycnal displacement amplitude in Limb4 associated with: (a) the M2 surface tide (ζBT ), (b) the M2 internal tide (ζBC ) and (c) the two
combined. Note that the total isopycnal displacement is a summation of the real and imaginary components of ζBT and ζBC .
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Using this isopycnal displacment, and dissolved oxygen and temperature profiles

collected using a Seaglider2 (Figure 6.6 (c)), we calculate the variability in temperature

and dissolved oxygen concentrations that benthic organisms on the canyon walls

might encounter. The local gradients in temperature ( dT
d Z ) and oxygen concentration

( d(c(O2))
d Z ) from the profiles are multiplied by the total isopycnal displacment, ζTot al ,

at each grid point to give the near-bottom temperature and oxygen concentration

variability (T ′ and c (O2)′, respectively):

T ′ = ζTot al
dT

d Z
(6.4)

c (O2)′ = ζTot al
d (c (O2))

d Z
(6.5)

The maps of temperature and oxygen concentration variability (Figures 6.6 (a,b))

show that near-bottom temperature can vary by up to 3◦C and near bottom oxygen

concentration by up to 50 µmol/kg. The temperature variability is highest around

depths of 1000 m. This depth lies within the permanent thermocline i.e. the depth

range where the vertical temperature (and density) gradients are largest. This strong

vertical density gradient in combination with the steep continental slope at these

depths leads to enhanced internal wave activity (White and Dorschel, 2010), resulting

in large isopycnal displacments. The resulting isopycnal displacment then advects

the high temperature gradients, leading to large variability. The peak in oxygen

concentration variability occurs at shallower depths, corresponding to the where the

gradient in oxygen concentration profile is largest.

2The Seaglider was equipped with a standard Sea-Bird Electronics conductivity-temperature sail
sampling at 0.2 Hz and an Aanderaa 4330F dissolved oxygen optode (for further details of the
deployment, see Chapter 3)



6
.4

.IS
O

P
Y

C
N

A
L

D
IS

P
L

A
C

E
M

E
N

T
121

9°45'W10°W

48°30'N

48°45'N

0 1 2 3
T' (°C) 

0 10 20 30 40 50
c (O2)' (µmol/kg) 

0 10 20
−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Potential temperature (°C)

Z
(m

)

180 200 220 240 260

Oxygen concentration (µmol/ kg)

Figure 6.6: (a) Near-bottom temperature variability due to total (barotropic + baroclinic) modelled isopycnal displacement. The 1000 m isobath is
indicated by the bold line. (b) Near-bottom oxygen variability due to total modelled isopycnal displacement. (c) Oxygen (black) and temperature (red)
profiles used to calculate (a) and (b).
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6.5 DISCUSSION AND CONCLUSIONS

The work presented here is a preliminary attempt looking at how information about

the internal tide can be extracted from the current model and prepared for use in

PHMs. As the internal tide is postulated to have a potentially large impact on biology,

the need to incorporate hydrodynamic variables into predictive habitat models is

prescient. The internal tide field within Whittard Canyon, as shown in Chapter 4,

is highly spatially variable on a broad scale, with some limbs (limb 4), clearly more

energetic than others. On a finer scale, there is also great variation within individual

limbs (Section 4.3), however care must be taken as this local variation may in part be

an artefact of flawed bathymetry and stratification that isn’t representative of reality.

As discussed by Wilson et al. (2015b), there is variability in stratification between

limbs, however the model cannot capture this due to the use of a horizontally uniform

stratification. In addition there were issues in the production of the bathymetric grid

(Chapter 2) which may have led to artefacts. Despite the model using a fairly high

bathymetric resolution for POM, it still is not sufficient to resolve many key features

of the canyon such as vertical canyon walls. Also, as identified by the offset between

the two data products used to create the bathymetric grid used here (Chapter 2),

geolocation of the bathymetry datasets with real life may be an issue, and would have

to be considered carefully. It is also important to note how coarse the resolution of

the model’s bathymetry is in relation to the resolution with which the occurence of

biological data can be collected using remotely operated vehicles (on the order of tens

of centimetres).

The harmonic output of POM means that phase and amplitude of time-varying

quantities are output, rendering time-averages across tidal cycles meaningless (they

would average to 0), hence, the temporal variability of the internal tide cannot

currently be captured in these layers. In addition, many of the layers produced

are derived from parameters which in themselves can form layers. It is important

therefore to test each layer individually to avoid double weighting the impact of any

given parameter on habitats (e.g. Guisan and Zimmermann, 2000).

The maps of variability in temperature and oxygen concentration produced using

isopycnal displacements extracted from the model show how the current model

output can be used in combination with other data sources to provide potentially
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useful layers. It is beyond the scope of this work to unpick what these specific

values of variability would mean for biology within the canyon, however, the map

of temperature variability is particularily interesting as it highlights the importance of

the permanent thermocline within the region for both the concentration of internal

tide energy and also potentially for biology (e.g. White and Dorschel, 2010). However,

this method is limited by the use of a temperature and oxygen concentration profile

from one limb extrapolated across the entire domain as a horizontally uniform field.

In future, information on such parameters from across the canyon should be used to

construct such maps of variability.

As discussed in Chapter 3, the absolute magnitudes of the different variables

should be treated with caution. It should be made clear to interdisciplinary

researchers using these layers that the results presented in this thesis are model

output, and not reality. However on a canyon wide scale, the results presented

in this work provide a first overview of the spatial variability of the internal tide

within a complex canyon and the potential to improve the model skill of predictive

habitat models and hence help to elucidate the bio-physical connections between

the internal tide and biology.





7
SUMMARY AND SYNTHESIS

This chapter provides a summary of all the key findings in this thesis and

recommendations for future work.

7.1 SUMMARY

7.1.1 MODEL SETUP

Accurately representing seafloor bathymetry is a vital part of any numerical modelling

procedure to ensure that the internal tide field in the simulations are as close to

reality as possible. A complete bathymetric dataset of the Whittard Canyon and

surrounding area at the right resolution required for this work was not available,

and therefore two data products were required to create one complete bathymetry

input file. Combining GEBCO and INFOMAR data highlighted the difficulty of

using products which may be geolocated differently, may have undergone different

processing procedures and are of different resolutions.

The correct domain size is also imporant to identify. The right domain size

must be selected so that all the key generation sites are present, however too large

a domain size is computationally expensive. The results of domain size sensitivity

testing indicate that a domain that only includes Whittard Canyon does not include

all of the generation sites that contribute to the internal tide field in the canyon itself.

125
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Shamrock Canyon is identified as a key generation site.

7.1.2 MODEL VALIDATION

The errors calculated between the model and observations at first glance appear

high, however previous work in Monterey Canyon by Carter (2010) using POM found

similar RMS errors, ranging between 30% - 209%. The errors are reasonable when the

shortcomings of the model and observations are considered. Bathymetric resolution

is a key determinant of model skill, however increasing bathymetric resolution to

sufficiently resolve the complex bathymetry encountered in Whittard Canyon is too

computationally expensive and still would not be able to resolve features such as

overhangs.

7.1.3 INTERNAL TIDES IN WHITTARD CANYON

The internal tide within Whittard Canyon is spatially complex, however, through

this work the key generation sites have been identified. Shamrock Canyon and the

region to the west of Brenot Spur are key remote sources of baroclinic energy. Local

generation also occurs within the canyon, but is modulated by a flux-conversion

feedback that is dependant on the phase of the remotely generated internal waves.

The results presented here highlight how important choosing the correct domain

size is for barotropic-to-baroclinic conversion to be estimated accurately, as if key

remote sources are omitted, even local generation is affected. The Bay of Biscay

to the east of Whittard Canyon may be a source of farfield generation for Whittard

Canyon, so it is advised that a much larger domain size be used to identify whether

this is the case. Furthermore, internal tide barotropic-to-baroclinic conversion is

also dependant upon bathymetry, therefore sufficiently high resolution topography

is required to accurately estimate conversion.

The internal tide is enhanced throughout all limbs in the canyon, but variably so,

relating to different remote sources of internal tides and differing reflection regimes.

The propogation of the internal tide is dominantly up-slope and the corresponding

baroclinic energy flux is bottom intensified along depths of 1000-2500 m which

correlates with the position of the permanent thermocline within the region. The

permanent thermocline associated with the MOW is likely to act as a waveguide for
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freely propogating internal waves, focusing energy at the seabed (Puig and Palanques,

1998). This work provides confirmation that internal wave activity is enhanced over

the region associated with the permanent thermocline, with implications for biology

(Amaro et al., 2016) and the formation of nepheloid layers (Wilson et al. (2015b).

7.1.4 BATHYMETRIC RESOLUTION EFFECTS ON THE INTERNAL TIDE

The barotropic-to-baroclinic energy conversion estimates calculated for model

runs using differing resolutions of bathymetry highlight the importance of using

the highest resolution bathymetry available. Using a 500-m gridded bathymetric

dataset results in domain-averaged conversion rates that are 5.3%, 21.5% and

79.5% higher than model estimates using the 1.5-, 5- and 15 km smoothed

bathymetries, respectively. Similar reductions in conversion with drecreasing

topographic resolution have been calcuated when assessing tidal conversion at the

Hawaiian islands (Carter et al., 2008) and at the Mid-Atlantic Ridge (Zilberman et al.,

2009).

The bathymetric resolution used also affects the ratio of baroclinic energy that

is radiated versus local dissipation. The ratio of converted energy that is dissipated

within the domain is 78.8 %, 81.0 %, 75.9 % and 70.3 % in the 500-, 1.5-,5- and

15-km model runs. bathymetries. We hypothesise that as the roughness of the

topography is resolved, increased topographic scattering from low to high modes

occurs (e.g. Müller and Xu, 1992) The small vertical wavelengths and high shear of

high mode internal tides make them more susceptible to mixing than their low mode

counterparts (St. Laurent and Garrett, 2002), resulting in increased dissipation within

the domain. To confirm this hypothesis it would be pertinent to follow the method of

Zilberman et al. (2009) and analyse the modal structure of conversion and dissipation

within the region.

7.1.5 INTERNAL TIDE LAYERS FOR PREDICTIVE HABITAT MODELS

The harmonic output of POM means that phase and amplitude of time-varying

quantities are output, rendering time-averages across tidal cycles meaningless (they

would average to 0), hence, the temporal variability of the internal tide cannot

currently be captured in these layers. In addition, many of the layers produced
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are derived from parameters which in themselves can form layers. It is important

therefore to test each layer individually to avoid double weighting the impact of any

given parameter on habitats (e.g. Guisan and Zimmermann, 2000).

The maps of variability in temperature and oxygen concentration produced using

isopycnal displacements extracted from the model show how the current model

output can be used in combination with other data sources to provide potentially

useful layers. It is beyond the scope of this work to unpick what these specific

values of variability would mean for biology within the canyon, however, the map

of temperature variability is particularily interesting as it highlights the importance of

the permanent thermocline within the region for both the concentration of internal

tide energy and also potentially for biology (e.g. White and Dorschel, 2010). However,

this method is limited by the use of a temperature and oxygen concentration profile

from one limb extrapolated across the entire domain as a horizontally uniform field.

In future, information on such parameters from across the canyon should be used to

construct such maps of variability.

7.2 SYNTHESIS

7.2.1 IMPLICATIONS FOR NEPHELOID LAYER GENERATION

As previously mentioned, many studies have linked the focusing of internal wave

energy within submarine canyons to benthic resuspension and nepheloid layer

formation (McPhee-Shaw and Kunze, 2002; McPhee-Shaw et al., 2004; Thorpe and

White, 1988). Within Whittard Canyon specifically, recent works (Wilson et al., 2015b;

Huvenne et al., 2011; Johnson et al., 2013) have extensively mapped both bottom

and intermediate nepheloid layers and postulated that the internal tide within the

canyon is major control on their formation. The permanent thermocline associated

with the MOW is likely to act as a waveguide for freely propogating internal waves,

focusing energy at the seabed (Puig and Palanques, 1998). Once material has been

resuspended, the thermocline then acts as a surface along which resupended and

advected material can be held in suspension.

As discussed in Chapter 4, cores of baroclinic energy flux within the canyon are

bottom intensified over the depths 1000-2500 m. When the depth ranges of these
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baroclinic energy fluxes are plotted alongside the depth ranges over which nepheloid

layers in the Whittard Canyon are sourced from (taken from Wilson et al. (2015b)),

a correlation is apparent (Figure 7.1). This suggests that bottom intensification of

baroclinic energy and the source regions for nepheloid layers within the canyon are

related and that the internal tide is perhaps driving the resuspension and transport of

material from the seabed.

Limb 1 Limb 1a Limb 2 Limb 2a Limb 2b
−2500

−2000

−1500

−1000

−500

0

Figure 7.1: Depth ranges of baroclinic energy flux cores in the model (black) in comparison
with the depth range from where nepheloid layers are sourced (dashed red) (Wilson et al.,
2015b).

For the NE Atlantic margin, Thomsen and Gust (2000) suggest a value of 0.15 m s−1

as a typical threshold speed for the resuspension of fresh organic material. As

shown in Figure 7.2, maximum current amplitudes in the model do exceed this value,

however, rather than looking at an instaneous speed at the peak of the internal tidal

cycle, it is perhaps more instructive to look at a measure of speed over the tidal

cycle such as the RMS speed. Resuspension of material, caused by the internal tide,

can therefore occur over large parts of the canyon. The mechanism by which this

resuspended material is advected and held in suspension and transported laterally

to the mouth of the canyon is not clear, however, it is clear that the source regions

for nepheloid layers are intimately connected with the dynamics of the internal tide

within the region.
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49°N

48°N

10°W11°W

Figure 7.2: Locations where RMS current speed for the baroclinic M2 tidal current exceeds
0.15 m s−1 (red). Depth contours are plotted every 200 m.

The occurence of nepheloid layers has also been postulated to be driven by

anthropogenic causes (Wilson et al., 2015a) and therefore further work must be

carried out to seperate internal tide effects from other factors. However, the distinct

conditions formed by the internal tide in the various canyon limbs are likely to have

an effect on sedimentation, resuspension of organic material and the distribution of

biological material. This has implications for habitats within the canyon, which it has

been suggested, rely on nepheloid layers as nutrient pathways (Johnson et al., 2013).

Further work, integrating internal tide hydrodynamics into predictive habitat models,

should aim to shed more light on the complex interplay between the internal tide and

the abundance and diversity of habitats within the region.
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7.2.2 THE VARIABILITY OF ON SHELF ENERGY FLUXES

The on shelf energy fluxes around the Whittard Canyon region, as demonstrated in

Section 4.5, are highly variable. This has implications for our current understanding

of the dynamics at the Celtic Sea shelf break, as the energy flux past a given point

provides an upper limit on the amount of energy available for dissipation and hence

turbulent mixing across the shelf. Current estimates of on shelf energy fluxes at

the Celtic Sea shelf edge are obtained from a few point measurements on shelf

(Green et al., 2008; Hopkins et al., 2014), resulting in widely varying values, from 28-

200 W m−1. Resulting estimates of dissipation from these few values therefore do

not account for the the degree of variability that the model output demonstrates.

Model output such as this should be used in future to inform the location of moorings

and sections during observational programmes in order to capture as much of the

variability as possible.

Also of note is that when the energy fluxes are integrated along the length of

the 300-m isobath, the on shelf baroclinic energy flux is a net positive value (3.38

MW). However, when this value is split into on and off shelf components it becomes

clear that a significant amount of energy is not only going on shelf, but is also

entering the canyon from generation on the shelf. This complex interplay between

baroclinic energy moving onto and from the shelf is likely to make interpretations of

observations at particular sites difficult to make. Hence, models that provide greater

spatial coverage should be used to aid in the interpretation of observational data.

Turbulent mixing at continental shelves is known to be more variable than in the

open ocean and a number of model parameterisation schemes have been formulated

to account for this (Carter et al., 2005). However, not all the sources of variability

have been determined. As the first numerical study of a dendritic canyon, the results

presented here may help to explain some of the variability at shelf edges which are

highly corrugated and incised by canyons with multiple limbs. As demonstrated

in this work, individual limbs within the canyon have markedly differnt dissipative

regimes (Section 4.4). Further work, both using models and observations should

focus on characterising the dissipative characteristics of dendritic canyons, as they

have previously been understudied.
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7.2.3 IMPORTANCE OF DOMAIN SIZE AND BATHYMETRIC RESOLUTION

FOR WIDER INTERNAL WAVE MODELLING STUDIES

The results of Chapters 2 and 5 highlight the importance of using the correct domain

size and bathymetric resolution in order to accurately model the internal tide within

the Whittard Canyon region. Varying the domain size in this study allowed for the

diagnosis of the key generation sites for internal tides within this region, both local

and remote. However, local generation within the canyon was found to be modulated

by a flux-conversion feedback which was dependant on the phase of remotely

generated internal waves. This further highlights the importance of choosing the

correct domain size, as even if key remote sources are omitted, even local generation

is affected. In this study, a coarse resolution large domain size (not presented here)

was used to broadly identify remote generation sites so that the three domain sizes

to be tested with higher resolution would not be missing key generation sites. This

process was also instructive in identifying what areas weren’t important generation

sites. If computational power is an issue, then it is as important to identify what does

not need to be included, as what should be included in a model domain.

Linear internal wave generation is strongly dependent on the horizontal and

vertical scales of bottom topography (Bell, 1975), therefore, using bathymetry that

accurately represents the region being studied is important in order to model

internal tide dynamics that broadly replicate reality. It can be argued that horizontal

wavelengths ranging from 60 m to 6 km forced by steady flows generate internal

waves (Cushman-Roisin and Beckers, 2011), however, obtaining bathymetric dataset

at this resolution is expensive and time consuming. However, if accurate estimates

of barotropic-to-baroclinic conversion are required, then high resolution datasets are

needed. We recommend that for the purposes of understanding the 3D structure in

the canyon, the bathymetric resolution needs to be as high as possible. However,

if a larger domain size was needed, for example, to diagnose far field generation,

it would be reasonable to use a lower resolution bathymetric grid to reduce the

computational expense of running the model. In conclusion, the choice of domain

size and bathymetric resolution to be used in oceanographic simulations should be

picked to suit the aim of the modelling study; it is not alway necessary to use a large

domain size, or the highest resolution bathymetric dataset.
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7.3 FUTURE WORK

The results presented in this work provide ample opportunities for future work,

through extension of the modelling work, and through application of a new

understanding of the internal tide to other disciplines.

Although the non-linear behaviour of internal waves is dicussed with regards

to breakdown of the internal waves during critical reflection, a shortcoming of

using POM, is that as a hydrostatic model it cannot capture such behaviour. It is

recommended that a non-hydrostatic model, such as MITgcm, be used to fill in

this missing information. With this additionaly suite of modelled results it may

be possible to answer the following question: at which topographic scale do non-

hydrostatic processes become important?

Additional simulations with different background stratifications would be useful

to investigate how changes in stratification impact the internal tide field. Changing

stratification is expected to have an impact, with a reduced near-surface stratification,

one would expect less energy to be transmitted onto the shelf as the seasonal

thermocline appears to act as a waveguide for internal tides. It would also be

interesting to help investigate the temporal variations in the internal wave field over

seasonal time scales.

Analysis of how bathymetric resolution results in differing conversion/dissipation

at different modes i.e. modal anaylsis as per the work of Zilberman et al. (2009), would

help to explain why the observed patterns of dissipation and conversion occur when

the bathymetry is smoothed.

It is beyond the scope of this work to remove the canyon completely and model

an idealised shelf profile, however idealised canyon studies that look at dendritic

canyons would also be useful to unpick the dynamics within the canyon, which this

work has only just touched upon.

The initial work on producing layers for predictive habitat models shows how

output from models can be used by other disciplines. With more information on the

geology of the canyon, one could estimate other parameters e.g. bottom stress values,

which may provide useful information for geomorphologists.
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7.4 CONCLUSION

The modelling efforts here provide the first detailed look at the internal tide structure

within Whittard Canyon and demonstrate the impact that the canyon has on the

Celtic Sea shelf region. The high energy associated with the internal tide is likely to

impact both biology within the canyon and sedimentation patterns, and for the first

time, information on the internal tide is provided for the entire canyon. Although

modelling results should be treated with caution, they provide unparalleled spatial

coverage for minimal cost. The modelling efforts here should be used to target areas

of interest in future observational programmes.
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Table A.1: List of model runs used in this thesis. The control run is marked in red.

Purpose Bathymetric grid Grid size Bathymetric resolution Stratification
Run length

(tidal cycles)
Run timea

wc01 301 × 461 500 m summer 21 9 hours
wc02 541 × 661 500 m summer 21 38 hours

Diagnosing domain size
sensitivity

wc03 781 × 861 500 m summer 21 46 hours
wc02 541 × 661 500 m summer 21 38 hours
wc02 541 × 661 500 m summer 32 55 hours

Diagnosing run length
sensitivity

wc02 541 × 661 500 m summer 43 72 hours
500-mb 541 × 661 500 m summer 32 55 hours
1.5-km 541 × 661 1.5 km summer 32 55 hours
5.5-km 541 × 661 5.5 km summer 32 55 hours

Diagnosing
bathymetric resolution

sensitivity
15-km 541 × 661 15 km summer 32 55 hours

a Run time on GRACE (High powered computing cluster) at the University of East Anglia.

b Identical to the wc02 bathymetric grid.
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MINOR CANYON LIMBS
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Figure B.1: Limb 1b along-canyon sections (b) Along-canyon and (c) across-canyon
baroclinic M2 energy flux with distance along the thalweg. Positive along-canyon values are
towards the head of the canyon. Positive across-canyon values are to the left when looking up
canyon.
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Figure B.2: Limb 1c along-canyon sections (See Figure B.1 for explanation)
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Figure B.3: Limb 2b along-canyon sections (See Figure B.1 for explanation)
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Figure B.4: Limb 2c along-canyon sections (See Figure B.1 for explanation)

(b) Along−canyon energy flux

D
ep

th
 (

km
)

−20 −10 0 10

0.5
1

1.5
2

2.5

(c) Across−canyon energy flux

D
ep

th
 (

km
)

−20 −10 0 10

0.5
1

1.5
2

2.5

Figure B.5: Limb 3b along-canyon sections (See Figure B.1 for explanation)
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Figure B.6: Limb 4b along-canyon sections (See Figure B.1 for explanation)
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