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ABSTRACT 

 

Tyre wastes and their blends with coal and a bituminous waste material obtained from the 

benzol distillation column of the by-product section of a coking plant were employed as a 

precursor for the production of activated carbons (ACs). Pyrolysis up to 850 °C followed by 

physical activation with CO2 yielded mesoporous carbons with different pore size 

distributions and surface areas depending on the degree of burn-off. ACs with surface areas 

of 475 and 390 m2/g were obtained for the two tyre wastes. The inclusion of coal in the 

blend gave rise to surface areas of up to 1120 m2/g due to an increase in the microporosity. 

The time needed to obtain the desired degree of burn-off depended on the reactivity of the 

char. The coal-containing materials required the longest amount of time. The surface 

chemistry of the samples was studied by Infrared spectroscopy (FTIR) and X-Ray 

photoelectron spectroscopy (XPS). The principal oxygenated groups found were quinones, 

lactones and carboxylic acids. 
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1. Introduction  

 The preparation of activated carbons has been the subject of extensive research 

study for many years [1-13] due to the diversity of their applications. Mainly though, activated 

carbons have been used as adsorbents and catalysts [14-19]. 

 Although it is the porous structure of activated carbons that will determine their 

performance, the presence of surface groups containing heteroatoms will confer upon them 

different chemical properties that will contribute to determining their final application.  

 Activated carbons can be produced from a range of carbonaceous materials including 

coal or biomass (coconut shell, wood, coir pitch, cellulosic waste orange peel, sawdust, rice-

husk, etc.) [20-25]. Waste tyres represent another valuable source of activated carbons 

because of their high carbon content [26]. This would also provide a way of recovering waste 

tyres, the generation of which is constantly increasing, causing numerous economic and 

environmental problems. Tyre material recycling is normally carried out by means of a 

shredding procedure that yields granulated rubber as its product and steel and reinforcing 

fibre in the form of fluff as sub-products. Rubber crumbs are applied in sports surfaces and 

as an additive for asphalt, etc. but so far no real use has been found for the fluff. 

The pyrolysis of tyre wastes yields three products: gas with a high calorific value, 

pyrolytic oil that can be used as fuel and as a source of benzene, toluene, xylene (BTX), and 

limonene and thirdly char that can be used as fuel, adsorbent or carbon black [27-32]. In 

order to obtain products with a high percentage of carbon and low ash content, co-pyrolysis 

with coal or bituminous wastes is a good option [26, 33, 34]. The co-processing of tyre 

crumbs with coal has also been studied as a way to improve coal liquefaction and hydro-

pyrolysis [26, 33, 35, 36]. However until now little work has been carried out on the co-

pyrolysis of tyre wastes (reinforcing fibre and tyre crumbs) with coal or with a bituminous 

waste [34]. 

The objective of the present study is to investigate the activation of chars obtained from 

two tyre wastes and their blends with coal and a bituminous residue that have different 

porous textures and surface chemistry characteristics. 
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2. Materials and Methods 

2.1 Materials 

Three components are obtained from the grinding of scrap tyres: tyre crumbs, 

reinforcing fibre and steel. In the present study tyre crumbs and reinforcing fibre were used 

to prepare tyre waste – derived activated carbons (ACs).  

The wastes used as raw materials for the production of the ACs were: tyre crumbs 

(TC) and reinforcing fibres (RF) derived from the grinding of End-of-Life-Tyres (ELTs), 1:1 

blends of TC and RF with a low rank coal, and 1:1 blends of RF with a bituminous waste 

material (BWM). 

The chars were produced in a rotary oven (5ºC/min up to 850ºC with a soaking time 

of 30 minutes) and in a nitrogen atmosphere as explained in a previous paper [26]. Physical 

activation was also carried out in the rotary oven at 850ºC with a flow of 250 ml/min of CO2 

for various periods of time in order to obtain different degrees of burn-off expressed on an 

ash free basis (B.O.) throughout the manuscript.  

The elemental analysis was carried out using a LECO CHN-2000 instrument for the 

C, H and N analysis, a LECO S-144 DR device for the sulphur analysis and a LECO VTF-

900 instrument for direct oxygen determination. 

2.2 Textural characterization 

The textural properties of the ACs were studied from N2 adsorption isotherms at 77 K 

on a Micromeritics ASAP 2420 apparatus. The software package provided with the 

equipment was used to determine the BET surface area (SBET) and the total pore volume 

(Vt) at p/p0=0.97. The micropore volume (Vmicro) was determined by applying the Dubinin-

Radushkevich (D-R) equation to the lower relative pressure zone of the isotherm. The 

mesopore volume (Vmeso) was calculated by subtracting the micropore volume from the total 

pore volume (Vt). The Kelvin condensation theory was employed to examine the mesopore 

volume distribution [37]. The samples (approximately 0.25 g) were degasified under vacuum 

at 200 °C for 12 h prior to N2 adsorption to eliminate any moisture and condensed volatiles. 
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The IUPAC pore size classification that assigns a size of 2-50 nm to mesopores and a size 

of <2 nm to micropores was employed. 

2.3. Surface chemistry  

Fourier transform infrared spectroscopy (FTIR) spectra were recorded on a Nicolet 

Magna-IR560 spectrometer equipped with a DTGS detector that operates at ambient 

temperature. Samples were prepared in the form of pellets using KBr as a matrix, in a ratio 

of 1 mg of sample to 600 mg of KBr. The pellets were dried at 120 °C for 24 h before 

analysis. The spectra were recorded from 4000 to 400 cm−1 by 128 interferograms at 

a resolution of 4 cm−1. 

X-Ray photoelectron spectroscopy (XPS) measurements were taken on a SPECS 

spectrometer equipped with a Phoibos 100 hemispherical analyzer. The X-ray radiation 

source was a monochromatic Al Ka (1486.74 eV) with a 100 W X-ray power and an anode 

voltage of 14.00 kV. The photo-excited electrons were analyzed in constant pass energy 

mode, using pass energy of 50 eV for the survey spectra and 10 eV for the high resolution 

core level spectra. CasaXPS software was employed for data processing. The compositions 

in atomic percentage (at. %) were determined from the survey spectra on the basis of the 

integrated peak areas of the main XPS peaks of the different elements (C(1s), N(1s), O(1s), 

S(2p) and Si(2p)) and their respective sensitivity factors. 

 

3. Results and discussion 

Examination of the activation curves provides very useful information for controling the 

activation process and determining the production cost. Physical activation depends on the 

reactivity of the char and the type of activating agent used. The activation curves obtained 

using CO2 as activating agent are shown in Figure 1. These curves represent the time 

required to obtain a specific burn-off on an ash free basis. All the materials show a linear 

trend with the exception of RF where the slope changes at 65 wt% BO. These results 

indicate that activation proceeded in a gradual way independently of the development of 
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porosity [38]. The slope of the lines is a measure of the reactivity of the material. It can be 

seen that the material which needed the least time to become an activated carbon with the 

highest B.O. was RF. When blended with coal and BWM, it required more time to reach the 

same degree of burn-off. Whereas TC took even more time. For example, the time needed 

to reach a B.O. of 65 % was 400 < 820 < 1290 < 1320 < 1800 min for RF < RF/BWM < TC < 

RF/Coal < TC/Coal, respectively. This order reflects the reactivities of the different chars. 

The chars from RF and TC are composed of a mixture of carbonized elastomers and 

polymers together with the carbon black used in the preparation of the tyres. In the case of 

RF the polymer with the highest char yield is polyethylene terephthalate which hass an 

isotropic structure [39]. Disordered carbon reacts more quickly than well ordered, more 

graphitic carbon [38, 40]. Blends with coal were the slowest samples because coal required 

more time to be activated, since it is a less reactive material. To establish the degree of 

reactivity it is also very important to consider the effect of the composition of the ash present 

in the chars. Some elements such as potassium, sodium, calcium, magnesium and iron can 

cause an increase in the reaction rate due to a catalytic effect [41]. 

The elemental composition and ash contents of the activated carbons of each series 

vary as function of the burn-off, as shown Table 1. All of the samples have a high C content. 

However, these carbons also have high sulfur and ash contents which increase with the 

degree of burn-off. In general, a high ash content is a drawback in adsorption applications 

since the capacity of the adsorbent is considerably reduced [42]. The addition of coal and 

BWM to RF produced an increase in C and a decrease in the S and ash content of the ACs. 

3.1. Textural characterization 

Nitrogen adsorption isotherms of ACs prepared at 35 and 65 % B.O. were chosen in 

order to compare the differences between the materials prepared (Figure 2). The isotherms 

are of type IV, indicating that the ACs had mesopores. The main size range of the pores 

was 10-50 nm, as shown in Figure 3, although pores smaller than 2 nm and larger than 50 

nm were also observed. In general, the amount of nitrogen adsorbed and the porosity were 

higher in the case of 65 % AC than 35 % AC since CO2 had gasified some of the carbon in 
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the material, giving rise to more porosity. All the isotherms except those of RF/BWM 

indicate that an increase in B.O. produces an increase in the N2 adsorbed at low relative 

pressure which is reflected in a widening of the microporosity and an increase in the 

mesopore volume. In the chars with BWM an increase in the B.O. was accompained by an 

increase in the mesopore volume in the 10-50 nm range (Figure 3). The greatest increase in 

micropore volume with the increase in B.O. occurred in the ACs containing coal. In the TC 

and TC/Coal there was also an increase in 10-50 nm and 2-3 nm mesopores (the latter to a 

lesser extent). TC also showed a larger increase in macropores than the other samples.  

The evolution of SBET with B.O. is shown in Figure 4, while the evolution of the total pore 

volume (Vt), the mesopore (Vmeso) and micropore volume (Vmicro) are presented in Figure 5. 

It can be observed that the value of SBET increased with the degree of B.O. until a 

maximum value was attained. A further increase in B.O. caused a decrease in the value of 

SBET since the pores coalesced and  became excessively large, damaging the porous 

texture. This occurred in all the samples except for the RF/BWM mixture which remained 

constant above 200 m2/g. 

The ACs from TC showed a higher SBET for all degrees of burn-off than the ACs from 

RF. Moreover the maximum SBET was obtained in the 55 and 80% B.O. range while in the 

case of RF a B.O. of 65% was needed to obtain a high surface area.  

The evolution in pore volume with B.O. in the ACs from TC and RF (Figure 5a) shows 

that the gap in the total volumes was 0.20 cm3/g at a burn-off smaller than 50%. When the 

B.O. increased, the difference in total volumes became smaller. The difference at 84% B.O. 

was 0.08 cm3/g. This decrease in the difference in total volume must be due to the increase 

in the formation of micropores between 50 and 65%, and above 65% due to the more 

extensive formation of mesopores in RF as a consequence of activation. 

The use of coal in the preparation of the ACs clearly increases the surface area, 

especially in the case of RF. The SBET in the RF/Coal blend almost triples that of RF at 65 % 

B.O. This occurs even though the total pore volume is lower for all degrees of burn-off. The 

presence of coal produces a higher micropore volume with a consequent increase in SBET.  
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3.2. Surface chemistry characterization 

Surface functional groups present on the surface of activated carbon mainly affect their 

hydrophobic / hydrophilic and acidic / basic character. Consequently many of their 

applications will be conditioned by their chemical characteristics [42]. 

The characterization of the surface chemistry of ACs is not an easy task to perform and 

it is common to use two or more techniques that provide complementary information. The 

ACs obtained with 65 % B.O. were chosen for this study since they present the most 

developed textural characteristics.  

The wavenumbers associated to signals in the FTIR spectra from chemical functional 

groups of interest are listed in Table 2. The spectra corresponding to wavenumbers in the 

range of 3500-2500 cm-1 and 2000-900 cm-1 are shown in Figure 6. The range between 

3136-2997 cm-1 is associated to aromatic C-H stretching, whereas the range between 2997 

and 2765 cm-1 is assigned to aliphatic C-H stretching. The 1693-1538 cm-1 range 

corresponds to the C=O and C=C stretching modes. Taking into account that oxygen-

containing groups are the most common groups on carbon surfaces, special attention was 

paid to the C=O bond [43,44]. 

All the samples showed the same absorption bands at the same wavenumbers, 

indicating that the functional groups present were very similar. These ACs contained a 

variety of aromatic compounds, aliphatic compounds, and oxygenated functional groups, 

such as hydroxyl, carboxyl or carbonyl groups. 

Curve-fitting of the peaks in the 1500-1800 cm-1 region provided integrated areas of the 

oxygenated and aromatic carbon groups, as in the case of TC (Figure 7). In order to make a 

correct interpretation of the spectra it is important to bear in mind that each functional group 

gives rise to bands at different wavenumbers The FTIR spectra of activated carbons 

indicate the presence of surface groups such as lactones, reflected in the bands in the 

ranges of 1160-1370 cm-1 and 1675-1790 cm-1; quinones reflected in the C=O band 

between 1550 and 1680 cm-1 and carboxylic acids with bands in the ranges of 1120-1200, 

1665-1760 and 2500-3300 cm-1 [43,44]. 
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Wide-scan spectra in the binding energy range of approximately 0-1000 eV were 

obtained to identify the elements present on the AC surfaces and to perform a quantitative 

analysis (Figure 8). The most important elements in the wide scan spectra were oxygen (O), 

nitrogen (N), carbon (C), sulphur (S) and silicon (Si). Table 3 shows the peak center, normal 

area which is the peak area normalized taking into account the sensitivity factor of each 

element (C(1s):1.00, O(1s):2.85, N (1s): 1.77, S(2p):1.74 and Si (2p): 0.84) and percentage 

of each element for all the ACs at 65% B.O.  

Of these elements, C was the most abundant (values from 83.3 wt.% for TC to 90.3 

wt.% for RF/Coal). The percentage of carbon was higher in samples prepared with RF while 

the oxygen in TC and TC/Coal was even more abundant than in RF and RF/coal. The 

amount of nitrogen on the surface was negligible in all the samples. The percentage of 

silicon on the surface is related to the amount of ash which was higher in TC and the 

TC/Coal mixture. 

Surface composition data obtained from the quantitative analysis of the peaks have been 

included in Table 4 together with the elemental composition of the bulk recalculated as 

atomic percentages. To be able to compare the two techniques the bulk composition was 

recalculated in an ash- and hydrogen-free basis (Table 4). 

Carbon and sulphur contents in the bulk for all the samples and surfaces were very 

similar. The almost equivalent S contents suggest that sulphur must have been evenly 

distributed throughout the bulk of the material and on the external surfaces of the carbons 

because S was added uniformly to the tyres during the tyre manufacturing process. The 

greatest differences correspond to nitrogen and oxygen. While the nitrogen atomic content 

decreases on the surface, the oxygen content is significantly higher on the surface than in 

the bulk of the material. This is because oxygen reacted with carbon surface to form 

oxygenated functional groups, as a result of which the oxygen content on the surface 

increased.  

Figure 9 and 10 show XPS spectra corresponding to C(1s) and O (1s) for TC and RF, 

and for the ACs prepared from blends TC/Coal, RF/Coal and RF/BWM, respectively. To 
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analyse the surface characteristics in more detail, the carbon and oxygen spectra were 

deconvoluted using Gaussian-Lorentzian peaks. 

The broad carbon peaks corresponding to binding energies at approximately 282-298 

eV can be attributed to carbon-based surface functional groups with various binding 

energies (BE).  

When the C(1s) peak of the samples was deconvoluted, four peaks emerged. The 

peaks corresponding to Cgraphitic (BE = 284.4-284.5 eV), C-O in the hydroxyl bond (BE = 

285.7 - 285.8 eV) and C=O in the carbonyl/quinone bond (BE = 287.0 - 287.4 eV) appeared 

in all samples [45-51]. The TC, RF and RF / BWM samples also showed a peak at BE = 

289.4 - 289.7 eV corresponding to the carboxyl bond (O- C = O) [45, 52, 53]; while the 

mixtures with coal had carbonates (BE = 290.4 - 290.6 eV) [47, 50, 51]. The peak 

corresponding to the graphitic carbon shows the greatest intensity, as can be seen in 

Figures 9 and 10, and quantitatively, as a percentage, in Table 5 (46% to 63% of the 

detected carbon). This suggests that the surface chemistry of the activated carbon was not 

well developed. From the results it can also be seen that the peak of the hydroxyl bond was 

larger in the case of the TC sample (38%), because this bond was formed mainly during the 

pyrolysis of the tyre. Samples containing carbon showed a similar surface chemistry due to 

its extensive influence. All of these samples had the same amount of carbonyl and hydroxyl 

groups on their surface in addition to carbonates (8-10%). 

The high-resolution spectra of C(1s) were very similar. Deconvolution yielded similar 

results considering that 46 to 63% of the area under the curve corresponded to graphitic 

carbon, whereas the carbon was as high as 85.5 - 91.9 % on the surface. Oxygen ranged 

from 11.8%  for TC to 6.6% for  RF on the surface, so that the intensity of this element was 

not as high as the case of the C(1s). 

Deconvolution was also performed to study the high-resolution O(1s) spectrum of the 

samples. The RF, RF/Coal and RF/BWM samples had C=O bonds (BE = 530.7-531.7 eV) 

[45, 46, 51, 52, 54]. The peak corresponding to the C-O bonds in alcohols, ethers and 

peroxides (BE = 532.3 - 532.7 eV) [51, 52, 54] and the C-O bonds in peroxacids, 
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peroxyesters together with loading effects (BE = 534.6-535.0 eV) [54] appeared only in the 

RF and RF/BWM samples. C-O bonds from acids, esters and hydroperoxides were present 

on the surfaces of all the samples (BE = 533.1 - 533.8 eV) [45, 47, 51, 54]. On the other 

hand, the TC, TC/Coal and RF/Coal samples had occluded water, oxygen, CO2 and CO (BE 

~ 537 eV) [46, 55]. Because the measurements were performed under high vacuum 

conditions, only strongly adsorbed water, oxygen, CO2 and CO were retained on the carbon 

surface. The high value of this peak in the spectrum corresponding to the TC, TC/Coal and 

RF/Coal samples indicates that these samples had many adsorption sites for water and/or 

gases such as oxygen, CO2 and CO .  

The presence of adsorbed gases would explain the large amount of oxygen that these 

materials had on their surface compared to their bulk, whereas RF and RF/BWM had a 

larger amount of oxygen in their bulk. 

The results obtained by FTIR and XPS lead to the same conclusions for oxygenated 

surface groups. Both techniques indicate the presence of a C=O bond in the 

carbonyl/quinone group and a carboxyl bond in the carboxylic acids.  A lactone bond was 

also observed in the XPS O1s of all the samples (Figure 9 and 10). 

 

Conclusions 

Activated carbons obtained from tyre wastes RF and TC, had SBET in the range of 

390 and 475 m2/g with a pore size mainly in the mesopore range. However, their blends 

with coal give rise to an increase in their surface area  to values similar to those of  SBET in 

commercial activated carbons (1125 and 840 m2/g) due to an increase in their 

microporosity. Their drawback  is that  they are less reactive and therefore, they require 

more time for activation.  

From the activation curves it can be seen that RF char is the most reactive material. The 

following order of reactivity was obtained RF>RF/BWM>TC>RF/Coal>TC/Coal. 

Nevertheless,  the TC activated carbons prepared a had higher surface area at all degrees 

of burn-off and their maximum SBET was obtained at a lower B.O. than in the case of RF. 
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The oxygenated functional groups present on the surface of the ACs were quinones, 

lactones and carboxylic acids. 
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Table 1. Elemental analysis and ash content for various degrees of activation. 

Sample B.O.* 
Cz  

(wt% db) 

C 

(wt% db) 

H 

(wt% db) 

N 

(wt% db) 

S 

(wt% db) 

O 

(wt% db) 

TC 

33% 22.3 75.8 0.3 0.3 2.9 8.2 

47% 27.9 69.8 0.3 0.6 3.7 2.0 

70% 37.8 58.7 0.2 0.5 4.2 1.6 

RF 

36 % 10.4 82.6 0.4 0.4 2.6 5.7 

47% 14.9 80.8 0.5 0.6 2.9 3.8 

56% 16.9 80.4 0.5 0.5 2.7 3.6 

66% 19.7 78.6 0.2 0.5 3.30 2.0 

TC/Coal 

38% 15.5 79.7 0.6 1.3 1.7 3.6 

51% 17.2 78.3 0.5 1.3 1.9 3.0 

66% 23.1 73.2 0.2 1.1 2.3 0.6 

RF/Coal 

34% 13.0 82.1 0.5 1.7 1.3 3.0 

47% 17.5 78.5 0.5 1.6 1.8 3.4 

59% 15.3 81.9 0.4 1.6 1.7 0.6 

65% 19.7 78.1 0.4 1.2 2.3 -- 

RF/BWM 

35% 5.0 86.0 0.6 1.9 2.0 3.2 

56% 15.4 81.0 0.5 1.6 2.6 3.4 

61% 12.3 82.3 0.5 1.5 2.8 2.6 

 *B.O.: burn-off expressed on an ash free basis. 
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Table 2. Band assignments for the FTIR spectra. 

Wavenumber (cm-1) Assignment 

3300 -OH and –NH stretching 

3136-2997 Aromatic compounds C-H stretching 

2997-2765 Aliphatic compounds C-H stretching 

1770-1650 C=O    Oxygenated groups 

1600 C=C    Aromatic compounds -  ring stretching 

1455 Bending vibrations of C-H bonds in -CH2- and -CH3 groups 

1375 -CH3   Symmetric bend 
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Table 3. Surface composition of ACs prepared at 65% B.O. 

  Peak Peak centre Normal Area 
Atomic 

percentage 
(%) 

TC 

O (1s) 534.0 3371.5 11.5 

N (1s) 398.0 92.3 0.3 

C (1s) 285.0 24339.7 83.0 

S (2p) 164.5 679.1 2.3 

Si (2p) 107.5 832.1 2.8 

RF 

O (1s) 533.0 1822.9 6.6 

N (1s) 398.0 98.0 0.4 

C (1s) 285.0 25044.9 90.1 

S (2p) 164.5 518.3 1.9 

Si (2p) 102.5 313.4 1.1 

TC/Coal 

O (1s) 538.0 2583.3 10.0 

N (1s) 400.0 29.9 0.1 

C (1s) 285.0 22121.6 85.4 

S (2p) 164.5 112.4 0.4 

Si (2p) 108.5 1042.1 4.0 

RF/Coal 

O (1s) 533 1662.0 6.7 

N (1s) 401.5 170.6 0.7 

C (1s) 285.0 22458.7 90.3 

S (2p) 164.5 139.6 0.6 

Si (2p) 105.5 433.3 1.7 

RF/BWM 

O (1s) 533.0 2161.1 10.0 

N (1s) 401.0 25.1 0.1 

C (1s) 285.0 18871.0 87.4 

S (2p) 164.5 266.3 1.2 

Si (2p) 103.0 262.1 1.2 
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Table 4. Bulk and surface composition of ACs prepared at 65% B.O. 

    C N S O 

    ( %at.) ( %at.) ( %at.) ( %at.) 

TC  
bulk 94.8 0.7 2.5 1.9 

surface 85.5 0.3 2.4 11.8 

RF 
bulk 96.1 0.5 1.5 1.8 

surface 91.1 0.4 1.9 6.6 

TC/Coal 
bulk 97.0 1.3 1.1 0.6 

surface 89.0 0.1 0.5 10.4 

RF/Coal 
bulk 97.1 1.6 0.8 0.5 

surface 91.9 0.7 0.6 6.8 

RF/BWM 
bulk 95.0 1.5 1.2 2.3 

surface 88.5 0.1 1.2 10.1 
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Table 5. Surface functional components obtained from the deconvolution of C(1s) peaks. 

Peak 
Surface 

Functional 
Group 

B.E (eV) 
TC 
(%) 

RF 
(%) 

TC/Coal 
(%) 

RF/Coal 
(%) 

RF/BWM 
(%) 

C1s_1 C-C 284.4 - 284.5  46 63 56 59 61 

C1s_2 C-O 285.7 - 285.8  38 17 18 16 20 

C1s_3 C=O 287.0 - 287.4  4 6 18 15 11 

C1s_4 O-C=O 289.4 - 289.7  12 14 - - 8 

C1s_5 carbonates 290.4 - 290.6 - - 8 10 - 
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Figure 1. Variation of carbon burn-off (B.O.) with time.  
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Figure 2. Adsorption isotherms of nitrogen at 77 K for ACs prepared at 35 % and 65 % B.O. 
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Figure 3. Pore size distribution by Kelvin for ACs prepared at 35% and 65% B.O. 
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Figure 4. Variation of SBET with B.O. 
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Figure 5. Variation of pore volume with B.O. 
 



 27 

 
Figure 6. FTIR AC produced at 65 % B.O. 
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Figure 7. Curve-fitting of the DRIFTS spectra in the 1500-1800 cm-1 region of AC from TC at 

65% B.O.  
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Figure 8. Wide scan spectra for AC TC,RF,TC/Coal, RF/Coal and RF/BWM. 
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Figure 9. XPS spectra corresponding to C(1s) and O(1s) of activated carbons: TC and RF 
65% B.O.  
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Figure 10. XPS spectra of C(1s) and O(1s) of TC/Coal, RF/Coal and RF/ BWM 65% a.f.  

 

600 

1600 

2600 

3600 

4600 

5600 

278 282 286 290 294 298 

In
te

n
si

ty
 (

C
P

S)
 

Binding energy, eV 

TC/Coal_C1s 
CPS_C1s 
C 1s_1 
C 1s_2 
C 1s_3 
C 1s_5 

2100 

2300 

2500 

2700 

2900 

528 532 536 540 544 548 

In
te

n
si

ty
 (

C
P

S)
 

Binding energy, eV 

TC/Coal_O1s 
CPS_O1s 

O 1s_3 

O 1s_5 

600 

1600 

2600 

3600 

4600 

5600 

278 282 286 290 294 298 

In
te

n
si

ty
 (

C
P

S)
 

Binding energy, eV 

RF/Coal_C1s 
CPS_C1s 

C 1s_1 

C 1s_2 

C 1s_3 

C 1s_5 

2130 

2330 

2530 

2730 

528 532 536 540 

In
te

n
si

ty
 (

C
P

S)
 

Binding energy, eV 

RF/Coal_O1s 
CPS_O1s 

O 1s_1 

O 1s_3 

O 1s_5 

600 

1600 

2600 

3600 

4600 

278 282 286 290 294 298 

In
te

n
si

ty
 (

C
P

S)
 

Binding energy, eV 

RF/BWM_C1s 
CPS_C1s 

C 1s_1 

C 1s_2 

C 1s_3 

C 1s_4 

2000 

2300 

2600 

2900 

528 532 536 540 

In
te

n
si

ty
 (

C
P

S)
 

Binding energy, eV 

RF/BWM_O1s 

CPS_O1s 

O 1s_1 

O 1s_1 

O 1s_2 

O 1s_3 

O 1s_4 


