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Abbreviations 

AChE: Acetylcholinesterase,  

AD: Alzheimer`s disease,  

APP: Amyloid Precursor Protein,  

Apo E: Apolipoprotein E,  

Aβ: Amyloid beta, 

BChE: Buterylcholinesterase  

CSF: Cerebro Spinal Fluid,  

ERC: Entorhinal Cortex,  

EOAD: Early onset alzheimer disease, 

LOAD: Late onset alzheimer disease, 

MTL: Medial Temporal Lobe,  

NFT: Neuro Fibrillary Tangles,  

PSEN: Presenilin,  

SNP: Single nucleotide polymorphism, 
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Abstract 

In this review, we discuss the genetic etiologies of Alzheimer’s disease (AD). Further, we 

review genetic links to protein signaling pathways as novel pharmacological targets to treat AD. 

Moreover, we also discuss the clumps of AD mediated genes according to their single nucleotide 

polymorphism mutations. Rigorous data mining approaches justified the significant role of genes in 

AD prevalence. Pedigree analysis and twin studies suggest that genetic components are part of the 

etiology, rather than only being risk factors for AD. The first autosomal dominant mutation in amyloid 

precursor protein (APP) gene was described in 1991. Later, AD was also associated with mutated 

early-onset (Presenilin1/2, PSEN1/2 and APP) and late-onset (Apolipoprotein E, ApoE) genes. 

Genome-wide association and linkage analysis studies with identified multiple genomic areas have 

implications for the treatment of AD. We conclude this review with future directions and clinical 

implications of genetic research in AD. 
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1- Introduction 

Alzheimer’s disease  

Alzheimer’s disease (AD) is the most common form of dementia. Age is the strongest risk 

factor for AD. The projected growth of elderly population (65 years and older) worldwide means that 

AD cases will increase by 15-25% by 2050 (Alzheimer's_Association, 2014). If no preventive or 

curative measures are available, this growing number of elderly will pose a huge burden on our 

societies with AD patients to triple by the mid of the 21st century (Brookmeyer, Johnson, Ziegler-

Graham, & Arrighi, 2007). Indeed, the cost of AD is currently estimated to be $100 billion per year in 

the United States; $26 and $7 billion of which account for lost productivity of caregivers and for long-

term health care, respectively. Therefore, there is an urgent need to develop better diagnostic, 

management and treatment options for patients to allow delaying or preventing disability; hence, 

reduce the financial and emotional costs associated with AD (Bastin & Salmon, 2014). 

Current early identification and diagnosis of AD is strongly focused on clinical features such 

as memory loss, which can be accompanied by a complex array of other cognitive and behavioral 

symptoms. These clinical features have been related to the onset and spread of underlying amyloid and 

tau pathology in AD in the brain. Although, the substantial advances made over the years have 

identified that amyloid and tau pathology are the potential cause of AD, the sequence of events that 

lead to neuronal loss or dysfunction in dementia are still unclear. An understanding of these underlying 

mechanisms will form the basis for devising better strategies for diagnosis, prevention, and treatment 

(Lippa et al., 2000). Indeed, in particular, genetic risk factors have been little taken into account so far 

at the clinical level, which have a great potential to reduce risk or even delay the onset of AD. In this 

article, we review the literature on the underlying genetic underpinnings of AD. We hope that this will 

inform new clinical approaches to take this information into account. 

AD is characterized by the formation of senile plaques and neurofibrillary tangles. The senile 

plaque core consists primarily of the 4 kDa amyloid β (Aβ) peptide, which is derived from the amyloid 

precursor protein (APP) through proteolytic processing by recently identified proteases β and gamma 

(γ)-secretases. The Aβ peptides of 40 and 42 residues are normally present in the brain, CSF and 

plasma of normal individuals and are constitutively secreted from cultured cells, suggesting that these 

peptides do not intrinsically cause AD. However, the levels of Aβ42, the major species of Aβ deposited 

in AD brain, are increased by all identified mutations linked to familial AD. Recent studies have shown 

that in conventional sporadic AD, as in familial AD, there are genetic determinants that result in an 

increase in levels of Aβ42 in the plasma. Therefore, taking family history and other genetic factors 

into account, high plasma Aβ levels may serve as a useful diagnostic marker for predisposition to AD. 
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Evidence suggests that AD is caused by the deposition of Aβ42, which forms toxic aggregates of senile 

plaques. Thus, the regulation of Aβ42 to lower physiological levels may be an important therapeutic 

goal for the prevention of amyloidosis in AD. The mechanism by which amyloid deposition eventually 

leads to neurodegeneration and dementia remains unknown. In fact, its role as the predominant cause 

of AD has been questioned, as Aβ plaques have been seen in healthy aged individuals with no signs of 

dementia. Furthermore, the severity of dementia is more closely correlated with numbers of 

neurofibrillary tangles than with senile plaques. Nevertheless, both observations can be readily 

explained by assuming that amyloid deposition is an early step in a sequential cascade, which 

eventually leads to neuronal loss. The genesis of the neurofibrillary tangles may be closely linked to 

the amyloid induced neuron loss, either as a direct cause or as a consequence. Understanding the 

pathways for the induction of neurofibrillary tangles by Aβ may provide useful therapeutic targets and 

diagnostic markers to cure AD (Hansell et al., 2015). 

 

An overview of genetic etiology of AD 

AD is believed to result from a series of steps in pathogenic pathways leading to amyloid 

deposition and neurodegeneration in key areas of the brain involved in memory and cognition. 

Recently, AD is justified as a genetically complex and heterogeneous disorder. Mutations and 

polymorphisms in multiple genes (APP, PSEN1, PSEN2 and ApoE), which are located on at least four 

different chromosomes (1, 14, 19, and 21), are directly involved in AD (Ridge, Mukherjee, Crane, & 

Kauwe, 2013). Besides APP, products of other gene (mainly proteins) are also associated with AD. 

The APP, PSEN1 and PSEN2 follow the dominant inheritance pattern and lead to early-onset AD 

(EOAD) with 100% virtually penetrance, while inheritance of ApoE (e4) allele has strong increasing 

influence on the development of AD at an earlier age. . The Early-onset familial Alzheimer's disease 

(EO-FAD) is also a condition characterized by early onset dementia (age at onset < 65 years) and a 

positive family history for dementia (Bird, 2008; Wu et al., 2012). There are some recent reports of a 

susceptibility locus for AD on chromosome 10 and a genetic linkage of AD to its sister chromatid. A 

linkage of plasma Aβ42 to a quantitative locus on chromosome 10 in the late-onset Alzheimer's disease 

(LOAD) pedigree has also been observed (Shen et al., 2014). Alternative theories about AD, such as 

considering the AD process as similar to cancer due to a loss of cell cycle control or viewing AD as a 

result of a dysfunctional signaling pathway mediated by APP, has also been proposed (Bali, Gheinani, 

Zurbriggen, & Rajendran, 2012). Further, other approaches, such as nutritional and environmental 

factors in AD are being studied (van de Rest, Berendsen, Haveman-Nies, & de Groot, 2015). The 

depiction of genes and their involvement in AD is illustrated in Fig. 1. 
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Figure 1: The involvement of some salient genes in the prevalence of AD. Four different 

chromosomal location depictions are represented by maroon, purple, yellow and green colors for genes 

APP, PSEN1, PSEN2 and ApoE, respectively. The gene mediated proteins are also highlighted in same 

colors which govern β peptides in irregular fashion resulting in AD. Three genes APP, PSEN1 and 

PSEN2 are related to EOAD, while ApoE is related to LOAD. 

 

AD risk genes and mechanisms of disease pathogenesis 

There are some other genes that may cause AD by genetic alterations. Many genetic studies 

including mutational databases analysis showed that monogenic mutation of a single gene may cause 

AD by a single nucleotide polymorphism (SNP). Multiple emerging genetic studies have listed various 

mutations and polymorphisms may contribute to the development of AD. These genes follow the 

Mendelian pattern of inheritance and serve as risk factors in both EOAD and LOAD (Karch & Goate, 

2015). Here, we enlist 31 genes with encoded proteins, which are associated with AD or can modestly 

increase the AD risk (see Table 1 for details).  

Human gene mutations database (http://www.hgmd.cf.ac.uk/ac/index.php) also justified that 

APP possess 35 mutations that are associated with AD. Similarly, PSEN1, PSEN2 and ApoE contain 

http://www.hgmd.cf.ac.uk/ac/index.php
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165, 13 and 13 mutations, respectively. ADAM10, CR1 and BIN1 are also reported as AD-associated 

genes. 

 

ADAM10  

 Wolfsberg, Primakoff, Myles, and White (1995) identified several proteins as members of the 

ADAM family, including ADAM10 and purification of ADAM10 as a TNF-processing enzyme from 

membrane extracts of a human monocytic cell line (Rosendahl et al., 1997). ADAM10 is located on 

chromosome 15 having total size of 161,172 bases (Prinzen, Muller, Endres, Fahrenholz, & Postina; 

Yamazaki, Mizui, & Tanaka; Yavari, Adida, Bray-Ward, Brines, & Xu). Functionally, ADAM10 

splits ephrin (Eph family receptor), within the ephrin/eph complex and moulded between two cell 

surfaces. After separating ephrin from opposing cells, the ephrin/eph complex is endocytosed. This 

shedding event in trans had not been previously exposed, but may be intricate in other shedding events 

(Janes et al., 2005; Haass et al., 2012). In neuronal cells, the ADAM10 enzyme is functionally involved 

in proteolytic activity of the AMPs with α-secretase (Haass et al., 2012). The missense mutational 

effects in ADAM10 pro-domain are directly linked with LOAD. In Tg2576 AD mice two rare 

mutations (Q170H and R181G) impair the pro-domain chaperon functions, decreasing the α-secretase 

activity, and reducing the adult hippocampal neurogenesis. By knowing such functional effects, 

presently it has been suggested that ADAM10 could be a novel target for treating AD (Suh et al., 

2013). It has also been shown that ADAM10 gene product in synaptic junctions may interact with AP2 

and cause AD (Marcello et al., 2013).  

CR1 

The CR1 gene present on chromosome 1 which encodes the Complement Receptor Type 1 

(CR1) protein (Weis et al.). Genetic studies have shown that various mutations of CR1 are associated 

with the development of AD (Schjeide et al., 2011). Furthermore, AlzGene meta-analysis also show 

that CLU, PICALM and CR1 SNPs are associated with the development of AD (Corneveaux et al., 

2010). A detailed replication study also provides additional evidence that CR1 is related to the risk of 

developing LOAD (Carrasquillo et al., 2010). The multiple alleles of CR1 have been observed in 

association with LOAD (J.-C. Lambert et al., 2009). GWAS study identified the variants of CR1 have 

significant association with AD (Fonseca et al., 2016).  

BIN1 

Bridging integrator 1 (BIN1) also known as amphiphysin 2, is a novel human gene product 

with features of a tumor suppressor protein (Negorev et al., 1996). It is a protein encoded by the BIN1 

gene present on chromosome number 2 (Negorev et al., 1996). BIN1 is a tumor suppressor protein 

https://en.wikipedia.org/wiki/Proteolysis
https://en.wikipedia.org/wiki/Alpha_secretase
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(Kinney et al., 2008). Various BIN1 isoforms which are expressed in the CNS may be involved in 

synaptic vesicle endocytosis. In the CNS, the BIN1 gene expression can interact with some other 

regulatory signaling proteins such as synaptojanin, endophilin, and clathrin. Mouse model study 

showed that the BIN1 gene is critically involved in the cardiac muscle development (Alexander et al., 

2003). Moreover, mutations in the BIN1 gene also cause centronuclear myopathy (i.e, the condition 

which is characterized by muscle weakness) by interfering with remodeling of T tubules and/or 

endocytic membranes, and that the functional interaction between BIN1 and DNM2 is necessary for 

normal muscle function and positioning of nuclei (Nicot et al., 2007). The genome-wide association 

study (GWAS) showed that BIN1 is significantly associated with AD (Carrasquillo et al., 2011; Hu et 

al., 2011). The BIN1 protein and its seven isoforms are expressed in the brain and interact with clathrin 

and AP2/α-adaptin (CLAP) proteins and lead to endocytosis. Epigenetic studies suggested that the 

BIN1 gene acts in AD pathogenesis and might be considered as a novel target for AD therapy (Tan, 

Yu, & Tan, 2013). The exact mechanisms of BIN1 polymorphism and how it leads to AD are still 

unknown. However, it has been observed that genetic variation in BIN1 confers AD risk by changing 

tau pathology (Chapuis et al., 2013).  

CD2AP 

Mutations in other known genes such as CD2AP, EPHA1, MS4A6A/MS4A4E, ABCA7 and 

CD33 were also found to lead to AD symptoms (Hollingworth et al., 2011). CD2-associated protein 

(CD2AP) is a human protein encoded by the CD2AP gene located on chromosome 6 (Lowik et al.). 

Generally, CD2AP gene is involved in the molecular scaffolding which regulates the cytoskeleton of 

actin protein (Cochran, Rush, Buckingham, & Roberson). Furthermore, CD2AP protein also interacts 

with filamentous actin and various other membrane embedded proteins by different actin binding sites. 

In CD2AP, the rs9296559 and rs9349407 SNPs are directly associated with LOAD risk (Naj et al., 

2011; Hollingworth et al., 2011). The rs9349407 SNP of CD2AP is correlated with neuritic plaques 

formations in brains of AD patients (Shulman et al., 2013). A recent meta-analysis of 74,046 

individuals showed that the rs10948363 SNP is a risk factor for AD (Lambert et al., 2013). However, 

the functional impact of this SNP remains unknown since the CD2AP gene expression is not changed 

in AD brains (Karch et al., 2012).  

The CD2AP Knockdown ortholog drosophila model of AD displays tau neurotoxicity (Dustin 

et al., 1998). The CD2AP mediates functional effects and plays a significant role in the blood-brain 

barrier (BBB) integrity and cerebrovascular circulation, which could contribute to its effects on AD 

risk (Nicholas et al., 2015). Polymorphisms in the endocytosis and synaptic function associated genes 

(BIN1, PICALM, CD2AP, EPHA1, and SORL1) were identified as LOAD risk factors in several 
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GWAS (Harold et al., 2009; Naj et al., 2001; Hollingworth et al., 2011; Lambert et al., 2013). CD2AP 

is known as a scaffold adaptor protein (Dustin et al., 1998). It interacts with cortactin, which plays an 

important role in the regulation of receptor-mediated endocytosis (Lynch et al., 2003). The allelic 

polymorphism data show that polymorphism of the CD2AP gene is a risk factor for AD (Cochran et 

al., 2015).  

EPHA1 

Maru, Hirai, Yoshida, and Takaku (1988) reported the general characterization of the novel 

receptor tyrosine kinase gene, called EPH. EPH receptor A1 (EPHA1) is a protein encoded by the 

EPHA1 gene. EPHA1 gene is present on chromosome 7q34.  The EPHA1 SNP rs11767557 is related 

to reduce LOAD risk (Naj et al., 2011; Hollingworth et al., 2011). A recent GWAS data showed that 

the rs11771145 polymorphism was also associated with reduced LOAD risk (Lambert et al., 2013). 

However, there is no indication that mRNA expression of EPHA1 is changed in AD brains (Karch et 

al., 2012). EPHA1 also plays a significant roles in cell and axonal guidance and synaptic plasticity 

(Martinez et al., 2005; Lai et al., 2009; (Lai & Ip, 2009). EPHA1 is expressed by CD4-positive T 

lymphocytes and monocytes (Sakamoto et al., 2011). Moreover, its assessment of genetic variation in 

this gene revealed that it plays a role in the pathogenesis of AD (Carrasquillo et al., 2011).  

MS4A 

MS4A is a family of genes such as MS4A4A, MS4A4E, and MS4A6E which are poorly 

characterized. MS4A is structurally similar to CD20 (Howie et al., 2009). FISH and radiation hybrid 

analysis mapped the MS4A5 gene to chromosome 11q12-q13 in a cluster with MS4A1, MS4A2, and 

MS4A3 (Hulett et al., 2001). The MS4A genes are expressed in monocytes and myeloid cells. In 

GWAS, two SNPs including rs983392 (near MS4A6A) and rs670139 (near MS4A4E) were recognized 

as LOAD risk alleles (Naj et al., 2011; Hollingworth et al., 2011; Lambert et al., 2013). The rs670139 

SNP is associated with increased LOAD risk, while rs983392 is correlated with reduced LOAD risk. 

The SNP variants in MS4A6A were found to be related to AD symptoms. The heterozygous AD patient 

study further supported this association. On inhibition of its expression, it shows neuroprotective 

effects (Proitsi et al., 2014).  

PICALM 

Phosphatidylinositol binding clathrin assembly (PICALM) protein is significantly involved in 

clathrin assembly, cellular trafficking and regulation of endocytosis. It is tightly associated with iron 

homeostasis and cell proliferation (Stern et al., 2014). PICALM gene is present on chromosome 11q14 

(Stern et al.) and mostly expressed in neurons (Xiao et al., 2012). Recent studies have demonstrated 

that rs3851179 and rs541458 of PICALM are directly correlated with reduced LOAD risk (Harold et 
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al., 2009; Lambert et al., 2013; Lambert et al., 2009). However, the functional effects of these SNPs 

still remain unclear. PICALM is also functionally involved in synaptic vesicle fusion to the presynaptic 

membrane through the trafficking of VAMP2 protein (Harel et al., 2008). Mice study showed that, 

deficiency of PICALM results in abnormal iron metabolism and have no overt neurologic phenotypes 

(Duce et al., 2010). The in-vitro analysis showed that the expression of PICALM changes the APP 

trafficking, whereas in-vivo results depicts that overexpression of PICALM enhances the plaque 

deposition in AD transgenic mice (Xiao et al., 2012).  

CLU 

Clusterin (CLU) is an apolipoprotein encoded by the CLU gene located on chromosome 8p21.1 

(Dietzsch, Murphy, Kirszbaum, Walker, & Garson). CLU gene is organized into 9 exons, ranging in 

size from 47 bp (exon 1) to 412 bp (exon 5), and spanning a region of 16,580 bp (Wong et al., 1994). 

Generally, clusterin is involved in complement regulation, apoptosis, lipid transport, membrane 

protection, and cell-cell interactions (Jones & Jomary, 2002). Various SNPs have been identified in 

CLU that confer protection against LOAD, including rs11136000, rs9331888, rs2279590, rs7982, and 

rs7012010 (Harold et al., 2009; Naj et al., 2011; Hollingworth et al., 2011). Studies show that the 

SNPs rs9331888 and rs11136000 are correlated with plasma clusterin levels, whereas rs9331888 is 

also associated with expression of an alternative splice variant (Castellano et al., 2011; Szymanski et 

al., 2011; Xing et al., 2012). The mRNA of clusterin is highly expressed in brains of AD patients 

(Karch et al., 2012; Allen et al., 2012) and can be identified in amyloid plaques (May et al., 1990; 

Calero et al., 2000). Clusterin likely influences Aβ clearance, amyloid deposition, and neuritic toxicity. 

APOE-deficient and clusterin-deficient APP transgenic mice exhibit earlier and more extensive Aβ 

deposition compared with control mice (DeMattos et al., 2004). Clusterin is also associated with the 

complement system. Clusterin modulates the membrane attack complex, where it inhibits the 

inflammatory response associated with complement activation (Jones & Jomary, 2002). Because 

neuroinflammation is a hallmark of AD, SNPs that alter clusterin expression or its functions as an 

amyloid response agent could affect AD pathogenesis and downstream effects. The allelic mutational 

data show that both genes (PICALM and CLU) are associated with AD symptoms (Harold et al., 2009).  

SORL1 

Sortilin-related receptor L (SORL1) protein encoded by the SORL1 gene which is present on 

11q23.2 (Jacobsen et al.). SORL1 is a mosaic protein with a domain structure that suggests it is a 

member of both the vacuolar protein sorting-10 (Vps10) domain-containing receptor family and the 

low density lipoprotein receptor family (Jacobsen et al., 2001). SORL1 is involved in vesicle 

trafficking from the cell surface to the Golgi-endoplasmic reticulum. SORL1 is known as an AD risk 
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gene in candidate-based approaches (Rogaeva et al., 2007; Lee et al., 2008). A recent GWAS of 74,046 

individuals revealed that the rs11218343 polymorphism near SORL1 is associated with reduced AD 

risk (Lambert et al., 2013). It has been also shown  that brain DNA methylation in HLA-DRB5 and 

SORL1 genes is associated with AD pathology (Yu et al., 2015). 

ABCA7 

ATP-binding cassette transporter A7 (ABCA7) is encoded by the ABCA7 gene located on 

chromosome 19p13.3 (Kaminski, Piehler, & Schmitz). ABCA7 protein is a member of ABC 

transporter superfamily and important for substrates transportation across cell membranes (Kim et al., 

2008). The alternative splicing event in ABCA7 generates two transcripts which are expressed in the 

brain (Ikeda et al., 2003). ABCA7 gene confers the risk factor for the development of AD upon allelic 

variation. Genetic variations in ABCA7 gene (c.4416+2T>G and c.5570+5G>C) result in AD 

susceptibility (Steinberg et al., 2015). There are various SNPs, such as rs3764650 that have been 

identified as LOAD risk alleles near ABCA7 gene by GWAS analysis (Naj et al., 2011; Hollingworth 

et al., 2011; Lambert et al., 2013). The rs4147929 SNP was highly susceptible in the meta-analysis of 

74,046 individuals (Lambert et al., 2013). The impact of these polymorphisms on ABCA7 gene 

function and in AD is still poorly understood (Karch et al., 2012, Vasquez et al., 2013). The mRNA 

expression of ABCA7 in autopsy brain tissue is also correlated with advanced cognitive decline (Karch 

et al., 2012; Vasquez et al., 2013). In vitro analysis showed that Aβ secretion is inhibited by ABCA7 

through the stimulation of cholesterol efflux (Chan et al., 2008). Moreover, ABCA7 also modulates 

the phagocytic activity of apoptotic cells by macrophages (Jehle et al., 2006). It has been observed that 

ABCA7 may lead to the development of AD by clearing Aβ aggregates or cholesterol transfer to APOE 

(Chan et al., 2008; Wildsmith et al., 2013).  

CD33 

Sialic Acid Binding Ig-Like Lectin 3 (CD33) is a receptor molecule located on chromosome 

19q13.3 (Trask et al.). CD33 is highly expressed on microglia and myeloid cells (Crocker et al., 1997; 

Malik et al., 2013; Griciuc et al., 2013). The LOAD GWAS analysis showed that, CD33 SNPs (e.g., 

rs3865444) have been found to reduce LOAD risk (Naj et al., 2011; Hollingworth et al., 2011; Bertram 

et al., 2008; Sullivan, Daly, & O'Donovan, 2012). The rs3865444 and rs12459419 SNPs are associated 

with increase in CD33 in lacking and modulating the exon 2 (splicing event), respectively (Malik et 

al., 2013). A recent analysis of data from 74,046 individuals showed that the rs3865444 SNP is failed 

to attain the genome-wide significance. However, studies suggest that CD33 may play a significant 

role in AD (Lambert et al., 2013). It has been found that the mRNA expression of CD33 is enhanced 

in microglia, while the expression in autopsy brain tissue is correlated with advanced cognitive decline 
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(Karch et al., 2012; 53, Griciuc et al., 2013). The inhibition of Aβ phagocytosis effect in immortalized 

microglial of CD33 is abolished due to a lack of exon 2 (Griciuc et al., 2013). The allelic SNP such as 

rs3865444 is correlated with reduced CD33 mRNA expression and insoluble Aβ42 in brains with AD 

(Griciuc et al., 2013). Another significant function of CD33 is Aβ clearance and mediation of neuroin-

flammatory pathways through microglia in the brain (Griciuc et al., 2013). 

PTK2B 

Protein tyrosine kinase 2 beta which is encoded by the PTK2B gene located on 8p21.2 (Herzog, 

Nicholl, Hort, Sutherland, & Shine) is midway between neuropeptide-activated receptors or 

neurotransmitters that may enhance Ca+2 flux and cascade of mediating signaling like MAPK (Pandey 

et al., 1999). Another study shows that focal adhesion kinase CAKβ/Pyk2 is directly involved in the 

long-term potentiation of region CA1 of the hippocampus (Huang et al., 2001). One recent GWAS of 

74046 Caucasian individuals on SNPs (rs10498633) in SLC24A4 gene showed that this allele is 

associated with LOAD risk (Lu et al., 2016). In another GWAS, other genes such as RIN3, DSG2, 

INPP5D and MEF2C were found to play key roles in the development of AD. Furthermore, other 

reported genes (NME8, ZCWPW1, NYAP1, CELF1, MADD, FERMT2 and CASS4) are also associated 

with the risk of developing AD (Karch, Cruchaga, & Goate, 2014; Karch & Goate, 2015). Another 

gene, TREM2, also causes autosomal recessive form of dementia-like symptoms after homozygous 

mutations (Paloneva et al., 2002). A significant missense mutation (rs75932628-T) in TREM2 gene 

was observed to be associated with AD (Hickman & El Khoury, 2014; Lue, Schmitz, & Walker, 2015). 

The phospholipase D protein that is encoded by PLD is involved in catalyzing the hydrolysis of 

phospholipids membrane. Mutations in PLD gene are associated with AD (Wang et al., 2015).  

Prevalence and penetrance of genes in AD 

Polymorphisms associated with AD appear with various prevalence and penetrance. While 

variation in some genes is more penetrant (i.e., genes that will definitely lead to develop AD), other 

variants have low prevalence (i.e., do not commonly occur in AD). Three known genes (APP, PSEN1 

and PSEN2) are significantly involved in the prevalence of autosomal dominant AD through fully 

penetrant mutations (Van Cauwenberghe, Van Broeckhoven & Sleegers, 2015). Research showed that 

mutations in the APP gene have a 100%-penetrance, mostly in carriers (Tanzi, 1999).  

The autosomal dominant mutations in APP and the PSEN1/2 are recognized as having low 

prevalence/incidence and high pathobiological impact (early age of onset) (Tanzi, 1999). In detailed 

analysis, the PSEN1 mutation causes a severe form of AD with complete penetrance and has a wide 

variability of onset age (25-65 years), rate of progression, and disease severity (Cruts et al., 2012). In 

contrast, missense mutations carriers in PSEN2 have incomplete penetrance and mostly affect older 
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age (39-83 years) of onset disease, but the age of onset is highly variable among PSEN2-affected 

families (Sherrington et al., 1995; Sherrington et al., 1996; Jayadev et al., 2010). The EOAD mutations 

are related to calamitous phenotypic consequences that present early in the adult life. Therefore, such 

mutations govern some biological impact and are exceedingly rare. In contrast, the APOE E4 

polymorphism has a relatively high prevalence, but is weakly penetrant, and carries a low biological 

impact, as found by the relatively late onset of symptoms (Tanzi, 1999). Genin and colleagues reported 

that APOE E4 is consistent with semi-dominant inheritance of a moderately penetrant gene on the 

basis of Caucasian ancestry using Rochester (USA) incidence data (Genin et al., 2011).  

Two more genes, such as SORL1 and ABCA7, which are directly involved in AD, have rare 

variants and seem to have higher penetrance. However, the rare variants of CLU have low penetrance 

(Van Cauwenberghe, Van Broeckhoven & Sleegers, 2015). Kim and colleagues reported that two 

LOAD-associated mutations in ADAM10 would appear to be strong candidates for the first rare, highly 

penetrant pathogenic mutations to be genetically associated with LOAD (Kim et al. 2009). Rare highly 

penetrant mutations in the ADAM10 gene, Q170H and R181G were also reported in 7 out of 1000 

LOAD families. Both mutations are located in the prodomain region and dramatically impair the ability 

of ADAM10 to cleave APP at the α-secretase site of APP in vitro and in vivo (Kim et al., 2009).  

In conclusion, while APP and PSEN1/2 are highly penetrant and are associated with AD, APOE 

polymorphism has a high prevalence. Moreover, other rare genetic variants with high penetrance and 

low prevalence such as SORL1, ADAM10 and ABCA7 are directly involved in AD pathology. 

Conversely, other rare variants with low penetrance and high prevalence effects such as CLU have 

also been linked to AD.  

Although it is controversial whether mutations in the microtubule-associated protein tau 

(MAPT) gene are associated with AD, they were found to be linked to frontotemporal dementia 

(Goedert & Spillantini, 2001). Only one mutation in MAPT has been associated with AD-like 

dementia, but it has not been shown to cause AD (Ostojic et al.; Rademakers et al., 2003). One study 

revealed that mutations in MAPT can cause familial frontotemporal dementia (Wilhelmsen, Lynch, 

Pavlou, Higgins, & Nygaard, 1994), and four other mutations (R406W, V337M, G272V, and P301L) 

have been shown to promote hyperphosphorylation and aggregation of tau protein (Alonso, 

Mederlyova, Novak, Grundke-Iqbal, & Iqbal, 2004; Iqbal, Liu, Gong, & Grundke-Iqbal, 2010). The 

aggregates of hyperphosphorylated wild type tau protein have a prevalent pathology of AD and other 

sporadic tauopathies, and they induce disruption of the microtubules (King et al., 2006). The inhibition 

of the phosphorylation/aggregation or increased clearance of tau can prevent a molecular cascade that 

leads to cellular death (Iqbal, Liu, & Gong, 2016; Ittner et al., 2010; Piedrahita et al., 2010). Based on 
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its therapeutic functionality, tau protein is considered to be a target of interest in AD (Iqbal et al., 

2016). In addition to APP and PSEN1, there are some studies on other genes which are considered 

target molecules for AD treatment (Dingwall, 2001). Finally, APP has been proposed to be linked with 

kinesin-I, a motor protein and forms a dimeric complex. This possible functional interaction between 

kinesin-I and APP may implicate the role of alterations in kinesin-I based transport in the development 

of AD (Naj et al., 2014). 

Many genes along with their risk assessments are still under investigation to confirm their 

association with AD. However, the largest risk factor for AD is age: cases double with every 5 years 

between the age of 65 and 85 years. Up to date, there are several risk factors that are known to lead to 

EOAD. The mutation in APP accounts for familial AD. The significance of the APP gene is confirmed 

by the emergence of EOAD in patients with Down’s syndrome who have an additional copy of this 

gene. However, the mechanism by which these genetic alterations influence the amyloid beta (Aβ) 

formation remains unclear. Additionally, the E4 allele of APOE constitutes a major susceptibility 

factor for the development of the familial and sporadic forms of LOAD. The prevalence of AD has 

increased up to 20% among those individuals aged 80 years and older. This may depict that there are 

some other risk factors that may govern AD symptoms. For example, the transcriptional control of 

APP has not yet been fully explored (Reitz & Mayeux, 2014). Genetic variations in CLU (previously 

known as apolipoprotein J) have been associated with the risk of AD in multiple independent GWAS 

of diverse ethnic groups. The relationship between clusterin levels and the risk for stroke in the current 

analysis showed that both stroke and dementia share some common factors. It has been observed that 

clusterin was also found to alter the risk of cardiovascular and metabolic diseases which was observed 

by measuring the clusterin (α, β) and C-reactive protein levels (Weinstein et al., 2016).  

Table 1. Mutations in genes associated with AD. “–“ means information on prevalence and 

penetrance of genes are not known. 

Genes Encoded proteins Locations Mutations Penetrance Prevalence 

APP Amyloid precursor protein 21q21.3 35 high low 

PSEN1 Presenilin 1 14q24.3 165 high low 

PSEN2 Presenilin 2 1q31-q42 13 high low 

ApoE Apolipoprotein-E 19q13.2 13 low high 

ADAM10 ADAM Domain 10 15q21.3 1 high low 

CR1 
Complement Component 3b/4b 

Receptor 1 
1q32 8 - - 
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BIN1 Bridging Integrator 1 2q14 1 - - 

CD2AP CD2-Associated Protein 6p12 1 - - 

EPHA1 EPH Receptor A1 7q35 1 - - 

CLU Clusterin 8p21.1 5 low high 

MS4A6A 
Membrane Spanning 4-

Domains A6A 
11q12.1 1 - - 

PICALM 
Phosphatidylinositol Binding 

Clathrin Assembly Protein 
11q14 1 - - 

ABCA7 
ATP Binding Cassette 

Subfamily A Member 7 
19p13.3 1 high low 

CD33 CD33 molecule 19q13.3 1 - - 

HLA-

DRB5 

Major Histocompatibility 

Complex, Class II, DR Beta 5 
6p21.32 8 - - 

PTK2B Protein Tyrosine Kinase 2 Beta 8p21.1 1 - - 

SORL1 

Sortilin-Related Receptor, 

L(DLR Class) A Repeats 

Containing 

11q23.2-

q24.2 
6 high low 

SLC24A4 
Solute Carrier Family 24 

Member 4 
14q32.12 8 - - 

RIN3 Ras And Rab Interactor 3 14q32.12 1 - - 

DSG2 Desmoglein 2 18q12.1 1 - - 

INPP5D 
Inositol Polyphosphate-5-

Phosphatase D 
2q37.1 1 - - 

MEF2C Myocyte Enhancer Factor 2C 5q14 17 - - 

NME8 NME/NM23 Family Member 8 7p14.1 1 - - 

ZCWPW1 
Zinc Finger CW-Type And 

PWWP Domain Containing 1 
7q22.1 1 - - 

NYAP1 

Neuronal Tyrosine 

Phosphorylated 

Phosphoinositide-3-Kinase 

Adaptor 1 

7q22.1 1 - - 
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CELF1 
CUGBP, Elav-Like Family 

Member 1 
11p11.2 1 - - 

MADD 
MAP Kinase Activating Death 

Domain 
11p11.2 1 - - 

FERMT2 Fermitin Family Member 2 14q22.1 1 - - 

CASS4 
Cas Scaffolding Protein Family 

Member 4 
20q13.31 1 - - 

TREM2 
Triggering Receptor Expressed 

On Myeloid Cells 2 
6p21.1 7 - - 

PLD3 
Phospholipase D Family 

Member 3 
19q13.2 1 - - 

 

Research on AD is rapidly expanding and currently encompasses various cellular, molecular, 

clinical and therapeutic aspects. Reviewing all these diverse areas is beyond the scope of the present 

work. However, we will briefly address the salient features of the definitive review work of other 

investigators in different fields of AD. The molecular genetics of AD and its relationship to other 

primary neurodegenerative diseases have recently been reviewed (Karch et al., 2014). There are also 

recent studies which explore some protein molecules that are believed to play a role in AD 

pathogenesis. For example, the cell biology of AD, particularly the roles of secretases (α, β, and γ), 

presenilin 1/2 and notch have been reviewed (J. Lambert et al., 2013). 

Below, we discuss how genes affect the following aspects of AD: (a) memory, (b) amyloid 

plaques formation and tangle deposition, and (c) neurotransmitters related to AD. 

 

2- Genes and their influence on memory in AD  

Progressive memory deterioration is the hallmark feature of AD that results from a number of 

genetic factors. Because procedural memory is generally preserved in AD (Van Halteren-Van Tilborg, 

Scherder, & Hulstijn, 2007), declarative memory is mainly the target of AD studies, which are 

predominantly focused on the episodic memory subset. Episodic memory is one’s collection of interior 

events and the spatial-temporal-emotional context in which they occurred (Tulving, 1972). Episodic 

memory is strongly associated with the medial temporal lobe, in particular the hippocampus and 

entorhinal cortex, which are impacted by the progression of AD (Braak & Braak, 1991).  

Unsurprisingly, AD related deficits in episodic memory have widely been found to involve the 

mediotemporal lobe and related neural networks (D. A. Wolk, Dunfee, Dickerson, Aizenstein, & 
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Dekosky, 2011). A relationship between reduced hippocampal volume and episodic memory has been 

observed by multiple lines of AD research (Choo et al., 2010; Mormino et al., 2008; Sexton et al., 

2010). Additionally, studies have found that patients with AD show deterioration of semantic memory, 

which directly influences episodic memory in the area of recognition and reflects the damage to the 

hippocampus that occurs early in AD pathogenesis (Drebing et al., 1994).  

Genetic factors play a key role in understanding why memory deterioration is characteristic for 

AD. Expression of the APOE E4 allele is a strong risk factor for AD. Further, AD patients who are 

carriers of this allele tend to perform more poorly on episodic memory tasks than non-carriers (Van 

Der Vlies et al., 2007). A dose-dependent relationship between APOE E4 and episodic memory task 

performance has been observed (Kerchner et al., 2014). Moreover, a mouse model with induced 

expression of APOE E4 showed spatial memory deficits and neuronal network dysfunction in the 

hippocampus, especially in aged mice that were dependent of hippocampal interneurons loss 

(Andrews-Zwilling et al., 2010; Gillespie et al., 2016). In humans, young APOE E4 carriers have a 

dysfunction in spatial navigation, and disarray of grid-cell like representations in the entorhinal cortex 

with fMRI during a spatial navigation task (Kunz et al., 2015). APOE E4 may contribute to memory 

impairment by augmenting APP recycling, thereby increasing the production of Aβ peptides. The 

accretion of Aβ senile plaques and tau-related NFTs have been attributed to cognitive decline in AD; 

however, there is now substantial evidence that the soluble variants of Aβ and tau are associated with 

memory loss in AD (see(Ashe & Zahs, 2010)for a review). 

Rodent studies can give us clearer insight into the relationship between genes and memory, as 

they are thought to have comparable hippocampus-based memory systems to that of primates (Eriksen 

& Janus, 2007). These studies have found that periodical injections of synthetic Aβ into normal rats 

have resulted in transient memory deficits for a sequence lever pressing task (Cleary et al., 2005). 

Further, injecting normal rats with Aβ from AD patients significantly impaired rats’ memory of earned 

behavior in a passive avoidance task (Shankar et al., 2008). Additionally, in a mouse study, it was 

observed that extracellular accumulation of a 56-kDa soluble Aβ assembly, named Aβ*56, in young 

mice disrupted memory (Lesné et al., 2006).  

It is thought that Aβ activates the phosphorylation of tau proteins (Hernández & Avila, 2010), 

and it is widely accepted that the accumulation of hyper-phosphorylated tau and resulting 

neurofibrillary tangles are also implicated in AD memory decline. It has been found that neurofibrillary 

tangles are not solely responsible for AD memory disturbance (Santacruz et al., 2005). Studies on the 

toxicity of tau oligomers support this theory. Injecting mutant tau mice with tau oligomer antibodies 

has shown to improve working memory as well as to maintain the improvement for 2 months (Castillo-
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Carranza et al., 2014). When pro-aggregants of tau expression are turned off in mice displaying 

neurological features of AD, their impaired memory is improved (Sydow et al., 2011). 

Damage to episodic memory-related brain structures, such as the medial temporal lobe can, at 

least partly, account for the relationship between aberrant gene expression and memory decline in AD. 

APOE E4 has a thinning effect on areas of the brain related to episodic memory including the medial 

temporal lobe (Geroldi et al., 1999; Pievani et al., 2009; David A. Wolk & Dickerson, 2010); in 

particular, the hippocampus (Kerchner et al., 2014). Aβ plaque deposition in humans has a direct link 

to hippocampal volume which may mediate the relationship between Aβ accumulation and episodic 

memory (Mormino et al. (2008). Compared to other brain regions, the medial temporal lobe is the site 

of a disproportional amount of neurofibrillary tangles (Nestor, Fryer, & Hodges, 2006; D. A. Wolk et 

al., 2011). Tau aggregation and neurofibrillary tangles density in the hippocampus are strong correlates 

with spatial memory impairment (Mustroph, King, Klein, & Ramirez, 2012) as well as symptom 

severity and cognitive decline in AD (Braak & Braak, 1991). 

 Memory impairment in AD may also be due to disruptions in neural circuitry, such as the 

progression of neurofibrillary tangles damage to the projection neurons that connect the hippocampus 

to other parts of the brain. It has been observed that neurofibrillary tangles follow a specific trajectory 

of accumulation in the  entorhinal cortex similar to the pattern on AD neurodegeneration (Braak & 

Braak, 1991). Neurofibrillary tangles can affect the hippocampal network by disconnecting the 

hippocampus from the cerebral cortex (De Calignon et al., 2012). A mouse model for AD (mutated 

APP expression driven only in the entorhinal cortex) showed a trans-synaptic spread of AD pathology 

that mimicked the natural history of the disease (Harris et al., 2010; Khan et al., 2014; Liu et al., 2012). 

Induction of over-expression of mutated human APP and tau in the EC layer II/III spread to specific 

areas of the hippocampus including the dentate gyrus, CA1 and subiculum (De Calignon et al., 2012; 

Harris et al., 2010; Harris et al., 2012; Khan et al., 2014; Liu et al., 2012). However, cognitive deficits 

were only observed in mice having overexpression of mutated human APP in the entorhinal cortex, 

whereas the overexpression of mutated human tau did not cause cognitive decline in the animals 

(Harris et al., 2010; Harris et al., 2012). Oligomeric Aβ accumulation and hyper-phosphorylated tau 

may cause memory deficits by disrupting synaptic plasticity in the hippocampus, such as long-term 

potentiation (Shankar et al., 2008; Sheng, Sabatini, & Südhof, 2012; Tu, Okamoto, Lipton, & Xu, 

2014). Soluble Aβ oligomers have been found to be synapto-toxic (Haass & Selkoe, 2007; Shankar et 

al., 2008) and may also alter the neural networks involved in learning and memory (Palop & Mucke, 

2010).  
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3- Genetic influence on amyloid plaques formation and tangle deposition 

The most common hypothesis that invokes the implication of APP in the neuronal cell death in 

AD is the amyloid hypothesis. This hypothesis postulates that deposition of amyloid plaques or 

partially aggregated soluble Aβ trigger a neurotoxic cascade, thereby causing neurodegeneration and 

AD. This theory is based on studies suggesting that Aβ is toxic to neurons. The transfected cell line 

study showed that expressing familial AD mutant genes leads to increased Aβ release. A study showing 

a close correlation among memory deficits, Aβ elevation and amyloid plaques in transgenic mice 

supports the amyloid hypothesis (Guerrero et al., 2009). 

A modified version of the amyloid hypothesis postulates that the primary contributor to the 

etiology of AD lies within the cytoplasmic domain of APP. This has also been used to explain the 

neurotoxicity of the carboxyl-terminal 99 amino acids fragment of the APP (APP-C100), which 

includes the 42 residues of Aβ peptide and 57 adjacent amino acids in the carboxyl-terminus of APP. 

The mechanism underlying the amyloidogenic and the neurotoxic property of APP-100 fragment is 

still not known (Cerpa et al., 2008).  

 However, a recent model has been suggested in which intracellular amyloidogenic fragments, 

such as APP-C100, kill neurons ‘‘from inside,’’ in contrast to the popular hypothesis that extracellular 

Aβ causes neurodegeneration ‘‘from outside’’. The APP-C100 fragment is a normal metabolic product 

of APP in the human brain. Rcently, Sykora and coworkers showed that a 31-residues of C-terminal 

fragment was generated by caspase cleavage of APP within its cytoplasmic domain in cells undergoing 

apoptosis. Expression study justified that 31 residues fragment was sufficient to induce apoptosis. 

Deletion of 31-residues from APP-C100 removed its neurotoxicity, suggesting that this region may 

mediate toxicity. The proteolysis of APP to Aβ40 and Aβ42 should also yield a cognate C-terminal 

fragment (CTFg) of 59 and 57 residues, respectively. All conditions that increase the Aβ42 production 

automatically increases CTFg57 fragment. Thus, the observed high correlation between AD and Aβ42 

levels may naturally extend to CTFg57 (Sykora et al., 2015). 

 The second major lesion characteristic of AD is the intracellular deposition of the microtubule-

binding protein, tau, in the form of neurofibrillary tangles. Multiple reports suggest that the load of 

this lesion may be more closely linked to dementia characteristic of AD than amyloid plaque burden. 

The tau model suggests that the creation of neurofibrillary tangles is the most important characteristic 

of AD and their density correlates positively with disease severity (Moore et al., 2015). According to 

the tau hypothesis, structural modification of tau such as hyper-phosphorylation and aggregation 

interferes with tau function leading to the neuronal dysfunction that may cause AD. In support of this 

hypothesis, abnormally phosphorylated tau has been observed in the CSF of AD patients at a very 
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early stage. Furthermore, mutations in tau lead to dementia and neurofibrillary tangles formation. 

However, it is important to note that these mutations do not lead to amyloid deposition characteristic 

of AD. One report has suggested that the formation of neurofibrillary tangles in P301l tau transgenic 

mice is induced by Aβ42 fibrils (Götz, Chen, van Dorpe, & Nitsch, 2001), and a second report has 

observed enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP 

genes (Lewis et al., 2001). Multiple genes which are associated with Aβ functionality are mentioned 

in Fig. 2. 

 

Figure 2: Clump of AD mediated genes which have functional association with Aβ. The genes in 

light green are associated with cleavage of APP. The genes in red color are depicted for Aβ. The cyan 

color genes are associated with tau toxicity and purple color genes are still under investigation.   

 

4- Genetic and functional deficiencies of neurotransmitters in AD 

The relationship between cholinergic neuronal loss and causative amyloid plaques produced 

from mutant genes is a major area that has been under intensive research. In this regard, several recent 

studies using cell culture and animal models have shed light onto the effects of anticholinesterase drugs 

on levels of amyloid proteins. Specific agents possess amyloid lowering actions as a consequence of 

their cholinergic as well as non-classical, non-cholinergic activities. This overlap in actions of 

particular agents may be critical in light of the extensive colocalization of the G1 forms of acetyl- and 

buteryl-cholinesterase (AChE and BChE) and amyloid plaques, which correlate with plaque load and 
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disease progression. Indeed, there is a colocalization of BChE and all of the pathological hallmarks of 

AD such as amyloid plaques, neurofibrillary tangles, and dystrophic neurons. The reasons 

underpinning such colocalization have yet to be elucidated, but may be related to a host of non-

cholinergic actions associated with acetylcholine esterase (AChE) and butrylcholine esterase (BChE). 

For example, both enzymes are known to play a role in cell proliferation and differentiation in 

embryonic brain as well as to bear a structural similarity to adhesion molecules (e.g., neurotactin, 

neuroligin, and gliotactin) that possess trophic and regenerative functions. In addition, BChE has been 

reported to cleave substrates other than choline esters and likely has amylase and protease activities. 

Unfortunately, the coexistence of AChE and BChE with Aβ peptide may amplify the toxicity and 

latterly cause spiraling deleterious events within the brain (Barber et al., 1996). Whether or not 

cholinesterase agonist can block the interaction between the enzymes and Aβ peptides remain to be 

elucidated and likely will depend on the wide presence of genetically influenced binding sites involved 

in the enzyme/drug and enzyme/peptide interactions (Kumar, Singh, & Ekavali, 2015). 

 In AD, the severe loss of cholinergic neurons in the nucleus basalis and associated areas that 

form the cholinergic forebrain area, and their projections to the cerebral cortices are marked with 

decreased levels of acetylcholine and its rate-limiting synthetic enzyme, choline acetyltransferase, in 

the cortex (Bartus, Dean, Beer, & Lippa, 1982). There is also a matching reduction in the level of the 

enzyme, AChE; in particular, the G4 form (Atack, Perry, Bonham, Candy, & Perry, 1986), which is 

responsible for terminating the physiological role of acetylcholine at cholinergic synapses. The 

reduction of cholinergic activity in the central nervous system of AD patients is controlled by mutant 

APP proteins and correlates with deterioration of scores on dementia rating scales. Coincidental with 

these changes, the level of its sister enzyme BChE is raised.  

 BChE shares 65% homology with AChE and likewise metabolizes acetylcholine, but have 

topological differences. BChE is predominantly localized in the glial cells, increases during AD 

progression, and likely functions to hydrolyze the excessive acetylcholine in the healthy brain. The 

ratio of AChE to BChE change from 0.3 in the normal area to 11 in some brain areas as AD develops. 

Undoubtedly, mismatching results were observed between acetylcholine release and its optimal 

metabolism that likely contributes to cholinergic dysfunction. In addition, a recent study has 

demonstrated that 10-15% cholinergic neurons in the hippocampus and amygdala of healthy human 

brain have BChE, rather than AChE, at the synapse as their metabolizing enzyme (Greig et al., 2000). 

 Another study hypothesize that specific neuronal pathways may function via BChE, which 

prompted the recent development of selective reversible agents to inhibit BChE. The selected 

inhibitors work to augment these pathways and to normalize the BChE versus AChE ratio in the AD 
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brain. All these findings, along with the known role of cholinergic neurotransmission in memory 

processing and storage, led to the hypothesis that cholinergic augmentation might improve cognition 

in AD. This cognition AD improvement is the results of amplification of acetylcholine’s action 

(muscarinic and nicotinic) through inhibition of its metabolizing enzymes by direct use of agonists that 

combat the effect of synaptic signaling initiated by APP mutant genes (Craig, Hong, & McDonald, 

2011).  

 Currently, cholinesterase inhibition is the most effective, widely studied, and developed 

approach for treating the symptoms of AD. In this regard, four currently administered drugs for AD 

(tacrine, donepezil, rivastigmine, and galantamine) have been approved by the Food and Drug 

Administration (FDA) for prescription as cholinesterase inhibitors. All of them are centrally active and 

have been shown to improve memory and cognition in some patients with mild to moderate AD. Their 

effects become more apparent after several weeks of therapy and all members of the same drug class 

vary in some unexpected ways. This dissimilarity likely derives from their divergent chemical 

structures, different binding sites and pharmacokinetics values of AChE and BChE. Resulting from 

this, donepezil and galantamine possess selectivity for the acetyl form of cholinesterase, whereas both 

tacrine and rivastigmine co-inhibit both AChE and BChE. Furthermore, likely due to their mechanisms 

of binding action and long half-lives, the former two agents gradually induce up-regulation of their 

target AChE, whereas the latter do not. The other differences plausibly account for the observation 

that patients not benefiting from one agent may benefit from another, although all are of the same class 

(Zemek et al., 2014).  

 

Conclusions and future directions  

Genes are now considered key players to explore the etiology of AD. In this article, we reviewed some 

known genetic risk and protective factors of AD. We discussed 31 genes with respect to their mutations 

and known functional effects (penetration/prevalence). The recognition of AD risk variants may 

provide a new gateway to properly understand the underlying AD mechanism. Recently, the novel 

identified genes showed significance association with Aβ production and clearance, which exposed 

significance of this mechanistic pathway (Aβ) in the pathogenesis of AD. In our review, we highlighted 

the few genes such as ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, 

FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, MEF2C, NME8, PICALM, PTK2B, SLC24H4-RIN3, 

SORL1, and ZCWPW1 are associated with AD risk.  

Mutated genes and common variants actively participate in the pathogenesis of AD by exploring the 

underlying Aβ-signaling pathways. Most of genes (APP, PSEN1, PSEN2 and APOE) were understood 
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as key regulators in the Aβ production and have significant effect on the synaptic receptors in both 

EOAD and LOAD stages. Multiple cellular and molecular genetic approaches showed the significance 

of these genes mediated proteins and their downstream signaling pathways which may be considered 

as novel targets in the therapeutics of AD. Recently, different research groups are synthesizing their 

agonists by taking these proteins as novel targets to treat AD. Multiple factors such as nutritional, 

genetic and environmental stress may also highlight more effective and preventive approaches for AD. 

Taken together, this review gives a brief updating of genetic etiology of AD and of the mechanistic 

pathways of common mediated proteins which may be considered as novel targets against AD 

pathology in future. Studies on neurobiological mechanisms to provide new targets for drug 

development in AD are expanding rapidly, and current investigations cover a broad area of cellular, 

molecular, genetic, and clinical research.  

Herein, we have made an attempt to review recent trends in AD research in these aforementioned areas. 

The molecular genetics of AD and the role of key proteins (known and to be discovered) that are 

believed to participate in AD pathogenesis are important fields for further research. Similarly, the cell 

biology of AD, particularly the roles of secretases, presenilin, notch and tau proteins should provide 

new light on the cascade of AD neurodegenerative pathways. In addition to APP and PSEN1, there is 

significant active research underway in the development of new inhibitors for PSEN1 and γ-secretase 

as targets for treatment of AD. Research is also underway to dissect and characterize APP genetic 

regulatory elements for the development of potential drug targets. Furthermore, research on the 

clusterin, ABAC7, SORL1 genes could produce novel therapeutic targets for treatment of AD. Newer 

technologies, such as DNA microarray technologies to study gene expression profiles in AD, 

proteomics to analyze the protein profiling of AD brain tissues, and transgenic mouse models of AD, 

should yield new and useful clues to further characterize the pathobiochemical processes of AD. Other 

approaches, such as nutritional, genetic and environmental factors, may also highlight more effective 

preventive strategies for AD. Indeed, our current understanding of the role of oxidative stress in AD 

has resulted in the wide use of antioxidants, such as vitamin E, to potentially delay the progression of 

AD. Finally, it should be stressed that both early diagnosis of AD and the development of quantitative 

markers to better follow the course of the disease are also extremely important for the evaluation and 

successful development of therapeutic strategies (Imtiaz, Tolppanen, Kivipelto, & Soininen, 2014).  
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