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Abstract 

Streptomyces are ubiquitous in soil and face a rapidly changing environment. Like other 

bacteria, they sense and respond to external stimuli via two component systems and 

Streptomyces species encode a particularly high number of these systems. One of these 

two component systems is called MtrAB-LpqB and it is highly conserved in the phylum 

Actinobacteria. Previous work in Mycobacterium tuberculosis, Corynebacterium 

glutamicum and Streptomyces coelicolor indicates that MtrAB-LpqB is involved in 

osmosensing and cell cycle progression. To investigate the function of MtrAB-LpqB I 

attempted to make single gene deletions in the new model organism Streptomyces 

venezuelae. I also performed chromatin immunoprecipitation and sequencing (ChIP-seq) 

against MtrA-3xFlag in S. venezuelae and S. coelicolor to identify the regulon of genes 

under its control. I present evidence that MtrA is essential in S. venezuelae whereas MtrB 

is dispensable. It was not possible to confirm deletion of lpqB. Deletion of mtrB activates 

MtrA and leads to the overproduction of cryptic secondary metabolite biosynthetic gene 

clusters (BGCs). The same effect was achieved by introducing a gain of function MtrA 

protein into the S. venezuelae wild-type strain. The cryptic BGCs are activated because 

MtrA binds to target genes spanning 85% of the BGCs in S. venezuelae and S. coelicolor. 

In Streptomyces, antibiotic production is linked to development and the MtrA regulon 

overlaps with the master regulator of development, BldD. The results presented here 

suggest that MtrAB senses external signals and modulates target gene expression to 

coordinate development with the production of secondary metabolites.   
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1 Introduction 

1.1 Actinobacteria 

The phylum Actinobacteria is one of the largest taxonomic groups among bacteria 

(Ventura et al. 2007). Actinobacteria are Gram positive with a high G+C content in their 

DNA from 51% in some Corynebacteria to more than 71% in Streptomyces and Frankia. 

However Tropheryma whipplei is one exception among the sequenced Actinobacteria 

with a G+C content of less than 50% (Ventura et al. 2007). The phylum Actinobacteria is 

divided in six classes: Nitriliruptoria, Acidimicrobiia, Coriobacteriia, Thermoleophilia, 

Rubrobacteria and Actinobacteria, which is the largest class within the phylum 

(Goodfellow et al. 2012). 

 The phylum contains pathogens like Mycobacterium tuberculosis which infected 

9.6 million people with Tuberculosis in 2014 and killed 1.5 million 

(http://www.who.int/mediacentre/factsheets/fs104/en/); Mycobacterium leprae, the 

causative agent of Hansen’s disease (leprosy); Nocardia spp. which are human pathogens 

with low virulence infecting immunocompromised patients (Peleg et al. 2007), 

T. whipplei, an intracellular pathogen with a reduced genome causing Whipple's disease 

(Raoult et al. 2003), Corynebacterium diphtheria causing diphtheria (Sangal et al. 2012) 

and Propionibacterium acnes a facultative parasite causing acne (Bojar & Holland 2004). 

Furthermore, it contains C. glutamicum which is used industrially to produce amino acids, 

plant pathogens like Leifsonia xyli subsp. xyli (Monteiro-Vitorello et al. 2004), Frankia 

spp. which are nitrogen-fixing plant symbionts (Chaia et al. 2010), Bifidobacterium spp. 

beneficial bacteria which colonise the gastrointestinal tract (Leahy et al. 2005) and 

Streptomyces spp. which are ubiquitous in soil and a major source of commercially 

important antibiotics and numerous immunosuppressants, anti-helminthic and anti-cancer 

drugs (Bentley et al. 2002). All organisms mentioned above belong to the order 

Actinomycetales within the class Actinobacteria except Bifidobacterium spp which 

belong to the order Bifidobacteriales which is also in the class of Actinobacteria 

(Goodfellow et al. 2012).  

 

1.2 Streptomyces 

The genus Streptomyces includes some of the best studied prokaryotes due to their 

unique developmental life cycle and their important role in industrial antibiotic 

production. One of the natural habitats of Streptomyces species is the soil and they 

http://www.who.int/mediacentre/factsheets/fs104/en/
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comprise up to 20% of the soil microbial community (Schrempf 2006). With a 

saprophytic, obligate aerobic lifestyle Streptomyces species are well adapted to the soil 

environment and play a major role in the degradation of chitin, which is made available 

by the secretion of chitinase enzymes (Blaak & Schrempf 1995). 

 

1.2.1. Streptomyces model organisms 

Despite the vast amount of Streptomyces strains isolated so far, our knowledge of 

the molecular background of development and antibiotic production is obtained from 

mainly three model organisms: S. coelicolor, S. griseus and S. venezuelae. S. coelicolor 

was the first model organism to be adopted due to the pioneering work of David Hopwood 

(Hopwood 1999). S. coelicolor produces five antibiotics under laboratory conditions: the 

blue actinorhodin [ACT] (Bystrykh et al. 1996), the red undecylprodigiosin [RED] 

(Feitelson et al. 1985), the colourless calcium dependent antibiotic [CDA] (Hojati et al. 

2002), the yellow pigmented coelimycin P1 [yCPK] (Gomez-Escribano et al. 2012; 

Gottelt et al. 2010) and the an unusual, plasmid encoded cyclopentanone antibiotic 

methylenomycin (O’Rourke et al. 2009). Most of the developmental regulatory genes 

were also identified and studied in this model organism and it was the first streptomycete 

to have its genome sequenced (Bentley et al. 2002). However, some developmental 

regulatory features have been studied in the streptomycin producing S. griseus (Chater & 

Horinouchi 2003). In recent years, a new model organism was established to study 

development: the chloramphenicol and jadomycin producing S. venezuelae, which 

sporulates in liquid culture (Schlimpert et al. 2016; Glazebrook et al. 1990) whereas S. 

coelicolor does not. This is an advantage to study these filamentous bacteria because it 

makes Streptomyces approachable for global genetic and transcriptional analysis such as 

chromatin immunoprecipitation and sequencing (ChIP-seq), (Pullan et al. 2011) and RNA 

sequencing (RNA-seq), (Munnoch et al. 2016).  

 

1.3 Cell division and Differentiation in Streptomyces 

1.3.1  The Streptomyces life cycle 

Streptomyces grow in an unusual way compared to most other bacteria. In the 

early days of microbiology Streptomyces bacteria were misclassified as fungi because of 

their mycelial, fungal-like growth. The Streptomyces life cycle starts with a dormant, 

unicellular spore. Streptomyces species are non-motile (Kämpfer 2006) and the spores 



 

 
 12 

allow distribution within the environment (see Figure 1.1). In nutrient rich conditions the 

spores start to germinate and grow as vegetative hyphae via apical growth. The vegetative 

hyphae form branches and the cell mass is called vegetative mycelium. When the 

nutrients are depleted in the vegetative hyphae part of the substrate mycelium undergoes 

apoptosis to release nutrients allowing the remaining vegetative hyphae to develop into 

aerial hyphae (Miguélez et al. 1999). The hyphae break through the water tension and 

grow up in the air to form the aerial hyphae that are not branched but rather form single 

hyphae containing multiple chromosomes (Elliot et al. 2008). In aerial hyphae, 

fundamental processes like chromosome replication, segregation, cell division and cell 

wall assembly change dramatically compared to vegetative growth and lead to the 

formation of long chains of spores containing a single chromosome.  

 

1.3.2. Cell division in Streptomyces  

Due to the unique development in Streptomyces species, sporulation differs from 

cell division in rod shaped bacteria. Sporulation is not essential for survival in 

Streptomyces thus cell division genes that are essential in unicellular bacteria (ftsZ, ftsI, 

ftsW, ftsE, ftsX, ftsL, ftsQ and divIC) can be deleted in Streptomyces bacteria (Jakimowicz 

and van Wezel 2012). The bacterial tubulin homologue FtsZ plays a central role in cell 

division and Streptomyces species are the only bacteria known so far in which FtsZ is 

dispensable (McCormick et al. 1994). Due to their filamentous growth, Streptomyces 

strains use FtsZ in the formation of vegetative cross walls and sporulation septa. During 

vegetative growth, low levels of FtsZ form occasional cross wall. In aerial hyphae at the 

onset of sporulation the expression of FtsZ is upregulated and up to 100 cell division septa 

are formed which lead to the separation of aerial hypha into single spores. The distinct 

levels of FtsZ expression are achieved by three promoters regulating FtsZ. While fts3p is 

important for vegetative growth, ftsZ2p is upregulated in sporogenic aerial hyphae, which 

coincides with the onset of sporulation (Flӓrdh et al., 2000).  
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Figure 1.1 Life cycle of Streptomyces. Under nutrient rich conditions spores germinate and form 
germination tubes which grow into the soil or media and form the vegetative hyphae. Their 
differentiation can be induced by environmental conditions, nutrient availability, metabolism and 
extra-cellular signalling which causes the aerial hyphae to break through the surface tension 
and grow into the air. Then aerial hyphae differentiate into a long chain of pre-spore 
compartments. The genome replicates and multiple copies are distributed evenly in spores by 
the chromosome segregation machinery. The pre-spores contain a single copy of the genome 
and develop into mature spores. Reprinted (adapted) with permission from (Bush et al. 2015) 
Copyright (2017) Nature Reviews Microbiology.  

 

The formation of sporulation septa is controlled by SsgA-like proteins (SALPs). 

SsgA and SsgB are essential for sporulation-specific cell division in Streptomyces 

coelicolor.  After the increased expression of ftsZ at the onset of sporulation SsgA is the 

first protein to localise at the septation sites followed by the localisation of SsgB, which 

recruits FtsZ to the septation site (Willemse et al. 2011). SsgC–G are responsible for 

correct DNA segregation/condensation (SsgC), spore wall synthesis (SsgD), autolytic 

spore separation (SsgE, SsgF) or exact septum localization (SsgG) (Noens et al. 2005). 

The SALP proteins are not the only proteins involved in the formation of the sporulation 
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septa. There are around a dozen other essential proteins which are subsequently recruited 

to the divisome via protein–protein and protein–cell envelope interactions (Haeusser & 

Margolin 2016). One of the proteins involved in cell wall synthesis and remodelling is 

the division-specific transpeptidase FtsI (Penicillin Binding Protein [PBP] 3) (Bennett et 

al. 2009).  

 

1.3.3 Polar growth in Streptomyces species 

Rod shaped bacteria like Escherichia coli and Bacillus subtilis grow by inserting 

new peptidoglycan throughout the lateral wall and DNA replication and cell division are 

tightly linked. In contrast, Streptomyces species (Holmes et al. 2013) as well as other non-

filamentous actinomycetes like Mycobacterium (Joyce et al. 2012) and Corynebacterium 

species, grow by tip extension (Letek et al. 2008; Daniel & Errington 2003) and in 

Streptomyces species chromosome replication is independent of cell division. In 

streptomycetes hyphal tip extension is performed by a multiprotein complex called the 

polarisome (or tip organizing centre [TIPOC]). The first protein to localise at the growing 

tips is the essential positional marker protein, DivIVA (Flärdh 2003). Together with 

DivIVA, the Streptomyces cytoskeletal element Scy forms the anchor for the filament 

protein FilP (Holmes et al. 2013) and the penicillin binding protein FtsI which contribute 

to the structure of the polarisome. Tip extension and chromosome segregation are linked 

by interactions between the chromosome positioning protein ParA, the DNA-binding 

protein that organizes the segregation of nucleoprotein complexes and Scy (Ditkowski et 

al. 2013; Donczew et al. 2016). 

 

1.3.4 Regulation of the Streptomyces life cycle  

Each stage of development is visible in a typical Streptomyces colony grown on 

solid agar medium. Vegetative growth results in clear, shiny colonies; aerial hyphae result 

in a white, almost furry appearance; while the onset of sporulation results in cell division 

and the production of an associated spore pigment (grey and green for S. coelicolor and 

S. venezuelae, respectively). The first developmental genes discovered in Streptomyces 

species were the bald (bld) and white (whi) genes due to the appearance of the mutants. 

Bald mutants are unable to form aerial hyphae and thus the colonies stay clear with no 

visible white aerial hyphae. On the other hand white mutants stay white and are unable to 

form spores and the associated spore pigment (Chater 2001). Intensive study of these 
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genes revealed that most of the bld and whi genes encode global master regulators 

essential for the switch from vegetative to aerial hyphal growth and aerial growth to 

sporulation (Flärdh & Buttner 2009; McCormick & Flärdh 2012). The insights of the 

regulatory network of development described in the following section are pieced together 

from work in the three model organisms S. venezuelae, S. coelicolor and S. griseus, as 

described above. The overall mechanism of development is likely to be similar in these 

distantly related model organisms but it is possible that some details of the regulatory 

network differ (Chater & Horinouchi 2003).  

The secondary messenger c-di-GMP is ubiquitous in bacteria (Hengge 2009). 

However in Streptomyces c-di-GMP has the unique role acting as a signal to control 

multicellular development (Tran et al. 2011; Hull et al. 2012; Tschowri et al. 2014). 

Diguanylate cyclases (DGCs) containing  GGDEF domains synthesise c-di-GMP from 

two molecules of GTP and phosphodiesterases (PDEs) containing EAL domains or HD-

GYP domains degrade c-di-GMP (Hengge 2009; Schirmer & Jenal 2009). The 

overproduction of DGCs and therefore high levels of c-di-GMP prevent the formation of 

aerial hyphae and overproduction of PDEs which lead to decreased levels of c-di-GMP 

causes early sporulation (Tschowri et al. 2014). It has recently been shown that c-di-GMP 

controls development via the global regulator BldD (Tschowri et al. 2014). c-di-GMP 

binds to BldD which then represses two classes of target genes: approximately 170 

sporulation genes (Elliot et al. 2001; Hengst et al. 2010) including ftsZ and associated cell 

division genes. Repressing these target genes inhibits sporulation. 

BldD regulates the expression of FtsZ, which is the central protein of the divisome 

and forms a ring like structure and is upregulated during sporulation (Flärdh & Buttner 

2009; Flärdh et al. 2000; Hengst et al. 2010). The septum forming proteins SsgA and 

SsgB are also regulated by BldD. The two proteins are actinomycete-specific and are 

responsible for the assembly of the FtsZ ring at the cell division sites (Willemse et al. 

2011). Another direct target of BldD is the smeA–sffA operon. SmeA is a small membrane 

protein, which targets the putative DNA translocase SffA which is involved in 

chromosome segregation into spores (Ausmees et al. 2007). Additionally the gene 

encoding SspA, a lipoprotein which influences the shape of spores, is direct target of 

BldD (Tzanis et al. 2014). 

Streptomyces form a hydrophobic sheath to break the surface tension and erect 

aerial hyphae. The hydrophobic sheath contains rodlins, chaplins and SapB (Claessen et 
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al. 2003; Elliot et al. 2008). The expression of rodlins and chaplins is regulated via σBdlN 

and the anti-sigma factor RsbN (Bibb et al. 2012) whereas the expression of SapB is 

regulated via AdpA and BldA (Bush et al. 2015). σBldN belongs to the extracytoplasmic 

function (ECF) subfamily of RNA polymerase sigma factors and activates the expression 

of the bldN as well as the genes encoding rodlins and chaplins. bldN expression is 

repressed by BldD-(c-di-GMP). However, σBdlN activity is also repressed by its anti-sigma 

factor RsbN which is regulated by an external unknown signal. Therefore the rodlins and 

chaplins are only expressed when bldN is derepressed and σBldN is released from RsbN by 

the external signal (Bush et al. 2015), see Figure 1.2. 

Figure 1.2 Regulatory network of the master regulator BldD in development. BldD–(c-

di-GMP) represses a large global regulon of sporulation genes during vegetative growth 

for description of single genes see text. Arrows indicate activation, and bars indicate 

repression. Reprinted (adapted) with permission from (Bush et al. 2015) Copyright 

(2017) Nature Reviews Microbiology. 

 

The expression of SapB is regulated via the master developmental regulator AdpA 

and the transfer RNA (tRNA) BldA.  AdpA is a transcriptional regulator and controls a 

large regulon of sporulation genes (Higo & Horinouchi 2011). Additionally AdpA 

controls chromosome replication during development by binding to the origin of 
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replication (oriC) and blocking access for the DNA replication initiation protein DnaA 

(Wolański et al. 2012). BldA is the only tRNA which can translate TTA codons. AdpA 

contains a TTA codon which leads to a unique positive feedback loop in which AdpA 

activates transcription of bldA which is itself required for expression of AdpA (Higo & 

Horinouchi 2011). This mechanism functions at two target genes, adpA and ramR which 

regulate the expression of SapB (Bush et al. 2015; O’Connor & Nodwell 2005).  

Other regulators have not been connected to the regulation of the developmental 

network yet including BldC, which is an unusual MerR-like regulator without an effector 

domain (Hunt et al. 2005). The target genes of this regulator are not known but bldC is a 

direct target of the phosphate metabolism regulating response regulator (RR), PhoP 

(Allenby et al. 2012). The anti-anti-sigma factor BldG is involved in the regulation of 

development and antibiotic production in response to osmotic stress and 

dephosphorylated BldG represses the anti-sigma factor / sigma factor pairs ApgA / σB, 

UshX / σH, RsfA / σF (Mingyar et al. 2014).  

It is not only bld and whi genes that are involved in the regulation of development. 

Several genes involved in general metabolism have also been shown to have a role in 

development such as citA and clpP1. citA encodes a citrate synthase, the first enzyme in 

the tricarboxylic acid (TCA) metabolism and a ΔcitA mutant in S. coelicolor displays a 

bald phenotype and antibiotic production is blocked (Viollier et al. 2001). Citrate 

synthases are regulated by several global nutrient sensory regulators like GlnR and DasR, 

see Figure 1.3 (Liao et al. 2014), which is a good example of the linkage of nutrient 

availability and development. Additionally, proteases are important to remove regulatory 

proteins during development. clpP1 is the catalytic subunit of an ATP-dependent protease 

and a ΔclpP1 mutant has a bald phenotype (Crecy-Lagard et al. 1999). clpP1 is under the 

direct control of the master regulator AdpA (Wolański et al. 2012).  

WhiA and WhiB regulate the transition from aerial hyphae to spores. WhiB and 

other WhiB-like (Wbl) proteins have a [4Fe–4S] iron–sulphur cluster coordinated by four 

invariant cysteines (Crack et al. 2009; Crack et al. 2011) which is highly unusual and can 

only be found in Actinobacteria. The S. venezuelae genome contains eight Wbl proteins 

(Munnoch 2015). WhiB and WhiD are involved in sporulation (Bush et al. 2013; Flärdh 

et al. 1999; Aínsa et al. 2000), WblC activates multi-drug resistance in M. tuberculosis 

(Morris et al. 2005), WblA is involved in very early sporulation and WblE appears to be 

essential (Fowler-Goldsworthy et al. 2011). During vegetative growth WhiB is repressed 
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by BldD-(c-diGMP) and at the onset of sporulation WhiB is activated by homodimeric 

BldM. WhiB and WhiA have the same white phenotype and WhiB appears to act as a 

partner protein for WhiA (Bush et al. 2016). During sporulation WhiA can act as a 

repressor or activator. WhiA activates expression of components of the divisome like 

FtsZ, the DNA tranlocase FtsK and the putative lipid II flippase FtsW. To stop hyphal tip 

extension WhiA directly represses the expression of the polarisome component FilP 

(Bush et al. 2013).  

In addition to the regulation of components of the divisome, WhiA also directly 

activates the RNA polymerase sigma factor σWhiG which in turn regulates the expression 

of late sporulation genes like WhiH and WhiI. WhiH is a GntR family transcription factor. 

The exact role of WhiH is unclear, however ΔwhiH form only occasional sporulation 

septa which leads to the formation of compartments containing multiple copies of the 

genome and is crucial for spore formation (Flärdh et al. 1999). WhiI is an orphan response 

regulator which lacks a typical phosphorylation pocket (Aínsa et al. 1999; Ryding et al. 

1998) and does not bind to DNA as a homodimer. BldM has a set of targets for the BldM 

homodimer and a different set of target genes for the BldM-WhiI heterodimer and WhiI 

by itself does not activate or repress genes. The heterodimer BldM-WhiI activates late 

stage sporulation genes like the smeA-sffA operon and whiE, which encodes an enzyme 

involved in spore pigment formation. The heterodimer formation provides a mechanism 

of temporal regulation of sporulation (Al-Bassam et al. 2014).  

 

1.4 Two component systems 

As soil inhabitants Streptomyces must survive in a rapidly changing and highly 

variable environment. Bacteria can sense an external stimulus from the environment and 

adjust the internal cellular processes via two component systems (TCS). These were first 

described in the late 1980s and since then they have been found in bacteria, archaea and 

some eukaryotic organisms. It is noteworthy that TCS are predominant in bacteria. Other 

classes of organisms which use TCS to sense external stimuli are unicellular eukaryotes, 

fungi and plants (Stock et al. 2000). The absence of TCSs in humans or animals makes 

them an ideal target for antibiotics. Streptomyces species have a high number of TCS, for 

example the S. coelicolor genome encodes at least 84 histidine kinases (HK) and 80 

response regulator (RR). 67 of these RR and HK genes are adjacent to each other and thus 

predicted to form TCS (Hutchings et al. 2004). There are three different classes of TCS. 
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The classical TCS in which a transmembrane HK senses the signal and transfers a 

phosphate group to its cognate RR. The second class are hybrid TCS in which HK and 

RR are fused together which means the whole TCS complex is membrane bound. The 

third class is the phosphorelay which includes phosphotransferases that transfer the 

phosphoryl group from the sensor kinases to the ultimate target via multiple 

phosphotransfer steps (Groisman 2016). 

Since MtrAB-LpqB belongs to the classical TCS the following section describes 

the general features of this system. In a classical TCS the transmembrane HK 

autophosphorylates using ATP at a conserved histidine residue due to sensing of an 

external stimulus or the state of the membrane. The phosphate group is then transferred 

to a conserved aspartate in the cognate RR. HKs contain two domains: a variable 

extracellular sensor domain spanning the membrane and a highly-conserved kinase core 

located inside of the cell (Park et al. 1998). The kinase core contains a dimerization 

domain (HAMP and HisKA in MtrB) and a catalytic domain which contains the ATP 

binding site (Tanaka et al. 1998).  

The majority of RRs consist of two domains: a conserved N-terminal regulatory 

domain and a variable DNA binding domain. RR can be divided in three major families 

OmpR, NarL and NtrC depending on the type of DNA-binding domain. MtrA belongs to 

the OmpR family (Friedland et al. 2007). The majority of RRs belonging to this 

superfamily have DNA-binding activity and can activate or repress transcription of target 

genes (Stock et al. 2000). OmpR-family RRs interact with DNA via a conserved 

recognition helix which interacts with the major groove of DNA and flanking loops 

(Stock et al. 2000), see blue recognition helix in Figure 1.5. 

 

1.4.1 Regulation of Two Component Systems (TCS) 

The activity of TCS systems is tightly regulated both at the expression level and 

phosphorylation state to ensure an appropriate response to the sensed stimulus. In most 

TCS systems the phosphorylated RR functions as the active form because the DNA 

binding affinity is increased upon phosphorylation (Gao & Stock 2015; Purushotham et 

al. 2015). RR typically function as homodimers and phosphorylation promotes 

dimerization (Barbieri et al. 2013; Boudes et al. 2014).   
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All HKs autophosphorylate and most HKs are bifunctional proteins that can also 

act as phosphatases to control the phosphorylation state of the cognate RR (Groisman 

2016). The HK kinase domain interacts with the RR via a recognition surface which is 

highly conserved (Laub & Goulian 2007) whereas the signals sensed by each HK and the 

regulons controlled by each RR differ widely due to highly variable input and output 

domains (Mascher et al. 2006). 

When a TCS senses a stimulus the amount of phosphorylated RR increases in the 

cell. The stimulus promotes the autophosphorylation of a HK as well as inhibiting the 

phosphatase activity. In the latter case the amount of phosphorylated RR would further 

increase because some RRs can be phosphorylated by small phosphate donors like acetyl 

phosphate or phosphoramidate (McCleary & Stock 1994; Friedland et al. 2007). Also, a 

stimulus may alter the transcription or activity of additional proteins which in turn can 

modify the kinase or phosphatase activities of individual HKs.  

In order to react to a stimulus appropriately most TCS are transcriptionally 

autoregulated. Most TCS are encoded in operons and they must be transcribed at a basal 

level to be able to sense the HK inducing stimulus which means that most of the TCS that 

have been studied in detail are transcribed from two promoters. One promoter is weak 

and constitutive (Miyashiro & Goulian 2008) and the second promoter is autoregulated 

and is responsible for the response to the signal. The location of the two promoters can 

vary between TCS (Groisman 2016).  

 

1.5 Antibiotic production in Streptomyces 

Streptomyces are known for their production of antibiotics. Most of the antibiotics 

we use today are derived from this genus. Streptomyces genomes contain at least 20 or 

more biosynthetic gene clusters (BGC), (Niu et al. 2016) encoding antibiotics or other 

secondary metabolites. Antibiotics are defined as molecules which inhibit or prevent the 

growth and / or proliferation of bacteria whereas secondary metabolites are defined as 

molecules that have a specific function in the producing organism and are not directly 

involved in normal growth and development (Hopwood 2007).  

The regulation of antibiotic production is complex and tightly linked to 

development. One link between antibiotic production and development is the master 

regulator AdpA which was first discovered in S. griseus (Ohnishi et al. 1999) and 
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originally named BldH in S. coelicolor (Takano et al. 2003). As mentioned above, AdpA 

regulates the developmental cycle but also plays a key role in production of secondary 

metabolites. In S. griseus the signalling molecule γ-butyrolactone A-factor is sensed by 

the ArpA repressor. When the concentration of A-factor reaches a threshold (Ohnishi et 

al. 2005), ArpA is released from the adpA promoter region and AdpA is expressed. AdpA 

then targets genes involved in secondary metabolism and differentiation in S. coelicolor 

and S. griseus (Ohnishi et al. 2005; Horinouchi 2007). In general, secondary metabolite 

BGCs include cluster situated regulators (CSRs) which regulate the expression of the 

secondary metabolite and which can be also regulated by AdpA.  

Streptomyces differentiate in response to external or internal signals (Bush et al. 

2015). These signals are recognised by membrane bound sensors which sense the 

availability of nutrients like N-Acetylglucosamine (GlcNAc), glucose or xylose. A 

majority of environmental changes are sensed by TCS and the nitrogen-sensing 

AfsQ1/Q2 (Shu et al. 2009) and the phosphate-sensing PhoRP (Martín 2004) are involved 

in the regulation of antibiotic production (Figure 1.3). 

Most environmental stimuli that trigger antibiotic production target CSRs. One 

well studied example of BGC regulation by a CSR is the production of actinorhodin by 

S. coelicolor. The act gene cluster contains five transcriptional units. The expression is 

regulated by the OmpR-like CSR ActII-4. Almost all stimuli leading to increased 

actinorhodin production are mediated via ActII-4 (Liu et al. 2013) which is in turn 

regulated by at least eight known regulatory proteins (Figure 1.3):  the xylose operon 

repressor ROK7B7 (SCO6008) (Heo et al. 2008), DasR which mediates the global 

response to N-acetylglucosamine (GlcNAc) (Rigali et al. 2008), AtrA which is a 

transcriptional activator binding  to targets associated with metabolism of acetyl 

coenzyme A [acetyl-CoA], an ACT precursor (Uguru et al. 2005; Nothaft et al. 2010), the 

RRs of the TCSs DraR and AfsQ1 responding to nitrogen access (Wang et al. 2013; Yu 

et al. 2012), the global repressor of antibiotic synthesis AbsA2 (Sheeler et al. 2005; Uguru 

et al. 2005), the global regulator of DNA damage response LexA (Iqbal et al. 2012) and 

the global developmental regulator AdpA (Ohnishi et al. 2005). The export of 

actinorhodin is regulated by actR, which is also situated within the Act BGC. ActR is a 

TetR-like protein that represses the adjacent actA operon. Both actII-4 and actR  contain 

a TTA codon which makes the two regulators dependent on BldA (Fernández-Moreno et 

al. 1991).  
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Figure 1.3 Nutrient-sensing regulators of antibiotic production in S. coelicolor and their cross 
talk. Nutrient availability is sensed by membrane bound sensor kinases or transport of nutrients. 
The signal of availability of carbon, nitrogen, and phosphate are transferred to global regulators 
(circled) which then regulate central metabolic genes and cluster situated regulator (CSR) 
genes. The global regulators control both central metabolic genes and CSR genes, either 
directly (solid lines) or through unknown routes (dotted lines). Arrows indicate activation, and 
bars indicate repression. AfsQ1/2 and PhoRP are TCS. Reprinted (adapted) with permission 
from (Liu et al. 2013) Copyright (2017) Microbiology and Molecular Biology Reviews. 

 

Undecylprodigiosins are regulated in S. coelicolor by a cascade of two CSRs. 

RedZ activates the expression of redD which directly activates biosynthesis of the RED 

operons (White & Bibb 1997). Similarly to actII-4, redZ is repressed by AbsA2~P 

(Sheeler et al. 2005; Uguru et al. 2005) and responds to GlcNAc via DasR (Rigali et al. 

2008) and external glutamate via AfsQ1 (Wang et al. 2013). The redZ gene also contains 

a TTA codon which makes it BldA dependent (White & Bibb 1997).   

The most studied BGCs in S. venezuelae are those encoding chloramphenicol and 

jadomycin. The chloramphenicol cluster contains 14 structural genes (SVEN15_0880-

0893) and a recent study (Fernández-Martínez et al. 2014) showed that three genes 

(SVEN15_0877-79) upstream of the known gene cluster are also part of the 

chloramphenicol BGC and that SVEN15_0877 (cmlR) is a CSR. Chloramphenicol 
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production in a ΔcmlR mutant was abolished (Fernández-Martínez et al. 2014). However 

in S. venezuelae cultures grown in the standard rich medium MYM the cmlR promoter 

seems to be inactive and thus does not play a crucial role in regulation of the 

chloramphenicol BGC (Sekurova et al. 2016). It was shown that CSRs in the jadomycin 

cluster play a major role in chloramphenicol regulation (Xu et al. 2010). The jadomycin 

cluster contains four CSRs. JadR1 activates the biosynthesis of jadomycin and is 

dependent on jadomycin concentration wherein low levels of jadomycin activate JadR1 

and high levels repress the biosynthesis of jadomycin (Wang et al. 2009). JadR1 also 

binds to promoter regions in the chloramphenicol BGC and represses chloramphenicol 

production (Figure 1.4). Adjacent to jadR1 is the divergently transcribed jadR2 which 

inhibits expression of jadR1. Additionally, the transcription of jadR1 is repressed by 

JadR*. The repressors JadR2 and JadR* act synergistically to repress the transcription of 

jadR1 (Zhang et al. 2013). JadR2 and JadR* repression of JadR1 leads to biosynthesis of 

chloramphenicol (Xu et al. 2010). JadR3 is activated by γ-butyrolactone SVB1 which 

then stimulates transcription of jadR1 while repressing jadR2. 

The regulatory network of jadomycin and chloramphenicol is complex and a 

recent study has shown that external stresses like ethanol shock can influence the 

biosynthesis of jadomycin and chloramphenicol (Sekurova et al. 2016).  
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Figure 1.4 Overview of the cross-talk regulation of chloramphenicol and jadomycin in 
S. venezuelae. JadR2 directly represses the transcription of jadR1 and also binds 
chloramphenicol (Cm) and jadomycin. The cluster-situated regulator JadR1 activates the 
biosynthesis of jadomycin B by activating the transcription of biosynthetic structural genes. 
JadR1 also represses the production of Cm by binding to the promoters of the structural genes, 
(Sekurova et al. 2016). Reprinted (adapted) with permission from (Liu et al. 2013) Copyright 
(2017) Microbiology and Molecular Biology Reviews. 

 

1.6 The role of MtrAB-LpqB in Actinobacteria 

The MtrAB-LpqB operon is present in most Actinobacteria. However detailed 

studies of this three-component system have only been undertaken in Mycobacteria and 

Corynebacterium glutamicum. 

 

1.6.1 MtrAB-LpqB in Mycobacteria 

The MtrAB-LpqB TCS is best investigated in Mycobacteria due to its 

involvement in antibiotic susceptibility (Cangelosi et al. 2006), cell wall synthesis 

(Nguyen et al. 2010) and cell cycle progression (Fol et al. 2006). MtrA was first identified 

in M. tuberculosis (Mycobacterium tuberculosis regulator A) as homologue of 

Pseudomonas aeruginosa PhoB by DNA hybridisation (Via et al. 1996). MtrAB-LpqB 

in Mycobacteria are encoded by an operon which is conserved throughout Actinobacteria. 

The RR gene mtrA is located upstream of the sensor kinase gene mtrB and a lipoprotein 

encoded by lpqB. The role of MtrA as an RR was confirmed by phosphorylating MtrA 

via the non-cognate HK CheA (Via et al. 1996) and MtrA directly interacts with MtrB 
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and DNA (Li et al. 2010). MtrB has been demonstrated to be a typical HK due to its 

ability to autophosphorylate and then phosphotransfer to MtrA which requires Mg2+ (Al 

Zayer et al. 2011). 

Comparison of amino acid sequences suggested that MtrA belongs to the OmpR 

family with a characteristic winged helix-turn-helix DNA binding motif in the effector 

domain. This was confirmed by solving the crystal structure of the non-phosphorylated, 

inactive form of MtrA from M. tuberculosis. MtrA contains two domains, an N-terminal 

regulatory domain exhibiting the classic α/β fold observed in all RRs and a C-terminal 

effector domain, see Figure 1.5 (Friedland et al. 2007).  

The MtrAB-LpqB system is one of two essential TCS in Mycobacteria (Griffin et 

al. 2011; Haydel et al. 2012; Zahrt & Deretic 2000). However, the HK MtrB can be 

deleted in M. tuberculosis, Mycobacterium avium and Mycobacterium smegmatis (Zahrt 

& Deretic 2000; Cangelosi et al. 2006; Plocinska et al. 2012) suggesting that the HK is 

not responsible for the essentiality of the TCS. Small molecule phosphodonors like acetyl 

phosphate and phosphoramidate can phosphorylate MtrA(TB) (Friedland et al. 2007) 

which indicates that MtrA can be phosphorylated independently of the cognate HK. 

 

Figure 1.5 Crystal structure of MtrA(TB). The regulatory domain is shown in gold, and the DNA-
binding domain is shown in green with the recognition helix, α8, highlighted in blue. The side 
chains of Asp 56, the site of phosphorylation, and Tyr 102 and Asp 190 that form an inter-domain 
hydrogen bond are shown in ball-and- stick format with the hydrogen bond depicted by a dashed 
line. Reprinted (adapted) with permission from (Friedland et al. 2007) Copyright (2017) American 
Chemical Society. 
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Additionally, MtrA(TB) binds DNA in a non-phosphorylated state although with 

a much lower affinity (Rajagopalan et al. 2010). These findings indicate that optimal 

function of MtrAB is dependent on the ratio of phosphorylated MtrA to non-

phosphorylated MtrA and that MtrB regulates the state of phosphorylation of MtrA (Fol 

et al. 2006). This is coherent with the phenotypes in the deletion mutants of ΔmtrB in 

M. avium and M. smegmatis. The ΔmtrB mutant cells in M. avium are fivefold more 

sensitive to penicillin, ciprofloxacin and clarithromycin. Additionally, the M. avium 

ΔmtrB mutant exhibited cell envelope defects, resulting in increased permeability, and an 

elongated cell shape. The mutant strain also showed a loss in virulence reflected by the 

inability to survive in macrophages (Cangelosi et al. 2006). In the M. smegmatis ΔmtrB 

mutant a cell wall defect was observed which leads to increased susceptibility to 

lysozyme. And the mutant cells are filamentous, with increased cell clumping and 

defective septum formation and cell division (Plocinska et al. 2012). 

Little is known of the signals and regulation which modulate the MtrAB TCS. 

However, it was shown that mtrAB-lpqB expression in M. tuberculosis is controlled by 

the RNA polymerase sigma factor, sigma C (Sun et al. 2004). Furthermore, the accessory 

protein LpqB interacts with the extracellular domain of MtrB to modulate its activity. An 

lpqB mutant in M. smegmatis shows pleiotropic phenotype caused by cell wall changes 

which include increased cellular aggregation and loss of biofilm formation, as well as 

changes in motility and cell morphology during growth. Interestingly the cell morphology 

of the lpqB mutant is similar to the hyphal growth and polyploidism observed in 

Streptomyces species (Nguyen et al. 2010). These phenotypes can be reversed by 

expressing constitutively active MtrA which leads to the conclusion that LpqB has to 

interact with MtrB for normal cell wall maintenance and growth (Nguyen et al. 2010). 

Additionally, the interaction of LpqB with MtrB affects the phosphotransfer to MtrA and 

subsequent downstream effects on the regulon, including changes in the expression of the 

DNA replication initiation regulator dnaA (Nguyen et al. 2010). MtrA was shown to bind 

to the dnaA promoter region and positively regulate the expression of dnaA in a 

phosphorylation dependent manner (Fol et al. 2006). Another finding strongly suggests a 

role for M. tuberculosis MtrB in the regulation of cell division: MtrB localises to the cell 

division septa and cell poles in an FtsZ-dependent manner (Plocinska et al. 2012) and 

interacts with the divisome components FtsI and Wag31 (Plocinska et al. 2014) which are 

the homologs of PBP3 and DivIVA, respectively, in S. coelicolor.  
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The above findings show that MtrAB-LpqB is involved in regulating cell cycle 

progression and cell wall maintenance in Mycobacteria. Furthermore, several studies 

have shown that MtrAB-LpqB is involved in virulence in Mycobacteria. MtrA was 

upregulated in multi drug resistant M. tuberculosis strains and expression of MtrA could 

be induced by the anti-tuberculosis drugs isoniazid and rifampicin (Zhou et al. 2015). 

Additionally a DNA microarray analysis showed that MtrA was more highly expressed 

in two clinical drug resistant isolates in response to the three anti-tuberculosis drugs 

isoniazid, capreomycin and rifampicin (Yu et al. 2015). Interestingly, the expression of 

MtrAB differs between virulent and avirulent strains. In Mycobacterium bovis BGG the 

system is induced after infection into macrophages (Via et al. 1996; Zahrt & Deretic 

2000), but it is constitutively expressed in M. tuberculosis, where MtrA is essential (Zahrt 

& Deretic 2000).  

The complete regulon of MtrA in Mycobacteria has not been defined but several 

direct targets in addition to dnaA have been found. The expression of the major secreted 

immunodominant antigen Ag85B, encoded by fbpB is increased in an MtrA 

overexpression strain of M. tuberculosis (Rajagopalan et al. 2010). The fbpB binding site 

consisting of two direct repeats of GTCACAgcg (Figure 1.6) can be also found in the 

oriC, suggesting a key role of MtrA in chromosomal replication (Rajagopalan et al. 2010). 

A study in M. smegmatis using unphosphorylated MtrA suggests that MtrA may bind to 

an alternative binding site CAGGCCG (Figure 1.6) which can be found in 420 

Mycobacterial genes (Li et al. 2010). Another confirmed target is the essential cell wall 

hydrolase ripA in M. smegmatis (Plocinska et al. 2012).  

 

 

Figure 1.6 MtrA binding sites in Mycobacteria. A Sequence logo of seven oriC binding sites and 
the fbpB promoter region in M. tuberculosis. All binding sites were confirmed by footprinting. 
Reprinted (adapted) with permission from (Rajagopalan et al. 2010). Copyright (2017) The 
Journal of Bacterial Chemistry. B Sequence logo in Mycobacteria, the dnaA promoter as well as 
the promoter of Rv0341 (Isoniazid inducible gene IniB), Rv0574 (hypothetical protein), and 
Rv3476 (dicarboxylate transporter KgtP) and in C. glutamicum, the promoter of mepA (a 
secreted metallopeptidase) and proP (uptake carrier for proline/ectoine). All binding site were 
confirmed by electrophoretic mobility shift assay [EMSA] (Li et al. 2010), open access journal.  



 

 
 28 

1.6.2 MtrAB-LpqB in Corynebacterium glutamicum 

C. glutamicum is a non-pathogenic soil bacterium and has industrial importance 

because it is used to produce the amino acids L-glutamate and L-lysine. In 2004 Möker 

et al. deleted mtrAB and found that the mutant cells were elongated, segmented and 

sometimes showed an irregular cell division septum. They were also more susceptible to 

penicillin and vancomycin and more resistant to ethambutol (Möker et al. 2004). A DNA 

microarray experiment showed that MtrA activates and represses genes. Three genes were 

upregulated in the mutant background: lpqB, which lies downstream of mtrB; mepA a 

secreted metallopeptidase; ppmA a membrane-bound protease modulator. A further eight 

genes were repressed in the mutant background: mtrA and mtrB, the uptake carriers proP 

and betP for proline/ectoine and betaine respectively and four genes encoding 

hypothetical proteins. This was the first data suggesting that MtrAB-LpqB is involved in 

osmoprotection and cell wall biosynthesis since MtrA regulates three out of four uptake 

systems for compatible solutes (proP, betP and lcoP), the mechanosensitive channel 

mscL and the extracytoplasmatic metallopeptidase MepA which might modulate peptides 

already incorporated in the peptidoglycan sacculus or lipid II peptides that will be 

incorporated.  

In a later publication mtrA and mtrB were deleted separately (Brocker & Bott 

2006). The phenotypes are similar to the ΔmtrAB mutant but the cells were not as 

elongated as in the double mutant. The antibiotic susceptibility of the ΔmtrA and ΔmtrB 

mutants is similar to the double mutant with the exception that the ΔmtrB mutant is 

sensitive to ethambutol. However, the authors do not show any data for complementation 

of the single mutants which makes the non-essentiality of MtrA in C. glutamicum 

doubtful because the deletion of mtrA might have introduced secondary mutations. 

Interestingly, MtrA is essential in pathogenic C. pseudotuberculosis (Hassan et al. 2014) 

but it remains unknown as to whether MtrA has the same function in the closely related 

but environmentally different strains. Nevertheless the C. glutamicum ΔmtrA mutant was 

used for ChIP-on-chip (chromatin immunoprecipitation combined with DNA microarray) 

to find direct targets of MtrA. These experiments suggest that there are at least four 

different targets of MtrA in C. glutamicum: mepA, nlpC, betP and proP. MepA and NlcP 

are putative cell wall peptidases and directly repressed by MtrA whereas ProP and BetP 

which are both carriers for compatible solutes are directly activated by MtrA (Brocker & 

Bott 2006; Brocker et al. 2011).  
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The next question addressed in C. glutamicum concerned the signal sensed by 

MtrB. Due to the direct targets of MtrA involved in osmotic stress response it seems likely 

that MtrB acts as an osmosensor. It is crucial for bacteria to sense the environmental 

osmolality and counteract osmotic changes but it is very difficult to measure the effects 

of osmolality in vivo in a cell because the environmental osmolality leads to many internal 

and external changes in the cell. This includes the concentrations of specific solutes, ionic 

strength, internal osmolality and the physical state of the membrane. Bacteria use two 

mechanisms to cope with osmotic stress. Upon osmotic stress bacteria increase the 

concentration of compatible solutes (e. g. proline, glutamate and ectoine) by uptake or de 

novo synthesis to increase to turgor pressure (Csonka 1989). Additionally, bacteria can 

alter the membrane lipid composition by changing the ratio of phospholipids and fatty 

acids (Russell et al. 1995). To investigate MtrB under controlled condition in vitro the 

HK was reconstituted in proteoliposomes in an inside-out orientation (Möker et al. 2007). 

In this artificial set up, MtrB is fully functional and transfers the phosphoryl group to 

MtrA and also dephosphorylates MtrA in the presence of ADP. It is interesting that 

phosphorylated MtrA seems to be highly stable with a 30% dephosphorylation rate in 60 

minutes. It is a common theme for osmosensors to sense either ionic strength, a solute or 

K+ on the cytoplasmatic side of the membrane as indicator for hypertonicity (Rübenhagen 

et al. 2001; Jung et al. 2001; Jung et al. 2000; van der Heide et al. 2001; Culham et al. 

2003). That is why monovalent cations were tested to see if they could stimulate MtrB 

autophosphorylation. Among other monovalent cations, K+ stimulated the 

autophosphorylation of MtrB but at the same time K+ also stimulated DcuS which senses 

C4-dicarboxylates and is not involved in osmosensing. The authors concluded that MtrB 

does not sense the internal cation concentration as osmotic stress signal and that the K+-

dependent activation seems to be a non-specific feature of HKs.  

However it was shown that MtrB could be activated by various solutes, sugars, 

amino acids and polyethylene glycol (Möker et al. 2007). The authors speculate that MtrB 

is unlikely to be activated by binding a specific osmolyte. They hypothesise that MtrB 

detects osmotic stress in the cytoplasmic region of the protein via the modulation of the 

hydration state of the protein, which is induced via preferential and / or steric exclusion 

of osmolytes from the protein surface. This is coherent with the data that MtrB needs to 

be integrated in a membrane to be active and that the extracellular loop domain is 

dispensable for activation by osmotic stress. 
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To define the MtrA targets further in C. glutamicum the promoter regions of the 

confirmed targets of MtrA were analysed with the MEME software (Brocker et al. 2011) 

and then confirmed by electrophoretic mobility shift assay (EMSA). In C. glutamicum 

MtrA either directly or indirectly regulates 24 genes which have transport functions or 

are proteins predicted to be proteases / peptidases, proteins with other predicted function 

(stress protein of unknown function, resuscitation promoting factor, putative 

acetyltransferase, putative glutaredoxin, NAD synthetase, putative membrane-bound 

protease modulator) putative membrane proteins of unknown function and proteins with 

unknown function. 

MtrA represses or activates genes depending on the MtrA binding site in relation 

to the transcriptional start site. If MtrA activates a gene it binds upstream of the -35 region 

and can promote binding of the RNA polymerase to the DNA and therefore stimulate 

initiation of transcription. On the other hand, if MtrA binds in the vicinity of the -10 

region it can prevent binding of the RNA polymerase and thus prevent initiation of 

transcription. The predicted binding site is a 19 bp consensus site with an 8 bp direct 

repeat separated by three variable base pairs shown in Figure 1.7.  

 

Figure 1.7 A 19 bp consensus motif of MtrA in C. glutamicum derived from the verified binding 
sites. B Gene repression (top) or activation (bottom) of MtrA in C. glutamicum. Reprinted 
(adapted) with permission from (Brocker et al. 2011). Copyright (2017) Journal of Bacteriology. 
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The phosphorylated form of MtrA is the active form in vivo in C. glutamicum  as 

shown by the mutation of the phosphorylation site D53N (Brocker et al. 2011). 

Furthermore the authors demonstrated by size exclusion chromatography that MtrA can 

be phosphorylated in vitro by phosphoramidate but not by acetyl phosphate (Brocker et 

al. 2011). In comparison MtrA in M. tuberculosis can be phosphorylated by 

phosphoramidate but phosphorylation by acetyl phosphate has a much slower rate 

(Friedland et al. 2007). 

To summarise, the work by Möker and colleagues shows in an elegant way how 

MtrB senses osmotic stress and transfers this signal to MtrA. However not only osmotic 

stress response genes are targets of MtrA but also genes for cell cycle progression. Thus, 

it might be possible that MtrB could sense additional signal(s) via the extracellular sensor 

domain which do not involve osmotic stress. It is worth mentioning that in C. glutamicum 

dnaA is not a target of MtrA in contrast to M. tuberculosis which could mean that the 

MtrAB-LpqB operon could have different function in different organisms even within 

these closely related genera. It is also possible however that the C. glutamicum MtrA 

regulon has not been completely defined and that the C. glutamicum mtrA and mtrAB 

mutants may have acquired suppressors (to prevent lethality) since the mutants were 

never complemented.  

 

1.6.3 MtrAB-LpqB in Streptomyces coelicolor 

When MtrA was first discovered in M. tuberculosis (Via et al. 1996) it was 

assumed that MtrA-MtrB could be a homolog of AfsQ1/2 in Streptomyces spp. due to the 

high protein similarity (Zahrt & Deretic 2000). However whole genome sequencing of 

S. coelicolor (Bentley et al. 2002) revealed the true orthologue in S. coelicolor, which is 

not AfsQ1/2. Relatively little is known about the role of MtrAB-LpqB in Streptomyces 

species but it is conserved in the genus Streptomyces and the above described model 

organisms and other Actinobacteria, (see section 1.7). Thus, it can be speculated that there 

might be a functional overlap of MtrAB-LpqB in the distantly related genera 

Streptomyces, Mycobacterium and Corynebacterium. 

In the M. avium mtrB mutant the mce (mammalian cell entry) genes are 

downregulated (Cangelosi et al. 2006). Mycobacteria possess several mce operons and 

mce mutants were shown to be reduced in viability in mouse infection models (Gioffré et 
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al. 2005) but hyper virulent in macrophages in M. tuberculosis (Shimono et al. 2003). In 

comparison, the disruption of the mce cluster in the non-virulent S. coelicolor resulted in 

virulence towards amoebae and reduced colonization of plant models (Clark et al. 2013). 

Furthermore, it was shown that MtrA is required for expression of the mce genes in 

S. coelicolor because semi-quantitative RT-PCR showed that the mce locus was not 

transcribed in an mtrA mutant (Clark et al. 2013). This indicates that the mce cluster is a 

direct target of MtrA in S. coelicolor. 

Knowles (2014) investigated the MtrAB-LpqB TCS in S. coelicolor. Deletion 

mutants of each single gene in the TCS operon were made and these mutants displayed a 

cell division defect and overproduced antibiotics. After many attempts to delete mtrA it 

was possible to obtain only a single colony of an mtrA mutant (Ryan Seipke, personal 

communication). The mutant colony is smaller than wild-type and is delayed in 

sporulation and overproduces actinorhodin and undecylprodigiosin. This mutant could 

not be complemented with a complementation construct containing mtrA under the 

control of the promoter upstream of SCO3014, the first gene in the mtrAB-lpqB operon. 

A second attempt to complement the ΔmtrA mutant involved a vancomycin inducible 

promoter, vanJp. The ΔmtrA mutant only complemented partially (Knowles 2014), see 

Figure 1.8. The difficulty in obtaining a double crossover ΔmtrA mutant and the fact that 

the ΔmtrA mutant that was isolated could only be partially complemented suggests that 

MtrA might be essential in in S. coelicolor and that the removal of mtrA from the S. 

coelicolor might be only possible because of one or more suppressor mutations. In 

comparison, the mtrB and lpqB mutants could be fully complemented using constructs 

driven by the SCO3014 promoter and are therefore not essential in S. coelicolor. The 

ΔmtrB mutant shows a drastic cell division phenotype, see Figure 1.9. The colonies are 

smaller and the mtrB mutant forms irregular septa. In contrast, the lpqB mutant displays 

normal colony morphology but this mutant also forms irregular septa ( Figure 1.9). Both 

mutants overproduce coloured pigments when grown in liquid supplemented minimal 

medium (SMM) medium. Initially a yellow pigment is visible in the liquid culture and as 

the culture continues to grow the culture supernatant turns purple. It was hypothesised 

that the yellow pigment is most likely the actinorhodin precursor (s)-DNPA and not the 

yellow γCPK (Gottelt et al. 2010). The purple colour can be explained by the 

overproduction of undecylprodigiosin.  



 

 
 33 

Figure 1.8 Deletion and complementation of ΔmtrA mutant in S. coelicolor. For the 
complementation of ∆mtrA the plasmid pA11912 containing mtrA under the promoter upstream 
of SCO3014 was integrated in the ΦC31 integrative site. mtrA was cloned in pIJ6883 (Hong et 
al. 2004) under the control of the vancomycin inducible promoter vanJp. Both complementation 
constructs show only partial complementation. Images modified from (Knowles 2014). 

 

Due to the cell division defect, it was hypothesised that MtrAB-LpqB in 

S. coelicolor might be involved in cell division and that ftsZ could be a target of MtrA. 

Therefore, the ftsZ expression in the ΔmtrA mutant was determined by qRT-PCR 

(Knowles 2014). The transcription of ftsZ in the ΔmtrA mutant is significantly lower than 

in the wild-type suggesting that MtrA might activate FtsZ in S. coelicolor. In summary, 

previous work indicates the involvement of MtrAB-LpqB in cell division in S. coelicolor 

which is coherent with the work in M. tuberculosis. Additionally, the deletion of single 

components of the TCS leads to overproduction of the antibiotic undecylprodigiosin but 

underlying mechanisms remain elusive. Finally, the data indicates that mtrA is likely to 

be essential in S. coelicolor as it is in M. tuberculosis. 
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 Figure 1.9 Growth defect phenotypes in S. coelicolor ΔmtrB and ΔlpqB mutant. The 
S. coelicolor M145 wild-type and mutants were cultivated on SFM medium for three and five 
days. Pictures were taken by light microscopy, top panel, and scanning electron microscopy 
(SEM), bottom panel. The ability to sporulate is reduced in the ΔmtrB mutant and it forms 
irregular spore septa at five days of cultivation. Additionally, the ΔmtrB mutant produces a blue 
pigment after five days of growth. The ΔlpqB mutant form irregular spore septa. Images modified 
from (Knowles 2014). 

 

1.6.4 Transcription of MtrAB-LpqB in S. venezuelae    

During this work, transcriptomic data for the mtrAB-lpqB operon became 

available. Differential RNA sequencing (dRNA-seq) was performed by John Munnoch 

and revealed that the mtrAB-lpqB operon is transcribed from two transcriptional start sites 

while microarray data shows the expression of MtrAB-LpqB during the developmental 

time course (Figure 1.11).  

The dRNA-seq data is freely available: accession number GSE81104. The data  

suggest that two promoters drive expression of the mtrAB-lpqB operon (Figure 1.10).  
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Figure 1.10 Transcriptional start sites of the mtrAB-lpqB operon. dRNA-seq in S. venezuelae 
conducted by John Munnoch, accession number: GSE81104. The top and bottom image show 
both the mtrAB-lpqB operon but the bottom image is zoomed in to present the second 
transcriptional start site (TSS). TAB(+) shows the TSS with enriched 5’PPP RNA and the      
TAB(-) show the whole transcript with 5’P RNA. 

 

The P1 promoter generates a leaderless transcript starting at +1 and P2 generates 

a leadered transcript starting at -79. It is typical for TCS that a weak promoter 

constitutively expresses the RR and HK at a low level to be able to respond to the external 

stimulus (Groisman 2016). The microarray data shows that mtrAB-lpqB operon is 

constitutivly expressed during the life cycle with the highest level during vegetative 

growth at 10 till 12 hours and a subsequent drop in expression at 14 hour (Figure 1.11).  
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Figure 1.11 Microarray data of the mtrAB-lpqB operon in S. venezuelae. Kindly provided by 
Mark Buttner at the John Innes Centre.  

 

1.7 An update on the conservation of MtrAB in Actinobacteria 

In 2006 it was proposed that MtrAB-LpqB is highly conserved in the phylum 

Actinobacteria (Hoskisson & Hutchings 2006). At this time only 17 completely 

sequenced genomes of Actinobacteria were available (Gao et al. 2006) which belong to 

10 genera within the order of Actinomycetales and one species belongs to 

Bifidobacteriales. These genomes span a wide range of Actinobacteria but no sequenced 

genomes of the classes Nitriliruptoria, Acidimicrobiia, Coriobacteriia, Thermoleophilia 

and Rubrobacteria were available at this time. MtrAB-LpqB was conserved in all 

sequenced Actinobacteria in 2006 with the exception of T. whipplei an intracellular 

pathogen with a reduced genome (Hoskisson & Hutchings 2006). Now in 2016 due to the 

rapid development of sequencing technology ~7781 Actinobacterial genomes are 

available (www.patricbrc.org). The following section explores if MtrAB-LpqB is still 

conserved in Actinobacteria. 
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Figure 1.12  Top: Genomic organisation of SCO3014-mtrAB-lpqB in Streptomyces coelicolor. 
Bottom: Distribution of probable orthologues of MtrA, MtrB and LpqB proteins of S. coelicolor 
encoded in more than 100 Actinobacterial genomes, as detected by reciprocal BLASTP best 
hits from http://streptomyces.org.uk/actinoblast/. Each column represents one genome, and 
the genomes are grouped and coloured to indicate subgroup relationships (e.g. 
Corynebacterineae columns, including Mycobacterium, Nocardia and Corynebacterium, were 
coloured Indian red). Grey boxes indicate reciprocal hits falling below the minimal criteria 
adopted for orthology. White boxes indicate the absence of a reciprocal hit. The presence of the 
rare TTA codon is highlighted by a T in the coloured box. The sources of genomes are listed in 
Table 1 of Gao & Gupta (2012). Organisms were as follows (in order across the tabulation). 
Magenta: Streptomycineae, S. lividans TK24, S. viridochromogenes DSM 40736, S. scabiei 
87.22, S. sviceus ATCC 29083, S. avermitilis MA-4680, S. griseoflavus Tu4000, S. venezuelae 
ATCC 10712, S. griseus subsp. griseus NBRC 13350, S. hygroscopicus ATCC 53653, S. 
pristinaespiralis ATCC 25486, S. roseosporus NRRL15998, S. albus G J1074, S. clavuligerus 
ATCC 27064, Kitasatospora setae KM-6054. Turquoise: Catenulispora acidiphila DSM 44928. 
Light blue: Stackebrandtia nassauensis DSM 44728. Dark blue: Salinispora, S. tropica CNB-
440, S. arenicola CNS-205; Micromonospora, M. sp. L5, M. sp. ATCC39149, M. aurantiaca 
ATCC 27029. Purple: Saccharomonospora viridis DSM 43017; Saccharopolyspora erythraea 
NRRL 2338; Amycolatopsis mediterranei U32; Actinosynnema mirum DSM 43827; 
Thermobispora bispora DSM 43833. Yellow green: Streptosporangium roseum DSM 43021; 
Thermomonospora curvata DSM 43183; Thermobifida fusca YX; Nocardiopsis dassonvillei 
subsp. dassonvillei DSM 43111. Blue green: Acidothermus cellulolyticus 11B; Frankia, F. sp. 
EAN1pec, F. sp. CcI3, F. alni ACN14a; Geodermatophilus obscurus DSM 43160; Nakamurella 
multipartita DSM 44233. Rust red: Gordonia bronchialis DSM 43247; Nocardia farcinica IFM 
10152; Segniliparus rotundus DSM 44985; Tsukamurella paurometabola DSM 20162; 
Rhodococcus, R. opacus B4, R. jostii RHA1, R. erythropolis PR4, R. equi 103S; Mycobacterium, 
M. vanbaalenii PYR-1, M. ulcerans Agy99, M. sp. Spyr1, M. sp. MCS, M. sp. KMS, M. sp. JLS, 
M. smegmatis str. MC2 155, M. marinum, M. leprae Br4923, M. gilvum PYR-GCK, M. abscessus 
ATCC 19977, M. avium subsp. paratuberculosis K-10, M. avium 104, M. tuberculosis H37Rv, 
M. bovis AF2122/97; Corynebacterium, C. urealyticum DSM 7109, C. pseudotuberculosis 
FRC41, C. kroppenstedtii DSM 44385, C. jeikeium K411, C. glutamicum ATCC 13032 2, C. 
efficiens YS-314, C. diphtheriae NCTC 13129, C. aurimucosum ATCC 700975. Bright green: 
Nocardioides sp. JS614; Kribbella flavida DSM 17836; Propionibacterium, P. freudenreichii 
subsp. shermanii CIRM-BIA1, P. acnes KPA171202. Plum: Kineococcus radiotolerans 
SRS30216. Olive yellow: Beutenbergia cavernae DSM 12333; Cellulomonas flavigena DSM 
20109; Brachybacterium faecium DSM 4810; Kytococcus sedentarius DSM 20547; 
Intrasporangium calvum DSM 43043; Jonesia denitrificans DSM 20603; Clavibacter 
michiganensis subsp. michiganensis NCPPB 382; Leifsonia xyli subsp. xyli str. CTCB07; 
Microbacterium testaceum StLB037; Arthrobacter, A. sp. FB24, A. phenanthrenivorans Sphe3, 
A. chlorophenolicus A6, A. aurescens TC1, A. arilaitensis Re117; Kocuria rhizophila DC2201; 
Micrococcus luteus NCTC 2665; Renibacterium salmoninarum ATCC 33209; Rothias, R. 
mucilaginosa DY-18, R. dentocariosa ATCC 17931; Xylanimonas cellulosilytica DSM 15894; 
Sanguibacter keddieii DSM 10542; Tropheryma whipplei str. Twist. Brown: Mobiluncus curtisii 
ATCC 43063; Arcanobacterium haemolyticum DSM 20595. Cyan: Gardnerella vaginalis ATCC 
14019; Bifidobacterium, B. longum NCC2705, B. longum DJO10A, B. dentium Bd1, B. bifidum 
PRL2010, B. animalis subsp. lactis Bl-04, B. adolescentis ATCC 15703. Pink: Acidimicrobium 
ferrooxidans DSM10331. Pale grey green: Conexibacter woesii DSM14684; Rubrobacter 
xylanophilus DSM9941. Beige: Atopobium parvulum DSM 20469; Cryptobacterium curtum DSM 
15641; Eggerthella lenta DSM 2243; Olsenella uli DSM 7084; Slackia heliotrinireducens DSM 
20476. (Chandra & Chater 2014) 
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1.7.1 The conservation of MtrAB in 100 Actinobacteria 

Chandra and Chater published an extensive web tool which compares the protein 

identities of each gene in S. coelicolor with 100 Actinobacterial genomes (Chandra & 

Chater 2014). This analysis shows that MtrAB-LpqB is conserved in Actinobacteria and 

the order of the mtrAB-lpqB operon is also conserved. However, in some Streptomyces 

species, including S. coelicolor, a putative eukaryotic translation initiation factor lies 

upstream of mtrA (Figure 1.12). The S. venezuelae operon does not contain this 

Streptomyces specific putative translational initiation factor. Also, members of the closely 

related genus Kitasatospora miss this putative translation initiation factor. The deletion 

mutant of the putative translation initiation factor in S. coelicolor (SCO3014) seems to 

precociously sporulate on agar plates (Knowles 2014) but the function remains elusive 

and the sporulation phenotype may be due to downstream effects on the (over) expression 

of mtrAB-lpqB. Since S. venezuelae does not contain the putative translation initiation 

factor this gene is not further investigated in this study. 

Throughout Actinobacteria the upstream and downstream genes relative to 

mtrAB-lpqB are not conserved. However in Corynebacterineae there are two conserved 

upstream and downstream genes: sahH (S-adenosylhomocysteine hydrolase), tmk 

(thymidylate kinase), hypothetical cytosolic protein belonging to the 

amidophosphoribosyl transferase family and hypothetical cytosolic protein belonging to 

σ54 modulation protein family and S30AE family of ribosomal proteins (Möker et al. 

2004). If these genes are co-transcribed or influence the MtrAB-LpqB operon remains to 

be seen. 

The MtrAB-LpqB operon can be found in the majority of the investigated 

Actinobacteria but MtrAB-LpqB is less conserved in the more distantly related families 

Bifidobacteriales, Acidimicrobiales, Rubrobacteridae and Coriobacteridae and absent in 

Frankia which form N2 fixing root nodules and intracellular pathogens as well as 

commensals (Table 1.1). It seems that many intracellular pathogens and commensals 

have lost the MtrAB-LpqB TCS. However, the family of Corynebacterineae contains 

pathogens like M. tuberculosis and M. leprae, which possess MtrAB-LpqB. The latter 

strain is especially interesting because this pathogen has a greatly reduced genome and 

does not contain most of the sigma factors and TCS which can be found in other 

Mycobacteria (Madan Babu 2003). Additionally it was shown that MtrA is actively 
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expressed by detection of MtrA in 2D gel electrophoresis of soluble cell extracts from 

M. leprae (Marques et al. 1998).  

In summary, the work of Chandra and Charter revealed that MtrAB-LpqB is 

conserved in most Actinobacteria but distant related families to Streptomyces lost the 

MtrAB-LpqB operon. One exception is the genus Frankia. Further studies need to be 

conducted to see if MtrAB-LpqB has the same physiological role in the different genera 

to address the question why Frankia, human pathogens and commensals lost this TCS. 

 

Table 1.1 Species from Figure 1.12 in which MtrAB-LpqB is absent. 

Family Species Environment Reference 

Frankineae F. sp. EAN1pec 

Form N2 fixing root nodules 
(Chaia et al. 
2010) 

  F. sp. CcI3,  

  F. alni ACN14a;  

Micrococcineae 

Tropheryma 
whipplei str. 
Twist.  

Intracellular pathogen 
(Raoult et 
al. 2003) 

Bifidobacteriales 

Gardnerella 
vaginalis ATCC 
14019  

Commensal of the human vaginal 
microbiome but also linked to 
bacterial vaginosis 

(Yeoman et 
al. 2010) 

B. dentium Bd1 
opportunistic cariogenic pathogen 
of the human oral cavity 

(Ventura et 
al. 2009) 

B. bifidum 
PRL2010 

Dominant in the infant intestinal 
microbiome 

(Turroni et 
al. 2010) 

B. animalis subsp. 
lactis Bl-04,  

intestinal microbiome 
(Barrangou 
et al. 2009) 

B. adolescentis 
ATCC 15703.  

intestinal microbiome 
(Duranti et 
al. 2013) 

Acidimicrobiales 

Acidimicrobium 
ferrooxidans 
DSM10331  

isolated from hot acidic springs 
(Clum et al. 
2009) 

Rubrobacteriadae 
Conexibacter 
woesii DSM14684 

non sporulating motile soil 
bacterium 

(Abt et al. 
2010) 

Coriobacteridae 

Olsenella uli DSM 
7084  

frequently isolated from dental 
plaque in periodontitis patients 
and can cause primary endodontic 
infection 

(Göker et 
al. 2010) 

Slackia 
heliotrinireducens 
DSM 20476. 

originally isolated from the ruminal 
flora of a sheep 

(Pukall et 
al. 2009) 
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1.8 Aims and objectives 

MtrAB is conserved in Actinobacteria and previous studies demonstrated that 

MtrAB takes part in cell division in Mycobacteria and osmoprotection in C. glutamicum. 

The RR MtrA is essential in M. tuberculosis but dispensable in C. glutamicum. The reason 

for the essentiality in M. tuberculosis is most likely the involvement of MtrAB in cell 

division. Previous work in S. coelicolor indicated that MtrA might be involved in the 

regulation of cell division. Therefore, I aimed to investigate the regulatory role of MtrAB-

LpqB in the two Streptomyces strains S. venezuelae and S. coelicolor in this study. To 

achieve this aim I had the following experimental objectives: 

• To generate deletion mutants of mtrA, mtrB and lpqB in S. venezuelae and 

compare the phenotype with S. coelicolor ΔmtrA, ΔmtrB and ΔlpqB 

mutants (Chapter 3). 

• To produce MtrA gain of function proteins in S. venezuelae (Chapter 3). 

• To determine MtrA target genes in S. venezuelae and S. coelicolor by 

Chromatin Immunoprecipitation and sequencing (ChIP-seq), (Chapter 4). 

• To investigate the phosphotransfer from the histidine kinase MtrB to the 

response regulator MtrA in S. venezuelae (Chapter 5). 
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2 Material and Methods 

2.1 Chemicals and Reagents 

Chemicals and reagents used are laboratory standard grade or above, purchased 

from Sigma Aldrich (UK) or Thermo Fisher Scientific (UK) unless otherwise stated. All 

media and solutions were made using dH2O except SFM and MYM which contain 50% 

tap water.  

 

2.2 Bacterial strains and plasmids 

The bacterial strains, and plasmids used or constructed in this study are listed in 

Table 2.1 and Table 2.2. Growth media used are listed in Table 2.3. Liquid cultures of 

E. coli were routinely grown shaking at 220 rpm, in LB broth at 37°C unless stated 

otherwise. Liquid cultures of S. coelicolor or S. venezuelae were grown at 30°C, shaking 

at 220 rpm. Typically, 35 ml of liquid culture was grown in 250 ml flasks containing 

springs or glass beads. Cultures grown on solid media were grown at the same 

temperatures listed above, unless stated otherwise.  
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Table 2.1 Bacterial strains used throughout this work. Abbreviation of resistances can be found in Table 2.4. 

Strain Description Plasmid Resistance Reference 

E. coli     

Top10 
F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 

araD139 Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG 
  InvitrogenTM 

BW25113 
λ-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-4), lacIp-4000(lacIQ), 

rpoS369(Am), rph-1, Δ(rhaD-rhaB)568, hsdR514 
pIJ790 CmlR (Datsenko & Wanner 2000) 

ET12567 dam- dcm- hsdS- pUZ8002 CmlR/TetR (MacNeil et al. 1992) 

BL21 
fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdSλ DE3 = λ sBamHIo 

∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5 
  (Studier & Moffatt 1986) 

S. coelicolor     

M145   
 

SCP1- SCP2- Pgl+   (Hopwood et al. 1986) 

ΔmtrB M145 mtrB::scar   (Knowles 2014) 

ΔlpqB M145 lpqB::scar   (Knowles 2014) 

NS0171 M145 mtrA::scar ΦBT1 mtrAp mtrA-3xFlag pNS109  This work 

S. venezuelae     

S. venezuelae 

ATCC 10712 
Wild-type   (Pullan et al. 2011) 

NS003-005 ΦBT1 mtrAp mtrA-3xFlag pNS109 HygR This work 

NS012, NS021 and 

NS022 
mtrB::aac(3)IV oriT  AprR This work 

NS013-15 ΦBT1 mtrAp mtrA(TB) pNS103 HygR This work 

NS016-18 ΦBT1 mtrAp mtrA(TB)Y102C pNS104 HygR This work 
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NS029 ΦBT1 pMS82 pMS82 HygR This work 

NS033-35 ΦBT1 ermE* mtrA pNS102 HygR This work 

NS036-38 ΦBT1 pIJ10257 pIJ10257 HygR This work 

NS039-41 ΦBT1 mtrAp mtrA pNS108 HygR This work 

NS042-44 mtrA::aac(3)IV oriT ΦBT1 mtrAp mtrA-3xFlag pNS109 AprR  / HygR This work 

NS052 mtrA:: aac(3)IV oriT ΦBT1 mtrAp mtrA pNS108 AprR  / HygR This work 

NS093-95 mtrB:: aac(3)IV oriT ΦBT1 mtrAp mtrB pNS107 AprR  / HygR This work 

NS099-101 ΦBT1 mtrAp mtrAY99C pNS105 HygR This work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

4
5
 

Table 2.2 Plasmids and cosmids used throughout this work. Abbreviation of resistances can be found in Table 2.4. 

 

Plasmids Genotype/description Resistance Reference 

pIJ773 aac(3)IV oriT bla AprR (Gust et al. 2004) 

pIJ790 araC-Parab,Υ, β, exo, cat, repA1001ts, oriR101 CmlR (Gust et al. 2004) 

pUZ8002 RK2 derivative with a mutation in oriT  KanR (Kieser et al. 2000) 

pMS82 ori, pUC18, hyg, oriT, RK2, int ΦBT1 HygR (Gregory & Smith 2003) 

pIJ10770 ori, pUC18, hyg, oriT, RK2, int ΦBT1 Δ aac(3)IVp HygR Susanne Schlimpert, unpublished 

pIJ10257 oriT, ΦBT1 attB-int, Hygr, ermEp*, pMS81 backbone HygR (Hong et al. 2005) 

pNS074 pETduet-1 mtrA(Sv) AmpR Mahmoud Al-Bassam, unpublished 

pET-28a(+) f1 origin, T7 lac, IacI, ori KanR NovagenTM 

pETduet-1 f1 origin, T7 lac, IacI, ori with two multiple cloning sites AmpR NovagenTM 

pNS100 pET28a mtrB His-Cterm KanR This work 

pNS101 pET28a mtrB His-Nterm KanR This work 

pNS102 pIJ10257 mtrA HygR This work 

pNS103 pIJ10770 mtrAp mtrA(TB) HygR Manufactored by GenScriptTM 

pNS104 pIJ10770 mtrAp mtrA(TB)Y102C HygR Manufactored by GenScriptTM 

pNS105 pIJ10770 mtrAp mtrA(Sv)Y99C HygR Manufactored by GenScriptTM 

pNS106 pMS82 mtrAp lpqB HygR This work 

pNS107 pIJ10770 mtrAp mtrB HygR This work 

pNS108 pMS82 mtrAp mtrA HygR This work 

pNS109 pMS82 mtrAp mtrA-3xFlag HygR This work 

Cosmids    

SV-6-A04 Supercos-1 Cosmid with a 40.2kbp chromosomal fragment with mtrAB-lpqB  (Pullan et al. 2011) 

pNS069 SV-6-A04 lpqB:: aac(3)IV oriT  This work 

pNS070 SV-6-A04 mtrB:: aac(3)IV oriT  This work 

pNS071 SV-6-A04 mtrA:: aac(3)IV oriT  This work 
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Table 2.3 Bacterial growth media. All media were made in 1000ml dH2O except for 

SMM which is made up in 100ml. 

Medium Composition Weight, %v/v, %w/v 

Lennox Broth (LB) Tryptone  10 g 

 Yeast extract   5 g 

 NaCl   5 g 

For solid medium Agar  15 g 

For soft LB  Agar 7.5 g 

2xYT Tryptone 20 g 

 Yeast extract 10 g 

DNB Difco Bacto tryptone 10 g 

 Difco yeast extract   5 g 

 Glucose   1 g 

Tryptone Soya Broth (TSB) TSB powder (OxoidTM) 30 g 

MYM-tap Maltose   4 g 

 Yeast extract   4 g 

 Malt extract 10 g 

 Tap water 500 ml 

 1R2 Trace elements   

For solid medium Agar 20 g 
1R2 Trace elements ZnCl2    40 mg 

filter sterilised and added 

after autoclaving 

FeCl3·H20   200 mg 

CuCl2·2H20     10 mg 

 MnCl2·4H20     10 mg 

 Na2B407·10H20     10 mg 

 (NH4)6Mo7O24·4H20     10 mg 

SFM (or MS) Mannitol   20 g 

 Soya flour (added in aliquots to 

flasks) 

  20 g 

For solid medium Agar   20 g 

SMM  

Each solution is autoclaved 

separately, then mixed in the 

order given; SMM without 

PEG was made with dH20 

instead of PEG 

 

PEG 6000 (BDH 6.1% w/v in dH20) 

or replaced with dH20 

  81.9 ml 

MgSO4·7 H20 (24 g l-1)     2.5 ml 

TES buffer (0.25M, pH 7.2)      10 ml 

NaH2PO4+K2HPO4 (50mM each)        1 ml 

Glucose (50% w/v)        2 ml 

Antifoam 289 (Sigma A 5551; 1% 

w/v) 

    0.1 ml 

 2Trace element solution        1 ml 

Difco Casaminoacids (20% w/v)        1 ml 

Glycerine (20% solution)     2.5 ml 
   
2Trace elements for SMM 

(filter sterilised) 

ZnSO4·7H2O   0.1 g 

FeSO4·7H2O   0.1 g 

 MnCl2·4H2O   0.1 g 

 CaCl2·6H2O   0.1 g 

 NaCl   0.1 g 
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2.3 Media 

Media compositions are shown in Table 2.3. When required, media were 

supplemented with the appropriate antibiotic (Table 2.4). In general media for 

Streptomyces mutants were not supplemented with antibiotics because Streptomyces 

mutants are genetically stable and added antibiotics can affect the morphology or growth 

behaviour. This is especially important to consider for liquid growth cultures.  

 

Table 2.4 Concentrations of antibiotics used during this thesis. All antibiotics were 

filter sterilised with 0.22µm filter. 

Antibiotic Abbreviation 

Stock 

concentration 

(mg/ml) 

Working 

Concentration 

(μg/ml) for 

media 

Working 

Concentration 

(mg/ml) for overlay 

conjugation plates 

Ampicillin AmpR 100 100  

Apramycin AprR 50 50 1.25 

Chloramphenicol CmlR 25 25  

Hygromycin HygR 50 50 1.25 

Kanamycin KanR 50 50  

Nalidixic acid NalR 
25 in 0.3 M 

NaOH 
25 0.5 

 

2.4 S. venezuelae growth curves 

To determine the developmental growth in liquid culture S. venezuelae and mutant 

strains were grown in 35 ml MYM in 250 ml conical flasks containing springs at 30°C at 

220 rpm. A spore inoculum sufficient to reach an OD(600) of 0.35 after 8 hours of growth 

was added to 35 ml of MYM tap media in 250 ml flasks containing springs. The culture 

was measured at OD(600). When the cultures reach an OD(600) > 0.5 the samples were 

diluted with MYM to reach an OD(600) under 0.5. The growth rate was calculated as 

described previously (Widdel 2007) with the formulas: 

   N = N0 eµt  

N is the number of cells, N0 is any number of cells, e is the Euler number (e = 2.71828…), 

µ is the growth rate and t is time. The doubling time td is dependent on the growth rate: 

    µ = 
𝑙𝑛2

𝑡𝑑
 

Microsoft excel was used to calculate the growth rate during the exponential 

phase. The growth curve was converted to a logarithmic y-axis and then data point which 
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form an exponential trend were chosen and the excel software predicted the exponential 

curve containing the data points of the growth curve. The resulting formula of the 

exponential curve contains the growth rate in the first formula described above.  

 

2.5 Microscopy 

2.5.1 Light microscopy 

Liquid cultures were examined with the GXML3000B from GX optical. Pictures 

were taken with the Dino-eye Eyepiece camera. Pictures of solid growth colonies were 

taken with the Zeiss SVII stereo microscope. 

  

2.5.2 Scanning electron microscopy (SEM) 

S. venezuelae and S. venezuelae ΔmtrB spores were diluted to obtain single 

colonies. The dilution was plated on MYM agar plates and incubated for 10 days at 30°C 

and imaged by the bioimaging facility at the John Innes Centre by using cryo-SEM 

technique. First, the sample is cryo-fixed, generally by plunging it into sub-cooled 

nitrogen (nitrogen slush) close to the freezing point of nitrogen at -210oC, then the sample 

is transferred in vacuo to the cold-stage of the SEM cryo-preparation chamber, where 

fracturing can be performed if necessary. After sputter coating with metal (usually gold 

or platinum), the sample is transferred into the SEM chamber, where it remains frozen 

during imaging on another cold-stage, cooled by nitrogen.   

 

2.6 General techniques  

2.6.1 Polymerised Chain Reaction (PCR) 

Two different DNA polymerases were used depending on the application. 

PCRBIO® Taq DNA Polymerase (from PCR Biosystems) was used to test if a DNA 

fragment was integrated in a plasmid or genomic DNA. Q5® High-Fidelity DNA 

polymerase was used to amplify DNA fragments for subsequent cloning because this 

polymerase has a lower error rate (> 100-fold lower than that of Taq DNA Polymerase). 

Template DNA was purified chromosomal DNA, PCR product, plasmid DNA and 

synthesised constructs. Calculated specific primer melting temperatures (Tm) and 

adjusting values accordingly for each enzyme used, determined the annealing temperature 

(Ta). PCR programmes (Table 2.6 and Table 2.8) were conducted using a DNA engine 
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PTC 300 (BIORAD®) PCR machine. Primers used for the generation of cloning products 

are shown in Table 2.9. All primers used throughout this work were synthesised by 

Integrated DNA Technologies (IDT). 

 

2.6.1.1. Taq polymerase 

Table 2.5 Master mix composition for Taq polymerase in 20µl reaction volume.  

Reagent 20µl reaction Final concentration Notes 

2x PCRBIO Taq Mix 10 µl 1x  

DMSO   1 µl 5% Reduces Ta 

Forward primer (5μM) 0.5 µl 125nM  

Reverse primer (5μM) 0.5 µl 125nM  

Template DNA 0.5 µl variable <10 ng plasmid or gDNA 

dH2O 7.5 µl    

Table 2.6 Cycling conditions for Taq polymerase  
Cycles Temperature Time Notes 

1 95°C 1 min Initial denaturation 

25 

95°C 10 sec Denaturation 

55°C to 72°C 10 sec 
Anneal (Ta was calculated using NEB 

calculator (http://tmcalculator.neb.com/#!/)) 

72°C 15 sec per kb Extension 

1 72°C 2 min Final extension 

2.6.1.2. Q5 polymerase 

Table 2.7 Master mix for Q5 polymerase in 50µl reaction volume.  

Reagent 
50 µl 

reaction 
Final concentration Notes 

5X Q5  

Reaction Buffer 
 10 µl 1x  

5X Q5 High GC Enhancer  10 µl 0.5% Reduces Tm 

10 mM dNTPs    1 µl 200 µM  

Forward primer (10 μM) 0.5 µl 100 nM  

Reverse primer (10 μM) 0.5 µl 100 nM  

Template DNA 0.5 µl variable <10ng plasmid or gDNA 

Q5 High-Fidelity DNA 

Polymerase 
0.5 µl   

dH2O 27 µl    

Table 2.8 Cycle condition for Q5 polymerase. 
Cycles Temperature Time Notes 

1 98°C 30 sec Initial denaturation 

35 

98°C 10 sec Denaturation 

55°C to 72°C 10 sec 
Anneal (Tm was calculated using NEB 

calculator)(http://tmcalculator.neb.com/#!/) 

72°C 20 sec per kb Extension 

1 72°C 2 min Final extension 
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2.6.2 Primers 

Table 2.9 Primers used throughout this work. JM0012-JM0016 were provided by John Munnoch (Munnoch 2015).The universal M13 primers 

are shown in bold. 

Primer  Description Sequence 

NS-040 mtrA (SVEN15_2696) forward disruption primer (Redirect) 
GCCTTGAGACTGATACGGAAATGGGATGATGTCGATATGATTCCGG

GGATCCGTCGACC 

NS-041 mtrA (SVEN15_2696) reverse disruption primer (Redirect) 
TCCCCGGGCTTCGGAGCAGCACTGCCTGTACTCATGTCATGTAGGC

TGGAGCTGCTTC 

NS-044 mtrB (SVEN15_2695) forward disruption primer (Redirect) 
TCCGTGGTGTCGGGTACAAGGCGGGACCGAGCTGACATGATTCCG

GGGATCCGTCGACC 

NS-080 mtrB (SVEN15_2695) reverse disruption primer (Redirect) * ctcccgcacccaccgtcccgctcgggcgTCAgcgccCACtgtaggctggagctgcttc 

NS-056 lpqB (SVEN15_2694) forward disruption primer (Redirect) 
CACGACGCCGGCATGCCGCGCCGCGCGCCGGGGCCGCTATGTAGG

CTGGAGCTGCTTC 

NS-079 lpqB (SVEN15_2694) forward disruption primer (Redirect) * aacgcggagcgggaggacaggacacGTGggcgcTGAcgcattccggggatccgtcgacc 

NS-131 mtrA (SVEN15_2696) forward test primer -141 TGA CAT CCA TGT CTG GCA TCA ACA CCC A 

NS-132 mtrA (SVEN15_2696) reverse test primer -120  CGA CGA TCC TCA GCT GGA TGT TCC GT 

NS-070 mtrB (SVEN15_2695) forward test primer -100  CAC GTC CAG CGG CTG CGC TCG AAG G 

NS-071 mtrB (SVEN15_2695) reverse test primer -100 GTC GGG CAT GGT CGC GCA CCC GGT G 

NS-072 lpqB (SVEN15_2694) forward test primer -100 CGG ACG CCG GCG GAC GGC GAC GGG A 

NS-073 lpqB (SVEN15_2694) reverse test primer -100 GCC AAC CCC TGT GGA AAA CCT CCG G 

NS-238 lpqB (SVEN15_2694) forward test primer AGTACGAGCTCTACTACCTTTT 

NS-239 lpqB (SVEN15_2694) forward test primer ACCTCCTGGAGATCAGCCGCTTCGA 

NS-240 lpqB (SVEN15_2694) reverse test primer TCATCAGGTCGTCCACGAGGACCAC 

P1 aac(3)IV resistance cassette test primer ATT CCG GGG ATC CGT CGA CC 

P2 aac(3)IV resistance cassette test primer TGT AGG CTG GAG CTG CTT C 
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NS-064 pMS82 forward test primer GCAACAGTGCCGTTGATCGTGCTATG 

NS-065 pMS82 reverse test primer GCC AGT GGT ATT TAT GTC AAC ACC GCC   

NS-115 mtrA (SVEN15_2696) NdeI forward $ gcgCATATGATGAAGGGACGCGTT 

NS-116 mtrA (SVEN15_2696) HindIII reverse $ gcgAAGCTTTCAGCTCGGTCCCGC 

NS-121 pIJ10257 forward test primer AGGTACCAGCCCGACCCG 

NS-122 pIJ10257 reverse test primer ATCAGCGAGCTGAAGAAA 

NS-123 mtrA (SVEN15_2696)  HindIII forward 1 $ gcgAAGCTTCCG TGG GCC GGT CCC GCC TC 

NS-124 mtrA (SVEN15_2696)  KpnI reverse $ gcgGGTACCTCAGCTCGGTCCCGCCTTGT 

NS-125 mtrB (SVEN15_2695) reverse 2 CGGAGCAGCACTGCCTGTACTCATATCGACATCATCCCATTt 

NS-126 mtrB (SVEN15_2695) forward 3 ATG AGT ACA GGC AGT GCT GCT CCg AAG CCC 

NS-127 mtrB (SVEN15_2695) NsiI reverse 4 $ gcgATGCATTCAGCGCCCACGTGTCCTGT 

NS-128 Rev 2 lpqB (SVEN15_2694) reverse 2 TCCCGCTCGGGCGTCAGCGCCCACATCGACATCATCCCATTT 

NS-129  For 3 lpqB (SVEN15_2694) forward 3 GTGGGCGCTGACGCCCGAGCGGGACGGTGG 

NS-130  lpqB (SVEN15_2694) KpnI reverse 4 $ gcgGGTACCCTAGCCCGGGTAGACGGGCG 

NS-145  mtrA (SVEN15_2696) forward BamHI (pETduet) GGATCCTAAAGGCCGCGTTCTGGTCGTC 

NS-146  mtrA (SVEN15_2696) reverse HindIII (pETduet) AAGCTT TCA GCTCGGTCCCGCCTTGTACC 

NS-160  mtrB (SVEN15_2695) forward internal test primers   TTCAACGTGGTCGCGCTCTCCCTCG 

NS-161  mtrB (SVEN15_2695) reverse internal test primers   GCCAGCTTCACCACGACGTCCTTGC 

NS-162 mtrB (SVEN15_2695) forward HIS N-term NdeI (pET28a) $ gcgCATATGATGCAGCGGCGGTTCGTCTCGGAC 

NS-163 mtrB (SVEN15_2695) reverse HIS N-term HindIII (pET28a) $ gcgAAGCTTTCAGCGCCCACGTGTCCTGTCCTC 

NS-164  mtrB (SVEN15_2695) forward HIS C-term NcoI (pET28a) $ gcgCCATGGGACAGCGGCGGTTCGTCTCGGACGTC 

NS-165  mtrB (SVEN15_2695) forward HIS C-term HindIII (pET28a) $ gcgAAGCTTGCGCCCACGTGTCCTGTCCTCCCG 

NS-166  pET28a(+) forward test primers CTCGATCCCGCGAAATTAATACGAC 
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NS-167  pET28a(+) reverse test primers GGGCTTTGTTAGCAGCCGGATC 

NS-283  pSS170 forward test primer CGGGGTCTGACGCTCAGTGGAACGAAA 

Universal 

M13-6FAM 

Labelled 

Primers 

Forward  CTAAAACGACGGCCAGT 

Reverse CAGGAAACAGCTATGAC 

NS-176 M13FAM nested SVEN15_ 0205p (ectA)forward CTA AAA CGA CGG CCA GTCACCGAACGGAGCCGGGC 

NS-177  M13FAM nested SVEN15_ 0205p (ectA)reverse CAG GAA ACA GCT ATG ACGGGCGCCGAAGGTACCGA 

NS-286  M13FAM nested SVEN15_3571p (dnaA) forward CTA AAA CGA CGG CCA GTC GGT TCG CAA GGA TGG CTC GGC  

NS-287  M13FAM nested SVEN15_3571p (dnaA) reverse 
CAG GAA ACA GCT ATG ACT GCG GCA AGA TCA GCA GGA ACG 

TCA 

NS-290  M13FAM nested SVEN15_2524p (adpA) forward CTA AAA CGA CGG CCA GTG CGT ACG GGG GCG TTC GCC  

NS-291  M13FAM nested SVEN15_2524p (adpA) reverse CAG GAA ACA GCT ATG ACG ACG CTA AGC CCC CCT CGG TGT  

NS-294  M13FAM nested SVEN15_0880p (cmlR2) forward 
CTA AAA CGA CGG CCA GTG AAA AAG CTC CAA CTA CAT CGC 

AGA 

NS-295  M13FAM nested SVEN15_0880p (cmlR2) reverse 
CAG GAA ACA GCT ATG ACC CAT CAT GAT CAT GGC TGT CTG 

GTG 

JM0012 

 
6FAM labelled forward primers for hmpA2 (SCO7094) ACCCGGTCTCCGGCTTACC 

JM0013 6FAM labelled reverse primers for hmpA2 (SCO7094) ACGGGACGCTCCTCGAACA 

JM0015 6FAM labelled forward primers for hmpA1 (SCO7428) ACACTCGACCCACTGACC 

JM0016 6FAM labelled reverse primers for hmpA1 (SCO7428) TGGGCGTCGAAGAGCTTG 

*Start and stop codon of mtrB and lpqB are in capital letters 
$ Most restriction enzymes require additional base pairs to their recognition site to restrict the DNA. Here gcg were added which are not binding to the DNA 

template indicated by lower case letters 
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2.6.3 PCR Purification 

PCR products were purified using a QIAquick PCR Purification Kit (QIAGEN) 

as per the manufacturer’s instructions. Products were eluted from purification columns in 

50 μl of nuclease-free dH2O and stored at -20°C. Alternatively PCR products were 

purified using agarose gel electrophoresis to clean up the PCR product from any 

unspecific products (2.5.4). 

 

2.6.4 Agarose Gel Electrophoresis 

DNA fragment size was determined using agarose gels. Gels were made with 0.7-

2% agarose in TBE buffer (90 mM Tris HCl, 90 mM Boric Acid, 2 mM EDTA) 

depending on the application. Large DNA fragments (plasmids) were analysed on 0.7% 

agarose gels. DNA fragments 1000 - 2000 bp were analysed on 1% gels fragments and if 

the DNA fragment of interest was <1000 bp a 2% agarose gel was used. Before pouring 

2 μg/ml ethidium bromide was added to the melted agarose. DNA loading buffer (5x) 

(0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene-cyanol blue, 40% (w/v) sucrose in 

water) was added to DNA samples amplified with Q5 or restriction digests. The 1 kb plus 

DNA ladder was loaded on the gel for size determination. Electrophoresis occurred at 

120 V (Sub-Cell GT electrophoresis system, BIOLINE) for 30-60 minutes (depending on 

size: larger fragments were run longer for clearer separation). DNA was visualised by 

UV-light, using a Molecular Imager Gel Doc System (BIO-RAD). 

 

2.6.5 Restriction Digestion 

Both Roche and NEB restriction enzymes were used in digests plasmid DNA in 

50 µl total volumes in accordance with manufacturer’s guidelines. Digests were carried 

out with optimal buffer, which was outlined by Roche or NEB. Digestion of 1 µg of DNA 

was typically performed at 37°C for 1 hour adding 1 unit of the respective restriction 

enzyme. Then the restriction enzymes were heat inactivated at respective temperatures 

and the Shrimp alkaline phosphatase was added to dephosphorylate the digested plasmid 

DNA. Digests were then analysed by gel electrophoresis; desirable bands were excised 

and gel extracted.  
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2.6.6 Gel Extraction 

Gel fragments containing DNA bands of interest were excised using a scalpel and 

extracted using a Qiaquick Gel Extraction Kit (QIAGEN), according to the 

manufacturer’s instructions. DNA was eluted in 50 μl autoclaved dH2O. 

 

2.6.7 Ligation 

Ligations where carried out following instructions of manufacturers for T4 DNA 

ligase. A standard ratio for a plasmid / insert ligation was 1:3. Ligation ratios were 

calculated using an online calculation tool (http://www.insilico.uni-

duesseldorf.de/Lig_Input.html). A vector only ligation (re-ligation control) was included 

as a negative control.  

 

2.6.8 Colony PCR 

20 µl of PCRBIO Taq mix were inoculated with a transformed E. coli culture to 

test for correct insertion of amplified DNA in the plasmid of interest. The initial 

denaturing stage of the PCR programme chosen was extended to 5 min at 98°C to allow 

cell lysis and DNA release. The remaining stages of the chosen programme were 

completed as standard, see section 2.6.1.1. 

 

2.6.9 Plasmid Preparation 

Plasmid DNA was prepared using Qiaprep Spin Miniprep kits (QIAGEN) from 5 

– 10 ml overnight cultures as per manufacturer’s instructions. Plasmids where eluted from 

the column routinely using 50 μl autoclave distilled water (dH2O). 

 

2.6.10 Cosmid Preparation 

Cosmid DNA was prepared by Wizard® Plus SV Miniprep DNA Purification 

System as per the manufacturer’s instructions. Cosmids where eluted from the column 

routinely using 50 μl autoclave distilled water (dH2O). 

 

2.6.11 Preparing and transforming electrocompetent E. coli cells 

E. coli ET12567 and Top10 cells were grown as 10 ml overnight cultures in LB 

(containing appropriate antibiotics) to an OD(600) of 0.4 - 0.6 and pelleted by 
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centrifugation in a 15 ml falcon tube at 4000 rpm for 5 minutes at 4°C. Cells were 

resuspended and pelleted in 1 ml ice cold 10% v/v glycerol six times and either flash 

frozen using liquid nitrogen and stored at -80°C for future use or used immediately for 

transformation. DNA (cosmid 2 μg, plasmid 100 ng) was added to ~50 μl of cells 

immediately before electroporation. Cells and DNA were transferred to an ice-cold 

electroporation cuvette and electroporated using the BioRad® Electroporator set to: 

200 Ω, 25 μF and 2.5 kV. The electroporated cells were diluted in LB and transferred 

from the cuvette to a micro-centrifuge tube, incubated for 1 hour shaking (220 rpm) at 

37°C before plating onto LB containing appropriate antibiotic selection. Plasmids 

containing the hygromycin resistance were transformed in E. coli cells and the 

transformation mix was plated on DNB plates and incubated for ~24 hours.  

 

2.6.12 Preparing and transforming CaCl2 competent E. coli Top 10 cells 

A modified version of the CaCl2 protocol by (Cohen et al. 1972), as described 

below, was used. All centrifugation steps were at 4000 rpm, 4°C for 10 minutes to pellet 

cells. An over-night culture (~16 hours) of E. coli Top10 strain was grown in 10 ml of 

sterile LB broth from frozen cells stored at -80°C, grown at 37°C, 250 rpm. Aliquots 

(100 μl) of these were then added to 500 ml of sterile LB broth. The cells were then grown 

at 37°C, 250 rpm, until an optical density OD(600) of 0.3 - 0.4 was reached (1 cm path 

length). At all steps the reagents and equipment were maintained at ~4°C beyond this 

point. The samples were centrifuged; the bacterial pellet was resuspended and washed 

gently in 125 ml of ice cold sterile 100 mM MgCl2. The suspension was centrifuged and 

the pellet resuspended in 25 ml of ice cold sterile 100 mM CaCl2 then a further 225 ml 

was added. The suspension was left on ice for ~25 minutes. Finally, the suspensions were 

centrifuged and resuspended in 10 ml ice cold sterile 100 mM CaCl2, 20% v/v glycerol, 

dispensed into 100 μl aliquots and stored at -80°C. 

Transformation of E. coli Top 10 was carried out by first gently thawing a 100 μl 

aliquot of pre-prepared competent cells on ice. Aliquots (1 μl) of plasmid DNA were 

added to the sample reactions. Both were left on ice (4°C) for at least 30 minutes then 

heat shocked for 90 seconds at 42°C then immediately cooled at 4°C for 2 minutes. 

Aliquots (1 ml) of LB was added to each reaction and incubated at 37°C for 1 hour at 

220 rpm then plated on LB plates (containing appropriate antibiotics when applicable) at 
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37°C for ~16 hours unless otherwise stated. Plasmids containing the hygromycin 

resistance were transformed and plated on DNB plates and incubated for ~24 hours.  

 

2.6.13 Storing E. coli using glycerol stocks 

E. coli was stores in glycerol stocks by taking 10 ml of E. coli overnight culture, 

pelleting by centrifugation cells and re-suspending it in 500 µl of sterile, 20% glycerol. 

Glycerol stocks were stored at -20°C. 

 

2.6.14 Phenol / Chloroform extraction of genomic DNA 

Streptomyces cultures were grown overnight in a mixture of 0.8 ml 50% TSB / 

50% YEME media at 30°C shaking at 220 rpm. Cells were isolated using a desktop 

centrifuge set to 13000 rpm for 5 minutes. The supernatant was discarded and the cells 

resuspended in 200 μl SET buffer (75 mM NaCl, 25 mM EDTA pH 8, 20 mM Tris-HCl 

pH 7.5. 10 μl of a mixture of lysozyme (100 mg/ml) and achromopeptidase (10 mg/ml) 

was added and incubated 30 minutes at 37°C to lyse the cells. 200 μl (one volume) of 1:1 

phenol-chloroform was added and samples were mixed thoroughly by vortexing for 1 

minute and then centrifuged at 13,000 rpm for 20 minutes. The upper aqueous phase 

(containing the DNA) was removed and transferred to a fresh microfuge tube. The 

phenol-chloroform step was repeated until the upper phase was clear (i.e. protein free). 

The clear aqueous layer was transferred to a fresh microfuge tube. Then 2.5 ml of 100% 

ethanol was added to the tube and was mixed by inversion and incubated at -20°C 

followed by centrifugation for 10 minutes at 13000 rpm. Ethanol was removed and the 

DNA pellet was washed in 200 µl 70% ethanol and centrifuged for a further 5 minutes at 

13000 rpm. The DNA pellet was dried at room temperature ensuring all ethanol was 

removed and the pellet was finally resuspended in 50 μl sterile dH2O and stored at 4°C. 

 

2.6.15 Sequencing 

Cloned DNA constructs were confirmed by Sanger sequencing using the Mix2Seq 

service from Eurofins Genomics. Plasmids DNA was diluted according to the 

manufactures instruction and test primers (Table 2.9) were added directly to the mix. 

 

 



 

57 

 

2.7 Constructing gene knockouts via lambda λ RED method  

 (Redirect methodology) 

Deletion mutants were produced by replacing genes of interest with an antibiotic 

cassette (Datsenko & Wanner 2000). This λ RED methodology was adapted for 

Streptomyces species by (Gust et al. 2003). A linear PCR product (FRT-flanked resistance 

gene construct) was produced (2.6.2) and purified (2.6.3) before conjugated (2.7.5) into 

an appropriate host strain. After replica plating potential mutant strains were verified by 

PCR (2.6.14), and long-term spore stocks were produced for each mutant strain (2.7.6). 

 

2.7.1 Generation of FRT-flanked resistance gene construction 

The apramycin antibiotic resistance cassette (APR) from pIJ773 containing 

aac(3)IV gene and an origin of transfer (oriT), were amplified by PCR using primers 

specific for the disruption of the gene of interest (see Table 2.9). Details of plasmids used 

and how to design appropriate primers to leave in frame gene knockouts (KO) were 

reported by (Gust et al. 2003). The forward primers consisted of 39 nucleotides (nt) 

upstream of the gene of interested ending in ATG, the translation start codon, with the 

20 nt P1 sequence corresponding to the 5’ end of the antibiotic resistance cassette. The 

reverse primer had 39 nt of antisense sequence ending TGA, the translational stop codon 

of each gene plus a 19 nt sequence of P2 corresponding to the end of the antibiotic 

resistance cassette. mtrB and lpqB overlap 11 bp in S. venezuelae. It is for this reason that 

the reverse primer for the deletion of mtrB ends with GTGggcgcTGA to leave the start 

codon for lpqB intact. 

The PCR cycling conditions consisted of: 

1. Denaturation:   94°C, 2min  

2. Denaturation:   94°C, 45sec  

3. Primer annealing:  50°C, 45sec 

4. Extension:   72°C, 90sec; repeat 10x from step 2 

5. Denaturation:   94°C, 45sec  

6. Primer annealing:  55°C, 45sec  

7. Extension: 72°C,  90sec; repeat 15x from step 5 

8. Final extension:  72°C, 5min 
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PCR reactions typically were carried out using Q5. PCR products were checked 

by agarose gel electrophoresis, gel extracted then stored at -20°C until use. 

 

2.7.2 Preparing of E. coli containing λ RED plasmid and S. venezuelae cosmid 

The cosmid SV-6-A04 containing the wild-type mtrAB-lpqB genes to be targeted 

was kindly provided by Mark Buttner, John Innes Centre. An aliquot (~50 μl) of E. coli 

BW25113 / pIJ790 electrocompetent cells were transformed with ~2 μg of cosmid DNA. 

The cells were r own in 1 ml of LB for 1 hour and plated onto LB agar plates containing 

ampicillin and kanamycin to select for the incoming cosmid and chloramphenicol to 

select for the λRED recombinant plasmid pIJ790. The plates were incubated at 30°C 

overnight. Cosmid identity was assessed using BamHI digests (1 μl BamHI, 5 μl Roche 

Buffer B, 17 μl cosmid DNA, 27 µl dH2O) incubated at 37°C for 1 hour and separated on 

a 0.7% agarose gel compared to in silico results obtained using ApE- A plasmid Editor 

v2.0.46 and sequence data from http://strepdb.streptomyces.org.uk. Additionally,          

SV-6-A04 was confirmed by positive amplification of the gene of interest. E. coli 

BW25113 / pIJ790 (50 μl aliquot) was transformed by electroporation as previously 

described (2.6.11) using 2 μg of isolated wildtype cosmid DNA grown for 1 hour at 30°C 

shaking 220 rpm and plated as described. A single colony was selected, picked and 

transferred to a 10 ml vial of LB containing antibiotic selection and grown at 30°C 

overnight and stored as a glycerol stock as previously described (2.6.13). 

 

2.7.3 PCR-Targeting of Streptomyces cosmid SV-6-A04 

From an overnight culture of E. coli BW25113 / pIJ790 containing SV-6-A04, 

100 μl was inoculated and grown in 10ml LB broth containing the appropriate antibiotic 

selection and 100 μl 1 M L-arabinose, at 30°C for 3-4 hours to an OD(600) of ~0.4. The 

arabinose is essential as it induces the λRED genes on pIJ790 facilitating transformation 

with linear DNA. These cells were then made electrocompetent by washing in ice cold 

glycerol and a 50 μl aliquot was electroporated with 2 μl of the KO PCR product with 

flanking regions homologous to the gene of interest to cause an in-frame deletion of the 

chosen gene. These cells were then incubated for 1 hour shaking at 37°C and ultimately 

plated on to LB plates containing kanamycin (selection for the cosmid) and apramycin 

(selection for the gene deletion). Each plate was incubated overnight at 37°C to promote 
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loss of the temperature sensitive plasmid, pIJ790. Single colonies where then picked and 

grown for 16 hours at 37°C. 

 

2.7.4 PCR conformation of mutagenized cosmid 

The PCR targeted cosmids were isolated from overnight cultures as described and 

checked by PCR for the gene disruption. Specific primers for the flanking wild-type 

region as well as primers specific for the disruption cassette (P1 and P2) were used in 

combination, to check the disruption was successful, (primers see Table 2.9).  

 

2.7.5 Transfer of the mutant cosmids into Streptomyces 

S. coelicolor contains a methylation-sensing restriction system and as such it is 

essential to passage disruption cosmids through a non-methylating (dam- dcm) E. coli 

strain ET12567 before introduction into S. coelicolor. This is not required for 

S. venezuelae but the ET12567 strain containing the driver plasmid pUZ8002 is still used 

for all conjugations. ET12567 / pUZ8002 (Table 2.1 and Table 2.2) was transformed by 

electroporation with 2 μg of cosmid DNA and subsequently plated onto LB agar 

containing chloramphenicol (to maintain dam mutation) and apramycin (to select for the 

incoming cosmid). Plates were incubated overnight at 37°C and single colonies were 

selected and grown in 10 ml LB broth at 37°C overnight in the presence of the previous 

antibiotics in addition to kanamycin and ampicillin. A sample inoculum from the 

overnight cultures (500 μl) was diluted in 10 ml of fresh LB broth containing antibiotics 

for selection was grown shaking at 37°C until cells reached an OD(600) of 0.4 - 0.6. 

Cultures were centrifuged at 13,000 rpm for 5 minutes and the resulting pellet washed in 

10 ml fresh LB twice, to remove the selection antibiotics (potentially harmful to non-

resistant wild-type Streptomyces species). Cell pellets were resuspended in 1 ml of LB 

broth. Washed E. coli cells (500 μl) were mixed with 500 μl of LB broth containing heat 

shocked (50°C for 10 minutes) Streptomyces (>1 x 107) spores. The mixture was 

centrifuged briefly as before and the supernatant removed, with the resulting pellet 

resuspended in ~300 μl of LB and plated on three SFM plates and incubated overnight 

for 16 - 20 hours at room temperature. SFM is not the standard medium for S. venezuelae 

but conjugations of S. venezuelae seem to work better on SFM than MYM.  Following 

this incubation period, each conjugation plate was overlaid with 1 ml of sterile dH2O 

containing 0.5 g nalidixic acid, selective bactericidal antibiotic for E. coli and 1.25 mg of 
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apramycin to select for insertion of the incoming cosmid by recombination. The overlay 

solution was distributed over the surface and incubated at 30°C for four days or until 

colonies appeared. Double crossover events were selected using apramycin resistance and 

kanamycin sensitivity as the marked antibiotic cassette has now replaced the target gene 

in the chromosomal DNA and the cosmid has been lost. Kanamycin sensitive and 

apramycin resistant colonies were re-streaked for at least three times to insure genetic 

stability of the gene knock out. Spore stocks were prepared (2.7.6.) for these double cross-

over exconjugants and stored at -20°C. 

 

2.7.6. Streptomyces spore stocks 

S. venezuelae wild-type and mutant strains were re-streak with a cotton bud evenly 

on MYM plates and incubated for at least 3 days at 30°C. To harvest the spores 1 ml of 

20% v/v glycerol was added to the plate and then the spores were removed from the 

vegetative mycelium by rubbing the cotton bud gently on the surface. The spores in 20% 

v/v glycerol were removed by pipetting through the cotton bud to separate the spores from 

any mycelium. The spores were then centrifuged at 10 minutes at 4000 rpm, 4°C and re-

suspended in fresh 20% v/v glycerol and stored at -20°C.  

 

2.7.7 Integration of plasmids S. venezuelae 

Plasmids can be integrated in the genomic DNA of S. venezuelae by conjugation 

described in 2.7.5. S. venezuelae is a new model organism and only one integrative site 

(ΦBT1) is available in this strain. In this work plasmid DNA was integrated in the ΦC31 

site but these mutants all displayed a developmental phenotype (data not shown).  

 

2.7.8 Genetic complementation of knock out strains 

Complementation constructs were designed to verify the ΔmtrB mutant and to 

show that mtrA or lpqB is essential. Therefore, the promoter of the mtrAB-lpqB operon 

was amplified with primer 1 and 2 and the respective genes with primer 3 and 4, see 

Figure 2.1. The promoter fragment and the gene fragment overlap and can be fused 

together in a second amplification step. The fused promoter and gene were then 

subsequently cloned into pMS82 (mtrA and lpqB) or pIJ10770 (mtrB) and conjugated in 

the mutant strains. 
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Figure 2.1 Construction of complementation constructs for gene knock outs in the MtrAB-LpqB 
operon. Top: Organisation of the MtrAB-LpqB operon. The native promoter is shown in green. 
Bottom: Fragments which are amplified by PCR to fuse the promoter with the gene of interest.  

 

2.8 Protein Methods 

2.8.1  Protein purification 

Proteins were tagged with a 6xHis C-terminal (MtrB) or 6xHis N-terminal epitope 

(MtrA and MtrB) and purified from whole cell lysate, post overexpression, using Ni-NTA 

Agarose (QIAGEN) by batch purification according to the manufacturer’s instructions. 

Genes were cloned into overexpression vectors under the control of IPTG inducible 

promoters (Table 2.2).  

 

2.8.1.1 Test expression assay 

Small-scale test expression assays were conducted to ascertain stable and high 

yielding conditions for recombinant protein overexpression. Overnight cultures, 

supplemented with ampicillin (100 μg/ml), of E. coli BL21 harbouring the overexpression 

construct were used to inoculate 10 ml LB broth (1% v/v) containing ampicillin (50 

μg/ml). Cultures were incubated (37°C, 220 rpm) for three hours or until 0.5 - 1 OD(600). 

‘Zero-time point’ samples were taken by collecting 1 ml samples from each culture; cells 

were harvested by centrifugation (2 minutes, 14,800 x g) and the supernatant removed 

prior to storing pellets at -20°C. 1 mM IPTG in sterile dH2O was added to the cultures 

aseptically to induce protein expression. Samples (0.5 ml) were taken after two, three and 
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four hours incubation at 37°C, 220 rpm and harvested as per ‘zero-time point’ samples.  

Cell pellets were snap frozen and stored at -20°C. 

 

2.8.1.2  Expression sample analysis by SDS-PAGE 

To confirm overexpression and stability of recombinant proteins prior to large-

scale purification, IPTG induced samples were analysed by SDS-PAGE (Table 2.11). 

Sample cell pellets were defrosted on ice (or analysed immediately post collection) and 

resuspended in 50 μl SDS loading buffer (950 μl Bio-Rad® laemmli buffer, 50 μl β-

mercaptoethanol) before boiling (95°C, 3 minutes). Cell debris was pelleted by 

centrifugation (5 minutes, 14,800 x g) and 20 μl of sample loaded onto SDS-PAGE gels 

(15% v/v acrylamide) with 3 μl PageRule Prestained Protein Ladder® (Thermo Scientific) 

as a marker (details SDS-PAGE see 0.). 

 

2.8.1.3  Large-scale cell harvest 

Once protein overexpression conditions had been established through test 

expression assays (2.8.2), the appropriate conditions were repeated with a larger volume 

of culture to maximise protein yield. Overnight cultures, supplemented with ampicillin 

(pETduet) or kanamycin (pET28a(+)), were produced in 50 mL LB and used to inoculate 

(1% v/v) 1 l LB broth containing ampicillin or kanamycin in 2 l conical flasks. Cultures 

were incubated (37°C, 220 rpm), and 1 mL samples harvested after three hours growth, 

as described in 2.8.2. Overexpression was induced upon the addition of 1 mM IPTG. 

Cultures were incubated for a further three hours (37°C, 220 rpm) before 1 ml samples 

were collected and analysed by SDS-PAGE, as described previously (2.8.1.1 and 2.8.1.2), 

to confirm overexpression and stability of recombinant proteins at these larger volumes. 

The remaining culture was transferred to 95 x 191 mm, 1 l volume polycarbonate 

centrifugation bottles (Beckman Coulter) and cells harvested by centrifugation 

(20 minutes, 6000 x g, 4°C) in a Beckman Coulter Avanti® J-20 high performance 

centrifuge using a JLA-8.1000 rotor (Beckman Coulter). Cell pellets were transferred to 

50 mL Falcon conical centrifugation tubes, snap frozen and stored at -20°C.  
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2.8.1.4 Purification of proteins with Ni-NTA beads in batch 

Cell pellets (2.8.1.3) were defrosted on ice and resuspended in 25 ml lysis buffer 

(Table 2.10) and incubated for 30 minutes at room temperature. The cell lysate was then 

sonicated two times for 40 seconds at 50 Hz with 1 minute in between sonication steps. 

The cell debris was removed by centrifugation at 18 000 rpm for 20 minutes at 4°C in 

Beckman Coulter Avanti® J-20 high performance centrifuge using a JLA-25-50 rotor 

(Beckman Coulter). The supernatant was transferred in a fresh 50 ml falcon tube and 

350 µl of Ni-NTA agarose beads (Qiagen) were added and incubated under gentle 

agitation for 1 hour at 4°C. The Ni-NTA agarose beads were spun down gently (maximum 

of 1200 rpm, 4°C) and the supernatant was discarded. The Ni-NTA beads were 

resuspended in 2 ml wash buffer (Table 2.10) and transferred in polypropylene columns 

(1 ml, Qiagen). The beads in the column were washed with 20 ml wash buffer (Table 

2.10). The protein was eluted from the beads with 2.5 ml elution buffer (Table 2.10). 

 

 

Table 2.10 Buffer for purification of MtrA and MtrB 
 MtrA MtrB 

Lysis buffer 75 mM NaCl,  50 mM NaH2PO4 pH 8 

 20 mM Tris-HCl pH 8 300 mM NaCl 

  10 mM imidazol 

 0.1% TritonX 100x 0.1% TritonX 100 x 

 50 µl Lysozyme of 10mg/ml  50 µl Lysozyme of 10 mg/ml 

 

3 x Pierce Protease Inhibitor Mini 

Tablets, EDTA free (Thermo 

Scientific) 

3 x Pierce Protease Inhibitor Mini 

Tablets, EDTA free (Thermo 

Scientific) 

Wash buffer 80 mM Tris-HCl pH 8 50 mM NaH2PO4 pH 8 

 200 mM NaCl 300 mM NaCl 

 10% Glycerol (v/v) 20 mM imidazol 

 10 mM MgCl2 10% Glycerol (v/v) 

 0.1 mM 1,4-Dithiothreitol (DTT)   

 20 mM β-mercaptoethanol  

Elution buffer 80 mM Tris-HCl pH 8 50 mM NaH2PO4 pH 8 

 200 mM NaCl 300 mM NaCl 

 10% Glycerol (v/v) 250 mM imidazol 

 10 mM MgCl2 10% Glycerol (v/v) 

 0.1 mM 1,4-Dithiothreitol (DTT)   

 20 mM β-mercaptoethanol  

 350 mM imidazol  

Storage buffer 20 mM HEPES pH 7.4 50 mM Tris-HCl pH 8 

 100 mM KCl 150 nM NaCl 

 2 mM MgCl2 20% Glycerol (v/v) 

 0.1 mM EDTA 0.1 mM EDTA 

 0.1 mM DTT  
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2.8.1.5 Desalting of purified protein 

For long term storage, it was necessary to exchange the elution buffer which is 

high in NaCl with a storage buffer (Table 2.10). Sephadex G-25 in PD-10 Desalting 

Columns (GE Healthcare Life Sciences) were used as per manufacturer’s instructions. 

Aliquots of proteins were stored at 4°C, -20°C and -80°C.  

 

2.8.1.6 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE allows denatured proteins to be separated according to size along an 

acrylamide gel matrix. A standard resolving gel of 12% (w/v) ProtoGel™, 

Acrylamide/methylene Bis-Acrylamide solution (37.5:1 ratio) (National Diagnostics) and 

a stacking gel (5% w/v), was used throughout this research (Table 2.11), cast using Mini-

PROTEAN® Tetra handcast systems (BIO-RAD) (0.75 mm and 1 mm combs and 

integrated spacer plates) and left to polymerise at room temperature, 30 minutes 

minimum. Samples were electrophoresed (120 V, 90 minutes) in 1 x TGS running buffer 

(0.025 M Tris-HCL, 0.192 M glycine, 1% SDS w/v) using Mini-PROTEAN® Tetra Cell 

systems (BIO-RAD), and stained with InstantBlue Protein Stain (Expedeon) with gentle 

agitation for a minimum of 15 minutes. Gels were de-stained in dH2O for at least one 

hour. Gels were imaged using white light on a Molecular Imager® Gel Doc™ System 

(BIO-RAD). 

Table 2.11 Composition of acrylamide gels for SDS-PAGE. The mixture is for 10 ml 

resolving gel and 5 ml stacking gel which is sufficient for 2 gels of 12%.  

Compound Stock solution Volume 
Final 

concentration 

Resolving gel    

Acrylamide/Bis-Acrylamide 30% (w/v)    4 ml    12% 

Tris-HCl, pH8.8 1.5 M 2.5 ml 375 mM 

SDS 10% (w/v) 0.1 ml 0.05% 

dH2O  3.4 ml  

Tetramethylethylenediamine 

(TEMED) 
>99%    5 µl 0.005% 

ammonium persulfate (APS) 10% (w/v)  50 µl     0.1% 

Stacking gel    

Acrylamide/Bis-Acrylamide 30% (w/v) 0.65 ml 5% 

Tris-HCl, pH6.8 1M 1.25 ml 63 mM 

SDS 10% (w/v)    50 µl  

dH2O  3.05 ml  

TEMED >99%      5 µl  

APS  10% (w/v)    25 µl 0.1% 
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2.8.2 Western Blot 

2.8.2.1 Bradford assay 

The Bradford dye-binding method (Bradford, 1976), provides a simple technique 

for the quantification of protein at low concentrations by comparing protein samples of 

unknown concentration to a standard curve produced from BSA samples of known 

concentration. Bovine serum albumin (BSA) standards (from 1 mg/ml stock in dH2O) and 

unknown samples were diluted in Bradford Dye Reagent solution (BIO-RAD) and dH2O 

in 1.6 mL cuvettes (semi-micro disposable polystyrene 10 mm path length; Fisherbrand) 

and mixed by inverting. The standards were set up in triplicate and the unknown proteins 

samples in duplicate. Absorbance was measured at A595 and a standard curve produced 

by plotting BSA standards A595 values against their known protein concentration 

(mg/ml). Using this, the protein concentration of unknown samples was deduced from 

their A595 values. 

 

Table 2.12 Composition of Bradford assay reaction mix, BSA standards for production 

of a standard curve and unknown samples to be tested. 

 

2.8.2.2  Membrane transfer and membrane blocking 

Protein samples were subjected to SDS-PAGE (2.8.1.6) prior to nitrocellulose 

Biodyne A membrane (Pall Corporation) transfer in a Trans-Blot® SD Semi-Dry Transfer 

Cell (BIO-RAD). Three layers of blotting paper, equal size to the gel, were soaked in 1 x 

transfer buffer (25 mM Tris, 192 mM Glycine, 0.1 % SDS) and placed on the transfer cell 

anode plate. Nitrocellulose membrane was soaked in 100% methanol (1 minute), 

followed by washing in transfer buffer (5 minutes), and placed on top of the blotting 

paper. The SDS polyacrylamide gel of proteins to be transferred was placed on top of the 

Sample BSA (µl) dH2O (ml) Bradford Reagent (ml) 

†Standards 

1 

 

0 

 

0.8 

 

0.2 

2 1 0.8 0.2 

3 5 0.795 0.2 

4 10 0.790 0.2 

5 

6 

 

As many as required 

20 

40 

Unknown Sample* 

2 

0.780 

0.760 

 

0.78 

0.2 

0.2 

 

0.2 

*Unknown sample volume can be increased as required to produce a sufficient colorimetric 

change if low protein concentration is present. †Increase concentration of standards as required. 
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membrane, followed by three more layers of soaked blotting paper before transfer took 

place (10 V, 1 hour). A blocking solution of 5% (w/v) fat-free skimmed milk powder in 

1 x TBST (50 mM Tris Cl pH 7.5, 150 mM NaCl, 1% Tween) was poured over the membrane 

and incubated either at room temperature for 1 hour or overnight at 4°C with gentle 

agitation. 

 

2.8.2.3 Antibody staining and blot imaging 

Anti-His antibodies were used to check the correct size of purifies proteins. Anti-

Flag antibody was used to check strains containing MtrA-3xFlag and anti-MtrA was used 

as a control. Anti-His antibody (QIAGEN) and anti-Flag (SIGMA), conjugated to 

horseradish peroxidase (HRP), were diluted 1: 20,000 in 1 x TBST. Anti-MtrA was 

diluted 1:5000. The membrane was incubated in 20ml of the respective antibody 

suspension at room temperature for 1 hour or 4°C overnight. Membranes incubated with 

anti-MtrA were washed 3 x for 1 minute and 3 x for 5 minutes in TBST and the HRP 

conjugated antibody Anti-Rabbit IgG (SIGMA) was diluted 1:12,000 in TBST and added 

to the membrane and incubated as above. After the incubation with the antibody(s) the 

membrane was washed 3 x for 1 minute and 3 x for 5 minutes in TBST. Antibody-tagged 

proteins were detected using a luminol-based chemiluminescent detection system 

(QIAGEN). 

 

2.9 Phosphotransfer Assay 

2.9.1 Autophosphorylation of MtrB 

The autophosphorylation and phosphotransfer was carried out as previously 

described (Hutchings et al. 2006; Molle & Buttner 2000) with the following 

modifications. For the autophosphorylation reaction, MtrB (40 pmol) was incubated with 

10 μCi (0.37MBq) [32P]ATP at room temperature for 1 hour in 50 mM HEPES, pH 7.2, 

5 mM MgCl2 (50 μl total volume) and samples were taken at 1, 5, 15, 30 and 60 minutes 

and quenched immediately by addition of an equal volume of SDS-PAGE loading dye. 

The samples were loaded on a 12% SDS-PAGE gel and run for 1.5 hours at 120 V. Gels 

were transferred from glass plates to Whatman paper and dried for 30 minutes using a 

model 583 gel dryer/HydroTech vacuum pump (BioRad). Labelled protein was visualised 

using a phosphoimager plate exposed for 24 hours and scanned at 635 nm using the purple 

IP filter on a Typhoon FLA 9500 (GE Healthcare Life Sciences). 
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2.10 Electrophoretic mobility shift assay (EMSA) 

2.10.1 EMSA 6-FAM™-fluorescein Labelled Probe Production 

Fluorescently labelled DNA probes were generated by PCR amplification of 

target gene promoters (~250-500 bp in length, upstream of the start codon) using 

sequence specific oligonucleotides (Table 2.9). Negative control probes were produced 

by amplifying the promoter region of hmpA2 (SCO7094) and hmpA2 (SCO7094). 

Following purification (2.6.6), PCR products were diluted 1:50 to minimise carry-over of 

unlabelled DNA. Universal 6-FAM™-fluorescein labelled primers (Table 2.9 Primers) 

were used to amplify 1:50 template DNA during a second round of PCR, producing 6-

FAM™ labelled probes. Labelled probes were purified as previously described (2.6.6) 

before use in EMSA reactions. 

 

2.10.2 EMSA reaction and gel imaging 

EMSA’s are carried out using non-denaturing PAGE gels. Four gels (5% 

acrylamide) were poured from a 20 ml total volume. Gels were produced using the using 

a Mini Protean III system (BioRad). Before loading the acrylamide, gels were pre-run at 

30 mA for 1 hour at 4°C prior to use. 

Table 2.13 Composition of native acrylamide gels for PAGE. The mixture is for 20 ml 

which is sufficient for 4 gels of 5%.  

Compound Stock solution Volume 
Final 

concentration 

Acrylamide/Bis-Acrylamide 30% (w/v) 3.34 ml 5% 

TBE 10 x 2 ml 1 x 

TEMED >99% 20 µl 0.1% 

dH2O  13.72 ml  

DTT (1,4-Dithiothreitol) 100 mM 20 µl 0.1 mM 

APS 10% (w/v) 300 µl 0.15% 

 

Unless otherwise stated, each binding reaction was prepared with ~10 ng 6’FAM 

labelled DNA probe (1 µl), 11 μl buffer (10 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM 

MgCl2, 1 mM EDTA pH 8.0, 5 mM DTT, and 5% glycerol), X μl MtrA and Y μl of dH2O 

(up to a final volume of 20 μl). When acetyl phosphate (50 mM) was added to the buffer 

MtrA was added and incubated for 15 minutes to allow phosphorylation of MtrA. After 

adding the DNA samples were incubated for 15 minutes at room temperature. Poly(dIdC) 

is a polymer which is commonly used and provides an excess if non-specific binding to 
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out-compete any low-affinity binding. This is important when whole cell extract is used. 

Here poly(dIdC) was only used for the ectAp probe to demonstrate that it does not make 

a difference if poly(dIdC) is added to the EMSA reaction. The samples were loaded on 

the pre-run native gel and run for 3 hours at 30 mA at 4°C. Gels were visualised using a 

Typhoon FLA 9500 laser scanner (GE Healthcare) with LBP/BPB1 emission filter, 

Exmax 495 nm Emmax 576 nm, at 50 µM resolution. A Typhoon FLA 9500 laser system 

and filters provided results comparable in resolution and sensitivity to those obtained for 

radiolabelled probes. 

 

2.11 Bioassay of S. venezuelae ΔmtrB mutant 

S. venezuelae ΔmtrB was tested against Gram positive Bacillus subtilis and the 

Gram negative Escherichia coli to test the bioactivity of this strain. 

 

2.11.1 Spot Assays 

2 µl of spores of S. venezuelae wild-type and S. venezuelae ΔmtrB (~107 CFU per 

1 µl) was spotted onto LB or MYM agar and incubated for 24 hours. Then overnight 

cultures (2 µl) of the test strains B. subtilis and E. coli were added and incubated for 

another 24 hours. 

 

2.11.2 Disc Assays with Methanol Extracts 

S. venezuelae wild-type and S. venezuelae ΔmtrB were cultivated in 35 ml as 

described in 2.4. 750 µl of the culture at 24 hours of growth were either snap frozen or 

immediately used for methanol extraction. An equal volume of 100% methanol was 

added to the aliquot of the culture and vortexed for 30 minutes. The methanol culture mix 

was then centrifuged for 20 minutes at 13,000 rpm. The upper phase was transferred in a 

fresh tube and stored at 4°C or used directly in the disc assay. 50 µl of the methanol 

extracts were added to discs (Grade AA, 6mm, GE Healthcare Life Science) in a 

maximum of 20 µl aliquots to allow the methanol extract to dry. An overnight culture of 

B. subtilis (5 ml) was used to inoculate 200 ml LB soft agar (Table 2.3). The LB soft agar 

containing B. subtilis was poured in petri dishes and the methanol extract soaked disks 

were placed on the LB soft agar and incubated for 24 hours at 30°C.  
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2.12 Liquid Chromatography–Mass Spectrometry (LCMS) 

All LCMS experiments presented in this work were carried out by Dr Daniel 

Heine at the John Innes Centre. 

Analytical HPLC was carried out on an HPLC 1100 system (Agilent 

Technologies) using a Gemini® 3 µm NX-C18 110Å, 150×4.6 mm column 

(Phenomenex). All solvents for analytical and semi-preparative HPLC measurements 

were obtained commercially in HPLC grade. To avoid microbial growth, 0.1% formic 

acid was added to the water. 

 

2.13 Chromatin Immunoprecipitation Sequencing (ChIP-Seq) 

S. venezuelae and NS042 (S. venezuelae ΔmtrA ΦBT1 mtrAp mtrA-3xFlag) as 

well as S. coelicolor and NS171 (S. coelicolor ΔmtrA ΦBT1 mtrAp mtrA-3xFlag) were 

grown in MYM in the same way as described before (2.4). Following growth to the 

chosen time point, the entire content of the flask was transferred to a 50 ml falcon tube 

for crosslinking, which was carried out by incubation at 30°C for 30 minutes with 1% 

final concentration of formaldehyde (v/v). Crosslinking was quenched by incubation at 

room temperature with glycine (final concentration of 125 mM). Mycelium was harvested 

by centrifugation 4000 rpm at 4°C for 10 minutes and washed twice with ice cold PBS 

(Phosphate Buffer Saline Tablets, Oxoid) before transfer to a 2 ml centrifuge tube. Pellets 

were resuspended in 0.75 ml lysis buffer (10 mM Tris-HCl pH 8.0, 50 mM NaCl, 10 

mg/ml lysozyme, 1 x Pierce Protease Inhibitor Mini Tablets) and incubate at 37°C for 30 

minutes. Then 0.75 ml 1 x IP buffer (100 mM Tris-HCl pH 8.0, 250 mM NaCl, 0.5% 

Triton X-100, 0.1% SDS, 1 x Pierce Protease Inhibitor Mini Tablets) were added and 

samples mixed by pipetting up and down. Samples were sonicated 20 x at 50Hz, 10 

seconds/cycle with a 1 minute incubation on ice after each cycle. DNA fragmentation was 

checked by agarose gel electrophoresis (2.6.4) following phenol extraction (2.6.14) of 

25 μl of the crude lysate mixed with 75 μl of TE buffer (10 mM Tris-HCl pH 8, 1 mM 

EDTA) with 100-200 μl of phenol / chloroform. Contaminating RNA was removed with 

2 μl RNase (1mg/ml) added to extracted DNA followed by incubation for 30 minutes at 

37°C. A smear of DNA from 200 to 1000 bp with the majority of DNA around 500 bp 

should be visible. Crude lysate was centrifuged at 13,000 rpm for 15 minutes at 4°C to 

clear the sample of cell debris. M2 affinity beads (Sigma-Aldrich #A2220) were prepared 

by washing in ½IP buffer following manufacturer’s instructions. The cleared lysate was 
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incubated with 40 μl of washed M2 beads and incubated for 16 hours at 4°C in a vertical 

rotor. The lysate was removed and the beads pooled into one 1.5 microfuge tube and 

washed in ½IP buffer by incubating on a vertical rotor for at least 10 minutes. The beads 

were transferred to a fresh microfuge tube and washed a further three times removing as 

much buffer as possible without disturbing the beads. The DNA protein complex was 

eluted from the beads with 100μl elution buffer (50 mM Tris-HCl pH 7.6, 10 mM EDTA, 

1% SDS) by incubating at 65°C overnight. Removing the ~100 μl elution buffer, an extra 

50 μl of elution buffer was added and further incubated at 65°C for 5 minutes. To extract 

the DNA 2 μl proteinase K (10 mg/ml) were added to 150 μl eluate and incubated 

1.5 hours at 55°C. To the reaction 150 μl phenol / chloroform were added. Samples were 

vortexed and centrifuged at full speed for 10 minutes. The aqueous layer was purified 

using the Qiaquick column from Qiagen with a final elution using 50 μl EB buffer 

(Qiagen). The concentration of samples was determined by nanodrop measurement. 

 

2.13.1 Data analysis of ChIP-seq data 

The ChIP-seq samples were sequenced via Illumina HiSeq2500 with 100 bp 

single-end reads by the Earlham Institute. Sequencing reads were processed by Dr Govind 

Chandra. Every 25 nt an enrichment was calculated as follow: An area of 4000 nt was 

divided by the reads of the central 50 nt. These enrichment values were analysed by 

negative binominal distribution. All enrichment values p > 0.05 were not included in 

further analysis unless otherwise stated. A p = 0.05 correlates with an enrichment value 

of seven. Thus, every peak shows the enrichment of the sequencing reads in correlation 

to the surrounding area. 

 

2.14 MtrA pull down 

2.14.1 Immunoprecipitation of MtrA-flag 

The immunoprecipitation was performed in the same way as for ChIP-seq (section 

2.13). But the immunoprecipitated beads containing the DNA-MtrA-3xflag were eluted 

by adding 20 µl 2 x SDS sample buffer (125 mM Tris-HCl pH 6.8, 4% SDS, 20% 

Glycerol and 0.004% bromphenol blue and boiled for 3 minutes. Then the beads were 

centrifuged down at 13000 rpm for 1 minute. The supernatant was transferred in a clean 

tube and loaded on a 10% SDS gel without stacking gel. The samples were separated by 

electrophoresis a few millimetres into the gel. After the run the gel was rinsed with tap 
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water to remove any residual detergent. The protein band was cut with a clean scalpel and 

stored at -20°C. 

 

2.14.2 Purification of immunoprecipitated samples for trypsin digest 

The samples were prepared as follows for a trypsin digest and MALDI-TOF. The 

gel slices were de-stained with 30% ethanol for 30 minutes at 65°C in low binding tubes. 

The ethanol was replaced until the gel was clear. Each washing step was for 15 minutes. 

The de-stained gel was washed with 50 mM TEAB (Sigma Aldrich) in 50% Acetonetril. 

Then the gel slices were incubated in 10 mM DTT in TEAB for 30 minutes at 55°C. The 

DTT was removed and 30 mM Iodoacetamide (IAA) in 50 mM TEAB was added and 

incubated for 30 minutes in the dark while vortexing. IAA was removed and the gel slices 

were washed with 50 mM TEAB in 50% acetonitrile. The protein bands were cut and 

transferred in fresh low bind tubes and washed with 50 mM TEAB in 50% acetonitrile. 

Then the gel pieces were washed in 100% acetonitrile until they shrunk and became hard 

and white. The gels were dried in a speed vac for 30 minutes and stored at -20°C. 

 

2.14.3 Trypsin digest and MALDI-TOF 

The MtrA-Flag pull down samples were analysed in the proteomics suit at the 

John Innes Centre. The samples were trypsin digested and further analysed by LCMS on 

nanoLC Orbitrap Fusion mass spectrometer. The identified proteins were investigated 

using the Scaffold 4 software version 4.5.3. 

 

2.15 RNA-seq 

RNA isolation and purification was carried out by John Munnoch as described in 

(Munnoch et al. 2016) and analysis of RNA sequencing reads was performed by Dr 

Govind Chandra.  

Mycelium was harvested at experimentally appropriate time points and 

immediately transferred to 2 ml round bottom tubes, flash frozen in liquid N2, stored at  -

80°C or used immediately. All apparatus used was treated with RNaseZAP (Sigma) to 

remove RNases for a minimum of 1 hour before use. RNaseZAP treated mortar and 

pestles were used, the pestle being placed and cooled on a mixture of dry ice and liquid 

N2 with liquid N2 being poured into the bowl and over the mortar. Once the bowl had 
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cooled the mycelium samples were added directly to the liquid N2 and thoroughly crushed 

using the mortar leaving a fine powder of mycelium. Grindings were transferred to a pre-

cooled 50 ml Falcon tube and stored on dry ice. Directly to the tube, 2 ml of TRI reagent 

(Sigma) was added to the grindings and mixed. Samples are then thawed while vortexing 

intermittently at room temperature for 5 - 10 minutes until the solution cleared. To 1 ml 

of TRI reagent resuspension, 200 µl of chloroform was added and vortexed for 15 seconds 

at room temperature then centrifuged for 10 minutes at 13,000 rpm. The upper, aqueous 

phase (clear colourless layer) was removed into a new 2 ml tube. The remainder of the 

isolation protocol follows the RNeazy Mini Kit (Qiagen) instructions carrying out both 

on and off column DNase treatments. On column treatments were carried out following 

the first RW1 column wash. DNaseI (Qiagen) was added (10 µl enzyme, 70 µl RDD 

buffer) to the column and stored at RT for 1 hour. The column was washed again with 

RW1 then treated as described in the manufacturer’s instructions. Once eluted from the 

column, samples were treated using TURBO DNA-free Kit (Ambion) following 

manufacturer’s instructions to remove residual DNA contamination.  

 

2.16 In silico analysis of MtrAB-LpqB 

2.16.1 Protein or gene similarity 

In order to compare two proteins or genes BLAST online tool 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used. Protein or DNA sequences were 

obtained from http://strepdb.streptomyces.org.uk/. The protein similarity of MtrA, MtrB 

and LpqB was compared using http://streptomyces.org.uk/actinoblast/ (Chandra & 

Chater 2014). 

 

2.16.2 Modelling of MtrA structure 

The crystal structure of un-phosphorylated MtrA(TB) was solved (Friedland et al. 

2007). Two different modelling software were used to compare MtrA(Sv) with the solved 

crystal structure of MtrA(TB) (https://toolkit.tuebingen.mpg.de/hhrep and 

http://www.sbg.bio.ic.ac.uk/phyre2). 
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3 Genetic Manipulation of MtrAB-LpqB in S. venezuelae 

Previous studies investigated the MtrAB-LpqB TCS in Mycobacteria, 

C. glutamicum and S. coelicolor. In the following chapter I investigate the function of 

MtrAB-LpqB in the new model organism S. venezuelae. To investigate the function of 

MtrAB-LpqB I attempted to generate deletion mutants of the single genes of the TCS. 

This is a first step in understanding the role of MtrAB-LpqB by examining the arising 

phenotypes of the deletion mutants. Additionally, I described the design of a MtrA gain 

of function protein and the resulting phenotype in the wild-type background. I used 

Redirect PCR targeting method to create in frame deletions of the three genes in the TCS. 

The phenotypes were examined on solid medium and in liquid culture.  

 

3.1 Genetic Manipulation of mtrA in S. venezuelae 

3.1.1 mtrA is essential in S. venezuelae 

The response regulator MtrA is essential in M. tuberculosis, but dispensable in 

C. glutamicum.  To test if mtrA is essential in S. venezuelae a cosmid carrying the genomic 

region including mtrA was disrupted via PCR targeting to delete the mtrA gene and 

replace it with an apramycin resistance cassette (Gust et al. 2004), see section 2.7. The 

mtrA deletion cosmid was then introduced into S. venezuelae by conjugation. Several 

attempts were made to delete the mtrA gene in S. venezuelae but they were all 

unsuccessful. To investigate if mtrA is essential, a second copy of mtrA under the control 

of its native promoter was introduced in trans into the ΦBT1 integrative site of wild-type 

S. venezuelae using pMS82 (Gregory & Smith 2003). Additionally, mtrA with a C-

terminal linker (GGGGSGGGGSGGGGS) and 3xFlag-tag was introduced in the ΦBT1 

integrative site of the wild-type strain for further analysis, including immunoblotting, 

immunoprecipitation and ChIP-seq. It was possible to delete mtrA in its native locus in 

both strains and the correct integration of the apramycin resistance cassette (APR) was 

tested by PCR (Figure 3.1). This suggests mtrA is essential and, importantly, that the C-

terminal 3xFlag-tagged MtrA is functional. Furthermore, the mtrA strains ΔmtrA ΦBT1 

mtrAp-mtrA (NS052) and ΔmtrA ΦBT1 mtrAp-mtrA-flag (NS042-044) grew normally on 

solid MYM (Figure 3.2) and in liquid MYM (Figure 3.3) which indicates that the 

3xFlag-tag does not affect the function of MtrA. 
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Figure 3.1 Top: Schematic overview of mtrA mutants. Bottom: PCR confirmation of the mtrA 
mutants with Primers P131-132 for 1-2; P1-P2 for 3-4; P131-P2 for 1-4; P1-P132 for 3-2 and 
P64-P65 for 5-6. The expected sizes of the PCR products are at the bottom in base pairs (bp). 
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Figure 3.2 Phenotype of S. venezuelae, NS052 (ΔmtrA ΦBT1 mtrAp-mtrA), NS042 (ΔmtrA 
ΦBT1 mtrAp-mtrA-3xflag) and NS029 (S. venezuelae pMS82) on MYM plates after 3, 6 and 9 
days. Scale bar: 1 cm. Additional colony pictures of the strains and additional identical genetic 
clones are shown is S1-S6. The images of clone NS052 are brighter due to overexpression 
during microspcopy. 

 

 

Figure 3.3 Growth curve of S. venezuelae wild-type and NS042 (mtrA::APR ΦBT1 mtrAp-mtrA-
3xflag) strains in MYM. The average of six biological replicates is shown. The growth rate µ 
(calculation see methods 2.4) during exponential growth is 0.61 ± 0.005 and 0.56 ± 0.002 for S. 
venezuelae and NS042 respectively. During exponential growth, the growth rates are statistically 
similar with p(T<=t) two-tail = 0.21.  
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3.1.2 Overexpression of mtrA using ermEp* does not induce a phenotype in wild-

type S. venezuelae. 

Since mtrA cannot be deleted in S. venezuelae the effect of constitutive expression 

of MtrA in the wild-type background was investigated. mtrA was cloned in pIJ10257 

(Hong et al. 2005) downstream of the ermEp* promoter which is constitutively active. 

The resulting overexpression of MtrA does not induce a phenotype on MYM solid or 

liquid medium (Figure 3.4. and Figure 3.5) 

Figure 3.4 Phenotype of S. venezuelae wild-type, NS035 (S. venezuelae ΦBT1 ermEp*-mtrA) 
and NS038 (S. venezuelae ΦBT1 pIJ10257) strains on MYM after 3, 6 and 9 days. Scale bar: 1 
cm. Additional colonies of the strains and additional genetic identical clones are shown is S7-
S12. 
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Figure 3.5 Growth curve of strain NS033 (ΦBT1 ermEp*-mtrA) and the empty vector control 
strain NS036 (ΦBT1 pIJ1257) in liquid MYM medium. The average of six biological replicates is 
shown. The growth rate µ is 0.56 ± 0.04, 0.58 ± 0.07 and 0.5 ± 0.04 for S. venezuelae wild-type, 
NS033 and NS036 strains, respectively. The growth rate of S. venezuelae wild-type was not 
significantly different from either of NS033 (p(T<=t) two-tail = 0.63) or NS036 (p(T<=t) two-tail = 
0.06) which was tested by t-test. 

 

 

3.2 Deletion of mtrB in S. venezuelae  

3.2.1. Construction of an in-frame deletion of mtrB in S. venezuelae 

MtrB is not essential in M. tuberculosis or C. glutamicum. To investigate the 

function of MtrB in S. venezuelae a cosmid carrying the genomic region including mtrB 

was deleted via PCR targeting to delete the mtrB gene and replace it with an apramycin 

resistance cassette (Gust et al. 2004), see section 2.7. Strains which were apramycin 

resistant and kanamycin sensitive were tested by PCR for integration of the apramycin 

resistance cassette. Three individual mtrB mutants (named NS012, NS021 and NS022) 

were confirmed and spores were harvested and stored for further analysis, see Figure 3.6.  
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Figure 3.6 Top: Schematic overview of the apramycin resistance cassette integration in the 
mtrB mutants. Bottom: PCR confirmation of three individual clones with the primers P70 and 
P71. The presence of the apramycin resistance cassette was also tested by PCR using internal 
primers in the apramycin cassette, data not shown. All three clones contain the apramycin 
resistance cassette 

 

3.2.2 The S. venezuelae ΔmtrB mutant is slightly delayed in aerial hyphae 

formation on MYM agar plates 

The S. venezuelae ΔmtrB mutant is viable and is slightly delayed early in the 

developmental cycle on solid MYM medium. At three days of growth the colonies of the 

S. venezuelae ΔmtrB mutant are slightly smaller than the wild-type and in the middle of 

the colony the aerial hyphae seem to be delayed in growth due to the lack of the typical 

fuzzy white appearance (Figure 3.7). After six and nine days of growth the S. venezuelae 

ΔmtrB mutant colonies are slightly larger than the wild-type colonies and not as raised up 

as the wild-type. To confirm these changes in colony morphology are due to the deletion 

of mtrB a copy of mtrB under its native promoter was introduced in trans. The 

complementation strain seems to form aerial hyphae at three days and at six and nine days 

the colony size and height are more comparable to the wild-type than the ΔmtrB mutant. 

However, the colony morphology of the complementation strain does not seem to fully 

complement the deletion of mtrB. 
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Figure 3.7 Phenotype of S. venezuelae wild-type, three independent clones of S. venezuelae 
∆mtrB NS012, NS021, NS22, and three independent clones of the complemented NS012 ∆mtrB 
strain NS093-95 (NS012 ΦBT1 mtrAp mtrB) on MYM plates after 3, 6 and 9 days. Scale bar: 1 
cm. Additional colonies of the strains are shown in S13-S18. 
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3.2.3 The S. venezuelae ΔmtrB mutant grows normally in liquid MYM medium 

To test if the S. venezuelae ΔmtrB mutant displays a growth or developmental 

phenotype in liquid culture, three replicates were grown in liquid MYM. At the top of 

Figure 3.8 the growth of three replicates of S. venezuelae, S. venezuelae ∆mtrB and the 

complemented ∆mtrB strain is shown. The mean growth rate for the wild-type strain (0.42 

± 0.04) was compared, by t-test, to S venezuelae ∆mtrB (0.36 ± 0.002) and the 

complemented strain, S. venezuelae ∆mtrB ΦBT1 mtrAp-mtrB (0.40 ± 0.02), in turn. No 

significant difference was observed between the wild-type and S. venezuelae ΔmtrB strain 

(p(T<=t) two-tail = 0.09) or the wild-type compared to S. venezuelae ΔmtrB ΦBT1 

mtrAp-mtrB (p(T<=t) two-tail = 0.49).  

Since no defect in the growth rate in the S. venezuelae ∆mtrB mutant was observed 

it was of interest to see if the S. venezuelae ∆mtrB mutant sporulates at the same time as 

the wild-type strain. Therefore, the strains were investigated using microscopy at 

individual time points and this revealed that all three strains start to sporulate at 16 hours 

in liquid MYM (Figure 3.9). However, the quantity of sporulation remains elusive in this 

experiment.  
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Figure 3.8 Top: Growth curve of four individual cultures of S. venezuelae, S. venezuleae ∆mtrB 
(NS012) and S. venezuelae ∆mtrB ΦBT1 mtrAp mtrB (NS093) in liquid MYM. Bottom: Growth 
rate and doubling time of liquid cultures during exponential growth. A t-test revealed no 
significant difference between S. venezuelae and either of S. venezuelae ∆mtrB or the 
complemented ∆mtrB strain (S. venezuelae growth rate compaired with S. venezuelae ∆mtrB 
P(T<=t) two-tail = 0.09 and S. venezuelae growth rate compaired with S. venezuelae ∆mtrB 
ΦBT1 mtrAp mtrB P(T<=t) two-tail = 0.49).  
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Figure 3.9 Microscopy of cultures shown in Figure 3.8. All three strains start to sporulate at 16 
hours. The small box is magnified and displayed in the corner.   

 

3.2.4 The S. venezuelae ΔmtrB colonies have an unusual growth defect in the 

middle of the colony  

To further investigate the phenotype of the S venezuelae ∆mtrB mutant, Scanning 

Electron Microscopy (SEM) was performed. Since the S. venezuelae ∆mtrB mutant 

appears to have a delay in vegetative growth in the middle of the colony images were 

taken from the outside and inside of the ∆mtrB colonies (Figure 3.10). The results show 

that the S. venezuelae ∆mtrB mutant sporulates normally on the outside of the colony but 

shows a drastic growth defect in the middle of the colony. At the time when the SEM 

images were taken the mtrB complementation strain was not available. It is necessary to 

investigate the mtrB complementation strain via SEM microscopy to determine if this 

strain fully complements the growth defect in the middle of the colony.  
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Figure 3.10 Scanning Electron Microscopy (SEM) images of S. venezuelae and the S. venezuelae ∆mtrB mutant. Cells were grown on MYM for 10 days at 
30°C. It was not possible to take high magnification images of the S. venezuelae mtrB mutant because the spores were destroyed by the electron beam at 
high magnifications (Elaine Barclay, personal communication). Therefore, sections of the S. venezuelae ∆mtrB images are shown magnified. 
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3.2.5 The ΔmtrB mutant is sensitive to salt stress (osmotic stress phenotype) 

C. glutamicum MtrAB is involved in cell wall metabolism and osmoprotection. It 

was shown that the histidine kinase MtrB can be activated by various solutes, sugars, 

amino acids and polyethylene glycol (Möker, Kramer, et al. 2007). To test if MtrAB is 

involved in osmoprotection in Streptomyces species, S. venezuelae and S. coelicolor 

∆mtrB mutants were grown on agar plates containing different NaCl concentration to 

induce osmotic stress. Note, the S. coelicolor ΔmtrB mutant was constructed previously 

by Felicity Knowles (Knowles 2014). In both Streptomyces species, the ∆mtrB mutant is 

more sensitive to salt stress than the wild-type (Figure 3.11 and Figure 3.12). 

S. venezuelae is delayed in aerial hyphae formation at three days but fully sporulates at 

six and nine days on MYM agar medium containing 0.3 M or 0.5 M NaCl. On MYM agar 

plates containing 0.7 M NaCl the wild-type colonies are extremely small at three days but 

then grow larger than the wild-type colonies without NaCl at nine days. After nine days 

of growth on NaCl the wild-type strain forms aerial hyphae but does not sporulate. In 

comparison, the S. venezuelae ∆mtrB mutant shows a drastic phenotype under salt stress. 

At three days of growth the S. venezuelae ∆mtrB mutant colonies are smaller than the 

wild-type under salt stress. After six days on MYM agar plates containing 0.3M NaCl the 

S. venezuelae ∆mtrB mutant produces the green spore pigment but it does not produce 

spore pigment on MYM agar plates containing 0.5 M NaCl. Also, the S. venezuelae 

∆mtrB colonies are completely flat compared to the S. venezuelae ∆mtrB mutant growing 

in the absence of NaCl. The lack of the erection of the colonies in the S. venezuelae ΔmtrB 

mutant under NaCl could be visualised by cross section the colonies. Furthermore the 

S. venezuelae ΔmtrB mutant under NaCl seems to form aerial hyphae due to the white 

colour but this could be investigated with higher magnification microscopy. It seems that 

NaCl stress exacerbates the phenotype of the S. venezuelae ∆mtrB mutant. The mtrB 

complementation strains seems to be more like the ΔmtrB mutant than the wild-type under 

salt stress. The ΔmtrB strain containing a copy of mtrB in trans only partially 

complements under salt stress.  

In contrast, the S. venezuelae ∆mtrB mutant grows similarly to the wild-type in 

liquid medium (Figure 3.13). When 0.5 M NaCl is added to S. venezuelae and 

S. venezuelae ∆mtrB cultures at 12 hours both cultures do not grow exponentially which 

would be the case in growth without NaCl. However, the strains do grow but more slowly 
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and they enter stationary phase after 30 hours. Interestingly, no spores could be observed 

after 32 hours of growth of the wild-type strain or the ∆mtrB mutant.  

Similar to S. venezuelae, the growth of the S. coelicolor wild-type strain is reduced 

with increasing salt stress. S. coelicolor was grown on the standard medium SFM instead 

of MYM to see if there are any developmental defects. In addition to the reduction in 

growth of the S. coelicolor wild-type it also produces blue and red secondary metabolites 

under salt stress (Figure 3.12) which are most likely actinorhodin and 

undecylprodigiosin, respectively. All S. coelicolor strains produce a red secondary 

metabolite at three days under salt stress. The S. coelicolor ∆mtrB mutant however does 

not seem to produce coloured secondary metabolites on SFM plates. It is noteworthy that 

the S. coelicolor ∆mtrB mutant seems to be genetically unstable and produces colonies 

with several different phenotypes under salt stress (see supplementary data S31-34). 
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Figure 3.11 Phenotype of S. venezuelae, S. venezuelae ∆mtrB (NS012) and S. venezuelae ∆mtrB ΦBT1 mtrAp mtrB (NS093) on solid MYM medium with 
different salt concentrations. Scale bar 1 cm.   
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Figure 3.12 Phenotype of S. coelicolor and S. coelicolor ∆mtrB on solid SFM medium with different salt concentration. Scale bar 1 cm. 
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Figure 3.13 Growth curve of S. venezuelae wild-type and S. venezuelae ∆mtrB under salt stress. 
(A) Three individual cultures grown till 20 hours after NaCl stress. (B) Microscopic image of 
S. venezuelae and S. venezuelae ΔmtrB under NaCl stress at 32 hours. Spores could not be 
observed in both cultures. (C) Two individual cultures grown up to 32 hours after NaCl stress. 
Replicates of cultures were grown normally until 12 hours when 0.5 M NaCl was added. The 
cultures were inhibited in growth and did not grow exponentially. Thus, the growth rate cannot 
be calculated.  

 

3.2.6 In the S. venezuelae ∆mtrB mutant secondary metabolites are increased in 

production 

It was reported by Knowles (2014) that a S. coelicolor ΔmtrB mutant 

overproduces the antibiotic undecylprodigiosin. S. venezuelae does not produce any 

pigmented antibiotics, but it does encode gene clusters for the biosynthesis of the 

antibacterial agents chloramphenicol and jadomycin so we screened the ∆mtrB mutant 

for bioactivity against the Gram positive bacterium Bacillus subtilis and the Gram 

negative bacterium Escherichia coli.  
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3.2.7 S. venezuelae ΔmtrB inhibits the growth of B. subtilis and E. coli 

Initially, wild-type S. venezuelae and S. venezuelae ∆mtrB were tested in a spot 

assay. Spores (2 µl) of each Streptomyces strain were spotted onto LB or MYM agar and 

incubated for 24 hours. Then cultures (2 µl) of the test strains were added and incubated 

for another 24 hours. No inhibition was observed on MYM medium but the growth of 

B. subtilis and E. coli was inhibited by both Streptomyces strains on LB medium. 

However, it seems that the S. venezuelae ∆mtrB mutant (NS012) inhibits the growth of 

the bacterial test strains more than the wild-type (Figure 3.14). To verify this result 

S. venezuelae and NS012 (∆mtrB) were grown in liquid MYM and then the culture was 

methanol extracted. Methanol is an amphiphilic compound and can extract polar as well 

as non-polar compounds. The methanol extract was added to discs which were placed on 

top of B. subtilis in soft LB agar and incubated for 24 hours. The wild-type S. venezuelae 

methanol extract does not show any inhibition of B. subtilis whereas the methanol extract 

of NS012 (∆mtrB) shows a clear zone of inhibition which shows that the S. venezuelae 

ΔmtrB mutant produces one or more antibiotics which inhibit the growth of B. subtilis 

(Figure 3.14).  

 

Figure 3.14 Left: Bioassay of S. venezuelae ∆mtrB against E. coli and B. subtilis on LB and 
MYM. Shown are three (I-III) technical replicates. Right: Methanol extraction of S. venezuelae 
wild-type and S. venezuelae ∆mtrB (NS012) cultures. Cells were grown for 24 hours and then 
methanol extracted. 50 µl of the extract was added to discs and then spotted on B. subtilis in 
soft LB agar and incubated for 24 hours. 
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3.2.8  Chloramphenicol production is increased in S. venezuelae ∆mtrB (NS012)  

The methanol extracts of S. venezuelae and S. venezuelae ∆mtrB were analysed 

by LCMS by Dr. Daniel Heine (John Innes Centre). Three replicates were grown in liquid 

MYM for 12, 16, 24 and 36 hours. The results show that S. venezuelae ∆mtrB cultures 

produce more chloramphenicol than the wild-type (Figure 3.15). The ΔmtrB 

complemented strain was not available at the time of the experiment. It is necessary to 

repeat the chloramphenicol measurement with the complemented ΔmtrB mutant to verify 

that loss of mtrB is responsible for the increased production of chloramphenicol.  

 

Figure 3.15 Concentration of chloramphenicol in S. venezuelae and S. venezuelae ΔmtrB 
culture at different time points, (Dr Daniel Heine, unpublished). The ΔmtrB complemented strain 
was not available at the time of the experiment.  

 

 

3.2.9  S. coelicolor ΔmtrB: Increase in production of secondary metabolites 

As mentioned above, Knowles (2014) reported that the S. coelicolor ∆mtrB 

mutant overproduces the red antibiotic undecylprodigiosin in liquid SMM medium. SMM 

medium contains ~82% of polyethylene glycol 6000 (PEG) which disturbs the analysis 

by LCMS. Therefore the S. coelicolor ∆mtrB mutant was grown in SMM without PEG, 

several different rich media including MYM and in minimal medium (MM). Since 

actinorhodin and undecylprodigiosin are coloured secondary metabolites the increase in 

production of these antibiotics can be easily spotted. The S. coelicolor ∆mtrB mutant 

produced only small amount of coloured pigments in SMM without PEG and MM 

whereas S. coelicolor ∆mtrB cultures were dark purple in liquid MYM after 2 days of 
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growth (Figure 3.16). This was the justification for choosing MYM to test for the 

production of secondary metabolites in S. coelicolor.  

 

Figure 3.16 Culture supernatants of S. coelicolor and S. coelicolor ΔmtrB grown in different 
media.  

 

 

Figure 3.17 HPLC-MS analysis of extracts from a) S. coelicolor wild type and b) S. coelicolor 
ΔmtrB mutant. The Y-axis has been normalized for both profiles and shows the TIC (Total Ion 
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Chromatogram). The siderophores desferrioxamine B and E and germicidin A are reduced in 
production upon loss of MtrB while production of the antibiotics undecylprodigiosin and 
actinorhodin are upregulated. Metacycloprodigiosin and streptorubin has the same mass. To 
identify the compound, it has to be isolated and tested by NMR, (Dr Daniel Heine, unpublished). 

The S. coelicolor ∆mtrB mutant over-produces the red antibiotic 

undecylprodigiosin and the blue antibiotic actinorhodin and we detected significant 

amounts of a compound which could be either metacycloprodigiosin, a potent anticancer 

compound made by the same pathway as undecylprodigiosin or streptorubin. Both 

compounds have the same mass and to identify which compound is increased in 

production it has to be isolated and analysed by NMR. Other secondary metabolites are 

clearly reduced in yield in the ∆mtrB mutant, including the desferrioxamine B and E 

siderophores and germicidin A, see Figure 3.17. This preliminary data needs further 

validation by analysis of more biological replicates. Furthermore, the S. coelicolor ΔmtrB 

complementation strain has to be analysed to confirm that the increase in antibiotic 

production is caused by the loss of mtrB. 

 

3.3 Gain of function MtrA 

MtrA(TB) and MtrA(Sv) are highly similar with a protein identity of 74%. The 

crystal structure of unphosphorylated MtrA(TB) has been solved (Friedland et al. 2007) 

and based on this structure an MtrA(TB)Y102C protein was active independent of MtrB. In 

fact MtrA(TB)Y102C binds to its target genes independently of phosphorylation leading to 

a permanently active, gain-of-function MtrA protein (Plocinska et al. 2012; Satsangi et 

al. 2013). 

The following section explores if the same MtrA gain of function mutation is 

functional in S. venezuelae. To compare MtrA in the distantly related M. tuberculosis and 

S. venezuelae, two different protein modelling tools were used with the results showing 

that the tertiary structure of MtrA in both organisms is likely to be highly similar (Figure 

3.18). The phosphorylation domains (in yellow / orange) of MtrA(TB) and MtrA(Sv) 

contain a conserved tyrosine residue Y102 and Y99, respectively, which forms a 

hydrogen bond with the aspartic acid residue D190 or D187, respectively, in the DNA 

binding domain (green / olive green). If this tyrosine is changed to a cysteine MtrA(TB) 

becomes permanently active, most likely because the hydrogen bond between the two 

amino acids is broken.  
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Figure 3.18 Left: Crystal structure of MtrA(TB), (Friedland et al. 2007). Right: The modelled 
structure of MtrA(Sv). Bottom: Overlay of MtrA(TB) and MtrA(Sv). The MtrA(TB) structure was 
obtained from the protein data bank (http://www.rcsb.org). Accesion number for MtrA(TB) is 
2GWR. The structure of MtrA(Sv) was modelled with https://toolkit.tuebingen.mpg.de/hhpred 
and  http://www.sbg.bio.ic.ac.uk/~phyre2. Both models were similar and for simplicity only the 
phyre2 model is shown.  

 

 

 

http://www.rcsb.org/
https://toolkit.tuebingen.mpg.de/hhpred
http://www.sbg.bio.ic.ac.uk/~phyre2
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To test if this gain-of-function mutation has an effect in S. venezuelae, two 

different gain of function constructs were designed with MtrA(TB)Y102C and 

MtrA(Sv)Y99C under the control of the S. venezuelae mtrA promoter (mtrA(Sv)p). 

Additionally, the wild-type MtrA(TB) protein was also expressed using mtrA(Sv)p to 

investigate if MtrA(TB) is functional in S. venezuelae. All three constructs were 

introduced in the ΦBT1 site of S. venezuelae. 

The S. venezuelae ∆mtrB mutant produced more chloramphenicol than the wild-

type after 24 hours of growth in liquid MYM medium. Therefore, the gain of function 

mutants were tested for chloramphenicol production at 24 hours of growth by LCMS by 

Dr Daniel Heine. Three individual clones of the S. venezuelae ΔmtrB and the MtrA mutant 

proteins [MtrA(TB), MtrA(TB)Y102C and MtrA(Sv)Y99C] were grown and measured in 

technical replicates by LCMS. The LCMS traces of each biological and technical 

replicate are shown in the supplementary data, Figure S39-45. Figure 3.19 shows the 

average chloramphenicol concentration of S. venezuelae, ΔmtrB, and the MtrA(TB), 

MtrA(TB)Y102C and MtrA(Sv)Y99C mutant strains. The S. venezuelae wild-type produced 

0.05 ± 0.02 µg/ml. The ΔmtrB mutant produced 0.4 ± 0.03 µg/ml which is 8-times more 

chloramphenicol than the wild-type. The MtrA(TB) and MtrA(TB)Y102C mutant strains 

produced 0.64 ± 0.28 and 0.7 ± 0.18 µg/ml chloramphenicol, respectively. The increase 

in chloramphenicol production in the MtrA(TB) and MtrA(TB)Y102C mutant strains is 

statistical significant with p = 5.8 * 10-7 for both strains compared to the wild-type 

chloramphenicol concentration. Additionally, in both strains containing the MtrA(TB) 

protein the chloramphenicol production is significantly higher than in the ΔmtrB mutant 

(p = 0.033). The average chloramphenicol concentration in the MtrA(Sv)Y99C mutant was 

0.38 ± 0.48 µg/ml and no statistical significance between this mutant and the wild-type 

could be observed. Thus, the individual clones of the MtrA(Sv)Y99C were investigated 

individually. The first clone, NS099, produced nearly 4-times more chloramphenicol than 

the wild-type and this increase in production is statistical significant (p = 0.015). The 

second clone, NS100, produced similar concentrations of chloramphenicol than the wild-

type. The third clone, NS101, produced 1.21 ± 0.51 µg/ml which is 24-times more than 

the wild-type. However, the increase of chloramphenicol production is not statistically 

significant due to the high sample variation. Although some variation between the 

biological and technical replicates can be observed, the increased production of 

chloramphenicol is most likely due to the introduction of the gain of function MtrA 
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proteins because introduction of a second copy of MtrA(Sv) under its native promoter in 

the integrative site does not result in an increased production in chloramphenicol (Figure 

S44). Due to the high sample variation, especially in the MtrA(Sv)Y99C mutant it is 

necessary to repeat the experiment in future work to verify that the increased production 

is based on the introduction of the gain of function MtrA proteins. 

To see if the gain of function proteins and MtrA(TB) are functional attempts were 

made to delete the native MtrA but all attempts were unsuccessful, probably because they 

are constitutively active and therefore toxic. 

 

 

Figure 3.19 Average chloramphenicol concentration of methanol extracted cultures containing 
different MtrA mutant proteins. For each mutant three individual isolated clones were measured 
in three technical replicates. The average of three technical replicates of three individual clones 
of the MtrA(Sv)Y99C are shown to demonstrate the high sample variation in this strain. LCMS 
chromatograms of samples are shown in S39-45. Statistical significance was determined by t-
test, *** p ≤ 0.005, * p ≤ 0.05  
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3.4 Discussion 

3.4.1 MtrA is essential in S. venezuelae  

It was only possible to delete mtrA in S. venezuelae in the presence of a second 

copy which was integrated in trans in the genome. That suggests that S. venezuelae cells 

need MtrA in order to survive. This is consistent with published reports on 

M. tuberculosis in which mtrA is also essential and can only be deleted if a second copy 

is present in trans (Zahrt & Deretic 2000). However, MtrA is not essential in all 

Actinobacteria since mtrA can be deleted in C. glutamicum (Möker et al. 2004; Brocker 

& Bott 2006). Why is MtrA essential in M. tuberculosis but not in C. glutamicum? The 

answer could be found in the targets bound and controlled by MtrA. Confirmed targets of 

MtrA(TB) include dnaA, which encodes the chromosome replication initiation protein 

DnaA and the origin of DNA replication, oriC. MtrA(TB) also interacts directly with the 

DnaA protein and controls a number of genes required for cell division, including sepF 

(Purushotham et al. 2015). This suggests that MtrA(TB) is involved in coordinating DNA 

replication and cell division, both of which are essential processes in all living organisms. 

In C. glutamicum, MtrAB are known to be involved in sensing and responding to osmotic 

stress but they do not regulate DNA replication or any essential cell division genes, which 

could explain why MtrA is dispensable in this strain. However, it is also possible that the 

regulon is not completely defined since they used ChIP-chip and not ChIP-seq which is a 

lot more sensitive. They also defined the regulon under a single growth condition. 

Furthermore, neither the ΔmtrA or ΔmtrAB mutants were complemented in 

C. glutamicum so it is feasible they have acquired compensatory secondary mutations.  

Since MtrA is essential in S. venezuelae it is difficult to manipulate the mtrA gene 

in order to study its function. We attempted to make MtrA(Sv) more tractable by adding 

a 3xFlag-tag to MtrA. Because the mtrA-3xflag gene was integrated in trans and then the 

native mtrA gene was deleted it was important to analyse if there are any polar effects on 

MtrB and LpqB but this is unlikely to be the case because the S. venezuelae mtrA::APR 

ΦBT1 mtrAp-mtrA (NS042-44) strains do not show any abnormalities in growth or 

development under the tested conditions (Figure 3.2 and 3.3). A similar observation was 

made when MtrA was constitutively expressed under the ermE* promoter and this is 

consistent with the findings in M. tuberculosis. When MtrA(TB) was overexpressed the 

growth of M. tuberculosis was inhibited in macrophages, mice lungs and spleens but the 

growth in broth was not affected (Fol et al. 2006). Furthermore, the decreased replication 



 

97 

 

in macrophages could be restored when MtrA(TB) was overexpressed with its cognate 

HK MtrB. The authors conclude that it is not the level of MtrA(TB) which regulates its 

targets but rather the phosphorylation state of MtrA(TB) (Fol et al. 2006). Since the 

overexpression of MtrA in S. venezuelae does not show a phenotype similarly to 

M. tuberculosis growth in broth it is likely that the MtrAB TCS in M. tuberculosis and 

S. venezuelae function in a similar way which could indicate that the function of 

MtrA(Sv) is determined by its phosphorylation state rather than the level of expression.  

S. venezuelae grows exponentially in MYM medium after an 8-hour lag phase and 

starts to sporulate at approximately 16 hours. It is noteworthy that S. venezuelae, as a 

filamentous organism, is difficult to grow consistently. Therefore, four replicates were 

used to calculate the growth rate. Although great care was taken to grow S. venezuelae 

strains consistently, the growth can vary due to the filamentous growth. The strains 

containing pIJ102357 seems to grow slower than wild-type and the MtrA overexpression 

strain. However, this was not investigated further in this work because the difference is 

not statistically significant (P(T<=t) two-tail = 0.06 and S. venezuelae and S. venezuelae 

ermEp* mtrA grow at the same growth rate which shows that increased level of MtrA(Sv) 

do not influence the growth in liquid culture. 

 We conclude from these experiments that MtrA is essential in S. venezuelae 

which might indicate an involvement in essential processes such as DNA replication 

and / or cell division. We further conclude that the cellular function and activity of 

MtrA(Sv) is controlled by altering the ratio of phosphorylated to unphosphorylated MtrA 

during the S. venezuelae life cycle.   

 

3.4.2 Deletion of mtrB 

To study the function of the histidine kinase MtrB the encoding gene was deleted 

in S. venezuelae using the λ RED based PCR targeting system (Gust et al. 2003). The 

mtrB deletion mutants in M. tuberculosis, C. glutamicum and S. coelicolor show a severe 

cell division defect. In M. tuberculosis (Plocinska et al. 2012) and C. glutamicum (Möker 

et al. 2004) ΔmtrB mutant cells are elongated which are similar to temperature sensitive 

depletion mutants of FtsZ in E. coli (Addinall et al. 1996). The S. coelicolor ∆mtrB mutant 

cells also show irregular septum formation (Knowles 2014). Surprisingly, S. venezuelae 

ΔmtrB has a divalent phenotype with normal growing vegetative and aerial hyphae at the 

outside and growth defect at the inside of the colony.  The S. venezuelae ∆mtrB mutant 
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seems to have a mild growth defect on solid MYM medium and, although the growth rate 

is lower for S. venezuelae ∆mtrB compared to the wild-type in liquid culture, (0.36 ± 

0.002 compared to 0.42 ± 0.041, respectively) this was not statistically significant (Figure 

3.8).  

Interestingly the S. venezuelae ∆mtrB mutant although being delayed in aerial 

hyphae formation sporulates in a similar manner to the wild-type at 16 hours in liquid 

MYM medium and sporulates like the wild-type at six days on solid MYM medium. With 

the time points presented here for solid medium it is difficult to say if there is a delay in 

sporulation on solid medium. However, it is possible that there is no delay in sporulation 

on agar plates in the S. venezuelae ΔmtrB mutant because this mutant starts to sporulate 

at the same time as the wild-type in liquid culture. The sporulation in liquid culture of 

S. venezuelae wild-type and the S. venezuelae ΔmtrB mutant were investigated visually 

but not quantitatively. It is possible that the S. venezuelae ΔmtrB mutant produces less 

spores at 16-hour time point. This could be measured by separation of the spores from the 

vegetative mycelium by filtration and subsequent plating of serial dilutions to determine 

to spore count in the mutant compared to the wild-type. 

Additionally, the SEM images reveal that the spores and the septa of the 

S. venezuelae ΔmtrB mutant look like wild-type spores except for the drastic growth 

defect in the middle of the colony. The S. venezuelae ∆mtrB spore chains on the outside 

of the colony have regular septa. This was unexpected because the S. coelicolor ΔmtrB 

mutant has irregular septa (Knowles 2014). In M. tuberculosis, MtrB interacts with 

components of the divisome, Wag31 and FtsI (homologs of DivIVA and PBPB in 

Streptomyces, respectively) (Plocinska et al. 2014). Since the deletion of mtrB leads to 

the formation of irregular septa in S. coelicolor and given the localisation of MtrB(TB) at 

the cell division site it is likely that MtrB is also involved in regulating the divisome in 

S. coelicolor as well. Contradictorily, this does not seem to be the case in S. venezuelae 

at least in that deleting mtrB has little effect on cell division but we do not yet know 

anything about the localisation of MtrB(Sv) during the Streptomyces life cycle.  

Deletion of mtrB in the distantly related species S. coelicolor and S. venezuelae 

results in quite different colony morphological phenotypes. S. coelicolor ∆mtrB colonies 

are small and produce few spores of irregular size that can be complemented by 

reintroduction of mtrB in trans. In contrast the S. venezuelae ∆mtrB colonies are larger 

than the wild-type and form normal spores, at least at the outside of the colony, but there 
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is a serious defect in the spore chains formed at the centres of the ΔmtrB colonies. It is 

not known if the S. coelicolor ΔmtrB mutant displays a different phenotype in the middle 

of the colony. Thus, it is possible that MtrB has different roles in these two organisms or 

perhaps just that loss of MtrB has a more drastic effect in S. coelicolor whereas 

S. venezuelae somehow compensates better for this loss. It is noteworthy that S. 

venezuelae ΔmtrB and S. coelicolor ΔmtrB were grown on MYM and SFM respectively. 

These media are standard for phenotypic analysis. It is possible that the different 

phenotypes of the deletion of mtrB in S. venezuelae and S. coelicolor could be a result of 

the different media compositions which could be tested by cultivating S. venezuelae 

ΔmtrB on SFM plates since S. coelicolor does not develop on MYM. However, both 

∆mtrB mutant strains over-produce antibiotics and both are more sensitive to salt stress 

which indicates that MtrB could sense salt and/or osmotic stress. It remains to be 

determined if MtrB(Sv) is involved in the formation of the divisome. 

The complementation strain of the mtrB deletion in S. venezuelae seemed to 

recover the loss of mtrB because the complementation strains forms aerial hyphae at three 

days similar to the wild-type whereas the ΔmtrB mutant is delayed in aerial hyphae 

formation. Despite the recovery of the early aerial hyphae formation phenotype the 

colony morphology of the complemented mtrB mutant resembles more of the ΔmtrB 

mutant than the wild-type. This indicates that the complementation of mtrB is only 

partially. This is even more obvious when the strains were cultivated on MYM plates 

containing increasing concentration of NaCl. The lack of complementation in the mtrB 

mutant could be due to a polar effect on lpqB, see section 3.4.3. 

Why is there a drastic growth defect in the middle of the S. venezuelae ∆mtrB 

mutant colonies? To answer the question, it is important to look at the morphology of a 

Streptomyces colony. H. Wildermuth studied the structure of individual S. coelicolor 

colonies by microscopy of thin section (Wildermuth 1969). In the middle of the colony 

aerial hyphae grow on top of substrate mycelium and other aerial hyphae. The aerial 

hyphae at the bottom either sporulate or undergo cell lysis. The amount of lysed aerial 

hyphae increased towards the middle of the colony. When cells lyse they release the 

content of the cells into the surrounding environment which increases the osmotic 

potential. If MtrB(Sv) senses osmotic stress, the S. venezuelae ∆mtrB mutant would not 

be able to sense this osmotic stress caused by cell lysis in the middle of the colony and 

therefore could not induce the osmotic stress response. This possibly explains the growth 
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defect observed in S. venezuelae ∆mtrB grown on solid MYM agar medium and could be 

a possible reason why the S. venezuelae ΔmtrB mutant grows normally in liquid culture. 

 

3.4.3 The role of LpqB 

We know relatively little about the LpqB lipoprotein which is co-encoded with 

MtrAB in Actinobacteria, but it is one of the 233 conserved signature proteins in 

Actinobacteria (Gao et al. 2006). It was reported that in M. smegmatis, LpqB interacts 

with the sensor domain of MtrB on the outside of the cell and that this interaction 

modulates phosphotransfer from MtrB to MtrA (Nguyen et al. 2010). Unfortunately, all 

attempts to delete lpqB in S. venezuelae were unsuccessful, or at least the lpqB mutants 

that were generated could not be confirmed using PCR. It was possible to delete lpqB in 

S. coelicolor (Knowles 2014) but it remains to be determined if lpqB is essential or 

dispensable in S. venezuelae.  

Deletion of S. venezuelae mtrB has a polar effect on lpqB. The mtrB and lpqB 

coding sequences overlap by 11 bp but the start codon of lpqB was left intact when the 

deletion of mtrB was designed. However, in the ∆mtrB mutant, the ribosomal binding site 

of lpqB is removed thus it is possible that lpqB is not transcribed in the ∆mtrB strain. This 

could be a possible explanation why the ΔmtrB mutant containing a copy of mtrB under 

its native promoter only complements partially under normal growth conditions and under 

salt stress. In contrast the S. coelicolor ΔmtrB mutant fully complements under normal 

growth conditions (Knowles 2014) and it remains to be subject of future work to 

determine if the S. coelicolor ΔmtrB complementation strains restores the wild-type 

phenotype under NaCl stress conditions. In the deletion of mtrB in S. coelicolor four base 

pairs were left in front of the start codon of lpqB which seems to be sufficient to ensure 

transcription of lpqB. The S. coelicolor ΔlpqB mutant sporulates normally but with 

irregular septa formation and the ΔlpqB mutant overproduces undecylprodigiosin. It 

remains elusive if the deletion of lpqB in S. venezuelae has a similar effect on 

development and secondary metabolite production.   

 

3.4.4 Increased production of secondary metabolites in Streptomyces ∆mtrB 

mutants 

Although the morphological phenotypes are different in S. coelicolor and 

S. venezuelae ∆mtrB mutants both strains show an increased production of antibiotics. 
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Chloramphenicol production is increased in the S. venezuelae ∆mtrB mutant on solid agar 

and in liquid culture and actinorhodin and undecylprodigiosin production is increased in 

the S. coelicolor ∆mtrB mutant in liquid MYM. It is possible that this is also linked to the 

osmotic stress response.  

Osmotic stress is disastrous for a bacterial cell. During osmotic stress the turgor 

pressure rises which can be fatal if the bacterial cell does not counteract this stress. 

Therefore bacteria have many sensors to detect this fatal stress like sensor kinases, 

transporters, P-type ATPases and channels (Wood 1999). Streptomyces have at least two 

sensing mechanism: OsaAB (Bishop et al. 2004) which is modulated by the 

osmoregulator OsaC (Fernández Martánez et al. 2009) and the kdpDEFABC operon 

which contains the TCS KdpDF and a p-type ATPase (Hutchings et al. 2004). This means 

that MtrB, if indeed it is an osmosensor, is not the only system to sense osmotic stress 

and this could explain why the ΔmtrB mutant cells can still grow under osmotic stress 

conditions. 

An S. coelicolor ΔosaB mutant overproduces actinorhodin and 

undecylprodigiosin when osmotic stress was induced (Bishop et al. 2004). The 

S. coelicolor ΔosaB mutant is not able to adapt to osmotic stress conditions and it was 

hypothesised that the overproduction of antibiotics could be due to the interference of the 

complex response to osmotic stress (Bishop et al. 2004). If MtrB senses osmotic stress in 

Streptomyces then loss of MtrB would mean that Streptomyces cells are not able to sense 

osmotic stress anymore with this system and the Streptomyces ΔmtrB mutants might 

overproduce antibiotics under non-stressful conditions, i.e. it is possible that the deletion 

of mtrB mimics osmotic stress because MtrA is permanently active.   

MtrA(TB) can be phosphorylated by small phosphate donors (Friedland et al. 

2007) and MtrB(Cg) can act as a phosphatase as well as a kinase (Möker et al. 2007). 

That implies that MtrA can be phosphorylated in the cell independently from MtrB and 

that MtrB regulates the phosphorylation status of MtrA by acting as an MtrA specific 

kinase or phosphatase under inducing and non-inducing conditions. That suggests that in 

an ∆mtrB mutant the MtrA protein is phosphorylated by cross talk and / or small phosphor 

donors and cannot be dephosphorylated by MtrB which leads to a permanent active MtrA 

protein which in turn could lead to the over production of antibiotics. To distinguish 

between these possibilities, I decided to investigate the regulon of MtrAB in S. venezuelae 

using ChIP-seq and this is described in Chapter 4.  
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3.4.5 Gain of function MtrA proteins 

Expression of the gain of function MtrA proteins and wild-type MtrA(TB) 

resulted in the increased production of chloramphenicol in wild-type S. venezuelae. The 

wild-type strains expressing MtrA(TB) and MtrA(TB)Y102 produce significantly more 

chloramphenicol than the ΔmtrB mutant and the wild-type whereas the production of 

chloramphenicol production in the MtrA(Sv)Y99C strain is not significant due to the high 

sample variation. In order to determine if the increased production of chloramphenicol is 

consistent more replicates need to be tested since the biological and technical replicates 

gain of function strains show a high sample variation (see Figure 3.19 and S39 - 45).  

All attempts to delete the native mtrA in the presence of the gain of function 

proteins were unsuccessful which indicates that the gain of function proteins are either 

not functional or toxic to the cell. MtrA should be expressed in a mixture of native MtrA 

and gain of function protein. It is expected that MtrA and gain of function mtrA proteins 

should be expressed in a ratio of 50:50 because both copies are expressed by the native 

mtrA promoter. However, we know very little about the autoregulation of mtrA and the 

introduction of the gain of function proteins in the integrative site could lead to a different 

expression than the wild-type protein due to the different location in the chromosome. 

The possible difference in expression could lead to different ratios of native to gain of 

function MtrA. This in turn could result in different production of chloramphenicol in 

two genetically similar gain of function strains. Also, it is possible that the gain of 

function proteins are not regulating the production of chloramphenicol directly. The 

possible toxicity of the gain of function MtrA could lead to an overall stress response in 

the cell which can lead to increased antibiotic production (Vohradsky et al. 2000). It has 

to be determined in future experiments if the gain of function MtrA mutant proteins are 

not functional or toxic to the cell.  

For unknown reasons the chloramphenicol BGC is silent in wild-type 

S. venezuelae (Fernández-Martínez et al. 2014). It is unlikely that the overproduction of 

chloramphenicol is due to a second copy of MtrA which could lead to elevated levels of 

MtrA since a strain containing the native MtrA and a second copy of MtrA under its 

native promoter integrated in the ΦBT1 site does not overproduce chloramphenicol (see 

S44).  

Intriguingly, S. venezuelae containing MtrA(TB) overproduces chloramphenicol. 

It is likely that MtrA(TB) binds to the same binding site as MtrA(Sv) to activate 
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chloramphenicol production because MtrA(TB) and MtrA(Sv) are very similar in their 

DNA binding domain. Therefore MtrA(TB) must be more active which means a greater 

proportion of MtrA(TB) is phosphorylated. MtrA is very similar in protein identity but 

MtrB only shares 55% protein identity in S. venezuelae and M. tuberculosis. This could 

mean that the specificity of the protein-protein interaction of MtrB(Sv) with MtrA(TB) is 

reduced and thus MtrB(Sv) dephosphorylates MtrA(TB) with lower efficiency which 

leads to higher levels of active MtrA(TB) in the cell. This could also be the reason why 

the production of chloramphenicol in S. venezuelae MtrA(TB)Y102C increased compared 

to the wild-type and ΔmtrB mutant. However, the phosphorylation state of the gain of 

function protein and MtrA(TB) have to be determined experimentally.  

Additionally, the presence of the gain of function mutation causes the 

overproduction of chloramphenicol. The amino acid change from Y102C/Y99C removes 

the hydrogen bond  between Y102/Y99 and D190/D187 in the inactive form of MtrA(TB) 

(Friedland et al. 2007) which may lead to a change in the tertiary structure of MtrA. This 

change could in turn lead to an increased ability of MtrA to form dimers which promotes 

DNA binding. It is interesting that the strain containing MtrA(TB)Y102C produces more 

chloramphenicol than MtrA(Sv)Y99C. It is likely that the DNA binding affinity of 

MtrA(TB)Y102C is higher than native MtrA and thus MtrA(TB)Y102C could outcompete the 

native MtrA.  

Further experiments are needed to demonstrate if MtrA gain of function mutant 

proteins induce overproduction of silent gene clusters. If it can be proven, then MtrA gain 

of function proteins could be a new tool to activate silent gene clusters in Streptomyces 

since MtrA is highly conserved.  

 

3.5 Conclusion and future work 

The genetic manipulation of the MtrAB-LpqB system in S. venezuelae outlined in 

this chapter implicates that mtrA is essential and that this TCS is involved in the regulation 

of secondary metabolite production and osmotic stress response in S. venezuelae. 

Furthermore, the overexpression of mtrA in the wild-type background does not cause a 

visible phenotype, which indicates that it is the phosphorylation state of MtrA and not the 

proteins level which activates this RR. In contrast, it was possible to delete mtrB, which 

implies that MtrA is phosphorylated by small phosphor donors or other HKs. Otherwise 

the deletion of mtrB would be lethal.  
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The S. venezuelae ΔmtrB mutant has a divalent phenotype. The ΔmtrB colonies 

are delayed in aerial hyphae formation in the middle of the colony, whereas the outside 

of the colony seems to develop similar to the wild-type. A possible reason for this 

phenotype could be osmotic stress which occurs in the middle of Streptomyces colonies 

due to their unique growth. This hypothesis is supported by the cultivation of the 

S. venezuelae ΔmtrB mutant on agar plates contain increasing concentrations of NaCl. 

Under NaCl stress the ΔmtrB mutant is reduced in growth and development compared to 

the wild-type. The cultivation on NaCl plates also supported the partial complementation 

of the ΔmtrB mutant. Under normal growth conditions and under NaCl stress the ΔmtrB 

mutant partially complements. Therefore, it is necessary to investigate the 

complementation strain by SEM. Also, it is not clear with the data presented if the 

increased production of secondary metabolites is due to the loss of mtrB or if this is caused 

by the polar effect on lpqB. Thus, the LCMS analysis of the secondary metabolites has to 

be repeated with the ΔmtrB complementation strain in S. venezuelae and S. coelicolor.  

So far it remains elusive if LpqB is essential in S. venezuelae and the deletion of lpqB has 

to be confirmed either by PCR or southern blot to investigate if LpqB feeds additional 

signals in the TCS. Also, to avoid a polar effect mtrB should be deleted with the ribosomal 

binding site of lpqB remaining intact in the genome. Additionally, we investigated the 

chloramphenicol production in the MtrA gain of function strains. And the preliminary 

data indicates that the MtrA gain of function mutants produce chloramphenicol which is 

not produced under lab conditions. However, the gain of function strains need to be 

investigated further. The MtrA(TB) gain of function protein complements the ΔmtrB 

mutant in M. smegmatis which can be addressed in S. venezuelae by introducing the gain 

of function constructs in the ΔmtrB mutant.  

The data presented in this chapter indicate that MtrA is involved in essential 

processes in S. venezuelae and that alteration of the ratio of phosphorylation of MtrA 

either by removing the cognate HK or introducing gain of function proteins leads to 

increased production of secondary metabolites and activation of silent gene clusters.   
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4 Targets and regulon of MtrA in S. venezuelae and S. coelicolor 

The genetic manipulation of the MtrAB TCS outlined in chapter 3 showed that the 

RR MtrA is essential in S. venezuelae and that manipulating the MtrAB TCS by either 

removing the HK MtrB or introducing a MtrA gain of function protein leads to increased 

production of secondary metabolites in S. venezuelae and S. coelicolor. It is possible that 

the essentiality of MtrA arises due to the transcriptional regulation of essential target 

genes. MtrA(TB) regulates expression of the DNA replication initiation gene dnaA (Li et 

al. 2010) and also interacts on protein level with DnaA (Purushotham et al. 2015) which 

might be the reason for the essentiality of MtrA in M. tuberculosis. Furthermore, it is not 

clear if MtrA regulates secondary metabolite production by an indirect global response to 

stress or if secondary metabolites are directly regulated. To investigate the function of 

MtrAB in more depth it is necessary to identify target genes of MtrA. In this chapter I 

will identify target genes by Chromatin Immunoprecipitation and Sequencing (ChIP-seq) 

in S. venezuelae and S. coelicolor.  

 

4.1 Chromatin Immunoprecipitation and Sequencing (ChIP-seq) of MtrA 

in S. venezuelae over the developmental time course 

ChIP-seq is a technique which can reveal the genome wide binding of a protein to 

DNA. This is particularly of interest for transcription factors such as the RR MtrA. In 

recent years ChIP-seq was used in S. venezuelae to identify transcription factor involved 

in control of development  (Bush et al. 2013; Tschowri et al. 2014; Al-Bassam et al. 2014; 

Bush et al. 2016). In ChIP-seq DNA binding proteins are crosslink with DNA with 

formaldehyde in vivo and then the chromosomal DNA is sheared by sonication to break 

the DNA in small fragments. Then the DNA-protein complex is immunoprecipitated with 

an antibody specific to the protein of interest. This can either be a polyclonal antibody or 

an antibody binding to a protein tag. In the last step, the crosslinking is reversed to release 

the DNA which can be determined by next generation sequencing.  

MtrA target genes in Mycobacteria and C. glutamicum were identified by ChIP 

and subsequent QRT-PCR and ChIP-to-ChIP, respectively (Fol et al. 2006; Li et al. 2010; 

Brocker & Bott 2006). However the complete regulon in Mycobacteria is not published 

but MtrA regulates among others the DNA replication initiation protein DnaA (Fol et al. 

2006). In C. glutamicum genes involved in the osmotic stress response were identified 

(Brocker & Bott 2006). Also, we know that MtrA targets mce in S. coelicolor (Clark et 
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al. 2013) and that RR autoregulate their own transcription (Groisman 2016). Thus, I 

would expect MtrA target genes involved in DNA replication and / or osmotic stress 

response and the promoter region of mtrA and mce should be bound by MtrA. In previous 

ChIP-seq experiments in S. venezuelae the deletion strain of the transcription factor was 

used as a negative control to identify unspecific binding and noise in the data (Bush et al. 

2013; Tschowri et al. 2014; Al-Bassam et al. 2014; Bush et al. 2016). Since MtrA is 

essential in S. venezuelae this was not possible. 

In a first attempt to perform ChIP-seq I introduced a MtrA-3xFlag under the 

control of mtrAp in the ΦBT1 integrative site in the wild-type background and performed 

ChIP-seq after 18 hours of growth. I used two independent cultures of the same clone 

(NS003) and no technical replicates because the variation between two technical replicates 

in ChIP-seq is low (Ho et al. 2011). Only five targets were enriched: These were the 

regions upstream of the ectABCD operon (SVEN15_0205-8), a TetR family 

transcriptional regulator (SVEN15_2165), a putative amino permease (SVEN15_2362), 

a probable nucleotide pyrophosphatase (SVEN15_2560) and a putative secreted 

oxidoreductase (SVEN15_2566), Figure 4.1. We speculated that MtrA-3xFlag binding 

was outcompeted by the wild-type MtrA and that the five targets do not reflect the 

complete regulon of MtrA because it does not include the known MtrA target mce in 

S. coelicolor (Clark et al. 2013) or mtrA since most RR bind to their own promoter 

(Groisman 2016).  

In a second attempt a polyclonal α-MtrA antibody was used against the 

S. venezuelae wild-type strain. This antibody was raised against MtrA(SCO) and a 

previous attempt to perform ChIP-seq in S. coelicolor on solid agar was unsuccessful due 

to the non-specific binding of α-MtrA (Knowles 2014). However, in the ChIP-seq with 

the polyclonal antibody in S. venezuelae, I used cultures grown in liquid culture and 

speculated that the non-specific binding in S. venezuelae might be reduced. It was feasible 

to use the polyclonal α-MtrA antibody raised against MtrA(SCO) because MtrA in 

S. coelicolor and S. venezuelae share 99% protein homology. Only two amino acids differ 

in MtrA between the two distant related species: ASv45TSCO and TSv129ASCO which are 

not in the DNA binding helix. Two independent cultures were grown for 18 hours, then 

pooled and processes for ChIP-seq. Only six distinct peaks in promoter regions could be 

observed: ectA (SVEN15_0205), a putative glycosyl hydrolase (SVEN15_0947), a 

probable low-affinity inorganic phosphate transporter (SVEN15_1451), the chromosome 
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(plasmid) partitioning protein ParA or Sporulation initiation inhibitor protein Soj 

(SVEN15_3576), Phosphate regulon sensor protein PhoR (SphS) (SVEN15_3873) and a 

putative lipoprotein (SVEN15_4130), see Figure 4.1. Again, these targets might not 

reflect the complete MtrA regulon because the promoters of mce or mtrA are not enriched. 

Interestingly the promoter of the first gene in the ectoine BGC ectA is enriched in both 

ChIP-seq attempts. Additionally, it was contradictory that only the ectA promoter was 

enriched in both ChIP-seq experiments thus it is not clear if the targets enriched in ChIP-

seq using α-MtrA in the wild-type are true MtrA targets. The flag antibody is very specific 

to the tagged protein whereas the polyclonal antibody might bind other OmpR RR in S. 

venezuelae. This is consistent with the attempts of ChIP-seq with the α-MtrA in 

S. coelicolor (Knowles 2014), which showed that the polyclonal antibody was not 

specific enough to perform ChIP-seq.  

 

 

Figure 4.1 ChIP-seq using Top: α-FLAG antibody in S. venezuelae ΦBT1 mtrAp mtrA-3xFlag 
at 18 hours. Sequences reads were aligned to the old S. venezuelae genome and the SVEN15 
numbers for the targets are: ectA SVEN15_0205, TetR family transcriptional regulator 
SVEN15_2165, putative amino permease (SVEN15_2362) probable nucleotide 
pyrophosphatase SVEN15_2560 and putative secreted oxidoreductase SVEN15_2566. 
Bottom: α-MtrA antibody in S. venezuelae. Sequences reads were aligned to the old S. 
venezuelae genome and the SVEN15 numbers for the targets are: ectA SVEN15_0205, putative 
glycosyl hydrolase SVEN15_0947, Probable low-affinity inorganic phosphate transporter 
SVEN15_1451, chromosome (plasmid) partitioning protein ParA or Sporulation initiation 
inhibitor protein Soj SVEN15_3576, Phosphate regulon sensor protein PhoR (SphS) 
SVEN15_3873 and putative lipoprotein SVEN15_4130. 
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In a third attempt the native mtrA was deleted in the strain containing mtrAp mtrA-

3xFlag in the ΦBT1 site (NS042). This strain does not show a mutant phenotype which 

means that the MtrA-3xFlag protein is functional (see section 3.1.1). NS042 was 

cultivated in two independent culture and harvested at 18 hours of growth. In this attempt, 

we used ChIP-exo which is a methodology that can produce near base pair resolution for 

binding sites. ChIP-seq samples are normally processed but in this experiment the protein 

was not removed from the immunoprecipitated sample before it was sent to Peconic 

Genomics. The ChIP-exo technique uses a lambda exonuclease to remove unspecific 

DNA. The DNA-protein complex is treated with the lambda exonuclease which digests 

double DNA strands from the 5’ end until the digestion is stopped by the protein bound 

to DNA. Additionally, contaminating DNA is degraded by the addition of a second 

single-strand specific exonuclease. Then, the crosslinking is reversed and the DNA can 

be identified by sequencing.  

In the ChIP-exo experiment, 1138 targets were enriched but only around 12% 

were exo peaks with a clear distinct binding site (Figure 4.2). This indicates that the 

exonuclease step was not very efficient but the peaks still reflect the binding of MtrA to 

target promoters. A list of target genes is provided in the supplementary data (Table S2). 

Compared to the previous attempts of ChIP-seq the enriched genes are potentially part of 

the MtrA regulon because the promoter region of mtrA and mce are enriched. 

Additionally, many promoters of genes involved in development and cell cycle 

progression including dnaA, dnaN, smc, whiD, whiB, whiH, ftsZ, divIVA, filP, scy, adpA 

and several bld genes were enriched. Additionally, the ectA promoter was enriched again 

with extremely high reads (over 300 000) which is much higher than the rest of the peaks. 

Other interesting targets include cold shock proteins and other transcription factors. This 

data suggested that MtrA is involved in regulating development and we decided to 

perform a ChIP-seq during the developmental cycle of S. venezuelae to verify the target 

genes of MtrA and to investigate in which part of the developmental stage MtrA is most 

active because the ChIP-exo experiment was performed at 18 hours in which the culture 

is in early sporulation. 
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Figure 4.2 Sequencing reads enriched in ChIP-exo with strain NS042 (mtrA::aac(3)IV  mtrAp 
mtrA-3xFlag in the ΦBT1 site) at 18 hours. The sequencing reads were aligned to the SVEN 
genome.  

 

4.1.1 MtrA is a global regulator  

The ChIP-exo experiment indicated a role for MtrA in regulating development so 

we decided to perform ChIP-seq throughout the S. venezuelae developmental life cycle 

which completes in 20 hours in liquid MYM. Samples were thus taken at 8, 10, 12, 14, 

16, 18 And 20 hours (Figure 4.3 and Figure 4.4).  

 

 

Figure 4.3 OD(600) of samples used for ChIP-seq analysis of S. venezuelae mtrA::APR ΦBT1 
mtrAp mtrA-3xFlag. Images of life cycle adapted with permission from (Bush et al. 2015). 
Copyright (2017) Nature Reviews Microbiology.  
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S. venezuelae enters the exponential phase after approximately 10 hours growth 

in liquid MYM medium and enters stationary phase between 16 and 18 hours. In the 

exponential growth phase the culture grows as vegetative mycelium until 14 hours. From 

14 till 16 hours the culture grows as hyphae and begins to sporulate at 16 hours and at 20 

hours most of the hyphae have undergone cell division to form prespores or mature 

spores. However, the transition of the culture from vegetative growth to aerial hyphae is 

not visible in liquid culture and is only reflected by molecular changes in the cell like 

chromosome segregation and division septum formation. 

Sequencing reads from the ChIP-seq time course experiment were processed by 

Dr Govind Chandra at the John Innes Centre. The number of peaks differed between the 

different time points (Figure 4.4 and Figure 4.5). Only one promoter region, ectA, was 

enriched at the 8-hour time point and at all other time points. All other peaks were under 

the cut off of p > 0.05. At the 8-hour time point the cultures reached an OD = ~ 0.35 

which equates a low biomass thus the yield of the DNA was very low although three 

35 ml cultures were combined and used to perform ChIP-seq. This generated a low 

number of sequencing reads and it is possible that some targets might not be enriched due 

to the low number of sequencing reads.  
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Figure 4.4 ChIP-seq peaks at different time points of S. venezuelae mtrA::APR ΦBT1 mtrAp mtrA-3xFlag. The wild-type control (wt) was subtracted from the 
reads in the different time points to eliminate background noise. The peaks are a relative enrichment of the sequencing reads. A 50 bp region was compared 
to the surrounding 4000 bp.  
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Figure 4.5 Representation of enrichment peaks in the ChIP-seq data during the time course. The size of the cycles represents the amount of data points (not 
to scale). Top: Location of enrichment peak in relation to the transcriptional start site (TSS). Enrichment peaks are count as promoter if they are 500 bp within 
the TSS, start of the gene from -20 till +500 bp of the TSS, intragenic >500 bp away from the TSS, intergenic means an enrichment peak between genes at 
the 3` end, tRNA peaks in promoter regions or in tRNAs. Bottom: General function of genes downstream of promoter, start of gene or divergent peaks.  
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The number of enrichment peaks were 1, 540, 296, 14, 4, 4 and 1220 for 8, 10, 

12, 14, 16, 18 and 20 hours, respectively, see Figure 4.5. The enrichment peak location 

was investigated in relation to the transcriptional start site (TSS) of the adjacent gene. 

During the developmental time course, most of the enrichment peaks were in the promoter 

region, divergent or in the start of a coding sequence.  

Around 17% of the enrichment peaks were inside a gene (intragenic) in 10, 12 and 

20 hours and less than 1% of the enrichment peaks were between the stop codon of two 

different genes (intergenic). Enrichment peaks were classed as intragenic when they were 

inside the coding sequence and more than 500 bp away from the TSS. The biological 

relevance of protein binding within a gene is not clear. Thus, intragenic and intergenic 

enrichment peaks were not investigated further. A small proportion of enrichment peaks 

were tRNAs, 0.4, 10 and 3% for 10, 12 and 20 hours, respectively. Most of the enrichment 

peaks covered tRNA genes and it is known that the Flag antibody can pull out tRNAs 

non-specifically (Matt Bush, personal communication).  

To investigate the role of MtrA during the developmental time course the genes 

adjacent to enrichment peaks located in promoter regions, between divergent genes or in 

the start of the gene were sorted by annotation (Figure 4.5). MtrA was most active at 10, 

12 (vegetative growth) and 20 hours (sporulation). Three target genes at 10 hours and 23 

target genes at 20 hours are involved in cell division were enriched which is also described 

in detail in section 4.1.2. MtrA also binds to two promoter regions of target genes 

involved in osmotic stress which is described is section 4.1.3. Also, MtrA targets most of 

the BGC in S. venezuelae and S. coelicolor described in section 4.1.4 and 4.2, 

respectively. Around 10% of the enriched promoters at 10, 12 and 20 hours were 

transcriptional regulators. Additionally, RR and HK, regulators and sigma factor genes 

are targets of MtrA which indicates that MtrA sits on top of a regulatory cascade.  

The data from the ChIP-seq time course cannot be directly compared to the ChIP-

exo data because the two methods were different in sequencing and sample treatment. 

However, 39% of the ChIP-exo target genes can be found in the ChIP-seq time course 

data mainly at 20 hours but also at other time points. Nine target genes of the ChIP-exo 

data can be found only at 10 hours and one target only at 14 hours. Despite the differences 

in sample treatment it seems that the sample at 18 hours in the ChIP-exo data (1138 target 

genes) represents an intermediate time point of the ChIP-seq time course of 18 (five target 

genes) and 20 hours (1552 target genes), see Table S1. This difference of the state of the 
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colony at the same time courses is most likely due to the filamentous growth of 

S. venezuelae in liquid culture.  

To identify the expression of MtrA targets John Munnoch carried out RNA-seq in 

the S. venezuelae ΔmtrB mutant at 14 and 20 hours and Dr Govind Chandra analysed the 

RNA-seq sequencing reads. The RNA-seq data is added to the ChIP-seq data (Table 4.1) 

 

4.1.2 MtrA targets involved in development 

Many target genes involved in development are enriched during the 

developmental time course in the ChIP-seq data, including oriC and sites upstream of 

genes required for growth, DNA replication and cell division. Many of these target gene 

promoters are also enriched in MtrA ChIP-seq data for S. coelicolor ( 

Table 4.1).  

 

4.1.3 BldD-c-di-GMP 

There is no enrichment peak over the statistical cut off in the promoter region of 

the master regulator bldD and no significant fold change in the expression of bldD could 

be observed in the S. venezuelae ΔmtrB strain, see  

Table 4.1. However, MtrA likely has an indirect effect on BldD because it binds 

to several promoters of GGDEF / EAL domain proteins which are responsible for the 

synthesis or degradation of c-di-GMP. The genome of S. venezuelae has ten GGDEF / 

EAL domain genes. MtrA binds to promoter regions of three of them (SVEN15_4502, 

cdgB SVEN15_3942 and rmdB SVEN15_5058). The promoter region of SVEN15_4502 

is bound by MtrA at 10 and 20 hours and is 4-fold downregulated at 14 hours. The 

promoter regions of cdgB and rmdB are bound at 20 hours but the expression is not up or 

downregulated in the ΔmtrB mutant. Two of the ten GGDEF / EAL domain genes are not 

targeted by MtrA but upregulated in the S. venezuelae ΔmtrB mutant (SVEN15_0422 and 

SVEN15_5080) at 14 and 20 hours and only 14 hours, respectively which could be a 

pleiotropic effect ( 

Table 4.1). 

 

4.1.4 bld gene targets 
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MtrA binds to the promoter regions of seven bld genes. The bldG promoter region 

is enriched at 20 hours but the expression of the gene is not significantly changed at 14 

or 20 hours. There is no binding of MtrA over the statistical cut off (Figure 4.6) but the 

expression of adpA is nearly four-fold downregulated in the ΔmtrB mutant at 20 hours. 

MtrA binds to the promoter of bldM and bldN at 20 hours and the expression of bldM is 

nearly two-fold upregulated at 14 hours in the ΔmtrB mutant.   

 

Figure 4.6 Relative enrichment of sequencing reads of the promoter region of adpA 
(SVEN15_2524) at different time points indicated by different colours. Black represents the wild-
type control.  

 

 

4.1.5 whi gene targets  

MtrA binds to the promoter regions of 11 genes required for sporulation. wblE, 

whiB, whiG, whiH, whiI, ssgA (Figure 4.7), B (Figure 4.8), D, E and G promoter regions 

are most enriched at 20 hours and the expression of all these targets are upregulated at 14 

hours. whiD is the only whi gene bound by MtrA which is not upregulated in the ΔmtrB 

mutant. Interestingly MtrA does not directly bind to the promoter region of wblM and 

sspA but wblM is upregulated three-fold at 14 hours in the ΔmtrB mutant and sspA is two-

fold upregulated in the ΔmtrB mutant.  
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Figure 4.7 Relative enrichment of sequencing reads of the promoter region of ssgA 
(SVEN15_3615) at different time points indicated by different colours. Black represents the wild-
type control. 

 

 

Figure 4.8 Relative enrichment of sequencing reads of the promoter region of ssgB 
(SVEN15_1102) at different time points indicated by different colours. Black represents the wild-
type control. 

 

 



 

117 

 

 4.1.6 Hydrophobic sheath targets 

Ten genes involved in the formation of the hydrophobic sheath are regulated by 

MtrA. The chaplins chpC, H, E, G, F, D, sapB, and three rodlins are upregulated at 14 

hours in the S. venezuelae ΔmtrB mutant. The promoter regions of the chaplins chpH, 

chpF and chpD as well as sapB are bound by MtrA at 20 hours (Table 4.1).  

 

4.1.7 Cell division targets 

MtrA binds to nine promoter regions which are involved in cell division. There 

are two enrichment peaks in the promoter region of dnaN which is also part of the origin 

of replication (oriC) and the promoter region of dnaA (Figure 4.9). However, dnaN and 

dnaA expression is not significant different in the ΔmtrB mutant compared to the wild-

type. A similar situation can be observed for the promoter region of ftsZ and divIVA ( 

Table 4.1 and Figure 4.10).  MtrA does not bind to the promoter regions of ftsI 

and sffA however the expression of ftsI is three-fold more in the ΔmtrB mutant at 14 hours 

and the expression of sffA is three-fold more in the ΔmtrB at 20-hour time point. The 

expression of filP is the only one downregulated at 20 hours and smeA is three-fold 

upregulated at 20 hours.  

 

Figure 4.9 Relative enrichment of sequencing reads of the promoter region of dnaA 
(SVEN15_3570) and dnaN (SVEN15_3571) at different time points indicated by different 
colours. Black represents the wild-type control. 
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Figure 4.10 Relative enrichment of sequencing reads of the promoter region of divIVA 
(SVEN15_87, left) and ftsZ (SVEN15_1692, right) at different time points indicated by different 
colours. Black represents the wild-type control. 

 

 

Figure 4.11 Relative enrichment of sequencing reads of the promoter region of mtrA 
(SVEN15_2696) at different time points indicated by different colours. Black represents the wild-
type control 
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4.1.8 MtrA binds to its own promoter 

MtrA, like most other RRs, autoregulates its own expression. It binds to its own 

promoter (Figure 4.11) and in the ΔmtrB mutant the expression of mtrA is three-fold 

upregulated at 14 and 20 hours ( 

Table 4.1).  

 

4.1.9 MtrA binds to target genes involved in osmotic stress response 

The response to osmotic stress involves many genes. However, MtrA targets a 

few of them under normal conditions. MtrA binds to the promoter region of the ectABCD 

operon (SVEN15_0205-0208) which encodes the biosynthetic genes of ectoine and 5-

hydroxyectoine. Additionally, MtrA binds to the promoter region of two sigma factors 

involved in osmotic and global stress response hrdD (SVEN15_2993) and σN 

(SVEN15_3694). The expression of the ectoine operon or hrdD does not change in the 

ΔmtrB mutant. The expression of σN is nearly four-fold higher at 14 hours in the ΔmtrB 

mutant ( 

Table 4.1).  
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Table 4.1 ChIP-seq and RNA-seq data for target genes involved in development. An enrichment value in the ChIP-seq data below seven is not 

statistically significant. A fold change less than two is not statistically significant in the RNA-seq data. The ChIP-exo data from section 4.1 is 

added.  

      ChIP-seq   RNA-seq 

             

Exo 
*1000 

  
wt ΔmtrB 14h 20h 

      SVEN SCO SVEN strand 
distance 

to TSS 

14h compared 
to 20h 

wt versus 
ΔmtrB 

Genes required for formation of 
aerial hyphae Product 10 12 14 16 18 20 16 18 

  

    

bldD SCO1489 SVEN15_1052 

DNA binding 
transcription 
factor 1.7 1.5 0.5 0.1 0.3 1.7 6.0 1.6  

 

-0.6 0.5 -0.5 0.6 

                  

c-di-GMP          
  

    

 SCO4931 SVEN15_4502 
GGDEF domain 
protein 8 4.8 1.6 0.3 0.8 20 8.8  

1 -42 
-4.8 0.5 -4.4 0.5 

cdgB SCO4281 SVEN15_3942 
GGDEF domain 
protein 4.8 3.5 1.5 0.4 0.4 10.7 8.3 1.4 

1 -58 
0.0 0.4 0.0 0.2 

 SVEN15_0422 
GGDEF / EAL 
domain protein 2.2 3 2.2 1.2 1.2 3.8 /  

-1 -447 
5.4 6.2 2.1 2.9 

 SCO5495 SVEN15_5058 
GGDEF / EAL 
domain protein 5.6 2.9 0.6 0 0.5 18.9 8.3  

1 -465 
-0.1 0.0 -0.3 -0.2 

 SCO5511 SVEN15_5080 
GGDEF / EAL 
domain protein 3.8 2.8 1.7 0.8 0.8 4.3 7.5  

1 -160 
3.0 -0.1 2.9 -0.2 

                  

Bald phenotype          
  

    

bldC SCO4091 SVEN15_3754 

putative MerR-
like DNA 
binding protein 2.5 1.5 0.5 0.3 0.2 6.9 / 3 

1 -268 
0.1 0.4 0.1 0.4 



 

 

 

1
2
1
 

bldG SCO3549 SVEN15_3247 

putative anti-
anti sigma 
factor 4.3 3.8 1.5   9.6 / 2.4 

-1 79 
-1.9 -1.0 -1.6 -0.7 

adpA SCO2792 SVEN15_2524 

DNA binding 
transcription 
factor 2.4 3.5 1.6 0.5 0.9 5.8 / 1.8 

1 -112 
-0.7 -3.6 -0.6 -3.6 

bldM SCO4768 SVEN15_4355 
Two-
component RR 3.6 2.7 1.3 0.4 0.9 9.1 9.5 5.3 

1 -257 
0.7 -2.4 1.8 -1.3 

bldN SCO3323 SVEN15_3116 
ECF sigma 
factor 2.9 2.1 0.6 0.1 1.1 12.3 7.3 3.4 

1 -141 
0.5 -0.9 1.2 -0.1 

citA SCO2736 SVEN15_2480 Citrate synthase 1.8 1.3    4.5 / 1.7 -1 24 -3.1 -0.3 -2.6 0.2 

clpP1 SCO2619 SVEN15_2352 

Clp protease 
proteolytic 
subunit 0.8 0.5    1.1 / 1.7 

-1 68 
-2.4 -0.8 -2.1 -0.3 

dasR SCO5231 SVEN15_4793 

GntR-like 
transcription 
factor 3.4 3.9 2.2 1.5 2.2 15 / 3 

-1 153 
0.8 -0.3 0.1 -0.4 

amfT SCO6681 SVEN15_6340 

lantibiotic 
biosynthetic 
protein 2.6 2.7 1.2 0.8 0.3 2.7 6.5  

-1 -260 
2.1 -1.4 0.9 -5.1 

    3.9 3.2 1.7 0.7 0.6 3.4 /  -1 16     

                  

Genes required for sporulation         
  

    

wblC SCO5190 SVEN15_4738  2.7 2.8 1.5 0.3 0.2 0.9 / 2.7 1 -168 -1.8 -0.4 -1.1 0.3 

whiD SCO4767 SVEN15_4354 

Putative 
transcription 
factor 3.8 2.7 1.3 0.4 0.9 10 9.5  

-1 176 
8.3 10.6 -0.8 1.6 

wblE SCO5240 SVEN15_4802  2.9 3.7 1.4 0.3 1.7 9.2 8.8 7.8 -1 33 3.4 -0.1 2.1 -1.4 

wblM SCO6922 SVEN15_5661          
  3.0 -0.1 2.7 -0.4 

whiB SCO3034 SVEN15_2717 

Putative 
transcription 
factor 3.2 2.5 1 0.3 0.9 10.6 11.3 4 

-1 135 
2.9 0.5 2.5 0.2 

sspA SCO5321 SVEN15_6651          
  6.5 7.4 1.2 2.2 

whiG SCO5621 SVEN15_5191 Sigma factor 5.2 3.4 1.6 0.9 1.1 5 /  1 -253 2.0 0.1 2.6 0.8 



 

 

 

1
2
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whiH SCO5819 SVEN15_5388 

GntR-like 
transcription 
factor 3.3 2.9 1.3 0.2 1 12 7.6 2.2 

1 41 
2.0 0.1 2.6 0.8 

whiI SCO6029 SVEN15_5706 
Two-
component RR 7.3 5.6 2.7 0.8 1.3 20.6 17.6 1.5 

-1 137 
5.7 2.2 4.0 0.4 

ssgA SCO3926 SVEN15_3615 
putative 
regulator 1.3 1 0.4  0.9 8.3 7.6 2.9 

1 -79 
0.3 -2.1 2.0 -0.4 

ssgB SCO1541 SVEN15_1102 
putative 
regulator 5.1 3.3 1.9 1.2 1.2 11.3 / 2.4 

1 -111 
7.2 4.2 4.3 1.3 

ssgD SCO6722 SVEN15_6261 
putative 
regulator 2.6 2.8 1.3 0.6 0.4 2.8 /  

-1 27 
0.5 -3.9 2.5 -1.9 

ssgE SCO3158 SVEN15_2937 
putative 
regulator 4.9 3.5 1.2 0.3 0.5 15.3 8.2  

1 -70 
1.5 0.8 1.9 1.3 

ssgG SCO2924 SVEN15_2622 
putative 
regulator 8.7 4.7 1.7 0.5 0.9 6.4  1.2 

1 -182 
4.2 -0.9 5.1 0.1 

                  

Hydrohpobic sheath         
      

chpC SCO1674 SVEN15_1231 

Hydrophobic 
cell wall-
associated 
proteins 

        
  2.1 -2.4 3.9 -0.6 

chpH SCO1675 SVEN15_1232 3.4 1.6 0.5  0.6 8.6 /  -1 57 3.1 -0.9 3.4 -0.6 

chpE SCO1800 SVEN15_1396 0.4 0.8 0.6  0.3 1.4 /  -1 49 -1.0 -4.9 2.8 -1.0 

chpG SCO2699 SVEN15_4550 2.3 2.8 1 1.8 1.2 5.6 /  1 55 3.8 1.7 3.0 0.9 

chpF SCO2705 SVEN15_4546 2.8 2.3 2 1 1.6 6.8 14.1 1.9 1 -183 7.8 4.1 5.2 1.5 

chpD SCO2717 SVEN15_4533 3.2 2.7 1 0.5 1.1 7.5 /  1 -40 2.9 1.8 2.8 1.7 

sapB SCO6682 SVEN15_6339 

Lantibiotic-like 
peptide 
surfactant 6.8 5.2 2.3 1 0.7 8.1 14.7  

-1 -12 
3.3 -2.2 2.5 -3.0 

rdlA SCO2719 SVEN15_4528 

Secreted cell 
wall-associated 
protein 0.2 0.6 0.6 0.3 0.5 1 /  

-1 60 
5.8 1.3 3.0 -1.5 

rdlB  SVEN15_4531 

Secreted cell 
wall-associated 
protein 1.8 1.2 0.9 0.7 0.4 1.5 /  

-1 46 
4.5 1.2 3.2 0.0 
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rdlA  SVEN15_4532 

Secreted cell 
wall-associated 
protein 1.4 1.4 0.7 0.4 0.7 2.9 / 1.4 

1 -21 
3.8 1.2 2.9 0.3 

                  

Osmotic stress response          
  

    

ectA SCO1864 SVEN15_0205 

L-2,4-
diaminobutyric 
acid 
acetyltransferase 29 34 31 30 30 54 10.9 305 

1.0 -161 

0.7 1.3 0.8 1.5 

hrdD SCO3202 SVEN15_2993 

RNA 
polymerase 
principal sigma 
factor HrdD 8.0 7.7 3.3 1.9 3.5 23.1 23.1 4 

-1 67 

0.0 -1.1 1.0 -0.1 

σN SCO4034 SVEN15_3694 

putative RNA 
polymerase 
sigma factor 4.1 3.7 2.1 1.4 2.1 7.5 7.5 2.8 

-1 159 
1.2 -3.4 3.8 -0.7 

Cell division initiation          
  

    

dnaN / 
oriC SCO3878 SVEN15_3570 

DNA 
polymerase III / 
origin of 
replication 3.1 1.5 0.4  0.6 6.3 6.7 5.7 

-1 235 

0.0 -0.8 0.2 -0.6 

    1.2 2.3  0.1 0.7 8 /  -1 611     

dnaA SCO3879 SVEN15_3571 

Chromosome 
replication 
initiation 
protein 0.7 0.9    4.5 / 6.4 

-1 125 

0.6 0.6 0.4 0.4 

                  

Cell division          
  

    

ftsZ SCO2082 SVEN15_1692 
Tubulin-like cell 
division protein 4.8 4 1.5 0.5 0.6 15.5 10.2 1.8 

-1 165 
0.7 0.0 1.2 0.5 

ftsI SCO2090 SVEN15_1700 
Penicillin 
binding protein         

  
2.5 1.2 2.6 1.3 

divIVA SCO2077 SVEN15_1687 
Tip-associated 
protein 1 2 1 0.5 0.5 8 / 3 

-1 47 
1.1 0.2 0.0 -1.0 

filP SCO5396 SVEN15_4942  3.2 2.4 1 0.4 0.5 9.8 11.5 1.7 -1 57 -0.2 -1.2 -1.3 -2.3 
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smeA SCO1415 SVEN15_0971  5.8 4.9 1.6 0.6 1.7 21.5 15.6 1.6 1 23 7.4 8.5 1.5 2.6 

sffA SCO1416 SVEN15_0972          
  6.3 7.8 1.8 3.3 

smc SCO5577 SVEN15_5163 

Chromosome-
associated 
ATPase 3.2 2.5 1.1 0.9 0.9 2.4 8.4 7 

  

3.8 4.5 0.0 0.7 

                  

mtrAB-lpqB          
  

    

mtrA SCO3013 SVEN15_2696 
Two component 
RR 10 7.7 2.4 1.2 1.4 19.4 6.0 3.1 -1 42 -0.2 0.1 2.9 3.2 
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4.1.10 MtrA targets in biosynthetic gene cluster (BGC) 

S. venezuelae produces chloramphenicol and jadomycin. The BGCs encoding 

these antibiotics have been defined, see Figure 1.4 (Fernández-Martínez et al. 2014; 

Wang & Vining 2003). However, S. venezuelae contains many BGCs which can be 

predicted with the online tool antiSMASH (http://antismash.secondarymetabolites.org/). 

This software can predict undescribed BGC however the edges of the clusters need to be 

determined experimentally. The software predicted 31 BGCs and MtrA binds to sites 

spanning 28 of genes that may form part of BGCs (Figure 4.2). The only BGCs not bound 

by MtrA are those encoding biosynthesis of the desferrioxamine siderophores, the WhiE 

polyketide spore pigment and a putative insecticidal complex. Of these three clusters, the 

WhiE BGC is upregulated in the ∆mtrB mutant suggesting indirect regulation by MtrA, 

possibly via BldM ( 

Table 4.1). The desferrioxamine siderophores and the putative insecticidal 

complex BGC are not regulated by MtrA because there is no change in expression of 

these two clusters in the S. venezuelae ΔmtrB mutant. Of the 28 predicted BGCs that are 

bound by MtrA, nine have genes that are positively regulated by MtrA, ten have genes 

that are negatively regulated by MtrA and three have genes that are subject to both 

positive and negative regulation by MtrA. The remaining six BGCs contain promoter 

regions which are bound by MtrA but their expression profiles are not altered significantly 

in the S. venezuelae ΔmtrB mutant under the tested conditions. Therefore, MtrA directly 

affects the expression of genes in at least 22 predicted BGCs in S. venezuelae and 

indirectly activates the WhiE gene cluster.  

 

Table 4.2 Biosynthetic gene clusters (BGCs) predicted by antiSMASH analysis of the 

S. venezuelae genome. MtrA regulation of each BGC is indicated. BGC coloured in 

amber are bound by MtrA and the regulation is not known or individual genes are 

positively and negatively regulated, green BGC are positively regulated, red BGC are 

negatively regulated and yellow BGC are not bound by MtrA. N/S: Not significant. BGCs 

marked with * are defined. 

BGC Product 
SVEN15 
gene nos.  

ChIP 
target 

RNA-seq 
LogFC 
WT/∆mtrB 

MtrA 
regulation 

Reference 

1 *Ectoine 0205-8 0205 N/S Not known 
(Shao et al. 
2015) 

2 PKS/NRPS 0448-72 
0450 1.24 (14h) Positive  

0451 N/S Not known  

3 Thiazostatin 0473-85 0473 N/S Not known  
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0475 -0.97 (14h) Negative  

4 Lantibiotic 0506-18 

0512 N/S Not known  

0513 N/S Not known  

0514 -3.18 (20h) Negative  

0515 -3.43 (20h) Negative  

5 Lantibiotic 0585-91 
0585 N/S Not known  

0591 -1.18 (14h) Negative  

6 Arcyriaflavin 0724-34 

0725 N/S Not known  

0731 N/S Not known  

0732 -1.07 (14h) Negative  

7 *Chloramphenicol 0877-94 

0879 N/S Not known (Fernández-
Martínez et 
al. 2014) 

0878 -1.59 (14h) Negative 

0880 3.01 (20h) Positive 

8 
Other 

  
1792-832 

1802 -0.82 (14h) Negative  

1815 N/S Not known  

1820 N/S Not known  

1821 N/S Not known  

1828 -1.82 (14h) Negative  

1830 N/S Not known  

9 Desferrioxamine 2514-7 No N/S None  

10 Lassopeptide 3042-65 3043 N/S Not known  

11 Lankamycin-like 3973-4016 
4014 N/S Not known  

4016 1.15 (20h) Positive  

12 Butyrolactone 4085-95 

4093 N/S Not known  

4094 -1.49 (14h) Negative  

4095 -1.79 (14h) Negative  

13 Melanin 4547-57 
4548 0.979 (14h) Positive  
4556 N/S Not known  
4557 0.991 (20h) Positive  

14 Butyrolactone 4983-99 
4996 -2.033 Negative  

4998 N/S Not known  

15 Thiopeptide 5018-38 
5028 0.76 Positive  

5029 N/S Not known  

16 T3 PKS 5241-73 5265 N/S Not known  

17 Siderophore 5304-15 

5307 N/S Not known  

5308 1.35 Positive  

5311 N/S Not known  

18 Siderophore 5361-72 5362 N/S Not known  

19 Bacteriocin 5709-19 

5709 N/S Not known  

5712 N/S Not known  

5714 2.4 (14h) Positive  

5717 -2.1 (14h) Negative  

20 *Jadomycin 5847-73 

5858 N/S Not known (Wang & 
Vining 
2003) 

5861 N/S Not known 

5863 N/S Not known 

5868 N/S Not known 

21 Herbimycin-like 5995-6029 

5995 N/S Not known  

6000 N/S Not known  

6008 N/S Not known  

6009 N/S Not known  
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6010 -2.09 (14h) Negative  

6012 N/S Not known  

22 NRPS 6050-77 

6052 -1.72 (14h) Negative  

6053 -0.79 (14h) Negative  

6063 -0.92 (20h) Negative  

23 NRPS-PKS 6101-25 

6101 N/S Not known  

6108 -0.89 Negative  

6109 N/S Not known  

6111 1 Positive  

6120 -1.19 Negative  

6124 0.88 Positive  

6125 N/S Not known  

24 Terpene 6296-6320 

6296 N/S Not known  

6297 2.15 (14h) Positive  

6311 0.84 (20h) Positive  

6315 N/S Not known  

6316 N/S Not known  

6317 -3.17 Negative  

25 Bacteriocin 6385-6393 
6385 1.31 Positive  

6390 1.79 Positive  

26 *WhiE 6643-6652 No 

All genes >1 
in ∆mtrB 
except 6652 
at 20h 

Indirect, 
positive 

(Kelemen 
et al. 1998) 

27 Melanin 6688-6695 
6688 -0.9 Negative  

6689 -3.41 Negative  

28 NRPS 6883-6907 
6901 N/S Not known  
6904 N/S Not known  

29 Terpene 6950-67 

6951 0.971 (20h) Positive  

6964 N/S Not known  

6966 2.65 (14h) Positive  

6968 N/S Not known  

30 T3 PKS 7070-103 

7074 1.27 (14h) Positive  

7080 N/S Not known  

7083 N/S Not known  

7092 
0.86 (14h) / 
1.40 (20h) 

Positive 
 

7103 N/S Not known  

31 Insecticidal  7258-63 No N/S None  

 

 

 

To further examine the effects of deleting mtrB on the wider metabolome I 

cultivated the wild-type strain and three independently isolated ΔmtrB mutants in 

biological and technical triplicates and Dr Daniel Heine analysed the extracts by 

UPLC/HRMS using untargeted metabolomics. Runs were aligned to compensate for 

between-run variation and a peak-picking algorithm was applied to allow for the 
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immaculate matching of each feature (a discrete m/z value and its retention time) among 

all runs. Following normalisation, features could be compared quantitatively and their 

putative identity proposed based on their high-resolution MS-signal. Comparing the level 

of metabolite signals, it appeared that all ΔmtrB mutants showed an extensive alteration 

of global metabolite levels. To display multidimensional data, we used Principle 

Component Analysis (PCA; Figure 4.2). Each sphere in the 3D Plot represents one 

dataset obtained from a single UPLC-HRMS run. Data from the individual ΔmtrB mutant 

strains clearly group together, and are distinct from data obtained from the wild type, 

while variations within each group are comparably small. The 3D Plot therefore shows 

consistent and global changes in the metabolome upon loss of MtrB (Figure 4.2). 

 

 

 

Figure 4.2 3D Plot of the principle component analysis (PCA) showing a global change in the 
metabolism following deletion of mtrB. Red, orange and green dots are triplicate ΔmtrB samples 
and blue dots are the wild-type (Dr Daniel Heine, unpublished). 
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Figure 4.3 ChIP-seq and RNA-seq of the Chloramphenicol BGC of S. venezuelae. Top: ChIP-seq enrichment peaks over the developmental time course. 
Shown is the chloramphenicol cluster SVEN15_0877 (cmlR) – SVEN15_0892 (cmlS). Regulatory genes are shown in red. Bottom: Relative expression change 
of the respective genes in the S. venezuelae ΔmtrB mutant at 14 and 20 hours.   
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Figure 4.4 ChIP-seq and RNA-seq of the jadomycin BGC in S. venezuelae. Top: ChIP-seq enrichment peaks over the developmental time course. Shown is 
the jadomycin cluster SVEN15_5844 (R3) – SVEN15_5874 (jadY). Regulatory genes are shown in red. Bottom: Relative expression change of the respective 
genes in the S. venezuelae ΔmtrB mutant at 14 and 20 hours.  
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4.2 Chromatin Immunoprecipitation and Sequencing (ChIP-seq) of MtrA 

in S. coelicolor 

MtrA is conserved throughout the genus Streptomyces. To investigate the function 

of MtrA in more detail I performed ChIP-seq in S. coelicolor, which is distantly related 

to S. venezuelae. The MtrA-3xFlag construct was introduced in the S. coelicolor ΔmtrA 

mutant. Take note that this mutant does not look like the wild-type upon complementation 

which means this mutant probably has one or more secondary mutations. ChIP-seq was 

performed at 12, 16 and 20 hours in liquid MYM medium in which S. coelicolor grows 

vegetatively. DNA obtained for the 12-hour time point was contaminated with E. coli 

DNA and was not investigated further.  

The results showed that 1098 sites are enriched at 16 hours and 16 sites were 

enriched at 20 hours (Figure 4.5) and are above the cut off of p > 0.05 which equals an 

enrichment value of 7 (Table S3). All the sites which were enriched at 20 hours were 

enriched in the 16-hour sample. S. coelicolor does not complete the developmental cycle 

and does not sporulate in liquid culture. Thus, it is unlikely that the difference in 

enrichment sites at 16 and 20 hours was due to changes in development. Here 16 hours 

represent the vegetative growth of S. coelicolor however the cell physiology might be 

completely different from cells growing on solid medium. However, the following section 

is focused on the results from ChIP-seq at the 16-hour time point.   

The distribution of the enrichment peaks was similar to MtrA binding in 

S. venezuelae (Figure 4.6). Most enrichment were in promoter, intragenic or divergent 

between two genes and 20% of the enrichment peaks are in the start of a gene. 12% of 

the enrichment peaks were intragenic which means that the enrichment was in a coding 

sequence and more than 500 bp away from the TSS. 1% of enrichment peaks were 

between the stop codons of two different genes (intergenic).  tRNAs were not enriched in 

the S. coelicolor data. In S. coelicolor at 16 hours, 100 promoter regions of BGC genes 

were bound by MtrA which accounts for 9% of the total enrichment peaks. Around 6% 

of the total enrichment peaks were transcriptional regulator genes and 4% account for 

putative regulatory genes. At 16 hours, 25 genes involved in development were bound by 

DNA. This included the MtrA target genes identified in S. venezuelae and listed in  

Table 4.1 although some S. venezuelae MtrA targets were not bound by MtrA in 

S. coelicolor, including bldG, adpA, sspA, ssgB, ssgD, ssgG, most of the chaplin genes, 

the rodlin genes, dnaA and divIVA.  
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Figure 4.5 ChIP-seq peaks at 16 and 20 hours of S. coelicolor ΔmtrA ΦBT1 mtrAp mtrA-3xFlag. The wild-type control (wt) was subtracted 

from the reads in the different time points to eliminate background noise. The peaks are a relative enrichment of the sequencing reads. A 50 bp 

region was compared to the surrounding 4000 bp. 
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Figure 4.6 Representation of enrichment peaks in the ChIP-seq data at 16 and 20 hours in S. 
coelicolor. The size of the cycles represents the amount of data points (not to scale). Top: 
Location of enrichment peak in relation to the transcriptional start site (TSS). Enrichment peaks 
are count as promoter if they are 500 bp within the TSS, start of the gene from -20 till +500 bp 
of the TSS, intragenic >500 bp away from the TSS, intergenic means an enrichment peak 
between genes at the 3` end, tRNA peaks in promoter regions or in tRNAs. Bottom: General 
function of genes downstream of promoter, start of gene or divergent peaks.  

 

As mentioned above 9% of the enrichment peaks were in BGCs and distributed 

across 24 out of 27 BGC predicted by antiSMASH. MtrA did not bind to cluster 5, 9 and 

24 which encode biosynthesis of a bacteriocin, desferrioxamine and a lantipeptide, 
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respectively. I cannot predict if the BGCs bound by MtrA were up- or downregulated, 

however as outlined in section 3.2.6.3 S. coelicolor ΔmtrB overproduces actinorhodin, 

metacycloprodigiosin / streptorubin and undecylprodigiosin which indicates that MtrA 

positively regulates the actinorhodin and undecylprodigiosin BGCs. This is in 

conformation with the ChIP-seq data because MtrA binds to the promoter region of the 

CSR actII-4 in the actinorhodin BGC and redZ the CSR in the undecylprodigiosin BGC.   

 

Table 4.3 BGCs predicted by antiSMASH in S. coelicolor and genes within the predicted 

cluster bound by MtrA. BGCs marked with * are defined. 

BGC Product 
SCO gene 
nos. 

ChIP target 
SCO gene nos. 

Reference 

1 Other-Type 1 PKS 

0104-123 
(other) 
0124-48 
(T1PKS) 

0126, 0127, 
0130 

 

2 Isorenieratene 0177-0202 
0185, 0198, 
0201 

 

3 Lantipeptide 0247-0279 

0249, 0250, 
0252, 0253, 
0261, 0268, 
0275 

 

4 Coelichelin 0473-0509 

0475, 0484, 
0485, 0486, 
0487, 0488, 
0489, 0490 

 

5 Bacteriocin 0750-756 /  

6 Type 3 PKS 1185-1226 

1185, 1187, 
1195, 1200, 
1201, 1209, 
1210 

 

7 *Ectoine 1864-67 1864 (Shao et al. 2015) 

8 Melanin 2693-2707 2705, 2706  

9 Desferrioxamine 2780-90 /  

10 *CDA 3210-3249 
3229, 3230, 
3232, 3234, 
3236, 3241 

(Hojati et al. 
2002) 

11 *Actinorhodin 5067-5110 

5068, 5069, 
5082, 5083, 
5085, 5096, 
5100, 5104 

(Fernández-
Moreno et al. 
1991) 

12 Albaflavenone 5212-5231 5217  

13 Spore pigment 5293-5336 
5299, 5308, 
5309 

 

14 Siderophore 5797-5804 5801  
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15 *Undecylprodigiosin 5875-5900 
5881, 5883, 
5886 

(Cerdeno et al. 
2001) 

16 Bacteriocin 6041-52 
6042, 6044, 
6049, 6050 

 

17 Terpene 6064-81 6080  

18 Siderophore 6221-32 
6222, 6223, 
6226, 6227 

 

19 *Coelimycin (CPK) 6265-88 
6265, 6266, 
6273, 6280 

(Gomez-
Escribano et al. 
2012) 

20 NRPS 6419-51 
6426, 6445, 
6447, 6448 

 

21 Lantipeptide 6668-87 
6671, 6675, 
6676, 6683 

 

22 Terpene 6750-74 
6751, 6752, 
6772, 6773 

 

23 Other-Type 1 PKS 6808-45 6845  

24 Lantipeptide 6921-43 /  

25 Other 7176-7200 7176, 7177  

26 Indole 7454-77 
7462, 7463, 
7468 

 

27 Coelibactin 7648-723 

7664, 7674, 
7681, 7682, 
7684,7687, 
7695, 7696, 
7708, 7709 

 

 

 

4.3 Discussion 

4.3.1 MtrA is a global regulator of development  

The ChIP-seq data over the S. venezuelae developmental time course together 

with ChIP-seq in liquid cultures of S. coelicolor and the RNA-seq data all suggest that 

MtrA is a master regulator of development and secondary metabolite production in 

Streptomyces species. It is possible that MtrA was not discovered by classical screens for 

developmental regulatory genes because it is essential.  

BldD is a major regulator for development and during vegetative growth it 

represses most sporulation genes. BldD regulates the expression of at least 167 genes, 

including 42 genes (~25% of the regulon) that encode regulatory proteins (Elliot et al. 

2001; Hengst et al. 2010). Many BldD target genes are crucial for the regulation of 

development in Streptomyces including other bld regulators (e.g., bldA, bldC, adpA/bldH, 

bldM, and bldN), whi regulators required for the differentiation of aerial hyphae into 

spores (e.g., whiG and whiB) and central components of cell division and chromosome 
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segregation machineries such as FtsZ, SsgA, SsgB, and the DNA translocase SffA 

(Hengst et al. 2010; McCormick 2009). 

MtrA bind to 1615 different target genes during the time course in S. venezuelae 

and is most active at 10, 12 and 20 hours. The RNA-seq data show that 11% of the total 

genes are downregulated and 17% are upregulated at 14 hours in liquid culture whereas 

only 5% of the total genes are up or downregulated at 20 hours in the S. venezuelae ΔmtrB 

mutant. This indicates that MtrA can activate or repress genes.  This is in conformation 

with the regulation of target genes by MtrA in C. glutamicum. Depending on the location 

of the MtrA binding site in relation to the TSS MtrA can activate or repress gene 

transcription (Brocker et al. 2011). However, it is not clear yet which genes are directly 

regulated by MtrA and which genes are differently expressed due to downstream effects 

of MtrA which are likely to be many because 10% of the MtrA target genes are regulatory. 

However, many target genes of MtrA overlap with the BldD regulon, including the Bld 

regulators AdpA, BldN, BldM, white regulators like WhiB and WhiG and the cell 

division and chromosome segregation proteins FtsZ, SmeA, SffA, SsgA and SsgB. The 

overlap of target genes of BldD and MtrA could indicate that the two regulators have a 

similar function to regulate the complex development of Streptomyces (Figure 4.7). 

However, MtrA seems to regulate additional genes which are not in the BldD 

regulon. MtrA binds to the promoter region of divIVA and filP which are both components 

of the polarisome (Flärdh 2003; Bagchi et al. 2008; Fuchino et al. 2013). filP is twofold 

downregulated in an S. venezuelae ΔmtrB mutant at 20 hours whereas the fold change of 

divIVA is not significant. The effect of MtrA on the polarisome might not be important 

during normal growth and MtrAB might regulate hyphal tip growth in response to a 

stressful condition.  

Other target genes which are not included in the BldD regulon but targeted by 

MtrA are the whiB like (wbl) genes whiD, wblE and wblM and the WhiG direct targets 

whiH and whiI as well as several SsgA-like proteins (SALPs). All genes except whiD are 

at least twofold upregulated at 14 hours in S. venezuelae ΔmtrB whereas the expression 

of the genes does not significantly change at 20 hours. We assume that in the 

S. venezuelae ΔmtrB mutant MtrA is permanently phosphorylated and this could be the 

reason why the above whi, wbl and SALP genes are upregulated at 14 hours which is two 

hours before the first spores appear in liquid culture because the temporal 

dephosphorylation of MtrB does not occur in the ΔmtrB compared to wild-type. However, 
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the S. venezuelae ΔmtrB mutant seems to sporulate at the same time as the wild-type (see 

section 3.2.3) thus the MtrA induced upregulated expression of the whi, wbl and SALP 

MtrA targets might not be sufficient to alter the temporal spore formation. The 

downstream effect of MtrA on the whi, wbl and SALP genes remains elusive at this point 

and needs further investigation. However, it is likely that MtrA has a similar role to BldD, 

i.e. to repress sporulation genes during vegetative growth but also to keep them switched 

off in spores.  

The genes encoding proteins responsible for the formation of the hydrophobic 

sheath are indirectly regulated by BldD via the regulators AdpA, BldA and BldN. 

Interestingly MtrA regulates the expression of some of the chaplins, rodlins and SapB. 

The chaplins and rodlins are at least twofold upregulated in the S. venezuelae ΔmtrB 

mutant at 14 hours whereas the expression is not significantly different at 20 hours in the 

ΔmtrB mutant. MtrA targets some of the chaplins at 20 hours (chpC, chpF and chpD) but 

none of the rodlins during the developmental time course. It is possible that the 

upregulation of the chaplins and rodlins at 14 hours is due to an indirect effect.  

The chaplins and rodlins form the hydrophobic sheath which enables 

Streptomyces to break through the surface tension and form aerial hyphae. This gives the 

chaplins and rodlins an important role on solid growth medium. In liquid culture 

S. venezuelae does not have to break through the surface tension to erect aerial hyphae 

but nevertheless the chaplins and rodlins are expressed. S. venezuelae is a new model 

organism and the growth behaviour in liquid is not well described and the role of chaplins 

and rodlins and the possible regulation by MtrA remains elusive. However, it is possible 

that the artificial activation of MtrA by removal of MtrB could lead to the increased 

expression of proteins in the hydrophobic sheath in the S. venezuelae ΔmtrB although 

they might not be required in liquid growth. 

Despite the similarity of the BldD and MtrA regulon and the regulation of MtrA 

of c-di-GMP synthesis genes it is not clear if MtrA directly regulates bldD. The 

enrichment peak of MtrA is under the statistical cut off of p = 0.05 (see  

Table 4.1)  and expression is not significantly different in the S. venezuelae ΔmtrB 

mutant. However the activity of BldD is c-di-GMP dependent (Tschowri et al. 2014). c-

di-GMP is synthesized from two molecules of GTP by diguanylate cyclases (DGCs), 

which are characterized by active site GGDEF motifs (Paul et al. 2004; Chan et al. 2004) 
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and the cyclic dinucleotide is degraded by specific phosphodiesterases, which harbour 

EAL or HD-GYP domains (Schmidt et al. 2005; Christen et al. 2005; Ryan et al. 2006). 

S. venezuelae has 10 proteins involved in the synthesis of c-di-GMP: Three containing a 

GGDEF domain, two containing a HD-GYP domain and five containing a GGEDF and 

EAL domain (Tschowri et al. 2014). MtrA binds to the promoter regions of five of the 10 

proteins predicted or known to be involved in c-di-GMP synthesis. The expression of the 

GGDEF domain protein CdgB (SVEN15_3942) and the GGDEF / EAL domain protein 

RmdB are not significantly changed in the S. venezuelae ΔmtrB mutant. cdgB deletion 

and overexpression leads to blocked development of aerial hyphae (Tran et al. 2011; 

Tschowri et al. 2014) and cdgB is a direct target of the developmental regulators WhiA 

and BldD (Bush et al. 2013). This indicates that CdgB has an important role during 

development. Deletion of the GGDEF / EAL protein RmdB results in  decreased levels 

of spore-specific grey pigment and a delay in spore formation (Hull et al. 2012). The 

ortholog of the GGDEF / EAL domain protein SVEN15_5080 in S. coelicolor is directly 

regulated by BldD (Bush et al. 2013). The role of SVEN15_4502 and SVEN15_0422 has 

not been investigated yet. Since cdgB and rmdB are not changed in expression in S. 

venezuelae ΔmtrB it is possible that MtrA does not bind directly to the promoter region 

but instead to another DNA binding protein. 

 The GGDEF domain protein SVEN15_4502 is over four-fold downregulated at 

14 hour in the S. venezuelae ΔmtrB mutant whereas the GGDEF / EAL proteins 

SVEN15_0422 and SVEN15_5080 are upregulated in S. venezuelae ΔmtrB. The 

upregulation of SVEN15_0422 and SVEN15_5080 is most likely an indirect effect 

because MtrA does not bind to the promoter regions of these two genes during the 

developmental time course. However, it is possible that MtrA is involved in the regulation 

of the GGDEF domain protein SVEN_4502 because it binds the promoter region at 10 

and 20 hours and when MtrA does not bind SVEN_4502 is downregulated. It is not clear 

yet how the genes of the c-di-GMP synthesis are exactly regulated but MtrA might play 

a crucial role because it binds to three of the ten genes involved in production and 

degradation of c-di-GMP. MtrA takes part in the regulation of the level of c-di-GMP in 

the cell and therefore regulates the activity of BldD which is intriguing because so far no 

protein has been identified to regulate the activity of BldD (Bush et al. 2015). Also, the 

overlap of the BldD regulon and additional target genes of MtrA indicate that MtrA is a 



 

139 

 

major regulator of development but feeds additional external signals in the regulatory 

system.  

 

Figure 4.7 BldD regulon based on Bush et. al 2015 and the MtrA regulon. MtrA regulates the 
global regulators AdpA, BldN, BldM and WhiB. Additionally MtrA binds to promoter regions of 
genes involved in cell division and sporulation as well as to the origin of replication (oriC). Solid 
lines represents MtrA binding to taget genes and up or downregulation in the ΔmtrB mutant 
according to the RNA-seq data. Dotted lines are genes which are up or downregulated in the 
RNA-seq data but not directly bound by MtrA.  

 

4.3.2 MtrA is a global regulator of secondary metabolite production 

ChIP-seq and RNA-seq showed that MtrA directly affected the expression of 

genes near or in at least 22 out of 31 BGCs in S. venezuelae and indirectly activates the 

whiE gene cluster. Since most of the S. venezuelae BGCs are uncharacterised we do not 

know anything about their cluster specific regulation or their natural products but the 

ChIP- and RNA-seq data support the hypothesis that MtrA is a global regulator of 

secondary metabolism in S. venezuelae. However, some of the targets bound by MtrA are 

at the beginning or end of the predicted BGC and it is not clear if the MtrA target genes 

are within a true BGC. The defined BGCs which are regulated by MtrA are ectoine, 

chloramphenicol and jadomycin in S. venezuelae and ectoine, CDA, actinorhodin, 

undecylprodigiosin and CPK in S. coelicolor.  
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 Principle Component Analysis (PCA) on S. venezuelae wild-type and ∆mtrB 

strains shows an extensive alteration of global metabolite levels following deletion of 

mtrB (Figure 4.2). ChIP-seq in S. coelicolor also shows that MtrA binding to sites 

spanning 24 out its 27 BGCs (Table 4.3). These data support the idea that MtrA is a 

global regulator of secondary metabolism in Streptomyces species and likely coordinates 

it with the developmental life cycle.  

 

4.3.3 Chloramphenicol production in S. venezuelae 

S. venezuelae has the chloramphenicol BGC but the wild-type does not produce 

chloramphenicol under laboratory conditions (Fernández-Martínez et al. 2014). The 

production of chloramphenicol is increased in S. venezuelae ΔmtrB. We assume that 

MtrA is permanently active in an S. venezuelae ΔmtrB mutant because otherwise the 

deletion of mtrB would be lethal. Presumably, in the absence of MtrB MtrA can be 

phosphorylated by small phosphor donors or cross talk from other HKs and it cannot be 

dephosphorylated. The dephosphorylation of MtrA by MtrB could not be determined in 

this work however the phosphatase activity was shown for the C. glutamicum MtrB 

(Möker, Reihlen, et al. 2007). 

The chloramphenicol cluster contains one CSR cmlR which abolishes 

chloramphenicol production when deleted (Fernández-Martínez et al. 2014). However, 

the expression of cmlR does not change significantly in S. venezuelae ΔmtrB. The 

jadomycin CSR Jad1 activates jadomycin production and represses chloramphenicol 

production whereas the CSR Jad2 represses Jad1 and therefore activates chloramphenicol 

production. Furthermore, Jad1 is activated by Jad3 in response to γ-butyrolactone. The 

expression of jad2 is upregulated in S. venezuelae ΔmtrB but the expression of jad3 is not 

changed in S. venezuelae ΔmtrB. It is possible that Jad2 represses jad1 which then stops 

inhibiting chloramphenicol production which is consistent with the overproduction of 

chloramphenicol and the lack of jadomycin production. However, the genetic 

mechanisms of initiation of chloramphenicol production are not known yet and MtrA 

binds to several promoter regions in the chloramphenicol cluster (Figure 4.3). MtrA binds 

directly to the divergent genes cmlN and cmlF and this was confirmed by EMSA, see 

chapter 5. The fold change in cmlN expression is not significant but cmlF expression is 

over six-fold higher in the S. venezuelae ΔmtrB at 20 hours. CmlN is a putative ion 

antiporter (Fernández-Martínez et al. 2014) and CmlF is an efflux permease that is 



 

141 

 

predicted to export chloramphenicol (He et al. 2001; Piraee et al. 2004). The remaining 

genes in the chloramphenicol cluster are downregulated. Antibiotics can autoregulate the 

expression of the respective cluster and chloramphenicol is probably accumulated in the 

cell which has to be exported outside of the cell by CmlF and the chloramphenicol excess 

inside the cell inhibits gene expression of structural chloramphenicol genes. However, it 

is still unclear if MtrA directly causes the overproduction of chloramphenicol or if the 

effect is indirect as a global regulator. Nevertheless, these data show clearly that MtrA is 

involved in the complex regulation of chloramphenicol production.   

 

4.3.4 Actinorhodin and undecylprodigiosin production in S. coelicolor 

The S. coelicolor ΔmtrB mutant overproduces undecylprodigiosin, actinorhodin 

and metacycloprodigiosin / streptorubin in liquid MYM whereas the desferrioxamine B 

and E siderophores and germicidin A are downregulated (see section 3.2.6.3). This is 

consistent with data presented in the PhD thesis of F. Knowles where S. coelicolor ΔmtrB 

overproduced coloured antibiotics (Knowles 2014).  

MtrA binds to DNA that is near or in 24 of the 27 predicted BGCs in S. coelicolor. 

MtrA binds to the promoter region of the CSR actII-4 and redZ which control the 

expression of actinorhodin and undecylprodigiosin, respectively. MtrA does not bind to 

the desferrioxamine BGC (desABCD) in S. coelicolor but it does bind upstream of 

SCO4394 gene which encodes DesR, an iron dependent repressor of desferrioxamine 

biosynthesis (Figure S47). This is consistent with MtrA-mediated repression of 

siderophore biosynthesis, see Table 4.3 (Flores et al. 2005).  

The ActII-4 CSR controls the expression of all five transcriptional units in the 

actinorhodin cluster (Iqbal et al. 2012). The activation or repression of the actinorhodin 

cluster is channelled via ActII-4 in response to internal and external cellular processes. 

The expression of actII-4 is activated by AdpA, AfsQ1, DraR and ROK7B7 whereas 

LexA and DasR repress expression of actII-4. It seems likely that MtrA~P in an 

S. coelicolor ΔmtrB counteracts the repression of actII-4 which leads to the increased 

production of actinorhodin.  

MtrA also binds to the promoter of undecylprodigiosin CSR RedZ. The 

production of undecylprodigiosin is regulated via the two CSRs RedZ and RedD. RedZ 

activates the expression of RedD which is the direct activator for the biosynthetic red 
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genes (White & Bibb 1997). Therefore, it is likely that MtrA activates RED production 

in a similar way as ACT by binding to the promoter region of the biosynthetic genes 

activating CSR. 

The regulation of antibiotic production in S. coelicolor has been investigated by 

many studies and TCS appear to play a major role in regulating antibiotic production. 

Many TCS are known to activate or repress antibiotic production in S. coelicolor however 

only three TCS systems regulating antibiotic production have a known signal (Rodríguez 

et al. 2013). AfsQ1/Q2 and DraR/K sense nitrogen availability and PhoP/R senses 

phosphate availability. The TCS AfsQ activates RED, ACT, CDA and yCPK (Wang et 

al. 2013; Shu et al. 2009), DrAR/K represses RED and yCPK and activates ACT (Yu et 

al. 2012) and PhoP/R indirectly activates RED and ACT (Santos-Beneit et al. 2009). 

Therefore, it is not surprising that MtrA regulates antibiotic production in Streptomyces 

species. MtrAB reacts to an external stimulus and controls both development and 

antibiotic production. 

 

4.3.5 Does MtrAB sense osmotic stress in Streptomyces? 

MtrAB in C. glutamicum senses osmotic stress via its cytoplasmic domain and 

unknown signals via its extracellular sensor domain (Möker et al. 2007). The data 

presented in this work indicate that MtrAB in Streptomyces might have a similar role. As 

outlined in section 3.2.5 the ΔmtrB mutant in S. venezuelae and S. coelicolor is inhibited 

in growth by NaCl stress and deletion of mtrB possibly mimics osmotic stress due to the 

increased levels of MtrA~P. The ChIP-seq provides some evidence that MtrAB is 

involved in sensing and adapting to osmotic stress.  

MtrA binds to the promoter region of the ectoine BGC in S. venezuelae 

(SVEN15_0205-08) and S. coelicolor (SCO1864-67) during the developmental time 

course (Table S2 and S3) but no ectoine or 5-hyroxyectoine could be observed in cultures 

(Dr. Daniel Heine, personal communication). Thus, MtrA must negatively regulate the 

ectoine BGC. Ectoine and 5-hyroxyectoine (5HE) are compatible solutes which do not 

interfere with cellular function and can be accumulated in the bacterial cell to very high 

levels to counteract osmotic stress (Oren 2008). Ectoine and 5HE is synthesised in 

S. coelicolor upon osmotic and heat stress (Bursy et al. 2008) which connects MtrAB to 

the osmotic stress response. It makes sense that MtrA represses ectoine and 5HE 

production during normal growth but when osmotic stress occurs MtrA activates the 
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expression of the ectABCD operon. We did not verify if ectoine or 5HE is produced in 

the ΔmtrB mutant but lack of ectoine or 5HE would confirm that MtrAB derepresses 

ectoine or 5HE under osmotic stress.  

MtrA binds to ten sigma factor gene promoters at 20 hours in S. venezuelae. Two 

of them are involved in global stress response. The sigma factor HrdD (SVEN15_2993) 

is speculated to coordinate “cross talk” from osmotic stress (σB), redox stress (σR) and 

cell envelope stress (σE) sensing system (Kang et al. 1997; Paget et al. 2001; Lee et al. 

2005). The sigma factor σN (SVEN15_2993) is involved in stress response to heat, cold, 

acid, oxidation, salt and ethanol (Wang et al. 2010). Therefore, MtrA might be a major 

regulator of global stress response in Streptomyces.  

Another connection of MtrAB to osmotic stress is the regulation of chaplins, 

rodlins and the surface active peptide SapB. Rodlins and SapB are essential for 

development in medium with high osmolality since sapB deletion mutants are not able to 

form aerial hyphae under high osmolality conditions because the cell turgor is not 

sufficient under osmotic stress to break the surface tension (Jong et al. 2012). Thus, it is 

possible that MtrAB could upregulate sapB and rodlins expression under osmotic stress.  

A recent publication investigated the effect of osmotic stress on the polarisome in 

S. coelicolor (Fuchino et al. 2016). After osmotic upshift the polarisome is dismantled 

and re-growth of the hyphal tip occurs on a different site which includes the 

rearrangement of the polarisome. The authors tested if Scy, FilP, AfsK, OsaA, OsaB, 

SigB, SigH were responsible for the rearrangement of the divisome but none of the tested 

proteins caused this. One hypothesis is that MtrAB could be responsible for the 

rearrangement of the divisome after osmotic upshift. MtrB senses the osmotic shock and 

then activates MtrA which then regulates either indirectly or directly the expression of 

divIVA and other genes involved in this specific osmoadaptation. Also, MtrB(TB) 

interacts with the DivIVA homolog Wag31 in M. tuberculosis (Plocinska et al. 2014) 

which could indicate a possible interaction with DivIVA and MtrB in S. venezuelae. 

Taken together the MtrAB system might regulate the rearrangement of the divisome after 

and osmotic upshift.  

 

4.3.6 Is the function of MtrAB conserved throughout Actinobacteria? 
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MtrAB is conserved in Actinobacteria and highly conserved in Streptomyces. 

MtrA binds to many developmental genes in S. venezuelae and S. coelicolor including c-

di-GMP synthesising genes and whiD, wblE, whiB, whiH, whiI, ftsZ and oriC. MtrA binds 

to 235 orthologues in S. venezuelae and S. coelicolor which suggest that MtrA could have 

the same function in these two distant related Streptomyces strains. MtrA binds to the 

promoter of ftsZ in both species but not to dnaAp. It was speculated above that MtrA 

regulates the expression of ftsZ in a DnaA-dependent manner. However, we cannot be 

sure if that is the case in S. coelicolor because we do not have any expression data. The 

phenotypes of the ΔmtrB mutant in S. venezuelae and S. coelicolor are different. Deletion 

of mtrB causes irregular septa formation in S. coelicolor whereas the septa in S. 

venezuelae ΔmtrB mutant are not affected. Thus, MtrB might be involved in the formation 

of the divisome in S. coelicolor but not in S. venezuelae. More experiments need to be 

conducted to be certain if MtrA has the same role in S. venezuelae and S. coelicolor. It is 

not unusual that deletion mutants of genes involved in differentiation have distinctive 

phenotypes in different Streptomyces species. There are two known examples of genes 

displaying variable phenotypes upon deletion. The deletion mutant of the IclR family 

transcriptional regulator samR had a bold phenotype in Streptomyces ansochromogenes 

whereas the deletion mutant of the ortholog in S. coelicolor had a white phenotype with 

nonsporulating aerial hyphae (Tan et al. 2002). The second example is the membrane 

protein CrgA which is essential for sporulation in Streptomyces avermitilis. In contrast, 

the crgA mutant in S. coelicolor showed a precocious aerial mycelium growth and 

sporulation together with premature production of actinorhodin (Del Sol et al. 2003). 

Here we present evidence that indicates that MtrA(Sv) interacts with DnaA(Sv) 

which is similar in M. tuberculosis (Purushotham et al. 2015). In S. venezuelae and M. 

tuberculosis MtrA is essential which is probably due to the regulation of oriC via 

interaction with DnaA(TB) (Purushotham et al. 2015).  In contrast MtrA is not essential 

in C. glutamicum (Möker et al. 2004) because MtrAB is probably not involved in cell 

cycle progression and its main function is to sense osmotic stress (Brocker & Bott 2006). 

However, it can be speculated that MtrA acts as a major cell cycle regulator by regulating 

expression of dnaA and therefore when MtrA is essential it might have the same function 

in distantly related strains. But further work needs to be conducted to understand the role 

of MtrA in Streptomyces to see if MtrAB has the same role in Streptomyces and 

Mycobacteria.  
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The lipoprotein LpqB is conserved in Actinobacteria. It would be interesting to 

investigate the role of LpqB in Streptomyces and compare this with the role of LpqB in 

M. tuberculosis in which the lipoprotein modulates the activity of MtrAB (Nguyen et al. 

2010). The translation initiation factor upstream of mtrA in S. coelicolor is conserved in 

the suborder Streptomycineae. Further investigations are necessary to identify the role of 

the translation initiation factor and why many Streptomyces species harbour this gene. 

Also, it would be of interest to repeat the ChIP-seq of S. coelicolor ΔmtrA ΦBT1 mtrAp-

mtrA strain on solid culture to see if MtrA binds to different targets when S. coelicolor 

completes development.  

Essential TCS are rare in bacteria and it seems that the role of MtrAB as a global 

regulator of cell cycle progression convergently evolved in other phyla. The RR CtrA in 

C. crescentus is essential and regulates cell cycle progression and DNA replication 

together with DnaA and GcrA. CtrA inhibits initiation of chromosome replication during 

differentiation in stalked and swarmer cells (Quon et al. 1996). MtrA could have the same 

role of inhibiting DNA replication during vegetative growth.   

 

4.4 Conclusion and future work 

The results outlined in this chapter show that MtrA binds to genes involved in 

development and genes in most of the BGCs, which implicates MtrA as a major regulator 

in both development and secondary metabolite production in Streptomyces species. The 

MtrA regulon overlaps with the BldD regulon and probably feeds external signal in the 

regulation of the developmental cycle and coordinated secondary metabolite production 

with developmental growth. So far, no protein was identified which regulates the activity 

of BldD. MtrA does not regulate BldD directly, however MtrA targets genes involved in 

the synthesis and degradation of c-di-GMP which activates BldD. Additionally, MtrA is 

involved in the regulation of the expression genes which form the hydrophobic sheath. 

This regulation becomes more important under osmotic stress on solid agar. Streptomyces 

use the hydrophobic sheath proteins to overcome the increased surface tension under 

osmotic stress. Also, MtrA targets the ectoine operon and two sigma factors involved in 

global and osmotic stress response. This indicates that the MtrAB TCS takes part in the 

osmotic stress response. Therefore, it would be interesting to perform ChIP-seq under 

osmotic stress conditions. 
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Furthermore, MtrA binds to the oriC and the promoter of dnaA. This is similar to 

the regulatory role of MtrA in M. tuberculosis. The ChIP-seq experiment indicates that 

MtrA is most active at 10, 12 (vegetative growth) and 20 hours (sporulation). This could 

be investigated further by analysing the phosphorylation state of MtrA during the 

developmental time course. Phosphorylated proteins can be identified on acrylamide gels 

by adding phos-tag which specifically binds to the phosphate group.  

Also, the ChIP-seq showed that MtrA binds to promoter regions of genes of the 

divisome and MtrB(TB) localises at the mid-cell and the cell poles. To investigate the 

localisation of MtrB a fluorophore like GFP or mCherry could be added to MtrB for 

localisation studies. Additionally, the protein-protein interaction of MtrB could be 

investigated by BACTH. Attempts to screen a BACTH library with MtrB only 

demonstrated a self-interaction with MtrB but the library was most likely incomplete. 

Also, it would be interesting to perform ChIP-seq under osmotic stress to identify the 

response of MtrAB to osmotic stress and if MtrAB plays a role in the reassembly of the 

polarisome after osmotic stress.  
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5 Phosphorylation of MtrA 

It was demonstrated that elevating the levels of MtrB along with overexpression 

of MtrA reverses the phenotype of MtrA overexpression in M. tuberculosis (Al Zayer et 

al. 2011). This indicates that MtrB regulates the phosphorylation status of MtrA and that 

the ratio of phosphorylated to non-phosphorylated MtrA is regulated during cell cycle 

progression in M. tuberculosis. Consistent with these findings the overexpression of mtrA 

in S. venezuelae does not result in a phenotype (section 3.1.2.) whereas the deletion of 

mtrB leads to different colony morphology and elevated production of antibiotics (section 

3.2). The ChIP-seq data described in chapter 4 reveals the in vivo binding of MtrA to 

target promoters but it remains elusive what phosphorylation state of MtrA is the active 

form. In the following chapter I investigate the phosphorylation activity of MtrB by 

phosphotransferassay. Additionally, I use EMSAs to examine the in vitro binding of MtrA 

to target genes to verify the ChIP-seq data and use the in vivo and in vitro data to predict 

a putative MtrA binding site in S. venezuelae. Furthermore, I use MtrA 

immunoprecipitation to define the MtrA regulon. 

 

5.1 Autophosphorylation of MtrA and MtrB 

HKs typically autophosphorylate and transfer the phosphate to their cognate RR 

(Hoch 2000). MtrB is a membrane binding protein with two transmembrane domains, a 

HAMP linker and a Histidine Kinase A phosphoacceptor domain. In order to investigate 

MtrB a truncated version of MtrB(TB) (Al Zayer et al. 2011) and a full length MtrB(Cglu) 

integrated in phospholiposomes (Möker,  et al. 2007) was investigated. Both studies 

demonstrated that MtrB transfers a phosphate group to MtrA. To test if this is the case for 

S. venezuelae MtrAB a truncated MtrB was purified and the transfer of phosphate was 

investigated.   

The soluble domain of MtrB(Sv) is encoded by the N-terminus which contains the 

HAMP linker and a Histidine Kinase A phosphoacceptor domain. Thus, the N-terminal 

nucleotides 1045 – 2034 bp were cloned in pET-28a in two versions: One harbouring the 

His-tag at the C-terminus and the other at the N-terminus. Both plasmids (see Table 2.2) 

were introduced in BL21 (see Table 2.1) and individually expressed and purified. Both 
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purified proteins were incubated with [γ-32P]ATP and separated on an SDS-

polyacrylamide gel. None of the proteins accepted the phosphate group of [γ-32P]ATP 

which might indicate that the truncated MtrB(Sv) is not functional. 

MtrA was incubated with [32P]-acetyl phosphate and N- and C-terminal His 

tagged MtrB were added to the phosphorylated MtrA to test for dephosphorylation 

activity (Figure 5.1). MtrA is phosphorylated by [32P]-acetyl phosphate but the truncated 

MtrB did not show any dephosphorylation activity.  

 

Figure 5.1 Autophosphorylation of MtrA by [32P]-acetyl phosphate. A truncated version of MtrB 
was added to phosphorylated MtrA but the truncated protein does not seem to be functional.  

 

5.2 Electrophoretic mobility shift assay (EMSA) 

To confirm the MtrA in vivo binding obtained by the ChIP-seq experiment in 

chapter 4 it is possible to analyse the binding of a RR to DNA in vitro. ChIP-seq peaks 

are considered to be true binding sites over a p-value of 0.05 (equals an enrichment value 

of 7). However, the p-value reflects the probability that the ChIP-seq peaks are true 

binding sites. Thus, it is important to verify the MtrA binding to target promoter with 

additional experiments. One method to determine the binding of a RR to DNA is 

electrophoretic mobility shift assays (EMSA). EMSAs take advantage of the principle 

that protein-DNA complexes separate slower on a native polyacrylamide gel than 

unbound DNA. Thus, if the protein of choice interacts with the added DNA the visible 

band shifts up. I used universal 6-FAM-fluorescein primers to label the DNA of interest. 

First the promoter region is amplified with normal primers and then in a second PCR the 
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6-FAM label is added to the DNA. Therefore, I use EMSA to verify the MtrA binding to 

selected target promoters obtained in the ChIP-seq experiment outlined in section 4.1 in 

S. venezuelae. 

The first gene of the ectoine cluster was identified as an MtrA target early in ChIP-

seq experiments and was tested first. The purified MtrA was stored in the fridge several 

weeks prior to EMSAs and it was assumed that the purified protein was not 

phosphorylated. MtrA can be phosphorylated by acetyl phosphate as outlined in section 

5.1 and by Friedland et al. (2007) for MtrA(TB). Thus, I used acetyl phosphate to 

autophosphorylate MtrA. When MtrA was phosphorylated by acetyl phosphate the 

binding affinity to the ectA promoter was higher compared to unphosphorylated MtrA 

(Figure 5.2). This is consistent with EMSA assays with MtrA(TB) shifting target DNA 

in M. tuberculosis (Li et al. 2010; Plocinska et al. 2012; Purushotham et al. 2015; 

Rajagopalan et al. 2010).  

 

Figure 5.2 EMSA of ectAp with and without acetyl phosphate. MtrA used in this assay was 
stored in the fridge prior to the experiment. Here 8nM DNA were used.  

 

Following the ChIP-seq time course experiment MtrA was again purified. It did 

not make any difference if acetyl phosphate was added to the newly purified MtrA in the 

EMSA (Figure 5.3). The ectA promoter was shifted the same way with and without acetyl 

phosphate. Thus, MtrA seems to be already phosphorylated which could be possible 

because MtrA can be phosphorylated by acetyl phosphate in E. coli BL21 which was used 

to overexpress MtrA. The intracellular concentration of acetyl phosphate is 3 mM in 

E. coli which is sufficient to phosphorylate RR (Klein et al. 2007). In contrast, MtrA 

stored in the fridge for several weeks might have lost the phosphate group due to auto-
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dephosphorylation. Additionally, the effect of polydIdC on the EMSA reaction was 

tested. polydIdC removes non-specific binding which is important if whole cell lysate is 

used. However, in the case of MtrA and ectAp addition of polydIdC does not make a 

difference in the EMSA reaction. Therefore, in the following EMSAs acetyl phosphate 

or polydIdC was not added.  
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Figure 5.3 EMSA of ectAp without any additives, polydIdC (1 µg), acetyl phosphate (30 mM) 
and acetyl phosphate and polydIdC. 10 nM DNA was added to increasing concentrations of 
MtrA. 

 

The two S. coelicolor promoters hmpA2p (SCO7094) and hmpA1p (SCO7428) 

were used as negative controls since there are no enrichment peaks in these promoters in 

the S. coelicolor ChIP-seq data at 16 and 20 hours. In the EMSA 10 nM of promoter DNA 

were added to increasing amount of MtrA. Non-specific binding could be observed when 

0.9 µM of MtrA were added to the two negative controls. In contrast, in the EMSA with 

MtrA(TB) and the ripA promoter 0.1 – 1 µM of protein and 200 fM DNA resulted in a 

band shift and not unspecific binding (Li et al. 2010). In my experimental set up it was 

not possible to use less than 5 nM of DNA because otherwise the DNA bands were not 

detectable (data not shown). Thus, I had to use 10 nM of DNA causing unspecific shift 

of the DNA/protein complex due to the excess of DNA (Hellman & Fried 2007). 

Therefore, band shifts with 10 nM DNA and more than 0.9 µM of MtrA are non-specific 

binding under the assay conditions used in this work. However, the promoter of dnaA, 

ectA and cmlF (SVEN15_0880) were shifted by MtrA at much lower concentrations of 

protein indicating that MtrA binds to these promoter regions in vitro (Figure 5.4). The 

enrichment peak in dnaAp is with ≤ 5 under the enrichment value of 7 during the 

developmental time course. Despite that, the promoter of dnaA was shifted by purified 

MtrA. This means that the p-value of 0.05 (equals enrichment value of 7) cannot be seen 

as a strict cut off for MtrA binding to target promoters. In comparison, the enrichment 

value for ectAp is ≤ 54 and both DNA fragments containing dnaAp or ectAp shift at 

0.25 µM MtrA. This equals a ratio of one DNA molecule to 25 MtrA dimers. This reflects 

the fact that ChIP-seq is not a quantitative method. The binding affinity of MtrA to 

different DNA fragments is not related to the enrichment of the peaks.  

Therefore, I tested more promoter region of interesting target genes in 

S. venezuelae. The promoter region of smc is enriched with ≤ 3 during the developmental 

time course in. The promoter region of ftsZ is ≤ 5 from 10 – 18 hours and 16 at 20 hours. 

The enrichment of the promoter region of adpA is ≤ 6 during the developmental time 

course (Table 4.1).  

According to the ChIP-seq data it was expected that the ftsZp would shift and 

smcp and adpAp should not shift. The promoter regions of smc and adpA did not shift and 

surprisingly the ftsZp did not shift as well with a protein concentration lower than 0.9 µM 
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(Figure 5.5). No unspecific binding could be observed for the smcp. A possible reason 

for this could be that the smcp fragment used in the EMSA was 158 bp which is at least 

100 bp smaller than the other promoters tested in the assays. Due to the smaller size of 

the smcp DNA fragment it is possible that MtrA does not form an unspecific complex 

with smcp which does not result in an unspecific shift.  

More promoter regions need to be tested to refine the statistical cut off in the 

ChIP-seq data. However, it is possible that MtrA does not bind directly to target 

promoters. The binding of MtrA could occur via other DNA binding proteins which leads 

to enrichment peaks in the ChIP-seq data but no direct binding of MtrA to target 

promoters.  
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Figure 5.4 EMSA of two promoter hmpA2p (SCO7094) and hmpA1p (SCO7428) as negative 
control and shifts of dnaAp (SVEN15_3571), ectAp (SVEN15_0205) and cmlF (SVEN15_0880). 
10 nM DNA was added to increasing concentrations of MtrA.  
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Figure 5.5 Promoter regions not shifted by purified MtrA. The shift of the ftsZ and adpA promoter 
is unspecific binding because the negative control start to shift at 0.9 µM of protein. The smc 
promoter is not shifted by increasing amount of MtrA which is most likely due to the smaller DNA 
fragment used for smcp. 10 nM DNA was added to increasing concentrations of MtrA.   
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5.3 In silico binding site of MtrA 

The next step to identify the regulon of MtrA in more detail was to identify the 

binding site. Therefore, all enrichment peaks at the different time points were investigated 

via the motif predicting software MEME (http://meme-suite.org/). A 50 bp nucleotide 

sequence at the base of each enrichment peak was analysed by MEME. When the whole 

data set was analysed by MEME no significant binding site could be observed. Thus, the 

three promoter regions shifted by EMSA (see section 4.3.3), ectAp (SVEN15_0205), 

dnaAp (SVEN15_3571) and cmlFp (SVEN15_0880) were used as a starting point to find 

a conserved MtrA binding motif. All three promoters contain the binding site T (A/C) C 

G T T (C/A) T which is referred to here as motif [1], see Figure 5.6. When the promoters 

enriched at 10, 12 and 20 hours were analysed by MEME a direct repeat of [1] could be 

identified, referred to here as motif [2]. A similar direct repeat could also be observed 

when the individual time points were analysed (motifs [3] – [6]). However, only a small 

proportion of enrichment peaks contained the putative MtrA binding site. The enriched 

promoter regions of the different time points containing motifs [2] - [6] were then 

analysed by MEME to obtain a clear binding site, motif [7]. Binding motif [1] could not 

be observed in the 20-hour data set and thus the binding motif [7] was used to search in 

the 20-hour data set. The resulting binding motifs were added to the previous obtained 

binding sites and combined through MEME to identify motif [8]. This motif is a direct 

repeat and can be found in 43 enriched targets listed in Table 5.1. 28 of the target genes 

in Table 5.1 are not significantly up or down regulated in the RNA-seq data, whereas 13 

target genes are up or downregulated, see Table S4. Interestingly the list of targets 

containing the putative binding site does not include dnaAp and cmlFp which might 

indicate that these promoter regions contain only the half site (motif [1]) and not a full 

length direct repeat binding motif.   
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Figure 5.6 Putative MtrA binding site predicted by MEME software (Bailey et al. 2009). The motif 
[1] at the top was obtained with the three promoters shifted in the EMSA assay, see section 5.2. 
Data sets of the indicated time points were analysed with the MEME software and binding motifs 
similar to the motif at the top are shown.  
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Table 5.1 Putative MtrA binding sites in S. venezuelae. Bold genes are part of a BGC. 

Gene Strand 
Distance 

from TSS 
Annotation Gene Strand 

Distance 

from TSS 
Annotation 

Time point 

of binding 

site 

SVEN15_2560 -1 104 probable nucleotide pyrophosphatase 10h 

SVEN15_4405 -1 -186 carboxymuconolactone decarboxylase domain or alkylhydroperoxidase AhpD family core domain protein 10h 

SVEN15_7072 1 209 hypothetical protein     10h 

SVEN15_3771 1 -208 putative peptidase     12h 

SVEN15_6511 -1 46 Xylose isomerase SVEN15_6512 1 -92 Xylose kinase 12h 

SVEN15_6516 -1 83 
Transcriptional regulator, 

HxlR family 
SVEN15_6517 1 -66 Xylose repressor XylR 12h 

SVEN15_1902 1 142 
Ferrous iron transport periplasmic protein EfeO, contains peptidase-M75 domain and (frequently) 

cupredoxin domain 
14h 

SVEN15_2911 -1 169 Cell wall-binding protein 14h 

SVEN15_6108 -1 98 

Anthranilate 

phosphoribosyl-

transferase 

SVEN15_6109 1   14h 

SVEN15_5419 -1 124 
putative DNA-binding 

protein 
SVEN15_5420 1   14h 

SVEN15_0377 1 -45 Substrate-specific component CbiM of cobalt ECF transporter 20h 

SVEN15_1274 1 -94 hypothetical protein     20h 

SVEN15_1260 1 -31 hypothetical protein     20h 

SVEN15_3174 -1 109 putative secreted protein 20h 

SVEN15_0096 -1 7 hypothetical protein     20h 

SVEN15_3317 -1 29 hypothetical protein SVEN15_3318 1 -62 
3-oxoacyl-[acyl-carrier protein] 

reductase 
20h 

SVEN15_7069 -1 61 
TetR-family 

transcriptional regulator 
SVEN15_7070 1 -53 

Long-chain-fatty-acid--CoA 

ligase 
20h 

SVEN15_4448 -1 146 putative glycosyltransferase SVEN15_4449 1 -74 hypothetical protein 20h 

SVEN15_3473 -1 51 hypothetical protein SVEN15_3474 1 -17 Methionyl-tRNA synthetase 20h 

SVEN15_3850 -1 45 
Transcriptional regulator, 

MarR family 
SVEN15_3851 1 -41 hypothetical protein 20h 

SVEN15_0505 1 37 hypothetical protein     20h 

SVEN15_1266 -1 25 
Butyryl-CoA 

dehydrogenase 
SVEN15_1267 1 -38 

Transcriptional regulator, TetR 

family 
20h 
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SVEN15_3420 1 41 S-adenosylmethionine synthetase 20h 

SVEN15_5187 1 83 Protein often found in Actinomycetes clustered with signal peptidase and or RNaseHII 20h 

SVEN15_3517 -1 -386 Potassium channel protein     20h 

SVEN15_0205 1 -161 L-2,4-diaminobutyric acid acetyltransferase 
12, 14, 16 

and 20h 

SVEN15_2566 -1 80 putative secreted oxidoreductase 
12, 14, 16 

and 20h 

SVEN15_6986 -1 119 
ABC transporter solute-

binding protein 
SVEN15_6987 1 -89 D-amino-acid oxidase 10, 12, 20h 

SVEN15_4857 1 -106 hypothetical protein     10, 12, 20h 

SVEN15_0668 -1 67 hypothetical protein SVEN15_0669 1 -209 
putative integral membrane 

transport protein 
10, 12, 20h 

SVEN15_2757 -1 62 hypothetical protein     10, 12, 20h 

SVEN15_1260 1 -31 hypothetical protein     10, 12, 20h 

SVEN15_2164 -1 77 Beta-glucosidase SVEN15_2165 1 -86 
Transcriptional regulator, TetR 

family 
10, 12, 20h 

SVEN15_3771 1 -283 putative peptidase     10, 12, 20h 

SVEN15_3825 -1 208 
Transcriptional regulatory 

protein glnR 
SVEN15_3826 1 -49 putative hydrolase 10, 12, 20h 

SVEN15_2417 -1 151 hypothetical protein     12, 14, 20h 

SVEN15_5675 1 14 hypothetical protein     10, 20h 

SVEN15_0036 1 -203 hypothetical protein     10, 20h 

SVEN15_0530 -1 76 Tyrosine protein kinase: Serine or threonine protein kinase: Sel1 repeat 10, 20h 

SVEN15_1746 -1 69 hypothetical protein SVEN15_1747 1 -44 
Transcriptional regulator, PadR 

family 
10, 20h 

SVEN15_4327 1 -53 hypothetical protein     10, 20h 

SVEN15_5674 1 21 hypothetical protein     12, 20h 
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5.4 MtrA immunoprecipitation 

Since MtrA binds promoter regions of genes which do not differ in expression in 

S. venezuelae ΔmtrB mutant like ftsZ or divIVA it is possible that MtrA does not bind 

directly to the promoter region but instead binds to other DNA binding proteins. 

Additionally, it was very difficult to identify an MtrA binding motif which might also 

indicate the involvement of other DNA binding proteins. Also it was demonstrated that 

MtrA(TB) interacts with the DNA replication initiation protein DnaA (Purushotham et 

al. 2015). Thus, we performed immunoprecipitation in the strain S. venezuelae ΔmtrA 

ΦBT1 mtrAp-mtrA-3xFlag at 18 hours with crosslinked samples which are similar to the 

ChIP-seq samples and non-crosslinked samples and analysed the immunoprecipitated 

proteins by MALDI-TOF using the wild-type strain as a negative control.  

In total 47 proteins were identified in both crosslinked and non-crosslinked 

experimental samples and were not present in the wild-type control experiments. One 

protein is part of BGCs and three pulled down proteins are involved in cell division and 

development, see Table 5.2. MtrA interacts with CmlS (SVEN15_0892) which is part of 

the chloramphenicol cluster and chlorinates an acetyl group of chloramphenicol (Latimer 

et al. 2009). Consistent with data in M. tuberculosis MtrA(Sv) interacts with DnaA(Sv). 

MtrA also interacts with two uncharacterised proteins SVEN15_1384 and SVEN15_3776 

which are annotated as a SpoOJ, ParA or ParB or RepB family protein and a sporulation 

associated protein, respectively. MtrA binds to five regulatory proteins. The probable 

regulatory protein SVEN15_4644 contains a Serine/threonine phosphatase domain and a 

histidine kinase ATPase domain. SVEN15_2691, SVEN15_4036 and SVEN15_4568 are 

putative DNA binding proteins. MtrA also interact with three transporter proteins which 

are likely to be membrane bound. It is surprising to see membrane bound proteins 

interacting with MtrA in this experiment because the majority of membrane proteins were 

removed by centrifuging the cell lysate. This could be the reason why MtrB was not co-

immunoprecipitated. It is likely that the interaction of DisA and the two ribosomal 

subunits could be just due to the proximity of these proteins to MtrA and DNA. The 

remaining 30 proteins are either involved in general metabolism or they are hypothetical 

genes.  
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Table 5.2 Proteins co-purified with MtrA by immunoprecipitation. Only proteins present in both crosslinked and non-crosslinked samples and 

not in the wild-type control are shown. 
      In ChIP-seq 

Function SVEN15 kDa Annotation Comment Time point 
Normalised 
enrichment  

BGC SVEN15_0892 64 kDa CmlS flavin-dependent halogenase  
part of chloramphenicol gene 
cluster 

no   

Cell division 
  

SVEN15_1384 47 kDa SpoOJ or ParA or ParB or repB family protein Chromosome segregation no  

SVEN15_3571 66 kDa Chromosomal replication initiator protein DnaA  20h  4.9 
SVEN15_3776 51 kDa sporulation associated protein   10, 12 and 20h  8, 8.1 and 9.5 

Regulatory  
  

SVEN15_2691 27 kDa putative two-component system response regulator RR of CitB family no  

SVEN15_4036 86 kDa probable DNA-binding protein  no  

SVEN15_4568 28 kDa Transcriptional regulator IclR family no  

SVEN15_4644 93 kDa probable regulatory protein Regulated by σU 10 and 20h 7 and 7.1 

SVEN15_6329 15 kDa 
multi-component regulatory system-3, containing 
roadblock or LC7 domain 

  no   

Transporter 
  

SVEN15_1516 33 kDa 
ABC-type multidrug transport system, ATPase 
component 

 no  

SVEN15_1941 36 kDa 
putative iron-siderophore uptake system exported 
solute-binding component 

 20h 8.3 

SVEN15_4939 42 kDa putative ABC transporter ATP-binding protein   no   

DNA repair SVEN15_3142 38 kDa DNA integrity scanning protein disA DNA repair no   

Ribosomal 
  

SVEN15_1141 42 kDa Ribosomal RNA small subunit methyltransferase C  no  

SVEN15_2914 31 kDa rRNA small subunit methyltransferase I   no   

Metabolism 

SVEN15_0071 19 kDa 4-hydroxy-2-oxovalerate aldolase metabolic pathways 20h  9.1 
SVEN15_1244 62 kDa Fumarate or succinate or L-aspartate dehydrogenases metabolic pathways 20h  17.7 
SVEN15_1457 48 kDa Cobyrinic acid A, C-diamide synthase metabolic pathways 10, 12 and 20h  8.4, 7.3 and 8.3 
SVEN15_1475 52 kDa Ketoglutarate semialdehyde dehydrogenase metabolic pathways 20h  7.9 

 SVEN15_1718 42 kDa Ferredoxin reductase metabolic pathways no  

 SVEN15_1807 29 kDa 
Octanoate-[acyl-carrier-protein]-protein-N-octanoyl 
transferase (lipB) 

Lipoic acid biosynthesis no  

 SVEN15_2469 66 kDa Epi-inositol hydrolase metabolic pathways no  

 SVEN15_2728 38 kDa putative glycosyl transferase    
 SVEN15_4412 45 kDa Serine hydroxymethyltransferase metabolic pathways no  
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 SVEN15_4420 45 kDa putative D-alanyl-D-alanine carboxypeptidase metabolic pathways 20h  12.3 
 SVEN15_4667 78 kDa putative peptidase metabolic pathways 10h 8.1 
 SVEN15_4676 36 kDa putative acetyltransferase metabolic pathways 20h  8.3 
 SVEN15_5627 27 kDa putative phospholipase protein metabolic pathways no  

 SVEN15_5681 81 kDa putative bifunctional hydroxylase or oxidoreductase metabolic pathways no  

Metabolism SVEN15_5961 35 kDa putative uricase metabolic pathways no  

 SVEN15_6151 38 kDa Glycerate kinase metabolic pathways no  

 SVEN15_6256 38 kDa 
Probable acyl-ACP desaturase, Stearoyl-ACP 
desaturase 

fatty acid biosynthesis 20h  8.4 

 SVEN15_6418 26 kDa putative secreted protein  20h  10.3 

 SVEN15_6432 35 kDa 
putative periplasmic protein kinase ArgK and related 
GTPases of G3E family 

 no  

 SVEN15_6690 72 kDa Succinate dehydrogenase flavoprotein subunit Energy metabolism no  
 SVEN15_7027 47 kDa Glutamate-1-semialdehyde aminotransferase metabolic pathways no  

  SVEN15_7036 45 kDa methyltransferase metabolic pathways no   

Hypothetical 
Proteins 

SVEN15_1225 29 kDa hypothetical protein  no  

SVEN15_2323 42 kDa hypothetical protein 
RfaB multidomain: 
Glycosyltransferase involved in 
cell wall biosynthesis  

no  

SVEN15_2364 23 kDa hypothetical protein  no  

SVEN15_2396 47 kDa hypothetical protein 
Contains smc domain 
(Chromosome segregation 
ATPase) 

no  

SVEN15_3292 31 kDa hypothetical protein  no  

SVEN15_3538 52 kDa hypothetical protein  no  

SVEN15_4870 23 kDa hypothetical protein predicted aceyltranferase domain 10, 12 and 20h  
10.5, 8.1 and 
26 

SVEN15_5400 69 kDa hypothetical protein no   

SVEN15_6683 30 kDa hypothetical protein  20h  10.2 

SVEN15_6869 25 kDa hypothetical protein  no  
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5.5 Discussion 

The MtrA regulon seems to be complex. EMSA showed that MtrA binds to target 

genes but also that promoter regions enriched in ChIP-seq are not directly bound by 

monomeric or dimeric purified MtrA. Promoter regions which are directly bound by 

MtrA are those of the ectoine BGC ectA, the chromosome replication initiation protein 

dnaA and cmlF which is part of the chloramphenicol cluster and encodes a 

chloramphenicol efflux pump (He et al. 2001). The enrichment peak in the promoter 

region of dnaA is not included in the ChIP-seq data because the enrichment is under the 

significant cut off (5 at 20 hours).  

However, the promoter of dnaA is directly bound by MtrA which means that the 

statistical cut off of p = 0.05 might be too strict and that the binding of MtrA has to be 

confirmed with further experiments. The purified MtrA does not shift the promoter 

regions of adpA and ftsZ. This could implicate that MtrA binds to additional proteins 

which bind to the promoter DNA or that MtrA forms a heterodimer with another DNA 

binding protein which is discussed below. 

MtrA directly binds to the promoter of dnaA but also to two sites between dnaN 

and dnaA which is where part of the origin of replication (oriC) can be found. It was not 

possible to amplify enough clean DNA for the oriC region to perform EMSA thus it 

remains unclear if MtrA binds directly to oriC or binds a protein which binds to oriC. 

However, immunoprecipitation suggested a protein-protein interaction of MtrA with 

DnaA. DnaA binds to a 9 bp consensus region (DnaA boxes) to unwind DNA to provide 

an entry site for the DnaB / DnaC helicase complex (Kornberg & Baker 1992). 

Streptomyces have 19 DnaA boxes in the oriC and two DnaA boxes upstream of dnaA 

which are conserved throughout Streptomyces species (Jakimowicz et al. 1998; 

Jakimowicz et al. 2000). Additionally AdpA competes for binding at oriC with DnaA in 

an ATP dependent manner to prevent initiation of DNA replication (Wolański et al. 

2012). There are two possibilities which can explain the two enrichment peaks of MtrA 

in oriC. First MtrA could directly bind to oriC and second MtrA binds to DnaA which in 

turn binds oriC. If MtrA binds directly to oriC it would have a similar role as AdpA of 

preventing DnaA of binding. In this case binding of MtrA to oriC would be highest during 

vegetative growth and decrease at the onset of sporulation when chromosomes are 

actively replicated. However, this is not the case. MtrA does not bind to oriC in a high 

frequency represented by the low enrichment but the enrichment increases at 20 hours. 
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Thus, it is unlikely that MtrA has a similar role as AdpA. The binding of MtrA is more 

likely to be indirect via DnaA since the expression of dnaN is not significantly changed 

in S. venezuelae ΔmtrB. The data presented here do not elucidate the role of MtrA binding 

to oriC or dnaAp and needs further investigation. However, the interaction of MtrA with 

oriC and the protein interaction with DnaA clearly show that MtrA has an important role 

in the regulation of DNA replication in Streptomyces. 

MtrA binds to the promoter region of ftsZ. The MtrA enrichment peak lies in the 

ftsZ2p which is controlled during development and specifically upregulated in sporulating 

aerial hyphae (Flärdh et al. 2000). A possible explanation why ftsZ expression is not 

altered in the ΔmtrB mutant could be that MtrA does not bind directly to the ftsZ promoter 

(Figure 5.5). It is possible that MtrA binds to an unknown DNA binding protein which 

in turn binds to the promoter region of ftsZ. In the S. coelicolor ΔmtrA mutant ftsZ 

expression is downregulated and the S. coelicolor ΔmtrA mutant forms irregular septa 

(Knowles 2014). The downregulation of ftsZ in S. coelicolor ΔmtrA together with the data 

obtained in S. venezuelae indicate that the effect of MtrA on ftsZ expression is indirect.  

DnaA is not only the initiation protein of chromosome replication it also acts as a 

transcription factor which can activate or repress gene expression (Messer & Weigel 

1997). The regulon of DnaA has been determined in Caulobacter crescentus and includes 

several components of the replisome, the global cell cycle regulator GcrA, the polar 

localization protein PodJ, nucleotide biosynthesis enzymes and FtsZ. The binding of 

DnaA to the promoter regions was shown by EMSAs (Hottes et al. 2005). The latter target 

of DnaA is of great interest because ftsZ is indirectly regulated by MtrA and it is possible 

that MtrA binds DnaA which then binds to the promoter region of ftsZ in S. venezuelae 

and S. coelicolor. However, it is not known so far if DnaA acts as a transcription factor 

regulating ftsZ in Streptomyces and this hypothesis needs experimental testing. One 

possible way to test this hypothesis could be ChIP-seq with DnaA in S. venezuelae. 

It was demonstrated that DnaA and MtrA(TB) interact in M. tuberculosis. 

However, the nature of this protein-protein interaction was not investigated any further. 

RR form homodimers upon phosphorylation to bind to DNA. Heterodimer formation of 

two different RR is a common regulatory mechanism in eukaryotes (Reményi et al. 2004) 

but very rare in prokaryotes. In recent years, examples of RR heterodimer formation as 

regulatory tool in bacteria have been investigated. One example of heterodimer formation 

is the developmental genes whiI and bldM in S. venezuelae. BldM and WhiI belong both 
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to the NarL / FixJ subfamily of RR and are atypical RR regulator with an altered 

phosphorylation pocket. The homodimer of BldM regulates gene expression early in 

development whereas the BldM-WhiI regulates a different group of target genes later in 

the developmental cycle (Al-Bassam et al. 2014). Another example of heterodimer 

formation is the RR RcsB in E. coli. RcsB is phosphorylated by its cognate HK RcsD and 

forms a homodimer to activate target genes including rprA, osmC, osmB and ftsZ 

(Majdalani & Gottesman 2005; Majdalani & Gottesman 2007). RcsB forms a heterodimer 

with RcsA which has a typical LuxR- type C-terminal DNA-binding domain but the N-

terminal region is not related to RR. The RcsB-RcsA heterodimer activates genes 

encoding for exopolysaccharide synthesis which are required for capsule formation. A 

third example of heterodimer formation is NarL-DevR in M. tuberculosis. NarL and 

DevR were shown to interact and both activate genes in nitrate / nitrite metabolism. Both 

RR belong to the LuxR family (Malhotra et al. 2015). It seems to be a common theme 

that RR which form heterodimers are from the same family. MtrA belongs to the OmpR 

family of RR. However, no OmpR family RRs could be observed in the 

immunoprecipitation (Table 5.2) but a RR of the CitB family and a transcriptional 

regulator of the IcIR family. The immunoprecipitation of MtrA is a preliminary result and 

the protein-protein interaction needs to be validated with further experiments like 

Bacterial Two Hybrid (BACTH) or protein pull down assay to investigate the protein-

protein interaction of MtrA with other DNA binding proteins. However, it is likely that 

MtrA interacts with other DNA binding proteins because only 44 out of 1615 target genes 

contain the in silico direct repeat MtrA binding site (Figure 5.6Figure ). The MtrA DNA 

binding site can be determined by DNase I footprinting in future experiments to verify 

that only a few target genes in the ChIP-seq time course data have a MtrA binding site.  

Surprisingly the immunoprecipitation suggests that MtrA interacts with CmlS 

which chlorinates an acetyl group of chloramphenicol (Table 5.2). The chlorination of 

chloramphenicol is essential for its antibacterial activity (Suzuki et al. 1972; Podzelinska 

et al. 2010). This indicates that MtrA might not only regulate secondary metabolite 

production on transcriptional level but also could modify the synthesis of 

chloramphenicol by interacting with a protein involved in chloramphenicol synthesis 

which is not presented in the literature before.  
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5.6 Conclusion and future work 

The data outlined in this chapter show that MtrA(Sv) can be phosphorylated by 

acetyl phosphate. However, the truncated version of MtrB was not functional and the 

phosphotransfer from MtrB to MtrA could not be tested. To investigate the 

phosphotransfer full length MtrB could be reconstituted in proteoliposomes in the same 

way MtrB(Cg) was investigated (Möker et al. 2007).  

Furthermore, the in vitro binding of MtrA investigated by EMSAs indicates that 

the ChIP-seq data needs further validation. The enrichment peak of dnaA is under the 

statistical cut off but MtrA binds to the dnaAp in vitro. More promoter regions need to be 

tested either by EMSA or DNase I footprinting to verify the target genes list. However, 

the data outlined in this chapter suggests that MtrA binds to other DNA binding proteins 

which makes the MtrA regulon more complex.  

 

 

6 Conclusion 

This project identified the TCS MtrAB as a new master regulator of development 

and secondary metabolite production. However, this project just scratched the surface of 

the regulatory role of MtrAB and many questions remain unanswered and further 

investigation is needed.  

The RR MtrA is essential in S. venezuelae most likely due to the involvement in 

the initiation of DNA replication. Removal of mtrB from the chromosome leads to 

permanent activation of MtrA most likely by small phosphor donors or cross talk from 

other HKs. The activation of MtrA is reflected by the increased production of secondary 

metabolites in S. venezuelae and S. coelicolor. Introducing a gain of function MtrA 

protein has a similar effect on secondary metabolite production as shown for 

chloramphenicol.  

The MtrA regulon overlaps with the BldD regulon which is a master regulator of 

development. Furthermore, MtrA might regulate the synthesis and degradation of c-di-

GMP which activates BldD. Other target genes of MtrA suggest that MtrB senses osmotic 

stress e. g. sigma factors, the ectoine operon and components of the polarisome. The 

complexity of the MtrA regulon is most likely due to the interaction of MtrA with other 

DNA binding proteins.  
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