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Abstract 
 

Legally inhabited indigenous, extractive and sustainable use tropical forest reserves, have been 

lauded as a solution to the intractable problem of how to assure the welfare and secure livelihoods 

of the world’s diverse forest-dependent people, whilst conserving the world’s most biodiverse 

terrestrial ecosystems. This strategy has been critiqued by human rights advocates, who assert that 

legally inhabited reserves paternalistically restrict the livelihood choices and development 

aspirations of forest-dwellers, and by conservationists, who argue that sustained human presence 

and resource extraction erodes tropical forest biodiversity. This thesis examines both the 

anthropogenic impacts on tropical forests at the regional, landscape and household scales and the 

livelihood challenges faced by semi-subsistence local communities in the Brazilian Amazon. A 

spatially explicit dataset of 633,721 rural Amazonian households and an array of anthropogenic 

and environmental variables were used to examine the extent and distribution of structural 

(deforestation) and non-structural (hunting) human disturbance adjacent to 45 cul-de-sac rivers 

across the Brazilian states of Amazonas and Pará. At the landscape and household scales, a total 

of 383 camera trap deployments, 157 quantitative interviews and 164 GPS deployments were 

made in the agricultural mosaics and forest areas controlled by 63 semi-subsistence communities 

in the Médio Juruá and Uatumã regions of Central-Western Brazilian Amazonia, in order to 

quantify and explicate the (i) livelihood costs incurred through the raiding of staple crops by 

terrestrial forest vertebrates, (ii) degree of depletion that communities exert upon the assemblage 

of forest vertebrates and (iii) spatial behaviour of hunting dogs and their masters during simulated 

hunts. Our results indicate that at the regional scale, accessibility, fluvial or otherwise, modulated 

the drivers, spatial distribution and amount of anthropogenic forest disturbance. Rural household 

density was highest in the most accessible portions of rivers and adjacent to rivers close to large 

urban centres. Unlike the low unipolar disturbance evident adjacent to roadless rivers, road-

intersected rivers exhibited higher disturbance at multiple loci. At the household and landscape 

scales semi-subsistence agriculturalists lost 5.5% of their staple crop annually to crop raiders and 

invested significant resources in lethal and non-lethal strategies to suppress crop raiders, and to 

avoid losses an order of magnitude higher. Crop raiding was heightened in sparsely settled areas, 

compounding the economic hardship faced by communities already disadvantaged by isolation 

from urban centres. A select few harvest-sensitive species were either repelled or depleted by 

human communities. Diurnal species were detected relatively less frequently in disturbed areas 

close to communities, but individual species did not shift their activity patterns. Aggregate 

species biomass was depressed near urban areas rather than communities. Depletion was 

predicated upon species traits, with large-bodied large-group-living species the worst impacted. 

Hunting dogs travelled only ~ 13% farther than their masters. Urban hunters travel significantly 

farther than rural hunters. Hunting dogs were recognised to have deleterious impacts on wildlife, 

but were commonly used to defend against crop raiders. 
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1.1 Tropical forests; importance and threats 
 

Tropical forests have stood for some 60 million years, and harbour the majority of the Earth’s 

~6.5 million terrestrial species (Burnham and Johnson, 2004, Mora et al., 2011). Yet since the 

mid-1900s, roughly half of all tropical forests globally have been felled by a single species 

(Fagan et al., 2006). Anthropogenic threats are simultaneously eroding tropical biodiversity and 

the natural capital on which humanity depends. Apart from the immeasurable existence value of 

tropical forests, they also provide a wealth of poorly quantified ecosystem services, maintaining a 

biosphere amenable to human existence. These services include carbon storage, climate 

regulation, water purification, and a source of novel pharmaceutical chemicals, which are crucial 

to humanity in general (Costanza et al., 1997). They also provide habitat for timber and non-

timber forest resource populations, and a multi-billion dollar trade in wild-caught fish and meat 

which underpins the livelihoods and subsistence of forest dwellers, who are some of the world’s 

poorest people (Clay and Clement, 1993; Robinson and Bennett, 2013).  

Tropical forests are also simultaneously threatened with deforestation, degradation and 

defaunation. Deforestation is fuelled by population growth, colonisation and shifting global 

consumption patterns (Allen and Barnes, 1985; McAlpine, et al., 2009; Schneider and Peres, 

2015), enabled by road-building (Kirby et al., 2006; Adeney et al., 2009) and driven largely by 

mechanized agricultural expansion (Brady, 1996; Tilman et al., 2001; Gibbs, et al., 2010), 

especially for the production of beef, soy and palm oil (Fitzherbert., et al 2008; Nepstad et al., 

2014). Forest degradation results from wildfires, fragmentation, logging, livestock grazing and 

biomass removal, especially for fuelwood and for charcoal production (Laurance et al., 2002, 

Matricardi et al., 2010; Hosonuma et al., 2012). Lastly, anthropogenic climate change is predicted 

to result in much dryer conditions in seasonally-dry tropical forests including a large portion of 

the Amazon, exacerbating the aforementioned threats and potentially resulting in large-scale 

habitat shifts towards lower biomass and lower diversity ecosystems (Malhi et al., 2009). 

It is estimated that over 5 million tonnes of wild mammal meat is extracted annually from 

Neotropical and Afrotropical forests alone (Fa and Peres, 2001). The removal of forest vertebrates 

by hunters has been dubbed a “bushmeat crisis”, responsible for creating “empty forests” in 

which species larger than 2kg are virtually absent (Redford, 1992; Bennett et al., 2002; Harrison, 

2011). Though commercial hunters are often implicated in wildlife declines (Bowen‐Jones and 

Pendry, 1999), local populations of harvest sensitive species may be severely depressed even by 

isolated households of subsistence hunters (Peres, 1990). Overhunting poses both a direct threat 

to the targeted species and an indirect threat to the forest as a whole. Larger-bodied, slow-

reproducing species, such as primates are especially vulnerable to overhunting (Ripple et al. in 

press). The removal of large-bodied species that previously acted as ecosystem engineers and 

seed dispersers (Desbiez and Kluyber, 2013; Peres et al., 2016), has far-reaching, long-term 
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consequences, deflecting some trajectories of forest regeneration more typical of faunally-intact 

forests (Wilkie et al., 2011).  

The impacts and even the nature of subsistence hunting in tropical forests are the subject of 

divisive academic debate. Subsistence hunters are typically central place foragers, whose hunting 

effort is concentrated in the first few kilometres from the household (Alvard et al., 1997). Some 

argue that they behave as optimal foragers, always pursuing profitable prey regardless of prey 

species vulnerability and adopting the most efficient technologies available to them, resulting in 

the depletion, repulsion and extirpation of vulnerable species in multi-prey assemblages (Hawkes 

et al., 1982; Mittermeier, 1987; Branch et al., 2013). Others argue that subsistence (especially 

traditional) hunters have a well-developed conservation ethic, and that their selective resource and 

spatial utilisation rules result in a sustainable harvest of game species (Read et al., 2010; Vliet et 

al., 2010). 

1.2 Social context 
 

Nation states with sovereignty over the world’s remaining tropical forests are generally 

monetarily poor and have rapidly growing and increasingly market-integrated populations 

(Cincotta et al., 2000; Sachs et al., 2001). Such populations require both agricultural land and 

forest timber and non-timber forest products. The effects of population growth are multiplied by 

the increase in per capita consumption, which is in part a desirable consequence of declining 

poverty, but also a cultural phenomenon resulting from the emulation of the unsustainable 

consumerism characteristic of “developed” nations (Wilk, 1998).  

Globally, and especially in tropical nations, populations have urbanised rapidly in the past century 

(Cohen, 2006). This process is a mixed blessing for tropical forest conservation. By reducing the 

population density in rural areas, urbanisation potentially reduces the direct pressures of both the 

extraction of wild meat and agricultural clearing, and may lead to land abandonment and forest 

regrowth (Cramer et al., 2008; Fearnside, 2008). Wealthier urbanites however, have a higher 

disposable income and higher per capita consumption than their rural counterparts (Margulis, S., 

2004). Though direct pressure is thus reduced, the net pressure, including displaced resource-use 

by urbanites, has increased. Furthermore, the local power vacuum left behind by a depopulated 

countryside may render forests more vulnerable to large-scale disturbance including timber 

extraction, commercial hunting (Parry et al., 2010), goldmining and petroleum extraction.  

National governments and the international community have both ameliorated and exacerbated 

the threats faced by tropical forests. Encouraged in part by the commitments made in the 

Convention on Biological Diversity (CBD), nation states have legally protected over 13% of the 

Earth’s surface (Venter et al., 2014) including 19% of the Earth’s tropical humid forest (Chape et 

al., 2005). Likewise, the Convention on International Trade in Endangered Species (CITES), has 

placed legal restrictions on the international trade of threatened species including mahogany 
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(Verissimo et al., 1995). Lastly, finance mechanisms including the Reducing Emissions from 

Deforestation and Forest Degradation (REDD) and other Payments for Ecosystem Services (PES) 

schemes including the Brazilian Bolsa Floresta, aim to harness global capital to finance the 

protection of forests and their carbon in developing nations.  

These measures have not been without controversy and criticism however. Efforts by the 

international community to instigate strictly protected areas in tropical countries have been 

branded “conservation imperialism” and “fortress conservation” (Guha, 2003; Siurua, 2006). 

They are deemed hypocritical measures imposed by nations that have already enriched 

themselves through wholescale ecological destruction, which threatened or devastated the 

livelihoods of aborigine communities and involve grievous human rights abuses (Hutton et al., 

2005). REDD has been sharply critiqued, not only for its flawed methodology (Clements, 2010; 

Watch, 2013), but because it is perceived to be an effort to simultaneously permit wealthy 

polluters to continue “business as usual”, whilst disenfranchising the rural poor (Griffiths and 

Martone, 2008). National governments are likewise criticised for investing tax revenues in mega-

projects with disastrous environmental and social consequences (Fearnside 1989), promoting the 

exodus of neocolonists to tropical forest areas (Peres and Schneider, 2012), providing perverse 

financial incentives for deforestation (Binswanger, 1991), and engaging in rest seeking behaviour 

whilst colluding with illegal loggers (Palmer, 2001) 

1.3 The Brazilian Amazon and its inhabitants 
 

Though tropical regions are ecologically and socially distinct, the Brazilian Amazon exemplifies 

many of the aforementioned themes. The Amazon is the largest contiguous tropical forest on 

Earth, harbouring a quarter of global terrestrial biodiversity (Malhi et al., 2009) but experiences 

the globally highest levels of absolute deforestation (≈2 Mha yr‒1, Laurance et al., 1998). Roughly 

44% of Brazilian Amazonia falls under nonprivate conservation areas, 80.4% of the area of which 

is allocated to legally inhabited reserves in which residents may pursue extractive livelihoods 

(Peres, 2011)  

The Brazilian Amazon is inhabited by ~25M people of diverse socio-ethnic backgrounds. 

Populations are divided between sparsely inhabited hinterlands and dense cities and such as ~2M 

strong Manaus, which encompasses over half of the inhabitants of the ~1.6M km2 state of 

Amazonas. Amazonian urban and rural domains are however intertwined. The vast majority of 

urbanites are recent migrants. Many were either born in rural communities, or still have extended 

family there. As a result, rural-urban networks are maintained and multi-sited households are 

common (Pinedo-Vásquez and Padoch, 2009). Many households attempt to benefit from both the 

access to goods and services afforded by a town and the access to natural resources afforded by 

the hinterland. These households often garner resentment from their fellow community members, 
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who consider their appropriation of land, fish and other natural resources to be excessive and 

unwarranted.  

Rural Amazonians include over 300,000 Indigenous Amerindians belonging to around 160 

diverse linguistic and cultural groups, 50 of which are amongst the last remaining uncontacted 

tribal groups on Earth (Cunha and De Almeida, 2000). The pre-Columbian Amazonian 

population density is a matter of scholarly debate, but the presence of Amazonian dark earth 

(terra preta. Lima et al., 2002), an anthropogenic soil created over long periods of charcoal 

enrichment, indicates that in favourable locations including river bluffs and areas of fertile 

floodplain (Denevan, 1996), populations were dense and longstanding. Europeans decimated the 

population of Amerindians through both deliberate extermination and the introduction of novel 

diseases (Roosevelt, 1997). Amerindians are still subject to deep-seated prejudice in Brazilian 

society, part of which views then as an uncivilised obstacle to progress (Pallemaerts, 1986).   

According to the Brazilian Institute of Geography and Statistics (IBGE) 97% of the population of 

Amazonia do not identify themselves as indigenous. In the last three decades, new waves of 

colonists have arrived in the Amazon from central-southern Brazil, enticed by government 

subsidies and Instituto Nacional de Colonização e Reforma Agrária (INCRA) resettlement 

programs (Binswanger, 1991). The majority of rural Amazonians are neither newly arrived 

colonists, nor indigenous Amerindians however, but mixed heritage river dwellers (ribeirinhos), 

who are the main focus of this study.  

As their name suggests, ribeirinhos have settled along Amazonian waterways. Many did so in 

search of rubber during the rubber boom of 1890-1930. These seringueiros (rubber tappers) 

became the debt-slaves of wealthy rubber barons (patroes) who claimed monopolistic control of 

river basins and extracted a rubber tithe, whilst simultaneously controlling access to goods and 

services (Hvalkof, 2000). The early biopiracy of the British broke the Brazilian rubber monopoly 

by creating plantations in SE Asia, which ultimately caused the crash of the Brazilian rubber 

industry (Brockway, 1979). The majority of seringueiros migrated to cities during the collapse of 

the rubber industry beginning in the early 1900s (Resor, 1977) but the remainder still engage in 

semi-subsistence agricultural and extractive livelihoods. Freedom from patroes did not 

necessarily entail prosperity. High transport costs meant that rural ribeirinhos have been prey to 

regatoes, river-based merchants with a virtual monopoly on trade, who exchange manufactured 

goods directly for agricultural produce at an unavoidably high price (Cleary, 1993). The increased 

availability of small outboard motors (rabetas), the regional reduction in the trade of animal pelts 

and skins (Bodmer et al., 1988) and the creation of producer cooperatives for farinha and rubber 

within the past few decades have greatly diminished the influence of regatoes. During the 1970s, 

seringueiros whose livelihoods depended on extracting resources from standing forests stood in 

the way of land-seeking cattle-ranchers. The murder of human rights leader and extractive union 

campaigner Chico Mendes, galvanised the movement to instate extractive and sustainable use 
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reserves to legally protect the livelihoods of extractivists and the forests on which they depend 

(Fig. 1.1). Consequently, ~ 63.1 million ha of sustainable-use reserves were created in Brazilian 

Amazonia since 1991 (Peres, 2011).     

 

Figure 1.1. Examples of Amazonian extractive livelihood activities including the harvest and 

processing of Euterpe oleracea (locally açaí) (A & D), fishing (B), extraction of latex rubber from 

a rubber tree (Hevea brasiliensis) (C) basket weaving using Heteropsis flexuosa (locally cipó 

titica) (E), extracting sawn timber (F) and a hunted Cuniculus paca (locally paca) (G) (Photos: 

MIA) 
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Amazonian forests are also highly heterogeneous given their baseline geomorphological and 

edaphic templates (Fig. 1.2). River basins can be classified into three types based on the chemical 

properties of the river. Rivers that drain from the geologically young Andes are termed “white-

water” rivers (Sioli, 1950). They are virtually pH neutral and carry a heavy sediment load and 

consequently enrich the white-water várzea floodplains during the seasonal flood pulse (Junk et 

al., 1989). Rivers draining from basins dominated by sandy soils, are acidic and tannic from 

partially decayed dissolved plant matter and are termed “black-water” rivers. They are bordered 

by igapó forests and nutrient-poor dwarfed wooded vegetation such as campina and 

campinarana. Lastly, low sediment “clear-water” rivers mostly drain from the Brazilian and 

Guianan shields. River chemistry has a powerful impact on human livelihoods. Black-water rivers 

have been called “hunger rivers” by their inhabitants due to nutrient-poor soils and scarcity of 

wild protein sources (Janzen, 1974), though the acidic waters suppress disease vectors including 

mosquitos and sandflies.  

 

 

Figure 1.2. The distribution of major whitewater, blackwater, and clearwater rivers in the 

Amazon basin. Source:  Junk, et al., 2011 
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1.4 The Médio Juruá and Uatumã study regions 
 

The bulk of this thesis focusses upon the Médio Juruá and Uatumã regions of Western and 

Central Brazilian Amazonia, respectively, which are centred around three extractive and 

sustainable use reserves. The Médio Juruá study region covers an area of 1,637,008 ha and 

consists of 63.9% of primary unflooded (terra firme) forest, 30.0% of seasonally-flooded várzea 

forest, 4.4% of permanent water bodies, which include the Juruá River (the second-largest white-

water tributary of the Amazon) and its tributaries and oxbow lakes, and 1.8% deforestation. Two 

sustainable-use reserve - the Uacari Sustainable Development Reserve and the Médio Juruá 

Extractive Reserve - jointly protect 42.3% of this landscape. The nearest towns are Carauari, 

which is 88 fluvial km downriver from the Médio Juruá Reserve and has a population of 4145 

families, and Itamarati, which is 120 fluvial km upstream from the Uacari Reserve and has a 

population of 905 families.  

The Uatumã study region covers an area of 1,601,704 ha and consists of 62.3% of undulating 

upland primary unflooded (terra firme) forest, 17.9% of primary low-lying and seasonally-

flooded igapo forest, 11.1% permanent water bodies, which include the Uatumã River (which 

connects the Balbina reservoir to the Amazon River) and its main tributary the Jatapú River, 4.0% 

deforestation and 4.7% of campina and campinarana non-forest vegetation on oligotrophic soils. 

The Uatumã Sustainable Development Reserve legally protects 27.0% of this landscape. The 

nearest towns are Vila Balbina, which has a population of 420 families and is 66 fluvial km 

upstream of the reserve, and Sao Sebastião, Itapiranga and Urucará, with populations of 1214, 

1345 and 2051 families, respectively, and are 37, 40, and 53 fluvial km downriver of the reserve, 

respectively.  

Both regions are inhabited by ribeirinhos, with producer cooperatives and resource-management 

programs. Large-scale ecological and socioeconomic differences between the two study regions 

are due to river chemistry and proximity to Manaus, the largest city in Brazilian Amazonia. The 

Juruá region encompasses white-water floodplain ecosystems, whereas the Uatumã region 

encompasses black-water ecosystems. Secondly, the Juruá region is over five times farther from 

Manaus, which increases transaction costs and reduces market opportunities for Juruá inhabitants.  

Manioc (Manihot esculenta) is the staple source of carbohydrates in our study regions, as in much 

of the humid tropics (Cock, 1982; Frazer, 2010). Crops including maize and bananas are also 

locally important, but their higher nutrient requirements prevent their large scale cultivation in 

most of Amazonia. The main varieties of manioc are high-cyanide manioc (Peroni et al., 2007), 

locally called “roça brava”, and low-cyanide manioc, locally called “macaxeira”. M. esculenta 

produces large tubers, tolerates poor tropical soils and is pest-resistant. Manioc is processed in a 

flour-house (locally “casa de farinha”) into a relatively imperishable, high calorie course flour 

(locally “farinha”) (Fig. 1.3). Communities grow manioc in swidden agricultural plots called 
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roçados, often representing the main livelihood activity for semi-subsistence riparian 

communities in the lowland Amazon (Newton et al., 2012). Roçados are generally active for 4 

years until weed encroachment and declining soil fertility force their abandonment (Unruh, 1988). 

The resulting secondary forests (locally “capoeiras”) are then left to undergo successional 

regrowth until standing biomass and soil nutrient loads are sufficient to permit re-clearing. This 

shifting agriculture process creates a mosaic of habitats under different successional stages 

around village settlements, with shorter-rotation plots generally closer to the community (Coomes 

et al., 2000).  

 

 

Figure 1.3. The cultivation and processing of manioc (Manihot esculenta). A cleared and burned 

agricultural plot (roçado) with immature manioc plants (A) and maturing manioc plants (B). The 

peeling (C), grinding, sieving and roasting (D) of manioc into farinha. (Photos: MIA) 
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1.5 The challenge of sustainable use  
 

Amazonian sustainable use and extractive reserves were created with the dual purpose of 

maintaining human extractive livelihoods, as well as protecting the biodiverse forest ecosystems 

upon which those livelihoods depend. Many conservationists consider these dual aims to be in 

conflict. They argue that human occupation of protected areas inevitably results in habitat 

degradation and species extirpation and that biodiversity is best served through the enforcement 

of strictly protected areas (Kramer et al., 1997, Brandon et al., 1998).  

 

 

Figure 1.4. Examples of natural resource management programs in the Juruá region. The 

monitoring of river turtle (Podocnemis spp.) nesting beaches (A) and the offtake of pirarucu 

(Arapaima gigas) from managed oxbow lakes (B). (Photos: MIA) 

Many tropical forest resources, including timber and wild-caught game animals and fish are 

classic examples of common pool resources (Ostrom, 2005) in that they are both rivalrous and 

non-excludable. This makes them especially vulnerable to a ‘tragedy of the commons’, in which 

all users are incentivised to extract as much as possible, leading to stock collapses. Such collapses 

are indeed evident in stocks of timber and of certain large-bodied species of fish regionally 

(Castello et al., 2011; Richardson and Peres, 2016) and locally for populations of Brazilian 

Rosewood (pau rosa) in the Uatumã region and of pirarucú (Arapaima gigas) and river turtles 

(Podocnemis spp.) in the Juruá region (but see Campos-Silva & Peres 2016). Recent community 

resource management programs for pirarucu in the Juruá region have however proven effective at 

restoring fish stock (Silva, 2014). Pirarucú, congregate in oxbow lakes, seasonally detached from 

the main river during the low water season, and occasionally surface to breathe. This facilitates 

both their monitoring and the exclusion of non-residents (Fig. 1.4). In addition, the Bolsa Floresta 
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program, managed by the Fundação Amazonas Sustentável (FAS) is a payments for ecosystem 

services (PES) scheme that incentivises communities to avoid deforesting primary forest and to 

implement timber stock management strategies (Vianna and Fearnside, 2014).  

The management of subsistence hunting has however proven a greater challenge. Many of the 

large and highly prised game species such as South American tapir, are far less productive than 

even large aquatic species, such that their populations are likely to respond more slowly to offtake 

management. Furthermore, populations of terrestrial game species are difficult to locally monitor 

(Munari et al., 2011, Constantino et al., 2012) and excluding hunters from the forests they inhabit 

is virtually impossible. As part of a government-funded resource management program 

(Programa de Monitoramento da Biodiversidade e do Uso de Recursos Naturais em Unidades de 

Conservação Estaduais do Amazonas, ProBUC) and the Projeto Médio Juruá (led by Prof CA 

Peres, University of East Anglia), line transect surveys have been conducted in both the Juruá and 

Uatumã regions as a means of faunal monitoring. As a means of monitoring hunted populations, 

line-transects surveys have however been criticised for their detectability biases, because hunted 

species are known to change their behaviour in response to persistent hunting and other 

anthropogenic disturbance, such that they become less detectable (Johns, 1985). Though the use 

of camera trapping rates to infer relative abundance is not without problems (Sollmann et al., 

2013), camera traps are becoming ubiquitous tools in conservation and ecology (Rowcliffe and 

Carbone, 2008) and they potentially offer a monitoring solution that circumvents species 

behavioural responses to human surveyors.  

1.6 Aims and thesis structure 
 

The overarching aim of this study on wildlife responses to anthropogenic disturbance in 

Amazonian forests, was to examine the degree to which current human occupation and extractive 

use of tropical forests is compatible with biodiversity conservation. To that end, research was 

carried out at the regional, landscape and community scales, and encompassed both the 

ecological/biotic impacts of human activities, and the conflicts generated by human livelihoods 

and extractive practices. This study was developed in response to the threats to tropical forests 

identified above, and the potential for legally inhabited sustainable use and extractive reserves to 

serve dual social and conservation purposes.   

The four data chapters of this thesis were written in manuscript format, with the intention of 

publishing each separately as articles in peer-reviewed journals. As such, each chapter contains its 

own reference list and appendices and some repetition is unavoidable in material within the 

methods sections.  

Chapter 2: A regional-scale approach and Geographic Information System (GIS) tools were used 

to quantify and compare patterns of structural and non-structural anthropogenic disturbance 
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across 45 cul-de-sac roadless and road-intersected navigable rivers throughout the states of 

Amazonas and Pará. Whole-river and fluvial-segment analyses were employed to elucidate 

within-river and between-river patterns. The relative importance of environmental, local and non-

local anthropogenic factors in driving forest disturbance, was discussed.  

Chapter 3: The prevalence and livelihood impacts of terrestrial vertebrate crop-raiding damage 

to manioc semi-subsistence agricultural plots in the Médio-Juruá region was quantified, 

contextualized and explained using camera traps and structured interviews. The degree to which 

subsistence hunting gains are sufficient to offset losses to crop raiders, as well as the 

complementarity of social and ecological research approaches, were discussed.   

Chapter 4: Camera traps and structured interviews were used to survey the peri-community areas 

controlled by semi-subsistence communities in both the Médio Juruá and Uatumã regions, in 

order to quantify envelopes of depletion of forest vertebrates in proximity to human communities.  

The anthropogenic impacts on the detection rates of individual species, the aggregate biomass of 

forest vertebrates and on faunal activity patterns, at both the community and landscape scale, 

were assessed. The extent to which community-based subsistence offtake is compatible with 

ecologically functional populations of tropical forest game species, was discussed.  

Chapter 5: The spatial behaviour of hunting dogs and their masters during simulated hunts in the 

Juruá and Uatumã regions, was characterised. The effectiveness of novel GPS units was 

compared to that of commercially available alternatives. The ecological costs and social benefits 

of the use of hunting dogs, were discussed.   

Chapter 6: The main findings of the four data chapters were summarised. Themes common to the 

four data chapters were synthesised and discussed. Lastly, potential conservation strategies and 

fruitful areas of future research were indicated.
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Abstract 
 

Infrastructure development in the Brazilian Amazon continues apace, opening new frontiers into 

hitherto remote, previously undisturbed areas, yet the spatial extent of different patterns of 

human-induced structural (deforestation) and non-structural (hunting) disturbance in tropical 

forest regions is yet to be investigated simultaneously.  This study examines an aggregate area of 

301,641 km² adjacent to 45 cul-de-sac rivers across the Brazilian states of Amazonas and Pará. 

These rivers represent the interface between highly accessible fluvial highways and remote forest 

headwaters across Amazonia, which are becoming integrated to varying degrees into an 

expanding network of roads and towns, eroding their inaccessibility. We use a spatially explicit 

dataset of 633,721 rural Amazonian households and an array of anthropogenic and environmental 

variables to firstly quantify and compare patterns of structural and non-structural anthropogenic 

disturbance, and to secondly examine correlates of deforestation such as rural population density, 

one of the hypothesised primary drivers of disturbance. Comparing structural and non-structural 

disturbance, our findings conservatively suggest that non-structural disturbance accounts for an 

area over eighteen times larger than structural disturbance. Our analyses also confirm that 

accessibility modulates the drivers, spatial distribution and amount of tropical forest disturbance. 

Rural household density was highest adjacent to rivers whose mouths are close to large urban 

centres in their most accessible portions. Roadless rivers succumbed to low, unipolar disturbance, 

whilst road-intersected rivers exhibited higher disturbance footprints at multiple loci. These 

results suggest that the development trajectory chosen by lowland tropical forest countries can 

have far-reaching implications for biodiversity. 
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2.1 Introduction 
 

Despite the fact that tropical forests simultaneously harbour the majority of global terrestrial 

biodiversity and provide ecosystem services crucial to humanity (Naidoo et al., 2008), they 

continue to be converted or degraded by multiple anthropogenic threats (Wright, 2010). Land-use 

change is arguably the most significant global scale driver of terrestrial biodiversity loss (Sala, et 

al., 2000). Habitat conversion due to agricultural expansion is identified as the principal 

mechanism (Tilman et al., 2001) and tropical forests bear the brunt of the damage (Gibbs, et al., 

2010). The degradation and conversion of tropical forests entails a staggering biotic simplification 

across multiple taxa (Barlow et al., 2007; Gibson, et al., 2011). On the other hand, merely 

preventing habitat conversion is insufficient to safeguard tropical biodiversity. Although 

superficially intact tropical forests may appear to be an unbroken impenetrable mat stretching in 

all directions, this seductive picture may mask an eerily silent “empty forest” (Redford, 1992) in 

which species larger than 2kg may be virtually absent due to overhunting (Harrison, 2011). 

Retaining merely structurally intact forests may thus be a Pyrrhic victory, especially if the loss of 

functionally crucial taxa results in continued long-term tropical forest degradation (Peres et al., 

2016).   

The Amazon rainforest, 62% of which falls within Brazil, harbours roughly a quarter of global 

terrestrial biodiversity (Malhi et al., 2009) and is the largest contiguous tropical forest on Earth. 

The Brazilian Amazon experiences the globally highest levels of absolute deforestation (≈2 Mha 

yr‒1, Laurance et al., 1998). The “Amazonia Legal” region within Brazil covers an area of ≈ 

508,788,238 ha, over 25% of which is protected by legally inhabited reserves including 

indigenous, sustainable use and extractive reserves (de Marques, et al., 2016; IUCN and UNEP-

WCMC (2015)) and an additional 21% are protected by indigenous territories.  

Cul-de-sac wilderness rivers are pivotal in strategies to protect tropical biodiversity, and can be 

defined as rivers which do not act as thoroughfares between urban centers (Appendix A). In 

Amazonia, they are typically first- and second-order tributaries that link major fluvial highways 

including the Amazonas/Solimões, Negro and Madeira Rivers, with remote and largely 

uninhabited headwater regions, which retain some of the last remaining tracts of inaccessible 

tropical forest wildlands on Earth (Peres and Lake, 2003).  The unidirectional accessibility of cul-

de-sac rivers imposes livelihood constraints on their inhabitants, limiting the spread of 

anthropogenic disturbance to the lower portions of river basins. The influence of urban centres 

and the expansion of road networks, however, is beginning to erode their isolation. In particular, 

the advance of deforestation frontiers along the “arc of deforestation” has culminated in a highly 

modified forest mosaic in eastern and southern Amazonia. The development of the Trans-

Amazon Highway in the 1970s, enabled colonists to bypass fluvial navigational constraints and 

access hitherto inaccessible forest areas. Brazilian development policy and especially the perverse 
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subsidies and encouragement (by the Instituto Nacional de Colonização e Reforma Agrária 

(INCRA)) of Amazonian colonisation, have actively fuelled this movement (Binswanger, 1991). 

Brazilian government commitments to develop hinterland infrastructure colluded with foreign 

interests is paving the way for extractive industries based of mineral resources (Reid and De 

Sousa, 2005; Ferreira et al. 2015), and make it likely that even currently remote areas will be 

affected.  

Rural extractive communities and isolated households are the only inhabitants of long stretches of 

cul-de-sac Amazonian rivers. Rural Amazonians are not homogenous, but fall on a socio-ethnic 

spectrum (Chibnik, 1991) between; (1) Indigenous Amerindian peoples, who have occupied 

Amazonia for some 10,000 years (Miller, and Nair, 2006). Numbering over 300,000 people, they 

belonging to around 160 diverse linguistic and cultural groups, ~50 of which are amongst the last 

remaining uncontacted tribal groups on Earth (Cunha and De Almeida, 2000), but are collectively 

referred to as indians (índios); (2) Neo-colonist groups of mixed European and African descent 

who migrated into the Amazon within the last three generations, often collectively referred to as 

colonos; and (3) Groups of mixed Amerindian and non-Amerindian descent whose ethnicity, 

identity, culture and livelihood practices are an intermediate mixture between the aforementioned 

groups, who are often referred to as river dwelling caboclos or ribeirinhos.    

Rural Amazonian livelihood strategies likewise fall on a spectrum between self-sufficient 

subsistence extractivism and market-integrated agricultural production. Whilst most households 

engage in both to varying degrees (Newton et al., 2012), high degrees of market integration are 

often associated with more recent colonists (Stocks et al., 2007; Lu et al., 2010). Horticultural 

practices and small-livestock husbandry are largely restricted to comparatively small, heavily 

modified areas close to homesteads to maximise production and minimise travel costs. By 

contrast, extractive livelihood practices for subsistence, including hunting and harvesting of other 

nontimber forest products, require extensive catchment areas. Hunters range over large areas and 

capture widely distributed and highly mobile prey, without directly modifying forest structure in 

the short term (but see Peres et al., 2016).  As predicted by bid-rent theory (Von Thünen, 1966), 

households engaging primarily in agricultural production, prioritise proximity to urban centers to 

minimise transport and exchange costs, whereas those engaging primarily in subsistence 

extractivism, who occupy what Von Thünen termed the “wilderness”, prioritise access to natural 

resources under lower competitive arenas. 

Over 97% of Brazilian Amazonians are non-tribal, and typically of non-indigenous descent 

(IBGE, 2008). Though often occupying remote areas and adopting elements of indigenous 

livelihood practices, most ribeirinhos are integrated to varying degrees into the Brazilian 

economy and society and depend on state infrastructure and market goods and services. They are 

therefore influenced by large-scale sociopolitical and economic processes such as the waxing and 

waning of the rubber industry, which impelled them to settle remote headwaters with its rise and 
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drew them back into urban areas with its collapse (Hecht and Cockburn, 2010, Parry et al., 

2010a). Recent government welfare programs and subsidies, such as “Bolsa Familia”, “Luz Para 

Todos” and “Minha Casa Minha Vida”, have somewhat mitigated the rural exodus.  

Different forms of human-induced disturbance in tropical forest regions are almost always 

considered separately in the conservation science literature (Laurence and Peres, 2006). To our 

knowledge no study has analysed the threats of both hunting and deforestation in the context of 

cul-de-sac tropical forest rivers (but see Parry et al 2010b for an analysis of extractive activities 

along eight roadless cul-de-sac rivers). This study uses an array of spatially explicit human 

population and environmental datasets, including the locations of 633,721 rural Amazonian 

households, to, firstly, quantify two widespread forms of human structural and non-structural 

disturbance in tropical forest regions, deforestation and hunting, associated with 45 cul-de-sac 

rivers. These rivers represent ~ 23,000 km of fluvial distance associated with an area of over 

301,000 km². Secondly, we examine the relative importance of local and external anthropogenic 

and environmental factors in explaining the extent of deforestation and hunting. Finally, we 

discuss the conservation implications of large-scale infrastructure development and socio-

demographic changes in Amazonia. By examining truly unipolar rivers alongside those with a 

degree of road connectivity, we hope to provide insights into the future of an increasingly 

accessible Amazon.   

Due to differences in the aforementioned livelihood practices, we hypothesise that structural 

disturbance will encompass a small subset of the area affected by non-structural disturbance. We 

anticipate that highly detectable forest disturbance, will be concentrated near loci of access to 

external centers of services and trade. Along roadless rivers these loci will be located at river 

mouths accessible to market towns. By contrast, rivers bisected by roads in their upper sections, 

along which agricultural settlements have developed in the last three decades, will exhibit a more 

bimodal pattern of disturbance.  

Due to the inaccessibility of our study river-basins, we hypothesise that rural households are the 

main agents of disturbance along these rivers and that rural population density is the main 

predictor of disturbance. In addition to population density, the spatial configuration of rural 

settlements, should also affect patterns of disturbance. Small and large-scale household clustering 

increases pseudo-interference and exploitative competition (McGinley, 2008, Levi et al., 2009), 

causing hunting catchments to coalesce and therefore reducing the overall hunting footprint and 

lowering rates of disturbance per household.  

As rural households can rely on both extractivism and agriculture, and assuming that rural 

settlements approximate an ideal-free distribution (as in rural communities elsewhere: Moritz et 

al., 2014), we hypothesize that both environmental and anthropogenic factors drive rural 

population density, with a higher household density along rivers with more abundant natural 

resources and easier access to markets. Anthropogenic factors such as roads, increase disturbance 
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both directly and indirectly by increasing rural population density, whereas environmental factors 

indirectly affect disturbance by either enabling or hindering both rural populations and external 

actors. For further discussion of the individual hypothesised drivers of disturbance in our study 

area, see Appendix K.  

2.2 Methods 

 

2.2.1 Study area  

 

Our analysis focuses on 45 navigable cul-de-sac rivers distributed across the two largest states in 

Brazil, representing the largest tropical forest sub-national divisions on Earth, Amazonas and Pará 

(Fig. 2.1). The former has a total population of 3,938,336, encompasses 157,128,871 ha, has 

experienced only ~2% deforestation (PRODES, 2009), and has an overall mean rural human 

population density of ~0.4 inhabitants per km² (IBGE, 2008). The state of Pará has a total 

population of 7,792,561, covers 124,836,546 ha, has a mean rural population density of ~1.5 

inhabitants per km² (IBGE, 2008) and has experienced a deforestation rate that is roughly ten-fold 

higher (~20%). Mean road density (km/km², including major unpaved roads) across the states of 

Amazonas and Pará is approximately 0.00219 and 0.00981, respectively. Given Brazil’s 

economic trajectory in frontier expansion and geopolitical commitments to develop the Amazon 

using massive tax-payer investments (Laurance et al., 2001; Peres, 2001), conservationists often 

project the future of Amazonas as analogous to present-day Pará. Insights gained from the latter 

can therefore inform future conservation and development policies in the former.     
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Figure 2.1: Study area in the Brazilian Amazon, showing the distribution of 45 studied cul-de-sac 

rivers selected in this study (white, black and blue lines representing white-water, black-water and 

clear-water rivers, respectively) against a background of land-cover classification in which green 

indicates forest, red indicates deforestation, peach indicates natural non-forest vegetation, and 

blue indicates water-bodies (PRODES 2009). Number codes next to rivers correspond to those 

listed in Table 2.1. Areas outside Brazil are indicated in grey and state boundaries are represented 

by dark grey lines. Manaus, the capital of the state of Amazonas, is indicated by a black circle. 

Inset map shows continental scale location of the study area.  

2.2.1 GIS integration and analysis 

 

All GIS data extraction and analysis was undertaken using ArcGIS version 10.3. Shapefiles were 

projected into the South American Albers Equal Area Conic projection to ensure consistent and 

accurate area calculations. Statistical Analyses were undertaken using R version 2.1.5. Rivers 

meeting the following criteria were designated “target rivers” to be used in further analysis: (1) 

river headwaters are within Brazil; (2) river mouth is within Amazonas or Pará; (3) river is 

inhabited, with households at least 25 fluvial km upstream from the mouth; (4) river is not a 

tributary of another target river; (5) river is a cul-de-sac, rather than a  fluvial route between 

towns (a “bead-chain” river), though it may be intersected by one or more roads. Our minimum 

criterion defining town-hood is 1000 households (see Appendix E).
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Three river polyline shapefiles were inspected: (1) the IBGE (2008) “hidro tot linha” shapefile; 

(2) The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) 

Amazon River Basin Land and Stream Drainage Direction Maps (Mayorga et al., 2012); and (3) 

the Hydrosheds hydrographic dataset (Lehner and Grill, 2013a), and later compared to ESRI 

basemaps. Rivers were digitised from basemaps, because existing shapefiles did not accurately 

represent the paths and fluvial complexity of small rivers. Where the river course was obstructed 

by cloud, the ESRI basemap was supplemented with the three aforementioned shapefiles. A total 

fluvial distance of 22,992 km was digitised. Despite its relative simplicity, the “hidro tot linha” 

shapefile, which was the most accurate of the available existing river shapefiles, was comparable 

in terms of associated area, rural households and deforested area, to the digitised rivers. See 

Appendix B for river digitisation methodology and a detailed comparison between the digitised 

rivers and existing shapefiles. 

Areas of analysis within which we extracted all other variables, were designated per target river. 

Buffers of 10 km around the digitised rivers were clipped where they met a main bead-chain river 

and the boundary of the PRODES 2009 deforestation data. To avoid double-counting, buffers 

were partitioned as follows. Rivers were converted to points at every 1 km of fluvial distance and 

thiessen polygons were constructed to determine the midpoint between rivers. These polygons 

were clipped by the extent of the aforementioned buffers (see Appendix C). Using the 

aforementioned thiessen polygons, river buffers were then divided longitudinally into 25-km 

segments of fluvial distance, and anthropogenic and environmental variables were extracted both 

at the segment and whole-river scale. 

Two measures of associated area per target river were calculated. The area within river buffers 

that was not classified in PRODES 2009 as either water, no data, or natural non-forest vegetation 

was designated “deforestable”. The area within river buffers that was not classified in PRODES 

2009 as either water or no data was designated “huntable” and/or “inhabitable”. As part of the 

PRODES methodology, pixels obscured by cloud in any given year are classified as water, 

deforested or non-forest vegetation if this was known from previous years. Residual cloud pixels 

thus disproportionately represent forest and for the purposes of this analysis, they were treated as 

such. 

The length of polylines representing target rivers was calculated in ArcGIS. Along each target 

river, ten equally spaced points were created. At each point, the width of the river perpendicular 

to the direction of flow was measured on the ESRI basemap. An average value per river was 

taken from these measurements. To obtain an average flow accumulation value per river the 

ORNL DAAC flow accumulation database, with a cell size of 500 m, was used. Sample points 

were created in the midpoint of every 25-km fluvial segment. The highest flow accumulation 

value within a 1-km buffer of the sample point was taken. This was necessary to capture the flow 

accumulation value for the target river itself, because the flow accumulation dataset did not 
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perfectly match the digitised river. A mean of the sample values was taken for each river. To 

calculate river gradient, Shuttle Radar Topography Mission (SRTM) 90-m resolution elevation 

data (Jarvis et al., 2008) was used. The minimum elevation value within a 200-m buffer of the 

start and endpoint of each river segment was taken. A smaller buffer was used for elevation than 

for flow accumulation because the SRTM data is finer scale. Mean slope was then calculated by 

dividing the elevational difference between the start and end of rivers, by the total nonlinear 

fluvial length. A slope value per segment was calculated as the cumulative elevational change 

between the segment and the river mouth, divided by the fluvial distance to the river mouth.  

Three data sources were used to locate waterfalls: (1) the Hydrofalls Global Waterfalls database 

(Lehner and Grill, 2013b); (2) the Woods Hole datasets for Amazonia 

(http://www.whrc.org/mapping/lba_datasets/lba.html, accessed 01/10/2015); and (3) the 

Geonames geographical database (http://www.geonames.org/, accessed 01/10/2015). Due to the 

remoteness of the target rivers, the aforementioned datasets were incomplete. Rivers were 

inspected by eye using ESRI basemaps. Where a waterfall was visually apparent, it was digitised 

regardless of whether it appeared in the above datasets (see Appendix L). Where more than one 

dataset agreed on the location of a waterfall, it was digitised even if it was not apparent from 

basemaps. The number of waterfalls and large rapids were summed both for each river and each 

river segment, by adding all waterfalls/rapids between each segment and the river mouth.  

Deforestation was assessed using the PRODES 2009 raster dataset. To calculate deforested area, 

all cells other than deforested were converted to a polygon and erased from the river buffers. 

PRODES 2009 deforestation data was compared with other years and validated against the Global 

Forest Change dataset (Hansen et al., 2013) (see Appendix D). 

Rural households were extracted from a spatially explicit dataset from the 2007-2009 IBGE 

population census of rural households in the states of Amazonas, Pará, Acre, Mato Grosso, 

Rondônia and Roraima. Each point represents one permanent private rural household. This 

dataset was validated against publicly available IBGE 2007 census data (see Appendix D).  In 

addition to summing all households per river and segment, the observed average nearest 

neighbour distance, which measures the degree of small scale clustering, was calculated. The 

Nearest Neighbour Index was not chosen because the extremely heterogeneous river shapes and 

sizes makes inter-comparison problematic (ESRI documentation for the Average Nearest 

Neighbour Tool, 

http://resources.arcgis.com/en/help/main/10.1/index.html#//005p00000008000000). A measure of 

the extent of occupancy or large scale spread was calculated by summing for each river the area 

of the thiessen polygons containing at least one household. 

Tropical game hunters are typically central place foragers, whereby hunting effort declines 

exponentially with distance from the household, with almost no hunts beyond 10km (Alvard et 

al., 1997; Siren et al., 2004; Peres and Nascimento, 2006; Ohl‐Schacherer et al., 2007; Smith, 
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2008). We therefore defined all forest, deforested and natural non-forest vegetation pixels within 

a 10-km buffer of any rural household as the hunting catchment. Deforested and non-forest areas 

were included because many hunts occur opportunistically in and around agricultural areas (Parry 

et al., 2009; Chapter 3).    

Target rivers relate to market towns of varying sizes at varying distances from their mouths. We 

therefore sought a variable that captures, in a way relevant to the forces acting on rural 

Amazonians, the degree to which river dwellers maintain access to urban centres by creating an 

urban proximity index (UP), applied to an entire river rather than each fluvial segment. For a 

given town and river, this index is expressed as the size of the town (number of households, Usize) 

divided by the number of days travel to the river mouth, Dfluvial (UP = Usize/Dfluvial + 1). The UP 

indices of the two towns closest to the river mouth, were then summed per target river. A day’s 

travel was taken to be 50 km of fluvial distance for a rural Amazonian using a canoe with a small 

outboard motor (locally, rabeta), as validated by our own field experience. For more 

methodological details, see Appendix E. 

IBGE data on paved and unpaved roads was used to create two alternative road variables; road 

length and road intersections. Roads designated as “planned” were excluded by default, but 

inspected using basemaps. Where unmapped roads (paved or otherwise) were clearly apparent in 

the vicinity of target rivers, they were digitised. The length of roads within segmented river 

buffers was calculated, and a road intersection point was digitised wherever a road crossed a 

target river.  

Polygons representing all areas of commercial and artisanal mining claims were created using 

data from SIGMINE (2015). Despite a mismatch between polygons representing registered 

mines, and visually obvious mining disturbance, the available polygons were preferred to 

digitisation of mining sites, in order to avoid analytic circularity (see Appendix F) 

Registered airports and airstrips from the Woods Hole datasets for Amazonia were supplemented 

with unregistered airstrips identified from ESRI basemaps. We do not consider this to be circular 

as the area of deforestation represented by a rural airstrip is small, but easily identified (see 

appendix G). Urban airports were excluded from analysis as they are a reflection of town size, 

which is better captured by the urban proximity index described above.  

Protected area polygons were downloaded from the World Database on Protected Areas (WDPA 

2015) and then merged and dissolved. Protected areas of different types may overlap to a minor 

extent, but were not differentiated. For example, over 2.6% of all forest reserves in Brazilian 

Amazonia fall under both inhabited and uninhabited PA categories.  

A nine level ordinal classification of soil fertility for the Brazilian Amazon (Laurance et al., 

2002) was used to calculate an area-weighted mean soil fertility per river buffer segment. This 

was preferred to an assessment of river geochemistry/colour (see Appendix H). Upon inspection 
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of the distribution of soil fertility within our study area, the lowest class, despite being termed 

soils “with no potential for agriculture”, often overlapped water bodies. Thus two alternative area-

weighted soil fertility variables were created, including or excluding the lowest class. Data from 

the Tropical Rainfall Measuring Mission (Simpson et al., 1996) was used to calculate the mean 

annual precipitation per segmented river buffer.   

2.2.2 Data analysis 

 

2.2.2.1 Patterns of structural and non-structural disturbance  

 

The area associated with each river and river segment was separated into disturbance categories 

as (1) both deforested and hunted; (2) only hunted; (3) only deforested; and (4) neither deforested 

nor hunted, and converted to a percentage of total area. All natural non-forest vegetation was 

considered as potentially subjected to hunting, but not deforestation. Deforestable area per river 

was thus on average 3.0 ± 1.2% smaller than huntable areas, and these were averaged to calculate 

the percentage of both hunted and deforested areas. A Kruskal-Wallis test was then performed to 

determine if the area of different disturbance categories were significantly different per river.  

Rivers were grouped by anthropogenic categories reflecting whether their area of analysis 

included (1) both towns and roads; (2) only roads; (3) only towns; and (4) neither. A Kruskal-

Wallis test was performed to determine if the area of deforestation per river differed significantly 

between anthropogenic categories.  

Roads often emanate from towns near river mouths, making it difficult to disentangle the effect of 

roads from that of urban infrastructure. Rivers were therefore separated into those with and 

without significant road intersections upstream from the river mouth (hereafter, road-intersected 

and roadless rivers, respectively). The proportion of deforestation and road density within each 

25-km fluvial segment was calculated. 

Mann–Whitney–Wilcoxon tests were used to compare levels of absolute and proportional 

deforestation between rivers whose mouths were located in either Amazonas or Pará. As our 

sample size was uneven between states, which covaried with a number of our other explanatory 

variables, we did not include “state” as a predictor in models.  

2.2.2.2 Models of rural household density and deforestation 

 

Generalised Linear Models (GLMs) and Generalised Linear Mixed Effects Models (GLMMs) 

were created to separately determine the drivers of rural population density and deforestation at 

the scale of whole rivers and fluvial segments, respectively. A Spearman correlation matrix was 

created to check for collinearity between continuous variables. Where explanatory variables were 

highly correlated (Spearman’s Rho > 0.7), either the most theoretically appropriate variable was 

included in models or, if variables were equally appropriate, both variables were modelled 
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separately and the model with the lower AIC was retained. Neither soil fertility scores were 

retained in any model. Road length resulted in a lower AIC than road intercepts.   

Histograms were plotted to check variable distributions, which in most cases were right-skewed. 

A two-way boxcox test (Box and Cox, 1964) was used to guide the appropriate transformation of 

the dependent variables relative to the independent variables where lambda values close to zero 

indicate that a log transformation is appropriate. Explanatory variables were converted into 

landscape-scale densities, rates or proportions wherever appropriate. All continuous variables 

were scaled and centred to aid model convergence and comparisons of effect sizes. 

GLMs and GLMMs separately treated area of deforestation and the number of rural households 

as count responses with an associated log-transformed exposure variable (deforestable or 

inhabitable area). To account for the nested structure of segmented river data, GLMMs included 

the river ID as a random effect. Negative Binomial models were chosen because Poisson models 

with a log link revealed overdispersion. They also have an advantage over Quasipoisson models 

that AIC values, rather than QuasiAIC values, can be used to evaluate models. The hunted area 

was derived directly from household locations. It would therefore be circular to model it as a 

response variable using households as an explanatory variable, so hunted area was not modelled.  

The initial whole-river global models of deforestation included as explanatory variables river 

width, soil fertility (including and excluding the lowest class, tested separately), rainfall, slope, 

density of waterfalls and large rapids, density of rural households, nearest neighbour distance 

between households, UP index, proportion of legally protected area, density of airports and 

airstrips (combined), density of roads and road intersections (examined separately), density of 

commercial and artisanal mines (separate variables included simultaneously). Initial whole-river 

global household models included as explanatory variables all of the above, except for rural 

household density and nearest neighbour distance between households. In GLMMs, the distance 

between each segment and the river mouth was also included as an explanatory variable. The 

nearest neighbour distance between rural households was excluded from segment models because 

51% of river segments were uninhabited.  

Models were selected using supervised backwards stepwise deletion. Explanatory variables with 

the highest p-value was sequentially removed, unless this resulted in an increase in ΔAIC > 2, 

until a minimum adequate model was reached. Variables were then sequentially deleted and 

ΔAIC was used to determine if additional deletions were warranted. 
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2.3 Results 
 

Our 45 target rivers (Table 2.1) represent a combined fluvial distance of 22,992 km (mean = 

511.0 ± 12.3 km), with an associated area of 301,641 km² (mean = 6,703.1 ± 578.0 km²) 

inhabited by a total of 21,758 rural households (mean = 484.0 ± 65.2). Land-cover adjacent to 

these rivers was distributed significantly unevenly between the four disturbance categories 

(Kruskal-Wallis test, p < 0.001, Figs. 2.2, 2.3 and 2.5). The combined hunted area associated with 

all rivers was 142,280 km² (mean per river = 3,162 ± 299 km²), over 18 times larger than the 

combined deforested area of 7,817 km² (mean = 174 ± 31 km²).  

On average, nearly half of the area associated with these rivers is neither deforested nor hunted 

(mean = 48.7 ± 3.0%), with nearly half of the area only hunted (mean = 48.4 ± 3.0%) and a small 

proportion both hunted and deforested (mean = 2.7 ± 0.5%).  A very small proportion was only 

deforested (mean = 0.18 ± 0.04%), and a small proportion of the deforested areas did not fall 

within hunted areas (mean =10.4 ± 1.8%).  

 

 

Figure 2.2: Proportional areas adjacent to each study river within each human disturbance 

category. Rivers are ordered by total level of disturbance, from lowest to highest. Stacked bars 

represent the percentage of area and bar colour indicates disturbance category, where 

undisturbed, hunted only, deforested only, and both hunted and deforested are dark green, light 

green, orange and red, respectively. The total adjacent area (km²) per river is indicated by black 

circles. 
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Table 2.1: Study rivers and associated traits. River bifurcations are indicated by hyphenated names. State = the state in which the river mouth is located. AM = 

Amazonas. PA = Para. Length = fluvial length (m). Width = mean width (m). Slope = change in elevation (m) per 100,000 m of fluvial length. Falls = number of 

waterfalls and large rapids. Fert = mean soil fertility. Chem = river colour classification. Area = inhabitable area (km²). Defor = deforested area (km²). Hunt = hunted 

area (km²). Protect = protected area (km²). Hhs = number of rural households. NND = Mean nearest neighbour distance between rural households. Town = name of 

nearest market town. Urban = the urban proximity score. Air = number of rural airstrips. Road = length of road (m). Mine = area of commercial mines (km²). 

name id state length width slope falls fert chem area defor hunt protect hhs NND town urban air road mine 

Abacaxis 1 AM 706166 351 29 0 3.48 black 9359 103 2158 2256 293 151 Nova Olinda Do Norte 1744 0 21085 0 

Agua Preta 2 AM 116142 25 66 0 1.81 black 1556 44 642 975 121 136 Pauini 2103 1 7364 0 

Aripuanã 3 AM 898556 218 21 0 3.35 clear 13840 520 9064 4871 684 432 Novo Aripuanã 3357 2 329651 0 
Atininga 4 AM 301603 55 15 0 3.39 black 2731 136 1348 0 185 204 Manicoré 3102 1 34590 0 

Cabitutu 5 PA 96112 26 67 0 3.03 clear 1540 16 848 1550 173 71 Jacareacanga 2932 1 0 0 

Caiambe 6 AM 142325 256 40 0 2.55 black 2119 171 1227 0 506 60 Tefé 6079 0 0 0 
Canuma_ 

Sucunduri 7 AM 692045 125 25 2 3.33 black 10124 103 2166 4642 188 369 Novo Aripuanã 1140 1 46460 0 
Coarí 8 AM 707064 774 11 0 2.58 black 8360 234 2154 63 399 183 Coari 11148 1 44537 0 

Crepori_ 

Marupa 9 PA 377913 94 43 0 3.54 clear 6136 253 2963 5785 496 54 Jacareacanga 3183 11 28257 31 
Cuiuní 10 AM 537734 100 9 0 2.73 black 6592 36 4240 313 505 255 Barcelos 2462 1 17105 0 

Curuça 11 AM 756048 105 20 1 3.16 white 7983 15 4766 6549 250 449 Atalaia Do Norte 625 0 0 0 

Demini 12 AM 641567 167 79 10 3.03 black 8841 17 4207 4977 522 203 Barcelos 1532 1 31122 0 
Eiru 13 AM 321653 43 29 0 2.93 white 3845 61 1356 2781 231 196 Eirunepé 4637 0 0 0 

Fresco_ 

Riozinho 14 PA 395109 92 71 9 3.22 clear 5733 1090 2795 4362 1007 271 São Félix Do Xingu 8738 7 348303 0 
Gregório_ 

Salvador 15 AM 465520 50 44 0 4.49 white 5745 115 5134 4197 509 232 Eirunepé 1009 1 21632 0 

Guajará 16 PA 141355 59 49 0 3.01 black 2405 28 1721 1932 250 180 Prainha 2284 0 0 0 

Inauini 17 AM 371095 48 36 0 3.52 white 4727 22 3402 3103 412 236 Boca Do Acre 2478 0 0 0 

Ipixuna 18 AM 626979 122 8 0 1.98 black 7522 260 6570 3141 542 338 Tapauá 2410 1 191753 0 

Iriri 19 PA 1132169 411 17 18 2.97 clear 19346 397 4230 19203 90 1864 Altamira 7547 11 167581 0 
Itaquai 20 AM 664836 97 19 0 3.16 white 7301 55 2663 6329 359 55 Atalaia Do Norte 3039 0 30477 0 

Jandiatuba 21 AM 750974 92 20 0 3.13 white 8087 53 1257 4463 326 74 

São Paulo De 

Olivença 2241 1 11658 0 
Jaú 23 AM 597350 86 9 0 2.21 black 7289 23 1977 7375 88 388 Novo Airão 1108 0 0 0 

Jutai_ 

Jutaizinho 24 AM 1229539 181 15 0 2.64 black 14276 122 9916 9984 871 346 Jutaí 2752 0 6231 0 
Liberdade 25 AM 330024 39 41 0 4.71 white 4123 106 2914 2348 405 275 Ipixuna 1234 0 22265 0 

Manacapuru 26 AM 349749 544 13 0 2.68 black 4689 432 3338 238 1071 141 Manacapuru 12940 0 89262 0 

Marauia 27 AM 280704 60 188 4 3.63 black 3725 16 1703 3468 186 63 
Sta Isabel Do Rio 
Negro 1516 0 3602 0 

Maricoré 28 AM 594373 97 13 4 3.32 black 7100 277 2776 538 304 139 Manicoré 4387 0 60587 0 
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name id state length width slope falls fert chem area defor hunt prot hhs NND town urban air road mine 

Maues_ Amanã 30 AM 320717 645 33 1 3.65 black 5023 407 4233 3357 1496 152 Maués 5489 14 22013 25 

Miratu 31 AM 176674 36 33 0 2.61 black 2589 66 826 108 93 263 Uarini 1964 0 10826 0 

Mucuim 32 AM 559739 65 11 0 1.99 white 7081 495 5016 4724 475 563 Canutama 2289 0 442015 0 

Negro_ Xie 33 AM 452316 410 13 7 2.79 black 7055 200 2022 5719 1556 11 

São Gabriel Da 

Cachoeira 4005 1 32913 0 

Padauari_ 
Marari 35 AM 387347 87 73 3 2.71 black 4907 13 2765 1845 168 588 

Sta Isabel Do Rio 
Negro 918 0 0 0 

Parú 36 PA 854873 150 43 8 3.64 clear 13310 177 3207 11055 1000 98 Almeirim 3916 3 72833 35 

Pauini 37 AM 831273 92 15 0 3.46 white 9472 75 4906 290 279 432 Pauini 1879 0 18407 0 
Preto 38 AM 127855 18 81 0 3.45 black 1665 49 1225 860 162 71 Eirunepé 3526 0 0 0 

Rato 39 PA 114164 29 95 0 3.94 clear 1706 29 1246 1619 29 903 Jacareacanga 3801 3 0 49 

Tapura_ Tapaua 40 AM 969769 152 13 0 2.45 white 11550 42 4064 6588 421 619 Canutama 618 0 0 0 
Tefé 41 AM 657522 669 16 0 2.68 black 8025 321 3086 1368 1044 84 Tefé 10724 1 24131 0 

Teuini 42 AM 181253 36 50 0 2.90 white 2274 8 1162 1386 76 500 Pauini 1693 0 0 0 

Trombetas_ 
Mapuera_ 

Tauini 43 PA 630301 368 37 4 3.44 clear 10490 537 5700 9573 2107 154 Oriximiná 11862 4 89202 48 

Uarini 44 AM 310949 256 21 0 2.59 black 4020 121 1698 1070 375 82 Uarini 1905 0 5459 0 
Unini 45 AM 692669 285 8 0 2.08 black 8922 35 4449 9171 363 220 Novo Airão 1052 0 0 0 
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2.3.1 Distribution of structural and non-structural disturbance 

 

Hunted areas were widely distributed both longitudinally and laterally along our study rivers (Fig. 

2.3). In the case of roadless rivers, areas affected by deforestation were unipolar, concentrated 

near the river mouths and areas immediately adjacent to the riverbanks, and occupied a small 

subset of the hunted areas. However, rivers intersected by roads far upstream from their mouths, 

exhibited a multimodal pattern of deforestation, because road intersections across river 

headwaters were associated with recent loci of more aggressive deforestation (Fig. 2.4).   

 

 

Figure 2.3:  Pattern of anthropogenic disturbance adjacent to two example roadless (top panel) 

and road-intersected rivers (bottom panel), representing areas defined by PRODES 2009 as 

water in blue, areas outside the zone of analysis in grey, areas neither hunted nor deforested in 

dark green, areas hunted but not deforested in light green, areas deforested but not hunted in 

orange and areas both deforested and hunted in red. Black and dark blue lines indicate roads 

and the main course of rivers respectively.  
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Figure 2.4:  Longitudinal patterns of deforestation along roadless (top panel) and road-

intersected (bottom panel) study rivers upstream from the river mouth. The deforestation rate (log 

x+1) within every 25-km fluvial segment is plotted against the relative distance from the river 

mouth, ordered from nearest to farthest. Circle size indicates the road density (log x+1), with 

larger circles indicating higher density.  
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2.3.2 The effects of disturbance category and state 

Comparing rivers grouped by anthropogenic disturbance category (Fig. 2.5, Panel A), rivers that 

included roads and towns within their areas of analysis had significantly larger absolute (p < 

0.001) and proportional areas (p < 0.05) of deforestation than those that included only one or 

none of these. Rivers with neither roads nor towns within their area of analysis on average had 

experienced only 1.5 ± 0.6% of deforestation. A single river with a town but no roads experienced 

1.6% of deforestation. Rivers with roads but no towns experienced 2.1 ± 0.6% of deforestation, 

and those with roads and towns experienced 2.8 ± 1.1% of deforestation.  

Neither absolute nor proportional deforestation were significantly different between rivers whose 

mouths are located in either the state of Amazonas or Pará (Fig. 2.5. Panel B. Wilcoxon tests, p > 

0.05 in both cases). 

 

 

Figure 2.5: Comparison of (A) percentage deforestation for rivers grouped by anthropogenic 

category; (B) percentage deforestation for rivers grouped by state; (C) percentage of the 

associated area of all rivers split by disturbance category; and (D) the associated area (km²) of 

all rivers split by disturbance category.  
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2.3.3 Drivers of rural population density and deforestation 

 

At the scale of both whole river basins and of fluvial segments, environmental variables including 

river width, navigability (as indicated by both river slope and the presence of waterfalls and large 

rapids), and soil fertility and were all discarded from both deforestation and household models. 

High mean annual precipitation did, however, reduce deforestation rates at the scale of whole 

rivers (Fig. 2.6. p< 0.05). By contrast, anthropogenic variables including both road and rural 

household density were strong positive predictors of deforestation rate at the scale of whole rivers 

(p< 0.001 in both cases) and fluvial segments (p< 0.001 and p< 0.05, respectively), whilst fluvial 

distance from the river mouth had strong negative effects on both household density and 

deforestation rate at the scale of fluvial segments (p< 0.001 in both cases).  

Rural household density at the scale of whole rivers was highest in rivers close to urban centres 

(p< 0.001), with a lower density of commercial mines (p < 0.01), but with a higher density of 

airstrips (p< 0.05). At the scale of fluvial segments, however, road density replaced urban 

proximity as the primary driver (p< 0.001) and the density or commercial mining site was 

discarded. Legally protected areas had no effect on household density, but negatively influenced 

deforestation rates at the level of whole rivers (< 0.001). Rural airstrips increased the density of 

both rural households and deforestation at the scale of both whole rivers (p< 0.05 in both cases) 

and fluvial segments (p< 0.01 and p=0.05, respectively). 
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Figure 2.6: Odds ratios and 95% confidence intervals for the explanatory variables retained in 

the best performing GLMs of (A) rural household at the scale of whole rivers; (B) deforestation 

rate at the scale of whole rivers; (C) rural households at the scale of fluvial segments; and (D) 

deforestation rate at the scale of fluvial segments. URBAN = the urban proximity score, AIR = 

rural airstrips, MINE.COM = commercial mines, ROAD = road density, DISTANCE = fluvial 

distance from the river mouth, HHS = rural household density, RAIN = mean annual rainfall, 

PROTECT = proportion of legally protected areas.  
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2.4 Discussion 
 

2.4.1 Hinterland accessibility 

 

Physical accessibility is one of the most important overarching moderators of 

anthropogenic disturbance in all remaining lowland tropical forest wilderness regions. Roadless 

rivers, even if they are highly navigable, are inherently protected by the passive defence costs and 

difficulty of long-distance fluvial travel, which largely constrains anthropogenic disturbance, 

especially deforestation, to lower reaches of river basins and the vicinity of the river banks. 

Roadless cul-de-sac rivers in our study not only suffered lower levels of disturbance, but tended 

to show a clear unipolar pattern of human disturbance. Likewise, GLMMs showed that 

deforestation was strongly negatively influenced by distance to the river mouth, and strongly 

positively influenced by both paved or unpaved roads and airstrips. This suggests that once 

external actors introduce alternative means of efficient access via airstrips or roads, fluvial 

navigation barriers can be sidestepped and otherwise remote headwaters can be rapidly colonised. 

The size and prosperity of urban centres, which were an important driver of rural population 

density, are themselves governed both by the environmental characteristics of their location, such 

as the fertility of the soil, but more importantly by their strategic position within the fluvial 

Amazonian transport network. It is no accident that Manaus, the state capital of Amazonas, is 

located at the confluence between the Amazon/Solimoes and the Negro Rivers, which are the 

largest rivers in the Amazon.  

2.4.2 Drivers of deforestation 

 

Several studies have emphasised the importance of roads (Kirby et al., 2006; Adeney et al., 

2009), population growth, shifting cultivation, agricultural expansion (Allen and Barnes, 1985; 

Brady, 1996), and dry season severity (Laurance et al., 2002) as drivers of tropical deforestation. 

By contrast, rural airstrips are rarely considered in analyses of anthropogenic disturbance (but see 

Dávalos et al., 2011). We found that the drivers and enablers of deforestation were 

heterogeneous, including baseline environmental variables, local and external anthropogenic 

variables, as well as the absence of legal protection.  

Environmental variables were, however, overall weak predictors of deforestation, with mean 

annual precipitation being the only environmental variable retained in our deforestation models. 

This weakness may reflect the fact that these variables act indirectly, with their explanatory 

power captured by the anthropogenic variables they influence. For example, high rainfall areas 

are less vulnerable to deforestation, in part because they pose prohibitive logistical challenges to 

road-builders and year-round road access. Furthermore, though we attempted to include the most 

relevant environmental variables, it is possible that others such as rainfall seasonality or primary 

productivity, are more important determinants of human population density and deforestation 
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(Laurance et al., 2002). Despite their wide geographic distribution, the least deforested target 

rivers are clustered in the most aseasonal and least accessible western portions of Brazilian 

Amazonia. This may reflect an uncaptured environmental variable, or the position of the rivers 

within the wider transport network.  

There is some debate over the relative importance of different agents of deforestation, including 

smallholders vs. largeholders and long-term residents vs recent colonists. There is evidence that 

the drivers of tropical forest disturbance are increasingly decoupled from small-scale traditional 

agriculturalists and connected to urban expansion and wealthier actors supplying external markets 

(Rudel et al., 2009; DeFries et al., 2010). On the other hand, resettled smallholders account for 

much of Amazonian forest conversion and fires in the past few decades and the share of Brazilian 

Amazonian deforestation attributable to smallholders, has increased over the past decade (Godar 

et al., 2014; Schneider and Peres, 2015).  

We found that both rural population density and other anthropogenic variables linked to external 

actors, such as roads and airstrips, drive deforestation, whereas urban areas were relatively weak 

direct drivers. There were only 484 rural households per target river on average, whereas a 

modestly sized Amazonian town such as Tefé contains nearly 10,000 households. The effect of 

this population disparity is moderated by the sparse and well dispersed rural population vs a dense 

urban population, but magnified by differential access to capital. Per capita GDP of urban 

Amazonians in 1995 was over twice that of rural Amazonians (Margulis, 2004). Densely 

clustered urban Amazonians are typically in the wage labour sector and can afford machinery 

such as chainsaws required to clear large agricultural areas for commercial agriculture. Urbanites, 

Amazonian or otherwise, are similarly responsible for infrastructure such as roads and airstrips, 

which extend urban influence but are beyond the means of rural families. Baseline deforestation 

rates in the absence of urban clusters and other external forces is likely so low (Fig. 2.5), that its 

signal would be lost amidst the background noise of non-resident anthropogenic impacts. 

These apparently contradictory findings are in fact reconcilable. Firstly, small-scale farmers 

(identified by the aforementioned studies) own properties of up to 100ha and include primarily 

recent immigrants. One may either conceive of them as either relatively poor, local, rural 

agriculturalists, or as external, market-integrated, commercial producers. Secondly, actors may 

alter their livelihoods in response to increased market-integration and thus external drivers may 

transform the activities of local actors (Walker, 2003). Thirdly, we were unable to distinguish the 

socio-ethnic background of rural households. Had we done so, we may have been able to attribute 

different disturbance footprints to different agents. Fourthly, our explanatory variables were 

closely interlinked and we found that urban and other external anthropogenic variables drove 

rural household density.  
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2.4.3 Drivers of rural population density 

 

Proximity to urban centres was the key determinant of rural population density at the scale of 

whole rivers, whilst road density and distance to the river mouth — which is a proxy of access to 

markets and public services — were the key drivers at the fluvial segment scale. The low 

explanatory power of environmental variables defied our expectations. We anticipated that along 

remote rivers, where inhabitants presumably rely heavily on natural resources and fluvial 

navigation, population density would reflect both anthropogenic and environmental factors. The 

livelihood impact of environmental variables on rural Amazonians is summarised by the fact that 

low productivity black-water rivers are dubbed “hunger rivers” by local inhabitants (cf. Janzen, 

1974).  

The benefits of occupying high fertility watersheds may be mitigated by more prevalent crop 

diseases, raiders and pests and parasitic human disease vectors (Janzen, 1974; Tadei et al., 1998). 

Equally, we may need to reassess our notions of what motivates rural Amazonians in their 

settlement choices. Arguably, most modern rural Amazonians are more market than subsistence-

oriented. They often value forest resources more for their cash value than for subsistence and 

make settlement and livelihood decisions accordingly. A major non-indigenous population influx 

into remote portions of Amazonia during the heyday of natural rubber exploitation was driven by 

a highly saleable market commodity but this was rapidly reversed with the collapse of its price 

(Hecht and Cockburn, 2010; Parry et al., 2010 a, b). Most of those who did not relocate to urban 

centres are still highly reliant on them. As such, the most attractive rivers to rural Amazonians are 

those connected to large town, and not necessarily those containing abundant natural resources.  

2.4.4 Patterns of disturbance  

 

The results of our study highlight the fact that hunting represents a far more widespread and 

diffuse phenomenon than deforestation. The patterns of deforestation and hunting largely met our 

expectations, with the latter accounting for an area over 18-fold larger than that of clear-cuts. As 

noted, structural disturbance tends to be clustered near the mouth of Amazonian rivers, except 

where external anthropogenic factors such as roads create additional satellite nodes of 

deforestation (Fig. 2.3 and 2.4). By contrast, even apparently pristine and remote areas can be 

affected by non-structural anthropogenic disturbance that is often difficult to detect.  

As a testament to the remoteness of our study rivers, almost half of the area adjacent to them was 

neither deforested nor hunted. This is a conservative estimate of the hunting footprint along these 

rivers because we do not account for likely incursions of commercial hunters supplying the urban 

wildmeat trade, whose clandestine activities are difficult to quantify. Nor do we account for 

multi-day hunting forays by subsistence hunters. Had we done so, the extent of hunting along our 

studied rivers would have been far higher (cf. Peres and Lake 2003).  Commercial hunters are 
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anticipated to make less frequent, multiple-day hunts, travel much greater distances, kill more 

animals per trip and live in or near to a town, where they trade their catch.  For example, 

harvesting of aquatic and terrestrial wildlife by non-resident hunters can continue into headwater 

regions, hundreds of kilometers beyond the last household on any given river (Parry et al., 2010). 

Given our finding that deforestation is strongly associated with urban and external actors, it may 

be appropriate to both broaden our conception of hunting agents by incorporating urban 

households and to account for fluvial access.  

Hunting and deforestation have markedly different effects on tropical forest biodiversity. 

Deforested areas are a vastly simplified habitat, host to a tiny proportion of the formerly resident 

species (Lawton et al., 1998; Fitzherbert et al., 2008; Gardner et al., 2010). By contrast, hunting 

leaves intact the vast majority of the biotic assemblage, and disproportionately concentrated on 

vertebrate species >1kg (Peres, 2000). Even moderate hunting pressure can functionally eliminate 

the largest, least fecund species, with detrimental repercussions for ecosystem functions including 

seed dispersal (Muller-Landau, 2007).  

2.4.5 Conservation implications and future research  
 

The detrimental impact of roads is a recurring theme in this study. Not only were roads strong 

drivers of deforestation and rural household density along our study rivers, but they were 

associated with incongruous land-use change far into otherwise inaccessible headwaters. 

Nevertheless, our results potentially understate the detrimental effects of roads because (1) they 

are more efficient, flexible and cost-effective means of access than rivers (Knowles, 2006) and 

therefore facilitate cryptic disturbance by non-resident loggers and hunters (Peres et al., 2006), 

which was not accounted for here; (2) roads influence not only human population density, but 

also regional demographic make-up. They attract settlements comprised primarily of 

agriculturalists displaced from other regions (i.e. the “shifted cultivators”: Myers 1993), whose 

agricultural practices are often inappropriate and unsustainable in tropical forests; (3) they have 

broad ecosystem effects,  including (i) causing environmental contamination by chemical 

pollutants (ii) causing noise disturbance (iii) altering habitat characteristics through increased 

edge exposure and (iv) increasing soil erosion and sediment runoff (Coffin, 2007) which impact 

aquatic species (Furniss et al., 1991) ; (3) they are a direct and significant source of animal 

mortality or “roadkill” (Coffin, 2007) and are avoided by many species, causing  barriers to 

animal dispersal and population connectivity (Forman and Alexander, 1998); and (4) tropical forest 

species, most of which are preadapted to shaded, humid environments, are especially strongly 

impacted by linear clearings, which alter the local microclimate and create dispersal barriers for 

even mobile species (Laurance et al., 2009); and  

Addressing poverty is a global priority enshrined in the United Nations Millennium Development 

Goals (UN MDG Report, 2015). This need is particularly acute in the tropics, whose residents are 
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amongst the monetarily poorest people globally (Sachs et al., 2001). Infrastructure development, 

including road building, undoubtedly has the potential to increase market connectivity and 

generate income (Ogan, 2010). Advocates of biodiversity conservation are often criticised for 

proposing measures, including extensive habitat protection, which reduce the scope for 

infrastructural and agricultural development, thereby harming the poor (Nolte et al., 2013). Our 

study, which links urban areas, roads and other infrastructure to anthropogenic forest disturbance, 

may be seen in this light insofar as it echoes the findings and conundrums raised by other studies 

(Wilkie et al., 2000).  

Legally occupied protected areas, including indigenous, extractive and sustainable-use forest 

reserves, although not a magic bullet, are part of the solution. As already noted, rural Amazonians 

are far poorer than their urban counterparts, a trend which is mirrored globally (Chen and 

Ravallion, 2007). Ill-conceived infrastructure development such as the Balbina hydroelectric dam 

(Fearnside, 1989) often generates income for urban elites whilst dispossessing relatively 

powerless forest dwellers (Watts, 2005). Sustainable use and other inhabited reserves therefore 

potentially protect both forests and their inhabitants.  

Our study suggests that the rapid expansion of urban areas, road networks and other capital-

intensive infrastructure is at least as relevant to biodiversity conservation as the trajectory of 

traditional ribeirinho populations in the Brazilian Amazon. Increased connectivity, access to 

market and opportunity for external actors to colonise, deforest and extract forest resources, may 

create “nodes” which will eventually become towns in their own right and transform these rivers 

from cul-de-sacs to bead chains, as has already happened in much of Pará.   

Likewise, hunted areas are predicated on both the settlement pattern of rural households and the 

infrastructure that paves the way to colonisation of headwater regions. The more dispersed 

households are, the less overlap between their hunting catchments and the greater the area subject 

to hunting disturbance.  Pseudo-interference ensures that more aggregated rural households 

impart less per capita disturbance, thereby leaving larger areas beyond easy access. Unless 

Brazilian government social welfare programs continue to sustain rural Amazonian populations, 

ongoing rural exodus may reduce hunting and other extractive practices that may or may not be 

sustainable. Conversely, the dwindling number of remote rural households may be insufficient to 

justify the maintenance and expansion of sustainable-use reserves, which can deter not only 

commercial hunters harvesting large amounts of game, but other external commercial enterprises 

that can catalyse large-scale deforestation.  

Our study could be expanded upon and developed by (1) tracing the evolution of anthropogenic 

disturbance along rivers as they progress from virtually uninhabited, to cul-de-sac, to road-

intersected, and finally to a bead-chain pattern. This would provide more insight into the possible 

trajectory of as yet largely undisturbed Amazonian rivers; (2) performing a structured 



49 
 
nonparametric regression, for example a path analysis (see Appendix J). This would explicitly 

account for the structured nature of the causal interactions in this system.  

2.5 Conclusions 
 

This analysis lead us to reassess our notions of what motivates rural Amazonians in their 

settlement choices and their role in different scales of anthropogenic forest disturbance. Rural 

populations are often held accountable for much habitat and biodiversity loss in tropical forests 

(Schwartzman, et al., 2000) but incur disproportionately high costs associated with biodiversity 

conservation (Balmford and Whitten, 2003). These populations, however, are not homogenous, 

and include both agrarian settlers taking advantage of new development frontiers, as well as long-

established extractivist communities, whose occupation of riparian corridors can buffer against 

the encroachment of more predatory agents of resource exploitation and land-use change. 

Much of the Brazilian Amazon retains vast tracts of forest that are only accessible by river, which 

remain viable biodiversity refugia. Nations and states with sovereignty over the Earth’s remaining 

intact tropical forests are faced with alternative development trajectories. The needs of their 

citizenry, as well as the apparent imperative of economic growth and the lure of mega-projects 

and lucrative investment deals, may impel them to engage in large-scale road-building and other 

infrastructure development. Our analysis shows that, as accessibility is an overwhelmingly 

important mediator of forest disturbance, that trajectory culminates in a landscape dominated by 

road-intersected bead-chain rivers, within which forests are gradually eroded and degraded. 
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Appendices 

APPENDIX A: Cul-de-sac and bead-chain rivers 

The map below shows the Juruá and Tefé rivers. The Juruá is a bead-chain river, with towns 

interspersed along its length. Inhabitants are influenced by inter-urban traffic as well as their 

nearest town. The Tefé is a cul-de-sac river, with a town at its mouth and therefore market 

influence is unipolar.   

 

 Though we anticipated that analysed rivers in the state of Para would be more deforested than 

those in Amazonas, this was not the case. This is likely due to the selection criteria in our 

methodology. We deliberately chose cul-de-sac rivers. These rivers by their nature, have lower 

levels of disturbance than bead-chain rivers. We were only able to identify 8 such rivers in the 

state of Para, whilst we identified 37 in the state of Amazonas. This disparity is partially 

explained by the difference in area between these states (Para is 80% as large as Amazonas) and 

their different fluvial geographies, but also by the fact that a larger proportion of rivers in Para 

have become bead-chains due to the expansion of road networks and towns.  
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APPENDIX B: River digitisation 

The map below shows the Marauia River overlaid with the three existing river polyline shapefiles 

and the yellow digitised line. The IBGE “hidro tot linha” (HTL) shapefile, represented by an 

orange line is faithful to the overall geometry of rivers, but generally simplified and with greater 

inaccuracies for smaller rivers. The Hydrosheds hydrographic dataset from Lehner and Grill, 

2013, represented by a blue line, is generally accurate, but with occasional very large path errors. 

The Amazon River Basin Land and Stream Drainage Direction ORNL DAAC Maps from 

Mayorga et al., 2012, represented by a purple line, was found to be consistently the least accurate. 

These inaccuracies are generally not detrimental to large-scale studies, especially those focussing 

on first order tributaries of the Amazon/Solimoes.  

 

The complex fluvial geometry and seasonal inundation of the Amazon basin makes definitive 

river digitisation challenging. To make a fine-scale fluvial map over such a vast area, the use of 

basemaps of inconsistent resolution and timeframe is a necessary compromise, mitigated by the 

application of consistent methodological rules.  

Consistent digitisation rules were applied as follows. The river “mouth” was taken to be where 

the river meets a town or a bead-chain river. Rivers were digitised into the remote headwaters 
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until it was no longer possible to make out the course of the river. The most extensively and 

densely populated river channel was digitised. Subject to the above constraint, the shortest route 

was digitised, avoiding for example, uninhabited anabranches. This simulates how inhabitants 

travel to market towns. For wide rivers, the midpoint was digitised. Large obstructions such as 

islands were digitised around.  

In order to determine the degree to which the aforementioned river shapefiles are suitable for 

analyses of anthropogenic disturbance, the HTL shapefile was validated against the digitised 

rivers as follows. The HTL rivers corresponding to those that had been digitised were selected 

and checked to ensure that the entire river paths were represented, from the headwaters to the 

mouths. The HTL rivers were truncated where they met an urban area or bead-chain river, as per 

the digitised rivers, but they were not truncated in their headwaters, even if these extended 

beyond those of the digitised rivers. In order to restrict HTL rivers to single lines, side-tributaries 

and lakes were removed, and where both banks were represented, the bank corresponding most 

closely to the digitised river, was chosen. Buffers of 10km were created around the HTL and 

digitised rivers. Per river, using both HTL and digitised shapefiles, the non-linear fluvial length 

and the number of rural households and area of deforestation within the buffers were calculated. 

These were subsequently compared using Spearman’s Rank correlation tests. Additionally, per 

river, the degree of overlap between the buffers of the HTL and digitised rivers was calculated.  

On average, the HTL rivers were 81% (± 2%) as long (non-linear fluvial distance) as the digitised 

rivers, reflecting their simplification of small-scale river sinuosity. Despite this, mean 

proportional overlap between the HTL and digitised river buffers was extremely high (0.92 ± 

0.01). Likewise, the nonparametric correlation between river length, number of rural households 

and area of deforestation between the HTL and digitised rivers was extremely high (Spearman’s 

Rho > 0.95 in all cases). Although we opted to use the more accurate, digitised river shapefiles, 

we anticipate that the HTL shapefile, suitably adapted, would produce similar results and require 

a far lower input of digitisation labour. 
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APPENDIX C: Data Partitioning Using Thiessen Polygons 

The maps below demonstrate how data were partitioned between rivers to avoid double-counting. 

Segments of two example rivers are shown as blue lines. 10km buffers around the rivers are 

shown in green. Deforested area to be partitioned between rivers is shown in red. Brown dots 

represent the midpoints of 1km fluvial segments along the rivers. Thin black lines (clipped by the 

buffer boundary) represent the thiessen polygons around the 1km points. The orange line is the 

thiessen-derived interface between the two rivers.  
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APPENDIX D: Cross-validation of households and deforestation datasets 

The table below compares the PRODES raster datasets between 2007 and 2013. The 2009 dataset 

was chosen because it has the smallest area of cloud and no-data and the largest area of data. It 

also corresponds closely in time to the 2007-2009 households census.  

Yr no data cells data cells cloud cells 

cell 

size 

m 

area 

per 

cell m² 

no data 

km² 

data 

km² 

cloud  

km² 

2013 516596930 555917128 80109142 90 8100 4184435 4502929 648884 

2012 476386530 596127528 38370048 90 8100 3858731 4828633 310797 

2011 475120657 598433411 36681641 90 8100 3848477 4847311 297121 

2010 492497080 581056988 54072551 90 8100 3989226 4706562 437988 

2009 262026591 341073034 15757106 120 14400 3773183 4911452 226902 

2008 271926486 328258890 15962705 120 14400 3915741 4726928 229863 

2007 279069068 321827326 20524032 120 14400 4018595 4634313 295546 

 

The rural households points shapefile was aggregated at the level of census sector and district for 

the states of Amazonas, Para, Acre, Mato Grosso, Rondônia and Roraima, so that it could be 

compared to the IBGE 2007 rural population count. Similarly, the 2009 PRODES deforestation 

data was compared to the Hansen et al., 2013 Global Forest Loss (GFL) dataset. The GFL “Year 

of gross forest cover loss event” raster layer was used so that loss until 2009 could be compared. 

In both cases, cells were reclassified into either deforested or not deforested. A subset of data for 

which there was both PRODES and GFL data was taken from the 00N_070W degree granule in 

the state of Amazonas. The data were aligned and aggregated (using ArcGIS tools “extract by 

mask” and “aggregate”) to a cell size of roughly 12500m, representing a 100 cell factor 

aggregation of the PRODES dataset. A 30km buffer was erased from this area to exclude edge 

effects caused by raster aggregation, leaving an area of analysis of 1,072,620 km².  

For both deforestation and households, a Spearman’s rank test was performed. The rural 

households point shapefile and the IBGE 2007 rural population census, were found to be strongly 

correlated. Aggregated by census sector, N = 8314, Spearman’s Rho = 0.69. Aggregated by 

district, N = 721, Spearman’s Rho = 0.85. Likewise, the 2009 PRODES dataset was found to be 

strongly correlated to the GFL dataset N = 6854. Spearman’s Rho = 0.71.   

Note that the GFL data is at a finer, 30m resolution and does not appear to have cloud. It 

classifies pixels as percent deforested. It classifies any vegetation above 5m in height as forest. It 

does not classify natural non-forest.  
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APPENDIX E: Urban proximity score 

We sought a variable that captures, in a way relevant to the forces acting on rural Amazonians, 

the degree to which a given river has access to urban centres. Urban population size determines 

numerous important factors including the size of the market for agricultural produce and the 

accessibility and cost of essential services and industrially produced goods. For an urban centre of 

a given population, increased travel cost limits its utility to a rural Amazonian. Therefore we 

moderated the urban population by travel cost. Data for urban populations was taken from the 

IBGE 2010 census, as this had more accurate associated census sector shapefiles than the 2007-

2009 data. Urban permanent private households per census sector were summed per town. To 

avoid including small urban aggregations with limited market for rural goods or provision of 

important services, towns with fewer than 1000 households were excluded. For each target river, 

the fluvial distance between the river mouth and every town was calculated using Network 

Analyst in ArcGIS. Fluvial distance was converted to travel days, taken to be 50 fluvial km for a 

rural Amazonian using a canoe and small outboard motor (locally rabeta), as confirmed by our 

field experience. We then created an urban proximity index which moderates the urban 

population by the travel cost, by dividing the number of urban households in a given town by one 

plus the number of days travel to the river mouth. Thus a town at a distance of zero fluvial km 

from the mouth of a target river would contribute a score equal to the number of its urban 

households, whilst a town exactly 50 fluvial km (one travel day) away would contribute half that 

number. The scores for the two nearest towns per river were summed to give the overall score per 

river.  

We consider this variable to provide a relevant metric of urban accessibility, but we recognise 

that its formulation may appear ad hoc. When creating the index, we did not do so with the 

explicit aim of maximising the correlation with deforestation or population density. We chose this 

index because it has the following advantages. (1) Excluding towns with fewer than 1000 

households is important as they provide limited goods, services or market for agricultural 

produce. (2) Summing the score for the two closest towns accounts for rivers which, although not 

very close to a large town, are fairly close to two large towns. (3) Travel days are a meaningful 

unit of travel cost. (4) Because one was added to the denominator, at a distance of zero, the urban 

score is equal to the urban population. The score never exceeds the urban population (5) the score 

is useable for distances between zero and one. It is always positive and decreases with distance. 

Other indices that have similar properties, but were not chosen are (1) Urban.dist, calculated by 

dividing the number of urban households by the fluvial distance plus one.  This severely reduces 

the urban score for rivers more than 1km from a town. The score is reduced to 3.8% in only 25 

fluvial km from a town. (2) Urban.sqrt, calculated by dividing the number of urban households by 

the square root of the fluvial distance, then adding one. Alternatives which replaced the square 

root with the cube and fourth root were also tested. For distances greater than 1km these indices 
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are less severe than the above, but at distances between 0 and 1km, they are more severe. The 

square root still reduces the town score to 16.7% in 25 km. The negative exponent is still too 

steep initially and becomes shallow too soon. (3) Urban.sq, calculated by dividing the number of 

urban households by the square of the travel days, then adding one. This index also has desirable 

properties, but is no less ad hoc than the original index.   

The graph below shows the relationship between the urban score as a percentage of the urban 

population of a hypothetical town and the fluvial distance from the river mouth. The black, red, 

green and blue lines represent Urban.dist, Urban.sqrt, the original urban index and Urban.sq 

respectively.  

In the Spearman’s correlation matrix we created (a) all four indices are highly correlated 

(Spearman’s Rho > 0.82 in all cases) and (b) the index we chose to use has the lowest pairwise 

nonparametric correlation with both deforestation and households (Spearman’s Rho = 0.63 and 

0.37 respectively) out of all the indices. Therefore we are confident that any suitably created 

urban index would be equally if not more influential in GLMs.   
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APPENDIX F: Mines 

Mines are often associated with a characteristic extensive deforestation pattern that is visually 

distinct from agricultural fields and cattle pasture. Upon inspection, there appeared to be large 

areas of mining activity with no associated registered mines (commercial or artisanal). 

Furthermore, the artisanal mines polygons did not correspond reliably to visually obvious mines. 

This may be because the mining shapefiles are outdated, or because of unregistered mines. It was 

decided to use the registered commercial and artisanal mines shapefiles and not to digitise areas 

of apparent mining. It would be fallacious to model deforestation using a variable based on 

visually apparent widespread deforestation at the expense of officially recognised mines.  

Artisanal mines were not retained in any of our models and commercial mines were not retained 

in deforestation models. This may be because polygons of registered mines do not accurately 

capture de facto mining operations and our definition of disturbance does not include undoubtedly 

important aquatic and soil pollution for which mines are notorious (Malm, 1998), but which are 

virtually undetectable from satellite images. In lieu of a more holistic analysis of disturbance, 

ground-truthed or otherwise independently verified maps of mining operations would likely be 

stronger predictors of deforestation.  

The three examples below show areas of registered mining. The background is an ESRI basemap. 

Brown outlined polygons indicate areas of registered commercial mines and yellow outlined 

polygons indicate registered artisanal mines. Pixels classified as deforested by PRODES 2009 are 

transparent red polygons. Panel A shows a stretch of river (Jandiatuba) with a large area of 

registered artisanal mining but no associated deforestation. Panel B shows a large registered 

commercial mine. Panel C shows an area in which areas of deforestation, presumably due to 

mining, do not correspond closely to areas of nearby registered commercial or artisanal mining.  
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APPENDIX G: Airstrips 

The map below shows a set of rural airstrips adjacent to the Maues-Amana river (blue line). The 

background is an ESRI basemap. Yellow dots indicate the centre of the airstrip. Red transparent 

polygons indicate pixels classified in PRODES 2009 as deforestation. The red outlined polygon is 

an inset for clarity. Airstrips are easily identifiable from ESRI basemaps. In this case, they appear 

to be associated with an area of unregistered mines.   

 

APPENDIX H: River Chemistry 

Rivers were initially categorised as either whitewater, blackwater or clear-water, a classification 

dating back to Alfred Russel Wallace (Wallace, 1853 and Sioli, 1950). The main data source used 

was Junk et al., 2015. This was supplemented by Goulding et al., 2003 “The Smithsonian Atlas 

of the Amazon” and the Radar na Amazônia (RADAMBRASIL) vegetation classification. Rivers 

not covered by these sources were estimated by eye. Because many of the rivers are small and 

relatively unknown, reliable river chemistry data was scarce and confidence in the 

meaningfulness of the resulting classification was low. Therefore it was decided to use soil 

fertility instead of river chemistry, which was excluded from the analysis. 
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APPENDIX I: Exposure variables 

An assumption of our households and deforestation models, is that the area associated with a 

given river acts as an exposure variable. Rivers with a larger associated area have a larger 

deforestation potential and therefore raw deforestation per river are not directly comparable. 

There appears however to be a positive relationship (Fig. 2.2) between the associated area per 

river and the percentage of that area which is undisturbed. This suggests that for cul-de-sac rivers, 

disturbance is somewhat constrained and does not increase linearly with available area. Given the 

importance of access to urban centres, this may reflect the prohibitive cost of travelling far up our 

studied rivers. Spearman’s correlation tests however reveal that the relationship between 

associated area and undisturbed percentage, household density and deforested percentage are 

relatively weak (Spearman’s Rho = 0.38, -0.17 and -0.34 respectively).  Therefore we feel 

justified in using the associated area as an offset variable in models.  

APPENDIX J: Structured equation model 

Due to the interlinkages between variables in this analysis, a structured equation model using the 

“sem” function of the “lavaan” R package was created. We hoped to thereby simultaneously 

account for causal interrelations between variables and determine their relative importance in 

explaining deforestation. A Spearman’s covariance matrix was used. The structure of the model 

was fourfold (1) deforestation was assumed to be directly dependent upon the number of rural 

households, the urban score and the remaining anthropogenic variables (mines, airstrips, roads, 

protected area)  (2) rural households were assumed to be directly dependent upon  the urban score 

and the remaining anthropogenic and environmental variables (river width, length, fertility and 

navigability) (3) the urban score was assumed to be directly dependent upon environmental 

variables (4) rural airstrips and mines were assumed to covary. There are a plethora of methods 

for evaluating the overall fit of structural equation models (Hooper et al., 2008). Although we 

attempted several simplifications and variations on the above model specification, we could not 

specify a model that simultaneously met the criteria for Root Mean Square Error of 

Approximation, Comparative Fit Index and Tucker-Lewis Index. Therefore we do not report 

these models here and instead report the GLMs created to separately analyse deforestation and 

rural population density. 
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APPENDIX K: Theorised drivers of disturbance 

Overall soil fertility, and associated patterns of rainfall and fluvial geochemistry, influence both 

agricultural productivity and the availability of wild game and fish (Janzen, 1974, Coomes, 1998). 

Rainfall and drainage geometry also affect the viability of road construction (Kabila et al., 2009). 

Fluvial navigability, as predicted by river slope and the prevalence of rapids and waterfalls, 

influences travel costs in terms of time and fluvial transport risks. Rivers in roadless regions of 

lowland tropical forest are the only viable means of travel between most rural households and 

urban centers. Poor navigability increases the cost of acquiring essential goods and services 

(Parry et al., 2010a).   

River size, as measured by length, width, and discharge, also influences disturbance. The largest 

Amazonian towns, such as Belém and Manaus, border the largest rivers, because they are the 

trade highways linking sources of natural resources to markets. In addition, longer rivers have 

correspondingly larger accessible areas to both deforest and hunt (but see Appendix I).  

Anthropogenic factors such as mineral deposits can directly fuel deforestation and potentially 

increase human population density through employment provision. Airports and airstrips bypass 

fluvial navigability constraints, allowing for rapid, but expensive transport. Their presence 

indicates the influence of external actors with access to capital. Roads provide an alternative to 

fluvial transport. They allow local communities greater access to markets and greater access by 

outsiders to natural resources. Legally protected areas restrict settlement and disturbance 

activities, although legally inhabited sustainable-use reserves and indigenous territories, contain 

many semi-subsistence communities. Lastly, rivers near larger urban centers are more attractive 

to rural households, especially agricultural producers, and therefore more prone to direct 

disturbance.  
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APPENDIX L: Supplementing unrecorded waterfalls and major rapids 

The image below shows an example of an area where turbulent rapids and/or waterfalls make 

fluvial navigation challenging. The example below, along the Mapuera River, was not recorded in 

available waterfalls datasets, but was uncovered through visual assessment of ESRI Basemaps.  

 

APPENDIX M: Protected areas 

We assume that protected status is causally responsible for lower human population density and 

disturbance, rather than the reverse. Additionally, due to overlapping protected areas, we did not 

distinguish between the different types of protected area. In our vast study landscape, protection 

is logistically difficult to enforce, raising the concern that these may be “paper parks” (Bruner et 

al., 2001). Also, there is lower resistance to protection in areas of marginal economic value and 

low human population density (Andam et al., 2008 and Mas, 2004). It is therefore plausible that 

human population density and disturbance deter protection as much as the reverse. Nonetheless 

there is strong evidence (Nolte et al., 2002, Nepstad et al., 2006) that protected areas including 

inhabited reserves significantly inhibit disturbance including deforestation and fire.  

http://link.springer.com/article/10.1007/s10531-008-9368-6#CR10
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APPENDIX N: Hunted area 

Existing hunting studies use interviews, transects and hunt follows to create detailed assessments 

of hunting catchments in localised areas (Parry and Peres, 2015, Peres, 2000, De Souza-Mazurek 

et al., 2000), or use roads and rivers to calculate areas accessible to hunters (Peres and Lake, 

2003). This study by contrast, uses spatially explicit households data to deduce hunted area on a 

large scale. Hunting pressure is notoriously difficult to quantify (Robinson and Bennet, 2013). It 

would be impossible to do so directly at this scale. Thus we employ a simple measure of 

accessibility by hunters, based on widely supported literature values for hunt distance. This 

ignores small-scale landscape features, regional and cultural differences in hunting practices and 

differences in hunting intensity.  

APPENDIX O: Unhunted deforested area 

Though the unhunted deforested area was small in absolute terms as expected, it surprisingly 

represented 10.5% of the deforested area. It is unlikely that this area is due to active small-scale 

agricultural plots distant from corresponding rural households. It is likely to be a combination of 

past deforestation caused by rural households that have since relocated, deforestation caused by 

unregistered rural households, pixels misclassified by PRODES and deforestation caused by 

nonresidents, for example unregistered mines and cattle ranches.  
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Abstract 
 

Tropical megadiversity benefits humanity, but the high costs of coexisting with biodiversity 

disincentivize local communities from conserving it. Here, we harness social and ecological 

approaches to quantify, contextualise and explain the prevalence of terrestrial vertebrate crop 

raiding damage to manioc (Manihot esculenta) agricultural plots in the Medio-Jurua region of 

western Brazilian Amazonia. A total of 132 camera trap stations and 157 quantitative interviews 

were deployed across the peri-community areas controlled by 47 semi-subsistence communities. 

Across 238 plots, mean reported loss to crop raiders was 7.33 ± 0.98%. However, interviewees 

estimated counterfactual losses of 73.93 ± 2.98% per annum in the absence of crop protection 

from crop-raider suppression. Species reported to enter manioc plots were frequently detected by 

camera traps, particularly in early-successional forest habitats. Generalised Linear Mixed-Effects 

Models indicate that human population pressure depresses both reported crop raiding losses and 

camera-detected crop raider biomass. Nonetheless there was weak evidence that opportunities to 

hunt crop raiders compensate crop losses. Our study indicates that vertebrate crop raiders 

represent a significant forest ecosystem disservice, incurring livelihood costs through immediate 

crop losses, constrained crop choice, and effort allocated to crop protection. Small communities 

far from urban centers, who are already economically disadvantaged, were worst affected.  
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3.1 Introduction 
 

Semi-subsistence rural communities in the tropics are amongst the world’s monetarily poorest 

people (Sachs et al., 2001) but often live in the world’s most biodiverse places (Gaston, 2000). 

They are frequently exhorted by the international conservation community to protect their 

megadiverse surroundings (Mittermeier et al., 1998). However, living with and protecting natural 

ecosystems and their biodiversity can incur significant local costs, whilst the benefits may accrue 

internationally (Balmford and Whitten, 2003). Crop raiding is an ecosystem disservice (Zhang et 

al., 2007) straining already precarious livelihoods through decreased crop yields (Hill, 2000; 

Gillingham and Lee, 2003) and the labour required to protect crops. The international 

conservation community must recognise these socioeconomic costs when extolling tropical forest 

dwellers to coexist with and preserve biodiversity.    

Crop raiding has received considerable attention in the Afrotropics and Asian Tropics (Sukumar, 

1990; Naughton-Treves, 1998; Pienkowski et al., 1998; Hill, 2000; Linkie et al., 2007), where 

crops including manioc (Manihot esculenta), maize (Zea mays), Japanese radish (Raphanus 

sativus), Asian rice (Oryza sativa) and finger millet (Eleusine coracana) are raided by large-

bodied mammals including chimpanzee (Pan troglodytes), olive baboon (Papio hamadryas 

anubis), Japanese macaque (Macaca fuscata), wild boar (Sus scrofa),  pig-tailed macaque 

(Macaca nemestrina), Asian elephant (Elephas maximus) and African elephant (Loxodonta 

africana). Hill (2000) and Naughton-Treves (1998) estimated manioc crop losses of 9.0% 

(overall) and 6.8 ± 2.1%, respectively, in Uganda, whilst Nchanji (2002) estimated manioc losses 

of 2.4% - 15.1% in Cameroon. These losses have been shown to negatively impact local attitudes 

to conservation and protected areas (Hill, 2000; Nyhus and Sumianto, 2000; Gillingham and Lee, 

2003; Wang et al., 2006; Mackenzie and Ahabyona, 2012). Reported farmer responses to crop 

raiders include farm abandonment, leaving some land fallow, building fences, guarding and 

patrolling fields, overnight vigils, and deploying snares, traps, poison bait, guard dogs, guard 

huts, guns, spears, bow-and-arrows, fireworks, noisemakers and bells to chase or otherwise scare 

away undesirable animals (Naughton-Treves, 1998; Hill, 2000; Gillingham and Lee, 2003; Linkie 

et al., 2007).   

Description and quantification of crop raiding in the Neotropics is at best limited (Estrada, 2006). 

Naughton‐Treves et al. (2003) found that hunting intensity had a greater impact on mammals in 

Tambopata, southern Peru, than swidden agriculture and that whilst crop losses were higher in 

remote areas, they were compensated by higher game meat harvest. Pérez and Pacheco (2006) 

report ~16% losses to crop raiders across three crop types in their Bolivian study.  

The interaction between crop raiders and communities requires integrated socio-ecological 

approaches which are still rare. Studies have used sampling methods ranging from interviews 

(Hill, 2000), experimental plots (Pérez and Pacheco, 2006), sign surveys (Naughton-Treves, 
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1998) and camera traps (Krief et al., 2014). Interviews distil decades of local knowledge and are 

relatively inexpensive to deploy, but their reliability can be questioned, especially given the 

sensitive nature of the topic (Tourangeau and Smith, 1996; Gavin et al., 2010). Camera traps are 

increasingly used for biodiversity surveys (Rowcliffe and Carbone, 2008). They have proved 

reliable compared to other survey methods (Benchimol and Peres, 2015). However, they only 

provide a spatio-temporal snapshot, and are expensive, prone to fail in the tropics, are stolen and 

when used to produce relative abundance estimates, may be unreliable when there are significant 

habitat-induced detectability biases (Sollmann, 2013). Interviews and camera traps may therefore 

complement one another.  

Manioc is the staple source of carbohydrates in Brazilian Amazonia and in much of the humid 

tropics where nutrient-poor soils have high levels of aluminium toxicity (Cock, 1982; Frazer, 

2010). Crops including maize and bananas are also locally important, and have their own 

attendant crop raiders, but their higher nutrient requirements prevent their large scale cultivation 

in most of Amazonia. The main varieties of manioc are high-cyanide manioc (Peroni et al., 2007), 

locally called “roça brava”, and low-cyanide manioc, locally called “macaxeira” (hereafter, bitter 

manioc and sweet manioc, respectively). M. esculenta produces large tubers, tolerates poor 

tropical soils and is pest-resistant. Manioc is processed in a flour-house (locally “casa de 

farinha”) into a relatively imperishable, high calorie course flour (locally “farinha”). 

Communities grow manioc in swidden agricultural plots called roçados, often representing the 

main livelihood activity for semi-subsistence riparian communities in the lowland Amazon 

(Newton et al., 2012) Roçados are generally active for 4 years until weed encroachment and 

declining soil fertility force their abandonment (Unruh, 1988). These secondary forests (locally 

“capoeiras”) are left to undergo successional regrowth until standing biomass and soil nutrient 

loads are sufficient to permit re-clearing. This process creates a mosaic of habitats under different 

successional stages around village settlements, with shorter-rotation plots generally closer to the 

community (Coomes et al., 2000).  

We anticipate that the highest rates of reported losses to crop raiders and the highest crop raider 

biomass will be recorded farther from the community, surrounded by more undisturbed habitat, at 

smaller communities, farther from large urban centers and closer to seasonally flooded forest 

(hereafter, várzea). Roçados farther from a given community are more likely to be raided because 

they are harder to protect and experience lower hunting pressure (Smith, 2008). Primary forest 

areas beyond successional mosaics consolidated around settlements provide a reservoir of crop 

raiders (Hartter et al., 2010). These species, although tolerant of disturbed areas and attracted by 

crops, rely on primary forest (Barlow et al., 2007). Thus roçados adjacent to contiguous primary 

forest are more accessible to raiders (Naughton‐Treves, 1998; Hill, 2000). Roçados farther from 

the community are also more likely to be adjacent to contiguous primary forest. Larger 

communities exert higher hunting pressure (Alvard et al., 1997), have a smaller proportion of 
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roçado “edge” adjacent to primary forest, and are thereby likely to experience less raiding. 

Roçados near towns, or in peri-urban communities, will likely be less raided for similar reasons. 

Conversely, however, the larger a community, the more scarce land becomes near to the 

community centre. Thus farmers are likely to have roçados farther from the centre (Coomes et 

al., 2000). In addition, vertebrate herbivores in more anthropogenic landscapes may crop raid 

more frequently due to the relative shortage of natural food (Yamada and Muroyama, 2010).  

Várzea soil is more fertile due to sediment and debris deposition. Ceteris paribus, productivity 

and crop raider biomass should to be higher in Amazonian várzea forests (Peres, 1997). As 

communities are often at the intersection between várzea and non-flooded terra firme forest 

(Junk, 1984), this effect may be masked by anthropogenic pressures. We anticipate that crop 

raiders are disproportionately targeted by hunters, and that farmers predominantly use lethal 

methods to suppress crop raiders, because crop raiders are likely to venture close to communities 

and killing them represents a ‘win-win’ strategy that both contributes wild meat to local 

households and reduces rates of crop raiding (Naughton‐Treves et al., 2003; Smith, 2005; Gavin, 

2007; Parry et al., 2009).   

Here, we used both structured local interviews and a camera-trapping sampling protocol to (1) 

quantify rates of terrestrial vertebrate crop raiding damage (hereafter, crop raiding) to manioc 

fields in western Brazilian Amazonia; (2) contextualise the importance of this damage in terms of 

livelihoods and local response strategies; (3) implicate the species that use roçados and those 

known to crop raid; (4) determine if those species are also important hunted species that are 

frequently detected by camera traps in the wider peri-community agricultural mosaic; and (5) 

using comparable explanatory variables and statistical techniques, determine the correlates of 

losses to crop raiders, crop raider and non-raider biomass, and the species composition of forest 

vertebrates.  To our knowledge this is the first study combining camera trapping and interview 

data to understand crop raiding anywhere in the Neotropics.
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3.2 Methods 
 

3.2.1 Study Area 

 

This study was carried out within and around the Uacari Sustainable Use Reserve (623,929 ha) 

and the Medio Jurua Extractive Reserve (250,192 ha) in the Medio Juruá region of western 

Brazilian Amazonia, which is bisected by the Jurua River, the second-largest white-water 

tributary of the Amazon (Fig. 3.1).  These reserves are dominated by seasonally-flooded várzea 

forest (20 %) along extensive floodplains and unflooded (terra firme) forest on higher terrain (80 

%). This region is inhabited by former rubber-tapper communities of mixed-descent semi-

subsistence “ribeirinhos”, with producer cooperatives and resource-management programs. The 

nearest towns are Carauari (88 fluvial km from the reserve boundary) and Itamarati (120 fluvial 

km from the reserve boundary), and provide vital access to goods and services (Parry et al., 

2010).  
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Figure 3.1: Panel A – Continental scale location of the study area, showing major rivers (blue 

lines) and the main urban center of Carauari (black dot). Main Panel (red square in Panel A) 

shows the Medio Jurua study region, where background represents elevation above sea level. Low 

elevation (dark grey) areas adjacent to the river represent seasonally-flooded (várzea) forests. 

Sustainable use reserves and the Jurua River are outlined in black and indicated by the blue line, 

respectively. Brown circles indicate the 47 surveyed communities/urban neighbourhoods, and 

yellow dots indicate the 132 camera-trap deployment sites. Panel B (red square in Main Panel) – 

An example of a surveyed local community, where household cluster area is delimited by a brown 

polygon; a tributary of the Jurua (Anaxiqui River) is indicated by a blue line; and the background 

is an ESRI basemap consisting largely of primary forest. Second-growth areas of mostly terra firme 

forests (capoeiras) and camera trap deployment sites are indicated by green polygons and yellow 

dots, respectively. 
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3.2.2 Camera Trapping 

 

Data collection took place between 2013 and 2015, generally between April and August avoiding 

the period of heaviest rain during which cameras are often damaged. A total of 132 camera-trap 

deployments were conducted according to a standardised deployment protocol (Appendix C1). 

Mean functioning camera-trap-nights (CTN) per deployment was 31.9 ± 0.5. Mean nearest 

neighbour distance between deployments was 974.4 ± 173.9 m, although camera-traps were 

deployed along a ~514-km nonlinear distance along the Juruá River. Deployments were stratified 

across several landscape-scale habitat types including: (1) large tracts of undisturbed primary 

contiguous forest; and anthropogenic successional mosaics in the vicinities of local communities, 

including (2) disturbed forest including small primary forest fragments, natural rubber tapping 

areas (seringais), degraded primary forest, and secondary forest older than 25 years; (3) 

secondary forest up to 25 years old; and (4) homestead areas in close proximity to community 

households.  As per local requests, deployments were excluded from active manioc plantations 

(roçados) to avoid disturbing agricultural activity, although all landscape elements within 

successional mosaics were typically adjacent to roçados.  

For each deployment, the following data were recorded: (1) the name and coordinates of the 

nearest local community; (2) coordinates of the camera-trap station; (3) date and time of 

deployment and removal; (4) in case of malfunction; date and time of last photograph; (5) habitat 

type; (6) if deployed in secondary forest, age since abandonment as determined by community 

residents.     

Images were edited to improve contrast and aid species identification. Images per deployment 

were separated into subfolders corresponding to morphospecies. Images of domestic animals, 

humans, vultures, bats, insects, small lizards and primates were excluded from further analysis. 

We extracted all metadata from subfolders using software including the camtrapR package within 

R (Niedballa et al., 2016) and Picture Information Extractor (Picmeta Systems, 2016). Images of 

conspecifics at any given deployment >30 min apart were defined as independent detections.   

In the case of ambiguous images for which a subject could only be identified to a broader 

morphospecies, a deployment-specific detection ratio was calculated for each morphospecies sub-

category. This ratio was used to apportion detections between sub-categories. If that deployment 

included no photographs that could be identified with certainty to either sub-category, then the 

overall detection ration for all deployments was used.    

The five top-ranking species most commonly identified in interviews as crop raiders (accounting 

for >99% of summed weighted scores) were designated as crop raiders. The mean adult body 

mass of crop raider and non-raider species was summed per camera. Because camera traps may 

fail to detect some group members, we simply defined detections as a single adult of 

undetermined sex. Species-specific camera-trap detections were then multiplied by the species 
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body mass (data from Carboneras, 1992; Dunning, 1992; Baptista et al., 1997; Emmons and Feer, 

1997; Nowak, 1999; and CA Peres (unpubl. data), Appendix A).  

We estimated a primary forest habitat selectivity index for each vertebrate species by summing 

the total number of detections per species and associated CTNs for all deployments either within 

or outside of primary forest. Camera trap rates (CTR) per habitat type was therefore estimated as 

the number of independent detections per species divided by the total sampling effort (CTN). The 

habitat selectivity index for any given species i is then defined as a log-abundance ratio that 

handles zero detections as:  log10 [((detections non-primary forest (i) + 0.1) / functioning camera trap days 

non-primary forest (i)) / ((detections primary forest (i) + 0.1) / functioning camera trap days primary forest (i))], 

whereby values smaller than 0 represent greater primary forest habitat specificity.  

3.2.3 Local Interviews 

 

Interviews were conducted in Portuguese by the authors and without the aid of translators. 

Interviews were recorded using a structured questionnaire and a Dictaphone, and cross-checked 

for accuracy. Interviewees were reassured that data would be kept anonymous and confidential 

(see interview script, Appendix B). Interviewees were not paid, but some were participating in 

paid work such as camera trapping at the time of interviews.  

A total of 157 interviews were conducted at 47 local communities or city neighbourhoods 

(hereafter, communities). Interview topics included household-scale livelihoods, diet, hunting, 

farming, human wildlife conflict, and crop raiding (See interview script and data processing, 

Appendices B and C2). In 107 interviews representing 24 communities, HMC asked respondents 

about the roçados they were currently cultivating or collecting (N = 238). Roçado-specific 

questions included distance from the community, surrounding habitat, number of manioc stems 

(a) planted (by manioc type), (b) lost to early floods, in the case of floodplain roçados, (c) lost to 

crop raiders and (d) successfully harvested. Several roçado interviews were conducted per 

community, but respondents were chosen from different extended households to ensure their 

roçados were independent from one another.  

3.2.3 Data analysis  

 

Spatial variables were extracted in ArcGIS (10.3), and all statistical analyses were conducted in R 

(2.15.1). Collinearity between independent variables was tested for using Spearman’s Rank and 

Kruskal-Wallis Rank Sum tests. Where explanatory variables had bivariate Rho >0.70 or p <0.05, 

they were modelled separately.  

For each camera-trap deployment, the area of deforestation and várzea forest within a 500m 

buffer was calculated using data from INPE PRODES, 2009, Hansen et al. (2013) Global Forest 

Change and RADAMBRASIL vegetation polygons (Veloso 1982; Appendices C3 and C4). Per 
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roçado, the amount of adjacent habitat disturbance and extent of várzea was also determined 

through interview scores (Appendix C5). 

The number of households within 4 km (Manhattan distance) of each deployment were summed. 

We used spatially explicit household data from the IBGE (Brazilian Institute for Geography and 

Statistics) 2009 Population Census of rural households, which were validated against IBGE 2007 

census data (Appendix C6). A transport network accounting for all main rivers, tributaries, known 

navigable perennial streams, roads and known tracks in the vicinity of all surveyed communities 

and camera deployments was constructed from GPS track-logs taken over successive fieldwork 

years. We used the Network Analyst to calculate the Manhattan or “transport” distance between 

deployments and households across the entire study region. Per roçado, the number of households 

in the nearest community was recorded (Appendix C7). The Manhattan distance from the nearest 

community was calculated using the transport time and mode of transport reported from 

interviews, and average transport velocity (Parry and Peres, 2015, Appendix C8).  Per 

deployment and surveyed community, the population of and distance to the nearest town was 

calculated using the aforementioned transport network and the IBGE (2007) census data.  

Spearman’s rank correlation tests were performed to ascertain the degree to which (a) species 

reported to enter roçados were detected by cameras outside primary forest, and (b) species 

reported to crop raid were reportedly hunted. When comparing camera trap and interview data, 

primates were excluded as these were not reliably detected by cameras and interview scores for 

all small-bodied armadillos (order Cingulata) were summed because these were not differentiated 

in camera trap data.  

Generalised Linear Mixed Effects Models (GLMMs) were created using the glmmadmb function 

to explain (1) the number of manioc stems lost to crop raiders, (2) crop raider biomass, and (3) 

non-crop-raider biomass. The total number of manioc stems planted that had not been lost to 

flooding and the number of months since the roçado was brought into cultivation were used as 

offset variables for the former models. The number of functioning camera trap nights was used as 

the offset variable for latter models. Offset variables were log transformed, and the surveyed 

community was designated as a random effect.  

Habitat disturbance (interview score or deforestation within 500m), várzea (interview score or 

várzea within 500m), local human population density (number of mapped households within a 4-

km travel buffer, centred around each camera trap station), distance from community to roçado 

(Raided models only), distance to nearest city, population of nearest city, and habitat type in 

which camera-traps were deployed in (Biomass models only) were designated as explanatory 

variables. Continuous explanatory variables were scaled to aid model convergence and 

comparisons of effect size.  
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In 40% of the roçados, no manioc plants were reported as lost to raiders. Semi-subsistence 

agriculturalists are acutely aware of agricultural losses, are adept observers at detecting animal 

signs, and are unlikely to fail to detect them. Therefore, we do not consider the data to be zero-

inflated. To model losses to crop raiders we chose both GLMMs and Generalised Linear Mixed 

Effect Hurdle Models (GLMMHs) that separately explore whether a roçado is raided and how 

many stems were lost. In all cases a Poisson error structure resulted in overdispersion. In 

GLMMH zero models, a Binomial error structure was used. In GLMMH count models, truncated 

Negative Binomial structure failed to converge, therefore truncated QuasiPoisson was used. 

GLMMs were used for Biomass models because the biomass data included far fewer zeros. A 

Negative Binomial error structure was Preferred over QuasiPoisson because it deals explicitly 

with dispersion and AIC values are produced which can be used to aid model selection.  

Models were selected using supervised backwards stepwise deletion. Explanatory variables with 

the highest p-value was sequentially removed, unless this resulted in an increase in ΔAIC > 2, 

until a minimum adequate model was reached. Variables were then sequentially deleted and 

ΔAIC was used to determine if additional deletions were warranted. If no variable was retained, 

variables with the lowest p value were sequentially added back into the model and compared to 

the null model to achieve the lowest AIC. Extraneous categorical variables including (1) camera 

model, (2) recorded media (photos vs video), (3) identity of camera deployer, and (4) deployment 

season, were collinear and therefore not included altogether, but added individually into the best 

performing Biomass models to check for significance and ΔAIC. As none of these variables were 

found to be significant or to lower AIC values, they were excluded from further analyses.   

Species composition was analysed using Nonmetric Multidimensional Scaling (NMDS) and 

permutational Anova (permanova) analyses (Anderson, 2001). Detections per species per 

deployment were divided by CTN per deployment and multiplied by 100 to derive the 

standardised detection rate per 100 CTNs. Data were sqrt-transformed to reduce the influence of 

very common species (Clarke and Warwick, 2001). The metaMDS function (using 2 dimensions, 

Bray Curtis distance, and 100 random starts) was used to perform NMDS. Resultant stress, non-

metric and linear fit were evaluated using a stress plot. Increasing dimensions lowered the stress, 

but we chose to use two dimensions for greater ease of graphical presentation and interpretation.  

Permanova analysis was performed using the Bray Curtis distance between deployments using 

the “Adonis” function and explanatory variables from the Biomass models. Explanatory variables 

were tested individually, because our sampling was unbalanced between factors. 
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3.3 Results  
 

3.3.1 Crops 

 

Our 107 interviews targeted to 238 roçados represent a total of 1,961,575 manioc stems planted. 

Assuming the mean stem density (1.1 plants per m²), which was largely constant across 

communities, a mean yield of 6.5 sacks of farinha per 1000 stems, and an average of US$12.41 

per sack of farinha (as reported by interviewees; inflation-uncorrected 2015 transaction prices), 

this corresponds to an aggregate roçado area of 1,783,250 m², a potential yield of 12,750.2 sacks 

of farinha, which would have been worth some US$158,230.5 Of this total, 2.2% was lost to an 

early flood pulse and an additional 5.5% was lost to all crop raiders. At the 189 roçados for which 

we have data per manioc type, 64.1% and 35.9% of manioc stems planted was bitter and sweet 

manioc, respectively. Overall losses to crop raiders were 3.7% for bitter manioc and 9.3% for 

sweet manioc (Fig. 3.2).  

On average, 11,009.4 (± 894.9) manioc stems were planted in one or more roçados each year per 

respondent, including 58.0 ± 3.5% of bitter manioc and 42.0 ± 3.5% of sweet manioc (Appendix 

C9). Of these, 2.1 ± 1.0% were lost to unexpected floods, 8.0 ± 1.2% were raided, and it was 

reported that 74.0 ± 3.0% stems would have been raided if crop-raiders were neither discouraged 

nor depleted by hunters.  An estimated 4.7 ± 1.2% and 15.8 ± 2.9% of bitter and sweet manioc 

were lost to crop-raiders, respectively. However, those proportions would have increased to 37.1 

± 8.4% for bitter manioc and 85.7 ± 9.2% for sweet manioc in the absence of hunting.  
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Figure 3.2. Summary number of manioc stems planted and lost per agricultural plot (roçado), 

separated by type of manioc, on the basis of interview data. Dark green and dark red bars 

respectively indicate the mean total number of manioc stems planted per roçado, and those that  

would have been lost if crop raiders were not suppressed by hunting. Red bars indicate the number 

of manioc stems actually lost to crop raiders, and blue bars indicate those lost to flooding (only 

available for “All Manioc”). Vertical black lines represent standard errors.
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Interviewees had resided in their respective communities for 20.1 ± 1.3 years. Mean journey time 

to roçados from the community was 30.6 ± 2.8 minutes.  Lethal methods to suppress crop raiders 

included hunting (38.0% of all responses), using dogs (17.1%), traps (3.2%), and shooting (0.6%) 

(Fig. 3.3). Nonlethal methods included tending the roçado and maintaining vigilance (12.0%), 

using scarecrows (7.6%), firebreaks (7.0%), scaring animals away (4.4%), enclosing roçados with 

nets (3.2%), maintaining the roçado weed-free (3.2%) and praying (0.6%). Only 2.5% reported 

doing nothing to combat raiders, often because their roçado plot was too far away, and 0.6% that 

their roçados did not succumb to crop raiders, thereby requiring no response.       

 

 

Figure 3.3. Stacked bars summarising responses to categorical interview questions. Bar segment 

height represents the percentage of responses or weighted responses. Bar1 = Ranked livelihood 

activities. Green = agriculture. Blue = fishing. Gold = Welfare and PES payments. Purple = 

extractivism. Grey = salaried work. Red = hunting. Black = other. Brown = timber. Orange 

(imperceptible) = livestock. Bar2 = Ranked protein sources. Blue = caught wild fish. Red = hunted 

game meat. Purple = equally important. Bar3 = “Have you killed animals in your roçados?” Red 

= “yes”. Blue = “no”. Bar4 = Response to crop raiders. Red = lethal. Blue = nonlethal. Grey = 

nothing. Black = crop raiders do not invade. Bar5 = method of transport to roçado. Brown = on 

foot. Blue = un-motorised canoe. Grey = canoe with outboard motor. 
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3.3.2 Crop-raiders and other species  

 

The prevalence of vertebrate species detected by camera traps or reported in interviews was 

widely variable (Fig. 3.4). In total, 27 taxa were reported to enter roçados, especially caviomorph 

rodents, cervids, tayasuids, armadillos, tapirs and felids. Ten of these species were reported to 

raid crops, five of which (Dasyprocta fuliginosa, Pecari tajacu, Cuniculus paca, Mazama 

americana and Echimyidae spp in order of importance) were rodents or ungulates representing 

>99% of weighted crop raiding scores.  

A total of 33 vertebrate taxa were reliably detected by camera traps, which yielded a shallower 

rank-abundance curve than did interview data. The three most frequently detected species overall 

(Dasyprocta fuliginosa, Mazama Americana and Cuniculus paca) were also frequently reported 

crop raiders and were proportionally equally detected in either primary forest or successional 

mosaics. Species frequently reported to enter roçados were also frequently detected by cameras 

outside primary forest (Spearman’s Rho = 0.47; Fig. 3.5).    

Nineteen taxa were frequently hunted, and these were often reported as crop raiders (p<0.001, 

Spearman’s Rho = 0.41).  The first (Tayassu pecari) and seventh (Tapirus terrestris) most 

commonly reported hunted species, however, were infrequently camera-detected large-bodied 

ungulates that were not reported as crop raiders. Seven taxa were reportedly killed at roçados, the 

four top-ranking of which were also the four top-ranking crop raiders.  
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Figure 3.4: Species prevalence in interviews and camera detections. Values in Appendix A. i) 

Stacked bar length represents species propensity to enter roçados as reported in interviews. Red = 

considered a crop raider. Green = not considered a crop raider ii) Transparent black circles - 

position along x axis represents standardised detection frequency per 100 CTN. Circle size 

represents the degree to which the species was detected in primary forest iii) Empty blue circles – 

position along x axis represents the percentage of weighted interview scores reporting the species 

as hunted. Circle size represents the frequency of that species being reportedly killed in roçados 

(larger = higher frequency).  
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Figure 3.5: Log₁₀ habitat selectivity index score and detection rate per species derived from camera 

trap data. Larger circles indicate higher CTR. HSI Scores < 0 indicate the species had a higher 

detection rate in primary forest. Colour represents taxonomic group as indicated in the legend.  

3.3.3 Determinants of crop-raiding rates  

 

Crop raider biomass detected by cameras increased with distance to the nearest town (Table 3.1).  

In contrast, non-raider biomass was related to habitat type, with more pristine forest habitats 

exhibiting higher biomass. GLMM models indicate that reported losses to crop raiders decreased 

in heavily-settled areas. When modelled using GLMMHs, local human population density and 

habitat score (a higher score representing less disturbed habitat) both negatively influenced the 

chance of a roçado being raided, whereas human density alone negatively influenced the amount 

lost to raiders.  
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Table 3.1. . Key predictors of the magnitude of manioc crop losses, crop-raider (and non-raider) biomass, and species composition sampled by camera-traps. Each row 

represents a retained independent variable. For methodological details and variable derivation, see methods and Appendix C.  Reference habitat is primary forest.   

Model 

number 
Data type 

Dependent 

variable 
Model type Model family 

Retained independent 

variable 
R² 

Odds 

ratio 

Lower 

confidence 

interval 

Upper 

confidence 

interval 

P value 

1 Interview Crop Losses  GLMM Negative Binomial 
Local Human 

Population 
NA 0.50 0.30 0.83 <0.01 

2 Interview Crop Losses  Hurdle - Zero Binomial 
Local Human 

Population 
NA 0.35 0.22 0.56 <0.001 

2 Interview Crop Losses  Hurdle - Zero Binomial 
Habitat Intactness - 

Score 
NA 0.72 0.52 0.99 <0.05 

3 Interview Crop Losses  Hurdle - Count Truncated QuasiPoisson  
Local Human 

Population 
NA 0.74 0.55 1.00 >0.05 (0.053) 

4 Camera trap 
Crop Raider 

Biomass 
GLMM Negative Binomial 

Distance to Nearest 

City  
NA 1.34 1.02 1.76 <0.05 

5 Camera trap 
Non-Raider 

Biomass 
GLMM Negative Binomial 

Habitat - Disturbed 

Forest 
NA 0.58 0.20 1.68 >0.05 

5 Camera trap 
Non-Raider 

Biomass 
GLMM Negative Binomial Habitat - Capoeira NA 0.52 0.30 0.90 <0.05 

5 Camera trap 
Non-Raider 

Biomass 
GLMM Negative Binomial Habitat - Homestead NA 0.20 0.09 0.42 <0.001 

6 Camera trap 
Species 

Composition 
Permanova NA Habitat 0.07 NA NA NA <0.001 

7 Camera trap 
Species 

Composition 
Permanova NA 

Habitat Intactness - 

Deforestation 
0.02 NA NA NA <0.01 
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NMDS ordination based on a Bray-Curtis distance matrix suggests that the species composition 

of CT stations within successional mosaics represents a nested subset of species in primary forest 

(Fig. 3.6). In ordination space, less disturbed forest habitat occupies the largest area, with more 

disturbed habitats occupying small subsets, rather than a distinct space. Similarly, the main crop 

raiding species are clustered in ordination space, whilst the larger number of non-raider species 

are spread widely.  Permanova analyses showed significant bivariate associations with habitat 

category and primary forest conversion. Modest R² values indicate that the variables tested did 

not explained much of the variation. The variable with the highest R² and lowest p value was 

habitat category.  

 

 

Figure 3.6. Ordination plots representing Bray Curtis distances from a matrix of standardised 

camera trap data. Left panel – Circles and convex hulls represent habitat categories, where dark 

green, blue, red and brown represent primary forest, disturbed forest, secondary forest and 

homestead, respectively. Right panel – Number size and colour represent species propensity to 

enter roçados and to crop raid, whereby larger number indicate a higher propensity to enter 

roçados, black, grey and blue represent frequent crop raiders, infrequent crop raiders and non-

raiders, respectively. Species are numbered as followed. 1 = A. microtis, 2 = Crypturellus. Spp, 3 

= C. paca, 4 = D. fuliginosa, 5 = Dasypus. Spp, 6 = D. marsupialis, 7 = Echimyidae. Spp, 8 = E. 

barbara, 9 = L. pardalis, 10 = L. wiedii, 11 = Leptotilla. Spp, 12 = M. americana, 13 = M. 

nemorivaga, 14 = Metachirus. Spp, 15 = M. tuberosum, 16 = M. pratii, 17 = M. tridactyla, 18 = 

N. nasua, 19 = Odontophorus. Spp, 20 = O. guttata, 21 = P. onca, 22 = P. tajacu, 23 = P. 

jacquacu, 24 = P. maximus, 25 = P. leucoptera, 26 = P. concolor, 27 = P. yagouaroundi, 28 = S. 

iginitus, 29 = S. spadiceus, 30 = T. tetradactyla, 31 = T. terrestris, 32 = T. pecari, 33 = Tinamus. 

Spp.
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3.4 Discussion 
 

3.4.1 The significance of losses to terrestrial vertebrate crop raiders 

 

Terrestrial vertebrate crop raiding imposes a triple burden for semi-subsistence forest dwellers in 

Amazonia. Firstly, although apparently modest, the overall mean reported losses to raiders of 

5.5% are substantial, and mask large variability to the extent that some farmers every year are 

ruined (c.f. Naughton‐Treves, 1998). Losses to crop raiders compound the hardship faced by 

semi-subsistence farmers, whose livelihoods are additionally impacted by flooding. Secondly, 

though sweet manioc is more palatable and requires less arduous processing (Frazer, 2010), the 

nearly triple raiding rates associated with it, seemingly relegate it to a secondary horticulture 

within roçados. Lastly and perhaps most importantly (Barua et al., 2013), farmers invest 

substantial effort in protecting their fields, incurring attendant opportunity costs, and would suffer 

nearly tenfold crop losses if they did not. The effects of guarding range from precluding 

extremely high losses (Gillingham and Lee, 2003; Pérez and Pacheco, 2006) to largely ineffective 

(Linkie et al., 2007). All anti-raider tactics along the Juruá, including setting nets, traps, hunting 

with dogs, and creating scarecrows and firebreaks are labour-intensive, which is consistent with 

other studies. For example Ugandan famers spend over 20% of their time guarding against crop 

raiders in some months (Hill 2000), and Tanzanian farmers guard their fields on a full time basis 

during high-risk months (Gillingham and Lee 2003).  

More isolated farmers living in small communities far from towns experienced the highest losses 

to crop raiders. This has been reported in other crop raiding studies (Hill, 2000; Naughton‐Treves 

et al., 2003). These remote, low-density communities have the highest barriers to market and 

lowest incomes (Parry et al., 2010), thereby suggesting a triple disadvantage in terms of their 

socioeconomic welfare. Several urban respondents reported that past losses to crop raiders were 

much higher. A respondent from a Carauari suburb reported that he “used to see cutias 

(Dasyprocta fuliginosa) eating manioc five times in one day. Now there are not even tracks.” This 

may reflect expanding urban populations with attendant increases in hunting pressure and 

disturbance. 

3.4.2 Hunting crop raiders 

 

Potentially, hunting crop raiders around roçados is a ‘win-win’ strategy, reducing rates of raiding 

and providing meat for local communities (Smith, 2005). Furthermore, as terrestrial vertebrate 

crop raiders are often fecund, disturbance tolerant, and ubiquitous species, they are good 

candidates for sustainable subsistence hunting.  

Despite this, and in agreement with Naughton‐Treves et al., (2003), who found that on average, 

crop losses to raiders were more valuable than hunting gains in terms of meat acquisition, we 
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found that hunting crop raiders may provide limited benefit to semi-subsistence agriculturalists in 

our study area insofar as (1) nonlethal methods to suppress crop raiders were almost as commonly 

reported as lethal methods; (2) Terrestrial game hunting in the Medio Juruá is secondary to fish as 

a source of animal protein (Endo et al. 2016), and a modest livelihood component (Newton et al., 

2012), which is consistent with other studies of ribeirinho communities in lowland Amazonia 

(Murrieta et al., 1999; Adams et al., 2009) and (3) the most hunted species, white-lipped peccary 

(Tayassu pecari), is not considered a significant crop raider as its large herds rarely entered 

roçado areas. 

Notwithstanding this, Naughton‐Treves et al., (2003) encouragingly found that in remote areas 

where hunting pressure has not greatly reduced large game abundance, hunting gains compensate 

crop losses. This supports the notion that community location represents a livelihood trade-off 

between access to natural resources and access to goods and services (Parry et al., 2010).  

We also found that the most prolific crop raiding species were amongst the most commonly 

hunted. The nineteen species reportedly hunted in our study accord with game offtake profiles 

reported in other Neotropical studies (Redford and Robinson, 1987; Jerozolimski and Peres, 

2003). Likewise, the species identified in our study as the most burdensome crop raiders were 

also identified by Pérez and Pacheco (2006) and Naughton‐Treves et al., (2003). Tayassu pecari 

is anomalous. Foraging in large herds and ranging over large areas (Peres, 1996; Fragoso, 1998), 

this species is a stochastic boon for hunters and impossible to ignore even by those otherwise 

disinclined to hunt. Although not regarded an important crop raider due to its infrequent 

occurrence, several respondents commented that in the unfortunate event that a herd of Tayassu 

pecari entered their roçado, the entire crop would be ruined.  

Additionally, the nutritional benefit of meat may be disproportionate to the quantity consumed. 

Indigenous Amazonian and to a lesser extent ribeirinho groups place extremely high nutritional 

and cultural importance on game meat (Neel et al., 1964; Carneiro, 1970; Redford and Robinson, 

1987).  

Lastly, the key terms “hunting” and “livelihood”, were understood differently by respondents, 

some of whom did not equate carrying a gun to their roçado and opportunistically killing animals 

as hunting. They only considered hunting to be specifically setting out with the primary objective 

of killing game. Similarly, some respondents did not consider strictly subsistence activities such 

as hunting, even if those were frequently engaged in, to be a primary livelihood component. Thus 

our interviews may underestimate the incidence and importance of opportunistic and subsistence 

hunting.  
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3.4.3 Crop raiding species and the human landscape 

 

Vertebrate species either reported to enter roçados or camera-trapped in their vicinities are a 

small proportion of the assemblage detected by camera traps, and crop raiders are a smaller 

proportion still. There are ecological, behavioural and demographic filters species must pass 

through if they are to become burdensome raiders. The vast majority of Amazonian forest 

vertebrates persist at low densities and are intolerant of highly disturbed habitats. Amongst the 

most habitat-generalist, disturbance-tolerant species, only a small proportion are capable of 

digging and ingesting manioc tubers or grazing their leaves, both of which are highly toxic to 

generalist herbivores (Gleadow and Woodrow, 2002). This largely explains the much higher 

crop-raiding rates observed for the more palatable sweet manic, which has a lower cyanide 

content. 

The zero hurdle model retained the habitat intactness score, implying that roçados surrounded by 

more intact habitat were less likely to be raided. We anticipated the opposite effect, as 

neighbouring undisturbed habitat acts as a reservoir for crop raiders. Other studies have shown 

that crop raiding is strongly associated with areas near forest (Naughton‐Treves, 1998; Hill, 2000; 

Linkie, 2007). This is an unexpected result that we treat with caution. Odds ratio confidence 

intervals suggest that the relationship is weak. It may be that Neotropical crop raiders persist in 

highly heterogeneous agricultural mosaics to a greater degree than anticipated. This is not the 

case for non-raiders, whose biomass was markedly depressed in more disturbed habitats. A more 

plausible explanation is the effect of landscape context. Unlike other crop-raiding study areas 

throughout the tropics, the Medio Juruá region largely consists of vast tracts of contiguous 

primary forest with deforestation and regrowth representing only ~1.8% of total area. At a 

landscape scale, primary forest is thus not a limited habitat and habitat-generalist raiders may be 

attracted to anthropogenic resources.  

Though anthropogenic factors such as community size and proximity to urban centers had a 

negative effect on crop raiding, household distance to roçado did not. This is counterintuitive as 

roçados farther removed from the centre of the community are expected to experience less 

hunting pressure and vigilance. Whilst we can conclude that anthropogenic pressure in general 

influences crop raiders, we cannot confirm that this effect is spatially concentrated.     

3.4.4 A forest ecosystem disservice? 

 

Crop raiding can be considered an ecosystem disservice. Anthropogenic pressures negatively 

influence rates of crop raiding, so that Amazonian communities sometimes pay a high price for 

living at low densities in a high species-richness, intact environment. The biodiverse ecosystem 

per se may not be at fault. Crop raiding species tolerate human disturbance, and even much 

simplified ecosystems include them. Indeed, biotic disturbance and simplification may exacerbate 
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levels of crop raiding and pests (Andow, 1983; Yamada and Muroyama, 2010). Furthermore, 

camera trap and interview data suggest that crop raiders are closely attended by their natural 

predators in faunally-intact vertebrate assemblages such as those along the Juruá, presumably 

buffering raiding rates. However, this is inadequate consolation to local villagers who may also 

incur significant losses to forest carnivores. Predators of large forest rodents (dasyproctids and 

echimyids), such as ocelots and tayras, are frequently implicated in livestock depredation. Large 

predators of ungulates (e.g. Mazama americana and Pecari tajacu) such as large felids (Panthera 

onca and Puma concolor), are feared killers of domestic pigs and cattle and occasionally people 

(Conforti, and de Azevedo, 2003; Soto-Shoender, and Giuliano, 2011).   

3.4.5 Dog hunting 

 

Amongst the strategies to reduce crop raiding, 17.1% of responses reported hunting with dogs, or 

using dogs to scare away raiders. This is a contentious issue. Dogs are believed to drastically 

impact local fauna (Galetti and Sazima, 2006), covering long distances, killing small game, 

maiming and chasing away larger animals and causing additional disturbance through their noise 

and scent. There have been calls to enforce bans on the use of dogs as a hunting tool in Brazil 

(Cunha and De Almeida, 2000; Carvalho and Pezzuti, 2010). Their common use suggests that as 

a tool for reducing rates of crop raiding, however, dogs have merit. One interviewee reported that 

their community suffered high consistent losses to collared peccary herds, until they employed a 

professional hunter with dogs from a nearby community to kill and scare them away. The 

intervention was so effective that they later acquired hunting dogs of their own.  

3.4.6 Interview reliability  

 

Our interview data likely suffers from social desirability bias (John et al., 2010). Our interviews 

included potentially sensitive topics such as livelihoods and hunting. Techniques to increase the 

reliability of responses to sensitive questions (randomised response techniques (RRT) or similar) 

were not used. Interviews were carried out by non-locals, who may be perceived as outsiders. We 

asked respondents to remember and quantify losses to crop raiders and to estimate counterfactual 

losses in the absence of crop protection. Plausibly, respondents may have been motivated to over-

report losses and under-report hunting. This is because hunting may be perceived to be an activity 

that researchers disapprove of, whilst high crop losses not only highlight livelihood challenges, 

but justify hunting.   

Nonetheless, we argue that our data are trustworthy. Our research group has been active in the 

Medio Jurua region since 2007 and has built trust through involvement in popular and successful 

resource management programs such as pirarucu (Arapaima spp) fisheries. Interviewers built 

trust by acting respectfully towards local communities (see Appendix C.10). We asked potentially 

sensitive questions in a direct manner, trusting the respondents rather than employing RRT.     
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The consistency of our interview results both with comparable existing studies (Naughton-Treves, 

1998; Hill, 2000; Nchanji 2002) and with our camera data, increases our confidence in them. A 

coherent picture emerges due to the complementarity between camera trap and interview data, 

suggesting that the data are broadly reliable. Species frequently detected by cameras, especially in 

disturbed habitats, were those reported to frequent roçados. Likewise, nearby human population 

density (as quantified by community size or proximity to city), was associated with both lower 

reported crop losses and with lower detected crop raider biomass. By contrast habitat disturbance 

(measured by habitat type or amount of nearby deforestation), was associated with lower non-

raider biomass and simplified species composition. Given the complementary strengths and 

weaknesses of these two data collection methods, we suggest that mixed methods hold promise 

for understanding socio-ecological problems.  

3.5 Conclusions  
 

Terrestrial vertebrate crop raiding represents a burdensome ecosystem disservice for rural 

Amazonians, who invest substantial amounts of time energy in protecting crops to avoid 

significant losses. Crop raiding is heightened in sparsely settled areas, thereby compounding the 

economic hardship faced by small communities that are already disadvantaged by isolation from 

the material, service and information economy of urban centres. Crop raiders comprise a select 

group of habitat-generalist, disturbance-tolerant and relatively fecund species, which apparently 

make them ideal candidates for sustainable subsistence hunting. However, local semi-subsistence 

communities consider high crop raider biomass to be a livelihood threat, rather than a hunting 

opportunity. 
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APPENDIX A  

Table B1 

Summarised camera trap, interview and trait data per species. Camera trap data do not distinguish between small armadillos. NA indicates species not reliably 

detected by camera traps or habitat selectivity index cannot be calculated because camera detections are zero. CTR = Detections per 100CT Nights (all habitats). HSI 

= Habitat Selectivity Index.  Interview data are percentages of summed weighted scores.  Body Mass sources a = Baptista et al., 1997, b = Dunning, 1992, c = Emmons 

and Feer, 1997, d = Carboneras, 1992, e = Nowak, 1999, f = Peres (unpublished). Where male and female adult biomass for a given species differ, the mean was used. 

Where only a range of adult biomass was known for a given species, the mean of the upper and lower limits was used. 

Binomial 

/Designation 
Taxa English Name CTR HSI Hunted 

Killed 

in 

Roçados 

Enters 

Roçados: 

Crop 

Raider 

Enters 

Roçados: 

Non-

Raider 

Body 

Mass, 

g 

Source 

All Cingulata 

small 
Xenarthra 

Small Armadillos 

All 
1.4 -0.44 2.73 0 0.14 9.17 4800 c 

Alouatta spp Primates Howler Monkey NA NA 4.03 0 0 0 6500 f 

Atelocynus 

microtis 

Carnivores 

Other 
Short-Eared Dog 0.24 -2.05 0 0 0 0 7750 c 

Cabassous 

unicinctus 
Xenarthra 

Southern Naked 

Tailed Armadillo 
NA NA 0 0 0.04 0.23 3200 c 

Cairina moschata Birds Muscovy Duck 0 NA 0.37 1 0.1 0 2550 d 

Callicebus spp Primates Titi Monkey NA NA 0 0 0 0.07 1125 f 

Cebus albifrons Primates 

White Fronted 

Capuchin 

Monkey 

NA NA 0 0 0 0.14 2700 f 

Crypturellus spp Birds Tinamou Small 0.83 -0.64 2.35 1 0.07 1.1 420 f 

Cuniculus paca Rodents Paca 4.92 -0.04 14.36 12 12.74 0.58 9500 f 

Dasyprocta 

fuliginosa 
Rodents Agouti 6.99 -0.07 8.01 53 23.02 0.29 4500 f 

Dasypus kappleri Xenarthra 
Greater Long-

Nosed Armadillo 
NA NA 0 0 0.04 1.96 10150 c 



105 
 

Binomial 

/Designation 
Taxa English Name CTR HSI Hunted 

Killed 

in 

Roçados 

Enters 

Roçados: 

Crop 

Raider 

Enters 

Roçados: 

Non-

Raider 

Body 

Mass, 

g 

Source 

Didelphis 

marsupialis 
Marsupials 

Common 

Opossum 
1.19 0.09 0 0 0 0 1088 c 

Echimyidae spp Rodents Spiny Rat 1.02 -0.75 0 0 0.84 0 560 c 

Eira barbara 
Carnivores 

Other 
Tayra 0.86 -0.83 0 0 0 1.35 4850 c 

Hydrochoerus 

hydrochaeris 
Rodents Capybara 0 NA 0.41 0 0 0.29 50000 c 

Lagothrix spp Primates Woolly Monkey NA NA 1.31 0 0 0 8710 f 

Leopardus 

pardalis 
Felids Ocelot 1.21 0.04 0 0 0 0.09 15000 f 

Leopardus wiedii Felids Margay 0.1 -1.43 0 0 0 0.52 6000 c 

Leptotila spp Birds 
White Tipped 

Dove 
0.64 -1.42 0 0 0.07 1.67 149 a 

Mazama 

americana 
Ungulates Red Brocket Deer 6.57 0.34 8.22 6 3.77 15.63 30000 f 

Mazama 

nemorivaga 
Ungulates 

Grey Brocket 

Deer 
0.89 -0.96 1.25 0 0 0 18000 f 

Metachirus spp Marsupials 
Brown Four-Eyed 

Opossum 
0.52 -0.57 0 0 0 0 390 c 

Mitu tuberosum Birds 
Razor-Billed 

Curassow 
2.23 -0.1 8.21 0 0.07 2.22 3000 f 

Myoprocta pratti Rodents Green Acouchi 0.78 -0.9 0 1 0 0.14 750 f 

Myrmecophaga 

tridactyla 
Xenarthra Giant Anteater 0.76 -0.27 0 0 0 0.48 30500 c 

Nasua nasua 
Carnivores 

Other 
Coati 0.14 -1.83 0 0 0 0 5100 c 

Neochen jubata Birds Orinoco Goose 0 NA 0.13 0 0 0 1396 d 

Odontophorus 

spp 
Birds Wood Quail 0.07 -1.54 0 0 0 0 310 f 
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Binomial 

/Designation 
Taxa English Name CTR HSI Hunted 

Killed 

in 

Roçados 

Enters 

Roçados: 

Crop 

Raider 

Enters 

Roçados: 

Non-

Raider 

Body 

Mass, 

g 

Source 

Panthera onca Felids Jaguar 0.17 -0.79 0.15 0 0 1.7 80000 f 

Pecari tajacu Ungulates Collared Peccary 1.07 0.09 17 25 15.89 0 25000 f 

Penelope 

jacquacu 
Birds Spix's Guan 0.19 -0.86 0.32 0 0 0.08 1280 f 

Priodontes 

maximus 
Xenarthra Giant Armadillo 0.14 -0.34 0 0 0 1.59 30000 c 

Psophia 

leucoptera 
Birds 

Pale Winged 

Trumpeter 
1.88 -1.31 0 0 0 0 1200 f 

Puma concolor Felids Puma 0.48 0.04 0.15 0 0 1.17 45000 c 

Puma 

yagouaroundi 
Felids Jaguarundi 0.1 -1.43 0 0 0 0 8000 f 

Saimiri sciureus Primates Squirrel Monkey NA NA 0 0 0 0.1 940 f 

Sciurus ignitus Rodents Bolivian Squirrel 0.12 1.68 0 0 0 0 700 f 

Sciurus 

spadiceus 
Rodents 

Southern Amazon 

Red Squirrel 
0.54 -0.74 0 0 0 0 1200 f 

Tamandua 

tetradactyla 
Xenarthra 

Southern 

Tamandua 
0.17 -1.9 0 0 0 0 4500 c 

Tapirus terrestris Ungulates Tapir 0.02 -1.09 5.5 0 0 3.09 
16000

0 
f 

Tayassu pecari Ungulates 
White Lipped 

Peccary 
0.05 -0.05 20.74 0 0 0.19 32000 f 

Tinamus spp Birds Tinamou Large 0.57 -1.07 4.75 1 0.07 1.1 1200 f 

Tolypeutes spp Xenarthra 
Three Banded 

Armadillo 
NA NA 0 0 0.04 1.96 1300 e 
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Table B2 

Summary Camera Trap Data 

 Metric Units Mean N 
Standard 

Deviation  

Standard 

Error 

Sum 

Total 

Camera Deployment Duration Camera trap nights 31.87 132 5.64 0.49 4206.21 

Distance to Nearest Camera m 974.40 132 1997.86 173.89 NA 

Biomass of Crop Raiders Detected kg 96.47 132 128.38 11.17 12734.05 

Biomass of Non-Raiders Detected kg 41.54 132 51.27 4.46 5483.80 

Wild Species Richness N species 4.80 132 3.40 0.30 32.00 

N Detections   11.75 132 11.95 1.04 1551.00 

Diversity Shannon Index Reciprocal 3.27 132 2.08 0.18 NA 

Várzea Within 500m of camera m² 232132.89 132 284243.71 24740.24 NA 

Deforestation Within 500m of camera m² 218736.14 132 185650.32 16158.79 NA 

Households Within 4km (travel distance) of camera N households 16.77 132 16.70 1.45 NA 

Fluvial Distance to Nearest City m 132161.75 132 61403.25 5344.47 NA 

Population of Nearest City N households 3310.45 132 1422.25 123.79 NA 
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Supplementary Figure 3.1. Scatter plots of interview and camera data per species. Linear 

regression lines (red) and lowess lines (blue). Left – The relationship between a species 

propensity to enter roçados as reported in interviews, and the camera trap rate outside of 

primary forest. p<0.001, adjusted R²= 0.73. Spearman’s Rho = 0.47. Right – The relationship 

between a species propensity to crop raid as reported in interviews, and its importance as a 

hunted species as reported in interviews. p<0.001, adjusted R² = 0.32. Spearman’s Rho = 0.41.  
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APPENDIX B 

Interview Script 
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Appendix C - Methodological Details 

1. For camera trap deployments, Bushnell Trophy-Cam, Trophy-Cam HD, and Reconyx 

HC500 Hyperfire models were used. Camera sensors were set to high sensitivity. They 

took 3 sequential burst photographs or 3 second video clips. A red light flash was used in 

very low light. Only deployments close (1.8km) to the agricultural mosaic were used for 

the analysis. Deployments were not made in várzea. Deployments outside contiguous 

primary forest were 25m from the habitat edge to control for edge effects. When 

deploying cameras, a community resident was employed to aid in the identification of 

suitable locations and determine the age of capoeiras since abandonment. Locations were 

not chosen to deliberately maximise detection (for example beneath fruiting trees), but 

conspicuous obstacles to detection were avoided. Bait was not used. Locations were 

chosen to have relatively flat ground, relatively unobscured by large trees/obstacles. Thin 

vegetation was cleared in a cone of 7 paces long by 7 paces wide in-front of the camera to 

permit detection and avoid detecting the movement of vegetation. Cameras were deployed 

at knee height, attached to trees. Walk-tests were performed to confirm correct 

positioning. Mothballs and tampons were put inside cameras along with batteries to repel 

insects and protect against humidity. A GPS waypoint was always taken. When cameras 

were removed, a note was made of any problems or malfunctions such as water ingress, 

insect attack, dislodgement or battery failure.  

2. When summarising interview data, where single numeric responses were given, means 

were calculated. Where multiple unranked categorical responses were given, the number 

of responses per category were summed. Where multiple ranked categorical responses 

were given, a summed, rank-weighted score per category was calculated (∑ (∑ (ranked1) 

+ ∑ (ranked2/2) + ∑ (ranked3/3)…)).  

3. Várzea and habitat disturbance. For camera deployments, INPE PRODES, 2009, Hansen 

et al., (2013) Global Forest Change (GFC) datasets were combined because though the 

GFC data is 30m rather than 120m pixel resolution and extends to 2014, it does not 

account for deforestation that occurred before 2000. Cells were reclassified into either 

deforested or not deforested. For GFC data, 50% deforested was used as the cut off. 

Deforested pixels were converted to polygons and merged. 500m was considered 

appropriate given the heterogeneous and fine-scale nature of the agricultural mosaics.  

4. Distance-weighted variables for várzea, deforestation and local human population were 

calculated, but as these were not found to improve models, they were excluded from 

further analysis. Deforestation and várzea, polygons were separately converted to raster 

grid cells of 30m resolution to match the GFL dataset. The centre of each pixel was 

converted to a point. The distance from each camera to each point was calculated. This 
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was linear distance in the case of várzea and deforestation and transport distance in the 

case of households. Three weighted scores were calculated a) ∑ (1/distance) b) ∑ 

(1/(square root(distance))) c) ∑ (1/(natural log(distance))).  

5. Respondents were asked what land use/land cover (from now “land cover”) bordered each 

of their roçados. Respondents were allowed up to four responses. Each land cover type 

was assigned a score (see table below) reflecting the degree of disturbance, with 10 

indicating low disturbance contiguous primary forest and 1 indicating high disturbance 

homestead. Likewise, a várzea score was assigned, 1 indicating várzea and 0 indicating 

non-várzea.  Scores per roçado were summed and divided by the number of responses, to 

give the mean “intactness” and “várzea” of the land cover surrounding the roçado.  

Portuguese land cover/ 

land use description 
English Equivalent 

Intactness 

Score 

Várzea 

Score 

terra firme primary forest unflooded 10 0 

várzea primary forest seasonally flooded 10 1 

mata secundaria secondary forest 8 0 

capoeira velha old abandoned roçado 6 0 

capoeira nova newly abandoned roçado 4 0 

açaí acai palm (Euterpe oleracea) plantation 3 0 

pupunha peach-palm (Bactris gasipaes) plantation 3 0 

roçado agricultural field 2 0 

pasto pasture 2 0 

campo field (for cattle or football) 2 0 

comunidade community 1 0 

 

6. Data validation of households and deforestation. The table below compares the PRODES 

raster datasets between 2007 and 2013. The 2009 dataset was chosen because it has the 

smallest area of cloud and no-data and the largest area of data. It also corresponds closely 

in time to the 2007-2009 households census. The rural households points shapefile was 

aggregated at the level of census sector and district for the states of Amazonas, Para, Acre, 

Mato Grosso, Rondônia and Roraima, so that it could be compared to the IBGE 2007 rural 

population count. Similarly, the 2009 PRODES deforestation data was compared to the 

Hansen et al Global Forest Loss (GFL) dataset. The GFL “Year of gross forest cover loss 

event” raster layer was used so that loss until 2009 could be compared. In both cases, cells 

were reclassified into either deforested or not deforested. A subset of data for which there 

was both PRODES and GFL data was taken from the 00N_070W degree granule in the 

state of Amazonas. The data were aligned and aggregated (using ArcGIS tools “extract by 

mask” and “aggregate”) to a cell size of roughly 12500m, representing a 100 cell factor 

aggregation of the PRODES dataset. A 30km buffer was erased from this area to exclude 

edge effects caused by raster aggregation, leaving an area of analysis of 1,072,620 km². 

For both deforestation and households, a Spearman’s rank test was performed. The rural 

households point shapefile and the IBGE 2007 rural population census, were found to be 

strongly correlated. Aggregated by census sector, N = 8314, spearman value 0.69. 

Aggregated by district, N= 721, spearman value, 0.85. Likewise, the 2009 PRODES 
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dataset was found to be strongly correlated to the GFL dataset N=6854. Spearman’s Rho = 

0.71.  Note that the GFL data is at a finer, 30m resolution and does not appear to have 

cloud. It classifies pixels as percent deforested. It counts any vegetation above 5m in 

height as forest. It does not classify natural non-forest.  

Yr 
no data 

cells 
data cells cloud cells 

cell 

size 

m 

area 

per cell 

m² 

no data 

km² 
data km² 

cloud  

km² 

2013 516596930 555917128 80109142 90 8100 4184435 4502929 648884 

2012 476386530 596127528 38370048 90 8100 3858731 4828633 310797 

2011 475120657 598433411 36681641 90 8100 3848477 4847311 297121 

2010 492497080 581056988 54072551 90 8100 3989226 4706562 437988 

2009 262026591 341073034 15757106 120 14400 3773183 4911452 226902 

2008 271926486 328258890 15962705 120 14400 3915741 4726928 229863 

2007 279069068 321827326 20524032 120 14400 4018595 4634313 295546 

 

7. For interviews, the number of households per community were calculated from three data 

sources 1) interviews conducted during this study 2) Projeto Medio Jurua interviews and 

3) The Sustainable Forest Association (FAS) community census. Although our data is 

more recent, we were interviewing community members rather than conducting a 

population census. Mean values per community were used.  

8. To calculate transport distance we used average speeds per transport type from Parry and 

Peres, 2015. Outboard motor (locally rabeta) 9km/h, un-motorised canoe 5km/h, on foot 

4km/h. These mean speeds are confirmed by our fieldwork experience. Transport or 

Manhattan distance was considered a more appropriate metric than raw journey time 

because faster means of transport such as outboard motors have a higher associated cost to 

the user. Thus transport distance better reflects the difficulty/cost of accessing a roçado. In 

3 out of 238 cases, no mode of transport was given by the respondent, so the mean 

transport speed for those communities was used  

9. To convert data given per roçado into data per person per year, data for all the roçados 

planted by a given farmer in a given year were summed, then the average across all years 

was taken.  

10. During fieldwork, and especially when conducting interviews, researchers acted 

respectfully towards local communities. Researchers took pains to integrate into 

community life wherever possible, asking for permission to work in communities, making 

short presentations explaining our work, participating in agricultural work, sharing meals, 

attending meetings, employing residents and sleeping in communities. When conducting 

interviews, we were open to respondent questions and suggestions and we emphasised that 

data would be kept anonymous and that it was perfectly acceptable to not respond
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Abstract 

 

The degree to which terrestrial vertebrate populations are depleted in tropical forests occupied by 

human communities has been the subject of an intense polarising debate that has important 

conservation implications.  Conservation ecologists and practitioners are divided over the extent 

to which community-based subsistence offtake is compatible with ecologically functional 

populations of tropical forest game species. To quantify envelopes of depletion of forest 

vertebrates around human communities, we deployed a total of 383 camera trap stations and 78 

quantitative interviews to survey the peri-community areas controlled by 60 semi-subsistence 

communities over a combined area of over 3.2 million hectares in the Médio Juruá and Uatumã 

regions of Central-Western Brazilian Amazonia. Camera trap data suggests that a select few 

harvest-sensitive species, including lowland tapir, are either repelled or depleted by human 

communities. Nocturnal and cathemeral species were detected relatively more frequently in 

disturbed areas close to communities, but individual species did not necessarily shift their activity 

patterns. This suggests that in our study areas, species composition, rather than behaviour, alters 

in response to anthropogenic pressure. The aggregate group biomass of all species was depressed 

in proximity to urban areas and accessible tributaries rather than in proximity to communities, 

suggesting urban-centric and anisotropic, rather than community-centric and isotropic depletion. 

Interview data, which better account for arboreal and rarely detected species, suggest that species 

traits, especially group size and body mass, mediate anthropogenic depletion/repulsion. Large-

group-living and large-bodied species including lowland tapir, woolly monkey and white lipped 

peccary, are detected farther from communities as reported by experienced informants. Long-

established communities in our study regions have not “emptied” the surrounding forests. Our 

study regions are however characterised by low human population density and plentiful 

alternative protein sources. They thus represent a best-case scenario, relative to low productivity 

regions of the upper Rio Negro and more densely settled regions of the Afrotropics and Asian 

tropics. Additionally, the unavoidable deployment of camera traps against a riparian productivity 

gradient, as well as the interview recall bias towards large-bodied species, likely make our 

assessment of depletion conservative. 
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4.1 Introduction  
 

Conservationists from across the major tropical and subtropical regions have voiced concerns that 

vast tracts of apparently intact forest mask large-scale faunal extirpation (Bennett et al., 2000 - 

Malaysian Borneo; Hart, 2000 - DR Congo; Hill and Padwe, 2000 - Paraguay; Noss, 2000 - 

Central African Republic; Peres, 2000 - Brazilian Amazonia; Lahm, 2001 – Gabon; Madhusudan 

and Karanth, 2002 - Southern India; Datta et al., 2008 - Northeast India; Golden, 2009 – 

Madagascar; Steinmetz et al., 2013 – Thailand; Sreekar et al., 2015 - Southwest China). Where 

human communities extract tropical forest vertebrates, an “empty forest” scenario (Redford, 

1992) may result, in which species larger than 2kg are virtually absent (Harrison, 2011). These 

defaunated forests may be subject to gradual degradation as the key functional roles played by 

megafauna are lost (Wright, 2003; Muller‐Landau, 2007; Harrison et al., 2013). Although the 

importance of habitat fragmentation and degradation are recognised (Peres, 2001), hunting is 

often implicated as the main driver of defaunation (Fragoso, 1991) and heavily hunted sites have 

been shown to retain less than 20% of the crude vertebrate biomass of unhunted sites (Peres, 

2000). Biodemographic models predict that the adoption of firearms over traditional weapons 

results in depletion envelopes for low fecundity, harvest-sensitive species, such as spider 

monkeys, around even low density, subsistence settlements in otherwise pristine remote forests 

(Levi et al., 2009).  

It is argued that subsistence hunters operate as optimal foragers rather than conservationists 

(Hawkes et al., 1982; Alvard, 1993), always pursuing the most profitable prey irrespective of 

vulnerability. In multi-species prey assemblages, the persistence of harvest-insensitive species 

maintains the overall profitability of hunting, such that apparent competition drives vulnerable 

species to local extirpation (Clayton et al., 1997; Branch et al., 2013). Humans have been 

responsible for widespread faunal extinctions since prehistory (Martin, 1967; Bar-Oz et al., 

2011). Apparent cases of past stable coexistence with sensitive prey species may be an incidental 

consequence of low local human population density and inefficient hunting technology (Low and 

Heinen, 1993), and are irrelevant to modern conservation given the widespread adoption of 

firearms (Mittermeier, 1987), increasing market integration (Holt et al., 2004) and human 

population growth even in protected areas (Peres, 2011).  

Numerous measures of hunting sustainability have been proposed (Robinson and Redford, 1994; 

Milner-Gulland and Akçakaya, 2001) and in a wealth of studies, the actual hunting offtake has 

been shown to be unsustainable for several species (Peres, 1990 – Ateline primates; Altrichter, 

2005 - white-lipped and Chacoan peccaries; Struebig et al., 2007 – flying foxes; Golden, 2009 – 

four species of lemur), resulting in areas of low prey biomass, low catch per unit effort, local 

extirpations and dramatically different prey offtake profiles (Wilkie and Carpenter, 1999; Fa et 

al., 2000; Corlett, 2007) 
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In some regions, commercial hunting to supply urban demand (the “bushmeat trade”) is 

implicated as the key driver of overharvesting (Bowen‐Jones and Pendry, 1999). In other regions, 

however, even subsistence hunting practiced by isolated households can severely depress local 

populations of harvest-sensitive species (Peres, 1990). Unsustainable hunting has been deemed an 

especially acute problem in tropical forests due to their global biodiversity importance (Gaston, 

2000), intrinsically low wild-meat productivity (Milner-Gulland and Bennett, 2003), high 

projected population growth (Cincotta et al., 2000), and often insufficient resources to enforce 

conservation regulations (Peres and Terborgh, 1995).  

In stark opposition, some authors have argued that subsistence hunting, as practiced in 

indigenous, sustainable use and extractive reserves, has little impact on populations of terrestrial 

game vertebrates (Schwartzman et al., 2000). Semi-subsistence and especially traditional 

communities often accumulate deep traditional ecological knowledge (Berkes et al., 1995) and a 

well-developed conservation ethic stemming from both spiritual beliefs and a history of resource 

management (Martinez, 1996; Berkes, 1999; Read et al., 2010). The long period of coexistence 

between humans and vertebrate game (Leeuwenberg and Robinson, 2000) implies long-term 

hunting sustainability. Far from being optimal foragers, subsistence hunters have complex 

culturally-mediated systems of resource utilisation rules and food taboos (McDonald, 1977; Da 

Silva, et al., 2005) including avoidance of vulnerable species, life-stages and seasons and the 

small and large-scale spatial rotation of hunting grounds (Berkes et al., 2000; van Vliet et al., 

2010), all of which enable faunal recovery.  

Several studies have reported that despite long-term hunting offtake levels that consistently 

exceed predicted maximum sustainable yields, game depletion is not evident through changes in 

bushmeat availability at markets, catch per unit effort, prey profiles, per capita consumption rates 

or mean prey weights (Alvard, et al., 1997; Ohl‐Schacherer et al., 2007; van Vliet and Nasi, 

2008). One explanation for this phenomenon is the replenishment through dispersal of hunted 

“sink” areas, by adjacent unhunted “source” areas (Novaro, et al., 2000).  This calls into question 

the aforementioned claims that game species are typically overharvested within intensively 

hunted portions of village catchment areas. Furthermore, it is claimed that the density estimates 

used as evidence of hunting depletion are flawed. Hunted species are able to change their 

behaviour in response to persistent hunting and other anthropogenic disturbance, such that they 

become less detectable (Johns, 1985). Line-transect surveys therefore may fail to detect hunted 

species at hunted sites, whilst their presence is confirmed by tracks and signs (Fragoso et al., 

2016).  

Even in cases where densities of game species are reliably found to be depressed in proximity to 

semi-subsistence communities, it is argued that this is insufficient evidence to substantiate 

unsustainable local hunting. Firstly, as Robinson and Redford (1994) argue, depletion in itself 

does not entail a lack of sustainability. Offtake must by definition result in a spatio-temporally 
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localised reduction in abundance and even where this depletion persists, yields may be maximised 

when a population is below its carrying capacity. Secondly, environmental factors may be 

responsible for complex population changes (Hill et al., 2003). Lastly, external influences such as 

(a) uncontrolled hunting practiced by illegal loggers, miners and commercial hunters from nearby 

urban areas (Parry et al, 2010), and (b) a reduction in available wildlife source areas due to the 

encroachment of commercial agriculture, may be driving game depletion.  

These opposing views have important conservation implications. Some conservation biologists 

have argued for the need to prioritise the creation and enforcement of strictly protected areas that 

exclude humans and prevent hunting, in some of the world’s most biodiverse tropical rainforests 

(Kramer et al., 1997; Brandon et al., 1998; Wilkie et al., 2011). Others have replied that the 

creation of large, strictly protected areas is (1) unethical, as they are either detrimental to the 

livelihoods of the world’s poorest people (Norton-Griffiths and Southey, 1995), or displace semi-

subsistence communities entirely (Geisler, 2003); (2) unnecessary because both standing forest 

(Porter-Bolland et al., 2012) and fauna are effectively conserved by communities (Ntiamoa-

Baidu, 2008); and (3) counterproductive because (a) they damage relations with local 

communities who then become hostile to conservation (Nepal and Weber, 1995) and (b) they 

remove the very people best placed to defend biodiversity (Alcorn, 1993; Schwartzman et al., 

2000), as local communities are relatively permanent and cost-effective deterrents of 

commercially motivated external agents of environmental degradation such as commercial 

hunters, logging companies and large-scale cattle ranchers, who have little incentive to conserve 

wildlife.   

Here we contribute to this debate by assessing the degree of depletion of a range of neotropical 

forest vertebrates in to the vicinities of semi-subsistence communities and towns in Brazilian 

Amazonia using both camera trapping and interview surveys. We do not necessarily restrict the 

term “depletion” to demographic reduction via hunting offtake, though we consider this an 

important mechanism. As we do not have long-term hunting offtake data alongside species 

abundance data, even if we find that the abundance of certain species is depressed in proximity to 

human communities, we cannot thereby conclude that this is the result of demographic depletion. 

This could equally be the result of species dispersing away from communities. Therefore we use 

the term “depletion” for either depletion or repulsion. Equally, we cannot assess the long-term 

sustainability of hunting in these regions. Instead, we hope to provide a snapshot of the status of 

forest vertebrate populations.  

We hypothesise that: (1) Harvest-sensitive species, including large-bodied species such as tapir, 

highly preferred game species such as white lipped peccary and low-lambda species such as 

Ateline primates, are depleted in proximity to semi subsistence communities in our study regions. 

This depletion will be evident through both (a) lower camera trap detection rates in proximity to 

communities, especially large communities and (b) larger interview-reported distances until sites 
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of encounter relative to other species; (2) High-lambda, disturbance-tolerant species such as 

agoutis, which benefit from opportunities to raid agricultural plots, will be relatively more 

abundant in proximity to communities; (3) Nocturnal and cathemeral species, whose circadian 

activity patterns permit minimizing direct contact with humans, will be relatively more common 

in proximity to communities; (4) Cathemeral species, including brocket-deer and felids, will alter 

their behaviour in order to reduce human encounters, and will therefore exhibit higher detection 

rates at night when in proximity to communities; (5) The cumulative detected biomass of 

terrestrial vertebrates will be significantly depressed in proximity to communities; and (6) Overall 

detection rates will be lower in lower productivity black-water river basins, where the impact of 

hunting will be more severe.  

To this end we make several key assumptions. Firstly, we assume that proximity to human 

settlements is a proxy for the intensity of hunting and other anthropogenic disturbance. This rests 

on the well supported observation that hunters behave as central place foragers (Sirén et al., 

2004), such that hunting intensity declines from the centre of the community. Secondly, we 

assume that areas near human settlements are not otherwise intrinsically hostile to our study 

species. To the contrary, it is anticipated that human settlements were deliberately established in 

environmentally favourable locations. For example, we expect a higher human population density 

in areas allowing greater access to abundant natural resources as predicted by an ideal-free 

distribution. These resources include a higher soil fertility which mediates the density and species 

richness of nonvolant mammals across Amazonia (Emmons, 1984; Peres, 2008).  Lastly, we 

assume that commercial hunting in our study regions represents a negligible fraction of total 

offtake and that we are not “missing” the most of the offtake by surveying subsistence hunting at 

the scale of local communities. This is plausible because (1) our study regions do not contain 

large urban populations and (2) culturally, hunted meat is not much sought by local urbanites 

(Projeto Médio Juruá, unpublished data).   
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4.2 Methods 
 

4.2.1 Study Area  

 

This study was carried out in the Médio Juruá and Uatumã regions of Western and Central 

Brazilian Amazonia (Fig. 4.1). The Médio Juruá study region covers an area of 1,637,008 ha and 

consists of 63.9% of primary unflooded (terra firme) forest, 30.0% of seasonally-flooded várzea 

forest, 4.4% of permanent water bodies, which include the Juruá River (the second-largest white-

water tributary of the Amazon) and its tributaries and oxbow lakes, and 1.8% deforestation and 

0.1% natural non-forest. Two sustainable-use reserve -- the Uacari Sustainable Development 

Reserve and the Médio Juruá Extractive Reserve -- jointly protect 42.3% of this landscape. The 

nearest towns are Carauari, which is 88 fluvial km downstream from the Médio Juruá Reserve 

and has a population of 4145 families, and Itamarati, which is 120 fluvial km upstream from the 

Uacari Reserve and has a population of 905 families.  

The Uatumã study region covers an area of 1,601,704 ha and consists of 62.3% of undulating 

upland primary unflooded (terra firme) forest, 17.9% of primary low-lying and seasonally-

flooded igapo forest, 11.1% permanent water bodies, which include the Uatumã River (which 

connects the Balbina reservoir to the Solimões River) and its main tributary the Jatapú River, 

4.0% deforestation and 4.7% natural non-forest, which includes areas of campina and 

campinarana non-forest vegetation on oligotrophic soils. The Uatumã Sustainable Development 

Reserve legally protects 27.0% of this landscape. The nearest towns are Vila Balbina, which has a 

population of 420 families and is 66 fluvial km upstream of the reserve, and Sao Sebastião, 

Itapiranga and Urucará, with populations of 1214, 1345 and 2051 families, respectively, and are 

37, 40, and 53 fluvial km downstream of the reserve, respectively.  

Both regions are inhabited by ribeirinhos who are former rubber-tapper semi-subsistence 

communities of mixed-descent, with producer cooperatives and resource-management programs. 

Large-scale ecological and socioeconomic differences between the two study regions are due to 

river chemistry and proximity to Manaus, the largest city in the state of Amazonas. The Juruá 

region encompasses highly productive white-water floodplain ecosystems, whereas the Uatumã 

region encompasses less productive black-water ecosystems, potentially resulting in lower faunal 

biomass density at Uatumã. Secondly, the Juruá region is over five times farther from Manaus, 

which increases transaction costs and reduces market opportunities for Juruá inhabitants.  
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Figure 4.1: Geographic location of Juruá (A) and Uatumã (B) study regions within the Amazon 

basin (C) and the distribution of camera trap stations in an example community (D). Major rivers 

are represented as blue lines, towns as red circles, communities as brown circles and camera 

trap stations as yellow circles. Background in panels A and B, which are presented at the same 

scale, displays elevation, with darker shades indicating lower elevation. Sustainable use and 

extractive reserves are outlined in black. The Amazon basin (panel C) is outlined in black and the 

two study areas are outlined in red. In panel D, the four camera trap stations nearest one of the 

sampled communities were placed within the peri-community agricultural mosaic, whilst five 

other stations were within contiguous primary forest.  

4.2.2 Vertebrate species 

 

For all species that were either the subject of interviews or reliably detected by camera traps, a 

series of species traits were compiled (Table 4.1). Species taxonomic relatedness was assessed 

(Appendix C). Values for species intrinsic rate of increase (lambda) were taken from Robinson 

and Redford (1991) and C.A. Peres (unpubl. data). Values for adult body mass per species was 

taken from Dunning, 1992, Carboneras, 1992, Baptista et al., 1997, Emmons and Feer, 1997, 

Nowak, 1999 and C.A. Peres (unpubl. data), with the mean of male and female adult body mass 

used for sexually dimorphic species. Where only a range of adult biomass was known for a given 

species, the median of the upper and lower limits was used. Values for mean group size per 

species were taken from the Projeto Médio Juruá faunal monitoring program 

(http://www.projetomediojurua.org/). Species were assigned an ordinal trophic score, with lower 



123 
 
numbers indicating species feeding at a lower trophic level, on the basis of Wilman et al., 2014 

and C.A. Peres (unpubl. data). Species were assigned a categorical activity pattern [diurnal, 

nocturnal or cathemeral], based on the camera trap detections (Appendix B). Species were 

assigned a score reflecting their propensity to enter agricultural plots, as reported by semi-

subsistence agriculturalists in the Juruá region (for more details see Chapter 3). Lastly, species 

were assigned a region-specific score reflecting the frequency with which they are hunted, as 

reported by respondents in both the Juruá and Uatumã regions.  

4.2.3 Camera Trapping 

 

Data collection took place between 2013 and 2015, between April and August to avoid the period 

of heaviest rainfall during which cameras are often damaged. A total of 383 camera-trap 

deployments (hereafter, CTD) were conducted according to a standardised deployment protocol 

(Appendix A1). Mean functioning camera-trap-nights (CTN) per deployment was 31.4 ± 0.4 

CTNs. Mean nearest neighbour distance between deployments was 962.1 ± 47.4 m, although 

camera-traps were deployed along a ~852-km nonlinear distance along the Juruá, Uatumã and 

Jatapú Rivers. 

Camera traps were deployed both in proximity to the peri-community agricultural mosaic and in 

contiguous primary terra firme forest along transects leading away from local communities. In 

the Juruá region, 132 camera-traps were deployed in the peri-community agricultural mosaic, 

stratified across several landscape-scale habitat types ranging from large tracts of undisturbed 

primary contiguous forest, to homestead areas in close proximity to community households. Due 

to time constraints, it was not possible to replicate the agricultural deployments in the Uatumã 

region.  

In both the Juruá and Uatumã regions, the remaining camera trap deployments were carried out 

along 6-km transects starting at an area of contiguous primary terra firme forest nearest the 

community, and radiating away from the community. Waypoints were taken at the edge of 

contiguous primary forest and cameras were deployed at intervals of 50m, 350m, 1000m, 3000m 

and 6000m Euclidean distance along the transect, which can be converted to a near-exact log-

linear scale (Pearson r = 0.983). 

For each deployment, the following data were recorded: (1) identity and coordinates of the 

nearest local community; (2) coordinates of the camera-trap station; (3) date and time of 

deployment and removal; (4) in case of malfunction; date and time of last photograph; (5) habitat 

type; and (6) if deployed in secondary forest, age (yrs) since abandonment as determined by 

community residents.  

Images were edited to improve contrast and aid species identification, and separated into 

deployment subfolders corresponding to ecospecies. Congeners from different study regions such 
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as trumpeters (Psophia leucoptera and Psophia crepitans) were treated as a single ecospecies. 

Closely related species that could not be consistently identified to species level, such as Dasypus 

kappleri and Dasypus novemcinctus, were grouped into a single ecospecies. Images of domestic 

animals, humans, small passerines, primates, bats, small lizards, vultures, insects, were excluded 

from further analysis. We extracted all EXIF metadata including date and time from subfolders 

using the camtrapR package within R (Niedballa et al., 2016) and Picture Information Extractor 

software (Picmeta Systems, 2016). Data were compared with field notes and date/time were 

corrected where necessary. Images of conspecifics at any given deployment >30 min apart were 

defined as independent detections, which were then summed at the scale of camera-traps.   

The different number of functioning camera trap nights per camera were accounted for as follows. 

When species detections were the response variable in statistical models, the number of 

functioning camera trap nights was designated as a model offset variable. Where species 

detections are compared graphically, or in analyses where offsets could not be used, detections 

were divided by the number of functioning CTNs to derive an abundance metric.  

In the case of ambiguous images for which a subject could only be identified to a broader 

ecospecies, a deployment-specific detection rate was calculated for each ecospecies sub-category, 

and then used to apportion detections between sub-categories. If that deployment included no 

photographs that could be reliably identified to either sub-category, then the overall detection rate 

for all deployments was used.    

Species-specific camera trapping detections were multiplied by the species body mass to provide 

an approximate metric of detected individual biomass. Because camera traps may fail to detect 

some group members, we simply defined detections as a single adult of undetermined sex. In 

order to account for species differences in group size, this individual biomass estimate was 

multiplied by the mean group size to give the detected group biomass per species per camera trap 

deployment.  

Several groupings and weightings of detected group biomass were created per camera trap 

deployment as follows (1) All – the summed group biomass of all species; (2) All.nq - the 

summed group biomass of all species, except for the large-group-living white-lipped peccaries 

(whose detected biomass was extremely clumped) to determine if it this species had a 

disproportionate effect on our results); (3) Bin.hunt – the summed group biomass of all species 

identified in interviews as hunted (see Methods below); (4) Bin.hunt.nq - the summed group 

biomass of all species identified in interviews as hunted, except for white lipped peccaries; (5) 

Bin.huntpers - the summed group biomass of all species either identified in interviews as hunted, 

or livestock predators including felids, mustelids and opossums; (6) Binhuntpers.nq - the summed 

group biomass of all species either identified in interviews as hunted, or livestock predators 

including felids, mustelids and opossums, with the except for white lipped peccaries; (7) Bin.pers 

- the summed group biomass of all species identified in interviews as livestock predators 



125 
 
including felids, mustelids and opossums; (8) Bin.unpers - the summed group biomass of all 

species neither identified as hunted nor as livestock predators; (9) Hw -  the summed group 

biomass of all species, weighted by the region-specific frequency with which they were hunted, 

derived from interviews; (10) –Hw.nq - the summed group biomass of all species, weighted by 

the region-specific frequency with which they were hunted, derived from interviews, except for 

white lipped peccaries; (11) Rw - the summed group biomass of all species, weighted by their 

propensity to enter agricultural plots as reported in agricultural interviews; and (12) Rw.nq - the 

summed group biomass of all species, weighted by their propensity to enter agricultural plots as 

reported in agricultural interviews, except for white lipped peccaries.  

4.2.4 Local Interviews 

 

Interviewees were resident in their respective communities for an average of 20 ± 1.5 years. 

When asked how frequently they entered the forest, the 54% responded “weekly”, 16% 

“monthly”, 13.5% “annually”, 10.1% “daily” and 5.4% “weekly/monthly”. Making the 

simplifying assumption that all of our 151 respondents have worked in the forest for eight hours, 

once a week for the past 20 years, these interviews represent a combined total of 143 interviewee-

years of experience.  

Interviews were conducted in Portuguese by the authors and without the aid of translators. 

Interviews were recorded using a structured questionnaire and a dictaphone, and cross-validated 

for accuracy. Interviewees were reassured that data would be kept anonymous and confidential, 

and were not paid, but some were participating in paid work such as camera trapping at the time 

of interviews. A total of 78 interviews were conducted, with a total of 151 respondents at 59 local 

communities or urban neighbourhoods (hereafter, communities). Interview topics included 

encounters with forest vertebrate fauna, household-scale livelihoods, diet, hunting, farming, crop 

raiding, and other human-wildlife conflicts. For methods relating to interviews that focussed 

exclusively on agricultural plots and crop raiders, see Chapter 3. 

Respondents were asked to estimate the time it would take, from leaving their home, to reach any 

given site at which a given species (or its tracks, scats and other perishable signs) could normally 

be encountered and the modes of transport used. Where respondents were unable to judge this, 

they were asked for the location of the most recent detection of that species or its perishable 

signs. Where a range of possible travel times were reported (several respondents explained that 

for a given species, encounter time was highly variable), an average was used, but where separate 

times were reported for direct encounters and encounters with signs, the lower of the two 

estimates was used. This partly accounted for highly elusive species, such as large felids, which 

respondents reported to be present, but were often undetected. In rare cases where responses were 

given in days rather than hours, a day was assumed to be eight travel hours. We differentiated 

between respondents who reported with certainty that a given species had not been encountered at 
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all in the vicinity of the community and those who said they did not know how far one would 

need to travel in order to encounter a given species. In the former case, we assumed that reported 

absences reflected a lack of detections within 24 travel hours from the community. In the latter 

case, we did not record an encounter distance, because we assumed that this threshold could not 

be confidently estimated by the respondent, perhaps through lack of experience in identifying 

tracks and other signs of a given species. The Manhattan distance to a species encounter was 

calculated using the transport time and mode of transport reported from interviews, and average 

transport velocity (Parry and Peres, 2015; Appendix A3).   

4.2.5 Spatial variables  

 

The distance between camera trap deployments and the nearest community and town, as well as 

between interviewed communities and the nearest town, was calculated as follows. A GPS 

waypoint was recorded at the centre of all communities including those interviewed or in 

proximity to our camera deployments. A transport network accounting for all main rivers, 

tributaries, known navigable perennial streams, roads and known tracks in the vicinity of all 

surveyed communities and camera deployments was constructed from GPS track-logs taken over 

successive fieldwork years. We used the Network Analyst to calculate the Manhattan or 

“transport” distance between deployments, communities and towns across both study regions.  

Having identified the community/town with the shortest Manhattan distance to a given 

camera/interviewed community, we then calculated the Euclidean distance between them, giving 

us a “hybrid” distance. Raw Euclidean distances were deemed inadequate because it does not 

account for the barriers and enablers that influence human travel across landscapes. Likewise raw 

transport distance was not used because forest vertebrates using the landscape are not hindered or 

enabled by landscape features such as rivers in the same way as humans. Instead an intermediate 

measure was preferred.  

The number of households per community was recorded using: (1) interviews conducted during 

this study; (2) Projeto Médio Juruá interviews; and (3) The Sustainable Forest Association (FAS) 

community census data. Although our data are more recent, we were interviewing community 

members rather than conducting a population census. Mean values per community were used. The 

number of households per urban centre was calculated using IBGE (2007) census data.  

Hybrid distance and urban population were combined into a single variable, the urban proximity 

score. This was calculated as the urban population, divided by the square-root of the hybrid 

distance to a given community or camera-trap deployment. We have previously devised and used 

more complex urban proximity indices (see Chapter 2), but our study landscape in this chapter is 

simpler and alternative urban proximity indices are highly correlated.   

The bulk of our camera-trap deployments were in contiguous primary forest. It was therefore not 

possible to investigate habitat effects in detail. Instead, we focussed on the proportion of primary 
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forest in proximity to cameras. For each CTD, the area of primary forest (including both 

floodplain várzea forest and upland terra firme forest) within a 500-m buffer was calculated. Data 

from INPE PRODES (2009), Global Forest Change (GFC: Hansen et al., 2013), 

RADAMBRASIL (Veloso, 1982), and the Instituto de Conservação e Desenvolvimento 

Sustentável Amazonas (IDESAM) were used in order to exclude deforested areas, permanent 

water bodies and natural non-forest vegetation, including white-sand campina and campinarana, 

from the 500-m buffers. Várzea and terra firme forest were not treated as separate variables 

because they were strongly correlated with one another and with relative elevation. PRODES and 

GFC datasets were cross-validated (see Chapter 2 for methods).  

The elevation of each CTD relative to the adjacent main river or stream was calculated following 

Rennó et al (2008). Raw elevation is inappropriate due to landscape-wide elevational gradients. 

There are 24m and 22m elevational differences between the extremes of our Juruá and Uatumã 

study landscapes, respectively and a roughly 65m elevational difference between study regions. 

To calculate the elevation of the river in proximity to each deployment, a point shapefile of 

camera deployments was snapped to a polyline of the main rivers. A 500-m buffer around each 

snapped point was then created and the lowest elevation within the buffer was used. The buffer 

was used to ensure that the true elevation of the river would be captured, rather than the nearby 

banks. The relative elevation per CTD was the elevational difference between the camera itself 

and the corresponding point on the main river.  A map of perennial streams was created, using 

data from both the IBGE (2008) “hidro tot linha” shapefile and the Hydrosheds hydrographic 

dataset (Lehner and Grill, 2013a). The Euclidean distance between each CTD and the nearest 

perennial stream was then calculated. All spatial variables were extracted in ArcGIS (version 

10.3) 

4.2.6 Statistical Analysis 

 

All statistical analyses were conducted in R. Collinearity between independent variables was 

tested for using Spearman’s Rank, Kruskal-Wallis and Wilcoxon Rank Sum tests. Where 

explanatory variables had bivariate Rho >0.70 or p <0.05, they were modelled separately. Data 

distributions and relationships were inspected using histograms. For count data, Poisson models 

were attempted and where overdispersion was revealed, Negative Binomial models were used. 

For distance-to-encounter data, Gaussian (using both identity and log links) and Gamma models 

were tested and inspected for model fits. In order to avoid creating over-fitted, ecologically 

meaningless models, we included a relatively small number of variables, all of which could 

plausibly impact our dependent variables. Variables were scaled to enable models to converge 

and aid variable effect size comparisons.  

The ‘best’ models were selected based on their Akaike's weights (wAICc) and the ΔAICc, 

corrected for small sample sizes. We considered models with ΔAICc<2.0 and wAICc>0.1 as 
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equally plausible to explain observed patterns (Burnham & Anderson, 2003). Where multiple 

plausible models were retained, they were weighted and averaged using the model.avg function in 

the R package MuMIn. Because extracting odds ratios from averaged models is problematic, we 

report coefficients and adjusted standard errors along with p-values per explanatory variable, to 

aid interpretation. We appreciate that “P-values are not part of the information theoretic 

paradigm” (Anderson and Burnham, 2002) and that reporting them alongside models selected on 

information-theoretic grounds is discouraged. Nonetheless, information-theoretic approaches can 

result in overly complex models (Link and Barker, 2006) and the mere fact that a “best” model 

has been specified, does not guarantee that any of the retained independent variables strongly 

influence the dependent variable.  

Wilcoxon rank sum tests showed that camera-trap stations and interviewed communities inside 

protected areas had significantly lower urban proximity scores than those outside of protected 

areas (p < 0.01 and < 0.001 respectively). Further Wilcoxon tests also showed that community 

size, urban proximity score, proportion of primary forest, distance to stream, and elevation all 

differed significantly by region (p <0.05, < 0.001, <0.05, <0.01, and < 0.001, respectively). 

Protected status and study region were therefore not included as explanatory variables in 

multivariate models. REGION was however included as a nested random effect in negative 

binomial generalized linear mixed effects models (GLMMs). To separately test the effects of 

protection and study region on detection rates, the number of detections of every species at every 

camera was modelled as the dependent variable in a negative binomial GLMM with sampling 

effort (functioning CTNs) as an offset, protected status or region as explanatory variables and 

both species and camera IDs as random effects. To test for the effect of protection on overall 

biomass, the detected group biomass for all species, summed per camera, was modelled as the 

dependent variable in a negative binomial GLMM with sampling effort as an offset, protected 

status or region as explanatory variables and camera ID as a random effect. To further test the 

effect of protection and study region on depletion envelopes around communities, detection 

distances of each species reported from each interview was modelled as the dependent variable in 

a Gamma GLMM with protected status or region as explanatory variables and both species and 

community ID as random effects.  

To investigate the degree of depletion of our study species, negative binomial GLMMs were 

created for (a) independent detections of each species detected at > 10 camera trap stations; (b) 

the total number of detections of all species per camera; and (c) each of the 12 biomass groupings 

described above. In each case, the log of the number of functioning CTNs was specified as an 

offset variable and study region and community ID were designated as nested random effects. 

The following anthropogenic and ecological variables as described above were included as fixed 

effects – the distance to the nearest community (COM.DIST), population of the nearest community 

(COM.POP), the urban proximity score (TOWN), the percentage of primary forest (PRIMARY), the 
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distance to the nearest perennial stream (STREAM), and relative elevation (ELEV). An interaction 

between the variables COM.DIST and COM.POP was initially specified, but it was removed as it 

failed to produce stronger models. Where models did not converge, they were simplified by first 

removing REGION from the nested random effect, and then by removing the fixed effects with the 

lowest bivariate correlation with the dependent variable in question.  

To investigate the impact of anthropogenic disturbance on the activity patterns of our study 

species, the first photograph of every independent detection per species was assigned a temporal 

period, with daytime specified as between 06:00h and 18:00h and night-time the converse. The 

number of nocturnal and diurnal detections per species, and for all species combined, were 

summed per camera. Negative binomial GLMMs were created (a) for every species detected at > 

10 camera trap stations; and (b) for all species detected. GLMMs were structured as described 

above, except that the log of the total number of detections was specified as an offset.  

In order to determine if nocturnal and cathemeral species were relatively more common in areas 

of high anthropogenic disturbance, independent detections were categorised as of either diurnal or 

nocturnal/cathemeral species. The number of independent detections of non-diurnal species were 

summed per camera and treated as the response variable in a multivariate negative binomial 

GLMM, with the log of the total number of independent detections per camera as an offset, and 

the community ID and region as nested random effects.  

Lastly, Gamma GLMMs were used to assess the relative importance of both species traits and 

anthropogenic variables on the detection distances reported during interviews. Data were 

disaggregated such that the reported detection distance for every species from every interview 

was used as the dependent variable. To account for both data nestedness and phylogenetic 

relatedness, both species identity nested within taxonomic family (Appendix C) and community 

identity, were specified as random effects. Explanatory variables included simultaneously in the 

initial global model were the urban proximity score, community size, the region-specific hunting 

score, species intrinsic rate of increase, body mass, group size, trophic score and activity 

category. The agricultural score was excluded because it co-varied with the hunting score.  

Activity category and trophic score were subsequently excluded to allow models to converge.  
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4.3 Results 
 

4.3.1 Species detections at camera trap stations 

 

A total of 38 vertebrate species were either the subject of interviews, reliably detected by camera 

traps, or both (Table 4.1). A total of 34 taxa were reliably detected by camera traps (Fig. 4.2). The 

15 most frequently detected species accounted for >90% of all detections. In the Uatumã region, 

only 25 taxa were reliably detected. The following taxa were detected in Juruá but not Uatumã: 

Atelocynus microtis, Procyon cancrivorus, Tayassu pecari, Sciurus ignitus, Sciurus spadiceus, 

Leptotila spp, Odontophorus spp Ortalis guttata and Penelope jacquacu. Considering only the 10 

most frequently detected species, Cuniculus paca was detected over twice as frequently in the 

Juruá than the Uatumã region, and Myoprocta spp and Pecari tajacu were both detected more 

than three times as frequently in the Uatumã region than the Juruá region.  

When species are ranked according to the detected group biomass, the 10 top-ranking species 

accounted for >90% of the total detected biomass. Between regions, the overall detected grouped 

biomass raking is similar except for (1) Tayassu pecari, which accounted for the highest detected 

biomass in Juruá but was not detected in Uatumã; (2) Cuniculus paca and Myrmecophaga 

tridactyla, which had detected biomass twice as high in the Juruá than the Uatumã; and (3) Pecari 

tajacu, the detected biomass of which was over three times as high in Uatumã than in Juruá.  
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Table 4.1 – Study species reliably detected by camera traps or the subject of interviews and their key traits. Hunt.Jur and Hunt.Uat are scores of the frequency with 

which a given species is hunted, as determined by interviews with residents of both the Juruá and Uatumã regions.  

Species binomial  English name 
Species 

code 
dataset lambda 

Body 

mass 

Group 

size 

Agricultural 

score 

Hunt 

Jur 

Hunt 

Uat 

trophic 

number 

activity 

pattern 

Alouatta spp howler monkey Alou.sp interview 1.17 6500 6.2 0 4.1 0 2 diurnal 

Ateles spp spider monkey Atel.sp interview 1.08 9020 11.7 0 0 0 3 diurnal 

Atelocynus microtis short eared dog Atel.mi camera 1.15 7750 1.2 0 0 0 5.5 diurnal 

Chelonoidis spp 
red/yellow footed 

tortoise  
Chel.sp interview 2.5 4580 1.2 0 0 0.8 2 diurnal 

Crypturellus spp small tinamou Cryp.sp both 1.9 420 1.4 1.2 2.3 0 3 diurnal 

Cuniculus paca lowland paca Cuni.pa both 1.95 9500 1 13.3 14.5 31.8 3 nocturnal 

Dasyprocta spp agouti Dasy.sp both 3 4500 1.2 23.3 8.1 17.8 3 diurnal 

Didelphis marsupialis common opossum Dide.ma camera 5 1087.5 1 0 0 0 4 nocturnal 

Echimyidae spp spiny rat Echi.sp camera 5 560 1 0.8 0 0 3 nocturnal 

Eira barbara tayra Eira.ba camera 1.32 4850 1.3 1.4 0 0 5.5 diurnal 

Lagothrix spp woolly monkey Lago.sp interview 1.12 8710 19.6 0 1.3 0 3 diurnal 

Leopardus pardalis ocelot Leop.pa camera 1.58 15000 1.3 0.1 0 0 6 cathemeral 

Leopardus wiedii margay Leop.wi camera 1.58 6000 1 0.5 0 0 6 cathemeral 

Leptotila spp dove Lept.sp camera 2 149 1.3 1.7 0 0 3 diurnal 

Mazama americana red brocket deer Maza.am both 1.42 30000 1.1 19.4 8.3 4.8 2 cathemeral 

Mazama nemorivaga grey brocket deer Maza.ne both 1.61 18000 1.2 0 1.3 2.9 2 cathemeral 

Metachirus spp four-eyed opossum Meta.sp camera 5.2 390 1 0 0 0 4 nocturnal 

Mitu or Crax spp currasow  Mitu.Cr both 1.465 3000 1.6 2.3 8.3 7.9 3 diurnal 

Myoprocta spp acouchy Myop.sp camera 3 750 1 0.1 0 0 3 diurnal 

Myrmecophaga tridactyla giant anteater Myrm.tr both 1.7 30500 1.2 0.5 0 0 5 diurnal 

Nasua nasua south American coati Nasu.na camera 1.26 5100 11.9 0 0 0 5.5 diurnal 

Nonspecific Cingulata small small armadillo Nons.Ci camera 1.905 30000 1 9.3 2.8 8.1 5 nocturnal 

Odontophorus spp wood quail Odon.sp camera 1.8 310 5.4 0 0 0 3 diurnal 

Ortalis guttata speckled chachalaca Orta.gu camera 1.76 1200 5 0.5 0 0 3 diurnal 

Panthera onca jaguar Pant.on both 1.26 80000 1.4 1.7 0 0 6 cathemeral 

Pecari tajacu collared peccary Peca.ta both 2.01 25000 4.9 15.9 16.5 15 4 diurnal 

Penelope jacquacu spix's guan Pene.ja camera 1.491 1280 4.9 0.1 0.3 0.5 3 diurnal 
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Species binomial  English name 
Species 

code 
dataset lambda 

Body 

mass 

Group 

size 

Agricultural 

score 

Hunt 

Jur 

Hunt 

Uat 

trophic 

number 

activity 

pattern 

Priodontes maximus giant armadillo Prio.ma both 1.8 6000 1.2 1.6 0 0 5 nocturnal 

Procyon cancrivorus crab-eating raccoon Proc.ca camera 1.39 5400 1 0 0 0 5.5 nocturnal 

Psophia spp trumpeter Psop.sp camera 1.3 1200 5.8 0 0 0 4 diurnal 

Puma concolor puma Puma.co both 1.36 45000 1.1 1.2 0 0 6 cathemeral 

Puma yagouaroundi jaguarundi Puma.ya camera 1.58 8000 1 0 0 0 6 diurnal 

Sciurus ignitus Bolivian squirrel Sciu.ig camera 3.6 700 1.2 0 0 0 3 diurnal 

Sciurus spadiceus 
South American red 

squirrel 
Sciu.sp camera 3.5 1200 1.4 0 0 0 3 diurnal 

Tamandua tetradactyla southern tamandua Tama.te camera 1.62 4500 1.1 0 0 0 4.5 nocturnal 

Tapirus terrestris Brazilian tapir Tapi.te both 1.22 160000 1.2 3.1 5.4 5.3 2 nocturnal 

Tayassu pecari white lipped peccary Taya.pe both 1.58 32000 68.3 0.2 21.1 1.9 4 cathemeral 

Tinamus spp large tinamou Tina.sp both 1.5 1200 1.3 1.2 4.7 2.2 3 diurnal 
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Figure 4.2: Species detections from camera trap and local interview data. Species codes are 

indicated to the left of each panel. Species are arranged alphabetically by species code in all 

panels. Panel A shows the number of camera trap detections per 100 camera trap nights. Panel B 

shows the group biomass (kg) detected per 100 camera trap nights. Panel C shows the mean 

interview-reported detection distance (m) and standard errors. In Panels A and B, detections 

from the Juruá and Uatumã regions are indicated by open green circles and blue crosses, 

respectively, whereas in Panel C, Juruá and Uatumã detections are indicated by green and blue 

closed circles, respectively.  
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4.3.2 Group biomass and species-specific models 

 

Models of summed detections and of detected grouped biomass are highly consistent (Fig. 4.3 

and Appendix D). For all grouped-detection models that include hunted species, whether they 

were weighted or unweighted by hunting preference or propensity to enter agricultural plots, and 

whether or not they included white-lipped peccary, detected biomass and total detections were 

significantly depressed in proximity to urban areas. Areas close to perennial streams also had 

lower detected grouped biomass, whereas summed detections (not accounting for biomass) were 

lower in areas close to communities with a low proportion of primary forest. In contrast, the 

biomass of species that are neither hunted nor persecuted was most strongly influenced by habitat, 

with a higher biomass detected in primary forest. In single-species detection models (Fig. 4.4), no 

single explanatory variable significantly influenced the detection of all species. Species response 

instead appear to be highly idiosyncratic.  
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Figure 4.3: Explanatory variables retained in GLMMs investigating anthropogenic impacts on species abundance and activity patterns utilising camera trap and 

interview data. Explanatory variables and associated P-values are reported to the left of each panel. Coefficients and adjusted standard errors are represented by black 

circles with black lines.  
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Figure 4.4: Coefficients and adjusted standard errors of the explanatory variables retained in 

GLMMs investigating camera trap detection rates of individual species. Species codes and 

associated p-values are shown to the left of each panel, ranked by coefficient, from highest to 

lowest.  

4.3.3 Species activity patterns 

 

Most of our study species are diurnal (Table 4.1 and Appendix B), a smaller number are 

nocturnal, and the minority are cathemeral. Models suggest (Fig. 4.3) that in areas in proximity to 

communities with a low proportion of primary forest (a) pooled detections of the entire species 

assemblage were significantly more nocturnal; and (b) the proportion of nocturnal and cathemeral 

species detected was relatively higher. However, single-species activity models (Appendix E) 

were weak, generally with no single variable significantly predicting the proportion of nocturnal 

detections, except for grey brocket deer and collared peccary. The former was detected relatively 

more frequently at night when close to communities, whilst the latter was detected more 

frequently at night in areas with a low proportion of primary forest and at higher elevation.
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4.3.4 Local interviews 

 

In the Juruá and Uatumã regions over 89% and 91% of respondents, respectively, deemed wild-

caught fish a more important food source than game meat, whilst just over 4% in both regions 

considered them equally important. In the Juruá region, the most important livelihood activities 

were considered to be agriculture (mainly manioc, but also bananas, maize, squash, watermelon 

and pineapple), fishing (both for subsistence and as part of a fisheries management program), 

social welfare programs (including Bolsa Familia, Bolsa Verde and Bolsa Floresta) , extractivism 

(including rubber-tapping and other nontimber resource harvesting, including Euterpe oleracea 

(locally açaí), Astrocaryum murumuru (murumuru), Carapa guianensis (andiroba),  Copaifera 

multijuga oleoresin (copaiba),  and Heteropsis flexuosa (cipó titica)), hunting (subsistence only), 

wage labour, timber (including harvesting and carpentry) and livestock (including cattle, pigs and 

chickens). These represented 43.0, 19.9, 14.1, 14.0, 3.9, 3.8, 1.2 and 0.2% of the summed 

weighted scores, respectively. In the Uatumã region, the most important livelihood activities were 

considered to be agriculture, salaried work, social welfare programs, extractivism, timber, 

livestock, fishing and hunting, representing 55.4, 10.6, 8.2, 6.7, 6.4, 6.2, 5.5 and 0.9% of the 

summed weighted scores respectively. 

Our interviews gathered detection data for a total of 16 species, one of which (Lagothrix spp) 

does not occur in the Uatumã region. In models using all interview responses for all species, the 

variables that most strongly influenced reported detection distances were species traits, rather 

than anthropogenic landscape metrics such as proximity to an urban centre or size of the nearby 

community. Large-bodied species that form large groups and that are less preferred by hunters, 

are reportedly detected the farthest away. Although there was significant overlap between the 

species from the different landscapes identified as hunted, the species rankings differed (Table 

4.1).  

Camera trap detection rates inside protected areas were significantly higher and associated with a 

higher overall group biomass than those outside protected areas (p < 0.05 in both cases). 

However, respondents outside protected areas did not necessarily report significantly longer 

overall encounter distances than respondents inside protected areas (p = 0.06).  Study region had 

no significant effect on overall detections, detected biomass or encounter distance (p > 0.05 in all 

cases). 
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4.4 Discussion 
 

Concerns that tropical forest reserves legally occupied by human communities are inevitably 

“emptied” of large-bodied terrestrial forest vertebrates, are not borne out in our study regions, 

which retain large game populations, despite harbouring many long-established semi-subsistence 

communities. Nonetheless, our camera trap and interview data support evidence that (a) 

landscape-scale human population density depresses the detectable aggregate biomass of the 

entire vertebrate species assemblage; (b) nocturnal species are relatively more prevalent in areas 

near communities; and (c) large-group-living species, that are disproportionately affected by 

hunting, are virtually absent from areas in close proximity to communities. Our initial hypothesis 

that the detection rate of large-bodied, low-lambda species would be significantly depressed in 

proximity to semi-subsistence communities cannot be falsified, but as currently stated may be 

oversimplified.   

4.4.1 Models of species detections, group biomass, activity patterns and encounter 

distance 

 

In single-species models, a select few species met our expectations. The largest-bodied terrestrial 

mammal, tapir, was negatively impacted by both local communities and urban areas. Grey 

brocket deer, a shy selective browser, was strongly associated with primary forest, whereas its 

larger congener (red brocket deer) was attracted to secondary growth. We did not find that species 

predictably fell on a gradient between low-lambda, harvest-sensitive species repulsed by 

communities and towns, and harvest-tolerant species that may be attracted to communities. 

Firstly, models were heterogeneous, incorporating both anthropogenic and environmental 

variables. Secondly, certain small-bodied, high-lambda species including agoutis, acouchis and 

tinamous, and species typically ignored by hunters such as trumpeters, were also significantly 

impacted by proximity to communities and urban areas. These species may be behaviourally 

sensitive to human disturbance and are therefore repelled by human settlements without 

succumbing to numerical depletion. Agoutis, acouchis and trumpeters were amongst the most 

frequently detected species by our camera traps and therefore even a weak repulsion signal was 

likely to be statistically significant. This explanation is, however, inadequate as pacas, which also 

have a high detection rate, showed no significant depletion effect, despite being highly preferred 

by hunters.  

Grouped detection rate and biomass models paint a clear and consistent picture, suggesting that 

depletion is indeed occurring, but not in the isotropic, community-centric manner that we 

anticipated. Any biomass grouping or weighting we created that included hunted species was 

depressed within the wide neighbourhood to urban areas, whilst the grouped biomass of non-

hunted species responded instead to habitat type. This is consistent with the positive correlation in 

the Médio Juruá region between catch per unit of hunting effort and distance from an urban 
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centre, but not with local human population density (Endo et al., 2016). This suggests that 

depletion is occurring primarily at a landscape rather than local scale.  

Another important predictor was distance to a perennial stream. This variable captures a variety 

of habitat characteristics and many species including tapir are known to prefer areas near water 

bodies and streams (Bodmer, 1990). Contrary to our expectations, however, overall biomass was 

significantly lower near streams. This is likely because proximity to perennial streams is also a 

proxy for accessibility to hunters. Fluvial travel is less laborious than overland travel in tropical 

forests, especially for hunters transporting heavy carcasses, and perennial streams are therefore 

important access points into hunting grounds (Peres and Lake, 2003, Chapter 5). This is 

especially true of both the relatively infrequent long-distance hunts carried out by community 

members, and the commercial hunting forays carried out by urbanites, both of which are 

associated with high game-extraction rates (Vega et al., 2013, Wilkie et al., 2011). The stronger 

impact of distance to a stream and urban centres than distance to a community, suggests that 

hunting pressure is anisotropic and urban-centric.   

Several of the vertebrate species surveyed here are known to be behaviourally plastic (Oliveira-

Santos et al., 2010). Nonetheless, though we found that whilst nocturnal detections were 

relatively more frequent in disturbed areas close to communities, weak species-specific models 

suggest that we cannot attribute this to species-specific shifts in activity pattern. Instead, this 

appears to be due to a shift in community composition towards more nocturnal and cathemeral 

species. This implies that in general, species have a limited capacity to adapt and coexist with 

human communities and that those species less at risk from human interaction become relatively 

more common in disturbed areas.   

Models of interview data showed that species traits were stronger predictors of distance to first 

encounters with terrestrial wildlife than were anthropogenic factors. In contrast with other studies 

(Bodmer et al., 1997), the maximum rate of increase was not found to be the most important trait. 

Instead we found that large-bodied, group-living species were on average detected much farther 

from communities than small-bodied solitary species. Reported distances suggest that in many 

communities, the largest-bodied and largest-group-living species were not found even within a 

day’s return journey from the community.  
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4.4.2 Alternative explanations for our observations 

 

There are a number of potentially competing explanations for the dual phenomena of lower 

camera trapping rates in heavily-settled areas and more distant detections of larger-grouped 

species based on interviews. These species could be changing their behaviour, such that they 

become less detectable whilst still using areas near communities and urban areas. However, this 

explanation is implausible because (a) behavioural adaptations are unlikely to influence detection 

rates at unbaited camera traps placed off trails; (b) our interview respondents, who are 

longstanding residents, fully familiar with the surroundings of their respective villages, took into 

account animal signs such as tracks; (c) large-grouped species, such as white-lipped peccary, are 

almost impossible to overlook, because of their conspicuous bulldozing tracks, if not their noise 

and scent; and (d) we found weak evidence for species-specific shifts in activity patterns.  

Alternatively, these species may be absent from forests in proximity to communities and urban 

areas due to environmental factors, but this is also implausible. It implies that human 

communities have chosen parts of the landscape that are relatively inhospitable to large-bodied 

forest vertebrates, whereas the converse is likely to be the case. Human communities in the 

Amazon have always chosen the most favourable and productive parts of the landscape 

(Denevan, 1996). In the absence of human communities, these areas would likely have an 

elevated population of the large-bodied species relative to the surrounding landscape, because of 

the higher productivity and consequent food availability, including fruit pulp and seeds. Lastly, 

these species may have been depleted in proximity to areas of high human population density, 

repelled from them, or both. The fact that large-bodied, large-grouped species are known to be 

especially vulnerable to overhunting (Wilkie et al., 2011; Ripple et al. in press) supports this 

explanation.  

Species that interviewees ranked as frequently hunted were reportedly detected close to 

communities. This may suggest that the most hunted species are especially resilient and that 

hunting has little impact on the overall game assemblage. It may even suggest that hunters are 

deliberately choosing to hunt those species most able to sustain offtake. Alternatively, it may be 

evidence that hunters have had to switch their prey profile to smaller, more resilient species, 

having already depleted or repelled the larger species to a distance at which it is no longer 

profitable to pursue them (Jerozolimski and Peres, 2003). Although our study cannot discriminate 

between these alternative explanations, our evidence most likely supports the latter, as hunters 

consistently choose larger-bodied prey such as tapir and white lipped peccaries in landscapes 

where they are available (Peres and Nascimento, 2006). 
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4.4.3 Conservative evidence for depletion 

 

We consider the evidence for depletion in this study to be conservative for a number of reasons. 

Firstly, both of our study regions represent a “best case scenario” in which the proportion of 

remaining primary forest is high and human population density is low. The large tracts of primary 

forest beyond easy access likely act as sources, replenishing populations of terrestrial vertebrates 

in proximity to communities. In both regions, hunting was ranked as a less important livelihood 

activity and hunted meat was ranked far below fish as an important protein source; we should 

therefore expect the signal from hunting pressure to be small. In both regions, healthy fisheries 

provide for the bulk of animal protein requirements (Endo et al., 2016; Amazonas, 2008). In the 

relatively wealthier Uatumã region, where regular wage labour is more common and market 

produce is more accessible, subsistence activities in general are less practiced (Börner et al., 

2013).  

Secondly, our camera trap transects are generally oriented against a primary productivity 

gradient. Communities and urban areas are typically located in high-productivity portions of the 

landscape, as commonly observed throughout human pre-history in the Amazon basin (Becher 

and Meggers, 1973). Transects leading away from communities, along which we deployed 

cameras, are oriented roughly perpendicular to the main river and the várzea floodplain, and are 

therefore along a gradient from high productivity floodplains into low productivity upland terra 

firme forest. This is problematic because soil fertility mediates the density and species richness of 

nonvolant mammals across Amazonia (Emmons, 1984; Peres, 2008). This bias is unavoidable in 

our study landscapes. Deploying cameras along transects parallel to the main river would fail to 

achieve the goal of sampling along a hunting pressure gradient because (a) communities are 

situated along the river, and therefore a transect leading away from one community would 

simultaneously approach another; and (b) fluvial access is extremely important to hunters in our 

study areas, so that all cameras would be equally accessible.  

Distance to encounter data from interviews suffers from the same problem as the farther one 

travels from the community into primary forest, the further one moves away from the fertile 

floodplain. Moreover, because a high-productivity non-hunted baseline does not exist in our study 

regions, it is impossible to know what the abundance of different game species would be in the 

absence of human communities. We may assume therefore that the naturally higher productivity 

in proximity to communities, partly masks an otherwise stronger depletion effect.  

Similarly, it is possible that our snapshot study suffers from a shifted baseline (Milner-Gulland 

and Bennett, 2003) and that we have failed to fully detect depletion because our study landscapes 

were already impoverished, under a post-depletion scenario. Though this is certainly a weakness, 

we doubt that either of our study regions are currently experiencing higher hunting pressure than 

they experienced historically. In the Uatumã region, Amazonian dark earth (locally, terra preta) 
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soils indicate a long history of human habitation (Kern et al., 2003), whilst in the Juruá region, 

the collapse of the rubber industry has likely reduced the reach of hunters compared to half a 

century ago (Parry et al., 2010; Antunes et al. 2016).  

Thirdly, our camera trap data entirely neglects some of the most harvest-sensitive species, namely 

the large Ateline primates. Spider and woolly monkeys, which have extremely low reproductive 

rates compared to similarly-sized terrestrial fauna, have been shown to be some of the first 

species to become depleted by hunters (Peres, 2000; Peres & Palacios 2007).  

Fourthly, our interview data can be heavily biased by detection outliers. Respondents were asked 

to determine the travel time to a location where one could usually encounter a given species (or 

its tracks or signs). Nonetheless, several respondents felt that attempting to determine a “typical” 

encounter location was impossible and instead recalled the closest encounter location from recent 

memory. An encounter close to the community with a large forest vertebrate such as a tapir is an 

easily recalled event, but it may not represent a typical encounter distance. Even if tapirs are 

heavily depleted locally, stochastic environmental and behavioural processes dictate that rare 

detections close to the community will occur. These outliers thus potentially lead to an 

underestimation of the extent of faunal depletion based on our interview data.  

4.4.4 Appropriate field survey methods 

 

The above concerns thus question which field methods are most appropriate to study faunal 

depletion in the tropics. Line-transect methods that account only for direct animal encounters, 

rather than their tracks and signs, are not immune to detectability bias, because hunted species 

may change their behaviour in hunted areas and become less detectable to surveyors (Fragoso et 

al., 2016). Sign-survey methods have been proposed as a remedy, especially for terrestrial 

species, because such species are unable to avoid leaving tracks and signs. Sign detectability, 

however, varies greatly with soil substrate type and recent weather conditions (Munari et al., 

2011). Camera traps purport to circumvent the aforementioned bias, as species are presumed to be 

unable to detect and avoid camera traps (but see Séquin, et al., 2003 and Gompper, et al, 2006), 

but using photographic rates to infer relative abundance has been criticised for failing to account 

for detectability differences between both locations and species (Sollmann et al., 2013).  

All of the aforementioned methods are spatially and temporally limited. High financial cost and 

the potential to disrupt the livelihoods of community members, prohibit their intensive and long-

term use in proximity to communities. Interviews avoid this problem by drawing on the long-term 

cognitive experience accumulated by community members with extensive knowledge of their 

forest environments. For instance, our camera trap dataset represents only 32.9 years of detection 

effort, whereas our interview data draws on roughly four times more experience. This is 

especially advantageous for species such as white lipped peccary, which require extensive survey 

effort to accumulate sufficient independent detections on which to base meaningful inferences 
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because of their extremely low herd densities and extremely large home range size. Interviews 

can also reduce detection biases associated with line-transect censuses as experienced hunters can 

quantify track and sign density. However, interview data can suffer from retrospective bias 

(O'Donnell et al., 2010), social desirability bias (Nuno and John, 2015), and the influence of 

outliers as discussed above. We therefore argue that no single technique is free from error and 

bias and that interview data makes a valuable contribution to understanding faunal depletion. 

4.4.5 Evidence for density compensation in peccaries 

 

Our camera trap and interview data suggest that in the Uatumã region, the biomass of 

competitively released collared peccaries compensates for the absence of white lipped peccaries. 

In both regions, peccaries represent the highest detected biomass of any terrestrial vertebrate. In 

the Uatumã region, populations of white lipped peccaries are currently either very low or 

occupying areas far from communities. Collared peccaries by contrast were detected at rate three 

times higher (camera trap data) and at distances on average five kilometres closer (interview data) 

to communities in the Uatumã region than in the Juruá. Being larger bodied, travelling in far 

larger groups and exploiting many of the same food-sources, white lipped peccaries are thought to 

outcompete and thereby depress the population of collared peccaries.  

4.4.6 Study limitations and future directions 

 

Our study design could have been strengthened in a number of ways. We lacked additional 

camera trap sampling effort in areas of very high hunting pressure. We believe that in our study 

landscapes, where hunting is infrequent, a strong depletion signal is only apparent relatively close 

to communities. Had time permitted, we would therefore have sampled the peri-community 

agricultural mosaics in the Uatumã region, and devoted more sampling effort to areas near towns 

in both landscapes. This strategy has drawbacks, however, in that areas close to communities are 

more deforested, thereby adding a challenge in disentangling these effects. One could sample 

primary forest remnants in proximity to communities to partly mitigate this. Another fruitful 

approach would be to sample multiple landscapes, in which the availability of aquatic protein 

resources, and therefore the necessity to hunt, varies greatly. In order to avoid the confounding 

effects of productivity gradients, one would need to sample highly productive, but unhunted areas 

in tandem with adjacent hunted areas (Arcese and Sinclair, 1997). Such experimentally ideal 

landscapes are rare or non-existent, however, partly due to the high opportunity cost of setting 

them aside as strictly protected areas. Alternatively, one could conduct longitudinal studies (Hill 

et al., 2003), ideally by either investigating areas before and after colonisation, or during the 

process of abandonment. Such studies, although valuable, are again rare due to the difficulty of 

establishing and maintaining a long-term research presence in rural tropical areas. Although we 

investigated faunal depletion, it was beyond the scope of this study to investigate the 
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sustainability of subsistence hunting in these regions. To do so would require both long-term and 

detailed hunting offtake data in tandem with species abundance data.  

4.5 Conclusions 
 

In lowland Amazonia, conditions favourable to the persistence of game vertebrates, including 

modest human population densities, alternative sources of animal protein in the form of abundant 

fish stocks (McGrath et al., 1993; Rushton et al. 2005), and large areas of primary forest refugia 

are not uncommon (Fa and Peres, 2002). Indeed, human population density in the Amazon basin 

is lower than in any other tropical biodiversity hotspot or wilderness area (Cincotta et al., 2000). 

As such, the persistence of large game vertebrates in our study regions may be broadly 

representative of other central Amazonian sites. This does not justify complacency however. In 

other tropical forest regions where human population densities and game extraction rates are far 

higher, game depletion is likely far more severe. Moreover, human population growth rates in 

tropical biodiversity hotspots and wilderness areas generally exceed the average population 

growth rate worldwide (Cincotta et al., 2000). Tropical forest management strategies, which have 

often proved challenging (García-Fernández et al., 2008), may become increasingly important in 

human-occupied protected areas. 

Despite a widely replicated study design including both camera traps and interviews, our 

evidence for anthropogenic depletion of terrestrial forest vertebrates is mixed. We conclude that 

in our “best case scenario” regions, which simultaneously retain a high proportion of primary 

forest cover and a low human population density with access to alternative protein, only a select 

few species have been depleted in proximity to communities. We found limited evidence that 

individual species shift their activity patterns in response to human settlements. Instead, species 

composition is anthropogenically disturbed areas is apparently comprised of a larger fraction of 

nocturnal species. Interview data suggest that depletion is strongly predicated on species traits, 

with large-bodied large-group-living species the worst impacted. Urban areas cause landscape-

scale reduction in the overall biomass of the terrestrial vertebrate assemblage. We cannot know 

how intact the overall faunal assemblage is relative to a high-productivity, un-hunted baseline, 

because none exists. Strictly protected areas offer invaluable insights in this respect. We cannot 

further elucidate the degree to which sustainable-use protected areas effectively safeguard intact 

faunal assemblages, because protected status was confounded by distance to urban areas. 

Nonetheless, our sparsely inhabited study regions clearly retain the entire spectrum of the 

terrestrial vertebrate fauna, suggesting that as it stands, sustainable-use tropical forest reserves are 

not incompatible with biodiversity conservation.  
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APPENDICES 

APPENDIX A - Methodological Notes 

1. For camera trap deployments, Bushnell Trophy-Cam, Trophy-Cam HD, and Reconyx 

HC500 Hyperfire models were used. Camera sensors were set to high sensitivity. They 

took 3 sequential burst photographs or 3 second video clips. A red light flash was used in 

very low light. We attempted to deploy all cameras for 30 days, but malfunction, theft (or 

the threat of theft) and other logistical difficulties meant that deployment period varied 

somewhat. Deployments were not made in várzea. In order to control for the bias 

introduced by species-specific responses to trails, deployments along transects in primary 

forest were always deployed ~20m away from trails and facing away from the trail where 

possible. These transects used Probuc faunal monitoring trails where available. Where 

these were unavailable, suitable locations were identified in GIS to avoid impassable 

rivers and swamps and temporary trails were cut by ourselves. In areas where unforeseen 

obstacles such as swamps made deployment at the designated distance along the transect 

impossible, or if it was judged to be too late in the day to reach 6km and return before 

nightfall, cameras were deployed in the closest available location. Deployments outside 

contiguous primary forest were 25m from the habitat edge to control for edge effects. 

When deploying cameras in proximity to local communities, a community resident was 

employed to aid in the identification of suitable locations and determine the age of 

capoeiras since abandonment. Locations were not chosen to deliberately maximise 

detection (for example beneath fruiting trees), but conspicuous obstacles to detection were 

avoided. Bait was not used. Locations were chosen to have relatively flat ground, 

relatively unobscured by large trees/obstacles. Thin vegetation was cleared in a cone of 7 

paces long by 7 paces wide in-front of the camera to permit detection and avoid detecting 

the movement of vegetation. Cameras were deployed at knee height, attached to trees. 

Walk-tests were performed to confirm correct positioning. Mothballs and tampons were 

put inside cameras along with batteries to repel insects and protect against humidity. A 

GPS waypoint was always taken. When cameras were removed, a note was made of any 

problems or malfunctions such as water ingress, insect attack, dislodgement or battery 

failure.  

2. When summarising interview data, where single numeric responses were given, means 

were calculated. Where multiple unranked categorical responses were given, the number 

of responses per category were summed. Where multiple ranked categorical responses 

were given, a summed, rank-weighted score per category was calculated (∑ (∑ (ranked1) 

+ ∑ (ranked2/2) + ∑ (ranked3/3)…)).  
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3. To calculate transport distance we used average speeds per transport type from Parry and 

Peres, 2015. Outboard motor (locally rabeta) 9km/h, un-motorised canoe 5km/h, on foot 

4km/h. These mean speeds are confirmed by our fieldwork experience.  
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APPENDIX B – Species activity patterns 

The table below displays how camera trap detection data per species were converted into an 

activity pattern designation. The first photograph of every independent detection per species was 

assigned a temporal period as follows (1) day – between 07:00 and 17:00 (2) night - between 

19:00 and 05:00 (3) dawn/dusk - between 05:00 and 07:00 and between 17:00 and 19:00. For 

each species the proportion of detections in each category were calculated. Species with a 

daytime detection proportion < 0.15 were designated nocturnal. Species with a night-time 

detection proportion < 0.15 were designated diurnal. All other species were designated 

cathemeral.  

Species 
Dawn.dusk 

proportion 

Day  

proportion 

Night 

proportion 
designation 

Leopardus pardalis 0.20 0.21 0.60 cathemeral 

Leopardus wiedii 0.13 0.20 0.67 cathemeral 

Mazama americana 0.22 0.29 0.49 cathemeral 

Mazama nemorivaga 0.20 0.65 0.15 cathemeral 

Panthera onca 0.20 0.60 0.20 cathemeral 

Puma concolor 0.21 0.45 0.33 cathemeral 

Tayassu pecari 0.20 0.60 0.20 cathemeral 

Atelocynus microtis 0.18 0.79 0.03 diurnal 

Crypyurellus spp 0.42 0.58 0.00 diurnal 

Dasyprocta fuliginosa 0.30 0.70 0.01 diurnal 

Eira barbara 0.13 0.85 0.02 diurnal 

Leptotila spp 0.13 0.87 0.00 diurnal 

Mitu tuberosum 0.21 0.79 0.00 diurnal 

Myoprocta pratti 0.62 0.37 0.01 diurnal 

Myrmecophaga tridactyla 0.23 0.68 0.09 diurnal 

Nasua nasua 0.22 0.78 0.00 diurnal 

Odontophorus spp 0.25 0.75 0.00 diurnal 

Ortalis guttata 0.00 1.00 0.00 diurnal 

Pecari tajacu 0.10 0.87 0.04 diurnal 

Penelope jacquacu 0.12 0.88 0.00 diurnal 

Psophia leucoptera 0.14 0.86 0.00 diurnal 

Puma yagouaroundi 0.25 0.75 0.00 diurnal 

Sciurus iginitus 0.00 1.00 0.00 diurnal 

Sciurus spadiceus 0.03 0.97 0.00 diurnal 

Tinamus spp 0.40 0.60 0.00 diurnal 

Cuniculus paca 0.05 0.00 0.95 nocturnal 

Dasyspus spp 0.03 0.00 0.97 nocturnal 

Didelphis marsupialis 0.12 0.00 0.88 nocturnal 

Echimyidae spp 0.17 0.00 0.83 nocturnal 

Metachirus spp 0.14 0.00 0.86 nocturnal 

Nonspecific Cingulata small 0.03 0.00 0.97 nocturnal 

Priodontes maximus 0.23 0.00 0.77 nocturnal 

Procyon cancrivorus 0.00 0.00 1.00 nocturnal 

Tamandua tetradactyla 0.11 0.11 0.78 nocturnal 

Tapirus terrestris 0.22 0.05 0.73 nocturnal 
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APPENDIX C - Species relatedness 

When creating multivariate models that include species traits, it was important to account for both 

multiple measurements of the same species and for species relatedness. The table below displays 

the taxonomic classification of each study species. A relatedness matrix (see below) was created 

in order to visually assess the taxonomic “distance” between species. A taxonomic distance was 

designated in which species in the same genus, family, order or class were designated 2, 3, 4 or 5 

respectively. Species not in the same class were designated 6. Ideally, species traits models would 

include the main taxonomic levels as nested random effects as per Dulvy et al., 2014. Our study 

species are however spread amongst three classes and include few congeners. Therefore we 

included “family” and “species” as nested random effects.  

Species Genus Family Order Class 

Leptotila spp Leptotila Columbidae Columbiformes Aves 

Mitu Crax spp Mitu/Crax Cracidae Galliformes Aves 

Ortalis guttata Ortalis Cracidae Galliformes Aves 

Penelope jacquacu Penelope Cracidae Galliformes Aves 

Odontophorus spp Odontophorus Odontophoridae Galliformes Aves 

Psophia spp Psophia Psophiidae Gruiformes Aves 

Crypturellus spp Crypyurellus Tinamidae Tinamiformes Aves 

Tinamus spp Tinamus Tinamidae Tinamiformes Aves 

Mazama americana Mazama Cervidae Artiodactyla Mammalia 

Mazama nemorivaga Mazama Cervidae Artiodactyla Mammalia 

Pecari tajacu Pecari Tayassuidae Artiodactyla Mammalia 

Tayassu pecari Tayassu Tayassuidae Artiodactyla Mammalia 

Atelocynus microtis Atelocynus Canidae Carnivora Mammalia 

Leopardus pardalis Leopardus Felidae Carnivora Mammalia 

Leopardus wiedii Leopardus Felidae Carnivora Mammalia 

Panthera onca Panthera Felidae Carnivora Mammalia 

Puma concolor Puma Felidae Carnivora Mammalia 

Puma yagouaroundi Puma Felidae Carnivora Mammalia 

Eira barbara Eira Mustelidae Carnivora Mammalia 

Nasua nasua Nasua Procyonidae Carnivora Mammalia 

Procyon cancrivorus Procyon Procyonidae Carnivora Mammalia 

Priodontes maximus Priodontes Chlamyphoridae Cingulata Mammalia 

Nonspecific Cingulata small Unspecified.2 Unspecified.3 Cingulata Mammalia 

Didelphis marsupialis Didelphis Didelphidae Didelphimorphia Mammalia 

Metachirus spp Metachirus Didelphidae Didelphimorphia Mammalia 

Tapirus terrestris Tapirus Tapiridae Perissodactyla Mammalia 

Myrmecophaga tridactyla Myrmecophaga Myrmecophagidae Pilosa Mammalia 

Tamandua tetradactyla Tamandua Myrmecophagidae Pilosa Mammalia 

Alouatta spp Alouatta Atelidae Primates Mammalia 

Ateles spp Ateles Atelidae Primates Mammalia 

Lagothrix spp Lagothrix Atelidae Primates Mammalia 

Cuniculus paca Cuniculus Cuniculidae Rodentia Mammalia 

Dasyprocta spp Dasyprocta Dasyproctidae Rodentia Mammalia 

Myoprocta spp Myoprocta Dasyproctidae Rodentia Mammalia 

Echimyidae spp Unspecified.1 Echimyidae Rodentia Mammalia 

Sciurus ignitus Sciurus Sciuridae Rodentia Mammalia 

Sciurus spadiceus Sciurus Sciuridae Rodentia Mammalia 

Chelonoidis spp Chelonoidis Testudinidae Testudines Sauropsida 
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APPENDIX D – Grouped biomass GLMMs 

The table below displays the explanatory variables retained in GLMMs of detected group 

biomass, along with coefficients, adjusted standard errors and P values. 

Sp.code Var.code Coefficient Adj.stder P.value 

All TOWN -0.28228 0.08346 <0.001 

All COM.DIST -0.04657 0.08634 >0.05 

All COM.POP -0.063 0.09321 >0.05 

All ELEV -0.04628 0.08481 >0.05 

All PRIMARY 0.13324 0.08126 >0.05 

All STREAM 0.16131 0.07829 <0.05 

All.nq TOWN -0.27241 0.06632 <0.001 

All.nq COM.DIST 0.09012 0.06992 >0.05 

All.nq ELEV 0.0291 0.06912 >0.05 

All.nq PRIMARY 0.07321 0.07417 >0.05 

All.nq STREAM 0.15184 0.06651 <0.05 

Bin.hunt TOWN -0.39891 0.09828 <0.001 

Bin.hunt COM.POP -0.06411 0.10778 >0.05 

Bin.hunt PRIMARY 0.11254 0.09086 >0.05 

Bin.hunt STREAM 0.1959 0.08755 <0.05 

Bin.hunt.nq TOWN -0.38499 0.08101 <0.001 

Bin.hunt.nq COM.DIST 0.10934 0.08043 >0.05 

Bin.hunt.nq ELEV 0.03639 0.08157 >0.05 

Bin.hunt.nq PRIMARY 0.06741 0.0818 >0.05 

Bin.hunt.nq STREAM 0.18885 0.07518 <0.05 

Bin.huntpers TOWN -0.34798 0.09343 <0.001 

Bin.huntpers COM.POP -0.06461 0.09867 >0.05 

Bin.huntpers ELEV -0.02542 0.09203 >0.05 

Bin.huntpers PRIMARY 0.12514 0.08996 >0.05 

Bin.huntpers STREAM 0.17802 0.0846 <0.05 

Bin.huntpers.nq TOWN -0.34023 0.07644 <0.001 

Bin.huntpers.nq COM.DIST 0.0937 0.07755 >0.05 

Bin.huntpers.nq PRIMARY 0.05955 0.07964 >0.05 

Bin.huntpers.nq STREAM 0.16717 0.07289 <0.05 

Bin.pers COM.DIST -0.1003 0.1994 >0.05 

Bin.pers ELEV -0.1592 0.1703 >0.05 

Bin.pers STREAM -0.0792 0.2182 >0.05 

Bin.unpers TOWN 0.1657 0.1323 >0.05 

Bin.unpers COM.DIST 0.1192 0.1552 >0.05 

Bin.unpers PRIMARY 0.3169 0.1413 <0.05 

Bin.unpers STREAM 0.1194 0.1506 >0.05 

Hw TOWN -0.42262 0.10857 <0.001 

Hw COM.DIST -0.03526 0.1008 >0.05 

Hw COM.POP -0.08402 0.12036 >0.05 

Hw PRIMARY 0.13238 0.09871 >0.05 

Hw STREAM 0.18371 0.09272 <0.05 

Hw.nq TOWN -0.42189 0.08414 <0.001 

Hw.nq COM.DIST 0.0853 0.08382 >0.05 

Hw.nq ELEV 0.04413 0.08576 >0.05 

Hw.nq PRIMARY 0.05169 0.08481 >0.05 

Hw.nq STREAM 0.1769 0.07755 <0.05 

Rw TOWN -0.35806 0.08113 <0.001 

Rw COM.DIST 0.02467 0.08153 >0.05 

Rw STREAM 0.12498 0.07362 >0.05 

Rw.nq TOWN -0.35491 0.08127 <0.001 

Rw.nq COM.DIST 0.0324 0.08147 >0.05 

Rw.nq STREAM 0.125 0.0734 >0.05 
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APPENDIX E – Species activity pattern GLMMs 

The table below displays the explanatory variables retained in GLMMs of activity patterns per 

species, along with coefficients, adjusted standard errors and P values. 

Sp.code Var.code Coefficient Adj.Stder P.value 

All TOWN 0.04978 0.03739 >0.05 

All COM.DIST -0.07947 0.03694 <0.05 

All ELEV -0.03786 0.03711 >0.05 

All PRIMARY -0.11411 0.03298 <0.001 

All STREAM -0.0577 0.03591 >0.05 

Atel.mi COM.POP 0.5305 0.3406 >0.05 

Cryp.sp COM.POP -2.0551 2.4214 >0.05 

Dasy.sp TOWN 0.07292 0.1889 >0.05 

Dasy.sp COM.DIST -0.09429 0.12332 >0.05 

Dasy.sp ELEV 0.06982 0.12264 >0.05 

Dasy.sp PRIMARY 0.04156 0.11959 >0.05 

Dasy.sp STREAM -0.23526 0.13431 >0.05 

Eira.ba COM.DIST -0.9346 0.8579 >0.05 

Eira.ba PRIMARY -0.4271 0.3841 >0.05 

Leop.pa COM.DIST -0.11857 0.1889 >0.05 

Leop.pa COM.POP 0.12805 0.15238 >0.05 

Leop.pa PRIMARY -0.06726 0.09424 >0.05 

Maza.am COM.DIST -0.1764 0.11709 >0.05 

Maza.am COM.POP -0.11329 0.11997 >0.05 

Maza.am ELEV 0.06759 0.07381 >0.05 

Maza.am PRIMARY -0.08832 0.06186 >0.05 

Maza.am STREAM 0.15869 0.09832 >0.05 

Maza.ne TOWN -0.10492 0.14008 >0.05 

Maza.ne COM.DIST -0.3832 0.14846 <0.01 

Maza.ne COM.POP 0.13039 0.09974 >0.05 

Maza.ne ELEV 0.09613 0.10842 >0.05 

Maza.ne PRIMARY 0.18358 0.26184 >0.05 

Maza.ne STREAM -0.20929 0.14915 >0.05 

Mitu.Cr COM.DIST -0.1339 0.3009 >0.05 

Mitu.Cr COM.POP 0.239 0.2342 >0.05 

Mitu.Cr ELEV -0.2313 0.3105 >0.05 

Mitu.Cr PRIMARY -0.4186 0.312 >0.05 

Mitu.Cr STREAM 0.4964 0.2677 >0.05 

Myop.sp TOWN -0.17719 0.16753 >0.05 

Myop.sp COM.DIST 0.08608 0.11055 >0.05 

Myop.sp COM.POP -0.1447 0.24524 >0.05 

Myop.sp PRIMARY -0.24435 0.28806 >0.05 

Myrm.tr ELEV -0.4863 0.4381 >0.05 

Nasu.na ELEV -4.2551 4.6063 >0.05 

Nasu.na STREAM 0.8242 2.6754 >0.05 

Pant.on TOWN 0.6514 0.3779 >0.05 

Pant.on PRIMARY -0.5894 0.4239 >0.05 

Peca.ta TOWN 0.5274 0.3573 >0.05 

Peca.ta ELEV 0.5241 0.2654 <0.05 

Peca.ta PRIMARY -0.7368 0.3176 <0.05 

Peca.ta STREAM 0.3858 0.313 >0.05 

Psop.sp TOWN -0.0289 0.37628 >0.05 

Psop.sp COM.DIST -0.03811 0.3533 >0.05 

Psop.sp COM.POP -1.28468 1.08378 >0.05 

Psop.sp ELEV -0.15088 0.33271 >0.05 

Psop.sp PRIMARY -0.59281 0.60047 >0.05 

Psop.sp STREAM 0.32448 0.2847 >0.05 

Sciu.sp COM.POP -1.418 205.266 >0.05 

Sciu.sp ELEV -2.815 157.325 >0.05 

Tina.sp STREAM -0.7874 0.7686 >0.05 
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Abstract  
 

The use of domestic dogs as a hunting technology is controversial and understudied in the humid 

tropics. Hunting dogs are believed to exacerbate the depletion and/or repulsion of terrestrial game 

fauna, and to spread diseases to wild canids. Nonetheless, diverse semi-subsistence agriculturalist 

and hunter-gatherer peoples attest to the usefulness of hunting dogs in augmenting game yields 

and defending against damaging crop raiders. Studying the spatial behaviour of hunting dogs has 

proven challenging both because of social stigma and inadequate technology. In this study we 

trialled novel, lightweight and open source Mataki GPS units in tandem with three types of 

commercially available GPS units during 30 simulated hunts in the Juruá and Uatumã regions of 

central-western Brazilian Amazonia. We found that, despite the fact that domestic dogs were 

commonly used to protect agricultural plots, several respondents expressed concerns that hunting 

dogs are detrimental to populations of game fauna. On average, participants in simulated hunts 

spent the largest proportion of their time in primary upland and lowland forest and relatively little 

time in areas of nonforest or secondary growth (78.3 ± 3.6% and 11.4 ± 2.2% respectively). 

Simulated hunts that began in towns involved more bred hunting dogs and covered significantly 

longer distances than did those which began outside towns. Simulated hunts in the Juruá region 

involved more people, guns, dogs and bred hunting dogs than in the Uatumã region. Whilst these 

results could be taken as evidence of both hunting-mediated depletion in proximity to cities and 

of region-specific hunting cultures, we treat these conclusions with caution due to the biases 

inherent in our study. Though dogs covered ~ 13% more ground than humans during simulated 

hunts, the difference was not as pronounced as initially anticipated. All of the dogs surveyed 

remained close to their human masters, and spent over 60% of their time <11m from human 

tracks. Specially bred hunting dogs did however venture significantly further than non-specialist 

dogs. The social and ecological costs and benefits of hunting dogs in the tropics requires far more 

in-depth study in order to inform conservation policy and management.  
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5.1 Introduction 
 

The initial divergence of Canis lupus familiaris from Canis lupus >100,000 years ago (Vilàet al., 

1997), predates even domesticated cereals by an order of magnitude (Colledge and Conolly, 

2007). They are now the world’s most widespread and abundant carnivore due to introduction and 

domestication by humans (Wandeler et al., 1993). As hunting companions they have been and 

continue to be used by diverse groups (Clutton-Brock and Noe-Nygaard, 1990), for subsistence 

(Terashima, H., 1983 - Mbuti in DR Congo; Brosius, 1991 – Penan in Borneo), commercial (Fa 

and Yuste, 2001 - Equatorial Guinea), and sport hunting (Luskin et al., 2014 Minangkabau in 

Sumatra). Domestic hunting dogs have been shown to be a potent tool, substantially increasing 

the efficiency of hunts, and several prey species, including nine banded armadillo (Dasypus 

novemcintus), are virtually impossible to capture without the aid of dogs (De Souza-Mazurek et 

al., 2000; Alves et al., 2009).  

Hunting dogs have also been implicated in the unsustainable depletion and spatial disruption of 

terrestrial fauna. They are a favoured tool of illegal poachers (Gandiwa, 2011) and are believed to 

have a drastic impact (Galetti and Sazima, 2006); covering long distances, killing small game, 

maiming and chasing away larger animals and causing additional disturbance through their noise 

and scent (Gompper, 2013). Furthermore, domestic, semi-feral, and feral dogs (whether used 

during hunts or not) host diseases including canine distemper and rabies, which infect populations 

of wild carnivores (Alexander and Appel, 1994; Butler et al., 2004). These deleterious effects 

compound the widely documented depletion of tropical forest game fauna, both in the Amazon 

(Peres, 2000) and globally (Redford, 1992; Ripple et al. in press). As a result, there have been 

calls to enforce bans on the use of dogs as a hunting tool in Brazil (Carvalho and Pezzuti, 2010) 

and elsewhere (Coad, 2008).  

Domestic dogs (hereafter, dogs) are nonetheless an important livelihood tool for semi-subsistence 

communities. In addition to their role in increasing the efficiency of protein acquisition, they are 

used as guard dogs to protect people and livestock against large felids (Gonzalez, et al., 2012), 

although dogs have themselves been implicated in livestock predation (Verdade and Campos, 

2004) and numerous attacks on humans (http://www.who.int/mediacentre/factsheets/fs373/en/). 

Moreover, semi-subsistence agriculturalists attest that they confer valuable protection against 

terrestrial vertebrate crop raiders. In our study (Chapter 3) in the Juruá region, amongst the 

strategies to suppress crop raiding, 17.1% of responses involved hunting with dogs, or using dogs 

to scare away crop raiders.  

Despite the high social benefits and ecological costs of using hunting dogs, research into their 

behaviour, especially during hunts is scarce and generally confined to temperate regions (Claridge 

et al., 2009; Shubkina et al., 2010). The literature surrounding domestic dogs and biodiversity 

conservation in the tropics tends to either focus on the effects of free-ranging semi-feral dogs 
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(Woodroffe and Donnelly, 2011; Gompper, 2013) or the use of dogs as tools by subsistence 

hunters (Koster, 2009). Less attention has been paid to characterising the spatial behaviour of 

domestic dogs during hunts, though the behavioural ecology of related canids such as African 

wild dogs during hunts in Africa (Creel and Creel, 2002) and dingoes in Australia has been 

studied (Claridge, 2009). Conservationists are therefore armed with scant evidence with which to 

determine the level of threat that hunting dogs pose. Denouncing the use of hunting dogs based on 

such evidence, despite their clear usefulness to semi-subsistence communities, could fuel 

resentment from the very people whose local support conservationists so desperately need.  

Social stigma and technological limitations have hampered efforts to study the behaviour of 

hunting dogs in the tropics. The consumption of wild-caught meat is only legal in Brazil for rural 

subsistence and the use of hunting dogs is illegal (Cunha and Almeida, 2000; Parry et al, 2014). 

In Brazilian Amazonia, many communities are simultaneously afraid of falling afoul of 

governmental environmental protection agencies, and wary of the intervention of wealthy, 

conservation-oriented outsiders in their livelihoods. Illegal activities such as commercial fishing 

within protected lakes, can result in a denouncement and the intervention of the Brazilian Institute 

of the Environment and Renewable Natural Resources (IBAMA), who can confiscate equipment 

and issue fines (McGrath, et al., 2004; Parry et al., 2014). Rural communities are often poorly 

informed about wildlife legislation (Keane et al., 2011) and in our study regions, the legal status 

of hunting in general and the use of dogs in particular is not well understood. In addition, 

conservation NGOs have been keen to disseminate environmental awareness, and discourage 

activities they consider to be unsustainable. These factors create a climate, in which hunting with 

dogs is perceived to be both risky and socially vilified. This poses a considerable barrier to 

researchers attempting to gain an accurate and unbiased insights into this potential human-

wildlife conflict. 

Additionally, GPS receivers and other tracking devices have historically been too bulky, 

expensive and/or inaccurate under dense canopy cover to deploy with sufficient replication to 

characterise the movement patterns of hunting dogs in tropical forests. Within the past decades, 

however, rapid improvements and cost reduction in GPS, radio-telemetry and geo-locator 

technology have resulted in considerable advances in the field of animal movement ecology 

(Bridge et al., 2011). The accuracy, bulk and cost of GPS units have been simultaneously 

reduced. A variety of low cost GPS options are now being used and tested by research teams in 

diverse fields (Duncan et al., 2013). The Mataki Technology for Nature initiative 

(http://www.technologyfornature.org/project/tracking-behaviour-in-the-wild/) typifies this trend. 

This partnership between the Zoological Society of London, University College London and 

Microsoft Research, explicitly aims to provide conservation researchers and practitioners with 

low cost, high quality and open source technology. In the midst of chronic biodiversity 

conservation underfunding (Waldron et al., 2013), it is a welcome development.  
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In this study, we intend to (1) compare the accuracy, reliability and overall usability of Mataki 

GPS devices, with commercially available alternatives; (2) broadly characterise a series of 

simulated hunts across our two study regions; (3) determine the degree to which dogs cause 

additional disturbance to humans insofar as they travel farther than, and cover an area distinct to 

their masters; and (4) assess the prevalence of dogs as a hunting tool and record the attitudes of 

local community members towards hunting dogs using interviews.  

5.2 Methods 
 

5.2.1 Study region 

 

This study was carried out in the Médio Juruá and Uatumã regions of Western and Central 

Brazilian Amazonia (Fig. 5.1). The Médio Juruá study region covers an area of 1,637,008 ha and 

consists of 63.9% of primary unflooded (terra firme) forest, 30.0% of seasonally-flooded várzea 

forest, 4.4% of permanent water bodies, which include the Juruá River (the second-largest white-

water tributary of the Amazon) and its tributaries and oxbow lakes, and 1.8% deforestation. Two 

sustainable-use reserve -- the Uacari Sustainable Development Reserve and the Médio Juruá 

Extractive Reserve -- jointly legally protect 42.3% of this landscape. The nearest towns are 

Carauari, which is 88 fluvial km downstream from the Médio Juruá Reserve and has a population 

of 4145 families, and Itamarati, which is 120 fluvial km upstream from the Uacari Reserve and 

has a population of 905 families.  
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Figure 5.1: Geographic location of the Juruá (A) and Uatumã (B) study regions within the 

Brazilian Amazon (C), and an example simulated hunt (D).  Panels A and B, which are presented 

at the same scale, show a digital elevation (SRTM) map, with darker shades indicating lower 

elevation. Rivers, towns and survey tracks are represented as blue lines, red circles and yellow 

lines, respectively, whilst reserve boundaries are outlined in black. The Amazon basin (C) is 

outlined in black and the Juruá and Uatumã study regions are indicated by red boxes. In panel D, 

the background is a landcover classification with primary upland forest, primary floodplain 

forest, permanent water bodies and deforestation in dark green, light green, blue and red 

respectively. The centre of a local community is indicated by a solid circle, whilst the survey track 

is indicated in yellow.  

The Uatumã study region covers an area of 1,601,704 ha and consists of 62.3% of undulating 

upland primary unflooded (terra firme) forest, 17.9% of primary low-lying and seasonally-

flooded igapo forest, 11.1% permanent water bodies, which include the Uatumã River (which 

connects the Balbina reservoir to the Solimões River) and its main tributary the Jatapú River, 

4.0% deforestation and 4.7% of campina and campinarana non-forest vegetation on oligotrophic 

soils. The Uatumã Sustainable Development Reserve legally protects 27.0% of this landscape. 

The nearest towns are Vila Balbina, which has a population of 420 families and is 66 fluvial km 

upstream of the reserve, and Sao Sebastião, Itapiranga and Urucará, with populations of 1214, 

1345 and 2051 families, respectively, and are 37, 40, and 53 fluvial km downstream of the 

reserve, respectively.  
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Both regions are inhabited by ribeirinhos who are former rubber-tapper semi-subsistence 

communities of mixed-descent, with producer cooperatives and resource-management programs. 

Large-scale ecological and socioeconomic differences between the two study regions are due to 

river chemistry and proximity to Manaus, the largest city in the state of Amazonas. The Juruá 

region encompasses highly productive white-water floodplain ecosystems, whereas the Uatumã 

region encompasses less productive black-water ecosystems, potentially resulting in lower faunal 

biomass density at Uatumã. Secondly, the Juruá region is over five times farther from Manaus, 

which increases transaction costs and reduces market opportunities for Juruá inhabitants.  

5.2.2 GPS deployment 

 

During this study, Garmin 60Csx and Garmin Etrex10 devices (Garmin Ltd., USA), Igotu GT120 

devices (Mobile Action Technology Inc., Taiwan), and novel Mataki open-source GPS devices 

were used (Mataki.org; 2013). The latter were provided free of charge, by the Mataki, 

Technology for Nature collaboration. GPS devices were deployed during three phases/scenarios 

a) UK Mataki tests - These were conducted in the UK prior to Brazilian fieldwork, in order to 

determine the feasibility of using novel Mataki devices and to determine the correct data capture 

settings (Appendix A) b) Brazil tests - Simultaneous deployment of Mataki, Garmin Etrex and 

Garmin 60Csx devices, by MIA, whilst walking linear understorey forest transects, in order to 

compare the locational fixes attained under forest canopy and whilst moving, but in a supervised 

manner and c) Active fieldwork (simulated hunts) – A total of 164 GPS deployments (across all 

device types), which were made across 30 simulated hunts in forest areas controlled by 27 local 

communities, involving 41 humans and 48 dogs, although dogs were not present during every 

simulated hunt. Data were downloaded and checked periodically during active fieldwork in order 

to monitor device functioning.  

During active fieldwork, all GPS devices were programmed to record a waypoint every 10 sec. In 

practice however, mechanical differences between devices meant that the frequency of waypoint 

recoding varied. For Garmin devices, data capture reflected the device settings except in cases of 

device failure (for example because of low battery) or loss of satellite signal, which were 

uncommon. Igotu devices only succeeded in recording a waypoint every 18 – 30 sec, even when 

functioning normally. Mataki devices were programmed using the “setgps” function to (i) wait 60 

sec after being initially turned on in order to acquire satellites; (ii) then search indefinitely for 

satellites; (iii) then, once satellites had been acquired, to record waypoints for three seconds; (iv) 

then sleep for 10 sec; (v) and finally search for satellites again and repeat until turned off. In 

practice, Mataki devices recorded a run of four waypoints, one every second, with gaps of 16 – 20 

sec in between. Sampling frequency is known to be positively correlated with estimated 

movement distance (Mills et al., 2006) and therefore devices with a lower data capture rate are 

anticipated to underestimate the distance travelled. In order to account for the aforementioned 
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discrepancies between device data capture rate, it was necessary to use a restricted dataset, 

whereby only the first waypoint recorded per minute per device, was utilised (where a restricted 

dataset was used, this is indicated in the methods).  

Due to concerns over device reliability (Appendix A) and in order to directly compare different 

types of device, during active fieldwork, two devices were deployed per surveyed individual. 

Human hunters were given the larger, heavier and more expensive Garmin 60Csx devices (paired 

with a Mataki device) as they were deemed too cumbersome to be deployed on all but the largest 

dogs and they are too valuable to risk losing. Robust dogs were fitted a collar with a Garmin 

Etrex device, paired with a Mataki device. Smaller dogs were fitted a collar with two Mataki 

devices. Initially, Igotu devices were also deployed alongside Garmin and Mataki devices. During 

routine data checks of devices carried out whilst conducting active fieldwork, it became evident 

that Igotu devices consistently failed to acquire satellite signal and capture locational data when 

under dense canopy. Although this did not constitute a static, supervised and controlled test, the 

obvious inability for Igotu devices to capture data under field conditions forced us to discontinue 

their use prematurely.  

Hunting dogs in our study regions are known to run through dense vegetation and streams. 

Therefore before each simulated hunt, in order to protect GPS devices, makeshift waterproof 

housings were created. Devices were wrapped in three plastic bags, which were taped shut and 

attached to dog collars using cable ties and duct tape. Cable ties were then clipped short and taped 

over to avoid irritating the dogs (Appendix B). Human hunters were given the devices in two 

layers of plastic bag, taped shut. These were kept in pockets or backpacks during each simulated 

hunt.  

Domestic dogs used in simulated hunts in our study regions, whether true-bred hunting dogs 

(locally named cachorro paulista) or mixed-breed dogs (locally vira-lata) are approximately the 

stature of a harrier hound or foxhound (Appendix B) and weigh ~ 18–30 kg. Animal welfare 

guidelines (American Society of Mammalogists, 1998) dictate that mammals should ideally not 

be encumbered with devices (including harnesses) weighing more than a fifth of their bodyweight 

(up to a maximum of a tenth). As our heaviest GPS collar setup, weighed less than 250g, it was 

well within acceptable limits even for the smaller dogs.  

The support and goodwill of local communities was essential for this project. During meetings 

with community leaders and other members, it was explained that we wished to test new GPS 

devices and use hunters and their dogs to map the hunting grounds in proximity to communities. 

In order to avoid either making community members uncomfortable, or encourage an activity that 

is perceived to be problematic, we (1) sought community members that were experienced hunters 

and ideally those who regularly used dogs; and (2) explained that their activities would be 

deemed simulated hunts and mapping exercises and that anyone who wished to participate did not 

need to hunt, or even carry a shotgun. For this reason, their activities are referred to as “simulated 
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hunts” or “surveys” rather than “hunts”. The identity of local communities and participants in this 

study were anonymised as agreed prior to field deployments.   

MIA was present at the start of every simulated hunt in order to program, prepare, house and 

attach every device and record the departure point.  Before every simulated hunt, the number of 

people, fire weapons, and dogs of both types were recorded. After simulated hunts, if the 

participants were comfortable to share the information, a record was made of the number of 

animals killed or collected. We initially intended to accompany every simulated hunt in order to 

make notes on broad habitat categories and dog behaviour. On the two simulated hunts attended 

early in the study, some participants asked for prescribed directions using a GPS unit. We 

therefore did not accompany subsequent surveys in order to avoid unduly influencing their spatial 

features.   

5.2.3 Local interviews 

 

Interviews were conducted in Portuguese by the authors and without the aid of translators. 

Interviews were recorded using a structured questionnaire and a Dictaphone, and cross-checked 

for accuracy. Interviewees were reassured that data would be kept anonymous and confidential. 

Interviewees were not paid, but some were participating in paid work such as camera trapping at 

the time of interviews. During two field seasons undertaken in 2013 and 2014, a total of 78 

interviews were conducted, with a total of 151 respondents at 59 local communities or urban 

neighbourhoods (hereafter, communities). Interviews addressed a broad range of topics related to 

livelihoods, hunting and forest fauna. Time constraints meant that it was not possible to ask every 

interviewee every interview question. For methods relating to interviews that focussed on crop 

raiding of agricultural plots and encounters with forest fauna, see Chapters 3 and 4, respectively. 

Hunting dogs were mentioned, either by the interviewer or respondent, during three separate 

questions in the course of the aforementioned interviews. During 74 interviews (57 communities), 

interviewees were asked (1) “In general, in the area near to your community, is the hunting easier 

now than it was in the past?” and (2) “In your opinion, what can be done in order to ensure that 

there will always be sufficient game to hunt?” Additionally, (3) during 76 interviews, respondents 

were asked about the prevalence of the ownership of hunting dogs. The precise formulation of 

this question was altered between field seasons, as follows. During the 39 interviews conducted in 

the 2013, interviewees were asked “Do you personally own any hunting dogs?” These data were 

not used in the assessment of the prevalence of hunting dogs, as it was felt to be intrusive and 

potentially unreliable. During 37 interviews conducted in 2014, each in separate communities, 

interviewees were instead asked “Are there any households in this community that own dogs 

which are used during hunts (even if only rarely)?” and “Are there any households in this 

community that own bred hunting dogs?” 
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5.2.4 GPS data processing and GIS 

 

All spatial data extraction was conducted using ArcGIS (v. 10.3). All data were projected into the 

Albers equal area conic projection. Waypoints were compared to ensure that devices were 

synchronised for each simulated hunt. The start and endpoints of every simulated hunt were 

specified as the points at which the group (whether dog and master or hunter alone) left and re-

entered the central community or homestead. All waypoints before the start and after the end of 

simulated hunts were deleted.  

The two study regions were classified into five landcover types: (a) permanent water bodies, (b) 

deforested land, (c) natural nonforest vegetation (including areas of campina and campinarana), 

and (d) primary upland and (e) low-lying forest using data from INPE PRODES, 2009, Global 

Forest Change (GFC: Hansen et al., 2013), RADAMBRASIL (Veloso, 1982) and the Instituto de 

Conservação e Desenvolvimento Sustentável Amazonas (IDESAM). PRODES land cover data 

were used to validate against GFC deforestation data (see chapters 2 and 3). In the Juruá region, 

the low-lying forest class corresponds to white-water várzea floodplain forest. In the Uatumã 

region by contrast, the low-lying forest class corresponds to both the small proportion of black-

water floodplain igapó forest, and to the distinctive band of paleo-floodplain largely to the North 

and East of the Uatumã River (Amazonas, 2008).   

For accompanied simulated hunts, the point at which the group started to travel overland was 

recorded using a GPS device. For unaccompanied simulated hunts, the routes taken were 

inspected against ESRI basemaps to determine where the group travelled by river and overland. 

For this purpose, we used (a) the aforementioned habitat classification, (b) a map of perennial 

streams combining data from the IBGE (2008) “hidro tot linha” shapefile and the Hydrosheds 

hydrographic dataset (Lehner and Grill, 2013a), and (c) field notes and tracklogs accumulated 

during two years of fieldwork.   

The elevation of GPS waypoints recorded at every simulated hunt, relative to the main adjacent 

river, was calculated following Rennó et al (2008) using 1 arc-second (30-m) SRTM data (Jarvis, 

et al., 2008). Raw elevation is inappropriate due to landscape-wide elevational gradients. There 

are 24-m and 22-m elevational differences between the ends of our Juruá and Uatumã study 

landscapes, respectively, and a roughly 65-m elevational difference between study regions. To 

calculate the elevation of the river in proximity to each simulated hunt, a point shapefile of start 

locations was snapped onto a polyline of the main rivers. A buffer of 500m around each snapped 

point was then created and the lowest elevation within the buffer was used. The buffer was used 

to ensure that the true elevation of the river would be captured, rather than the nearby banks. The 

relative elevation per GPS waypoint was therefore the elevational difference between the 

waypoint itself and the corresponding point on the main river.  
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The distance between the survey community/homestead and the nearest town, was calculated as 

follows. A GPS waypoint was recorded at the centre of all surveyed communities and 

homesteads. A transport network accounting for all main rivers, tributaries, known navigable 

perennial streams, roads and known tracks in the vicinity of all surveyed communities was 

constructed from GPS track-logs taken over successive fieldwork years. Network Analyst was 

used to calculate the Manhattan or “transport” distance between communities and towns across 

both study regions.  Having identified the town with the shortest Manhattan distance to a given 

community, the Euclidean distance between them was then calculated, providing a “hybrid” 

distance (see Chapters 3 and 4).  

The number of households per community was recorded using (1) interviews conducted during 

this study, (2) Projeto Médio Juruá interview database, and (3) The Sustainable Forest 

Association (FAS) community census. Although our data is more recent, we were interviewing 

community members rather than conducting a population census. Mean values per community 

were used. The number of households per urban centre was calculated using IBGE (2007) census 

data.  

Hybrid distance and urban population were combined into a single variable, the urban proximity 

score. This was calculated as the urban population, divided by the square root of the hybrid 

distance to a given community. More complex urban proximity indices (see Chapter 2) were 

previously devised and used, but our study landscape is more simple in this chapter and 

alternative urban proximity indices are highly correlated.    

5.2.5 Statistical analysis 

 

All statistical analyses were conducted in R (2.15.1). Collinearity between independent variables 

was tested for using Spearman’s Rank, Kruskal-Wallis and Wilcoxon Rank Sum tests. Where 

explanatory variables had bivariate Rho >0.70 or p <0.05, they were modelled separately. Data 

distributions and relationships were inspected using histograms. For count data, Poisson models 

were attempted and where overdispersion was uncovered, Negative Binomial models were used. 

Variables were scaled to enable models to converge and aid comparison of variables. The ‘best’ 

models were selected based on their Akaike's weights (wAICc) and the ΔAICc, corrected for 

small sample sizes. We considered models with ΔAICc<2.0 and wAICc>0.1 as equally plausible 

to explain observed patterns (Burnham & Anderson, 2003, Bolker et al., 2009). Where multiple 

plausible models were retained, they were weighted and averaged using the “model.avg” function 

in the R package MuMIn. We report coefficients and adjusted standard errors along with p-values 

per explanatory variable to aid interpretation (for further discussion, see Chapter 4).  
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5.2.6 Device comparison  

 

As a measure of device reliability per simulated hunt, the number of minutes in the restricted 

dataset for which each device recorded a waypoint was used. In order to investigate the effect of 

device type on the proportion of each hunt captured, a negative binomial GLMM was created, in 

which the number of minutes recorded per device was the dependent variable and the log of the 

total number of survey minutes was an offset variable. Explanatory fixed effects were (1) the 

number of minutes spent in old-growth forest of any type, which was recorded by the device with 

the highest data capture rate per simulated hunt; (2) the mean relative elevation of the simulated 

hunt; (3) whether the device was given to a human or deployed on a dog; and (4) the type of 

device. The survey date and the individual ID were specified as nested random effects.   

In order to assess the accuracy of different types of device, unrestricted data from paired devices 

(those deployed on the same individual) used both during simulated hunts and Brazil tests, were 

compared. Only waypoints recorded by paired devices during the same second were compared. 

The Euclidean distance between all paired points was extracted in ArcGIS.  

5.2.7 Characterisation of simulated hunts 

 

In order to describe and compare simulated hunts, the restricted data from only the device that 

captured the highest proportion of the entire simulated hunt was used (the lowest percentage for 

any simulated hunt was 94.6%). The mean relative elevation above local drainages, total distance 

travelled, farthest point travelled from the community/homestead, and the percentage of both time 

and distance spent travelling by river and overland and in each habitat category, were extracted in 

a GIS for each simulated hunt. In order to compare the total distance travelled and the number of 

bred hunting dogs used during simulated hunts (a) between study regions and (b) between 

simulated hunts that started from towns and those that did not, GLMMs were initially attempted, 

to account for data nestedness. GLMMs did not converge however, due to the sparsity of the data. 

Data were therefore averaged per community and nonparametric bivariate (Wilcoxon) tests were 

performed. Multiple statistical comparisons were made simultaneously on the same dataset, 

thereby introducing a multiple comparison problem and the potential for an inflated false 

discovery rate. A Bonferroni correction was applied in order to reduce the false discovery rate. 

Despite its widespread use, the Bonferroni correction is known to be overly conservative 

(Armstrong, 2014). Due to the sensitive nature of and potential behavioural biases inherent in our 

study, a conservative approach is appropriate and a reduction in type I errors, compensates the 

inflated risk of type II errors.  
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5.2.8 Comparison of dogs and humans during simulated hunts 

 

In order to compare dog and human hunters during simulated hunts, only the overland proportion 

of the hunt was considered, thereby excluding periods when humans and dogs travelled together 

in canoes. To ensure data were comparable, only the 37 Garmin device deployments that captured 

over 90% of the overland proportion of the simulated hunt were used. When comparing the 

distances travelled, restricted data were used. Data were averaged per community and a paired 

Wilcoxon test was performed.  

In order to ascertain to what degree dogs deviated from the locations used by human hunters, the 

unrestricted GPS data of human hunters were converted to polylines and merged per simulated 

hunt. The Euclidean distance from every dog waypoint to the nearest human track was then 

calculated. These distances were separated into three distance categories. Any points closer than 

11 m are considered to be potentially adjacent to or using the same path used by humans, due to 

positional inaccuracy and coregistration error. Points between 11 and 100 m are considered 

sufficiently close to enable humans and dogs to easily communicate, whilst points farther than 

100 m are considered far enough that communication between humans and dogs begins to 

become problematic in a dense forest. To determine if purpose-bred hunting dogs travelled farther 

from human tracks than other dogs during simulated hunts, a Gaussian GLMM with a log link 

was created, with the distance to the nearest human track as the dependent variable, the type of 

dog as the only fixed effect, and the survey location and dog ID as nested random effects. 
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5.3 Results 
 

5.3.1 Attitudes to hunting with dogs  

 

Of the 37 communities surveyed, 23 owned dogs that were occasionally used during hunts, nine 

of which had bred hunting dogs. Additionally, as reported in Chapter 3, semi-subsistence 

agriculturalists in the Juruá region frequently use dogs in order to suppress crop raiders in their 

agricultural plots. During 10 interviews, respondents expressed negative opinions about hunting 

with dogs. These included “I do not hunt with dogs, because they scare animals away” (N = 3), 

“Hunting is more difficult now / was more difficult before, because of hunters with dogs” (N = 

5), “we should prohibit people from hunting with dogs” (N = 3), and “animals do not return to 

places from which dogs have chased them” (N = 2). Other than confirming their use either during 

hunting or to protect agricultural plots, no respondent expressed positive attitudes towards 

hunting dogs. One interviewee reported that their community incurred high consistent crop losses 

to collared peccary herds, until they employed a professional hunter with dogs from a nearby 

community to kill and scare them away. The intervention was so effective that they later acquired 

hunting dogs of their own.  

5.3.2 Device comparison 

 

Whilst in use during both simulated hunts and Brazil tests, waypoints recorded by Garmin Etrex 

devices deviated from Garmin 60Csx devices by an average of 10.2 ± 0.3 m. Mataki devices 

deviated from Garmin devices by an average of 21.4 ± 0.2 m, and Igotu devices deviated from 

Garmin devices by an average of 30.2 ± 2.2 m. When deployed during simulated hunts, Garmin 

devices captured on average 89.5 ± 2.9% of the hunt, whilst Mataki and Igotu devices captured 

56.3 ± 4.0% and 36.7 ± 5.0% of the hunts, respectively. Garmin devices were therefore found to 

be both the most accurate (in terms of positional error) and reliable (in terms of data capture rate). 

Igotu devices were the least accurate and reliable and Mataki devices were intermediate.  

Although it was impossible to determine the cause of total device failure in most cases, common 

causes appear to include battery dislodgement or severing (Mataki devices especially), battery 

failure, accidental pressing of the power button (Garmin devices especially), and occasionally 

water intrusion.  Igotu devices commonly lost satellite reception under dense canopy cover, whilst 

this occurred less frequently for Mataki devices, and rarely for Garmin devices. Models of device 

reliability (Fig. 5.2) reveal that device type was the strongest predictor of the proportion of the 

simulated hunt captured, though mean elevation, the amount of time spent in primary forest and 

whether the device was deployed on a dog, also had a negative influence.  
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Figure 5.2: Coefficients and adjusted standard errors of the variables retained in the best 

performing model of GPS data capture rate. Variable codes and associated P-values are 

indicated to the left of the plot, where primary = the length of time spent in either category of 

primary forest, elev = mean relative elevation, dog = devices deployed on dogs, device.mataki 

and device.igotu indicate the type of device used, where Garmin devices are the reference 

category.  

5.3.3 Characteristics of simulated hunts 

 

Simulated hunt activity began at ~ 07:30h (Table 5.1) and lasted for 450 ± 25 min, covering 19.25 

± 2.4 km, including travel by river. Though 67.1 ± 5.4% of the distance travelled was overland, 

and several simulated hunts which began in communities situated in upland forest included no 

river travel whatsoever, the longest hunts, especially those from towns, included substantial (up to 

91%) river travel. Whilst the urban proximity score does not covary with the distance covered 

during simulated hunts (Spearman’s Rho = 0.07), those that began in towns covered a 

significantly larger distance (corrected P < 0.05) than those which began from outside towns. 

Distance travelled during simulated hunts did not differ significantly between study regions 

(corrected P > 0.05). The farthest point reached during simulated hunts was 5.52 ± 0.78 km from 

the origin community or household. Total distance travelled covaried with the farthest distance 

reached (Spearman’s Rho = 0.80). Simulated hunts were attended by between one and four 

people accompanied by up to ten dogs, rarely with a bred hunting dog. At least one shotgun was 

always carried and frequently each person wielded a shotgun. Simulated hunts in the Uatumã 

region involved fewer people, dogs and guns and never included a bred hunting dog. The number 

of bred hunting dogs per simulated hunt differed significantly by region and between urban and 

non-urban locations (corrected P-values < 0.001 and <0.05, respectively).  
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After accounting for landscape-scale elevational differences, simulated hunts carried out in the 

Uatumã region were allocated to higher ground (45.6 ± 4.2 m above drainage) than in the Juruá 

region (25.7 ± 2.2m). Participants in simulated hunts spent the largest percentage of time in 

primary upland forest (54.8 ± 6.6%), followed by low-lying forest (23.5 ± 5.3%), on permanent 

water bodies (10.4 ± 2.8%), on deforested land (9.8 ± 2.1%) and on natural nonforest areas (1.6 ± 

1.2%). Faster river travel meant that permanent water bodies represented a larger proportion of 

the distance travelled than the time spent. In the Uatumã region, the proportion of time spent in 

low-lying forest was roughly double that of the Juruá region. 
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Table 5.1: Overall characteristics of the survey days, where id = the survey/simulated hunt ID. Surveys 5a and 5b were conducted in two different, but overlapping 

locations, starting from the same community, on the same day. Surveys 25 and 28 were conducted in different locations and on different days, but with residents of the 

same community. Reg = study region, where  jur = the Juruá region, uat = the Uatumã region, cm = an ID code per surveyed community or household, hhs = the 

number of households in the nearest community, urb = the urban proximity score, pp = the number of people who attended, gn = the number of guns that were taken, 

dg = the total number of dogs that were taken, cp = the number of those dogs that were bred hunting dogs, el = mean relative elevation, Start time = the time at which 

the group left the community or household, dur = the duration in minutes, %t = the percentage of  time spent in a given habitat, defor = deforested habitat, nonf = 

natural non-forest, tf = primary upland forest, var = primary floodplain and low-lying forest, wat = permanent water body, land = overland travel, river = travel by 

river, far = the distance in meters from the community/household to the point furthest away, length = the total distance covered, perc = percentage of the survey 

captured by the best performing GPS device. 

id reg cm hhs urb pp gn dg cp el 

Start 

time dur 

%t 

defor 

%t 

nonf 

%t 

tf 

%t 

var 

%t 

wat 

%t 

land 

%t 

river far length 

perc 

1 jur m 80 75.31 3 3 6 4 15 07:56 570 8.8 0.0 0.0 79.6 11.6 41.3 58.7 15626 46658 100 

2 jur m 80 75.31 2 2 6 4 17 06:57 505 3.8 0.0 0.0 21.4 74.8 61.9 38.1 15672 42150 100 

3 jur c 113 152.98 3 3 9 4 24 05:44 1012 28.9 0.0 38.3 2.6 30.3 75.0 25.0 18099 67776 99 

4 jur w 36 22.38 2 1 4 1 34 07:48 437 19.1 0.0 80.9 0.0 0.0 100.0 0.0 6130 16295 97 

5a jur o 17 16.87 3 2 3 2 34 07:25 492 0.8 0.0 83.3 12.0 3.9 89.1 10.9 5440 19168 100 

5b jur o 17 16.87 2 2 3 0 29 07:25 492 0.8 0.0 82.7 12.6 3.9 81.0 19.0 3720 15345 100 

6 jur f 27 16.19 4 1 5 1 34 07:30 554 21.9 0.0 78.1 0.0 0.0 100.0 0.0 4909 18021 100 

7 jur d 19 15.22 2 2 2 1 22 07:36 450 31.2 0.0 61.2 7.6 0.0 100.0 0.0 2234 12385 100 

8 jur h 6 3.14 2 2 10 1 22 07:28 393 17.6 0.0 75.3 3.6 3.6 88.8 11.2 4845 19382 100 

9 jur x 8 2.88 2 1 2 0 18 07:40 469 30.6 0.0 47.4 17.1 4.9 89.3 10.7 8482 32058 100 

10 jur y 14 3.00 2 1 2 0 33 07:42 311 9.4 0.0 90.6 0.0 0.0 100.0 0.0 3018 10453 100 

11 uat aa 11 4.32 2 1 2 0 43 07:58 559 0.0 0.0 62.9 20.8 16.3 61.2 38.8 11285 31702 100 

12 uat t 18 2.38 1 1 3 0 74 08:31 428 0.0 0.0 57.1 41.9 0.9 100.0 0.0 5099 13423 100 

13 uat z 96 4.71 1 1 1 0 26 07:47 491 16.3 0.0 0.0 57.6 26.1 80.2 19.8 4497 16461 100 

14 uat k 8 3.97 2 2 2 0 38 07:56 425 6.8 0.0 44.1 45.8 3.3 58.6 41.4 2384 10715 100 

15 uat s 12 5.50 1 1 0 0 28 07:52 478 0.0 0.0 0.0 93.7 6.3 86.2 13.8 5148 20755 100 

16 uat j 20 5.13 1 1 1 0 55 08:08 419 19.9 0.0 80.1 0.0 0.0 100.0 0.0 2098 11030 100 
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id reg cm hhs urb pp gn dg cp el 

Start 

time dur 

%t 

defor 

%t 

nonf 

%t 

tf 

%t 

var 

%t 

wat 

%t 

land 

%t 

river far length 

perc 

18 uat u 8 5.76 2 1 0 0 83 08:02 410 1.2 0.0 98.0 0.0 0.7 93.6 6.4 3378 10694 100 

20 uat l 9 14.04 2 2 0 0 48 07:27 449 5.8 0.0 92.9 0.0 1.3 100.0 0.0 2685 11973 100 

21 uat i 16 6.48 1 1 1 0 61 08:14 420 2.4 0.0 89.8 0.0 7.9 96.9 3.1 2512 12062 100 

22 uat g 4 6.56 1 1 1 0 27 06:40 456 17.5 0.0 0.0 72.1 10.3 88.8 11.2 1855 11877 100 

23 uat a 5 6.16 2 1 1 0 82 07:22 414 2.4 0.0 90.1 0.0 7.5 84.6 15.4 2202 13363 100 

24 uat v 12 6.12 2 2 3 0 25 07:51 296 3.8 31.7 0.0 51.5 13.0 83.7 16.3 3224 13608 99 

25 uat r 18 5.93 1 1 0 0 34 07:44 143 0.0 14.7 16.1 59.4 9.8 80.6 19.4 2143 7127 100 

26 uat e 7 4.84 1 1 0 0 30 07:55 347 0.0 0.0 0.0 70.2 29.8 79.0 21.0 4345 19344 100 

27 uat q 6 4.56 1 1 0 0 38 07:38 448 1.1 1.6 67.1 30.2 0.0 100.0 0.0 5416 14734 100 

28 uat r 18 6.02 1 1 0 0 43 07:22 449 0.7 0.0 88.8 3.8 6.7 72.9 27.1 3475 14010 100 

29 uat b 4 7.14 1 1 0 0 36 08:10 392 38.5 0.0 37.0 0.0 24.5 72.2 27.8 2436 7829 100 
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Participants chose to use existing paths where these were available, including trails created for 

logging, and linear transects for petroleum exploration and wildlife surveys (N = 7). Of the 

simulated hunts where participants disclosed their hunting offtake, 59.1% made at least one kill, 

with prey items including (from the most to least frequent) tortoise, collared peccary = greater 

long-nosed armadillo, agouti = tinamou = red brocket deer, and curassow.  

5.3.4 Hunting dogs and humans 

 

Considering the overland proportion of simulated hunts only, dogs did not often deviate greatly 

from their masters (Fig. 5.3a). Using data from only Garmin devices, the mean deviation of dog 

waypoints from human tracks was 7.9 ± 0.1 m. However, certain dogs occasionally made further 

forays from their owners (Fig. 5.3b). Bred hunting dogs ventured significantly farther from 

human tracks than other dogs (p < 0.001). Humans travelled on average 11,370 ± 900 m overland 

per simulated hunt, a distance shorter than their accompanying dogs (p < 0.05), which on average 

travelled 12,885 ± 1086 m.  
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Figure 5.3: Percentage of time individual dogs spent at different distances from human tracks 

during the overland portion of simulated hunts (A).  The colour of stacked horizontal bars 

represents the distance category (black: <11m, dark grey: 11-100m, and light grey: >100m). 

Survey ID codes are indicated on the left of each bar, including the ID of the dog and whether the 

dog was a bred hunting dog or not (p or v, respectively). Panel B shows the degree of overlap 

between humans and dogs during the overland proportion of simulated hunts. Human tracks are 

displayed as black lines and dog waypoints are blue overlapping circles. Only Garmin devices 

and hunts for which >95% of the terrestrial portion of the human survey was captured were used 

for this comparison. Panels are numbered according to the survey ID.
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5.4 Discussion 
 

5.4.1 Comparing devices  

 

Field testing proved that Mataki devices are small and light enough to be an unobtrusive means of 

recording the spatial activity of humans and their hunting dogs. Though not as reliable (in terms 

of data capture rate) or accurate (in terms of positional error) as larger commercial GPS units, 

they functioned well despite being housed inexpensively and attached to hunting dogs ranging 

through thick undergrowth and streams and under dense forest canopy. They outperformed Igotu 

devices, which although small, light, simple, inexpensive and robust, did not reliably record 

spatial data under forest canopy. Mataki devices, unlike commercial GPS devices, required 

specialist hardware, software and training in order to charge, program, use and download data 

from, but their high degree of customisability and programmability easily offset these issues. 

These devices would be best suited for researchers (a) whose study species are fairly small (~ 1.5 

kg), requiring small and light GPS devices;  (b) whose study species range over a relatively large 

area, such that the loss of some fine-scale spatial resolution is acceptable (c) who have specialised 

data capture needs, best met by custom programming; and (d) who are able to deploy multiple 

devices such that the loss of data through occasional device failure does not jeopardise the overall 

dataset. More robust housing and harness solutions would reduce the rate of device failure to 

some degree. During our study, hunting dogs were capable of carrying heavier, more accurate and 

reliable GPS units, which were important to enable finer scale comparison of human and dog 

movement patterns.  

Our study did not test the accelerometer and inter-device communication capabilities of Mataki 

units. Accelerometer data, paired with spatial data, enables researchers to investigate patterns of 

behaviour such as the stalking and chasing of prey (Williams et al., 2014). Mataki devices have 

the capability of transmitting data between one another and to a base-station (Fayet et al., 2015). 

This is crucial for study species that are likely to pass a fixed point, but are difficult or 

problematic to recapture. In our case, this was not necessary as hunting dogs were always 

eventually recaptured.  

5.4.2 Comparing hunters and dogs 

 

Evidence for the additional disturbance caused by hunting dogs over humans was mixed. During 

simulated hunts, dogs travelled significantly longer distances than humans, though only ~13% 

farther. Dogs spent the overwhelming majority of hunts very close to the areas used by humans, 

though bred hunting dogs ventured farther from hunters than other dogs. During one simulated 

hunt, a bred hunting dog was lost and beyond earshot, presumably chasing prey, and was not 

recovered until the following day. The Mataki device attached to its collar revealed that it had 

travelled over 2km away from human tracks, and had ultimately returned to wait by the riverside. 
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This was an exceptional event during our simulated hunts, but hunters indicated that it is not 

uncommon.   

Our characterisation of the disturbance caused by hunting with dogs is incomplete. Though we 

compared the spatial footprint of hunters and dogs on the same simulated hunt, we were unable to 

determine if hunts that include dogs are fundamentally different in character than those which do 

not. Though simulated hunts including dogs in this study were indeed longer than those without, 

this effect was confounded by regional and urban differences. Secondly, we did not investigate 

the spatio-temporal relationship between humans and dogs. Namely, we did not determine if dogs 

actively led simulated hunts, or merely followed humans. Additionally, though we investigated 

disturbance spatially, it was beyond the scope of this study to investigate the effect that hunting 

dogs may have on the terrestrial vertebrate fauna. In order to achieve this, one would need to 

compare the faunal assemblage in proximity to otherwise similar communities that hunt with and 

without dogs, or conduct a longitudinal study of the faunal assemblage in proximity to a 

community that introduces the practice of hunting with dogs. One would also need to compare the 

quantitative prey offtake and profiles of hunts with and without dogs. As hunting dogs target 

terrestrial species (Koster, 2009) and reportedly hinder pursuit of arboreal species (Descola, 

1996) they may reduce hunting pressure on large arboreal primates, which are extremely sensitive 

to overharvesting (Peres, 2000). Lastly, we did not quantify the behavioural effect on hunting 

dogs of either wearing GPS units or of engaging in simulated hunts. Although our GPS collars 

were well within the weight range tolerated by hunting dogs, they may still have resulted in 

reduced activity levels (Brooks et al., 2008). Device placement is also important (Vandenabeele 

et al., 2014) and collars may have caused more fatigue than a harness system. As lighter GPS 

units were less accurate and were deployed on smaller dogs, it was impossible for us to determine 

if GPS weight significantly depressed dog activity levels.  

5.4.3 Comparing simulated hunts 

 

There were significant regional and urban/rural differences between our simulated hunts. Even 

with our small sample size, simulated hunts that began in towns involved much longer travel 

distances. Given that urban areas appear to depress the overall biomass of the assemblage of 

terrestrial game species in our study regions (Chapter 4), this could be interpreted as evidence of 

both wild meat commercialisation by professional urban hunters and their need to travel farther to 

access game stocks.  

We treat these results with caution due to the biases inherent in studying a contentious issue like 

hunting with dogs. Three sources of bias are likely to influence the results of this study: (1) 

sample selection bias: those who agreed to participate in our study are unlikely to be a random 

subset of hunters that use dogs. Commercial hunters, for example, are at greater risk of 

prosecution by IBAMA, and are less likely to participate; and (2) the Hawthorne effect and social 
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desirability bias: participants were likely to have behaved differently during simulated hunts than 

they would have during normal hunts, because they knew they were being observed. In particular, 

they may have deliberately travelled shorter distances and perhaps curtailed the activity of their 

dogs, aiming to downplay the extent of their hunting activity, because they may have perceived it 

to be both risky and socially undesirable.  

These biases, though unmeasurable, influence our regional more than our urban/rural inferences. 

The smaller numbers of hunters and dogs that participated in simulated hunts in the Uatumã 

region may reflect the fact that those communities modified their hunting behaviour due to 

distrust (having had less engagement with researchers in general) rather than any real difference 

in hunting culture. By contrast, the longer distances travelled by urban hunters cannot be 

explained by the aforementioned biases, because one would expect that they are at greater risk of 

discovery by IBAMA, and more likely than rural hunters to deliberately engage in artificially 

short hunts. However, the fact that a substantial proportion of participants invited me to 

participate in simulated hunts and shared details of their offtake, provide a degree of confidence.  

5.4.4 Future research and conservation implications 

 

To minimise the influences of the aforementioned biases, and more reliably characterise the 

spatial behaviour of hunters and their dogs, one would need to spend a significant amount of time 

working closely with members of a small number of communities. However, the idiosyncrasies 

associated with particular communities would not permit one to broadly generalise from these 

results. In every study, there are tradeoffs between information depth and breadth. We aimed to 

replicate our study design across a wide range of communities in order to compare the spatial 

behaviour of many humans and their hunting dogs.  

To inform conservation policy surrounding the use of hunting dogs, research is needed not only 

into their ecological costs, but also their social benefits. Chapter 3 indicates that domestic dogs 

are a key tool deployed by semi-subsistence communities to protect their manioc plots, which 

form the backbone of their livelihood strategy. Dogs are also known to ward off dangerous 

predators such as puma and jaguar. The increased food security and safety afforded by dogs may 

enable local communities to coexist more effectively with their biodiverse surroundings 

(Sepúlveda, et al., 2014). Effective agricultural defence against crop raiders may increase land-

use efficiency, thereby reducing motivation to clear larger agricultural plots. Likewise, the 

repulsion of large predators may reduce the frequency of retaliatory killing (Gonzalez, et al., 

2012). This is mostly conjecture, however, as very little research of this kind has been conducted 

anywhere in the tropics. Therefore, the behaviour of dogs when in proximity to semi-subsistence 

communities and agricultural plots, is as important to study as their behaviour during hunts.   
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5.5 Conclusions  
 

Garmin GPS units were found to be the most appropriate for our study. Their ability to reliably 

and accurately capture fine-scale movement patterns during surveys was more important than 

their extra weight, though the effect of this encumberment on dog behaviour was not quantified. 

Mataki devices were reasonably reliable and accurate, but more fragile and required specialist 

hardware, software and training. Igotu devices, although small, light, simple and durable were 

inappropriate as they did not reliably or accurately capture data under closed forest canopy.  

Surveys that began in towns involved more bred hunting dogs and covered significantly longer 

distances than did rural surveys. Surveys in the Juruá region involved more people, guns, dogs 

and bred hunting dogs than in the Uatumã region.  These could be taken as evidence of both 

hunting-mediated depletion in proximity to cities and of region-specific hunting cultures. These 

conclusions should be treated with caution, however, due to the biases inherent in our study.  

Though dogs covered more ground than humans during surveys, the difference was not as 

pronounced as initially anticipated. Dogs spent a large proportion of surveys in close proximity to 

human tracks, but bred hunting dogs tended to venture further. 
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Appendix A: Device testing in the UK and Brazil 

A preliminary test was conducted in Hatfield forest in the UK over two days using two Mataki 

devices and a Garmin 60Csx device in order to (a) become familiar with the device functions; (b) 

determine if Mataki devices were likely to function under canopy; and (c) determine which GPS 

settings were most appropriate. Mataki batteries proved unreliable, with four out of the five 

batteries not charging. The battery that functioned, however, succeeded in recording copious data 

for nine hours. Mataki devices were initially programmed to sleep for one second between 30 sec 

intervals recording waypoints. This was in order to ensure that the devices had sufficient 

opportunity to acquire satellites and record waypoints under dense forest canopy. The Mataki 

devices functioned well in the relatively sparse forest, but the initially trialled GPS and 

accelerometer settings resulted in very high rates of data capture, and it took over three hours to 

download the data from a device. This is undesirable in cases where multiple devices are 

deployed per day during fieldwork. Therefore during active fieldwork, device settings were 

modified as described in the Methods. The on/off button on one of the two Mataki devices trialled 

was wired incorrectly. These issues prompted MIA to test every battery before using them in 

surveys and to use multiple GPS devices per individual. However, the test showed that Mataki 

devices had the potential to record an entire hunt without running out of battery or memory.  

An additional test was conducted at two separate locations during fieldwork. On each day, which 

involved walking several kilometres along small tracks through the forest to collect camera traps, 

two Mataki devices, two Garmin Etrex devices and a Garmin 60Csx device were all carried 

simultaneously by MIA. Data from these tests were only used to compare device accuracy. 
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Appendix B: Device deployment and housing  

As several devices were deployed each day, it was crucial to be able to quickly charge multiple 

batteries simultaneously and also download data and program devices. Mataki devices were 

supplied with two base-stations, which could each be used to recharge one battery and were also 

required to program devices and download data. Therefore, Adafruit micro LiPoly USB battery 

chargers were used in conjunction with adaptors created by technicians at the University of East 

Anglia. These were connected to two iSound portable power max 16,000 mAh rechargeable 

battery banks, each with 4 USB slots. This setup proved indispensable in the field, as electricity 

was not readily available.  

 

Figure 5.4: Photograph displaying the preparation of GPS devices for use in surveys, where 1 = 

A laptop computer running putty scripts to upload Mataki data, 2 = Garmin Etrex100 devices, 3 

= a collection of dog collars, pliers, plastic bags, cable ties and duct tape used to create device 

housings, 4 = Mataki batteries attached to custom-made adaptors and Adafruit LiPolly usb 

chargers, 5 = iSound portable power max 16,000 mAh rechargeable battery banks, 6 = Igotu 

GPS units with dedicated usb charging cables, 7 = Mataki base-station used to program devices, 

charge batteries and upload data, 8 = Mataki devices.  
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Our makeshift device housing proved inexpensive and moderately effective. Collars never 

became dislodged from dogs and devices never became dislodged from collars. In two instances 

the Mataki battery connecting wire became dislodged during surveys. Dogs regularly submerged 

the entire housing during surveys and water penetrated the housing in only three instances. In one 

case, this appears to have caused device failure.   

  

Figure 5.5: Photographs taken during fieldwork, showing the stature of typical Amazonian 

hunting dogs of varying ages and degrees of cross-breeding.  

   

Figure 5.6: Photographs of GPS units inside protective housing attached to dog collars fitted to 

dogs during simulated hunts.  

Appendix C: Device dimensions and operability  

Mataki devices, (weighing 33g, dimensions 6.4 x 3.4 x 1.0 cm, including battery) were a 

comparable size and weight to Igotu devices (20g, 4.5 x 2.9 x 1.4 cm), but smaller and lighter 

than Garmin Etrex (142g, 10.1 x 5.3 x 3.3cm) and Garmin 60Csx (213g, 15.5 x 6.1 x 3.3cm) 

devices.  

Garmin devices, which cost £75 and £300 for Etrex10 and 60Csx respectively, were 

unsurprisingly the most feature-rich, as they were intended to be used as navigation devices. 

Many Garmin features, including their map display, were superfluous to their use in this study as 

route-recording devices. Freely-provided Mataki devices, which incorporated an accelerometer, 

had intermediate feature-richness. Igotu devices, costing £40, were the least sophisticated, 

performing only the function of taking waypoints at pre-programmed intervals.  
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Garmin devices use conventional AA batteries. We were able to purchase such batteries even in 

remote Amazonian towns. Garmin devices also featured a graphical menu interface, which 

permitted operation and device programming when away from a computer and freely available 

software (Garmin Basemap) to enable the download and processing of data. Igotu devices feature 

a dedicated USB charging cable, single-button operation, easily interpretable LED status 

indicators and free software (@trip) for device programming and data processing. These 

characteristics meant that Garmin and Igotu devices could be powered and programmed when in 

the field, and the data they recorded could be downloaded without any specialist equipment or 

training. Mataki batteries required custom-made adaptors in order to be recharged via USB. Data 

uploading and device programming was achieved using straightforward code when attached to a 

computer via a base-station. Despite the provision by Mataki of user guides and training material, 

MIA found that device LEDs did not intuitively indicate device settings or problems when in use, 

making the diagnoses of mechanical errors challenging in the field. Mataki devices thus required 

specialist, custom-made hardware and training in order to be used.  
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Chapter 6: Concluding Remarks 
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6.1 The need for nuance 
 

The conclusions of this thesis are broadly congruent with the conservationist critique of large-

scale inappropriate infrastructural development and perverse government subsidies for 

colonisation and deforestation (Laurance et al., 2004), but diverge somewhat from the largely 

polarised existing literature regarding community extractivist use of tropical forest resources 

(Brandon et al., 1998; Schwartzman et al., 2000). Echoing the results of numerous existing 

studies, we found that at the regional scale, much of the anthropogenic disturbance evident in 

rural areas, is in fact driven or directly caused by non-rural, non-local factors and agents including 

urban centres (DeFries et al., 2010), colonisation policies (Peres and Schneider, 2012) and 

(especially transport) infrastructure (Peres, 2001). The depletion of game fauna was also found to 

be an urban-driven phenomenon (Bowen‐Jones and Pendry, 1999). Cognisant of the hypocrisy of 

inveighing against infrastructural development in tropical regions, whose inhabitants deserve the 

improved standards of living these may afford, we agree with authors who advocate for a well-

planned balance between infrastructure and environmental protection, which will bring the 

greatest possible net social benefits, with the lowest associated ecological costs (Margules and 

Pressey, 2000; Caro et al., 2014; Laurance et al., 2015).  

By contrast, we find that much of the debate surrounding the extractive use of tropical forests, 

and surrounding hunting in particular, presents a needless false dichotomy between what may 

(exaggeratedly) be termed anthropophobic and anthropophilic approaches to conservation 

(although several authors have attempted to bridge these divides, for example Peres and 

Zimmerman (2001)). Our results suggest that a more nuanced attitude towards extractive 

communities is needed. In our study regions, we found that forest-dependent communities clearly 

do impact forest fauna, but equally that they do not eradicate it. The question “Do forest-

dependent communities extirpate terrestrial game fauna?” should be replaced with “under what 

social, demographic, technological and ecological conditions, and to what degree, do forest-

dependent communities cause net species-specific and assemblage-wide depletion of terrestrial 

game fauna, relative to a baseline of the absence of those communities?”. This explicitly 

recognises that the presence of those communities may deter the still-greater ecological impacts 

of non-local agents. These approaches are becoming increasingly common, for example through 

the use of bio-demographic and bio-economic models (Damania et al., 2005; Levi, et al., 2011).   

In the remaining section of this thesis, I briefly summarise the main findings of the four data 

chapters (this section will be largely without references as I am summarising the findings of this 

study), draw out a recurrent theme, present potential conservation strategies and indicate fruitful 

areas of future research.  
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6.2 Summary of key findings 
 

In Chapter 2, we found that at the regional scale, urban centres, fluvial accessibility and terrestrial 

transport infrastructure drive different patterns of anthropogenic disturbance along cul-de-sac 

Amazonian rivers both directly and indirectly, by influencing rural population density. Non-

fluvial transport infrastructure, for example roads, transformed colonisation and land-use patterns 

in otherwise inaccessible rivers. Even our conservative characterisation of hunting catchment 

areas, non-structural disturbance affected an area over 18 times larger than structural disturbance.  

In Chapter 3, semi-subsistence agriculturalists in the Jurua region were found to bear a triple 

burden imposed by the ecosystem disservices of terrestrial vertebrate crop raiders including; (a) 

5.5% direct annual losses to crop raiders; (b) the labour and opportunity costs required to protect 

agricultural plots against crop raiders and avoid estimated losses that would be an order of 

magnitude higher; and (c) reduced opportunities to plant more palatable manioc varieties. As 

agricultural production is the primary livelihood and hunting is deemed less significant, the 

potential gains of hunting crop raiders do not fully compensate crop losses. Households in more 

isolated areas, that are already socially disadvantaged, are precisely those suffering higher losses 

to crop raiders. 

In Chapter 4, we found that evidence for the depletion of terrestrial vertebrates in proximity to 

semi-subsistence communities in the Juruá and Uatumã regions was mixed. Only a select few 

species, especially large-bodied, group-living species, were heavily depleted by communities. 

Although species-specific shifts in activity patterns in response to community settlements were 

not evident, diurnal species were less prevalent near to communities. Collared peccaries may be 

competitively released in the absence of white lipped peccaries. Urban centres exerted a 

landscape-scale impact, depressing the aggregate biomass of forest vertebrates. Areas close to 

perennial streams were especially vulnerable to hunting. Our evidence for hunting-mediated 

depletion is likely to (a) be conservative due to our sampling strategy, which runs against the 

landscape scale gradient of primary productivity, and (b) represents a “best case scenario”, due to 

the high local availability of alternative animal protein, which effectively protects game stocks by 

reducing hunting pressure in our study regions (Endo et al., 2016).  

In Chapter 5, open source Mataki devices were found to be of intermediate reliability and 

accuracy when used to characterise the spatial behaviour of hunting dogs and their masters during 

simulated hunts. Hunting dogs travelled only ~ 13% farther than their masters, which was less 

than anticipated. There is evidence that hunters based in urban centers travel significantly farther 

than rural hunters. Local attitudes towards hunting dogs were mixed; they were recognised to 

have deleterious impacts on wildlife, but were commonly used to defend against crop raiders. 
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6.3 Urban influence 
 

A recurring theme throughout this thesis, has been the pivotal role played by urban centres both in 

the livelihoods of rural Amazonians and in the anthropogenic disturbance of forest biodiversity, at 

the regional, landscape and household scales (Pinedo-Vásquez and Padoch, 2009).  

Regionally, urban centres were found to be a strong driver of whole-river rural population 

density. This is unsurprising given the economic, information, and social services centrality of 

urban centres in the lives of even remote ribeirinho households (Parry et al., 2010). These 

households are themselves an important driver of both structural and non-structural forest 

disturbance. Our analysis of anthropogenic disturbance in proximity to cul-de-sac rivers likely 

underestimates the impacts of urbanites, who are more financially able to make long-distance 

forays into river headwaters to extract NTFPs, especially forest game vertebrates. The impact of 

commercial hunters has been shown to be more devastating than that of subsistence hunters 

(Vega et al., 2013). Assuming relatively secure tenure and moderate discount rates, long-term 

subsistence local resource users are theoretically incentivised to conserve natural capital such as 

game or timber stocks, in order to continually benefit from the harvestable “interest” (Godoy et 

al., 2001). Urban commercial hunters, loggers and gold miners, however, who are not dependent 

upon the persistence of viable resource stocks in a particular location and who have alternative 

livelihoods, benefit from liquidating natural capital as efficiently as possible.    

At the landscape scale, urban centres, rather than rural communities, were found to depress the 

aggregate biomass of both crop raiding and hunted species. This reinforces the notion that 

household location choice is a livelihood trade-off, in this case, between greater access to natural 

resources and greater access to market goods and services (Alonso, 1964). Urban or suburban 

households incur lower losses of their staple crops to vertebrate crop raiders, and therefore benefit 

from higher yields, lower labour input in guarding activities, and the opportunity to plant less 

chemically defended, more palatable varieties of manioc. However, as suggested by (a) the lower 

biomass of hunted vertebrates near towns; (b) the longer distances travelled by urbanites during 

simulated hunts; and (c) evidence that hunter catch-per-unit effort is negatively related to urban 

proximity (Endo et al., 2016), urbanites can less readily access terrestrial game meat. The 

continuing rural exodus in Amazonia, as well as our finding that rural population density is 

strongly influenced by access to urban centres, are testament to the fact that in the livelihood 

calculations made by the majority of ribeirinhos, the costs of losing access to plentiful natural 

resources are outweighed by the benefits of closer integration into markets and better access to 

goods and services. This household level decision-making process is in fact universal to the wider 

urban-to-rural-to-wilderness gradient worldwide, but particularly in tropical countries, thereby 

shaping many of the conservation and development challenges of contemporary times (Browder., 

2002). 
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Brazil is currently facing a deep political crisis and related economic uncertainty. Even before the 

corruption scandals and economic slowdown that ejected the former President from public office, 

however, Brazil was already facing a crisis of environmental identity (Loyola, 2014). Many 

Brazilian progressive environmental policies are being undermined (Ferreira et al., 2014), and 

there have been continued legal calls to compromise the status of existing protected areas (de 

Marques. and Peres, 2015). Funding for environmental agencies has been substantially reduced 

and the much lauded federal Forest Code that requires a legal limit to deforestation on private 

properties has been watered down (Soares-Filho et al., 2014). Destructive infrastructure projects 

including the controversial Belo Monte dam and long distance road network expansion are 

ongoing (Laurance et al., 2001). These economic and political factors seem likely to result in both 

a further weakening of environmental legislation and enforcement (Campos-Silva et al., 2015, as 

well as a reduction in the extent of government welfare support.  

These trends will likely strengthen the aforementioned influence of urban centres. Government 

welfare support, both through direct payments such as the Bolsa Familia, which our interview 

respondents identified as an important livelihood component, and through the provision of 

services such as digital classrooms in rural communities, have until now slowed the rate of rural 

abandonment and increased the rate of sedentarism. If this support is significantly diminished, 

then the rapidly growing rural population is likely to continue to urbanise. Although the direct 

pressures exerted by rural households is likely to decrease and land abandonment may result in 

forest regrowth, weaker environmental legislation and lower funding will further reduce the 

defensibility of protected areas, which are already chronically underfunded and under-staffed.  
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6.4 Conservation Strategies 
 

In light of the aforementioned findings, what conservation measures could be taken to ameliorate 

biodiversity losses? Our study appears to have identified some “low-hanging fruits” which are 

promising conservation strategies.  

At the regional level, our analysis of cul-de-sac rivers suggests that conservationists should 

continue to oppose expensive and ill-conceived mega-infrastructure projects and perverse 

subsidies, particularly in low-governance frontiers lacking land-use planning. Given the need for 

the Brazilian government to demonstrate judicious spending of tax revenue, uneconomic 

subsidies including the agricultural resettlement program which has driven unsustainable and 

unprofitable agricultural expansion at the expense of tropical forests (Peres and Schneider, 2012), 

should be opposed. Realistic cost-benefit analyses for infrastructure development including road-

building, are as much a civic duty as an environmental imperative (Caro et al., 2014; Laurance et 

al., 2014; Laurance et al., 2015). The suboptimal placement of the Balbina reservoir, for example 

has wrought large-scale ecological damage despite modest energy generation (Fearnside, 1989; 

Benchimol and Peres, 2015), yet an expansionist hydroelectric development strategy for all steep 

gradient river basins of Brazilian Amazonia remains largely unopposed (Lees et al., 2016).  

In the Neotropics, terrestrial vertebrate crop raiding species are generally disturbance-tolerant and 

of relatively low conservation concern (Parry et al., 2009), whereas large primates including 

woolly and spider monkeys are both extremely vulnerable to depletion via hunting offtake (Peres, 

1990) and are not identified as problematic species. Furthermore, many ribeirinho communities 

are disinclined to hunt primates for cultural reasons (Mittermeier, 1987). This suggests that 

placing stronger legal restrictions on the hunting of the most harvest sensitive species whilst 

simultaneously loosening restrictions on the hunting of crop raiding species, would minimally 

impact local livelihoods whilst benefitting biodiversity. This strategy would likely be less 

successful in indigenous reserves where the hunting of primates is culturally important (Da Silva 

et al., 2005). Similarly, this strategy is not easily applicable in the Afrotropics, where endangered 

elephants and chimpanzees are also both problematic crop raiders and frequently cause injury and 

endanger human life (Thirgood et al., 2005).  

A related strategy would be to simultaneously place stronger restrictions on the use of specially 

bred hunting dogs, whilst tolerating or encouraging the use of other domestic dogs. The benefits 

that domestic dogs bring to local communities in warding away dangerous large felids and 

chasing away crop raiders, should be recognised (Verdade et al., 2004), but equally these benefits 

can accrue without the ecological damage potentially wrought by bred hunting dogs.  

Given the importance of fluvial accessibility to hunters, one conservation strategy may be to 

empower communities sited at the mouths of perennial streams (igarapés) to restrict the access of 

non-resident hunters. The success of this strategy would be highly region-specific however. 
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Hunting in the Juruá region, for example, often occurs when water levels are high and returns 

from fishing are poor (Endo et al., 2016). This is precisely the period when igarapés can easily be 

bypassed by travelling through the flooded várzea.   

Conservationists must question whether active terrestrial game management in rural Amazonia is 

necessary, desirable, or even possible. The evidence from this thesis is not sufficient to conclude 

that rural communities are emptying the surrounding forests of terrestrial game vertebrates, 

though they are impacting large, vulnerable and ecologically important species. Adaptive 

management of game stocks would require both robust faunal monitoring and representative 

unhunted baseline sites to serve as a basis for comparison (Walters, 1986). These measures would 

be costly and administratively challenging, but beneficial in themselves in that they would 

potentially create wildlife refugia and actively engage local communities in the process of 

conservation. Radical new conservation programs may be less effective than reinvigorating 

existing interventions including ProBUC faunal monitoring, which have proven successful, but 

are underfunded (Ferraz et al., 2008).  

As noted, terrestrial game species are harder to monitor and restrict access to than pirarucu in 

oxbow lakes or turtles on beaches, and their lower productivity entails that communities are 

unlikely to observe a direct and rapid benefit from protection. These difficulties and the fact that 

the availability of aquatic protein has apparently reduced the hunting pressure in our study 

regions, and may be responsible for relatively low wildmeat extraction rates in the Amazon basin 

(Fa et al., 2002), suggest that an indirect and holistic strategy holds more promise. Hunting does 

not occur in isolation, but is part of a complex web of livelihood activities (Coomes et al., 2004). 

The most effective means of protecting terrestrial game stocks, may in fact be to continue to focus 

on the sustainability of local fisheries. The limited resources available to conservationists may be 

best spent combatting illegal logging, gold mining and perverse commercial fishing practices 

such as discarding of low-value species (Ruffino, 2001). These practices create negative 

externalities felt by local communities (Biller, 1994), as they depress fish stocks, thereby driving 

unsustainable hunting.  

Lastly, and on a related note, conservationists may need to focus more attention on the 

unsustainable practices of Amazonian urbanites who are shown in this thesis and in other studies, 

to be having a large impact on biodiversity (DeFries, 2010). Environmental education and 

enforcement are likely to be better per-capita value for money in urban areas due to their high 

population density. Amazonian rural population densities in many areas are currently generally 

well below the 1 person/km2 level generally deemed to enable relatively sustainable subsistence 

hunting (Robinson and Bennett, 2013), therefore our current focus on rural communities may be 

misplaced. 
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6.5 Future Research 
 

Throughout this thesis, numerous intriguing avenues were identified that it was not possible to 

fully pursue. Analyses of region-wide riverine disturbance could be strengthened by comparing 

patterns of anthropogenic disturbance across a wider spectrum of rivers, ranging from virtually 

uninhabited, to cul-de-sac, to road-intersected, and finally to a bead-chain pattern. Levels of 

anthropogenic disturbance are likely to vary far more strongly between these categories than 

within them and this would provide a clearer picture of the likely current trajectory of virtually 

undisturbed rivers. This would require a clear analytic framework in order to apportion data 

between rivers and a hydrological river-basin approach may be promising in this respect. 

Similarly, if historical demographic data were available, one could analyse the human-mediated 

evolution of disturbance along a set of rivers. Given the structured nature of the causal 

interactions in this system, a path analysis using a larger sample size may be preferable to GLMs. 

Lastly, studies of anthropogenic disturbance tend to either focus on large-scale demographic 

processes without distinguishing cultural differences (Laurance et al., 2002) or focus closely on 

the decision-making of a spatially restricted population sample (Pichón, 1997). If the spatial 

distribution of different cultural groups were known, then their different impacts could be 

compared (see dos Santos Silva et al. (2008) for a case study using remote-sensing image-mining 

to identify agents of deforestation).  

During interviews with semi-subsistence agriculturalists concerning terrestrial vertebrate crop 

raiding many interactions between human livelihoods and both terrestrial and aquatic species, 

were touched upon, but could not be pursued. Crop protection and human-wildlife conflict 

mitigation strategies have been extensively studied in the Afrotropics (Nelson et al., 2003), where 

conflict with dangerous, but endangered megafauna is common. The fact that Amazonian crop 

raiders are smaller-bodied than their Palaeotropical counterparts, and generally neither very 

dangerous nor highly endangered, may explain why they have been less studied. Human-wildlife 

conflict mitigation strategies in the Neotropics are however important to study, partly because 

rural Amazonians are frequently attacked and killed by large felids, crocodilians and serpents 

(Neto et al., 2011), their fisheries are impacted by aquatic predators including river dolphins and 

giant otters (Rosas‐Ribeiro et al., 2012), and their livestock is predated by felids, mustelids, 

eagles, and snakes (Silveira et al., 2008). It is also important because these conflicts often result 

in retaliatory killings of threatened species (Marchini, 2012). For these reasons, more detailed 

research should be conducted into the nature and effectiveness of strategies used by Amazonians 

to protect themselves and their livelihoods. In particular, in-depth assessments of the use of both 

hunting and domestic dogs should be made in order to fully elucidate both their importance and 

the damage they cause to tropical forest biodiversity. 
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