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Abstract

This thesis focuses on the propagation of scale-specific (i.e., horizon-dependent) macroeconomic
shocks into asset prices. In particular, chapter 1 provides an introduction to the theory and meth-
ods necessary for understanding scale-dependencies in financial economics. First, I present the
multiresolution-based decompositions for weakly stationary time series of Ortu et al. (2013) and
discuss its connection with other techniques in the literature. Next, I analyse the power and size
properties of multi-scale variance ratio tests that distinguish a white noise process from a process
whose scale-dependent components are serially correlated. Finally, I present an extension of the
framework of Bandi et al. (2016) for scale-specific predictability. In chapter 2, I show that a single
factor that captures assets’ exposure to business-cycle variation in macroeconomic uncertainty can
explain the level and cross-sectional differences of asset returns. In addition, I find that - in con-
trast with previous studies in the literature - macro uncertainty is not a valid risk factor under the
ICAPM. Chapter 3 provides an empirical assessment of Epstein-Zin preferences in the frequency
domain. I demonstrate that the strict conditions implied by the spectral decomposition of recursive-
preferences are not empirically satisfied. That is, macroeconomic shocks with frequencies lower than

the business-cycle are not robustly priced in asset prices.
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Introduction to Thesis

In this thesis, I explore the link between financial markets and the macroeconomy. In particular,
I examine how scale-specific (i.e., horizon-dependent) macroeconomic shocks propagate to asset
prices. The core intuition behind this work is that shocks that affect an economy can be classified
along two dimensions. That is, on the basis of their arrival time as in the standard Wold decomposi-
tion (see the early studies of Slutzky 1937; Yule 1927; Frisch 1933!, for a theoretical systematization
see Wold, 1938 and for a review Diebold, 1998) and across their level of resolution (i.e., scale) as
measured by their half life in line with Ortu et al. (2013, 2016) and Bandi et al. (2016).

For instance, consider a zero-mean, weakly-stationary (purely non-deterministic) stochastic pro-
cess {9t }cz- In line with the standard Wold decomposition the process g; can be written as a linear
combination of lagged values of a white noise process. That is, ¢g; has an infinite moving average

MA (00) representation? of the following form

oo
9= ks i
k=0

where > 77, ozi < 00,9 = 1 and ¢; is a white noise process. In contrast, in the generalized

(i.e., multi-scale) Wold type decomposition of Bandi et al. (2016) the process can be represented

!'Slutzky (1937) and Yule (1927) are the first to demonstrate that a moving average of a random series can generate
oscillations and periodicities when no such movements exist in the original data. The Slutzky-Yule effect led to the
formalization of ARMA processes.

For classic text-book level treatments of time-series concepts see Hamilton (1994); Hayashi (2000) or Brockwell
and Davis (2009).



(assuming again for simplicity and without any loss of generality that the process is zero-mean and

for a fixed J <logoT where T is the length of g;) as

J o )
gt = Z Z ajvkglgj—)kx%

7=1 k=0

where the shocks e(j), t =k x 27,k € Z that drive the time-series are now scale-specific (i.e., they
depend on both time ¢ and scale j). This modelling approach implies that the scale-specific shocks
may carry unique information (i.e., scale-wise heterogeneity) and hence provides strong motivation
to analyze the relation between macroeconomic fluctuations and asset prices on a scale-by-scale

basis. More specifically, in this thesis [ address the following questions:

e Are all macro uncertainty shocks created equal? In other words, do they have the same in-
formation content across different horizons and scales? If not, what are the value implications

of macroeconomic shocks localized at a specific level of resolution?

e How do risk prices and risk exposures with respect to measures of macroeconomic activity

change as we alter the investment horizon (i.e., across different time scales)?

e Are the strict conditions implied by Epstein-Zin preferences in the frequency domain empir-

ically satisfied? That is, are low-frequency macro shocks robustly priced in asset prices?
Moreover, from a more technical perspective:
e How easy it is to detect persistent components of a time-series localized at low frequencies?
e Under what conditions does scale-specific predictability translate into long-horizon predictab-

ility?

The remainder of this thesis is structured as follows: Chapter 1 presents the econometric frame-
work necessary to understand scale-dependencies in financial economics. I concentrate on the prop-

erties of multi-scale variance ratio tests for serially correlated decimated components and on the link



between scale-specific predictability and long-horizon aggregation. Chapters 2 and 3 provide two
(robust) empirical studies linking macroeconomic fluctuations to asset prices. Specifically, chapter
2 focuses on business-cycle macro uncertainty while chapter 3 looks on both moments of macroe-
conomic activity (i.e., growth and volatility). A brief summary of the thesis along with a general

appendix are available at the end.



Chapter 1

Understanding Scale-Dependencies in Financial

Economics: Theory and Methods

1.1 Introduction

This chapter serves as an introduction to time series modelling with multiple scales and scale-wise
heterogeneity. The theory and methods presented here provide the necessary background for the
empirical work in chapters 2 and 3. In particular, section 1.2 presents a persistence-based decom-
position for weakly stationary time series based on the work of Ortu, Tamoni, and Tebaldi (2013)
while section 1.3 discusses its connection with other techniques in the literature. Section 1.4 intro-
duces the econometric process of decimation which yields an alternative decimated decomposition
by using only a finite-number of non-overlapping points. Section 1.5 describes the generalized (time
and scale) Wold representation implied by the decomposition of Ortu et al. (2013). Section 1.6
demonstrates that standard portmanteau tests for serial correlation fail to detect components loc-
alized at a specific level of persistence. Section 1.7 discusses the multi-scale variance ratio test of
Gengay and Signori (2015) for the white noise hypothesis and the modified version of Ortu et al.
(2013) for a process whose decimated components are serially correlated. Section 1.8 analyzes the

size and power properties of the modified variance ratio test through Monte Carlo simulations. Sec-



tion 1.9 discusses the link between scale-specific predictability and predictability upon aggregation.
Finally, section 1.10 presents the novel framework of Bandi and Tamoni (2016) for the analysis
of risk compensations on a scale-by-scale basis (i.e., across investment horizons) and section 1.11

concludes.

1.2 The Persistence-based Decomposition of Ortu et al. (2013)
Consider a weakly-stationary time series {g;},c,. Let ggj ) denote fluctuations of the series with

half-life in the interval [2/=1, 27), that is

20-1_1 201
(4 > iz0 Gi—i Do Gt—i (3-1) ()

9 = 2(i—1) - 2j =T - T (1.1)
where j > 1, 77,50) = g; and the element 7Tt(j ) satisfies the recursion
(G—1) (G-1
, m + il
7TZSJ) _t 5 =271 (1.2)
For any 1 < J <logsT, the series {g:} can be written as
4 J 4 J
- , ( , (
P S ) SR U] 1)
j=1 j=1

i.e. the series can be decomposed into a sum of components with half-life belonging to a specific

interval plus a long-run average. For instance, for J = 2 the time series of interest is given by

— + 01— Gr_9 — Gs_ + gi—1 + gi—2 + Gi—:
g = Gt 91 | Gt TG T g2 93 | Gt H Y1 F G2 g3 (1.4)
2 4 4
—
e o e

Note that this decomposition is non-anticipative and can be computed using only past observations

(i.e., not subject to look-ahead bias).



Nested within the MODWT family

The decomposition of Ortu et al. (2013) is identical to a multi-resolution based decomposition via
the Maximum Overlap Discrete Wavelet Transform (MODWT) where the extraction is based on the
Haar filter {hl}(l) = (1/2,—1/2). The difference is that the MODWT can accommodate several other
filters (for instance Daubechies and Coiflet filters). That is, the decomposition of Ortu et al. (2013)
is nested within the MODWT family. Below I illustrate this relationship. Most of my discussion
in this section closely follows the work of Percival and Walden (2000) and especially
Gengay, Selcuk, and Whitcher (2001, chapter 4) - I refer the interested reader to these
textbooks and the references therein for more information. For empirical applications of
wavelet analysis in finance and economics see Ramsey (1999) and Crowley (2007).

The MODWT? consists of a set of linear filters which, given a time series y = {yt}1ez to be
filtered, generate a collection of vectors of the same length that capture the characteristics of the
original series at different time scales. In particular, a vector {h;} = (ho,...,hr_1) in R” gives rise
to a linear time invariant filter by means of the convolution operation. The convolution of {h;} and

{y:} is the sequence

=0
hosye= Y hye1, Vit (1.5)

l=—00
where hy = 0 for all [ < 0 and [ > L. A wavelet filter {h;} of length L satisfies the following three

basic properties:

L1 L—1 o0
Z h; =0, Z h} =1/2 and Z hihiyon, = 0 for all integers n # 0. (1.6)

The first property (i.e., zero sum) ensures that h; is associated with a differencing operation and

3Tt is a common practice in the wavelet literature to distinguish the objects related to the Maximum Overlap
Discrete Wavelet Transform from those related to the Discrete Wavelet Transform (DWT) by using a tilde (~) in
the first case. Since I only refer to the MODWT in this section I do not follow this convention. The MODWT is
also refereed to as the stationary DWT (Nason and Silverman, 1995), the translation-invariant DWT (Coifman and
Donoho, 1995) and the time-invariant DWT (Pesquet et al., 1996).



thus identifies changes in the data. The second property states that its L? distance is 1/2. The third
property ensures that it is orthogonal to its even shifts. The natural complement to the wavelet
filter is the scaling filter {g;} defined by the quadrature mirror relationship*

g = (=) hp 1y (1.7)

for 1 =0,...,L —1. Similarly to Equation (1.6), the scaling filter satisfies the following properties:

L—1 L-1 00
Z g =1, Z glz =1/2 and Z gi911on = 0 for all integers n # 0. (1.8)

In other words, instead of differencing consecutive blocks of observations the scaling filter averages
them.

The MODWT of level M for a given time series {yt}tT:1 can be organized into M + 1 vectors of
length T

w = (w)l,...,w/M,v’M) (1.9)

where Mpq. < logoT. In practice, the MODWT is computed recursively through a pyramid al-
gorithm (see Mallat, 1989a,b). For each iteration of the pyramid algorithm three objects are re-
quired: the data vector, the wavelet filter h; and the scaling filter g;. The first steps begins by
filtering® (convolving) the data with the wavelet and scaling filters to obtain the first level wavelet

and scaling coefficients:

L-1 L-1
wig =Y My imoar and vig= Y G 1modT (1.10)
1=0 1=0

“The quadrature mirror relationship between the filters means that approximately perfect reconstruction of the
series is possible.

®Periodic boundary conditions are imposed on {y;}, that is y; = v, mod T. Note that given two positive numbers
a (the dividend) and g (the divisor), amodulo 8 (abbreviated as o mod ) is the remainder of the Euclidean division
of a by B .



forallt =1,...,T. In the second step, the filtering operations are applied to the scaling coefficients

v1¢ from the first iteration to obtain the second level wavelet and scaling coefficients:

L-1 L—1
woy = MUitimear and oy =Y GU14 1modT (1.11)
1=0 1=0

forall t =1,...,T. Likewise, the mth step consists of applying the filtering operations as above to

obtain the mth level of wavelet and scaling coefficients:

L—1 L—1
Wmt = Z hlvm,t—l modT and Umt = Z 9iVmt—1mod T (112)
1=0 1=0
forallt =1,...,T. Keeping all vectors of wavelet coefficients and the level M scaling coefficients

yields the expression in (1.9).
In matrix notation, the MODWT can be represented as w = Wy where W is the (M + 1) T xT

matrix composed of the wavelet and scaling coefficients arranged on a row-by-row basis, that is

Wi
Wh
w=| : |. (1.13)

Wn

Vm

Let d; = W]ij for j = 1,..., M define the jth level wavelet detail associated with changes in {y;}
at scale j where w; = W,y. For a decomposition level M = logsT" the final wavelet detail dps41 is
equal to the sample mean of the observations. A multiresolution analysis can now be defined as

M

yt:Zdj,t+dM+1,t t=1,...,T. (1.14)
j=1

where each observation y; is a linear combination of wavelet detail coefficients.

For instance, consider the Haar wavelet filter of length L = 2 given by {hl}(l) = (ho,h1) =



(1/2,—1/2) and the corresponding scaling filter {gl}(l) = (g90,91) = (1/2,1/2). The first level wavelet
and scaling coefficients of a time series {y;} are given by

1

1
w1 = B (¢ —yi—1) and V1t = ) (ye +yi-1) (1.15)

fort =1,...,T. Note that wy, is equivalent to g,gl) and vy to ng) in Equation (1.3). The use of
the Haar filter {hl}(l) = (1/2,—1/2) is particular helpful since it relates scale-wise predictability to

aggregation (see section 1.9 for further discussion).

1.3 Comparison with Other Techniques

Financial economists have long been interested in extracting different frequency components of a
time series. For instance, business cycle theory is primarily concerned with understanding fluctu-
ations in the range from 1.5 to 8 years. However, conventional methods for business cycles analysis
tend to sweep low-frequency oscillations into the trend. As a result, significant information is re-
moved form the analysis and thus lost (see also Comin and Gertler, 2006). Below I present three

popular filtering methods:

- Beveridge-Nelson (BN) decomposition
Beveridge and Nelson (1981) provide a model-based method for decomposing a non-stationary time
series into a permanent (i.e., trend) and a transitory (i.e., cyclical) component. In particular, assume

that the univariate time series y; is an I (1) process with Wold representation given by

Ay =p+d(L)e (1.16)

where A =1 — L and ¢ are i.i.d. (0,02) one-step-ahead forecast errors. The BN decomposition
defines the stochastic trend as the limiting forecast of the level of the series minus any deterministic

components given the current information set, that is



N = lim By = JulF] = p+ 72 + 9 (e (1.17)

where F; represents conditioning information available at time ¢. Note that the permanent com-
ponent is a pure random walk with drift  and variance 024 (1)>. The remaining movements in

BN — 4, — BN In comparison with the BN

the series are the I (0) transitory component, i.e. ¢
decomposition, the persistence-based decomposition of Ortu et al. (2013) allows for J “transitory”
components with different levels of (calendar-time) persistence operating at different frequencies.

Furthermore, within the framework of Ortu et al. (2013) the shocks are functions of both time and

scale.

- Hodrick-Prescott (HP) Filter
Hodrick and Prescott (1997) propose a procedure for representing a time series as the sum of a
smoothly varying growth (i.e., trend) component and a cyclical component. In particular, a given

. . T .
time series {y;},_, can be written as

w=n+c t=1,...,T (1,18)

where the decomposition is obtained by solving the following minimization problem:

T T
min {Z (=7 + A (41— 7) — (2 — Tt_l)ﬁ} : (1.19)
t=1

S
The parameter A > 0 penalizes variability in the growth component series. The larger the value
of X\ the less fluctuations are present in the growth component. As A\ — oo, 74 becomes a linear
deterministic trend. For quarterly data, Hodrick and Prescott (1997) propose to set A = 1600.
Moreover, Ravn and Uhlig (2002) suggest that the parameter A should be adjusted by multiplying
it with the fourth power of the observation frequency ratios, i.e. A should equal 6.25 for annual data
and 129,600 for monthly data. The HP filter is criticized on the basis that it distorts the dynamics

of the original time series (for instance, see Cogley and Nason, 1995 and Cogley, 2001) and induces

10



spurious cycles if the original time series is difference stationary (see Harvey and Jaeger, 1993).

- Baxter-King (BK) Filter
Baxter and King (1999) propose a finite moving-average approximation of an ideal band-pass filter®.
The BK filter is designed to extract the components of a time series with fluctuations in a particular

frequency range while removing higher and lower frequencies,

K
yl = Z wiyr—; = w (L) (1.20)
i=—K

where L is the lag operator. The weights can be derived from the inverse Fourier transform of the
frequency response function under the constraint that the filter gain is zero at zero frequency. This
restriction implies that the sum of the moving-average coefficients must be zero. For quarterly data
Baxter and King (1999) recommend a lead-lag length of K = 12 while for annual data K = 3.
Note that the components of the BK filter fail to capture a significant fraction of the variability in

business-cycle frequencies (see Murray, 2003 and Guay and St.-Amant, 2005).

1.4 Decimation

The persistence-based decomposition in Equation (1.3) generates spurious serial correlation across
different scales due to the mechanical overlapping of the moving averages that define the components
gﬁj), forj =1,...,J. Following Renaud et al. (2005) this representation of the original time series
{gt},cz can be characterized as redundant. Ortu et al. (2013) and Bandi and Tamoni (2016)
define an alternative decimated representation by selecting only the essential scale-wise information
contained in the extracted components. Through the process of decimation the original time series

can be summarized by a finite number of non-overlapping points

{gt(j),t:k:XQj,k:EZ} (1.21)

6 An ideal band-pass filter removes the frequency components of a time series that lie within a particular range of
frequencies
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and

{wﬁj),t:kx 2j,keZ} (1.22)

referred to as decimated components. This approach resembles the work of Miiller and Watson
(2008) who extract the low-frequency dynamics of a time series by computing a finite number of
weighted averages of the original data. However, within the framework of Ortu et al. (2013) the
components are scale-specific.

The result above follows from the fact that for any level of persistence J > 1 a linear, invertible
operator’” T) can be defined that maps uniquely the decimated components into the time series
{9t},cy (see Mallat, 1989a,b). For instance consider the simple case for J = 2. Assume the following

vector of decimated components

-
2) (2 (1) (1
7Tt( )7.915 )7975 )7gt(_)2 (123)
built on a block of length 22 of the original series where
o1 1.24
T = (9t + gt—1 + gt—2 + gt—3) (1.24)

@ 1(g+ag-1 gi2+g3
== — 1.2
[ 5 < B) 5 ( 5)
1 _ 1
9 =5 (9t — gt—1) (1.26)
o _ 1
Ji-2 =5 (gt—2 — g1—3) (1.27)

and define the transformation (Haar) matrix

TFor the construction of 7(”) in the general case see Daubechies (1990).
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11 1 1
i 1 1 1
T 1 1 _1
TO= * A (1.28)
1 1
3z 32 00
1 1
00 3 -3
In terms of matrix operations, the following relation holds
7T§2) gt
9(2) gt—1
t(l) -7® . (1.29)
9t Ggt—2
1
gt(f)g gt—3

Ortu et al. (2013) and Bandi and Tamoni (2016) show that 7 is orthogonal that is A =
T (T(Q)) T is diagonal. In addition, the diagonal elements of the matrix A are non-vanishing®
(i.e., A1 = A2 = 1/4 and A3 = Ay = 1/2) so that (T(2))71 = (7'(2))T (/\(2))71 is well-defined and

therefore

(2)

gt Ty
gt—1 -1 g @
= (7@) '21) . (1.30)
gt—2 9y
gi—3 992

Equation (1.29) demonstrates how to define the decimated components and Equation (1.30) how

to reconstruct uniquely the original time series {gs},cy by letting ¢ vary in {t = k x 27,k € Z}.

5The diagonal elements of the matrix A are \; = Ao = 1/27 and A\, = 1/27 7 k=271 41, ..., 27 j=2,...,J

13



Translation invariance property of decimation

For any h = 0,1,...,2/~! the decimated components can be rewritten as {g}(ﬁkxw,k € Z} and
{wf(ﬁkﬂj, ke Z}. In other words, the dynamics of the subseries are translation invariant. This is

due to the fact that the matrix 7)) is independent of the parameter h (i.e., the MODWT is shift
invariant). Following Ortu et al. (2013) and without loss of generality, I let & = 0 when constructing
the decimated components (i.e., they are sampled every 27 times).

Modelling the dynamics of the decimated components

The decimated components can be represented as scale autoregressive processes (i.e., scale-wise AR)

on the time domain defined by decimation, i.e.

(4) _ (4) (4)
gk]><2j+2j = pjgij2j + Eijzmrgj (1.31)

where the parameter p; captures scale-specific persistence. The persistence in the raw series is an
increasing function of the dependence in scale p; which can be significantly low (see Bandi et al.,
2016 and for an application with macro uncertainty shocks chapter 2 - Table 2B.17). A similar
dynamic structure for decimated components exists also in the work of Dijkerman and Mazumdar

(1994) for multi-scale signal processing.

1.5 The Multi-scale Wold Decomposition of Bandi et al. (2016)

For a given level of persistence J, Equation (1.3) implies a Wold-type representation (understood

in the mean-squared sense) of the following kind:

J oo 00 o)
J

Z Z J kat k><QJ + Z vakW57t_k;><2J7t_(k‘+1)><2J+1 (132)

J=1k=0 k=0

where

14



D = g Py o (1.33)

and PMj ,_,; 18 a projection mapping” onto the closed subspace M, _9; spanned by the sequence
(9)

{gtkazj }kGZ’

a]vk' gt’et—kx2j ’ ( . )
_ ()
bir=FE <gt’ Ws,t—ka",t—(k+1)><2J+1) (1.35)
and
t—kx27
(/) ST D imt (1) x27 41

Met—kx27 t—(k+1)x27+1 V27 Y} (1.36)

with &, = g — Pam,_, g¢ satisfying Var (e;) = 1. Note that each «a;, is the coefficient obtained by

()

projecting g; on the linear subspace of L? (2, F,P) generated by €y k2

and that the sequence
{a;x} is square-summable, that is Y2, (ozjvk)Z < oo for any j € N. In practice, the real coefficients
o are scale-specific impulse response functions that capture the effect of shocks with specific
persistence.

The multi-scale Wold decomposition'? allows any variable g; of a weakly stationary purely non-
deterministic stochastic process to be represented as the sum of scale-specific innovations 6§j ) defined
on the grid {t —kx2: ke Z}. In other words, the time series can be thought as a combination
of shocks classified on the basis of their arrival time and scale. Intuitively, this modelling approach
of Bandi et al. (2016) generates a separation between scales in terms of their information content

(i.e., shocks are scale-specific) - thereby giving meaning to economic and financial relations which

may only be satisfied at certain frequencies alone. Moreover, if

%For an introduction to Hilbert spaces and techniques - like the projection theorem - see Brockwell and Davis
(2009), Chapter 2.
'°Similar multiresolution-based decompositions are available in Wong (1993).
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j—1_ i
- v (S ) .
i.e. if scale-specific innovations are well-defined aggregates of high-frequency innovations, then
the information contained at every scale is an aggregate of that contained at higher frequencies.
Under this condition, Equation (1.32) will reduce to a classical Wold decomposition. However, this
restriction!! is not unique as it depends on the Haar filter {hl}(l) = (1/2,—1/2) used to extract the
components. A different filter would give rise to an alternative expression (i.e., the expression is
not economically motivated).

A proof of this result is available in Bandi et al. (2016). For completeness I present

below the simple case for J = 1. For conciseness, I let £ = 0,1, 2. First, note that

gt = aLoé‘gl) + a171€§1_)2 + a172€§1_)4 4+ ...+ (1.38)

1 1 1
+b1,077£,t),t—1 + bl,l”é,t)—z,t—:). + bLQW‘g,t)—4,t—5 +..

where

a2 =FE (gt,eg) =F (gt, oa ) _ Y4 _ ¥

1 The standardization by v/27 yields a unit variance for 5? ), that is

B[()] =2 [(ZQ o T )] o ((2(1)) E - (55) ZE [&]) —1.
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bip=FE (gtaﬁé,lt),tA) =

bip=FE <9t775£,1t)—2,t—3> =F <9t> #
bio=E (g7} = E (g, 5
1,2 Gtr Tet—4t—5 Gt, V2

with

¢j =K (Qt,Et—j) .

Next, notice that

1 1
o <5§1) +—r, > = Yocy

\/§ \/E e,t,t—1
1 1
(03 <_\/§5§1) + \/iﬂgt),t—l) = Yr1€4-1

1 1
(> <\f z(f)2+\ﬁ ét)Qt 3>:¢25t2

1 1
¢3 <_ﬁ5§)2 + \/Eﬁét)ztg) = 77b35t—3

1 1 @
(\[ § )4 + 7 ét)—4,t—5> = €

1
Vs < \[51%1)4 + 7= /5 slt) 44— 5) = P5€t—5

which yields the standard Wold representation

gt = oet + Prer—1 + Pagr—2 + ... (1.39)

Hence, the classical Wold decomposition for weakly-stationary processes can be viewed as a statist-

ical and economic restriction resulting from the multi-scale. Most importantly, however, this result
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clearly suggests that traditional econometric methods for the analysis of covariance-stationary time
series (e.g., univariate ARMA models) fail to capture the sensitivity of economic and financial vari-
ables to shocks with heterogeneous persistence. For a thorough treatment in a univariate setting and
an introduction to multi-scale impulse response functions see Ortu, Severino, Tamoni, and Tebaldi
(2016). Finally while this decomposition is empirically appealing (i.e., the components are simply
rescaled differences of variables g;), a drawback is that correlation across components that refer to
different scales cannot be ruled out. Ortu et al. (2016) develop an extended Wold decomposition
for stationary time series that addresses this issue - an orthogonalized version of the decomposition

discussed here - and allows infinite levels of persistence.

1.6 Scale-specific Persistence Versus White Noise: Replicating the

example from Ortu et al. (2013)

Standard statistical tests'? (Box and Pierce, 1970; Ljung and Box, 1978) fail to detect components
localized at a specific level of persistence. In this section, I demonstrate this point by producing a
time series that is judged as a white noise while it contains a persistent component by construction.
This example is a replication from Ortu et al. (2013) (see page 2882) and provides the
basis for the Monte Carlo analysis later in this chapter. In particular, following Ortu et al.
(2013) I model directly the dynamics of the decimated components and for t = k x 2/ k € Z 1

assume that

G = i<

'2Given i.i.d. observations Box and Pierce (1970) show that the product between the number of observations and
the sum of k sample autocovariances is asymptotically distributed as a Chi-squared distribution with k degrees of
freedom. In other words, Q =T X Zl;:l 72 ~ 2, where T is the sample size and 7, denotes the autocorrelation
coefficient at lag m. In practice, the strict restriction of independence and homogeneity is violated leading to
inaccurate statistical inference especially in small samples (see also Ljung and Box, 1978).
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J* J* J*
gf +2?;* =prg) + €§ +2)J*, (1.40)

J* J*
) =

where e9) ~ N (0,2*3') Vi < J*, 77§J*) ~ N (0,2*‘]*) and 575‘]*) ~ N (0,2*‘]*(1 — p%)) Moreover,
[ assume that the decimated components are independent across levels of persistence (i.e., the
innovations eV ),59 ) are uncorrelated for j # 7' and sgj ) is uncorrelated with ng‘]*) for all 7).

As Equation (1.40) demonstrates all decimated components are independent normal innovations
except for one with an autoregressive structure. More specifically, the persistent component gﬁ‘]*)
is an autoregressive process of order 1 in the dilated time of the corresponding scale and thus its
long-run variance is given by

. Var <€§J*)> §
Var (gg‘] )) =———>-= 277", (1.41)
(1= p3e)

Furthermore, note that the unconditional variance of the process is set equal to 1 since

J* J*
Var (¢g:) = ZVar (gﬁj)) + Var (WISJ*)> = Z2‘j +27 =1 (1.42)
j=1 j=1

Therefore, in line with the approach of Ortu et al. (2013) the persistent component gg‘]*) explains

exactly a fraction 277/ of the total variability of ¢;.

First, I simulate the components using the dynamics in (1.40). I'set J* = 4 so that the persistent
component accounts only for 6.25% for the total variance and let py« = 0.5. Then, I use the inverse
of the operator T(/) to reconstruct the series. In particular, I obtain the original series from the

following relation
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gt T

gt—1 9,§4)

Gt—2 9,:(3)

gt—3 g@s

gt—4 9152)

9t—5 g,ﬂ

gt—6 9@8

gt—17 _ (T(4))*1 9912 (1.43)
9t—8 Qt(l) ‘ .
gt—9 gt(i)g

gt—10 %@4

gt-11 91&)6

gt—12 gt(i)s

gt—13 géi)l()

Gt—14 9912

gt—15 9914

Figure 1.1 depicts the time series for the constructed process g; along with its autocorrelation and
cumulative distribution functions. Note that g; clearly resembles a Gaussian white noise. Figure 1.2
presents the simulated decimated components and their corresponding autocorrelation functions.
Similar to an AR(1) process the persistent component g§4) has an autocorrelation function that
decays toward zero exponentially.

Table 1.1 presents descriptive statistics for the simulated decimated components and the series
gt- Moreover, I use the Kolmogorov-Smirnov test statistic to check for normality and the Ljung-Box

(1978) Q-test to check simultaneously for autocorrelation at multiple lags. The null hypothesis that

the constructed series comes from a standard normal distribution cannot be rejected. In addition,
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Figure 1.1: Constructed process g;
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Notes: This figure plots the time-series and presents the autocorrelation function and the cumulative
distribution function for the process {g;}, which is constructed by applying the inverse transforma-

tion matrix (T(4))_1 in the simulated components from Equation (1.40) for J* =4 and ps- = 0.5.
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I cannot reject the null that the first £ = 1,2,...,5 autocorrelation coefficients are jointly zero.

Overall, this example illustrates the importance of this decomposition as a filtering procedure that

disentangles layers of a process with heterogeneous levels of persistence. In section 1.7, 1 present

a multi-scale variance ratio test that distinguishes a white noise process from a process whose

decimated components are serially correlated.

Table 1.1: Descriptive statistics for the simulated

components and the constructed

series
Panel A Constructed series Decimated components
@) ) &) (4) 4
gt 9t 9i 9t 9i T
Mean -0.0133 -0.0096 -0.0061 0.0166 0.0028 -0.0133
Variance 1.0222 0.5073  0.2560 0.1288 0.0631 0.0670
Skewness -0.0071 -0.0036 -0.0433 0.0244 0.1544 -0.1073
Kurtosis 2.9274 3.0044 3.0487 29134 2.7945 3.0620
AC(1) 0.0057 -0.0282 -0.0504 -0.0076 0.5636 0.0842
# observations 8192 4096 2048 1024 512 512
Panel B
Kolmogorov-Smirnov: p-value 0.1151
Ljung-Box Q-test: lag 1 2 3 4 )
p-value 0.6049  0.6202 0.7121 0.8432 0.4045

Notes: Panel A reports descriptive statistics for the decimated components whose dynamics are
simulated according to Equation (1.40) and the constructed series g;. I present the mean, variance,
skewness, kurtosis as well as the autocorrelation coefficient for the first lag. Panel B reports the
p-value of the Kolmogorov-Smirnov test for the null hypothesis that re-constructed series comes
from a standard normal distribution. Also, it reports the p-values of the Ljung-Box (1978) Q-test

for the null hypothesis that the first k = 1,2, ..
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1.7 The Multi-scale Variance Ratio Tests of Gengay and Signori

(2015)

Let {y:},c,, be a white noise process, i.e. E(y;) =0, Var (y;) = O'Z and Cov (y4,ys) = 0 for all s # t.
Theorem 3 in Gengay and Signori (2015) states that the wavelet variance ratio for a stationary
white noise process is given by

WVar,, () 1

En (1) = ~ar (o = 3 (1.44)

That is, under the null of no serial correlation (i.e., Hy : Cov (y,ys) = 0 for all s # t against
Hy : Cov (yt,ys) # 0 for some s # t) the wavelet variance at scale m contributes a ratio of 27 to
the total variance. This is because
1/2
WVary, (y) = Var (wp ) = / / Sm (f) df (1.45)
—1/2
where wy, + is the process obtained by applying the time invariant filter h,, to {y:}. Gengay and
Signori (2015) demonstrate that since {y;} is a zero-mean stationary process, the spectral density
function of wy, ¢ is S, (f) = [Hum (f)|?Sy (f) where H, (f) is the discrete Fourier transform of the
filter'® and S, (f) = 05. Also, f_152 |Hy (f)1?df = ||hml|? due to Parseval’s identity. Hence, it

follows that

1/2

Wy, () = |

1/2
rmunﬁ%umvzﬁ/‘rmﬂnﬁﬂza%mm2=ﬁ2w (1.46)
—1/2 —-1/2

Any departure from this benchmark provides the means to detect serial correlation. In particular,

'3More specifically, let {y:} be a zero-mean stationary process with spectral density f, (-) and {x:} be the pro-
cess xy = » 00 Pyi—; where 357 || < oco. Then {z:} has a spectral density f. () given by fo (\) =

19 (€) [ fy (A) where ¢ (e7) = Z;‘;iwwje’”*. The operator ¢ (B) = Y22 _ ; B? applied to {y} is a time-
invariant linear filter with weights {¢;} (see Brockwell and Davis, 2009 page 123).
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by testing the implications resulting from Equation (1.44) Gengcay and Signori (2015) introduce a
family of test statistics'® for the white noise hypothesis. First, they demonstrate that
5 WVar,, (y) Dt Wiy p 1

Em,r (Y) — = 5 = (1.47)
Var (y) Zthl Yot 2

is a consistent estimator of the wavelet variance ratio and that é’mj converges in probability to 27"
even for (unconditionally) heteroskedastic white noise processes (i.e., for uncorrelated processes that
may fail to be covariance stationary).

Then under mild restrictions, that is if {y;} is a white noise process whose cross-joint cumulants

of order four are zero, they define the following test statistics

GSm =)= (f;m,T _ > 4 N(0,1) (1.48)

with

tmaz Jmaz

am = Z Z Z hm,ihm,jhm,ifshm,jf&
SEZ i=imin j>i
where h,,, is the wavelet filter used in the construction of (C:’myT and iyin, = maz(0,S), imer =
min(Ly,, Ly, +s) — 2 and jiae = min(Ly,, Ln+ s) — 1. For instance, if h,, is the Haar filter (%, —%)

the test statistics for the scales 1 to 4 are given by

A 1 2 A 1
GSy = VAT (51,T - 2) , GSy = 1/%T (52,T - 4)
256 [, 1 2048/ 1
GS3 =\ T2 T <537T - 8> LGS =\ =T (54,T - 16)

respectively. Gengay and Signori (2015) show that each of these tests has strong power against

specific alternatives. For instance, for m = 1 the test has significant power against AR(1) and

YMEor wavelet-based tests for serial correlation see also Lee and Hong (2001) and Duchesne (2006). The simulation
results in these studies indicate over-rejections and modest power in small samples.
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MA(1) alternatives.

Modified Multi-scale Variance Ratio Tests for Decimated Components

Ortu et al. (2013) propose a modified version of the test statistic in Equation (1.48) that distinguishes
a white noise process from a process whose decimated components are serially correlated. Assume

that {g¢},c7 is weakly stationary with E (g;) = 0 and Var (g;) = 03. Denote with

T
(X"'(FJ)) = [gTa gr—1,- - - 791] (149)

the vector collecting the observations of g;. Ortu et al. (2013) rely on the transformation matrix
T(/) to obtain the decimated components and build the variance decomposition of the series. Bandi
and Tamoni (2016) use the same method to obtain a covariance decomposition between two series

(see Section 1.11). In particular, similar to the simple case discussed in Section 1.2 it holds that

7T§~J)

ot
g(TJ—1)
955"
g(TJ—Q)
95174
T(J)X;D — g(T"/g” (1.50)

(J-2)
97/4

o

(1)
912

o

26



] . ) 1T
Letting now gl) = [gg.), . ,g](jx)y, - ,ggpj)} , the sample variance of g; can be computed as

()" X ()P 7ox) (a0 o))

- - - (1.51)
FEUE O\ ()
) 97 (g() @ s s
IPVECACON: +2J( d ) d (1.52)
T T
. T s
E}]:1 97 (g(J)) gl
= - (1.53)

Ortu et al. (2013) show that the equality in Equation (1.51) holds because the matrix (A(J)) “2
is orthogonal®® (i.e., its columns are orthonormal) and hence the inner product (Xé‘]))TX}J) is
preserved. Equation (1.52) holds because the diagonal elements of the matrix A() are A\; = \y =
1/27 and A\, = 1/2779 k= 2=V 4 1,...,2/ 5 = 2,...,J. Equation (1.53) exploits the fact
that, given the stationarity assumption and for large samples, 7r§2]) is an unbiased estimator of the
population mean which is zero. In total, the above result shows that the variance of g; can be
expressed as the sum of the variances of its decimated components. The presence of the factor 27
is justified on the basis that the decimated component g(@) has T/2 observations.

The ratio of the sample variance of the decimated components at level of persistence j to the

sample variance of the time series

.20 (g®)TgW)

) o

can be used as test statistic. In particular, in order to test the null hypothesis of no serial correlation

(i.e., Hy: p = %&;k) =0 for all k£ > 1 against H; : py # 0 for some k > 1) Ortu et al. (2013)

5Note that
(A(J))—1/2 () ((AU))—I/? T(J))T _ (A(‘”)_l/2 ) (T(J))T (A(J)>_l/2 _ (A(J))—uz A (A(J))—l/z _

where I is the identity matrix.
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employ the following test statistics which converge in distribution to a standard normal

\F (6-5) avo. (1.55)

The values of a; for different resolution scales are given by

(%)

Finally, as Ortu et al. (2013) point out the existence of a maximum degree of persistence in
the original series {g¢:} is equivalent to the existence of J such that the decimated component
7715‘]) is white noise. In essence, the criterion to determine the optimal number of components to

be extracted is based on a sequential analysis of the series 7Tt(‘]), J = 1,2,... which incorporates

fluctuations with persistence greater than 27 periods.

1.8 Monte Carlo Simulations

I investigate by means of Monte Carlo simulations the power and size properties of the modified
multi-scale variance ratio test of Ortu et al. (2013). T repeat the simulation exercise in Section
1.6 for N = 5,000 times and let ps+ vary in the interval (0,1). For each simulation I compute
the rescaled test statistics éj for each level of persistence 7 = 1,...,5 and carry out a two-tailed
test. Table 1.2 reports the probability of rejecting the null at a 5% level. The power of the test is
size-adjusted. That is, for a given sample size the power is computed using the empirical critical
values obtained from Monte Carlo simulations with 5,000 replications. The empirical critical values
for different sample sizes are available in Table 1.5. Figures 1.3 and 1.4 plot simulated densities and
quantile-quantile plots of the variance ratio test statistic.

Overall, the multi-scale variance ratio test statistics do not significantly over-reject or under-
reject the null hypothesis. Moreover even though the deviations of Var <g§4)) from its large sample

mean (i.e., 1/2% = 6.25%) are small in this framework, the test displays desirable power properties
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at the time-scale at which the persistent component is localized (i.e., for j = 4). Also, as the sample
size increases the power of the test increases steadily. Similar results hold for J* =5 and J* =6
However, as the level of resolution at which the persistent component is localized increases (i.e.,
J*) the rejections rates decrease for T = 256. That is, it is harder to detect persistent components
localized at low-frequencies in small samples.

A few comments are in order here. First, in comparison with the results of Ortu et al.
(2013, see Table 1), the power of the test in my analysis is lower. This is because in their simulations
Ortu et al. (2013) calibrate the variance of the simulated decimated components in line with actual
consumption growth. In particular, the persistent component is localized at scale J* = 6 and
explains either 3%, 5% or 7% of the total variance. Within this setting, the test does display
desirable properties. Intuitively, the deviation of Var (ggﬁ)) from 1/2° ~ 1.56% is large enough
to increase the power of the test at this level of resolution without leading to significant over or
under-rejections at the remaining time-scales. For more general applications, however, I argue that
we need to be more cautious when interpreting the results of the test. For instance, when the test
is applied to macro uncertainty - as in chapter 2 - the null of no serial correlation is rejected at
multiple levels of resolution. This result does not mean that for all of the time-scales for which the
test gives a rejection the uncertainty components are scale-wise AR(1) processes. Instead, it means
that macro uncertainty contains a serially correlated decimated component in at least one of the
time-scales. Deriving the joint asymptotic distribution of the modified variance ratio tests - in the
spirit of Gengay and Signori (2015) - could allow us to gain power and potentially resolve these

problems.
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Table 1.5: Empirical critical values for the multi-scale variance ratio test

Persistence level
j= 1 2 3 4 5 6 7

Panel A: T = 256

0.025 -1.8637 -1.7996 -1.7711 -1.6422 -1.4639 -1.2403 -0.9758
0.975 2.0381 21194 2.1127  2.2840 24112 24037 2.6789

Panel B: T' = 512

0.025 -1.9437 -1.8501 -1.8223 -1.6988 -1.6208 -1.4420 -1.2483
0.975 1.9880 2.1963 2.0772 2.1396 2.3017 2.2829 2.4870

Panel C: T'= 1024

0.025 -1.9623 -1.8396 -1.8995 -1.8161 -1.6937 -1.6083 -1.4596
0.975 1.9931  2.0147 1.9985 21434 21657 2.1917  2.4173

Panel D: T' = 2048

0.025 -1.9798 -1.9023 -1.9523 -1.8439 -1.7929 -1.7277 -1.6358
0.975 1.9765 2.0992 19751 20251 2.1079 2.1688  2.2790

Notes: This table reports the empirical critical values of the distribution of the multi-scale variance
ratio test for different sample sizes and 7 = 1,...,7 at percentiles 0.025 and 0.975.
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Figure 1.3: Simulated densities of the multi-scale variance ratio test
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Notes: These figures plot simulated densities of the multi-scale variance ratio test statistic of Ortu
et al. (2013) for T =512 and j =1,...,6. I implement 10,000 replications.
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Figure 1.4: Quantile-quantile plots of the multi-scale variance ratio test
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Notes: These figures plot quantile-quantile plots of the multi-scale variance ratio test statistic of
Ortu et al. (2013) for 7= 512 and j = 1,...,6. I implement 10,000 replications.
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1.9 On the Properties of Scale-specific Predictability

[ present an extension of the framework for scale-specific predictability of Bandi et al. (2016). In
particular, I demonstrate theoretically and via simulations that predictability on the decimated
components of two series translates into predictability upon two-way (forward for the regressand,
backward for the regressor) adaptive aggregation of the series irrespective of the properties of the
scale-wise regressor. My work is motivated by the empirical relation between excess
market returns and macro uncertainty as documented in chapter 2.

First, consider the following scale-specific predictive system defined in Bandi et al. (2016). For

Jj=J" with 7* € {1,...,J}, let
) _ a0
Lxcoi* yoi* = 6J*gk><2j* (1.57)

(%) _ UM (")
o 425* = Pi*Igx2i +€k><2j*+2-7'* (1.58)

while for j # j* assume that

5”12;221 = ul(c]x)Qj (1.59)
gl(cj>22j = ng)zi (1.60)

where k € Z and the shocks u,(fj),e,gj) satisfy Corr (ug‘j),sg‘j)> = 0, Vt,j. Equations (1.57)-(1.60)
define a predictive system on scale j*. Bandi et al. (2016) show that a predictive relation local-
ized around the j*" scale produces patterns of slope coefficients and R%s which have a peak for
aggregation levels corresponding to the horizon 27" (i.e., hump-shaped dynamics).

However, hump-shaped structures arise naturally upon aggregation irrespective of the dynamics
of the regressor. That is, Equation (1.58) is not a necessary condition. For instance, consider the

following scale-specific predictive system for j* € {1,...,J}
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(") (Y
Lpxcoi* yoi* = 5J*gk><2j* (1.61)

() gl
9. o = 0jeE) e (1.62)

where k € Z and o+ denotes scale-specific variance, while for j € {1,...,J} with j # j*

xi(cjizi = “iE;]x)QJ’ (1.63)
QIE:JX)QJ' = 51(6223" (1.64)

This system differs from the one in Bandi et al. (2016) in the sense that the scale-
wise regressor is not an AR(1) process but a white noise-process. Simply put, two
scale-localized white noise processes - one of which predicts the other - can also yield

statistically significant economic relations upon aggregation.

Theoretical Example: For simplicity, [ assume that T =8, j* =1, J = 2 and [ set all decimated
components in Equations (1.63)-(1.64) equal to zero (i.e., {xlijx)zjvglijQQJ} = 0). Using the inverse
Haar transformation matrix I construct the raw series x; and ¢;. In particular, the time series g; is

equal to
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(1)

g8 9s
g7 g
g6 9"
o | _| . (1.65)
91 g
9 —g4"
9 95"
91 —gé”
Next, I aggregate the series over a horizon ¢ = 27" = 2. The aggregated series are
g12=20 zr12="0
92,3 = (951) - 94(11)) /2 T3 = (l’gl) - xil)) /2
934 =0 r34 =0
915 = (94(11) - gél)) /2 T4 = (96511) - Ucél)) /2= B1g2,3
956 =0 56 =0
96,7 = (gél) - gél)) /2 Te7 = (ib'g(;l) - wél)) /2= B19a5
grs =0 r78 =10
Based on a basic block of 2 elements the predictive regression of xy41,42 on g1 yields
j= sy _ g (160

Var (g23)
and R? = 100%. That is, there is a close one-to-one mapping between scale-specific predictability
and two-way aggregation irrespective of whether the scale-wise regressor is autoregressive. Note
that the addition of noise for j # j* (i.e., if {xgzgj?g/(gjzzj} # 0 - for instance, if gl@w is a scale-wise

AR process) leads to a blurring of the relation upon aggregation.

Moreover, the contemporaneous regression of x¢11 442 on gi11,4+2 yields an inconsistent slope
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estimate since

(1)
’B’ _ Cov (5[7475,9475) _ /Bl Cov (927379475) _ _ﬁl Var <g4 )
Var (ga) Var (gas) Var (gfll)) 4 Var (gél))

(1.67)

That is, E has a wrong sign and is attenuated.

Simulations: I simulate scale-specific predictability by modelling the dynamics of the decimated
components of excess market returns and macro uncertainty according to Equations (1.61)-(1.64).
The relation is at scale j* = 6 with §;+ = 5. For j # 6, u,(jzw ~ N(O,a&j)) and 5,(52% ~ N(O,Ugj)).
That is, the decimated components are white noise shocks. The variances of the decimated compon-
ents (i.e., agj) and aéj)) are calibrated to the data. I set 1" = 512 and implement 2,500 simulations.

For each simulation, I run forward/backward regressions

Tl i+h = Oh + BuGi—ht16 + Zegth (1.68)

where 241 44p = Z?:l Tei and gi_pq1 = Z?:l gi—i+1 are (forward/backward) aggregates over a

horizon of length hA. In addition, I run the equivalent contemporaneous regressions

Tt t4+h = Oh + BuGig1,64h + 2t 4h- (1.69)

Finally, 1 also consider forward/backward regressions under the null of absence of scale-specific
predictability. That is, I set 8+ = 0 and let white noise shocks drive the decimated components at
scale j*.

Table 1.6 presents the simulation results. I report the median of the slope estimates, rejection
probabilities at the 1%, 5% and 10% levels associated with Valkanov’s (2003) rescaled ¢/v/T stat-

istic'® and the median of the adjusted R? statistics. In Panel A of Table 1.6 I run linear regressions

15As Bandi and Perron (2008) demonstrate, under the null of no dependence (i.e., 8, = 0 in Equation 1.68) the
slope estimator is super-consistent. However, the standard t-statistic diverges with T leading to over-rejections of
the null of zero-slope. Similarly, the R? converges to a random variable whose mean increases with the overlap.
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(with an intercept) of forward/backward aggregates over a horizon of length h. In Panel B I run
linear regressions (with an intercept) of contemporaneous aggregates over a horizon of length h and
in Panel C I run linear regressions (with an intercept) of forward/backward aggregates under the
null of absence of scale-specific predictability. An R? of 11.99% is achieved for a level of aggregation
corresponding to 277 = 64 periods. Before and after, the predictive slopes and the RZs display a
hump-shaped behavior (see also Figure 1.5). This hump-shaped structure in both the predictive
slopes and the RZs is a significant feature of the assumed data generating process. If aggregation
led to spurious predictability - by generating stochastic trends for instance - such patterns would
be prevented. Furthermore, in line with the theoretical predictions the contemporaneous regression
yields an inconsistent slope estimate with wrong sign for a level of aggregation corresponding to
27" = 64 periods. Under the null of absence of scale-specific predictability there is not a statistically

significant relation upon aggregation.

1.10 Risk Decomposition Across Time-scales

Finally, I demonstrate how to decompose risk as proxied by the covariance between a risky factor
{ ft}thl and the returns of an asset {rt}thl on a scale-by-scale basis and investigate scale-specific
risk compensations. The framework presented here is based on the work of Bandi and
Tamoni (2016). Let T(TJ) and fj(:]) denote the vectors collecting the T = 27/ observations of the
series {r;} and {f;} respectively, that is

7“5:1) = [TT,T'T_l, e ,Tl]T and fj(wJ) - [fTufT—l; .. -vfl]T' (1‘70)

Similarly to Section 1.7, the sample covariance between r; and f; can be expressed as the sum of

the covariances of the decimated components
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Figure 1.5: Dynamics of slope coefficients and R?’s under different simulation scenarios
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Notes: These figures plot the dynamics of the slope coefficients and R?s across horizons under
different simulation scenarios. The solid black lines represent the median of the slope estimates and
the median of the adjusted R? statistics from regressions of forward-backward aggregates while the
dotted line from contemporaneous regressions. The solid grey lines represent the median 8, and
the median adj. R? from regressions of forward-backward aggregates under the null of absence of
scale-specific predictability.
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In particular, the sample covariance is given by
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and therefore
Cov [rr, fi] = ZCOV[ k><27fk><27} (1.76)

By using simple time-series techniques, Bandi and Tamoni (2016) provide a formal method to
analyze risk exposures at different frequencies and subsequently study how the pricing of risk varies
across investment horizons. Note that the covariance-decomposition can also be extended to the

case where the components are not decimated, i.e.

Cov [ry, fi] = ZCOV[ } + Cov[ () ;J)} (1.77)

where the last term is the covariance of the long-run trends. See chapter 2 and 3 for applications
with macroeconomic uncertainty and macro growth and volatility risks respectively.
For similar wavelet-based variance/covariance decompositions that allow more general filters see

also Gengcay, Selcuk, and Whitcher (2001).
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1.11 Conclusions and Contribution

I have provided an introduction to the econometric framework necessary to understand scale-
dependencies in financial economics. My explicit contribution to the current body of work
is two-fold: First, I present an analysis of the size and power properties of the multi-scale vari-
ance ratio test of Ortu et al. (2013) that can distinguish a white noise process from a process whose
decimated components are serially correlated. More importantly, however, I show that scale-specific
predictability translates into predictability upon two-way aggregation irrespective of whether the
regressor is scale-autoregressive. To put it simply, two scale-localized white noise processes - one of

which predicts the other - can yield statistically significant economic relations upon aggregation.
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Chapter 2

Business-Cycle Variation in Macroeconomic Uncertainty
and the Cross-Section of Expected Returns: Evidence for

Scale-Dependent Risks

2.1 Introduction

In this chapter, I decompose macroeconomic uncertainty into components with heterogeneous de-
grees of persistence and investigate the price of risk and the uncertainty premia associated with each
of these scale-dependent macroeconomic shocks. This approach allows me to identify a close link
between macroeconomic uncertainty and portfolio expected returns at business-cycle frequencies
which is not present in the raw series. I quantify aggregate uncertainty using the model-free index
of Jurado et al. (2015) that measures the common variation in the unforecastable component of a
large number of economic indicators. That is, in line with the core intuition of Jurado et al. (2015)
I start my empirical work from the premise that what matters for consumption and investment de-
cisions is not if the conditional volatility of a particular macroeconomic indicator has become more
or less dispersed. Instead, what is important is whether the state of the economy is more or less
predictable. To classify uncertainty shocks into layers with different levels of persistence (i.e., on the

basis of their arrival time and scale) I rely on the multiresolution-based decomposition for weakly
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stationary time series of Ortu et al. (2013). Moreover, my study is based on the novel framework
for scale-based (i.e., horizon-specific) analysis of risk as proposed first in Bandi and Tamoni (2016)
and extended later by Boons and Tamoni (2016).

I find that a single business-cycle'” uncertainty factor that captures assets’ exposure to low-
frequency variation in aggregate uncertainty can help explain the level and the cross-sectional dif-
ferences of asset returns. In particular, based on portfolio-level tests I show that uncertainty shocks
with persistence ranging from 32 to 128 months carry a negative price of risk of about -2% annually.
The price of risk for high-frequency fluctuations and for the innovations in the raw series of aggreg-
ate uncertainty (see Table 2A.1) is not significant. In addition, T demonstrate that equity exposures
to macroeconomic uncertainty are also negative and hence uncertainty risk premia are positive. My
results remain statistically significant after using a t-statistic cutoff of three as suggested by Harvey
et al. (2016) and are quantitatively similar irrespective of whether uncertainty is derived from 1, 3
or 12 months ahead forecasts. Furthermore, while misspecification is an inherent feature of several
prominent asset pricing models (for instance, see Kan et al., 2013 and Gospodinov et al., 2014) T
show that the one-factor model with business-cycle macro uncertainty is correctly specified. This
finding is an important contribution in the existing literature.

My work follows and builds upon the novel work of Boons and Tamoni (2016) that emphasizes
the importance of low-frequency macro volatility shocks with persistence greater than 4 years in
determining asset prices. In comparison with Boons and Tamoni (2016) I do not restrict'® the price
of risk across scales and hence my empirical results are more precise about the exact time-scale (i.e.,
horizon) over which macroeconomic uncertainty matters (i.e., 32 to 128 months). In particular, I
document that only business-cycle variation in uncertainty drives asset prices. Fluctuations in macro

uncertainty with persistence greater than 128 months are not consistently priced in the cross-section

1"Business-cycle dynamics correspond to periods of roughly 2-8 years - see Burns and Mitchell (1946) and the
survey of Diebold and Rudebusch (1996). More recently, Comin and Gertler (2006) argue that business cycles are
more persistent phenomena and suggest modelling fluctuations beyond 8 years.

!8Note that I estimate separately the price of risk for each time-scale (i.e. I analyze the entire term structure of
risk prices). Boons and Tamoni (2016) focus on a more traditional (in the spirit of Beveridge and Nelson, 1981)
separation of high versus low-frequency components, i.e. they estimate a restricted two-factor model.
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of expected returns (see Tables 2B.5 - 2B.7). In addition, I show that the quarterly results for macro
volatility risk in Boons and Tamoni (2016) are not robust to changes in the sampling frequency.
Specifically, using monthly data I find that low-frequency shocks in the volatility of industrial
production are not priced at the portfolio level (see Table 2B.8). On the contrary, my estimates for
the price of risk are free from dependencies on any single economic indicators, numerically similar
(i.e., -2%) and robust across different test assets including: the 25 Fama and French (1993) size and
book-to-market portfolios, the 25 Fama and French (2015) size and investment portfolios, the 25
Fama and French (2015) book-to-market and operating profitability portfolios and the 25 Fama and
French (2016) size and variance portfolios. Also, my results suggest that the uncertainty shocks at
each scale carry unique information'? (i.e., scale-wise heterogeneity). That is, in the spirit of Bandi
et al. (2016) there is a simple statistical explanation of why the relation between macro uncertainty
and returns is only present at certain time-scales.

Moreover, 1 examine for monotonicity in the low-frequency uncertainty betas. I find that the
scale-specific risk loadings are increasing monotonically for portfolios sorted on size and investment.
An increase in low-frequency uncertainty has a smaller effect on large firms and aggressive firms
and hence these securities offer smaller risk compensations - consistent with the well-known size
effect (i.e., one-period average returns decrease from small to big stocks) and the investment ef-
fect (i.e., one-period average returns decrease from conservative to aggressive stocks), respectively.
Similarly, scale-specific risk exposures decrease monotonically across book-to-market and dividend-
yield - consistent with the well-documented value and dividend-yield effects. Overall, I document
a low-frequency risk-return trade-off for the valuation of portfolios exposed to fluctuations in mac-
roeconomic uncertainty.

My work adds to a new strand of research that examines how horizon-dependent shocks propag-
ate to asset prices. Bandi et al. (2016) introduce the novel notion of scale-specific predictability

and demonstrate its significance as a channel through which economic relations may be valid at

19See Table 2B.17. Similar results can be seen in Bandi et al. (2016) for market variance and consumption variance.
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particular horizons (i.e., levels of resolution) without having to be satisfied at all horizons. Ortu
et al. (2013) decompose consumption growth into components with heterogeneous levels of per-
sistence and analyze their implications within a Bansal and Yaron (2004) style economy. Bandi
and Tamoni (2016) show that fluctuations in consumption growth between 2 and 8 years can ex-
plain the differences in risk premia across book-to-market and size-sorted portfolios in line with the
Consumption CAPM. In a similar fashion, Kamara et al. (2015) study the pricing of Fama-French
factors across investment horizons. Noteworthy contributions in this area also include Yu (2012)
and Dew-Becker and Giglio (2016) who analyze the joint properties of returns and macroeconomic
growth at different frequencies.

Furthermore, my work contributes to a voluminous literature that analyzes the determinants
of the cross-section of stock returns. For surveys of empirical literature on cross-sectional asset
pricing see Subrahmanyam (2010), Goyal (2012) and more recently Harvey et al. (2016). Within
this body of work two main lines of research are related to my study. The first part seeks to explain
the cross-sectional pattern in returns based on the insights of the long-run risks (LRR) model of
Bansal and Yaron (2004) which combines consumption and dividend growth rate dynamics governed
by persistent shocks and fluctuating economy uncertainty?’. Notable factors motivated from this
framework include: long-horizon consumption growth rate (Parker and Julliard, 2005), long-run
consumption risk (Bansal et al., 2005) and fourth-quarter year over year (Q4-Q4) consumption
growth (Jagannathan and Wang, 2007). In line with Boons and Tamoni (2016), my study focuses
on the covariance of long-term returns with innovations in long-term uncertainty and hence is
distinct from the LLR framework which quantifies assets’ exposure to long-run risks using one-
period returns.

The second branch of this literature relies on the intuition of Merton’s (1973) intertemporal

capital asset pricing model (ICAPM)?! to test for pricing of macroeconomic factors. In a seminal

2Due to the resulting low-frequency properties of the time series of aggregate consumption and dividends this
family of models is known as long-run risks models.

2 Theoretical extensions of the ICAPM include Campbell (1993, 1996); Chen (2002); Brennan et al. (2004); Camp-
bell et al. (2014).
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paper, Merton (1973) demonstrates that in a multi-period economy investors have incentives to
hedge against future stochastic shifts in the investment and consumption opportunity sets. This
implies that state variables that are correlated with changes in investment opportunities play an
important role in determining asset returns. For an overview of studies that explore the cross-
sectional implications of ICAPM-motivated macroeconomic factors see Table 2A.3.

Recent studies suggest that macroeconomic uncertainty can also be thought of as a state variable
within the context of the ICAPM proxying for future investment and consumption opportunities®?.
In particular, Ozoguz (2009) shows that investors’ uncertainty about the state of the economy can
help explain the time-series variation in stock returns and their cross-sectional properties. Bali et al.
(2016) develop a simple extension of Merton’s (1973) conditional asset pricing model with economic
uncertainty and show that uncertainty betas can explain the dispersion in individual stock returns
while Bali et al. (2014) demonstrate that macroeconomic risk is priced in the cross-section of hedge
funds. My work adds to this line of research in the following ways: First, I extend the study of Bali
et al. (2016) by demonstrating that only fluctuations in macroeconomic uncertainty with persistence
ranging from 32 to 128 months are consistently priced in the cross-section of portfolio returns while
short-lived fluctuations and the innovations in the raw series are not. Second, I document that future
excess aggregate returns are positively correlated with past uncertainty and thus the negative price
of risk for exposure to business-cycle macro uncertainty is inconsistent with the central economic
intuition underlying the ICAPM. That is, in the spirit of Maio and Santa-Clara (2012) and Boons
(2016) macroeconomic uncertainty is not a valid risk factor under the ICAPM.

The remainder of this chapter is organized as follows: Section 2.2 provides the empirical analysis,
including the extraction of the persistent components and cross-sectional regressions. Section 2.3
contains robustness checks and additional tests while Section 2.4 examines the monotonicity of the

scale-specific risk exposures. Section 2.5 concludes.

*?Bloom et al. (2007), Bekaert et al. (2009), Chen (2010) and Bloom et al. (2012) also provide theoretical and
empirical evidence linking macroeconomic shocks to investment dynamics. For a review of the literature see Bloom
(2014).
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2.2 Empirical Analysis

2.2.1 Data Description

To measure macroeconomic uncertainty I use the model-free index?® of Jurado et al. (2015) that
aggregates uncertainty in the economy derived from various sources into one summary statistic.
Jurado et al. (2015) combine 132 macroeconomic series and 147 financial time series together into
one large macroeconomic dataset?* to provide a new measure of macroeconomic uncertainty defined
as the common variation in the unforecastable components. The first dataset (also used in Ludvigson
and Ng, 2009) represents a broad category of macroeconomic time series such as: real output and
income, employment, consumer spending, bond and stock market indexes and foreign exchange
measures. The second dataset (also used in Ludvigson and Ng, 2007) includes valuation ratios such
as dividend-price ratio and earnings-price ratio, default and term spreads, yields on corporate bonds
and a large cross-section of equity returns.

In particular, let u;; (h) denote the h — period ahead uncertainty in the variable y;; € Y; =
(Y15 -, yNyvt)/ defined as the conditional volatility of the unforecastable component of its future

value, that is,

wig (h) = \/E (Wit = B lyianl 1)) 11 (2.1)

where I is the information set?® available to investors at time t. Jurado et al. (2015) construct the
index of macroeconomic uncertainty by aggregating individual uncertainty at each date, i.e. the

h — period ahead aggregate uncertainty at time ¢ is given by

2 Previous studies have relied on proxies of uncertainty such as “uncertainty-related” key words in news publications
(Baker et al., 2013), cross-sectional dispersion of survey-based forecasts (Bali et al., 2016) and implied or realized
volatility of stock market returns (Bloom, 2009).

*The dataset is available from Sydney Ludvigson’s website: http://www.econ.nyu.edu/user/ludvigsons/ .

#5To estimate E [-|I;] Jurado et al. (2015) form factors from a large set of predictors whose span is close to I; and
approximate F [-|I;] using the method of diffusion index forecasting (see Stock and Watson, 2002).
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ug (h) = plimy, o0 > witti g (h) = By [y ()] (2.2)

i=1

where w; = 1/N, are aggregation weights. I rely on estimates of aggregate uncertainty derived
from 1, 3 and 12 months ahead forecasts. Throughout the chapter I use the notation wu; for the
time series proxying for macroeconomic uncertainty leaving h understood when there is no chance
of confusion.

In Panel A of Table 2.1 I report descriptive statistics for the macroeconomic uncertainty index.
In addition, I examine the persistence of the uncertainty index through a battery of testing proced-
ures. I report the p-values of the Augmented Dickey-Fuller (ADF - Dickey and Fuller, 1979) and
Phillips-Perron (PP - Phillips and Perron, 1988) tests for unit root and the values of the KPSS (Kwi-
atkowski et al., 1992) test statistic for the null hypothesis of stationarity whose critical values are
0.347, 0.463 and 0.739 at the 10%, 5% and 1% significance levels respectively. The null hypothesis
of a unit root is rejected at the 5% level with the ADF and PP tests for all measures of uncertainty.
Similarly, the results of a KPSS test confirm that the series is stationary for all h =1, 3,12. Panel
B of Table 2.1 presents the mean and standard deviation for the equity risk premium?®, defined as
the total rate of return on the stock market minus the prevailing short-term interest rate. Over the
sample period it has a mean of 5.71% and a standard deviation of 15.02%. Figure 2.1 plots the

index of macroeconomic uncertainty for h = 1,3,12. The shaded areas represent NBER recessions.

2.2.2 Scale-wise Heterogeneity in Aggregate Uncertainty

I begin by decomposing uncertainty into layers with heterogeneous levels of persistence using the

multiresolution-based decomposition of Ortu et al. (2013). In particular, let ugj ) denote fluctuations

of the uncertainty series with half-life in the interval [2/7! 27)  that is

26The data for the equity risk premium and the default and term spread used in Section 2.2.4 are available from
Amit Goyal’s website: http://www.hec.unil.ch/agoyal/
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uy = 50D - o7 =m — T (2.3)
where j > 1, wt(o) = u; and the moving averages 79 satisfies the recursion
(4-1) (7-1)
. s + 7m0 il
7Tt(J) _t 5 t=2771 (2.4)
for 7 =1,2,3,.... The derived series {u(j )} ; captures fluctuations that survive to averaging over
te

27~! terms but disappear when the average involves 2/ terms. For any J > 1, the original series u;
can be written as a sum of components with half-life belonging to a specific interval plus a long-run

average, that is,

J
U = Z ugj) + U§>J) (25)
= ——
J= —(D
t

(>J)

where u; incorporates fluctuations with persistence greater than 27 periods. The decomposition
of the time series is conducted using wavelet methods as in multiresolution analysis. In particular,
the extraction is based on the one-sided, linear Haar filter. Moreover, the decomposition in Equation
(2.5) uses information only up to time ¢ and hence is not subject to look-ahead bias. In contrast,
other popular filters for business cycle analysis are estimated over the full sample (for instance, see
Hodrick and Prescott, 1997).

For my empirical analysis, I set J = 7 so that the maximum level of persistence corresponds to
the upper bound of business cycle frequencies. An interpretation of the j — th persistence level in
terms of the corresponding time spans in the case of monthly time series is available in Table 2.2.
Figures 2.2a and 2.2b depict the persistent components filtered out of aggregate uncertainty. Note
that due to the initialization of the filtering procedure I discard the first 2/ — 1 observations for
each scale.

Furthermore, I use the multi-scale variance ratio test of Ortu et al. (2013) to test for serial
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correlation in the extracted uncertainty components uij), j=1,2,...,7 This test is based on a
new family of frequency-domain tests for serial correlation as introduced by Gencay and Signori
(2015) and exploits the fact that for a serial correlated process each component contributes a
different percentage to the variance of the process. Specifically, let fj be the ratio of the sample

variance of the uncertainty components at level of persistence j to the sample variance of the time

series, i.e.
DY CT AR )
&= (m)m (26)
(x37)" x5
where (X}J))T = [up,ur_1,...,u1] is the vector collecting the observations of {u;} and ul) =
[ug), cee ul(gzw, .. ,ug)} T. That is, due to the overlapping of the moving averages that define u?

the elements of each component are first sampled every k x 27,k € Z times and thus the sample
variance is calculated from the decimated series. Under the null hypothesis of no serial correlation,

27

the rescaled test statistic \/g (éj — 2%) where a; = % converges in distribution to a standard
normal. Ortu et al. (2013) suggest employing these rescaled test statistics to distinguish a white
noise process from a process whose (decimated) scale-dependent components are serially correlated.
Table 2.3 presents the results for the variance ratio test of Ortu et al. (2013) for different levels
of persistence with bold values denoting rejection of the null at a 99% confidence level. A white
noise model is strongly rejected at multiple levels of persistence. These results imply that at least
one of the uncertainty components can be represented as a scale autoregressive process on the

dilated time of the scale being considered. In other words, there exists j* € {1,...,7} such that

G") U + el « where k € Z and the parameter p; captures scale-specific

Ui yoi* = Pi*Upy o Jox 20* 427

persistence - known as scale-wise AR. Estimation results of the multi-scale autoregressive system
are available in Appendix 2B (see Table 2B.17).
In total, the empirical evidence in this section provide strong support for a data generating

process in which low-frequency uncertainty shocks are not linear combinations of high-frequency
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shocks. That is, in line with the generalized Wold representation of Bandi et al. (2016) the uncer-
tainty shocks at each scale carry unique information (i.e., scale-wise heterogeneity) - thereby giving
meaning to economic relations which may be satisfied at certain time-scales alone. Moreover, in-
novations for all scale-specific uncertainty components have to be computed before examining their
asset pricing implications (i.e., only the unexpected part of the uncertainty components should

command a risk premium).

2.2.3 Cross-sectional Implications

I test whether the innovations (i.e., Auij ) = ugj ) ugi)l) in the persistent components filtered out of
the uncertainty index can help explain the cross-sectional variation in asset prices. This approach
resembles empirical studies that test [CAPM-motivated macroeconomic factors by calculating in-
novations in state variables. To obtain the innovations for each scale j, I first extract the j — th
component and then I first-difference it. Under the one-sided, linear Haar filter used in the extrac-
tion, first-differencing the component of a given time series is identical to taking components of the
first-differenced series (see Bandi et al., 2016).

Macroeconomic risk as proxied by the covariance between innovations in uncertainty (i.e., Auy)
and asset excess returns (i.e., Ry Z) can be decomposed across scales as follows (see the novel frame-

work of Bandi and Tamoni, 2016 and Boons and Tamoni, 2016)

Cov [ Aut} ZCO’U [ R0 Auij)} + Cov [ RED , A (>J)] (2.7)
and hence the scale-wise (i.e., horizon-specific) risk exposures are defined as

Cov [sz( 2 Augj)} 4 gGD) Cov [Rf’ib‘]),Au?J)}
an =

5i(j) =
Var (Au§])> Var (Aufﬁ‘”)

(2.8)

In particular, in line with Boons and Tamoni (2016) I first run for each asset i (of size T') the

following time-series regression
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Rf’i(j) = B((]j) —I—Bi(j)Augj) —I—sgj) t=1,...,T foreachj=1,...,7,> 7, (2.9)

where R;%%9) denotes the components of asset excess returns associated with scale j at time ¢. Then
I estimate a cross-sectional regression of average portfolio returns on the estimated scale-specific

risk exposures 34)

Rei = X + AV 4o foreachj=1,...,7,>7, (2.10)

where R®! denotes the average time-series excess return for asset ¢, Ag; is the zero-beta excess
return associated with different uncertainty components, A; is the relative price of risk for £ (i.e.,
the scale-specific risk compensation)?” and oy is a pricing error. In essence, I am interested in the
ability of scale-dependent uncertainty shocks to explain aggregate portfolio returns. In addition, I
run Equations (2.9)-(2.10) for uncertainty shocks with persistence between 32 and 128 months (i.e.,

for a business-cycle uncertainty factor) where the corresponding beta for j = 6 : 7 is defined as

Cov {Rf’i(@ + RO Au® + Aul”

i(6:7) } ~ BIO)5(6) 4 gilT) (7) (2.11)

Var (Augﬁ) + Au,@)

Var (Augm)
Var (Augﬁ) > +Var (Aufj)

Var (Auy))

i (6) —
with ) = Var (Au§6)>+Var (Aui”)

) and (") = . That is, 87 can be viewed

as a linear combination?® of the betas associated with the factors Augﬁ) and Au§7) with weights
depending on the relative contribution to total variance (see also Bandi and Tamoni, 2016 for a
similar approach using decimated components).

Following Campbell et al. (2014) and in line with the theoretical work of Black (1972) and

271 verify empirically that for j > 7 and for all test portfolios, assets’ exposure to uncertainty shocks with persistence
greater than 27 = 128 months is not important for pricing. The results are available in Appendix 2B (see Tables
2B.5, 2B.6 and 2B.7).

28 Asymptotically, the components are uncorrelated across scales. In sample, however, multiresolution filters - like
the Haar filter used for the extraction - only deliver nearly-uncorrelated components (see also Bandi and Tamoni,
2016 and Gengay et al., 2001) and therefore the relation in Equation (2.11) is not exact. For further discussion and
a comparison of 87 versus 89 w©® + MM see Appendix 2B (see Figure 2B.2).
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the evidence?” in Krishnamurthy and Vissing-Jorgensen (2012) I leave the zero-beta risk-free rate
unrestricted. To determine whether uncertainty shocks with level of persistence j can explain the
cross-sectional variation in asset returns I look for an estimate 5\j that remains significant after
using a t-statistic cutoff of three as suggested by Harvey et al. (2016), for an intercept that is small
and statistically insignificant and a sample R? significantly different from zero.

Table 2.4 presents the first-pass beta estimates for the 25 Fama and French (1993) size and book-
to-market portfolios along with their statistical significance. The initial sample period is 1960:07 to
2013:05. The betas are estimated component-wise from Equation (2.9), that is regressing the j — th
component of returns on innovations in the j — th component of aggregate uncertainty. Given the
adopted time-series decomposition spurious autocorrelation at level of persistence j emerges as a
result of the 2/ — 1 overlapping data. Thus, I compute Newey-West (1987) heteroskedasticity and
autocorrelation consistent (HAC) standard errors with 2/ — 1 lags. To preserve space I only report
results®® for j = 6,7 and j = 6 : 7. The scale-specific risk exposures for the test portfolios are
negative. The last rows of Table 2.4 show the Wald test-statistics and their corresponding p-values
from testing the joint hypothesis that all scale-dependent exposures are equal to zero. For j = 6
and j = 6 : 7 the null hypothesis in the joint test of significance i.e. Hy: g0 = ... = %0) =0
is strongly rejected. Therefore, in the spirit of Kan and Zhang (1999) it is empirically sound to use
these scale-dependent betas as factors in cross-sectional regressions. In contrast, for j = 7 I cannot
reject the null that the scale-specific risk exposures are jointly zero.

Table 2.5 reports the estimates for the zero-beta excess return and the price of risk for each
scale for the 25 size and book-to-market portfolios along with the corresponding Fama-MacBeth3!

(1973) test statistics in parentheses. In addition, I normalize the scale-wise risk exposures and

29Krishnamurthy and Vissing-Jorgensen (2012) suggest that investors’ demand for Treasury Bills is driven by
liquidity and safety concerns and argue against the common practice of identifying the Treasury Bills as risk-free
interest rates.

30For j € {1,2,3,4,5} the scale-specific risk exposures are jointly different from zero across all test assets (results
available upon request).

31 Given that the first-stage regressions are scale-wise, the Shanken correction (Shanken, 1992) is not directly applic-
able here. To deal with the error-in-variables problem (i.e., the estimation errors in the betas) I report bootstrapped
confidence intervals for the second-pass estimates in Appendix 2B (Table 2B.14).
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estimate the price of risk per unit of cross-sectional standard deviation in uncertainty in percent
per year. I also report the p-value for the Kan et al. (2013) specification test of Hy : R? = 1
denoted as p (R2 = 1). After taking into consideration the data-mining adjusted rate for t-statistics
of three, the lambda estimates for levels of persistence j = 1,...,5 are insignificant. The estimated
price of rigk for the innovations in the sixth uncertainty component A is —0.69 with a t-statistic of
—4.57 while the intercept is 0.14 and insignificant (t-stat = 0.59). The coefficient of determination
for this factor is high and equal to 72.35% (se(f%) = 0.138)%? and the mean absolute pricing
error (MAPE) across all securities is 1.11% per year. A standard deviation increase in exposure
to low-frequency uncertainty shocks leads to a decrease in portfolio returns by —2.30% annually.
Moreover, the estimated price of risk for the innovations in the seventh uncertainty component is
also negative with a t-statistic of -3.21. However the estimated zero-beta excess return for this case
is significant at the 1% level (t-stat = 2.37). The performance of the business-cycle uncertainty
factor (i.e., Au§6:7)) is similar to Au£6) with a cross-sectional R? of 73.90% (S@(E%(;:\U) = 0.123) and
MAPE equal to 1.11% per year. Finally, for each of the low-frequency factors the Kan et al. (2013)
specification test does not reject the hypothesis that the model is correctly specified.

Since ) x Ag > 0 (or equivalently (67 x A\g.; > 0) low-frequency uncertainty shocks carry
positive risk premia. My results are in contrast with the work of Campbell et al. (2014) who find that
in the post-1963 period equities have positive volatility betas and therefore negative risk premia.
However, my findings are in line with Boguth and Kuehn (2013), Bansal, Kiku, Shaliastovich, and
Yaron (2014) and Tédongap (2015) who provide evidence of negative exposure of asset returns to
alternative measures of volatility risk. In addition, my results are in agreement with Boons and
Tamoni (2016) who first show that the price of low-frequency volatility risk is negative and assets

have negative low-frequency volatility betas and thus long-run volatility risk premia are positive.

32\7Vhen 0 < R2 < 1, R is asymptotically normally distributed around its true value and thus I cannot use
R2 +1.96 x se(R2) to obtain a 95% confidence interval. One way to construct confidence intervals is by pivoting the
cumulative distribution function (cdf) (see section 9.2.3 in Casella and Berger, 2002). Kan and Robotti (2009) and
Kan and Robotti (2015) use the same method to construct confidence intervals for the Hansen-Jagannathan distance
and the Hansen-Jagannathan bound respectively. To preserve space I only report confidence intervals in Table 2.12.
The R? for the business-cycle uncertainty factor is significantly different from zero across all test assets.
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Panel A of Figure 2.3 plots realized versus fitted average excess returns for the 25 size and
book-to-market FF portfolios where the priced factor is Augﬁﬁ), that is, the innovations in low-
frequency uncertainty shocks (derived from monthly forecasts) with persistence ranging from 32 to
128 months. Each two-digit number represents a separate portfolio. The first digit refers to the
size quintile of the portfolio (1 being the smallest and 5 the largest), while the second digit refers
to the book-to-market quintile (1 being the lowest and 5 the highest). If the fitted and the realized
returns for each portfolio are the same then they should lie on the 45-degree line from the origin.

Panel A visually confirms that the fit of the model is good. Similarly, Panel B shows that the factor

Augﬁﬁ) is successful at explaining the size and value effects.

2.2.4 Relation with Business-Cycle Indicators and Macroeconomic Volatility
Risk

(6:7)

Next, I examine the relation of the low-frequency uncertainty factor u; with macroeconomic
variables linked to fluctuations of the business cycle such as the term spread and default spread.
It is well-documented that these yield spreads are high around business-cycle troughs and low near
peaks (for instance, see Fama and French, 1989; Estrella and Hardouvelis, 1991 and Hahn and
Lee, 2006). In addition, the default spread and term spread are known to forecast macroeconomic
activity (Boons, 2016) and have long been used as proxies for credit market conditions and the
stance of monetary policy, respectively. Following Welch and Goyal (2008), the default spread
is defined as the difference between BAA and AAA-rated corporate bond yields. Similarly, the
term spread is defined as the difference between the long term yield on government bonds and the

three-month Treasury-bill rates. The correlation between the term spread and u§6:7) is 0.11 and

statistically significant at the 5% level. The correlation between the default spread and u§6:7) is 0.48
and statistically significant at the 1% level (see Figure 2.4). That is, an increase in low-frequency
aggregate uncertainty is closely associated with the deterioration of credit market conditions.

Moreover, I examine the correlation of u1(56:7) with the low-frequency macroeconomic volatility
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risk factor of Boons and Tamoni (2016). To measure macro volatility I consider the following

AR (1) — GARCH(1, 1) specification

IPG; = pu+ ¢IPGy_1 + 1y, (2.12)

02 = wo +wivl | +wo? (2.13)

where I PG, is the (latest vintage) seasonally-adjusted industrial production growth rate from the
FRED database of the St. Louis FED and IPVOL = &;. The correlation between uncertainty

shocks with persistence between 32 and 128 months (i.e., u§6:7)) and macro volatility shocks with

persistence greater than 32 months (i.e., IPVOL§>5)) is 0.74 and statistically significant at the 1%
level (see Figure 2.4). In other words, there is a close link between long-run uncertainty about the
state of the economy and low-frequency variation in the volatility of industrial production. However,

the correlation between ATl PVOL£>5) and innovations in the business-cycle uncertainty factor is

0.48 (for h = 1) and reduces further to 0.38 (for h = 12).

2.3 Robustness Checks and Additional Tests

2.3.1 Alternative Test Assets

I confirm that my findings are robust by looking at alternative sets of test portfolios. I use the 25
Fama and French (2015) size and investment portfolios, the 25 Fama and French (2015) book-to-
market and operating profitability portfolios and the 25 Fama and French (2016) size and variance
portfolios. Below I discuss the cross-sectional estimates based on macroeconomic uncertainty derived
from monthly forecasts (i.e., us (1)). The results for aggregate uncertainty derived from quarterly
(i.e., ut (3)) and annual (i.e., us (12)) forecasts are similar.

Tables 2.6 and 2.7 report the first-pass scale-wise exposures and the cross-sectional estimates
for the 25 Fama and French (2015) size and investment portfolios, respectively. The initial sample

period is 1963:07 to 2013:05. For j = 6 and j = 6 : 7 the null Hy : 10 = ... = %0 =0 is
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strongly rejected while for j = 7 the component-wise exposures are not statistically different from
zero. The estimated price of risk for the innovations in the sixth uncertainty factor is negative
(-0.52) with a t-statistic of -3.05 and the estimate of Agg is not significant (t-stat = 1.00). The
cross-sectional R? is 51.52% (se(g(%\)) = 0.286) and the MAPE across all securities is less than 1%
per year. Innovations in low-frequency uncertainty with persistence ranging between 64 and 128
months are also priced (t-stat = -3.83). However, the estimate for the zero-beta excess return is
significant at the 1% level (t-stat = 2.91). The pricing performance of the business-cycle uncertainty
factor is considerably better among these test portfolios with a cross-sectional R? of 73.00% and
the lowest sampling variability (i.e., se(R/%(;) = 0.092). In addition, the null hypothesis that the
model is correctly specified is not rejected. The price of risk per unit of cross-sectional standard
deviation in Aug(ﬂ) is -2.21%.

Tables 2.8 and 2.9 present the scale-specific risk exposures and the cross-sectional estimates for
the 25 Fama and French (2015) book-to-market and operating profitability portfolios. The initial
sample period is 1963:07 to 2013:05. Consistent with the results for the previous test portfolios for
j = 7 the hypothesis that all scale-dependent betas are zero is not rejected, that is, the proposed
factor is independent of the portfolio returns. The estimated price of risk for Au§6) is -0.48 with a
t-statistic of -2.98 and the estimated zero-beta excess return is not significant (t-stat = 1.03). The
cross-sectional R? is 39.20% (se(ﬁ%ﬁ\)) = 0.177) and the MAPE across all assets is 2.14% annually.

Furthermore, the estimated price of risk for Aug&n is also significant (t-stat = -3.35) with a similar

—

sample R? but smaller standard error (se(R%&n) = 0.142). The price of risk per unit of cross-

sectional standard deviation in Augfjﬁ) is -2.32%. It is worth emphasizing that for all scales the
specification test rejects the hypothesis of a perfect fit.

Tables 2.10 and 2.11 provide the scale-specific risk exposures and the results from the cross-
sectional regressions for the 25 Fama and French (2016) size and variance portfolios. The initial

sample period is 1963:07 to 2013:05. The price of high-frequency uncertainty shocks (i.e., for

j =1,...,5) is small and insignificant. Low-frequency uncertainty with persistence between 32
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and 64 months carries a negative price of risk of -0.50 with a t-statistic of -2.92 and the intercept
is insignificant (t-stat — 0.85). The coefficient of determination is equal to 20.60% but is not
significantly different from zero (se(ﬁ(%)) = 0.190). That is, using only the sample R? I cannot
reject that the factor Au,EG) has essentially no explanatory power. In contrast, the cross-sectional
R? for the business-cycle uncertainty factor is 54.84% (se(R/%(;)) = 0.164) and the null that the
model is correctly specified is not rejected.

Figure 2.5 plots fitted versus realized average excess returns for the test portfolios of this section
where the priced factor is Aul(t&?) derived from monthly forecasts. Figure 2.6 plots the fitted excess
returns for the same portfolios. Finally, I repeat the analysis of the cross-sectional implications

by using equal weighted returns for all test portfolios. The results - available upon request - are

qualitatively and qualitatively similar.

2.3.2 Tests of Equality of Cross-Sectional R*’s

Next, I compare the two competing beta pricing models based on the factors Augﬁ) and Augﬁﬁ)
by asking whether they have the same population cross-sectional R?. My analysis is similar in
spirit with Kan et al. (2013). However, the sequential testing procedure suggested by Vuong (1989)
and described in Kan et al. (2013) is not applicable here since the two models are non-nested and
distinct®3. Therefore, I perform directly the normal test of Hy : 0 < R%G) = R%&ﬂ < 1, that is, I
assume that both models are not perfectly specified (i.e., I check if the population R?’s are equal for
some value less than one) and rule out the scenario that the two beta pricing models are completely
irrelevant for explaining expected returns. Table 2.12 reports the results of the tests of equality
of the cross-sectional R?’s where both models are estimated over the same period. There are no

sufficient evidence across all test assets to reject the null hypothesis. Two observations emerge from

33For instance, consider two competing beta pricing models. Let fi, fo: and f3; be three sets of distinct factors
at time ¢ where f;: is of dimension K; x 1, i = 1,2,3. Assume that model 1 uses fi: and f2: as factors while model
2 uses fi1; and f3;. When Ko = 0 model 2 nests 1 as a special case. Similarly, when K3 = 0 model 1 nests model 2.
When K3 > 0 and K3 > 0 the two models are non-nested. Finally, when K2, K3 > 0 and K; = 0 the two models are
non-nested and distinct.
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the results in Table 2.12. First, the limited precision of the estimates makes it difficult to conclude

whether one model consistently outperforms the other. That is, even cases of large R? differences do

not give rise to statistical rejections due to the high sampling variability of the cross-sectional R?’s.

Kan and Robotti (2009) and Kan et al. (2013) report similar problems in the comparison of linear

asset pricing models using aggregate measures of pricing errors. Second, it is hard to distinguish
(7)

between the two models since the relative contribution of Au,"’ in Equation (2.11) is small (i.e.,

2.3.3 Benchmark Results & Controlling for Fama-French Factors

Furthermore, I present in Table 2.13 benchmark results for the Fama and French (1993) three-
factor model (FF3) and the Fama and French (2015) five-factor model (FF5). The business-cycle
uncertainty factor performs better than the Fama-French models in the cross-sections of the size
and book-to-market and the size and investment portfolios. In particular, while the estimates of the
cross-sectional R?’s are similar, the pricing performance of the FF3 and the FF5 model is driven by
a statistical significant zero-beta excess return. In addition, both models are misspecified (i.e., the
Kan et al., 2013 specification test of Hy : R? = 1 is strongly rejected). In contrast, the FF5 model
explains significantly better the cross-sectional differences of assets sorted across book-to-market
and operating profitability. Also, for these test assets the uncertainty factor does not survive in
the presence of the profitability-based factor3*. This finding is in line with Wang and Yu (2015)
who demonstrate that the profitability premium (see Novy-Marx, 2013 and Hou et al., 2015) is not

driven by macroeconomic risk.

2.3.4 Predictability of Aggregate Returns

Finally, I test the ability of the scale-dependent shocks filtered out of the index of macroeconomic

uncertainty to predict the components of aggregate stock returns with the same time-scale with the

34To preserve space I report the results in Appendix 2B (see Table 3B.10).
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following set of regressions

i) = B9+ B 4 D forj=1,...,7 (2.14)

(

where 7} 7 denotes the components of market excess returns associated with scale j at time ¢ and

818221 are scale-specific forecast errors. The lag between the regressand and the regressor means that
fluctuations of time-scale j forecast the next cycle of length 2/ periods. In addition, since scale-wise
predictability implies predictability upon two-way (forward for the regressand, backward for the

regressor) adaptive aggregation of the series (see the novel work of Bandi et al., 2016) I run the

following regression

Triveig = Qg T BqUt—gi1t + Nitg (2.15)

where r¢ d

— e —
tii4g = 2ui=1Tt4; denotes excess market returns between ¢ 41 and ¢ 4 ¢ and uy—g14 =

>4 | wi—i+1 past uncertainty. The regressor and regressand are aggregated over non-overlapping
periods. Also, the regressor is adapted to time t information and therefore is non anticipative.
The reason for aggregating both the regressand and the regressor in Equation (2.15) resides in the
intuition of Bandi and Perron (2008) according to which economic relations may impact highly
persistent components of the variables while being hidden by short term noise.

Panel A of Table 2.14 presents the results for the component-wise equity risk premium predict-
ability®®. T use Newey-West (1987) HAC standard errors with 2/ — 1 lags and the Hansen-Hodrick
(1980) estimator. The coefficient for the uncertainty component with degree of persistence j = 6
(i.e., the component that captures fluctuations in uncertainty between 32 and 64 months) is pos-
itive and statistical significant at the 1% level with a NW corrected t-statistic of 3.84 and a HH
t-statistic of 3.45. For levels of persistence j = 1,...,5 and for j = 7 the uncertainty coefficients
are insignificant. Due to the initialization of the filtering procedure and the lag between regressor

and regressand the effective sample for j = 7 is reduced substantially and therefore the statistical

35For reviews of the literature on stock return predictability see Welch and Goyal (2008), Cochrane (2008) and
more recently Lettau and Ludvigson (2010).
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inferences are based on a smaller period.

Panel B of Table 2.14 shows the results from the long-horizon predictive regression. I rely on
Newey-West (1987) corrected t-statistics®® with 2 x (¢ — 1) lags to correct for serial correlation
induced by the overlapping nature of the data. Also, to address any potential inferential problems
that arise in predictive regressions with persistent regressors (for instance, see Ferson et al., 2003)
I report Valkanov’s (2003) rescaled test statistic3”. To illustrate my findings, Figure 2.7 reports
scatter plots of excess market returns and past uncertainty at four levels of aggregation, namely
q = 8,32,64 and 128. In line with the framework of Bandi et al. (2016) aggregation begins to
reveal predictability over a horizon between 32 and 64 months (i.e., scale-wise predictability applies
for j = 6 and therefore 26=! = 32 and 2° = 64). Moreover, the slope of the forward/backward
regression for a horizon equal to 64 months (i.e., B4=64 = 2.81) is numerically very close to the slope
of the relevant scale-wise predictive regression (i.e., BU=6) — 3.06). However, dependence increases
in the long-run and the R? for a horizon of 128 months is around 66%. In addition, there is a rough
tent-shaped behavior in the predictive slopes and R?’s (see Figure 2.8). These results indicate that
uncertainty shocks with persistence between 64 and 128 months are also positive correlated with
future aggregate returns (i.e., if scale-wise predictability was present only for j = 6, the maximum
R? would be achieved for a level of aggregation corresponding to 2° = 64 months). My findings
are in line with Bandi and Perron (2008) who report that future excess market returns and past
market variance are positively correlated in the long-run (i.e., between 6 and 10 years). Similarly,
I confirm the results of Bandi et al. (2016) who document a scale-specific risk-return trade-off in
market returns, that is, shocks in consumption and market variance with persistence between 8 and
16 years forecast positively future excess market returns with the same periodicity.

Overall, I demonstrate that business-cycle macroeconomic uncertainty as a risk factor does not

meet the restrictions proposed by Maio and Santa-Clara (2012) that prevent ICAPM from being a

36For arguments against the validity of standard econometric inference and the statistical pitfalls in long-run
predictive regressions in finance see Ferson et al. (2003), Valkanov (2003), Lewellen (2004), Campbell and Yogo
(2006) and Boudoukh et al. (2008).

3TFor the right-tail critical values of t/+/T at various percentiles see Appendix 2B (Table 2B.16).
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“fishing license” for researchers. Specifically, the price of risk for exposure to business-cycle variation
in aggregate uncertainty is negative and thus inconsistent®® with how these shocks forecast aggregate
returns in the time-series. For instance, consider the cross-section with the 25 FF size and book-
to-market portfolios. The intertemporal hedging demand argument implies that the portfolio with
the least negative covariance with low-frequency uncertainty (i.e., the portfolio of small firms with
small book-to-market values - 11 in Figure 2.3) will be the least attractive as hedge and thus offer
the highest expected return. In contrast, the portfolio with the highest expected return is the one
with the most negative exposure (i.e., the portfolio of small firms with high book-to-market values
- 15 in Figure 2.3).

To understand this point further, assume a candidate state variable z; and consider a discrete-
time approximation of the ICAPM in an unconditional form (see Maio and Santa-Clara, 2012 or

Chapter 9 in Cochrane, 2005)

E (Rf’i) ~vCov (R}, Rmy) +7:Cov (R}, Az) (2.16)

where the first term on the right-hand side captures the market risk premium associated with the
CAPM, Az denotes the innovations in the variable and =, is the covariance risk premium associated
with the candidate state variable. Assume that the state variable z; is positively correlated with
future aggregate returns i.e. Cov (2¢, Ry 1) > 0. Also, that the return on asset ¢ is negatively cor-
related with the (innovation in the) variable (i.e., Cov (R}, Az) < 0) and thus negatively correlated
with future aggregate returns. If the risk price v, is negative it holds that ~,Cov ( 0 Azt) > 0.
That is, even though the asset provides a hedge for reinvestment rigk it earns a higher risk premium
than an asset with Cov (Rf;, Azt) = 0. The price of risk for z; is inconsistent with the ICAPM.
Thus, in contrast with the interpretation of Bali et al. (2014) and Bali et al. (2016) my results
suggest that macro uncertainty is not a valid risk factor under the ICAPM. The central difference is

that Bali et al. (2016) assume that “an increase in economic uncertainty reduces future investment

38T am indebted to Martijn Boons for pointing out this inconsistency in an earlier version of this draft.
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and consumption opportunities” while my results document a long-run risk-return trade-off (i.e.,

future aggregate returns are positively correlated with past uncertainty).

2.3.5 Robustness Checks

In Appendix 2B I provide a battery of robustness checks. A brief summary is available here. Tables
2B.1 through 2B.4 present the estimates from the cross-sectional regressions using the same burn-in
period for all components. The results for all test assets remain quantitatively similar. In addition,
the model with the business-cycle uncertainty factor is correctly specified in the joint cross-section
of the 5 industry portfolios and the 25 size and book-to-market portfolios (see Table 2B.9). The
uncertainty factor ugﬁﬁ) remains statistically significant after controlling for the Fama-French factors
(see Table 3B.10) and for exposure to momentum, short-term reversal, long-term reversal, liquidity
and portfolio characteristics (see Tables 2B.11a and 2B.11b ). Also, the results for the uncertainty
factor are similar if T estimate the innovations as the residuals from an AR(1) model fitted to the
factor (see Table 3B.1). Finally, T present bootstrapped confidence intervals for the first-pass scale-
dependent betas (see Table 2B.13), the second-pass cross-sectional estimates (see Table 2B.14) and

the scale-wise predictive regressions (see Table 2B.15) using the bias-corrected percentile method

and the stationary bootstrap of Politis and Romano (1994).

2.4 Monotonicity in Scale-Specific Risk Exposures

In this section, I examine whether the scale-specific risk exposures with respect to the factors Au§6)

and Augﬁﬁ) are monotonically increasing (or decreasing) across portfolios using the monotonic
relation (MR) test of Patton and Timmermann (2010). In essence, I look for monotonic patterns
in the scale-wise factor loadings that match known patterns in average excess returns for portfolios
sorted on various firm characteristics. The MR test is nonparametric and is easily implemented

via bootstrap methods. To preserve the dependence in the original time-series I use the stationary

bootstrap of Politis and Romano (1994) where observations are drawn in blocks whose starting
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point and length are both random. The block length is drawn from a geometric distribution where
the average block size is set equal to 273%. For all MR tests I use 5,000 bootstrap replications.
Following Patton and Timmermann (2010) and in line with Hansen (2005) and Romano and Wolf
(2005) I implement a studentized version of the bootstrap. The MR test is designed so that the
alternative hypothesis is the one that the researcher hopes to prove - hence a monotonic relation is
confirmed only if there is sufficient evidence in the data to reject the null (for more information see
Appendix A).

Tables 2.15a and 2.15b present the scale-specific risk exposures for one-way*? portfolio sorts and
the corresponding monotonicity tests. I consider average excess returns on a range of portfolios
sorted on security characteristics such as size (Panel A), long-term reversal (Panel B), short-term
reversal (Panel C), book-to-market (Panel D), investment (Panel E) and dividend yield (Panel F).
The first row in each panel reports average returns (in percent per month) for the test assets. The
final column in each panel presents the p-value for the monotonic relation (MR) test. Similarly,
the penultimate column presents the bootstrap p-value for the top-minus-bottom difference in the
corresponding returns and scale-wise betas.

Panel A of Table 2.15a shows that the MR test rejects the null of a flat or weakly decreasing
pattern across size in the risk loadings with respect to the factor Augfj) for h = 1,3 at the 10%
level. Similarly, the evidence in Panel E of Table 2.15b provide strong support for a monotonically
increasing relation in the scale-dependent risk exposures across investment. In particular, the MR
test detects a monotonically increasing pattern which is significant at the 1% level for the risk
exposures to the factor Auiej) and at the 5% level for the risk exposures to Augﬁﬁ) . Given that all
risk loadings are negative these results mean that an increase in low-frequency uncertainty has a

smaller effect on large firms and aggressive firms. Hence, consistent with the size and the investment

effects these securities offer smaller risk compensations.

39Calculated based on the Politis and White (2004) estimator of the optimal average block length. Note that the
estimator is corrected to deal with the error in Lahiri’s (1999) calculation of the variance for the stationary bootstrap
- see also Nordman (2009) and Patton et al. (2009).

40 Additional results for two-way sorted portfolios are available upon request.
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In addition, there is statistically significant evidence at the 10% level for a monotonically de-
creasing relation in the scale-specific risk loadings across book-to-market. This finding is in line with
the value effect (i.e., one-period average returns increase from growth to value stocks). Also, it is
consistent with the work of Hansen et al. (2008) who show that cash flows from value portfolios*! are
positively correlated with long-run shocks in the economy while cash flows from growth portfolios
are not and hence investors holding value portfolios must be compensated for bearing the extra risk.
Moreover, low-frequency uncertainty betas decrease monotonically across stocks sorted on dividend
yield (the null is strongly rejected at the 1% level). Overall, these findings provide a clear economic
explanation for the well-documented size, value, dividend-yield and investment effects based on ex-
posures to low-frequency macro uncertainty. Finally, there is significant evidence for an increasing
pattern in the risk exposures of securities sorted across long-term and short-term reversal. That is,
the top-minus-bottom difference in the corresponding scale-wise betas is statistically significant at

the 5% level with respect to all factors.

2.5 Conclusions

I study how the pricing of macroeconomic uncertainty varies across investment horizons. In par-
ticular, I decompose aggregate uncertainty into heterogeneous - in terms of their persistence and
periodicity - components and investigate the risk compensations associated with each of these scale-
dependent macroeconomic shocks. Macroeconomic uncertainty is quantified using the model-free
index of Jurado et al. (2015) that measures the common variation in the unforecastable component
of a large number of economic indicators. My study is based on the novel framework for scale-specific
analysis of risk proposed in Bandi and Tamoni (2016) and Boons and Tamoni (2016).

I document that a single business-cycle uncertainty factor that captures assets’ exposure to

low-frequency variation in macroeconomic uncertainty can explain the level and the cross-sectional

“Tn a similar fashion, Kamara et al. (2015) find that the risk price for exposure to the HML factor of Fama
and French (1993) (i.e., the factor that measures the difference between the returns on portfolios of high and low
book-to-market stocks) peaks at a horizon of two to three years.
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differences of asset returns. In particular, I find that macroeconomic fluctuations with persistence
levels ranging from 32 to 128 months carry a negative price of risk about -2% annually. In addition,
equity scale-specific risk exposures are negative and thus uncertainty risk premia are positive. The
results are robust across different test assets including: the 25 Fama and French (1993) size and
book-to-market portfolios, the 25 Fama and French (2015) size and investment portfolios, the 25
Fama and French (2015) book-to-market and operating profitability portfolios and the 25 Fama and
French (2016) size and variance portfolios. Moreover, my findings remain statistically significant
after using a t-statistic cutoff of three as suggested by Harvey et al. (2016) and are qualitatively
and quantitatively similar irrespective of whether uncertainty is derived from monthly, quarterly or
annual forecasts. Furthermore, unlike several prominent asset pricing models (e.g., FF3 and FF5) I
demonstrate that the one-factor model with business-cycle macro uncertainty is correctly specified.
In total, my study suggests that only business-cycle variation in uncertainty drives asset prices and
hence provides useful insights for the long-run risks literature. That is, in the spirit of Dew-Becker
and Giglio (2016) we should allow Epstein-Zin preferences to put more weight on business-cycle
frequency fluctuations compared to the standard Bansal and Yaron (2004) calibration (for instance,
see Ghosh and Constantinides, 2014).

Finally, I show that future excess aggregate returns are positively correlated with past uncer-
tainty and thus the negative price of risk for exposure to (low-frequency) macro uncertainty is
inconsistent with the central economic intuition underlying the ICAPM. In contrast, investors de-
mand higher risk compensations to hold portfolios that exhibit greater negative comovement with
low-frequency macroeconomic uncertainty, i.e. there is a low-frequency risk-return trade-off for the
valuation of assets. Future research can expand my work in the cross-section of hedge fund and

mutual fund returns.
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Figure 2.1: Aggregate uncertainty
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Notes: This figure plots the index of macroeconomic uncertainty of Jurado et al. (2015) for h =
1,3,12. Data are monthly and span the period 1960:07 - 2013:05. The shaded areas represent
NBER recessions.
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Figure 2.2a: Persistence-based decomposition of aggregate uncertainty
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Notes: This figure plots the persistent components uEJ ) for J =1,...,4 filtered out of aggregate
uncertainty (derived from monthly forecasts - h = 1) and their corresponding sample autocorrelation
functions. Data are monthly and span the period 1960:07 - 2013:05. In the empirical analysis, I
discard the first 2/ — 1 observations for each scale due to the initialization of the filtering procedure.
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Figure 2.2b: Persistence-based decomposition of aggregate uncertainty
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Notes: This figure plots the persistent components uij ) for 7 =5,6,7,> 7 filtered out of aggregate
uncertainty (derived from monthly forecasts - h = 1) and their corresponding sample autocorrelation
functions. Data are monthly and span the period 1960:07 - 2013:05. In the empirical analysis, I
discard the first 2/ — 1 observations for each scale due to the initialization of the filtering procedure.
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Figure 2.3: Cross-sectional fit - 25 FF size and book-to-market portfolios
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and French (1993) portfolios where the priced factor is Awu,
frequency uncertainty shocks (derived from monthly forecasts) with persistence ranging from 32 to
128 months. Fach two-digit number represents a separate portfolio. The first digit refers to the size
quintile of the portfolio (1 being the smallest and 5 the largest), while the second digit refers to the
book-to-market quintile (1 being the lowest and 5 the highest). The straight line is the 45-degree
line from the origin. Panel B plots the fitted excess return for each portfolio.
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Notes: Panel A plots realized versus fitted excess returns for the 25 size and book-to-market Fama
, that is, the innovations in low-



Figure 2.4: Relation with default yield spread and macro volatility risk
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Notes: Panel A plots macroeconomic uncertainty shocks with persistence ranging between 32 and

128 months (i.e., u§6z7)) along with the default yield spread which is defined as the difference between

BAA and AAA-rated corporate bond yields. Panel B plots u§6:7) along with the macro volatility
risk factor of Boons and Tamoni (2016) (i.e., macro volatility shocks with persistence greater than
32 months - I PVOL§>5)). The shaded areas represent NBER recessions.
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Realized excess returns

Notes: This figure plots realized versus fitted excess returns for the alternative test portfolios where
the priced factor is Au,

Figure 2.5: Realized versus fitted excess returns: Alternative test portfolios
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represents a separate portfolio. The straight line is the 45-degree line from the origin.
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, that is, the innovations in low-frequency uncertainty shocks (derived from
monthly forecasts) with persistence ranging from 32 to 128 months. The test assets include: the 25
FF size and investment portfolios (Panel A), the 25 FF book-to-market and operating profitability
portfolios (Panel B) and the 25 FF size and variance portfolios (Panel C). Each two-digit number



Figure 2.6: Fitted excess returns: Alternative test portfolios
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Notes: This figure plots the fitted excess returns for the alternative test portfolios where the priced
factor is Aug&n, that is, the innovations in low-frequency uncertainty shocks (derived from monthly
forecasts) with persistence ranging from 32 to 128 months. The test assets include: the 25 FF size
and investment portfolios (Panel A), the 25 FF book-to-market and operating profitability portfolios
(Panel B) and the 25 FF size and variance portfolios (Panel C).
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Figure 2.7: Market returns and past uncertainty at different levels of aggregation
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Notes: This figure reports scatter plots of excess market returns and past uncertainty at four levels
of aggregation, namely ¢ = 8,32, 64 and 128.
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Figure 2.8: Hump-shaped dynamics in slope coefficients and R?’s
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Notes: This figure reports slope coefficients and R?’s values obtained by regressing forward-
aggregated excess market returns on backward-aggregated macro uncertainty.
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Table 2.1: Descriptive statistics

Panel A Aggregate uncertainty
Ut (1) Ut (3) Ut (12)
Mean 0.6871 0.8494 0.9591
Median 0.6655 0.8263 0.9509
Min 0.5635 0.7105 0.8467
Max 1.1344 1.3385 1.2052
St. Deviation ~ 0.0949 0.1020 0.0668
Skewness 1.8179 1.7791 1.2918
Kurtosis 6.9444 6.7326 4.9931
JB 761.40 703.60 281.70
ADF 0.0057 0.0023 0.0396
PP 0.0190 0.0209 0.0475
KPSS 0.1930 0.2119 0.4043
AC(1) 0.9866 0.9891 0.9943
AC(2) 0.9578 0.9651 0.9811
Panel B Equity risk premium
TS =Ty — Ty
E (r°) 5.71%
o (r°) 15.02%
#£ observations 635

Notes: Panel A reports descriptive statistics for the model-free index of macroeconomic uncertainty
of Jurado et al. (2015) for h = 1,3,12. I report the sample mean, median, minimum, maximum,
standard deviation, skewness and kurtosis. In addition, I report the value of the Jarque-Bera
(1980) normality test, the p-values of the Augmented Dickey-Fuller (ADF - Dickey and Fuller,
1979) and Phillips-Perron (PP - Phillips and Perron, 1988) tests for unit root, the values of the
KPSS (Kwiatkowski et al., 1992) test statistic for the null hypothesis of stationarity whose critical
values are 0.347, 0.463 and 0.739 at the 10%, 5% and 1% significance levels respectively as well as
autocorrelation coefficients for the first and second lag. Panel B presents the mean and standard
deviation for the equity risk premium.

80



Table 2.2: Frequency interpretation

Persistence level Monthly-frequency resolution

7=1 1 - 2 months
j= 2 - 4 months
j=3 4 - 8 months
j= 8 - 16 months
j=>5 16 - 32 months
Jj= 32 - 64 months
j=717 64 - 128 months
] > > 128 months

()

Notes: Frequency interpretation of the component u,;”” at level of persistence j in the case of monthly
time series. Each persistence level (or time-scale) is associated with a range of time horizons.

Table 2.3: Multi-scale variance ratio tests

ug (1) Persistence level
j = 1 2 3 4 5 6 7

j
,/%(}—%) -15.7837 -8.5535 -3.9397 14228 12.0042 27.9433 29.4710

ug (3) Persistence level
= 1 2 3 4 ) 6 7

J
,/al(é > -15.8286 -8.6762 -4.1963 1.3380 12.4039 29.4475 29.9408
(12

Persistence level

U
] 1 2 3 1 5 6 7
( ) -15.9153 -8.9182 -4.8236 0.3004 11.4487 30.3735 33.4243

&‘

Notes: This table presents the results of the multi-scale variance ratio test for the macroeconomic
uncertainty series. The test statistic is given by

; 2 (00T ul
i = TN
(<) %7

T .
where (Xé‘])) = [up,ur_1,...,u1] is the vector collecting the observations of {u;} and ul) =
[ué]j), .. .,ul(jx)zj, e ,ug)} . Under the null hypothesis of no serial correlation, the rescaled test

2i
statistic , /- (5] 2—]) where a; = % converges in distribution to a standard normal. Bold
values reject the null hypothesis of no serial correlation at a 99% confidence level. These results

: - (") — g9 (")
imply that 35* € {1,...,7} such that Uy oie o = Py o T+ gkxy Y
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Table 2.4: Scale-specific risk exposures: 25 FF size and book-to-market portfolios

Size  Book-to-market 56 B B6:7)

Small LowBM -0.5009  (-0.7619) 0.8891  (0.8479) -0.3286  (-0.4172)
9BM 108292  (-1.7491)  -0.0996 (-0.1249)  -0.7378  (-1.3476)
3BM -1.1794 (-3.3176) -0.4014  (-0.6297) -1.0207 (-2.4147)
4BM 21.0991 (-3.1857)  -0.5002 (-0.7768)  -0.9490 (-2.3937)

HighBM 1.3221  (-3.5890)  -0.9179 (-1.3207)  -1.1782 (-2.8421)
2 LowBM -0.5355  (-0.8820) 0.7294  (0.9866) -0.5141  (-0.7595)
9BM L0.7527  (-1.8718) 0.0202  (0.0641) 07381 (-1.7754)
3BM -0.8812 (-3.2527) -0.6270  (-1.7518) -0.8648 (-3.0858)
ABM 1.0595 (-3.6246)  -0.6058 (-1.6515)  -0.9221 (-3.1867)
HighBM -1.1039 (-3.8263)  -0.6804 (-1.6239)  -1.0029 (-3.4157)
3 LowBM -0.4551  (-0.9432) 0.2801 (0.6001) -0.5600  (-1.0819)
2BM -0.9081 (-2.6138)  -0.3593 (-0.9720)  -0.9045 (-2.6204)
3BM 0.7960 (-3.3909)  -0.4716 (-1.3342)  -0.7760 (-3.1721)
4BM -1.0044 (-3.6011)  -0.7243 (-2.2801)  -0.9707 (-3.4232)
HighBM -0.9016 (-3.5585)  -0.8654 (-2.3183)  -0.8999 (-3.2320)
4 LowBM 03571 (-0.7628) 0.2956  (1.1102) 04984 (-1.0381)
2BM -0.7447  (-1.8865) -0.1957  (-0.5350) -0.7538  (-1.9587)
3BM 1.0108 (-2.5861)  -0.6028 (-2.1452)  -0.9759 (-2.5932)
4BM -1.0327 (-4.0000)  -0.6834 (-2.3251)  -0.9840 (-4.0463)
HighBM 1.0733  (-3.6085)  -0.8784 (-3.2126)  -1.0742 (-4.0577)
Big LowBM 10.3370  (-1.4223) 0.0721  (0.1365) 04900  (-1.8189)
9BM 04133 (-1.3696)  -0.1998  (-0.6944)  -0.4338 (-1.7910)
3BM -0.5888  (-1.7174) -0.2065  (-0.7524) -0.6023  (-1.7478)
ABM 0.6579 (-2.7198)  -0.3567 (-1.0614)  -0.6590 (-2.9868)
HighBM _0.5883  (-3.0566)  -0.5782 (-1.1847)  -0.5917 (-3.3996)
Wald-stat 932.88 34.34 314.71
p-value 0.0000 0.1008 0.0000

Notes: This table reports first-pass beta estimates for the Fama and French (1993) 25 size and
book-to-market portfolios (indexed by Small to Big and LowBM to HighBM). The betas are estim-
ated component-wise that is regressing low frequency components of returns on the low frequency
components of aggregate uncertainty. The associated t-statistics are based on Newey-West standard
errors with 2/ — 1 lags. The last rows of the table present the Wald test-statistics and their cor-
responding p-values from testing the joint hypothesis that all component-wise exposures are equal
to zero, i.e. Hy: 10 = ... = p%0U) =0 for j = 6,7 and j = 6 : 7. The initial sample period is
1960:07 to 2013:05. Bold values denote statistically significant beta estimates at a 95% confidence
level.
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Table 2.5: Cross-sectional regression:

25 FF size and book-to-market portfolios

Persistence level

j= 1 2 3 4 5 6 7 6:7
Ut (1)
Ao,j 1.1321 0.9394 0.9242 0.3666 0.2484 0.1388 0.5814 0.0581
(4.2639) (4.0669) (4.3238) (1.7363) (1.1258) (0.5814) (2.3717)  (0.2083)
Aj 0.9062 0.3927 0.4412 -0.4048 -0.4815 -0.6867 -0.4016 -0.8315
(1.3752) (0.8124) (0.9648) (-1.3683) (-1.9901) (-4.5662) (-3.2124) (-4.3264)
price of risk  0.832%  0.534%  0.636% -0.593% -1.181% -2.296% -2.295%  -2.274%
R? 9.861%  4.103%  5.734%  4.836%  19.080% = 72.350% 75.271%  73.891%
se(R?) 0.1351 0.1034 0.1234 0.0815 0.2037 0.1378 0.2375 0.1224
P (R2 = 1) 0.0074 0.0078 0.0087 0.0061 0.0102 0.2412 0.2956 0.3139
MAPE 2.075%  2.191%  2.199% 2.068% 1.818% 1.106% 1.156% 1.114%
u (3)
Ao,j 0.8821 0.9203 0.9129 0.3682 0.2189 0.1709 0.5836 0.1109
(3.6045) (3.7609) (4.0607) (1.4875) (0.9945) (0.7260) (2.4041)  (0.4097)
Aj 0.1843 0.2041 0.2946 -0.3428 -0.5189 -0.7172 -0.4259 -0.8476
(0.5834) (0.6652) (0.8311) (-1.0914) (-2.1283) (-4.5630) (-3.3841) (-4.3044)
price of risk  0.407%  0.455%  0.564%  -0.560% -1.277% -2.311%  -2.340%  -2.285%
R? 2.365%  2.982%  4.507%  4.308%  22.305%  73.295% 78.251% « 74.617%
se(R?) 0.0837 0.0915 0.1127 0.0899 0.2204 0.1399 0.2066 0.1311
P (R2 = 1) 0.0062 0.0072 0.0080 0.0051 0.0117 0.2526 0.3255 0.3229
MAPE 2177%  217T%  2.197%  2.074% 1.758% 1.093% 1.075% 1.079%
Ao,j 0.8354 0.9365 0.9217 0.2302 0.1801 0.2641 0.6407 0.2278
(4.1869) (4.1552) (4.0731) (0.9144) (0.8476) (1.1221) (2.6882)  (0.8350)
Aj 0.0951 0.1150 0.1318 -0.2364 -0.3230 -0.4253 -0.2284 -0.4856
(0.5941) (0.8194) (0.8588) (-1.5547) (-2.5357) (-4.5387) (-2.9019) (-4.0302)
price of risk  0.337%  0.561%  0.577%  -0.855%  -1.531% -2.339%  -2.182%  -2.336%
R? 1.615%  4.524%  4.709%  10.047% 32.070%  75.103% 68.037% = 77.922%
86(R2) 0.0564 0.1135 0.1139 0.1446 0.2591 0.1226 0.2665 0.1147
D (R2 = 1) 0.0037 0.0082 0.0083 0.0059 0.0187 0.2766 0.1920 0.3653
MAPE 2.192%  2.175%  2.187% 1.963% 1.608% 1.069% 1.315% 1.029%
# observ. 633 631 627 619 603 971 007 207

Notes: This table reports the estimates for the zero-beta excess return (Ao ;) and the price of
risk ()\;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R? for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of Hy : R? = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year.
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Table 2.6: Scale-specific risk exposures: 25 FF size and investment portfolios

Size  Investment B© 8 B67)

Small  LowINV -1.1200 (-2.2307) -0.1662  (-0.1765) -0.8675  (-1.3650)
2INV -1.1872 (-3.2284) -0.6092  (-0.9970) -1.0014 (-2.3562)
3INV -1.1366 (-2.9889) -0.3606  (-0.5467) -0.8248 (-2.0585)
4INV -0.9103 (-2.2375) -0.0737  (-0.0970) -0.6303  (-1.3769)

HighINV -0.9164  (-1.5872) 0.5206  (0.5706) -0.5485  (-0.8763)

2 LowINV -1.0506 (-2.8382) -0.2213  (-0.4769) -0.9057 (-2.2926)

2INV -1.1051 (-3.6219) -0.2644  (-0.7496) -0.9361 (-3.1464)

3INV -0.9175 (-3.2796) -0.5730  (-1.5613) -0.8206 (-2.8159)

4INV -1.0290 (-2.8218) -0.5773  (-1.5479) -0.8791 (-2.7272)

HighINV -0.4554  (-0.8509) 0.6900  (1.0437) -0.2919  (-0.5306)

3 LowINV -0.8943 (-2.8294) -0.5110  (-1.1239) -0.8393 (-2.5474)

2INV -0.9508 (-4.3582) -0.4117  (-1.5624) -0.8773 (-3.8509)

3INV -1.0130 (-3.0823) -0.6046 (-2.1461) -0.9796 (-2.9490)

4INV -0.7656 (-2.3062) -0.2933  (-0.9971) -0.6984 (-2.2268)

HighINV -0.5589  (-1.2466) 0.2557  (0.4666) -0.4893  (-1.1264)

4 LowINV -0.8714 (-2.5750) -0.1561  (-0.4289) -0.7953 (-2.2618)

2INV -0.9142 (-2.8876) -0.8326 (-5.9665) -0.9537 (-3.5627)

3INV -0.8657 (-2.6096) -0.4513  (-1.8898) -0.8334 (-2.5484)

AINV -0.7374 (-2.2310)  -0.2962 (-1.0284)  -0.7393 (-2.3292)

HighINV -0.5138  (-0.9971) 0.3429  (0.9388) -0.5362  (-1.0823)

Big LowINV -0.6084 (-2.0728) -0.3640  (-1.3694) -0.6866 (-2.4206)

2INV -0.4469 (-2.0689) -0.2986  (-1.0654) -0.5334 (-2.8270)

3INV -0.4509 (-2.1827) -0.3037  (-0.6296) -0.5617 (-2.8922)

4INV -0.3990  (-1.3400) -0.0047  (-0.0089) -0.4729  (-1.4432)

HighINV -0.0768  (-0.2104) 0.5503  (1.3040) -0.2040  (-0.5535)
Wald-stat 219.52 30.44 302.68
p-value 0.0000 0.2082 0.0000

Notes: This table reports first-pass beta estimates for the Fama and French (2015) 25 size and
investment portfolios (indexed by Small to Big and LowINV to HighINV). The betas are estimated
component-wise that is regressing low frequency components of returns on the low frequency com-
ponents of aggregate uncertainty. The associated t-statistics are based on Newey-West standard
errors with 27 — 1 lags. The last rows of the table present the Wald test-statistics and their cor-
responding p-values from testing the joint hypothesis that all component-wise exposures are equal
to zero, i.e. Ho: B0 = ... = 3%0) =0 for j = 6,7 and j = 6 : 7. The initial sample period is
1963:07 to 2013:05. Bold values denote statistically significant beta estimates at a 95% confidence
level.
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Table 2.7: Cross-sectional regression: 25 FF size and investment portfolios

Persistence level

j= 1 2 3 4 5 6 7 6:7
Ut (1)
Ao,j 1.0158 0.9535 0.9140 0.4723 0.2240 0.2322 0.7261 0.1923
(6.5483)  (6.0353) (5.6282) (1.8269)  (0.8921)  (1.0019) (2.9121) (0.6872)
Aj 0.6478 0.4381 0.3776 -0.2852 -0.4474 -0.5147 -0.4063 -0.8591

(2.1639) (1.2332) (1.0184) (-0.6915) (-1.5581) (-3.0417) (-3.8261) (-4.6799)
price of risk  0.869%  0.623%  0.571%  -0.429%  -1.064%  -1.757%  -1.927% -2.212%
R2 12.346% 6.233%  5.195%  2.940%  18.497% | 51.221%  55.409% = 73.006%

se(lgﬁ) 0.1219 0.1108 0.1149 0.0903 0.2257 0.2858 0.2299 0.0922
P (R2 = 1) 0.0150 0.0092 0.0145 0.0033 0.0043 0.0529 0.0833 0.2508
MAPE 1.983%  2.064%  2.097%  2.039% 1.663% 0.924% 1.364% 0.985%

ug (3)
)\QJ 0.7545 0.8693 0.8571 0.4515 0.2002 0.2605 0.7391 0.2531
(3.5739) (4.6675) (5.0998) (1.6789) (0.8113) (1.1360) (3.0064) (0.9309)
)\j 0.0382 0.1630 0.1918 -0.2678 -0.4820 -0.5338 -0.4400 -0.8672

(0.1269)  (0.5949) (0.6432) (-0.7210) (-1.7000) (-3.0814) (-4.1403) (-4.6254)
price of risk  0.082%  0.343%  0.377%  -0467% -1.168% -1.775%  -2.028%  -2.227%
R2 0.111%  1.895%  2.264%  3.476%  22.282%  52.221% 61.365% | 74.027%

se(lgn\Q) 0.0189 0.0697 0.0784 0.1015 0.2447 0.2854 0.2099 0.0934
P (R2 = 1) 0.0055 0.0063 0.0117 0.0031 0.0043 0.0565 0.1119 0.2645
MAPE 2.110%  2.126%  2.129%  2.021% 1.586% 0.915% 1.256% 0.963%

Ao,j 0.9153 0.8810 0.8246 0.2888 0.1573 0.3194 0.8018 0.4021
(5.7966) (5.1554) (4.9691) (1.0854)  (0.6689)  (1.3954) (3.3523)  (1.4791)
Aj 0.1566 0.0895 0.0634 -0.2112 -0.3025 -0.3290 -0.2238 -0.4750

(1.0985) (0.7131) (0.4990) (-1.2331) (-2.1389) (-3.3864) (-3.2885) (-4.5760)
price of risk  0.539%  0.406%  0.287%  -0.832%  -1.448% -1.867% -1.771%  -2.166%
R2 4.745%  2.647% 1.316% 11.031% 34.222% | 57.812% 46.790% | 70.012%

86(1;;2) 0.0969 0.0812 0.0584 0.1772 0.2816 0.2693 0.2467 0.1424
D (R2 = 1) 0.0087 0.0094 0.0121 0.0021 0.0053 0.0843 0.0715 0.2089
MAPE 2.108%  2.114% 2.133%  1.878% 1.381% 0.849% 1.459% 1.078%

# observ. 598 996 292 084 568 936 472 472

Notes: This table reports the estimates for the zero-beta excess return (Ao ;) and the price of
risk ()\;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R? for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of Hy : R? = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year.
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Table 2.8: Scale-specific risk exposures: 25 FF book-to-market and operating profit-
ability portfolios

Book-to-market oP 5©) B B67)
LowBM LowOP -0.1602  (-0.2770) 0.8929  (1.6452) -0.1982  (-0.2797
20P -0.2790  (-0.4899) 0.6963  (1.6806) -0.3823  (-0.5860
30P -0.0074  (-0.0239) 0.4036  (1.1918) -0.1426  (-0.4149
40P -0.0794  (-0.2298) 0.2298  (0.6090) -0.2949  (-0.8174
HighOP -0.4692 (-2.0722) 0.0888  (0.2289) -0.5698 (-2.2028
2 LowOP -0.5683  (-1.3027) 0.5149  (1.5602) -0.4956  (-1.0818
20P -0.4982  (-1.5679) 0.1717  (0.4596) -0.5130 (-2.1381
30P -0.7042  (-1.8614) -0.2990  (-0.9634) -0.7192  (-1.8243
40P -0.4309  (-1.5860) -0.2366  (-1.1351) -0.4553  (-2.0486
HighOP -0.5134  (-1.3984) -0.2084  (-0.7791) -0.4887  (-1.7064
3 LowOP -0.7152  (-1.8557) -0.0756  (-0.2187) -0.7105  (-1.6405
20P -0.7224 (-3.0868) -0.3823  (-1.6974) -0.6556  (-3.0527
30P -0.8449 (-2.2236) -0.5333 (-2.5179) -0.8639 (-2.3189
40P -0.7867  (-1.8388) -0.2780  (-0.8720) -0.6926  (-1.6636
HighOP -0.5035  (-1.5997) 0.0093  (0.0362) -0.3667  (-1.4344
4 LowOP -0.9043 (-4.9999) -0.3856  (-1.6370) -0.8006 (-4.8099
20P -0.9072 (-4.1810) -0.5199 (-2.1765) -0.8270 (-4.2185
30P -0.8659 (-1.9691) -0.3979  (-1.0391) -0.7247  (-1.6776
40P -0.8016 (-3.3689) -0.2106  (-0.8644) -0.6879 (-3.1197
HighOP -0.8364 (-2.6551) -0.5127  (-1.5724) -0.8108 (-3.4822
HighBM LowOP -0.7207 (-3.4777) -0.4234  (-1.4925) -0.6597 (-3.5634
20P -1.1440 (-4.8047) -0.7773  (-3.7088) -1.0345 (-5.0630
30P -0.5849  (-1.7228) -0.1924  (-0.5618) -0.4100  (-1.4220
40P -1.2605 (-3.7818) -0.6525  (-1.4035) -0.9647 (-3.0400
HighOP -1.6851 (-2.9725) -1.3934  (-1.6294) -1.6050 (-2.3655
Wald-stat 109.40 27.32 136.18
p-value 0.0000 0.3399 0.0000

Notes: This table reports first-pass beta estimates for the Fama and French (2015) 25 book-to-
market and operating profitability portfolios (indexed by LowBM to HighBM and LowOP to Hig-
hOP). The betas are estimated component-wise that is regressing low frequency components of
returns on the low frequency components of aggregate uncertainty. The associated t-statistics are
based on Newey-West standard errors with 2/ — 1 lags. The last rows of the table present the Wald
test-statistics and their corresponding p-values from testing the joint hypothesis that all component-
wise exposures are equal to zero, i.e. Hy: B0 = ... = %0 =0 for j =6,7and j =6 : T.
The initial sample period is 1963:07 to 2013:05. Bold values denote statistically significant beta
estimates at a 95% confidence level.
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Table 2.9: Cross-sectional regression: 25 FF book-to-market and operating profitability

portfolios
Persistence level
j= 1 2 3 4 5 6 7 6:7
(7 (1)
Ao,j 1.3931 1.1400 0.6585 0.1557 0.3432 0.2438 0.6235 0.2989
(4.8391) (4.3727) (3.6163) (0.6980) (1.6182)  (1.0298) (2.7259) (1.1748)
Aj 1.8470 1.0794 0.1037 -0.5246 -0.2538 -0.4761 -0.4767 -0.6375
(3.4545) (2.2878) (0.3355) (-2.3075) (-1.3845) (-2.9832) (-3.3816) (-3.3535)
price of risk  1.625%  1.362%  0.171% -1.118% -0.760% -2.101% -2.806%  -2.322%
R? 23.931% 16.801% 0.271% 11.607%  5.392%  39.193% 57.417%  39.300%
se(RQ) 0.0647 0.1116 0.0174 0.0844 0.0785 0.1769 0.1781 0.1418
D (R2 = 1) 0.0128 0.0041 0.0074 0.0146 0.0130 0.0236 0.0193 0.0151
MAPE 2.252%  2.496%  2.726% 2.519% 2.513% 2.140% 1.778% 2.231%
Ut (3)
Ao, 1.3892 1.3460 0.7437 0.2136 0.3210 0.2632 0.6530 0.3255
(5.4807) (4.5328) (3.9400) (0.9783)  (1.4982)  (1.1230) (2.8758)  (1.2899)
Aj 0.9348 0.8626 0.1983 -0.3984 -0.2861 -0.5065 -0.4846 -0.6781
(3.4858) (2.3421) (0.7393) (-1.8920) (-1.5146) (-2.9861) (-3.3262) (-3.3478)
price of risk  2.070%  1.557%  0.417% -0.919% -0.846% -2.120% -2.788%  -2.376%
R? 38.839% 21.961% 1.611% 7.841% 6.678%  39.899% 56.667% 41.156%
se(Rz) 0.1442 0.1530 0.0460 0.0796 0.0859 0.1784 0.1823 0.1465
D (R2 = 1) 0.0173 0.0046 0.0068 0.0132 0.0131 0.0229 0.0169 0.0137
MAPE 2.086%  2.418%  2.721% 2.579% 2.475% 2.138% 1.835% 2.190%
Ut (12)
Ao,j 1.0909 1.1320 0.8136 0.2038 0.2507 0.3190 0.6946 0.3887
(4.5646) (4.5708) (4.3255) (0.9213) (1.1215) (1.3921) (3.0863) (1.5558)
Aj 0.4042 0.3133 0.1285 -0.2004 -0.2147 -0.3100 -0.2926 -0.4199
(2.5614) (2.1199) (1.1203) (-2.0143) (-2.0058) (-3.0097) (-3.1887) (-3.3174)
price of risk  1.217%  1.343%  0.645%  -1.002% -1.167% -2.179%  -2.735%  -2.499%
R? 13.426% 16.329%  3.864% 9.321%  12.726%  42.155%  54.5256%  45.510%
se(Rz) 0.0834 0.1282 0.0712 0.0864 0.1070 0.1781 0.1882 0.1547
P (R2 = 1) 0.0092 0.0049 0.0067 0.0131 0.0134 0.0231 0.0103 0.0110
MAPE 2.595%  2.554%  2.678% 2.558% 2.424% 2.116% 1.915% 2.083%
#£ observ. 598 596 592 584 568 536 472 472

Notes: This table reports the estimates for the zero-beta excess return (Ao ;) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R? for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of Hy : R?> = 1 and the mean absolute pricing error (MAPE) across all securities expressed in

percent per year.
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Table 2.10: Scale-specific risk exposures: 25 FF size and variance portfolios

Size  Variance 56 B B6:7)

Small LowVAR -1.1606 (-3.5863) -0.7345  (-1.6874) -0.9466 (-2.9859)
2VAR -1.2850 (-2.8327) -0.4523  (-0.6993) -1.0397 (-2.1856)
3VAR -1.3079 (-2.4115) -0.0177  (-0.0230) -0.9911  (-1.7242)
4VAR -1.2232  (-1.8982) 0.2793  (0.2828) -0.8966  (-1.2095)

HighVAR -0.9090  (-1.2744) 0.7338  (0.5819) -0.4671  (-0.5643)

2 LowVAR -0.9340 (-4.3935) -0.7218 (-2.5135) -0.8440 (-4.3259)

2VAR -1.0235 (-2.6018) -0.2386  (-0.5293) -0.8386 (-2.1262)

3VAR -0.9767 (-2.3317) -0.0206  (-0.0416) -0.7478  (-1.8825)

AVAR -0.9362  (-1.5825) 04148  (0.5140) 07424 (-1.1184)

HighVAR -0.7694  (-1.1172) 0.6201  (0.7757) -0.5766  (-0.7060)

3 LowVAR -0.8350 (-4.4499) -0.7499 (-3.2149) -0.8037 (-5.1894)

2VAR -0.9104 (-3.0623) -0.3883  (-1.5002) -0.7994 (-3.0519)

3VAR -0.9149 (-2.5530) -0.1175  (-0.3102) -0.7744  (-2.2277)

4VAR -0.9450  (-1.8311) -0.0912  (-0.1553) -0.8452  (-1.5384)

HighVAR -0.6686  (-1.0818) 0.5420  (0.6846) -0.5754  (-0.8017)

4 LowVAR -0.9398 (-5.0146) -0.7900 (-4.0962) -0.9152 (-7.2006)

2VAR -0.8017 (-3.0439) -0.4354 (-2.9370) -0.7400 (-3.6318)

3VAR -0.7233 (-2.1036) -0.1906  (-0.8387) -0.6923 (-2.1734)

4VAR -0.7092  (-1.4634) 0.0082  (0.0240) -0.6789  (-1.4322)

HighVAR -0.7757  (-1.2303) 0.2322  (0.4126) -0.7986  (-1.1640)

Big  LowVAR -0.5397 (-4.9913) -0.4779  (-1.1703) -0.5785 (-6.2919)

2VAR -0.3767  (-1.5519) -0.0298  (-0.0660) -0.5307 (-2.2999)

3VAR -0.3656  (-1.6518) -0.0278  (-0.0777) -0.4467 (-2.1484)

4VAR -0.1042  (-0.2670) 0.2740  (0.7075) -0.2174  (-0.5725)

HighVAR -0.3852  (-0.6956) 0.1239  (0.3307) -0.4943  (-0.8780)
Wald-stat 215.32 25.07 366.01
p-value 0.0000 0.4582 0.0000

Notes: This table reports first-pass beta estimates for the Fama and French (2016) 25 size and
variance portfolios (indexed by Small to Big and LowVAR to HighVAR). The betas are estimated
component-wise that is regressing low frequency components of returns on the low frequency com-
ponents of aggregate uncertainty. The associated t-statistics are based on Newey-West standard
errors with 2/ — 1 lags. The last rows of the table present the Wald test-statistics and their cor-
responding p-values from testing the joint hypothesis that all component-wise exposures are equal
to zero, i.e. Hy: B9 = ... = p?0) =0 for j = 6,7 and j = 6 : 7. The initial sample period is
1963:07 to 2013:05. Bold values denote statistically significant beta estimates at a 95% confidence
level.
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Table 2.11: Cross-sectional regression: 25 FF size and variance portfolios

Persistence level

j= 1 2 3 1 5 6 7 6:7
Ut (1)
Ao,j 1.0913 0.8877 0.8075 0.6649 0.7690 0.1962 0.7476 -0.1131
(6.4114)  (5.3266) (5.0955) (3.4745)  (4.0675)  (0.8494)  (2.9177) (-0.3569)
Aj 0.8990 0.3657 0.2113 -0.0189 0.1029 -0.5079 -0.3932 -1.2460

(1.5366) (0.7471) (0.4787) (-0.0627) (0.4269) (-2.9246) (-1.9058) (-5.3519)
price of risk  1.380%  0.689%  0.460% -0.063%  0.452%  -1.809%  -2.054%  -2.908%
R2 13.822%  3.421%  1.524%  0.028%  1.423%  20.607% 27.355% | 54.840%

86(1;;5) 0.1582 0.0912 0.0661 0.0098 0.0692 0.1898 0.1976 0.1644
P (R2 = 1) 0.0002 0.0014 0.0017 0.0018 0.0017 0.0072 0.0004 0.0721
MAPE 2.825%  2.986%  3.008%  2.953% 3.008% 2.371% 2.595% 1.827%

Ut (3)
Ao,j 0.8787 0.8114 0.7996 0.6752 0.7336 0.2171 0.7602 -0.0194
(4.7070)  (4.6350) (4.9123) (3.4839) (3.9278) (0.9437) (3.0352) (-0.0624)
Aj 0.2011 0.1271 0.1406 -0.0070 0.0726 -0.5390 -0.4439 -1.2545

(0.6176)  (0.4227) (0.4273) (-0.0263) (0.2982) (-2.9948) (-2.0740) (-5.1685)
price of risk  0.591%  0.396%  0.420%  -0.027%  0.313%  -1.844% -2.186%  -2.918%
R2 2.538%  1.128%  1.272%  0.005%  0.681%  21.427% 30.986% = 55.231%

se(lgn\Q) 0.0828 0.0549 0.0615 0.0042 0.0479 0.1928 0.1940 0.1699
P (R2 = 1) 0.0013 0.0014 0.0016 0.0017 0.0018 0.0079 0.0022 0.0711
MAPE 2.998%  2.992%  3.010%  2.959% 3.006% 2.342% 2.468% 1.832%

Ao,j 0.6689 0.7507 0.7887 0.6118 0.6018 0.2404 0.8178 0.1788
(5.1362)  (4.6092) (4.8082) (3.1967) (3.2878)  (0.9901) (3.5698)  (0.5214)
Aj -0.0194 0.0323 0.0544 -0.0316 -0.0284 -0.3763 -0.2151 -0.7293

(-0.1144)  (0.2220) (0.3802) (-0.2502) (-0.2128) (-3.5909) (-1.7500) (-4.0420)
price of risk  -0.085%  0.199%  0.372%  -0.248% -0.210% -2.120% -1.987% -3.067%
R? 0.052%  0.285%  0.999%  0.445%  0.307%  28.315% 25.623% = 61.006%

se(lgn\Z) 0.0098 0.0271 0.0545 0.0395 0.0321 0.2013 0.2107 0.1278
P (R2 = 1) 0.0031 0.0019 0.0016 0.0020 0.0021 0.0110 0.0004 0.0694
MAPE 2914%  2.973%  3.007%  2.909% 2.921% 2.227% 2.654% 1.775%

# observ. 298 296 592 o84 068 236 472 472

Notes: This table reports the estimates for the zero-beta excess return (Ao ;) and the price of
risk ()\;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R? for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of Hy : R? = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year.
89



Table 2.12: Tests of equality of cross-sectional R?’s

AT AT AT AT AT AL
Panel A
R2 62.416% 73.891%  63.443% 74.617% = 67.543% 77.922%
se(R2) 02183  0.1224 02211  0.1311 0.2049  0.1147
2.5% CI (R 0.1803  0.5167 02273 0.5103 0.2984  0.5616
97.5% CI(R%)  1.0000  0.9701 1.0000  1.0000 1.0000  1.0000
difference -0.1148 -0.1117 -0.1038
p (R§6) - R%m)) 0.4089 0.3804 0.5598
Panel B
R2 68.268% 73.006%  69.186% 74.027%  72.563% 70.012%
se(R2) 0.1968  0.0922 0.1942  0.0934 0.1742  0.1424
2.5% CI (R 0.3267  0.5629 0.3403  0.5836 04144  0.4361
97.5% CI(R?)  1.0000  0.9265 1.0000  0.9361 1.0000  0.9728
difference -0.0474 -0.0484 0.0255
p (Rl = Rln)) 0.8115 0.7930 0.9196
Panel C
R2 50.719% 39.300%  51.061% 41.156%  51.640% 45.510%
se(R?) 0.1454  0.1418 0.1477  0.1465 0.1522  0.1547
2.5% CI (R 0.2384  0.1188 02391  0.1198 0.2457  0.1517
97.5% CIL(R?)  0.7846  0.6689 0.8047  0.6938 0.8269  0.7596
difference 0.1142 0.0991 0.0613
p (R = Risr)) 0.1482 0.1515 0.1950
Panel D
R2 32.819% 54.840%  33.656% 55.231%  39.255% 61.006%
se(R2) 0.2250  0.1644 0.2260  0.1699 0.2201  0.1278
2.5% CI (R 0.0000  0.2588 0.0000  0.2565 0.0000  0.3677
97.5% CI(R%)  0.7946  0.8670 0.7975  0.9318 0.8191  0.8655
difference -0.2202 -0.2158 -0.2175
p (Rl = Riar)) 0.1119 0.1220 0.3680

Notes: This table reports tests of equality of the cross-sectional R?’s of the two competing models
based on the factors Augﬁ) and Aug(ﬂ) which are estimated over the same period (Panel A: #ob-
serv=507, Panels B-D: #observ=472). I report the sample cross-sectional R? and its standard error
for each model, the 95% confidence interval for R? which is obtained by pivoting the cdf, the differ-
ence between the R?’s and the p-value for the (normal) test of Hy : 0 < R%ﬁ) = R?ﬁ:?) < 1 denoted

asp (R%G) = R%&?)). The reported p-values are two-tailed p-values. The test assets include: the 25

FF size and book-to-market portfolios (Panel A), the 25 FF size and investment portfolios (Panel
B), the 25 FF book-to-market and operating profitability portfolios (Panel C) and the 25 FF size
and variance portfolios (Panel D). 90



Table 2.13: Benchmark results

)
Ao AMKT ASMB AHML ARMW ACMA R p(R*=1)
se(Rz)
Panel A 25 FF size and book-to-market
FF3 1.1103 -0.5860 0.1778 0.4138 - - 66.560% 0.0001
(3.7619) (-1.6140) (1.2666) (3.0169) 0.1460
3.3791]  [-1.4863] [1.2722]  [3.0206]
FF5 0.9421 -0.4611 0.2564 0.3687 0.5107 -0.0142  77.950% 0.0007

(3.1163) (-1.2548) (1.8439)  (2.6944) (2.7784) (-0.0575) 0.1084
[2.5523] [-1.0863] [1.8403]  [2.5476] [2.2142] [-0.0359)

Panel B 25 FF size and investment

FF3 0.9590 -0.3379 0.2109 0.6055 - - 74.415% 0.0023
(3.2698) (-0.9306) (1.4811)  (3.3346) 0.1099
[2.7528] [-0.8470]  [1.4717] [3.1248]

FF5 0.8245 -0.2109 0.2407 0.3824 0.1107 0.3576  75.834% 0.0004

(2.4468) (-0.5328) (1.6776) (1.6740) (0.5787) (3.6348)  0.1091
[1.9450] [-0.4484] [1.5803] [1.2581] [0.4088] [3.5325]

Panel C 25 FF book-to-market and operating profitability

FF3 0.1686 0.3696 0.0247 0.5255 - - 71.126% 0.0106
(0.3580) (0.7267)  (0.0874)  (3.3733) 0.1405
[0.2695]  [0.5638]  [0.0679]  [3.3014]

FF5 0.7580 -0.2738 1.0895 0.2237 0.5063 -0.0583  93.405% 0.9534

(1.4494) (-0.4985) (2.7552)  (1.4268) (3.5418) (-0.2933)  0.0532
[1.1686] [-0.4125] [2.2228]  [1.3061]  [2.9390] [-0.2426]

Panel D 25 FF size and variance

FE3 0.1980 0.3438 -0.0091 0.9930 - - 47.852% 0.0000
(1.1010)  (1.2297) (-0.0568) (4.1240) 0.1593
[0.7195]  [1.0642] [-0.0596] [3.5421]

FE5 1.1941 -0.5890 0.2995 -0.7029 1.4874 -1.6425  86.040% 0.0792

(6.2037) (-2.0752) (1.9802) (-2.4626) (7.3199) (-5.9008)  0.0644
[3.2846] [-1.4610] [1.7875] [-1.4275] [4.1041] [-3.1551]

Notes: This table reports the estimates for the zero-beta excess return and the price of risk for
each factor in the Fama and French (1993) three-factor model (FF3) and the Fama and French
(2015) five-factor model (FF5) along with the corresponding Fama-MacBeth (1973) test statistics
in parentheses. The factors include the value-weight excess return on the market portfolio (MKT),
the size factor (SMB, small minus big), the value factor (HML, high minus low book-to-market), the
operating profitability factor (RMW, robust minus weak profitability) and the investment factor
(CMA, conservative minus aggressive investment). In addition, I report the sample R? for each
cross-sectional regression along with its standard error and the p-value for the Kan et al. (2013)
specification test of Hy : R? = 1. Finally, I report the Kan et al. (2013) misspecification-robust
test statistics in square brackets.
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Table 2.14: Equity risk premium predictability

Panel A: scale-wise predictive regressions

Time-scale / Persistence level

j= 1 2 3 1 5 6 7
ug (1) Bj 17.0671 4.9732 -1.3015 1.2821 -1.4753 3.0551 0.3395
NW t-stat  (1.2109)  (0.6536) (-0.1805) (0.3057) (-0.5219) (3.8358)  (0.1636)
HH t-stat  (1.3849)  (0.6896) (-0.1735) (0.3544) (-0.5445)  (3.4481)  (0.2996)
Adj.R? (%)  [0.19%] [0.08%]  [0.03%]  [0.10%] [0.40%] [4.25%)| [0.12%)]
ut (3) Bj 14.4789 8.0920 -1.2110 1.5114 -1.4172 2.8094 0.4748
NW t-stat  (0.9460)  (1.0158) (-0.1697) (0.3622) (-0.5530)  (3.8691)  (0.2462)
HH t-stat  (1.1196)  (1.0802) (-0.1647) (0.4063) (-0.5929)  (3.2111)  (0.4812)
AdjR? (%) [0.13%]  [0.21%] [0.03%] [0.16%]  [0.43%]  [4.42%]  [0.28%]
ut (12) Bj 12.8635 21.4342 -0.5482 3.2158 -1.2089 4.2765 1.2757
NW t-stat  (0.3885)  (1.3916) (-0.0440) (0.4033) (-0.2845) (3.7904)  (0.4530)
HH t-stat  (0.4795)  (1.7927) (-0.0458) (0.4490) (-0.3339)  (3.0029)  (1.0020)
Adj.R? (%) [0.02%] [0.34%]  [0.00%]  [0.23%] [0.12%] [4.56%| [1.00%)]
# observations 632 628 620 604 572 508 380
Panel B: long-horizon predictive regressions (forward/backward aggregates)
Horizon
q= 16 32 48 64 96 128 192
ut (1) By -0.0515 1.1232 2.3776 2.8096 3.8981 5.1908 2.7207
NW t-stat  (-0.0313)  (0.6605) (1.3904) (2.4831)  (4.4502)  (10.1284)  (4.4648)
t/VT — {-0.0040} {0.1158} {0.2717} {0.3597} {0.6867} {1.4034**} {0.4223}
Adj.R? (%) |-0.16%]  [1.15%]  [6.73%| [11.32%] [31.99%] [66.35%] [14.90%)]
ut (3) By -0.1223 0.9830 2.2031 2.6418 3.7424 4.8934 2.1587
NW t-stat  (-0.0810)  (0.6294)  (1.3859) (2.4979)  (4.4820)  (10.1448)  (4.2962)
t/VT — {-0.0103} {0.1100} {0.2739} {0.3666} {0.7174} {1.4596**} {0.3664}
Adj.R? (%) [-0.16%]  [1.03%]  [6.83%] [11.71%] [33.93%] [68.09%] [11.57%)]
uy (12) By -0.0663 2.1299 4.0386 4.6292 6.0664 7.0527 0.4706
NW t-stat  (-0.0325)  (1.2430) (2.8174) (5.2286)  (6.0294)  (7.9741)  (1.0098)
t/VT — {-0.0037} {0.1672} {0.3734} {04871} {0.9069*} {1.5274**} {0.0651}
Adj.R? (%) [0.16%] [2.56%] [12.11%] [19.08%] [45.12%] [70.03%] [0.03%]

Notes: Panel A reports the results of scale-wise predictive regressions of the components of S&P
500 index excess returns on the components of macroeconomic uncertainty. For each regression,
the table reports OLS estimates of the regressors, Newey-West (1987) and Hansen-Hodrick (1980)
corrected t-statistics with 2/ — 1 lags in parentheses and adjusted R? statistics in square brackets.
Panel B presents the results of regressions (with an intercept) of forward/backward aggregates
over a horizon ¢q. Panel B reports OLS estimates of the regressors, Newey-West (1987) corrected
t-statistics with 2 x (¢ — 1) lags in parentheses, Valkanov’s (2003) rescaled test statistics in curly
brackets and adjusted R? statistics in square brackets. Significance at the 5%, 2.5% and 1% level

based on the rescaled t-statistic is indicated by

ko kk

, ¥ and *** respectively.
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Table 2.15b: Monotonicity tests for scale-specific risk exposures

Panel D Book-to-Market Top—bottom MR
Low 2 3 4 High p-value p-value
Average Return  0.4200 0.5385 0.5701  0.6902 0.8421 0.0033 0.0078

Forreturns - Hy: Rs < ... < Ry vs Hi : Rs > ... > R;
For risk-loadings - Hy : 5é]) >...> ﬁy) vs Hi : Bé]) <...< ,3%3)
56 h=1 -0.3088 -0.5302 -0.7102 -0.8052 -0.7867 0.0112 0.0462
B© h=3 -0.2374 -0.4622 -0.6278 -0.7258 -0.7093 0.0126 0.0418
56 h=12 -0.1874 -0.5846 -0.8600 -1.0516 -1.0232 0.0142 0.0344
SO p =1 -0.4482 -0.5226 -0.7029 -0.7677 -0.7427 0.2038 0.0978
BN p=3 -0.3534 -0.4507 -0.6197 -0.6895 -0.6731 0.1716 0.0782

BED h =12 -0.3967 -0.5988 -0.8744 -1.0284 -1.0160 0.1292 0.0404
Panel E Investment Top—bottom MR
Low 2 3 4 High p-value p-value

Average Return  0.7585 0.5776  0.5203 0.5129  0.4030 0.0034 0.0240

Forreturns - Hy: R > ... > Ry vs H1 : Ry < ... < Ry
For risk-loadings - Hy : 5éj) <...< ng) vs Hi : Béj) > .. > B%j)
56 h=1 -0.7509 -0.5922 -0.5566 -0.4761 -0.1936 0.0050 0.0052
ﬁ(6) h=3 -0.6774 -0.5274 -0.4775 -0.3953 -0.1201 0.0060 0.0034
ﬁ(6) h=12 -0.9480 -0.7339 -0.6222 -0.4407 0.0781 0.0076 0.0034
O h=1 -0.7146 -0.6328 -0.6323 -0.5333 -0.2676 0.0394 0.0330

pOT  h=3 -0.6385 -0.5644 -0.5431 -0.4425 -0.1809 0.0336 0.0186

pOT  h=12 -0.8805 -0.8331 -0.7714 -0.5562 -0.0329 0.0294 0.0128
Panel F Dividend Yield Top—bottom MR

Low 2 3 4 High p-value p-value

Average Return  0.4520  0.5479  0.5028  0.6402  0.6058 0.1909 0.3302

Forreturns - Hy: Rs < ... < Ry vs H{: Rs > ... > Ry
For risk-loadings - Hy : Bé]) > ... > 55]) vs Hy : Bé]) <. < 6§”
5 h=1 0.0139 -0.4367 -0.6084 -0.6519 -1.0399 0.0002 0.0044
5 h=3 0.0670 -0.3637 -0.5436 -0.5818 -0.9337 0.0004 0.0058
56 h=12 0.3794 -0.4203 -0.7676 -0.8340 -1.3937 0.0004 0.0048
BN hp=1 -0.1342 -0.4913 -0.5693 -0.6434 -1.0320 0.0078 0.0022
BED =3  -0.0578 -0.4056 -0.5052 -0.5662 -0.9306 0.0064 0.0034
BED  p =12  0.1636 -0.5196 -0.7459 -0.8461 -1.4417 0.0022 0.0030

Notes: This table presents the scale-specific risk exposures with respect to the factors Augﬁ) and

Augﬁﬁ) for h = 1,3,12 for various one-way portfolio sorts and the corresponding monotonicity
tests. The sorting variables are: book-to-market (Panel D), investment (Panel E) and dividend-
yield (Panel F). The first row in each panel reports average excess returns (in percent per month) for
the test assets. The final column in each panel presents the p-value for the monotonic relation (MR)
test. Similarly, the penultimate column presents the bootstrap p-value for the top-minus-bottom

difference in the corresponding returns and scale-wise betas.
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Appendix 2A: Results for Raw Series and Previous Studies

Table 2A.1: Cross-sectional regressions using the raw series of aggregate uncertainty

Panel A 25 FF size and book-to-market

Ao Au R*> p(R*=0) MAPE
ug (1) 0.6038 (2.0306) -0.1844  (-0.3039) 0.52% 0.8580 2.12%
ut (3) 0.6091  (2.0568) -0.1251  (-0.2883) 0.55% 0.8343 2.12%
ug (12) 0.3370  (1.2950) -0.2794  (-1.1998) 7.68% 0.5173 1.95%

Panel B 25 FF size and investment

o Au R? p(R*=0) MAPE
ug (1) 0.7411  (3.3525) 0.0398  (0.0828) 0.04% 0.9548 2.09%
ut (3) 0.5821 (2.2972) -0.1497  (-0.3915) 1.10% 0.7443 2.04%
ug (12) 0.3729 (1.4918) -0.2089  (-1.0464) 7.62% 0.4250 1.91%

Panel C 25 FF book-to-market and operating profitability

0 Au R? p(R*=0) MAPE
ug (1) 0.4466 (1.9274) -0.2766  (-0.6264) 0.80% 0.8515 2.72%
ut (3) 0.7573 (3.1434) 0.1737  (0.5037) 0.66% 0.8285 2.73%
ug (12) 0.3585 (1.6464) -0.1667 (-1.0829) 2.76% 0.6558 2.69%

Panel D 25 FF size and variance

o Au R? p(R*=0) MAPE
ug (1) 0.8117 (3.9496) 0.1809  (0.3826) 1.04% 0.7324 2.97%
ut (3) 0.7505 (3.7272) 0.0635  (0.1896) 0.26% 0.8617 2.95%
ug (12) 0.5941 (3.0081) -0.0560 (-0.3189) 0.66% 0.8042 2.86%

Notes: This table reports the estimates for the zero-beta excess return (A\g) and the price of risk
(\y) for the innovations in the raw series of aggregate uncertainty along with the corresponding
Fama-MacBeth (1973) test statistics in parentheses. The innovations are the residuals from an
AR (1) model fitted to the factor. The test assets include: the 25 FF size and book-to-market
portfolios (Panel A), the 25 FF size and investment portfolios (Panel B), the 25 FF book-to-market
and operating profitability portfolios (Panel C) and the 25 FF size and variance portfolios (Panel
D). In addition, I report the sample R? for each cross-sectional regression, the p-value for the Kan
et al. (2013) test of Hy : R? = 0 denoted as p (R? = 0) and the mean absolute pricing error (MAPE)
across all securities expressed in percent per year.
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Table 2A.2: Long-horizon predictive regressions - forward aggregates only

Horizon
q = 16 32 48 64 96 128 192
ug (1) By -0.1226 -0.0580 0.0539 0.1835 0.5760 1.2656 2.9976

NW t-stat  (-0.5098) (-0.1664) (0.1110) (0.2624) (0.8686)  (1.9620)  (4.0198)
t/vT — {-0.0636} {-0.0228} {0.0181} {0.0463} {0.1219} {0.2224}  {0.5108}
AdjR? (%) [0.254%] [-0.112%] [-0.135%] [0.063%] [1.544%] [5.671%| [27.141%]

u (3) By 0.1284  -0.0750  0.0254  0.1473 05213  1.2026 2.8640
NW t-stat  (-0.5715)  (-0.2322)  (0.0562) (0.2255) (0.8168)  (1.8767)  (3.9568)
t/VT {00717} {-0.0316} {0.0092} {0.0403} {0.1196} {0.2299}  {0.5387}
AdjR? (%) [0.364%] [-0.061%] [-0.162%] [0.006%] [1.481%] [6.046%] [29.310%]

ug (12) By 02248 -0.0661 02016  0.6129 14199 25474  5.1227
NW t-stat  (-0.6845) (-0.1541)  (0.3495) (0.8109) (1.7440) (2.5685)  (4.4368)
t/VT — {-0.0823} {-0.0182} {0.0478} {0.1178} {0.2322} {0.3545}  {0.7739}
AdjR® (%) [0.531%] [-0.131%] [0.077%] [1.352%] [5.818%] [13.472%] [46.187%]

Notes: This table presents the results of long-horizon predictive regressions over a horizon ¢ using
only forward aggregates, i.e. regressions of the form

€ —
T4 — % + Bqut + Mt t+q

where rf+17 e = I e ,; denotes excess market returns between ¢ + 1 and ¢ + ¢ and u; macro
uncertainty at time ¢. For each regression, the table reports OLS estimates of the regressors,
Newey-West (1987) corrected t-statistics with ¢ lags in parentheses, Valkanov’s (2003) rescaled test
statistics in curly brackets and adjusted R? statistics in square brackets. Significance at the 5%,
2.5% and 1% level based on the rescaled t-statistic is indicated by *, ** and *** respectively. For

the right-tail critical values of t/v/T at various percentiles see the Internet Appendix.
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Appendix 2B: Robustness Checks and Additional Results

This Appendix contains additional results and robustness checks that are omitted in the main

chapter for brevity.

Same burn-in period

In the main results I discard the first 27 — 1 observations for each scale, that is, I use a burn-in
specific period for each component and rely on the maximum number of observations possible for
each time-scale to conduct statistical and economic inferences. Here I adopt a different approach
to initialize the filtering procedure. Specifically, I use the same burn-in period for all components
which implies a reduction of the effective sample for j € {1,2,3,4,5,6}. Tables 2B.1 through 2B.4
present the results from the cross-sectional regressions for the same sub-period. The results for all

test assets remain quantitatively similar.

Uncertainty shocks with persistence greater than 128 months

I report the results for low-frequency uncertainty shocks with persistence greater than 27 = 128
months (see Table 2B.5). The factor Au§>7) cannot explain the cross-sectional variation in the
25 FF size and book-to-market portfolios, the 25 FF size and investment and the 25 FF size and
variance portfolios. Also, the null that the model is correctly specified (i.e., Hy : R? = 1) is strongly
rejected. In contrast, low-frequency uncertainty shocks with persistence greater than 128 months
are priced in the cross-section of the 25 FF book-to-market and operating profitability portfolios.
However, the estimates of the zero-beta excess return are statistically significant at the 1% level for

all h =1,3,12. Also, the factor has a higher MAPE in comparison with Au§6:7) and the specification
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test rejects the hypothesis of a perfect fit. In addition, the explanatory power of the factor is limited.
(i.e., for h = 1: se(R. 7)) = 0.085, for h = 3: se(R{. ) = 0.084 and for h = 12: se(R{.)) = 0.081).
Similar results (see Table 2B.6) hold for low-frequency uncertainty shocks with persistence ranging

between 128 and 256 months (i.e., the priced factor is Augg) ). Also, confidence intervals for the

sample cross-sectional R? for Au£>7) and Augs) are available in Table 2B.7.

Results for the low-frequency macro volatility risk factor of Boons and Tamoni

(2015) - monthly data

In line with Boons and Tamoni (2016) I extract from the volatility of monthly industrial production
low-frequency shocks with persistence greater than 32 months. Note that IPVOL is estimated using
an AR (1) — GARCH(1, 1) model over the full sample. Table 2B.8 reports the estimates for the
zero-beta excess return and the price of risk for the innovations in macro volatility shocks with
persistence greater than 32 months. The factor AIPVOL§>5) is not priced in any of the test assets.
From this perspective my study complements Boons and Tamoni (2016) by showing that investors

care about scale-dependent economic uncertainty irrespective of their portfolio rebalancing period.

5 industry portfolios plus 25 FF size and book-to-market

Following the suggestion of Lewellen et al. (2010) and Daniel and Titman (2012) I relax the tight
(i.e., low-dimensional) factor structure of the test assets and I use the 25 FF size and book-to-
market and the 5 FF industry portfolios which are priced together. That is, I include the industry
portfolios to provide a higher hurdle for the proposed factor (i.e., the cross-sectional variation in the
expected returns is higher). Since the asymptotic results in Kan et al. (2013) become less reliable
as the number of test assets increases (e.g. the asymptotic distribution of the sample cross-sectional
R?), I only add the 5 industry portfolios. The results in Table 2B.9 remain similar and the model

with the business-cycle uncertainty factor is correctly specified.
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Controlling for Fama-French factors

Table 3B.10 presents results from cross-sectional regressions where 1 control for exposure to the
Fama-French’s factors. The control factors include the value-weight excess return on the market
portfolio (MKT), the size factor (SMB, small minus big), the value factor (HML, high minus low
book-to-market), the operating profitability factor (RMW, robust minus weak profitability) and the
investment factor (CMA, conservative minus aggressive investment). Except for the test assets sor-
ted across book-to-market and operating profitability, the business-cycle uncertainty factor remains
statistically significant in the presence of the control factors (see also the discussion in Section 3.3.

of the main chapter).

Controlling for momentum, short-term reversal, long-term reversal, liquidity and
portfolio characteristics

Tables 2B.11a and 2B.11b report estimates for the price of risk (\g.7) for u1(56:7) after controlling for

exposure to the value-weight excess return on the market portfolio (MKT), the size factor (SMB),
the value factor (HML), the momentum factor (MOM), the short-term reversal factor (STR), the
long-term reversal factor (LTR), the liquidity factor (LIQ), the log size (log (M E)) and the log
book-to-market ratio (log (B/M)). I estimate the risk exposures for the MKT, SMB, HML, MOM,
STR and LTR factors using the same time-series regression and the risk-loadings for the LIQ factor
separately as in Pastor and Stambaugh (2003). The business-cycle uncertainty factor remains

statistically significant in the presence of the control factors.

Residuals from an AR(1) model fitted to u®?

Under the one-sided, linear Haar filter used for the extraction decomposing across time-scales
changes in aggregate uncertainty is equivalent to calculating changes in the scale-specific uncer-
tainty series. Thus, in the main chapter I estimate the innovations in the scale-specific uncertainty

components by first-differencing each series. For robustness, 1 present in Table 3B.1 the cross-
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sectional estimates for the business-cycle uncertainty factor where the innovations are the residuals
from an AR(1) model fitted to the factor ugﬁﬁ). The results remain quantitatively similar across all

test assets.

Bootstrapped confidence intervals for the first and second-pass cross-sectional

estimates

(6:7)

I calculate confidence intervals for the first-pass scale-dependent betas for u, using the bias-
corrected percentile method and the stationary bootstrap procedure described in Appendix A. For a
survey of bootstrap procedures for constructing confidence regions see Diciccio and Romano (1988).
The results are available in Table 2B.13. Bold values denote statistically significant beta estimates
at a 90% confidence level. Several of the estimated betas are individually statistical significant, that
is, the bootstrap-based confidence regions do not include zero.

Moreover, for each bootstrap replication b = 1,...,5,000 I estimate a cross-sectional regression
of average portfolio excess returns (original data) on the pseudo-sample of the scale-specific risk
exposures. | report confidence intervals using the bias-corrected percentile method for the zero-
beta excess return (Agg.7), the price of risk (A¢.7) and the sample R2. The results are available
in Table 2B.14. The main difference with the results in the main chapter is that for the 25 FF
book-to-market and operating profitability portfolios the estimates of the zero-beta excess return
remain statistically significant. Two comments are in order here. First, for these test assets the
model is misspecified. Second, the scale-specific risk exposures are estimated with error in the first-
pass scale-wise regression. In contrast, the popular Fama-MacBeth (1973) test-statistics reported
in the main paper do not account for estimation errors in the betas or for a potentially misspecified
model. Note that since the first-pass regressions are scale-wise, the Shanken (1992) correction or

the misspecification-robust t-statistics of Kan et al. (2013) are not directly applicable here.
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Bootstrapped confidence intervals for the scale-wise predictive regressions

Table 2B.15 reports bootstrapped confidence intervals for the scale-wise predictive regressions for
j = 6,7 using the bias-corrected percentile method and the stationary bootstrap of Politis and
Romano (1994). In Panel A of Table 2B.15 the average block size in this case is set equal to 32 -
calculated based on the Politis and White (2004) estimator. In Panel B of Table 2B.15 the block
size is set equal to 2/. For j = 6 the coefficients from the scale-wise predictive regressions are

statistically significant.

Valkanov’s (2003) rescaled t-statistic

The standard t-statistics in long-horizon regressions do not converge to well-defined distributions
(for instance, see Valkanov, 2003 and Bandi and Perron, 2008). To address this inferential problem
I rely on Valkanov’s (2003) rescaled t/v/T statistic. In particular, as in Valkanov’s framework I

assume that the underlying data-generating processes are

rip1 = Pur + €141 (2B.1)

ur = QUut—1 + €2,¢41 (2B.2)
where p = 1+ ¢/T and the parameter ¢ measures deviations from unity in a decreasing (at rate T')
neighbourhood of 1. Also, I assume that the vector [€1,14+1 , €2,¢4+1 ] 18 a vector martingale difference
sequence with covariance matrix [07; 012; 021 03,]. Following Bandi and Perron (2008) I let the
portion of the overlap to be a constant fraction of the sample size, that is, h = [AT]. Table 2B.16
reports the right-tail critical values of t/ VT at various percentiles. I simulate the distribution of
t/\/T for samples of length T = 635. I implement 5,000 replications. It is important to highlight
that I only adopt this framework to address the inferential problems that arise in predictive regres-
sions with persistent regressors. As I demonstrate in Table 2B.17 the data-generating process for

uncertainty is a multi-scale autoregressive process, i.e. a system in which high-frequency shocks are
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not linear combinations of low-frequency shocks (see also the novel work of Bandi et al., 2016).

Multi-scale autoregressive system

Table 2B.17 reports the estimation results of the multi-scale autoregressive system for macro uncer-

tainty. For j € {1,5} the uncertainty components can be represented as scale-wise AR processes,

(4) IS¢ ) )
kx2i+2i — Pillgsoi t Epyoitoi

consumption shocks in Ortu et al. (2013) (see page 2905). Note that as Bandi et al. (2016) point

ie. u where k € Z. My results are similar with the estimates for

out the dependence p; in time-scale j is significantly lower than the dependence of the raw series.

Moreover, I estimate the half-life for each autoregressive component which is given by:

HL (j) = L 9, (2B.3)

The presence of the factor 27 is justified on the basis that the decimated component at time-scale j
is defined on the grid {k x 20 : ke Z}. The estimated half-life for j = 1 is close to the lower bound
of the corresponding interval [2/~1,27) while for j = 5 lies in the middle.

In line with the novel work of Bandi et al. (2016) (see also section 1.5) these results imply
a generalized Wold-type representation for the macroeconomic uncertainty series in which low-
frequency macro shocks are not linear combinations of high frequency macro shocks. That is, the

uncertainty shocks at each scale carry unique information.

Percentage contribution of uﬁj) and IPVOng) to total variance

Panel A of Table 2B.18 shows the percentage contribution of each individual component to the
total variance of the time-series for aggregate uncertainty. Approximate confidence intervals for the
variance of the components are computed based on the Chi-squared distribution with one degree of
freedom (see also Percival, 1995). Note that by definition Var (u;) = Z}‘]=1 Var (u(j)) + Var <u§>‘])>.
The first seven persistent components filtered out of the uncertainty index account for 74.91% of the

total variance of the series. Fluctuations in uncertainty with persistence ranging between 1 and 2
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months (i.e., high-frequency) account only for 0.65% of the total variance with a lower and an upper
confidence bounds of 0.56% and 0.77% respectively. Low-frequency fluctuations with persistence
between 32 and 64 months explain 22.89% of the total variance with a lower and an upper confidence
bounds of 14.51% and 41.42% respectively. Similarly, shocks with persistence between 64 and 128
months explain 18.73% of the total variation in the series with a lower and an upper confidence
bounds of 9.55% and 52.02% respectively. Figure 2B.1 depicts the scale-specific contribution of
each component to the variance of the uncertainty series along with a comparison of the different
methods for constructing confidence intervals.

Panel B of Table 2B.18 presents the percentage contribution of each individual component to
the total variance for the volatility of industrial production. Shocks with persistence greater than

32 months (i.e., IPVOL§>5)) account only for 10.45% of the total variance of the series.

Beta comparison: 37 versus 8w ® + 3N (M

In Equation (2.11) 87 can be viewed as a linear combination of () and A7) with weights
depending on the relative contribution of the corresponding factor to total variance. The extracted
components are only nearly-uncorrelated across scales (i.e., Cov (Augﬁ), Aug)) ~ 0) and therefore
this relation is not exact. In Figure 2B.2 I illustrate the difference by plotting 5(6:7) versus 5(6)12(6) +
BN for the size and book-to-market portfolios. I estimate 8 and (7 over the same sub-
period where w(® = 0.8647 and @™ = 1 — @w(®. Note that Bandi and Tamoni (2016) follow a
similar approach to calculate a business-cycle consumption factor, however, they use the decimated

components which are uncorrelated across scales.

Transformations on characteristics

Size and book-to-market are not linear across portfolios (i.e., a lot of small firms - all the value in the
largest-cap portfolios). For controls T use log of the book-to-market ratio and log size as a fraction

of total market value (to remove the trend). Figures 2B.3 and 2B.4 depict the transformations.
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Figure 2B.1: Scale-specific contribution to variance
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Notes: This figure plots the scale-specific contributions to the time series of aggregate uncertainty
(derived from monthly forecasts) along with the relevant confidence bounds.
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Figure 2B.2: Beta comparison: 8(¢7) versus 38w + g(M (7
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Notes: This figure plots 367 versus 8 w(©) 4+ (D7) for the size and book-to-market portfolios.
I estimate 89 and 8(7) over the same sub-period (i.e., I discard the first 27 — 1 observations) where
w(® =0.8647 and w() =1 — (),
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Figure 2B.3: Transformations on characteristics - logs
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Notes: This figure plots the log transformations on the portfolio characteristics. Note that size
and book-to-market are not linear across portfolios (i.e., a lot of small firms - all the value in the
largest-cap portfolios).
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Figure 2B.4: Transformations on characteristics - logs over time
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Notes: This figure plots the log transformations on the portfolio characteristics over time. For
controls I use log size as a fraction of total market value (to remove the trend).
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Table 2B.1: Cross-sectional regression with the same burn-in period: 25 FF size and
book-to-market portfolios

Persistence level

j= 1 2 3 4 5 6 7 6:7
(7 (1)
Ao,j 0.8872 0.9814 1.0401 0.5502 0.3493 0.2078 0.5814 0.0581
(2.8483) (3.3550) (4.1622) (2.4048) (1.4251) (0.8401) (2.3717) (0.2083)
Aj 0.3719 0.4399 0.5986 -0.1891 -0.3654 -0.5922 -0.4016 -0.8315
(0.5038) (0.8220) (1.2698) (-0.6207) (-1.3914) (-3.9006) (-3.2124) (-4.3264)
price of risk  0.401%  0.623%  0.939%  -0.286%  -0.844%  -2.090% -2.295% -2.274%
R? 2.303%  5.547% 12.586% < 1.172%  10.168% = 62.416% 75.271% = 73.891%
se(RQ) 0.0846 0.1266 0.1681 0.0431 0.1603 0.2183 0.2375 0.1224
D (R2 = 1) 0.0157 0.0186 0.0225 0.0175 0.0212 0.1692 0.2956 0.3139
MAPE 2.029%  2.077%  2.025% 1.949% 1.752% 1.091% 1.156% 1.114%
u (3)
Ao, 0.8213 0.9419 1.0123 0.5725 0.3148 0.2364 0.5836 0.1109
(2.9482) (3.1862) (3.8181) (2.1542) (1.2817) (0.9652) (2.4041) (0.4097)
Aj 0.1154 0.2264 0.4008 -0.1399 -0.4083 -0.6232 -0.4259 -0.8476
(0.3574)  (0.6799) (1.0331) (-0.4201) (-1.5297) (-3.9064) (-3.3841) (-4.3044)
price of risk  0.287%  0.532%  0.801%  -0.233%  -0.950% -2.107%  -2.340% -2.285%
R? 1.175%  4.037%  9.167% 0.776%  12.888%  63.443% 78.251% « T4.617%
se(R?) 0.0656 0.1123 0.1586 0.0402 0.1832 0.2211 0.2066 0.1311
D (R2 = 1) 0.0164 0.0179 0.0220 0.0167 0.0226 0.1765 0.3255 0.3229
MAPE 2.059%  2.063%  2.052% 1.965% 1.717% 1.079% 1.075% 1.079%
Ut (12)
Ao,j 0.7899 0.9717 1.0263 0.4595 0.2511 0.3083 0.6407 0.2278
(3.2865) (3.5045) (3.8459) (1.6573)  (1.0452) (1.2606) (2.6882)  (0.8350)
Aj 0.0597 0.1283 0.1854 -0.1238 -0.2727 -0.3784 -0.2284 -0.4856
(0.3289) (0.8453) (1.0747) (-0.7572) (-1.9470) (-3.9801) (-2.9019) (-4.0302)
price of risk  0.221%  0.679%  0.835% -0.457% -1.223% -2.174% -2.182% -2.336%
R? 0.696%  6.587%  9.958% 2.986%  21.366%  67.543% 68.037% « 77.922%
se(R?) 0.0425 0.1435 0.1654 0.0850 0.2285 0.2049 0.2665 0.1147
P (R2 = 1) 0.0045 0.0196 0.0224 0.0168 0.0296 0.2109 0.1920 0.3653
MAPE 2.057%  2.058%  2.031% 1.880% 1.602% 1.039% 1.315% 1.029%
#£ observ. 507

Notes: This table reports the estimates for the zero-beta excess return (Ao ;) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R? for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of Hy : R?> = 1 and the mean absolute pricing error (MAPE) across all securities expressed in

percent per year.
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Table 2B.2: Cross-sectional regression with the same burn-in period: 25 FF size and
investment portfolios

Persistence level

j= 1 2 3 4 5 6 7 6:7
(7 (1)
Ao,j 0.9391 0.9872 1.1510 0.6117 0.2569 0.3080 0.7261 0.1923
(4.5809) (4.9284) (6.3034) (2.2124) (0.9453)  (1.2341) (2.9121) (0.6872)
Aj 0.2204 0.2402 0.6047 -0.2596 -0.6163 -0.6327 -0.4063 -0.8591
(0.5611)  (0.7201) (1.8107) (-0.5637) (-1.9119) (-3.5367) (-3.8261) (-4.6799)
price of risk  0.353% 0471%  1.037%  -0.344%  -1.227% -2.139% -1.927% -2.212%
R? 1.862% 3.312% 16.054%  1.763% = 22.461% = 68.268%  55.409% = 73.006%
se(RQ) 0.0714 0.0903 0.1607 0.0627 0.2058 0.1968 0.2299 0.0922
D (R2 = 1) 0.0123 0.0108 0.0256 0.0079 0.0094 0.1465 0.0833 0.2508
MAPE 2.132% 2.108%  1.927% 2.088% 1.760% 0.835% 1.364% 0.985%
u (3)
Ao, 0.7808 0.9588 1.0764 0.5910 0.2313 0.3454 0.7391 0.2531
(3.0598) (4.2776) (5.7037) (1.9993) (0.8556)  (1.4005)  (3.0064)  (0.9309)
Aj -0.0250 0.1290 0.3366 -0.2447 -0.6571 -0.6545 -0.4400 -0.8672
(-0.0857) (0.5183) (1.1657) (-0.5785) (-2.0648) (-3.5701) (-4.1403) (-4.6254)
price of risk  -0.066%  0.357%  0.726%  -0.383%  -1.360%  -2.153%  -2.028% = -2.227%
R? 0.066% 1.902%  7.868% 2.190%  27.604% = 69.186% 61.365% = 74.027%
se(R?) 0.0146 0.0720 0.1294 0.0746 0.2236 0.1942 0.2099 0.0934
D (R2 = 1) 0.0114 0.0107 0.0220 0.0081 0.0104 0.1566 0.1119 0.2645
MAPE 2.151% 2.132%  2.061% 2.077% 1.668% 0.817% 1.256% 0.963%
Ut (12)
Ao,j 0.9459 0.9549 1.0526 0.3977 0.2035 0.4250 0.8018 0.4021
(4.5562) (4.4838) (5.5522) (1.3158)  (0.7773)  (1.7359)  (3.3523)  (1.4791)
Aj 0.0810 0.0587 0.1352 -0.2208 -0.3997 -0.3929 -0.2238 -0.4750
(0.5789)  (0.5494) (1.0451) (-1.1216) (-2.5562) (-3.7941) (-3.2885) (-4.5760)
price of risk  0.390% 0.391%  0.647%  -0.782%  -1.679%  -2.206% -1.771%  -2.166%
R? 2.270% 2.283%  6.248% 9.129%  42.082%  72.563%  46.790% = 70.012%
se(R?) 0.0844 0.0825 0.1144 0.1505 0.2409 0.1742 0.2467 0.1424
P (R2 = 1) 0.0116 0.0162 0.0225 0.0053 0.0176 0.2061 0.0715 0.2089
MAPE 2.126% 2.131%  2.088% 1.925% 1.401% 0.792% 1.459% 1.078%
#£ observ. 472

Notes: This table reports the estimates for the zero-beta excess return (Ao ;) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R? for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of Hy : R?> = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year.
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Table 2B.3: Cross-sectional regression with the same burn-in period:

market and operating profitability portfolios

25 FF book-to-

Persistence level

Jj= 1 2 3 4 ) 6 7 6:7
(7 (1)
Ao, 0.8186 1.2477 0.8519 0.1140 0.2877 0.3041 0.6235 0.2989
(3.3733) (4.2837) (3.9400) (0.4268)  (1.2030)  (1.2003) (2.7259) (1.1748)
Aj 0.2089 0.8050 0.2607 -0.7548 -0.5021 -0.5992 -0.4767 -0.6375
(0.5940) (1.8648) (0.7979) (-2.8855) (-2.4681) (-3.4823) (-3.3816) (-3.3535)
price of risk  0.267%  1.193%  0.486%  -1.584%  -1.426% -2.638%  -2.806%  -2.322%
R? 0.521% 10.370% 1.718%  18.290% 14.831% 50.719% 57.417%  39.300%
se(RQ) 0.0177 0.0924 0.0431 0.0607 0.1043 0.1454 0.1781 0.1418
D (R2 = 1) 0.0109 0.0059 0.0083 0.0146 0.0160 0.0252 0.0193 0.0151
MAPE 2.769%  2.734%  2.766% 2.598% 2.655% 2.068% 1.778% 2.231%
Ut (3)
Ao, 1.1732 1.2312 0.8545 0.1514 0.2802 0.3314 0.6530 0.3255
(4.7428) (4.0781) (3.9143) (0.5900) (1.1628) (1.3229) (2.8758) (1.2899)
Aj 0.4962 0.4942 0.1928 -0.6164 -0.5248 -0.6341 -0.4846 -0.6781
(2.1715)  (1.5993) (0.6912) (-2.5972) (-2.5241) (-3.4662) (-3.3262) (-3.3478)
price of risk  1.402%  1.158%  0.452%  -1.397%  -1.492% -2.647% -2.788%  -2.376%
R? 14.329%  9.775%  1.487% 14.221% 16.238% 51.061% 56.667%  41.156%
se(R?) 0.1086 0.1116 0.0436 0.0661 0.1091 0.1477 0.1823 0.1465
D (R2 = 1) 0.0068 0.0065 0.0085 0.0150 0.0153 0.0226 0.0169 0.0137
MAPE 2.469%  2.675%  2.753% 2.628% 2.598% 2.062% 1.835% 2.190%
Ut (12)
Ao,j 0.8234 1.1336 0.9077 0.1657 0.2497 0.4047 0.6946 0.3887
(3.4519) (4.2409) (4.1396) (0.6456) (0.9956) (1.6534) (3.0863) (1.5558)
Aj 0.0736 0.1906 0.1156 -0.2907 -0.3349 -0.3806 -0.2926 -0.4199
(0.5681) (1.5413) (0.9401) (-2.6401) (-2.8365) (-3.4100) (-3.1887) (-3.3174)
price of risk  0.317%  1.119%  0.636%  -1.462% -1.779%  -2.662%  -2.735%  -2.499%
R? 0.733%  9.132%  2.953%  15.590%  23.064% 51.640% 54.525%  45.510%
se(R?) 0.0275 0.1087 0.0627 0.0786 0.1244 0.1522 0.1882 0.1547
D (R2 = 1) 0.0097 0.0061 0.0079 0.0149 0.0145 0.0184 0.0103 0.0110
MAPE 2.783%  2.682%  2.702% 2.626% 2.469% 2.050% 1.915% 2.083%
# observ. 472

Notes: This table reports the estimates for the zero-beta excess return (Ao ;) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R? for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of Hy : R?> = 1 and the mean absolute pricing error (MAPE) across all securities expressed in

percent per year.
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Table 2B.4: Cross-sectional regression with the same burn-in period:
variance portfolios

25 FF size and

Persistence level

j= 1 2 3 4 5 6 7 6:7
(7 (1)
Ao,j 0.9154 0.9365 0.9270 0.8118 0.9052 0.2634 0.7476 -0.1131
(3.6746)  (4.6809) (5.0342) (3.8169) (4.2425) (1.0479) (2.9177) (-0.3569)
Aj 0.2279 0.2043 0.2387 0.0327 0.1234 -0.6392 -0.3932 -1.2460
(0.3501)  (0.4984) (0.5191) (0.0938)  (0.4158) (-3.5242) (-1.9058) (-5.3519)
price of risk  0.365% 0.553%  0.565% 0.104% 0.484%  -2.249%  -2.054%  -2.908%
R? 0.862% 1.987%  2.073% 0.070% 1.520%  32.819% 27.355% = 54.840%
se(RQ) 0.0482 0.0706 0.0700 0.0150 0.0721 0.2250 0.1976 0.1644
P (R2 = 1) 0.0051 0.0033 0.0038 0.0036 0.0032 0.0265 0.0004 0.0721
MAPE 3.085% 3.051%  3.050% 3.049% 3.066% 2.070% 2.595% 1.827%
u (3)
Ao, 0.8213 0.8958 0.9153 0.8214 0.8640 0.2947 0.7602 -0.0194
(3.5579)  (4.4027) (4.8013) (3.8130) (4.0972) (1.1756) (3.0352) (-0.0624)
Aj 0.0360 0.0949 0.1572 0.0375 0.0834 -0.6735 -0.4439 -1.2545
(0.1072)  (0.3554) (0.4577) (0.1228)  (0.2796) (-3.5781) (-2.0740) (-5.1685)
price of risk  0.117% 0.393%  0.512% 0.138% 0.321%  -2.278%  -2.186% -2.918%
R? 0.089% 1.003%  1.702% 0.123% 0.670%  33.656%  30.986% = 55.231%
se(R?) 0.0161 0.0507 0.0666 0.0202 0.0484 0.2260 0.1940 0.1699
D (R2 = 1) 0.0050 0.0045 0.0043 0.0040 0.0032 0.0271 0.0022 0.0711
MAPE 3.051% 3.058%  3.058% 3.054% 3.068% 2.054% 2.468% 1.832%
Ut (12)
Ao,j 0.7329 0.8848 0.9180 0.7619 0.7181 0.3502 0.8178 0.1788
(4.2543)  (4.5921) (4.7806) (3.5566)  (3.4867)  (1.3298)  (3.5698)  (0.5214)
Aj -0.0279 0.0405 0.0711 -0.0099 -0.0390 -0.4407 -0.2151 -0.7293
(-0.1798)  (0.3420) (0.4655) (-0.0693) (-0.2384) (-3.9382) (-1.7500) (-4.0420)
price of risk  -0.172%  0.380%  0.521%  -0.076%  -0.254%  -2.460% -1.987% -3.067%
R? 0.193% 0.935%  1.763% 0.038% 0.419%  39.255%  25.623% = 61.006%
se(R?) 0.0218 0.0493 0.0678 0.0114 0.0379 0.2201 0.2107 0.1278
P (R2 = 1) 0.0064 0.0045 0.0043 0.0039 0.0038 0.0314 0.0004 0.0694
MAPE 2.994% 3.062%  3.061% 3.017% 2.978% 1.980% 2.654% 1.775%
#£ observ. 472

Notes: This table reports the estimates for the zero-beta excess return (Ao ;) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R? for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of Hy : R?> = 1 and the mean absolute pricing error (MAPE) across all securities expressed in

percent per year.
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>7

Table 2B.5: Cross-sectional regressions for Au,

Panel A 25 FF size and book-to-market

Ao,>7 As7 R? P (R2 = 1) MAPE 4 observ.
h=1 0.7020 (2.4547) -0.0024  (-0.0247) 0.004% 0.0161 2.045%
h=3 0.6924 (2.4338) -0.0134  (-0.1271) 0.093% 0.0167 2.062% 507
h=12 0.6929 (2.5010) -0.0084  (-0.1394) 0.113% 0.0166 2.065%
Panel B 25 FF size and investment

Ao,>7 As7 R? D (R2 = 1) MAPE 4 observ.
h=1 0.8998  (3.2180) 0.1006  (1.2163) 10.069% 0.0038 1.924%
h=3 0.8926 (3.2023) 0.1019  (1.1443) 8.796% 0.0037 1.953% 472
h=12 0.8840 (3.1762) 0.0591  (1.0594) 8.341% 0.0033 1.966%
Panel C 25 FF book-to-market and operating profitability

0,7 As7 R? p(R*=1) MAPE # observ.
h=1 0.4956 (2.1311) -0.1931  (-3.6946) 21.244% 0.0115 2.7711%
h=3 0.4930 (2.1200) -0.2159  (-3.7853) 22.855% 0.0123 2.755% 472
h=12 05106 (2.2299) -0.1226  (-3.8924) 19.293% 0.0144 2.877%
Panel D 25 FF size and variance

0,7 As7 R? p(R*=1) MAPE # observ.
h=1 0.6619 (2.2730) -0.1396  (-1.7127) 19.577% 0.0076 3.002%
h=3 0.6609 (2.2712) -0.1540  (-1.7347) 20.171% 0.0077 2.997% 472
h=12 0.6833 (2.3682) -0.0802 (-1.4883) 14.338% 0.0062 3.093%

Notes: This table reports the estimates for the zero-beta excess return (Ao ~7) and the price of risk
(As7) for low-frequency uncertainty shocks with persistence greater than 27 = 128 months (i.e.,
the priced factor is Au§>7) ) along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, T report the sample R? for each cross-sectional regression, the p-value for
the Kan et al. (2013) test of Hy : R? = 1 denoted as p (R2 = 1) and the mean absolute pricing
error (MAPE) across all securities expressed in percent per year. The test assets include: the 25
FF size and book-to-market portfolios (Panel A), the 25 FF size and investment portfolios (Panel
B), the 25 FF book-to-market and operating profitability portfolios (Panel C) and the 25 FF size

and variance portfolios (Panel D).
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Table 2B.6: Cross-sectional regressions for Auwuy

(8)

Panel A 25 FF size and book-to-market

Ao.s s R? se(R?) MAPE # observ.
h= 0.7397  (2.5555) -0.0618  (-0.6243) 2.627% 0.0847 2.066%
h = 0.7353  (2.5534) -0.0768  (-0.7041) 3.349%  0.0945 2.072% 379
h=12  0.7475 (2.6676) -0.0452  (-0.6743) 3.229%  0.0947 2.073%
Panel B 25 FF size and investment

Ao.s Ag R? se(R?) MAPE +# obsery.
h=1 0.7967 (2.7041) 0.0052  (0.0639) 0.052%  0.0169 1.738%
h=3 0.7947 (2.7136) 0.0023  (0.0266) 0.009%  0.0069 1.744% 344
h=12  0.7930 (2.7643) -0.0007  (-0.0120) 0.002%  0.0032 1.750%
Panel C 25 FF book-to-market and operating profitability

o8 s R? se(R?) MAPE # observ.
h=1 0.6304 (2.3098) -0.1498  (-2.3513) 16.211% 0.1149 2.110%
h=3 0.6333 (2.3181) -0.1692  (-2.3330) 17.401% 0.1215  2.088% 344
h=12  0.6565 (2.4148) -0.1025  (-2.2238) 14.739% 0.1116  2.136%
Panel D 25 FF size and variance

Ao.s s R? se(R?) MAPE +# observ.
h=1 0.7003 (2.3065) -0.1446  (-1.6947) 41.160% 0.3077  2.120%
h=3 0.7048 (2.3359) -0.1591  (-1.7022) 42.254% 0.3104 2.102% 344
h=12  0.7299 (2.4950) -0.0945  (-1.6421) 39.579% 0.3084 2.145%

Notes: This table reports the estimates for the zero-beta excess return (A\gg) and the price of risk
(Ag) for low-frequency uncertainty shocks with persistence ranging between 128 and 256 months

(i.e., the priced factor is Augs)

) along with the corresponding Fama-MacBeth (1973) test statistics

in parentheses. In addition, I report the sample R? for each cross-sectional regression, its standard
error and the mean absolute pricing error (MAPE) across all securities expressed in percent per
year. The test assets include: the 25 FF size and book-to-market portfolios (Panel A), the 25
FF size and investment portfolios (Panel B), the 25 FF book-to-market and operating profitability
portfolios (Panel C) and the 25 FF size and variance portfolios (Panel D).
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Table 2B.7: Au{"" and Au{®: Confidence intervals for R2

h=1 h=3 h =12

AT AT AT A AT Al
Panel A
R? 0.004%  2.627% 0.093%  3.349% 0.113%  3.229%
se(R?) 0.0031 0.0847 0.0157 0.0945 0.0173 0.0947
2.5% CI (R2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
97.5% CI(R*)  0.0238  0.2065 0.0449  0.2308 0.0473  0.2214
Panel B
R? 10.069%  0.052% 8.796%  0.009% 8.341%  0.002%
se(RQ) 0.1513 0.0169 0.1417 0.0069 0.1458 0.0032
2.5% CI (R2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
97.5% CI(R?)  0.3997  0.0405 0.3748  0.0230 0.3906  0.0259
Panel C
R? 21.244% 16.211% 22.855% 17.401% 19.293% 14.739%
se(R?) 0.0845  0.1149 0.0840  0.1215 0.0815  0.1116
2.5% CI (R2 0.0496 0.0000 0.0763 0.0000 0.0378 0.0000
97.5% CI (R?)  0.3935  0.3987 04013 0.4121 0.3567  0.3863
Panel D
R? 19.577% 41.160% 20.171% 42.254% 14.338%  39.579%
se(R?) 0.2069 0.3077 0.2093 0.3104 0.1826 0.3084
2.5% CI(R?)  0.0000  0.0000 0.0000  0.0000 0.0000  0.0000
97.5% CI (Rz) 0.6080 1.0000 0.6640 1.0000 0.5488 1.0000

Notes: This table reports the sample cross-sectional R?, its standard error and its 95% confidence
interval for low-frequency uncertainty shocks with persistence greater than 27 = 128 months (i.e.,

the priced factor is Au§>7) ) and for low-frequency uncertainty shocks with persistence ranging

between 128 and 256 months (i.e., the priced factor is Augs) ). I calculate the confidence interval
for the sample R? by pivoting the cdf. The test assets include: the 25 FF size and book-to-market
portfolios (Panel A), the 25 FF size and investment portfolios (Panel B), the 25 FF book-to-market
and operating profitability portfolios (Panel C) and the 25 FF size and variance portfolios (Panel
D).
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Table 2B.8: Cross-sectional regressions for AIPVOL§>5)

Panel A 25 FF size and book-to-market

Innovations from: Ao )‘AIPVOL§>5>

R?  se(B?) p(R®=1) MAPE

First-Differences  0.0980 (0.3886)  -0.0281 (-2.1067) 20.022% 0.2039  0.0114  1.782%

95% Confidence Interval for R?:  [0.0000, 0.6240]

Residuals - AR(1) 0.0262 (0.1022) -0.0302 (-2.3703) 20.165% 0.1812 0.0129 1.837%

95% Confidence Interval for R%:  [0.0000, 0.5975]

Panel B 25 FF size and investment

Innovations from: Ao /\AIPVOL§>5)

R? se(f/{\Q) p(R*=1) MAPE

First-Differences 0.1757  (0.6162) -0.0207 (-1.4589) 15.591% 0.2071 0.0004 1.761%

95% Confidence Interval for R%:  [0.0000, 0.5743]

Residuals - AR(1) 0.1306 (0.4391) -0.0218  (-1.5254) 15.104% 0.1932 0.0004 1.766%

95% Confidence Interval for R%:  [0.0000, 0.5267]

Panel C 25 FF book-to-market and operating profitability
Innovations from: Ao )\AIPVOL£>5) R? se(R?) p (R2 =1) MAPE

First-Differences 0.2435 (1.1145) -0.0150 (-1.8551) 9.399%  0.1077 0.0160 2.393%

95% Confidence Interval for R%:  [0.0000, 0.3134]

Residuals - AR(1) 0.2522 (1.1398) -0.0139  (-1.7847) 8.268%  0.1008 0.0152 2.425%

95% Confidence Interval for R%:  [0.0000, 0.2954]

Panel D 25 FF size and variance

Innovations from: Ao AAIPVOL§>5)

R?  se(R?) p(R®=1) MAPE

First-Differences ~ 0.7049 (3.0789) 0.0019  (0.1511) 0.161%  0.0210 0.0019 2.986%

95% Confidence Interval for R%:  [0.0000, 0.0533]

Residuals - AR(1) 0.7364 (2.9672) 0.0031 (0.2282) 0.363%  0.0338 0.0018 2.987%

95% Confidence Interval for R%:  [0.0000, 0.0750]

Notes: This table reports the estimates for the zero-beta excess return (Ag) and the price of risk

()\AIPVOL(>5>> for the innovations in macro volatility shocks with persistence greater than 32
t

months (i.e., the priced factor is AIPVOL§>5) - see Boons and Tamoni, 2016) along with the
corresponding Fama-MacBeth (1973) test statistics in parentheses. In addition, I report the sample
R? for each cross-sectional regression, its standard error, the p-value for the Kan et al. (2013) test
of Hy : R?* = 1 denoted as p (R* = 1) and the mean absolute pricing error (MAPE) across all
securities expressed in percent per year. The test assets include: the 25 FF size and book-to-market
portfolios (Panel A), the 25 FF size and investment portfolios (Panel B), the 25 FF book-to-market
and operating profitability portfolios (Panel C) and the 25 FF size and variance portfolios (Panel
D).
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Table 2B.9: Cross-sectional regression with the same burn-in period: 25 FF size and
book-to-market plus 5 FF industry portfolios

Persistence level

j= 1 2 3 4 5 6 7 6:7
(7 (1)
Ao,j 0.6482 0.7162 0.9796 0.4788 0.3493 0.3922 0.7021 0.3296
(2.5666)  (2.8093) (4.1880) (2.0995) (1.5397) (1.6921) (2.9600) (1.3127)
Aj -0.2164 -0.0775 0.3776 -0.3953 -0.4921 -0.4921 -0.3362 -0.6293
(-0.4406) (-0.1959) (0.8865) (-1.4694) (-2.1747) (-3.3567) (-2.8454) (-3.7462)
price of risk  -0.339%  -0.151%  0.601%  -0.694%  -1.200%  -1.965%  -1.910%  -1.926%
R? 1.704% 0.339% 5.359% 7.146%  21.386% = 57.387% 54.205% = 55.111%
se(RQ) 0.0700 0.0308 0.1018 0.1060 0.1682 0.1909 0.2482 0.1372
D (R2 = 1) 0.0270 0.0281 0.0261 0.0213 0.0313 0.1596 0.1543 0.1734
MAPE 2.084% 2.121% 2.150% 1.973% 1.753% 1.322% 1.538% 1.473%
u (3)
Ao, 0.6248 0.7137 0.8959 0.4438 0.3238 0.4143 0.7150 0.3610
(2.3068) (2.5563) (3.5530) (1.8558)  (1.4082) (1.7974) (3.0474) (1.4586)
Aj -0.1413 -0.0513 0.1604 -0.3776 -0.5307 -0.5197 -0.3582 -0.6568
(-0.4820) (-0.1813) (0.4486) (-1.3429) (-2.2648) (-3.3699) (-2.9894) (-3.7292)
price of risk  -0.391%  -0.144%  0.333%  -0.728%  -1.315% -1.988%  -1.983% -1.970%
R? 2.273% 0.308% 1.647% 7.876%  25.709% = 58.707%  58.399% = 57.682%
se(R?) 0.0859 0.0302 0.0645 0.1233 0.1907 0.1921 0.2323 0.1402
D (R2 = 1) 0.0292 0.0302 0.0319 0.0157 0.0332 0.1690 0.1421 0.1879
MAPE 2.050% 2.125% 2.183% 1.946% 1.688% 1.297% 1.475% 1.431%
Ut (12)
Ao,j 0.6406 0.7509 0.9050 0.3587 0.2903 0.4672 0.7605 0.4553
(2.6388) (2.8272) (3.5765) (1.4524) (1.2512) (2.0195) (3.2917)  (1.8065)
Aj -0.0780 -0.0088 0.0764 -0.2269 -0.3300 -0.3200 -0.1856 -0.3741
(-0.4964) (-0.0723) (0.4799) (-1.6604) (-2.6141) (-3.5016) (-2.4855) (-3.5451)
price of risk  -0.365%  -0.060%  0.358%  -0.967%  -1.574%  -2.041%  -1.768% = -1.956%
R? 1.985% 0.054% 1.904%  13.883% 36.831% 61.861% 46.449% = 56.873%
se(R?) 0.0721 0.0133 0.0698 0.1644 0.2122 0.1778 0.2634 0.1683
P (R2 = 1) 0.0307 0.0314 0.0319 0.0192 0.0596 0.2026 0.1175 0.1733
MAPE 2.071% 2.143% 2.180% 1.825% 1.570% 1.272% 1.641% 1.444%
#£ observ. 507

Notes: This table reports the estimates for the zero-beta excess return (Ao ;) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R? for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of Hy : R?> = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year.
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Table 2B.10: Controlling for Fama-French factors

R2
AMKT ASMB AHML ARMW Acm A A6:7 “NADE

Panel A

h=1 0.1881 0.1328 0.1693 0.2887 0.0536 -0.5001  85.546%
(0.8549) (0.9324) (1.1591) (1.5571) (0.2033) (-3.8181) 0.964%

h=3 0.2141 0.1229 0.1577 0.2904 0.0385 -0.5288  85.668%
(0.9828) (0.8560) (1.0689) (1.5777) (0.1443) (-3.7145)  0.980%

h=12 0.2521 0.1311 0.1021 0.2558 0.0081 -0.3484  86.244%
(1.1774)  (0.9198) (0.6750) (1.3930) (0.0302) (-3.9708) 0.960%

Panel B

h=1 0.1354 0.2019 -0.6788 0.5167 0.1285 -0.8351  85.287%
(0.5845) (1.3718) (-2.2638) (2.8650) (1.1421) (-5.1764) 0.726%

h=3 0.1761 0.1879 -0.7213 0.5301 0.1070 -0.8908  85.448%
(0.7704) (1.2683) (-2.3959) (2.9311) (0.9240) (-5.1083) 0.730%

h =12 0.2713 0.2413 -0.7833 0.4967 0.0670 -0.5324  86.016%
(1.2165) (1.6391) (-2.5874) (2.7704) (0.5461) (-4.9612) 0.738%

h=1 0.5365 12004 02846  0.5571  0.1401  0.2086  96.375%
(2.3269) (2.9695) (1.7329) (3.8878) (0.6948) (1.2954)  0.760%
h=3 0.5314 12170  0.2955  0.5578  0.1552  0.2370  96.437%
(2.3232) (2.9869) (1.7752) (3.8928) (0.7597) (1.3382)  0.753%
h=12 05064  1.1675 03099  0.5570  0.1571  0.1371  96.280%
(2.2504) (2.9350) (1.7964) (3.8854) (0.7569) (1.2358)  0.757%

Panel D

h=1 0.0380 0.0688 -0.6081 1.0639 -0.9212 -0.9560  96.508%
(0.1689) (0.4504) (-2.1305) (5.7040) (-3.5735) (-7.3772) 0.787%

h=3 0.0891 0.0428 -0.5974 1.0479 -0.9302 -1.0085  96.548%
(0.3989) (0.2791) (-2.0749) (5.6347) (-3.6090) (-7.1615) 0.859%

h=12 0.2095 0.1135 -0.5872 1.0080 -0.9914 -0.5847  95.926%
(0.9522) (0.7475) (-2.0085) (5.4643) (-3.8483) (-6.7793) 0.919%

Notes: This table reports estimates for the price of risk (A7) for the business-cycle uncertainty
factor (i.e., u§6:7) ) after controlling for exposure to the Fama-French factors. The control factors
include the value-weight excess return on the market portfolio (MKT), the size factor (SMB, small
minus big), the value factor (HML, high minus low book-to-market), the operating profitability
factor (RMW, robust minus weak profitability) and the investment factor (CMA, conservative minus
aggressive investment). The test assets include: the 25 FF size and book-to-market portfolios (Panel
A), the 25 FF size and investment portfolios (Panel B), the 25 FF book-to-market and operating

profitability portfolios (Panel C) and the 25 FF size and variance portfolios (Panel D).
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Table 2B.15: Bias-corrected bootstrapped confidence intervals for the scale-wise pre-

dictive regressions

Persistence level

J= 6 7
Panel A Bs 95% CI 90% CI 57 95% CI 90% C1

up (1) 3.0551  [1.4756, 6.0636]  [1.8041, 5.327§] 0.3395 [-3.1428, 5.9147] [-2.7186, 4.8427|
u (3)  2.8094 [1.3877, 5.5145]  [1.6605, 4.8525] 0.4748 [-2.8301, 5.3620| [-2.4174, 4.4883]
u (12)  4.2765  [2.0514, 8.2260] [2.5017, 7.2297| 1.2757 |-3.4772, 7.7966] [-2.8486, 6.5519]
Panel B B 95% CI 90% CI 57 95% CI 90% CI

w (1) 3.0551  [1.7187, 7.1527]  [1.9222, 5.8410] 0.3395 [-2.6837, 5.2625| [-2.2762, 4.4559]
u (3)  2.8094  [1.5703, 6.5430] [1.7769, 5.3312] 0.4748 [-2.3966, 4.7325] [-2.0368, 4.0177]
u (12)  4.2765 [2.3730, 10.1137] [2.7444, 8.2692] 1.2757 [-2.4808, 7.7078] [-1.8131, 6.6627]

Notes: This table reports bootstrapped confidence intervals for the scale-wise predictive regressions
for 7 = 6,7 using the bias-corrected percentile method and the stationary bootstrap of Politis and
Romano (1994). In Panel A the average block size is set equal to 32 - calculated based on the
Politis and White (2004) estimator. In Panel B the block size is set equal to 27. Bold values denote
statistically significant estimates.
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Table 2B.16: Tails of t/+/T at various percentiles

Horizon

16

32 48 64 96 128

192

Ut (1)

p = 0.9866
§ = —0.1511

0.950
0.975
0.995

0.2665
0.3234
0.4280

forward aggregates only
0.3772  0.4558 0.5057 0.6005 0.6491
0.4492 0.5383 0.6075 0.7201 0.7877
0.5885 0.7028 0.8024 0.9504 1.0453

0.7115
0.8277
1.1008

0.950
0.975
0.995

0.2767
0.3282
0.4360

forward /backward aggregates
0.3994 0.5128 0.6240 0.7933 0.9541
0.4751 0.6092 0.7411 0.9794 1.1978
0.6147 0.8306 1.0062 1.3594 1.7184

1.1051
1.3902
1.8800

Ut (3)

p= 0.9891
§ = —0.1853

0.950
0.975
0.995

0.2742
0.3310
0.4292

forward aggregates only
0.3939 0.4692 0.5251 0.6379 0.7058
0.4644 0.5555 0.6383 0.7588 0.8350
0.7246 0.7246 0.8331 1.0020 1.0866

0.7612
0.8943
1.2024

0.950
0.975
0.995

0.2812
0.3308
0.4359

forward /backward aggregates
0.4072 0.5169 0.6367 0.8205 0.9746
0.4877 0.6249 0.7510 0.9966 1.1973
0.6242 0.8474 1.0262 1.3924 1.7084

1.1388
1.4137
1.8487

Ut (12)

p = 0.9943
§ = —0.1494

0.950
0.975
0.995

0.2848
0.3342
0.4336

forward aggregates only
0.4029 0.4814 0.5615 0.6783 0.7506
0.4692 0.5901 0.6688 0.7955 0.8947
0.6199 0.7600 0.8968 1.0777 1.2356

0.8379
0.9854
1.3408

0.950
0.975
0.995

0.2885
0.3368
0.4495

forward /backward aggregates
0.4132 0.5317 0.6525 0.8252 1.0021
0.4925 0.6352 0.7760 0.9924 1.2395
0.6573 0.8381 1.0130 1.4407 1.6930

1.1553
1.3988
1.8793

Notes: This table reports the right-tail critical values of t/+/T at various percentiles (bold values).
I simulate the distribution of ¢/v/T for samples of length T' = 635. I implement 5,000 replications.
The distribution depends on two nuisance parameters ¢ and 0. The parameter ¢ = (p—1)T
measures deviations from unity in a decreasing (at rate 7') neighbourhood of 1. The parameter ¢
measures the covariance of the innovations in Equations (2B.1) and (2B.2).
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Table 2B.17: Multi-scale autoregressive process estimates

Persistence level

j= 1 2 3 4 5 6 7
h=1
pj 0.2705%**  0.0248 -0.0400 -0.1641  -0.3935%**  -0.0754 -0.1542
Half-life (years) 0.0883 - - - 1.9816 - -
NW t-stat (3.4609)  (0.2591) (-0.3005) (-1.1020) (-3.6137)  (-0.4605) (-0.9950)
HH t-stat (3.0862)  (0.2362) (-0.3243) (-1.1537)  (-4.0802) (-0.6381) (-1.1568)
Adj.R? (%) [7.323%] [0.062%] [0.160%] [2.697%] [12.705%] [0.411%| [2.118%)]
h=3
; 0.3374***%  0.1102 0.0113 -0.1616  -0.4088***  -0.0735 -0.1585
Half-life (years) 0.1063 - - - 2.0663 - -
NW t-stat (3.6730)  (0.9750)  (0.0773) (-1.0817) (-3.7222)  (-0.4723) (-1.0689)
HH t-stat (3.2867)  (0.9118)  (0.0837) (-1.1550)  (-4.1870)  (-0.6657) (-1.3829)
Adj.R? (%) [11.398%] [1.224%] [0.013%] [2.613%] [13.780%] [0.402%] [2.350%]
h =12
p; 0.5237#%*%  (.2088*%*  0.1783 -0.0776  -0.4668%*F*F  -0.0577 -0.1410
Half-life (years) 0.1786 0.1913 - - 2.4262 - -
NW t-stat (6.5071)  (2.3747) (1.1613) (-0.5492)  (-4.0443) (-0.4037) (-0.9011)
HH t-stat (5.6739)  (2.1486) (1.2162) (-0.5892)  (-4.4465)  (-0.6243) (-2.8856)
Adj.R? (%) [27.443%] [8.990%] [3.193%] [0.607%]| [18.844%| [0.271%| [2.227%)]
# observations 632 628 620 604 572 508 380
Notes: This table reports the estimation results of the multi-scale autoregressive system. For each
level of persistence j € {1,...,7} I run a regression of the uncertainty component Uy o; ON its

own lagged component u

()

. For each regression, the table reports OLS estimates of the regressors,

Newey-West (1987) and Hansen-Hodrick (1980) corrected t-statistics with 2/ —1 lags in parentheses
and adjusted R? statistics in square brackets. *** ** * denote statistical significance at 1%, 5% and
10% level respectively. Half-lives (in years) are obtained by HL (j) = (In(0.5) /In (|p;])) x 27/12.
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Table 2B.18: Percentage contribution to total variance

Panel A

ug (1) Persistence level

j= 1 2 3 4 5 6 7
Var(ugj)) 0.0065 0.0184 0.0455 0.0912 0.1712 0.2289 0.1873

Lower confidence bound 0.0056 0.0153 0.0366 0.0682 0.1160 0.1451 0.0955
Upper confidence bound 0.0077 0.0225 0.0582 0.1283 0.2780 0.4142 0.5202

ut (3) Persistence level
j= 1 2 3 1 5 6 7
Var(uij)) 0.0053 0.0154 0.0404 0.0888 0.1728 0.2357 0.1900

Lower confidence bound 0.0046 0.0128 0.0324 0.0660 0.1167 0.1485 0.0967
Upper confidence bound 0.0062 0.0183 0.0520 0.1259 0.2821 0.4305 0.5300

ug (12) Persistence level
j= 1 7 3 1 5 6 7
Var(u(])> 0.0027 0.0086 0.0250 0.0644 0.1458 0.2288 0.2144

Lower confidence bound 0.0023 0.0070 0.0194 0.0466 0.0965 0.1449 0.1077
Upper confidence bound 0.0033 0.0108 0.0333 0.0949 0.2455 0.4150 0.6169

Panel B
IPVOL; Persistence level
j= 1 2 3 4 5 6 7

Var<IPv0L§j)) 0.2043 0.2034 0.2073 0.1717 0.1088 0.0511 0.0205

Lower confidence bound 0.1826 0.1775 0.1691 0.1330 0.0768 0.0351 0.0126
Upper confidence bound 0.2301 0.2354 0.2603 0.2304 0.1660 0.0811 0.0388

Notes: Panel A presents the percentage contribution of each individual component to the total
variance of the time-series for aggregate uncertainty. Panel B presents the percentage contribu-
tion of each individual component to the total variance for the volatility of industrial production.
Approximate confidence intervals for the variance of the components are computed based on the
Chi-squared distribution with one degree of freedom (see also - Percival, 1995).
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Chapter 3

Are Low-Frequency Macroeconomic Risks Priced in
Asset Prices? A Critical Appraisal of Epstein-Zin

Preferences

3.1 Introduction

In a seminal paper Bansal and Yaron (2004) show that concerns about long-run*? expected growth
and time-varying uncertainty about future economic prospects drive asset prices. These two channels
of macroeconomic risks (i.e., growth and volatility) can jointly explain the level and cross-sectional
differences in asset prices. Recently, Dew-Becker and Giglio (2016) quantify the meaning of long-
run in the content of Epstein-Zin preferences by deriving the exact weights that these preferences
place upon different frequencies. They demonstrate that Epstein-Zin preferences isolate their weight
almost exclusively on very low-frequencies (on cycles lasting centuries).

In this chapter, I test if the strict constraints that Epstein-Zin preferences impose in the fre-

quency domain on asset pricing models are empirically satisfied. In particular, I examine if mac-

“For a review of the long-run risks literature see Bansal (2007) and for econometric estimation techniques see
Constantinides and Ghosh (2011), Grammig and Schaub (2014) and Schorfheide et al. (2014). For the out-of-sample
performance see Ferson et al. (2013). Long-run risk can also arise endogenously through consumption smoothing
(Kaltenbrunner and Lochstoer, 2010) or via uncertainty and learning about the parameters governing the aggregate
consumption process (Collin-Dufresne et al., 2016; Johannes et al., 2016).
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roeconomic shocks with frequencies lower than the business-cycle are robustly priced in the cross-
section of expected returns and evaluate the economic significance of the corresponding risk premia.
First, T rely on the novel framework for scale-based (i.e., horizon-specific) analysis of risk as pro-
posed in Boons and Tamoni (2016) to conduct inferences about the degree of covariability of asset
returns and (innovations in) macroeconomic series across time-scales. Specifically, I decompose
macro series into layers with different layers of resolution (i.e., across different frequencies) using
the multiresolution-based decomposition of Ortu et al. (2013). Then, I analyse the price of risk for
the scale-dependent macro shocks and their ability to explain the cross-sectional variation in asset
prices. In line with Dew-Becker and Giglio (2016) T quantify low-frequency shocks as shocks that
last longer than the business-cycle - rather than shocks that last hundreds of years as implied by
Epstein-Zin preferences. That is, I allow fluctuations on broader ranges of frequencies to be priced
when testing the theoretical predictions of Epstein-Zin preferences.

I find that macroeconomic shocks with frequencies lower than the business-cycle are not signif-
icantly priced in the equity market. That is, the price of risk for the low-frequency fluctuations is
economically small and thus not in line with the theoretical predictions of Epstein-Zin preferences
(i.e., the power at low frequencies does not determine risk premia). In addition, the risk premia
have wrong sings and the low-frequency risk exposures cannot explain the size and value effects.
These results remain similar irrespective of the type and length of the wavelet filter used in the
multiresolution-based decomposition. Moreover, I draw similar conclusions if I use the econometric
framework of Miiller and Watson (2015) to estimate the low-frequency risk exposures (i.e., using
betas from regressions of cosine transforms).

My work complements previous studies that question the key mechanism of the long-run risk
(LRR) framework and its ability to explain observed features of asset market data. For instance,
Beeler and Campbell (2012) document several empirical difficulties for the LRR model as calibrated
by Bansal and Yaron (2004) and Bansal et al. (2012). Epstein et al. (2014) provide a quantitative

assessment of how much the temporal resolution of risk matters. They show that the implied timing
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premia (i.e., the fraction of the consumption stream that an agent is willing to give up in order for
all risk to be resolved in the next period) required to match key moments of market returns are
too large. T add to this line of research by demonstrating that the strict restrictions imposed in the
frequency domain by the recursive utility are not empirically satisfied.

Instead, following Boons and Tamoni (2016) I demonstrate that the economically relevant set of
frequencies for asset pricing are those that correspond to the upper bound of business-cycle length
fluctuations. In particular, an asset pricing model with a single factor that captures variation in the
first or second moment of macroeconomic activity at frequencies ranging from 4 to 8 years explains
the cross-sectional variation in portfolio returns and is also correctly specified. Moreover, the risk
loadings with respect to business-cycle frequencies match known patterns in average returns. That
is, assets offer different risk compensations because they are differentially exposed to macroeco-
nomic risks in this specific frequency range. My work builds upon the novel approach of Boons and
Tamoni (2016) but it does so from a distinct perspective. That is, by showing that low-frequency
macro factors have essentially no explanatory power and empirically assessing Epstein-Zin prefer-
ences. Moreover, my study is related*® to Bandi and Tamoni (2016) who demonstrate the success
of business-cycle consumption risk in explaining the cross-sectional differences in asset prices. Spe-
cifically, using a redundant - instead of a decimated - decomposition I show that the one-factor
model of Bandi and Tamoni (2016) with business-cycle consumption risk is also correctly specified.
Finally, my results are in line with chapter 2 in which I show that macro uncertainty shocks with
persistence longer than 128 months are not robustly priced in asset prices.

In total, my work provides strong empirical support for a data generating process in the spirit
of Bandi and Tamoni (2016) in which the expected return of an asset is directly related to its
covariance with macro risks at horizons ranging from 4 to 8 years. Simply put, from the point
of view of asset pricing business-cycle frequencies are of first-order importance. In light of these

findings I argue that we need risk preferences that put more weight on business-cycles instead of

“3Notable contributions in this branch of the literature that explores how scale-dependent shocks propagate to
asset prices also include Ortu et al. (2013) and Bandi et al. (2016).
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cycles lasting centuries as the recursive utility does. In addition, the conclusion of Dew-Becker
and Giglio (2016) that long-run risks are significantly priced in asset prices while business-cycle
fluctuations are not is drawn early. For instance, the risk loadings of the 25 FF size and book-to-
market portfolio returns with respect to the low-frequency macro shocks in Dew-Becker and Giglio
(2016) decrease across both directions** (i.e., size and value) which is difficult to justify empirically.

The remainder of this chapter is organized as follows: Section 3.2 discusses the asset pricing
restrictions imposed by Epstein-Zin preferences in the frequency domain in line with the spectral
decomposition of the pricing kernel by Dew-Becker and Giglio (2016). Section 3.3 provides the

empirical analysis, section 3.4 contains several robustness checks, section 3.5 explains why the

recursive utility fails and section 3.6 concludes.

3.2 Motivation - Spectral Decomposition of Epstein-Zin Prefer-

ences

Consider a discrete-time real endowment economy where the agent’s preferences over the consump-
tion stream Cy are described by the recursive utility function of Epstein and Zin (1989) and Weil
(1989). These preferences allow for separation between the coefficient of risk aversion and the elas-
ticity of intertemporal substitution (EIS). In particular, the utility function is defined recursively

as

)

1—y 1 GL T—

Vi=|1-08)C,% +6 (Et {VHTD 0} (3.1)
where § € (0,1) denotes the subjective discount factor, v > 0 is the relative risk aversion coefficient,
1 > 0 is the elasticity of intertemporal substitution (EIS) and 6y = 1%% Note that when 6y = 1,
i.e. when v =1/1), the standard time-separable power utility is obtained as a special case.

In a recent study Dew-Becker and Giglio (2016) demonstrate that in any log-linear asset pricing

44See Table A2 in the internet appendix of Dew-Becker and Giglio (2016).
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model the price of risk that investors assign to economic fluctuations at different frequencies can
be analytically derived. Specifically, the spectral decomposition of Epstein-Zin preferences in the
Bansal and Yaron (2004) model with time-varying volatility yields the following spectral weighting

function for consumption:

o0
257V (W) =y +2(y = p) Y & cos (wj) (3.2)

j=1
where p = 1/1 (i.e., the inverse EIS) and 6 is the parameter that comes from the Campbell and
Shiller (1988) log-linearisation of the return on the agent’s wealth portfolio (i.e., § = (1 —|—ﬁ)_1
where DP is the dividend-price ratio for the wealth portfolio). Similarly, the spectral weighting

function for consumption volatility is

ZEZ=5V (W) = 0k, (p=1) 1—|—229j cos (wj) (3.3)
o 1—p P

where k; is a constant that depends on the underlying process driving consumption growth. The
frequency-specific price of risk for consumption shocks depends only on the investor’s preferences.
In contrast, the magnitude of Z fzz ~5V depends on the dynamics of the economy through k;. That
is, there is not a complete separation between preferences and consumption dynamics in this case.
In addition, the shape of Z 522 SV depends only on the parameter 6.

The fraction of the mass in the range of frequencies between w; and ws is given by

L2
Tz

I use Equation (3.4) to estimate!® the exact weights that Epstein-Zin preferences place in the

(3.4)

following three economically motivated intervals: frequencies lower than the business-cycle (i.e.,

w1 = 0 and we = 27/32), business-cycle frequencies (i.e., w1 = 27/32 and we = 27/6) and high-

45Note that Zoo 672 cos (wj) can be simplified using Euler’s formula and properties of absolutely convergent series

(e, D R= ERZ)
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frequencies (i.e., w; = 27 /6 and we = 7). Table 3.1 reports the theoretical pricing weights for these
frequency ranges. The results are obtained from an annual calibration. In Panel A I set § = 0.975
which corresponds to a 2.56% annual dividend price ratio. In addition, I report the median cycle of
a shock in years (i.e., the median cycle corresponds to the frequency for which the pricing weight
is split into two halves). Table 3.1 demonstrates that the main effect of an increase in risk aversion
is to shift the mass to low frequencies (Dew-Becker and Giglio (2016) show that the total weight
placed on the spectrum is equal to (foﬂ ZgZ_SV (w) dw) /m = ). Also, the median cycle of both
consumption growth and volatility shocks across all calibrations is greater than 130 years.

Figure 3.1 plots the theoretical spectral weighting functions Zgz SV and Z fzz ~5V under Epstein-
Zin preferences for various parametrizations. The x-axis lists the cycle length in years. In line with
the results in Table 3.1 we observe that the mass of both functions is isolated near frequency zero.

In total, these findings demonstrate that under recursive preferences low-frequencies are priced
strongly while business-cycle frequencies are not quantitatively important for asset pricing. That is,
around 90% of the weight that determines risk premia lies on frequencies lower than the business-
cycle. In addition, these results greatly highlight the estimation problem underlying Epstein-Zin
preferences, i.e. the weights lie on frequencies close to zero for which traditional inference tools of
spectral analysis are not directly applicable due to the scarcity of low-information (see the discussion

in the Appendix).

3.3 Empirical Analysis

3.3.1 Data

In a consumption-based asset pricing model with Epstein-Zin preferences the pricing kernel is driven
by persistent shocks to consumption. Since consumption suffers from a number of measurement
problems (for instance, see Savov, 2011; Qiao, 2013) and in line with Boons and Tamoni (2016) T

quantify macroeconomic activity using the growth rate of industrial production?® (I PG). Moreover,

4®Liu and Zhang (2008) also use IPG as a common risk factor driving the pricing kernel.
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I explore the robustness of all results using other macro variables such as GDP growth and volatility.
This approach allows me to generalize the analysis and examine if and how the low-frequency
dynamics of the economy are priced.

1PG, is defined as IPG; = logIP;, — log IP;_1 where IP, is the seasonally-adjusted industry
production index (INDPRO series) in month ¢ from the FRED database of the St. Louis FED.
Quarterly growth rates are calculated by compounding monthly growth rates. The sample period is
1962:Q1 to 2014:Q4 (the starting period is in line with most work on cross-sectional asset pricing).

In addition, to measure macro volatility I consider the following AR (1) —GARCH(1, 1) specification

IPGy = p+ ¢IPGy_1 + vy, (35)
02 = wo +wivt | +weol (3.6)

where IPVOL = 3. 1 estimate Equations (3.5) and (3.6) using the full sample. Estimation results
are available in Table 3.2. The estimates of wy and wo are both significant implying macro volatility
is time varying.

My main test assets are the 5 FF industry and 25 FF size and book-to-market portfolios which
are priced together. That is, in the spirit of Lewellen et al. (2010) I include the FF industry
portfolios to provide a higher hurdle for the frequency-dependent macroeconomic factors. 1 only
add the 5 industry portfolios because the asymptotic distribution of the sample cross-sectional R?
becomes less reliable as the number of test assets increases (this approach is in line with Kan et al.,

2013).

3.3.2 Econometric Framework & Cross-Sectional Analysis

I am interested in the ability of the scale-dependent macroeconomic shocks filtered out of I PG and
IPVOL to explain aggregate portfolio returns. I begin by decomposing the macro series of interest
into layers with heterogeneous levels of persistence using the multiresolution-based decomposition

of Ortu et al. (2013). In particular, let u,(fj) denote fluctuations of the macro series with half-life in
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the interval [2/71,27), that is

20-1_1 271
G) _ im0 W—i Do W—i __(=1) _ _(5)

u = 56D - Y =m — (3.7)
where j > 1, 771:(0) = u; and the moving averages 7rt(‘j ) satisfies the recursion
(G-1) (-1
; U + ol
7rt(]) _ [t 5 t=27"1 (3.8)
for j =1,2,3,.... The derived series {u(j )} . captures fluctuations that survive to averaging over
te

2/=1 terms but disappear when the average involves 2/ terms. For any J > 1, the original series u;
can be written as a sum of components with half-life belonging to a specific interval plus a long-run

average, that is,

J
G 4,
up =y w’ +u” . (3.9)
jz; ¢ t(J)

=7

The decomposition of the time series is conducted using wavelet methods as in multiresolution
analysis via the Maximum Overlap Discrete Wavelet Transform (MODWT). In particular, the
extraction is based on the one-sided, linear Haar filter. I set J = 5 so that the maximum time-
scale corresponds to the upper bound of business-cycle frequencies and u§>5) captures shocks lower
than the business-cycle (i.e., lower than 8 years). In line with the MODWT 1 also extend this
decomposition to allow for filters of different type and length as a robustness check (see Section 1.2
for more details).

The covariance between asset excess returns (Rf Z> and innovations (i.e., the unexpected part)

47

in macroeconomic series (Au; = uy — ug—1)*" can be decomposed across time-scales as follows*® (see

Boons and Tamoni, 2016 or Bandi and Tamoni, 2016 for a decimated decomposition)

“TThe results are quantitatively similar if I use residuals from an AR(1) model - see Table 3B.1.
48This result holds irrespectively of the wavelet filter used for the decomposition. For instance, see Chapter 7 in
Gengay et al. (2001).
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Cov [Rf’i,Aut} = iC’ov [Rf’i(j), Auij)} + Cov [Rf’i(>J),Au§>J)] (3.10)
j=1

and thus the scale-dependent risk exposures are defined as

Cov [Rf’i(j),Augj)} 4 gG Cov [Rf’ib‘]),Au?J)}
an

Bi0) = :
Var (Augj)) Var <Au§>‘]))

(3.11)

The approach of Boons and Tamoni (2016) for cross-sectional asset pricing differs from the standard
Fama-MacBeth (1973) methodology in the first step, i.e. in the way that the risk exposures are

estimated. In particular, I first run for each asset ¢ (of size T') the following time-series regression

R = ) 4 gAY 4 9 4 =1, T foreachj=1,...,5,> 5, (3.12)

where Rf’i(j ) denotes the components of asset excess returns associated with scale 5 at time ¢. Then
I estimate a cross-sectional regression of average portfolio returns on the estimated scale-specific

risk exposures ()

R& = Xoj + AW +a;; foreachj=1,...,5,>5, (3.13)

where R®' denotes the average time-series excess return for asset 4, A ; is the zero-beta excess return
associated with time-scale j, A; is the relative price of risk for B (i.e., the frequency-specific risk
compensation) and «; ; is a pricing error.

To determine whether the scale-dependent macroeconomic shocks are priced I look for an estim-
ate ;\j that remains significant after using a t-statistic cutoff of three as suggested by Harvey et al.
(2016), for an intercept that is small and statistically insignificant and a sample R? significantly
different from zero. When 0 < R? < 1, f/{\Q is asymptotically normally distributed around its true

value and thus we cannot use R? 4 1.96 x se(R?) to obtain a 95% confidence interval. Instead, I
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construct confidence intervals by pivoting® the cumulative distribution function (cdf). Kan and
Robotti (2009) and Kan and Robotti (2015) use the same method to construct confidence intervals
for the Hansen-Jagannathan distance and the Hansen-Jagannathan bound respectively.

Table 2.4 presents the scale-dependent risk exposures for business-cycle length fluctuations. 1
use Newey-West (1987) heteroskedasticity and autocorrelation consistent (HAC) standard errors
with 2/ — 1 lags. In the spirit of Kan and Zhang (1999) it is empirically sound to use the risk
exposures from Equation (3.12) as factors in cross-sectional asset pricing (i.e., not useless factors).
Moreover, the risk loadings with respect to macro volatility are negative, that is, assets tend to
realize low returns when macro volatility is rising. This result is in line with the evidence in Boons
and Tamoni (2016).

Table 3.4 reports the estimates for the zero-beta excess return and the price of risk across
time-scales for innovations in macro shocks filtered out of ITPG (in Panel A) and IPVOL (in
Panel B) along with the corresponding Fama-MacBeth (1973) test statistics in parentheses. In
addition, I normalize the frequency-specific risk exposures and estimate the price of risk per unit
of cross-sectional standard deviation in percent per year. I also report the p-value for the Kan
et al. (2013) specification test of Hy : R? = 1 denoted as p (R2 = 1). Innovations in low-frequency
macroeconomic shocks (i.e., lower than 8 years) filtered out from the first and the second moment
of industrial production are not priced in the cross-section of expected returns. In both cases the
estimated risk premia are economically small and have wrong signs (i.e., B(KIS};G X A Aarpas < 0
and B(A>I5]3VOL X S‘AIPVOL(>5) < 0), the estimates of the zero-beta excess returns are statistically
significant and the cross-sectional R?’s are not significantly different from zero. That is, ATPG(>5)
and ATPVOL®™% are not priced.

On the other hand, the estimated price of risk for AIPG§5) is 0.38 with a t-statistic of 2.55 while
the intercept is insignificant. The coefficient of determination for this factor is equal to 56.70% and

is significantly different from zero. In addition, the Kan et al. (2013) miss-specification test does

“*For more information see section 9.2.3 in Casella and Berger (2002).
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not reject the null hypothesis that the model is correctly specified. Similarly, Al PVOLES) carries
a negative price of risk of -0.10 with a t-statistic of -3.26 and the intercept is insignificant (t-stat =
1.48). The cross-sectional R? is 60.78%, statistically significant and with lower sampling variability
(i.e., se(ﬁ%;)) = 0.1026). In addition, the null hypothesis that the model is correctly specified is
not rejected. Note that since B(AE)}PG X j‘AIPG(5) > 0 and Bf}PVOL X S‘AIPVOL(@ > 0 business-cycle
growth and volatility shocks carry positive risk premia.

These results complement the earlier study of Boons and Tamoni (2016) who emphasize the
importance of macro growth and volatility shocks with persistence greater than 4 years for cross-
sectional asset pricing. I do not dispute the fact that the Boons and Tamoni (2016) factors are
robustly priced in asset prices. Rather, I show that their pricing performance is mainly driven by
a business-cycle component. That is, in contrast with the theoretical restrictions of Epstein-Zin
preferences and the results in Dew-Becker and Giglio (2016) I explicitly demonstrate that low-
frequency macro factors have essentially no explanatory power. Instead, business-cycle fluctuations
are of first-order importance for asset pricing.

Figure 3.2 plots realized versus fitted average excess returns for the 25 size and book-to-
market FF portfolios and the 5 FF industry where the priced factors are the innovations (i.e.,
first-differences) in the scale-specific macro shocks for j = 5 and j > 5. Each two-digit number
represents a separate portfolio. The first digit refers to the size quintile of the portfolio (1 being
the smallest and 5 the largest), while the second digit refers to the book-to-market quintile (1 being
the lowest and 5 the highest). If the fitted and the realized returns for each portfolio are the same

then they should lie on the 45-degree line from the origin.

3.4 Robustness Checks

In this section I verify the robustness of my results using several checks.
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3.4.1 Leakage and other Filters

An ideal band-pass filter filter exhibits positive values only inside the desired frequency interval and
is zero at all other frequencies. In contrast, the squared gain functions associated with the Haar
wavelet filter at each level of resolution j (i.e., at each time-scale) do not decay rapidly outside their
nominal frequency range. That is, the Haar filter is a poor approximation to an ideal band-pass filter
(see Figure 3.3). To address this issue I use the least asymmetric (LA) Daubechies filter of length
8 and perform a similar multiresolution-based decomposition. The LA(8) wavelet suffers from less
leakage at the edge of each frequency band and hence is a much better approximation to an ideal
band-pass filter than the Haar (see Figure 3.4). At each time-scale I estimate the unexpected part
of the scale-specific macroeconomic shocks using the residuals from an AR(1) model. Table 3.5
provides the cross-sectional estimates. The results for IPVOL remain quantitatively similar.

The preferred decomposition is the one used by Ortu et al. (2013) and Boons and Tamoni
(2016) since under the one-sided, linear Haar filter used for the extraction there is a close relation
between scale-specific and long-horizon betas (see also Bandi and Tamoni, 2016). In addition, for
macroeconomic series that are less volatile (e.g., IPG or GDP Growth) wavelet filters of length 4

or less are more appropriate (see Crowley, 2007).

3.4.2 Comparison: Business-Cycle Frequencies (j = 5) vs Low-Frequencies (j >
5)

I compare the two factors that capture variation in macro activity at frequencies ranging between 4
and 8 years (i.e., j = 5) and frequencies lower than 8 years (i.e., j > 5) by estimating the following

cross-sectional regression

R = Do+ 280 + 05509 4 (3.14)

where the scale-specific risk loadings are estimated from two separate time-series regressions as in

Equation (3.12). Table 3.6 reports the cross-sectional estimates. Adding the low-frequency macro
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factor does not improve the cross-sectional fit relative to a model with a single business-cycle factor.
In particular, the risk premium associated with the low-frequency macro shocks is not statistically
significant. This result remains similar irrespective of the type and length of the wavelet filter used

for the multi-resolution based decomposition.

3.4.3 Consumption Growth

The results remain similar if I replace industrial production growth with consumption measured as
the growth rate in real per capita non-durable consumption (seasonally adjusted at annual rates)
from the Bureau of Economic Analysis. Panel A of Table 3.7 presents the cross-sectional estimates.
The sampling period is quarterly from 1952:Q2 to 2012:Q4. The results for j = 5 are in line with
Bandi and Tamoni (2016) who use a decimated decomposition (i.e., they sample the scale-dependent
macro shocks every k x 2/, k € 7Z times) while for j > 5 the consumption shocks are not priced.
Also, T cannot reject the null that the one-factor model with business-cycle consumption risk of

Bandi and Tamoni (2016) is correctly specified®.

3.4.4 GDP Growth and Volatility

Panels B and C of Table 3.7 present the results for GDP growth and volatility respectively. GDP
growth is the growth rate in the Real Gross Domestic Product (seasonally adjusted at annual rates)
from the Bureau of Economic Analysis (series GDPC96) while GDP VOL is estimated using an
AR(1)-GARCH(1,1) model over the full sample. The sampling period is from 1962:Q1 to 2014:Q4.
The cross-sectional fit of a business-cycle factor filtered out of GDP growth and volatility remains

similar.

50Tf T exclude the 5 FF industry portfolios the sample R? is equal to 65.725%, se(f{E):0.1844 and p (R® =1) is
0.1165.
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3.4.5 Monotonicity in Risk Loadings

Moreover, I examine if the frequency-specific risk exposures match known patters in average returns.
That is, I test if the risk loadings are monotonically increasing (or decreasing) across portfolios using
the monotonic relation (MR) test of Patton and Timmermann (2010). The MR test is designed so
that the alternative hypothesis is the one that we want to prove and therefore a monotonic relation
is confirmed only if there is sufficient evidence in the data to reject the null. For example, for assets
sorted on portfolios across book-to-market the null and alternative hypothesis for the MR tests are
the following: for portfolio returns Hy : Rs < ... < Ry vs Hy : R > ... > Ry, for risk loadings
with respect to AIPng) Hy : Béj) < ... < B%j) vs Hi : ﬁéj) > ... > ng) and for risk-loadings
with respect to AIPVOng) Hy : Béj) >...> ﬂy) vs Hi : Béj) <. < 59) where the direction is
reversed because the risk price is negative. I implement the MR test using the stationary bootstrap
of Politis and Romano (1994) where the average block size is calculated based on the Politis and
White (2004) estimator®'. For all MR test I use 5,000 replications.

Table 2.15b presents the frequency-specific risk exposures with respect to the factors Al PGEj )
and Al PVOng ) for j = 5 (i.e., business-cycle frequencies) and j > 5 (i.e., frequencies lower
than 8 years) for one-way portfolio sorts and the corresponding monotonicity tests. Only the risk
loadings at business-cycle frequencies match the size and values effects. That is, asset offer different
risk compensations because they are differentially exposed to macro risks at this frequency range.

Similar results hold for consumption growth (see Table 3B.9).

3.4.6 Low-Frequency Betas from OLS Regressions of Cosine Transforms

Furthermore, I rely on the econometric approach of Miiller and Watson (2015) to conduct inferences
about the degree of covariability between (innovations) in macro shocks and asset excess returns
in frequencies lower than the business cycle. Then, I use the low-frequency betas as regressors in

the second-pass of the Fama-MacBeth (1973) methodology. In particular, I extract low-frequency

51For details on how to test for monotonic patterns in risk exposures see Appendix A.
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information by computing a finite number (q) of weighted averages of the original data where the
weights are known and deterministic low-frequency trigonometric series (i.e., discrete cosine trans-
forms)®?. Within this framework estimation and inference about the low-frequency covariability
of the series is based only on the properties of the ¢ weighted averages which are approximately
multivariate normal. That is, the inference problem is solved by classic results about inference in

small Gaussian samples.

Low-Frequency Weighted Averages: Let x; denote the economic variable of interest that is
observed for t = 1,...,T. Following Miiller and Watson (2008, 2015) I isolate®® the low-frequency
information in z; using weights associated with the cosine transform, where the n — th weight is

given by

W, (s) = V2 cos (nms) forn=1,...,q, (3.15)

so that W,, (¢/T") has period 2T /n. The n — th weighted average is then denoted by

1 4 t—1/2
Xrp = /0v v, (S) x\_sTJ—HdS = LnTT_l ; v, < T > L (316)

where v, = (27 /n7) sin (nw/2T) for all fixed n > 1 and [sT'] denotes the integer part of sT € R.
The weighted averages Xr1,, n =1,...,q, capture variation in z; corresponding to frequencies lower
than g7 /T. The weights ¥,, add to zero and therefore Xrp, is invariant to location shifts of the

sample.

Asymptotic Approximations and Inference in a I (0) Model: Miiller and Watson (2008)
demonstrate that suitably scaled partial sums of the weighted averages are normally distributed in

large samples if x; satisfies certain persistence properties. That is, for a model-specific k: T "Xy ~

52For a thorough discussion regarding the choice of weights for extracting the low-frequency components see Miiller
and Watson (2008). Similar properties hold for other transforms such as discrete Fourier or sine.

%31 would like to thank Mark Watson for making the code available in his personal website:

https://www.princeton.edu/ mwatson/.
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N (0,%) where X7 = (X771, ... ,XTq), and the covariance matrix X depends on the specific model
of low-frequency variability (i.e., X is determined by the parameters characterizing the persistence

of x;). In particular for the I (0) case, T~'/2Xp ~ N (0,w?I;) where w? is the long-run variance.

Low-Frequency Risk Exposures in a Multivariate I (0) Model: Now, let x; denote an
h x 1 vector of time series. Partition x; into a scalar r; and a k x 1 vector z; where k = h — 1 with

corresponding cosine transforms

RTn Rn er Qrz
VT = ~N | o, (3.17)
ZTTL Zn QZ'I’ QZZ
=N

where (2 is the long-run covariance matrix of z;. Standard statistical theory concerning i.i.d.
multivariate normal samples can be used to obtain inference. In particular, ¢, = R,, — Z;LB is .1.d.
N ((),02) where 02 = Q,, — QerZ_ZIer and 8 = QZ_ZIQZT is the population regression coefficient
in a regression of R, on Z,, n = 1,...,q. The R? in this regression measures the fraction in the
low-frequency variability in r; that can be explained by the low-frequency variability in z;. Moreover
as long as k < ¢, § = (Zzzl ZnZ;L) B (ZZ:l ZnZ;L) For scalar elements of § usual t-statistic

inference is applicable. In particular, 3 follows a student-t distribution with ¢—& degrees of freedom.

Choice of q: For 53 years of data (T' = 212 quarters) a small number of projection coefficients
(¢ = 13) capture variability lower than the business cycle regardless of the sampling frequency, that

is, the cut-off periodicity is equal to % = 32.62 quarters or approximately 8.15 years.

The I (0) Assumption and Inference about Persistence: In general, the low-frequency
methods described in this section are appropriate for both weakly and highly persistent processes.
However, the I (0) assumption is crucial for conducting statistical inference about . For inference

in the cointegrated case see Miiller and Watson (2013) and for the large size distortions that arise in
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the local-to-unity case see Elliott (1998). To conduct inference about the persistence parameters I
use three optimal tests that direct power to different alternatives. First, I consider the low-frequency
versions of the point optimal (i.e., best power against the alternative) unit root and stationarity
tests derived in Miiller and Watson (2008). In particular, I test the [ (0) null hypothesis against
the point alternative of a local-level model with parameter b = b, > 0 using the low-frequency

stationarity test (LFST)

q 2
n=1 XTn

LEST = -
X (14 0/ )

(3.18)

where b, is a parameter that governs the relative importance of the I (1) component in the local-
level model®®. For b, = 10 the test exhibits near optimality for a wide range of values of b (see

Miiller and Watson, 2013). In addition, I test the unit root model using the likelihood ratio statistic

XX (o)t X
LFUR = L (00)71 T (3.19)
XrX (ca)” X
where X7 = (X71,... ,XTq)/, X (cp) is the covariance matrix under the null (i.e., the I (1) model

with ¢g = 0), X (cq) is the covariance matrix under the alternative and the statistic is labelled
low-frequency unit root (LFUR). Following Miiller and Watson (2015) and Elliott (1999) I set
cq = 10.

Also, 1 consider a weighted average power (WAP) optimal test. That is, I use a point-optimal
test for the null (Hp : d = dy) versus the alternative (H, : d = d,) and construct a confidence set
by collecting the values of dy that are not rejected. In line with Miiller and Watson (2015) T use
a weighting function that is uniform on —0.5 < d < 1.5. This approach allows a generalization of
the 7 (0) and I (1) dichotomy in the spirit of the fractionally integrated model I (d) where d is not

restricted to take on integer values (for instance, see Baillie, 1996).

5" The local-level model decomposes z; into an I (0) and I (1) component, that is, z; = e1¢ + (b/T) .., e2s where

{e1:} and {e2:} are mutually uncorrelated I (0) processes with the same long-run variance. I (0) behaviour follows
when b = 0. For more information see Harvey (1990).
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Panel A of Table 3.10 reports the results for the persistence tests. The low-frequency variability
in the macro series is consistent with the I (0) model. Hence, it is empirically sound to conduct
inference about the degree of low-frequency covariability between asset returns and these variables
using the Miiller and Watson (2015) approach. Table 3.9 presents the low-frequency betas from
OLS regressions of cosine transforms. In particular, for each asset i I estimate the risk exposures

in a regression of RS’ on Z,, that is,
RS =pBZ, n=1,...,q. (3.20)

where RS' and Z, denote the low-frequency weighted averages constructed from asset’s ¢ excess
returns and innovations (i.e., residuals from an AR(1) model) in macro series respectively. Panel
B of Table 3.10 presents the cross-sectional estimates for three different frequency cut-offs (i.e.,
g = 11,12,13). In line with the results from the multiresolution-based decompositions I find that

the low-frequency macro shocks are not priced.

3.4.7 Frequency Domain Risk Exposures

Finally, in the spirit of Kalyvitis and Panopoulou (2013) I calculate the gain® between asset returns
and the macro series (i.e., IPG or IPVOL) at a specific frequency and then use the estimates as
regressors in the second step of the Fama-MacBeth (1973) methodology. In particular, the gain
between portfolio’s i excess returns R*' and industrial production at frequency w is defined as the

ratio between the co-spectra of the series and the spectrum of I PG given by

. |fReﬂ',IPG (W) |

~ freepe () (3:21)

GRei pc (W)

where frei pg i8 the cross-spectrum of the two-series and is complex-valued and frpg rpc is the

5T use demeaned series to estimate the spectral measures based on Welch’s (1967) method with a Hamming
window and 50% overlap. For details regarding window designs see Chapter 2 in Stoica and Moses (2005). Note that
while I use this approach as a robustness check the transition between the frequency domain and the time domain is
ad hoc.
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spectrum of I PG. The gain can be considered as the frequency domain analogue of the regression
coefficient (for instance, see Engle, 1974) and is always positive.

The results in Table 3.11 remain quantitatively similar. At business-cycle frequencies G Resi 1PG X
A>0and G Rei IPVOL X A > 0 and hence the estimated macro growth and volatility risk premia are
positive. In contrast, for frequencies lower than 8 years the risk premia have wrong signs and the
corresponding factors are not robustly priced. Similar results hold for GDP growth and volatility
(see Table 3B.11). Figure 3.5 presents the price of risk in percent per year across all frequencies.

There is a clear pick in the risk prices at frequencies close to the upper bound of the business-cycle.

3.5 Why Do Epstein-Zin Preferences Fail?

To understand why the recursive utility does not work and give some economic meaning to its
failure consider the innovations in the log stochastic discount factor (for details see Dew-Becker and

Giglio, 2016)

oo

AEiimypy = — YAE 1 (ACi ) — (v — p) Z 0’ AEi 1 (AChi145) (3.22)

J=1

- em% ABi (o2,) + S 0AE (02,,)
j=1

where AE;; = Eiy1 — E; denotes the change in expectations. In Equation (3.22), AE;41 (ACy1)
captures current consumption conditions while Zj’;l AFE; 1 (ACi41+45) news about long-run future
consumption growth. Similarly, Z;’il AFE (JEJrl +j) captures news about long-run future con-
sumption volatility. In essence, under Epstein-Zin preferences what drives the theoretical pricing
weights and hence risk premia are news about shocks in consumption growth and volatility that last
centuries (i.e., with a median cycle greater than 130 years) and are orthogonal (i.e., not related) to

current conditions. Assuming that investors are endowed with this amount of news and allowing
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this information to drive asset prices is unrealistic and very hard to justify empirically.

3.6 Conclusions

In this chapter, I examine whether the strict conditions that Epstein-Zin preferences impose in the
frequency domain on asset pricing models are empirically satisfied. I find that macroeconomic shocks
with frequencies lower than the business-cycle are not robustly priced in asset prices. In addition, the
estimated risk premia are economically small, carry wrong signs and the low-frequency risk exposures
fail to match known patterns in average returns (i.e., size and value effects). Instead, I demonstrate
that the economic relevant frequencies for asset pricing are mainly those that correspond to the
upper bound of business-cycle frequencies (i.e., 4 to 8 years). In this frequency range the theoretical
pricing weights that Epstein-Zin preferences place are only around 4%. My results remain robust
and quantitatively similar irrespective of how macro growth and volatility are quantified or how the
frequency-specific risk exposures are estimated.

Overall, my work highlights the need for risk preferences that put less weight on cycles lasting
centuries and allow investors to be more risk averse to business-cycle frequencies. An alternative
approach is to specify risk preferences with a flat weighting function in the frequency domain (e.g.,
power utility or external habit formation - Campbell and Cochrane, 1999) and use scale-dependent
consumption components to drive the pricing kernel and thus generate business-cycle correlated risk

premia (for instance, see Bandi and Tamoni, 2016).
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Figure 3.1: Theoretical pricing weighting functions for Epstein-Zin preferences
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Notes: This figure plots the theoretical spectral weighting functions for consumption (Panel A)
and consumption volatility (Panel B) under Epstein-Zin preferences. v is the relative risk aversion
coefficient and 1) the elasticity of intertemporal substitution (EIS). The results are obtained from
an annual calibration with # = 0.975 which corresponds to a 2.56% annual dividend price ratio

(ie., 0 = (1 —i—ﬁ)_l). The x-axis lists the cycle length in years (given a frequency of w the
corresponding cycle has length 27 /w periods).
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Figure 3.2: Cross-sectional fit
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Notes: This figure plots realized versus fitted excess returns for the 25 size and book-to-market Fama
and French (1993) portfolios and the 5 FF industry where the priced factors are the innovations
(i.e., first-differences) in the scale-specific macro shocks for j = 5 and j > 5. Each two-digit number
represents a separate portfolio. The first digit refers to the size quintile of the portfolio (1 being
the smallest and 5 the largest), while the second digit refers to the book-to-market quintile (1 being
the lowest and 5 the highest). The straight line is the 45-degree line from the origin.
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Figure 3.3: Frequency domain representation: Haar wavelet filter
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Notes: This figure plots the frequency response (i.e., the squared gained function) of the Haar filter
at levels of resolution j = 1,...,5,> 5. Frequencies with positive weights outside of the nominal
range (i.e., the vertical red lines) correspond to the leakage associated with this approximation to
an ideal band-pass filter. Frequency is in units of cycles per period, which is radian frequency
normalized by 27.
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Figure 3.4: Frequency domain representation: LA(8) wavelet filter
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Notes: This figure plots the frequency response (i.e., the squared gained function) of the Daubechies
Least Asymmetric filter of length 8 (LA(8)) at levels of resolution j = 1,...,5,> 5. Frequencies
with positive weights outside of the nominal range (i.e., the vertical red lines) correspond to the
leakage associated with this approximation to an ideal band-pass filter. Frequency is in units of
cycles per period, which is radian frequency normalized by 27.
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Figure 3.5: Price of risk from frequency domain risk exposures
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Notes: This figure plots the price of rigsk in percent per year for the macro shocks across frequencies.
To estimate the risk prices I use the normalized gains between asset returns and the macro series
at each frequency as regressors in the second pass of the Fama-MacBeth (1973) methodology. The
frequency specific risk exposures are always positive - see Equation (3.21) - and therefore the low
frequency risk premia carry wrong signs. The x-axis lists the cycle length in years (given a frequency
of w the corresponding cycle has length 27 /w periods). T use demeaned series to estimate the spectral
measures based on Welch’s (1967) method with a Hamming window and 50% overlap.

152




Table 3.1: Theoretical pricing weights for Epstein-Zin preferences

Panel A - Zgz -5V Weight (%) in Frequencies Median Cycle Weight (%) in
y ¢ (EIS) > 8 years 1.5-8years < 1.5 years (in years) 4 - 8 years
2.5 1.5 69.03% 12.17% 18.80% 138.24 4.67%
2.5 2 74.74% 10.81% 14.45% 167.55 4.52%
) 1.5 80.45% 9.45% 10.10% 195.43 4.38%
) 2 83.30% 8.78% 7.92% 208.95 4.31%
7.5 1.5 84.25% 8.55% 7.20% 213.42 4.28%
7.5 2 86.16% 8.10% 5.75% 222.26 4.24%
10 2 87.58% 7.76% 4.66% 228.81 4.20%
Panel B - ZUE22 -5V Weight (%) in Frequencies Median Cycle Weight (%) in
0 DP > 8 years 1.5 - 8 years < 1.5 years (in years) 4 - 8 years
0.960 4.17% 86.99% 10.76% 2.25% 153.96 6.50%
0.965 3.63% 88.61% 9.43% 1.96% 176.39 5.70%
0.970 3.09% 90.23% 8.09% 1.68% 206.31 4.90%
0.975 2.56% 91.86% 6.74% 1.40% 248.20 4.09%
0.980 2.04% 93.49% 5.39% 1.11% 311.03 3.28%

Notes: This table reports the theoretical pricing weights for consumption (Panel A) and consump-
tion volatility (Panel B) under Epstein-Zin preferences in different frequency ranges. + is the relative
risk aversion coefficient, ¥ the elasticity of intertemporal substitution (EIS) and 6 = (1 —|—W)_1
where DP is the dividend-price ratio for the wealth portfolio. In Panel A the results are obtained
from an annual calibration with § = 0.975 which corresponds to a 2.56% annual dividend price
ratio. In Panel B the shape of Zfi,Z*SV (and hence the weights) depends only on 6. Also, I report
the median cycle in years (i.e., the median cycle corresponds to the frequency for which the pricing
weight is split into two halves).

Table 3.2: AR(1)-GARCH(1,1) fit

n 10} wo w1 w2
Estimate 0.0047 0.4914 7.96E-05 0.3040 0.3517
Std. Error 0.0012  0.0794  2.49E-05 0.0818  0.1631

Notes: This table reports the estimates for the following specification: IPG; = u+ ¢IPGi_1 + 14,
where 07 = wp + w1v?_; + w20’ ;. The sample period is 1962:Q1 to 2014:Q4. Bold values denote
statistically significant estimates at a 95% confidence level.
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Table 3.3: Scale-specific risk exposures

Size Book-to-market Panel A - IPG Panel B - IPVOL
Small LowBM 4.0615 (2.3587) 71271 (-0.5163)
2BM 4.9565 (3.4651) -11.0553  (-1.0944)
3BM 5.4196 (3.9546) -16.2839  (-1.7211)
4BM 5.2345 (3.5456) -18.0221 (-2.0146)
HighBM 7.1047 (4.0767)  -22.3852 (-2.4101)
2 LowBM 3.6032  (2.7275) 262003 (-0.5440)
9BM 3.0875 (3.8597) 9.1357  (-1.1931)
3BM 3.8616 (4.3223) -12.9265 (-2.2168)
4BM 4.6606 (5.8665) -18.6692 (-3.2022)
HighBM 5.5015 (3.8623)  -22.0407 (-2.9285)
3 LowBM 3.2808  (2.7561) 7.3420  (-0.7343)
9BM 3.6470 (4.5451)  -14.1497 (-1.9788)
3BM 3.6631 (6.2559) -13.8604 (-2.7438)
4BM 4.2653 (3.6623) -17.1972  (-2.6265)
HighBM 4.4334  (3.9634)  -20.1132 (-3.5106)
4 LowBM 2.1394 (2.4089) -4.6602  (-0.5660)
2BM 3.1143  (3.7338) 210.9030  (-1.5701)
3BM 4.1466 (3.1829) -15.0852  (-1.7441)
ABM 3.5600 (3.6093)  -16.6233 (-3.0151)
HighBM 4.8815 (3.6045)  -18.7705 (-2.8532)
Big LowBM 1.8552  (2.2206) 234436 (-0.4933)
2BM 2.6870 (3.4145) -9.5265 (-1.7591)
3BM 2.5276 (3.2209) -12.6822 (-2.2650)
4BM 2.9551 (3.5861)  -13.2140 (-2.2243)
HighBM 2.9540 (6.1883)  -14.6385 (-5.5588)
Industry 1 Consum. 3.3498 (5.4492) -11.9538 (-2.6403)
Industry 2 Manuf. 1.7633 (3.4149) -5.3715  (-1.2556)
Industry 3 HiTech 2.2205 (2.7424)  -10.1037 (-2.4871)
Industry 4 Health 0.1721  (-0.1862) 1.6506  (0.2781)
Industry 5 Other 2.9394 (3.1315) -12.3844  (-1.6416)
Wald-stat 225.66 172.24
p-value 0.0000 0.0000

Notes: This table reports first-pass beta estimates for the Fama and French (1993) 25 size and book-
to-market portfolios (indexed by Small to Big and LowBM to HighBM) and the 5 FF industry. The
betas are estimated component-wise that is regressing scale-specific components of returns on the
scale-specific components of macro shocks. The associated t-statistics are based on Newey-West
standard errors with 27 — 1 lags. The last rows of the table present the Wald test-statistics and
their corresponding p-values from testing the joint hypothesis that all component-wise exposures
are equal to zero, i.e. Hyp: ') = ... = 3300) =0 for j = 5. The initial sample period is 1962:Q1
to 2014:Q4. Bold values denote statistically significant beta estimates at a 95% confidence level.
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Table 3.4: Cross-sectional regressions: 5 FF industry and 25 FF size and book-to-

market portfolios

Persistence level / Time-scale

Jj= 1 2 3 4 5 >4 >3
Horizon 1-2 2-4  4-8  8-16 16-32 > 16 > 32
In quarters

Panel A - IPG
Ao,j 3.3538  2.0587  1.5998  0.8166 = 1.0522 = 0.4911  3.2058
(3.6105) (3.6436) (2.4106)  (1.0952)  (1.4964) (0.7158)  (3.4181)
A 1.8642 03317 0.2108  0.3190 | 0.3796  0.5028  -0.1860
(2.4274) (1.0623) (1.0671) (1.6752) (2.5545) (2.8691) (-2.0738)
price of risk 1.865%  0.988%  0.996%  1.606%  2.131%  1.981%  -0.917%
R? 39.501% 10.645% 10.583%  29.808% | 56.695% 45.387%  10.493%
se(R?) (0.2171)  (0.1716) (0.1681)  (0.2593)  (0.2513)  (0.1318)  (0.1002)
2.5% CI (R?) 0.0000  0.0000  0.0000  0.0000 ~ 0.1117 = 0.1999  0.0000
97.5% CI(R®*)  0.8113  0.4420  0.4707  0.7925 = 1.0000  0.7193  0.3113
p(R*=1) 0.0185  0.0094  0.0111  0.0064 ~ 0.0894  0.0452  0.0449
MAPE 1.855%  2.254%  2.325%  1.849%  1.297%  1.709%  2.041%
Panel B - IPVOL
Ao, 1.9246  2.2404  2.3416  1.6946  1.2109  1.1536  2.6466
(3.3524) (3.8338) (3.0952)  (1.9639)  (1.4831) (1.2143) (2.4610)
Aj 0.2644  0.0473  -0.0937  -0.0844 = -0.0966  -0.0846  0.0152
(1.8358) (0.4964) (-1.5971) (-2.2113) (-3.2556) (-2.5505) (0.5667)
price of risk 1.631%  0.414%  -1.047%  -1.195%  -2.207%  -1.487%  0.489%

R? 30.217%  1.867%  11.707%  16.514%  60.781%  25.569%  2.980%

se(R?) (0.2512)  (0.0728)  (0.1474)  (0.0821)  (0.1026)  (0.1422)  (0.0983)
2.5% CI (R?) 0.0000  0.0000  0.0000  0.0115 = 0.4208  0.0000  0.0000
97.5% CI (R?) 0.7898  0.1544  0.4208  0.3449  0.8154  0.5512  0.2421
p(R*=1) 0.0088  0.0168  0.0346  0.0156  0.1561  0.0361  0.0167
MAPE 1.963%  2.455%  2.288%  2.114%  1.403%  1.939%  2.157%

# observ. 210 208 204 196 180 196 180

Notes: This table reports the estimates for the zero-beta excess return (g ;) and the price of risk (A;)
for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in parentheses.
The priced factors are the innovations (i.e., first-differences) in the scale-specific components filtered
out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize the scale-wise risk exposures
and estimate the price of risk per unit of cross-sectional standard deviation in exposure in percent
per year. I also report the sample R? for each cross-sectional regression and its standard error,
the 95% confidence interval for R? which is obtained by pivoting the cdf, the p-value for the Kan
et al. (2013) test of Hy : R? = 1 and the mean absolute pricing error (MAPE) across all securities
expressed in percent per year. The initial sample period is 1962:Q1 to 2014:Q4.
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Table 3.5: Robustness: Multiresolution decomposition with a LA(8) wavelet filter

Time-scale
j = 1 2 3 4 5 4:5 > 5
Frequency Resolution 24 4-8 §-16  16-32  8-32 - 32
1 quarters
Panel A - IPG
o,j 0.8392 2.5063 1.5282 0.4927 1.7243 0.6186 2.8500
(1.2119)  (3.4513) (2.1473) (0.6631) (2.1529) (0.8321) (3.1814)
Aj -0.4532 0.4842 0.1570 0.2388 0.0837 0.2235 -0.0306
(-1.7793)  (1.4364)  (1.0454)  (2.0496) (3.4240) (2.3302) (-2.2260)
price of risk -1.287% 1.148% 0.940% 1.779% 2.347% 1.962%  -1.792%
R? 18.821%  14.384%  9.434%  36.577%  68.717%  48.064%  40.056%
se(R?) (0.1534)  (0.1635)  (0.1617)  (0.2225)  (0.0711)  (0.2615)  (0.2669)
2.5% CI (R? 0.0000 0.0000 0.0000 0.0000 0.5658 0.0000 0.0000
97.5% CI (R ) 0.4797 0.4801 0.4325 0.7763 0.8304 1.0000 0.9109
D (R2 = 1) 0.0104 0.0072 0.0125 0.0107 0.2227 0.0598 0.0208
MAPE 1.988% 2.150% 2.380% 1.774% 1.281% 1.467% 1.544%
Panel B - IPVOL
Ao,j 3.3873 2.6769 2.4595 1.4778 1.1172 0.9728 2.9092
(3.8158)  (4.5119) (3.4852) (1.9498) (1.4158) (1.2990)  (2.9405)
Aj 0.1869 -0.0330 -0.0077 -0.0597 -0.0370 -0.0639 0.0079
(2.6515)  (-0.5554) (-0.1920) (-3.2623) (-3.4294) (-2.9875) (1.5647)
price of risk 1.599%  -0.452%  -0.145%  -1.409%  -2.383%  -2.004% 1.308%
R? 29.040%  2.229% 0.225%  22.946% = 70.882% 50.133%  21.346%
se(R?) (0.1174)  (0.0825)  (0.0246)  (0.0451)  (0.1358)  (0.1517)  (0.2213)
2.5% CI (RQ) 0.0835 0.0000 0.0000 0.1525 0.4539 0.1996 0.0000
97.5% CI (R2) 0.5206 0.1987 0.0599 0.3264 0.9604 0.7896 0.6739
D (R2 = 1) 0.0259 0.0217 0.0225 0.0281 (0.2437 0.0756 0.0100
MAPE 2.029% 2.394% 2.474% 1.953% 1.237% 1.528% 1.841%
# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (o) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model fitted to the frequency-
specific components filtered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R? for each cross-sectional
regression and its standard error, the 95% confidence interval for R? which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of Hy : R?> = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3.8: Monotonicity tests for scale-specific risk exposures

Panel A Size Top—bottom MR
Low 2 3 4 High p-value p-value
Average Return 2.4179 2.3523 2.2285 2.0582 1.4224 0.0605 0.1096
Factor: Innovations:
PG, j =5 First-Diff. 4.2226 3.3879 3.1681 2.7663 1.9246 0.0466 0.0638
’ AR(1) Resid. 4.9743 4.1516 3.9305 3.5817 2.9966 0.0708 0.0576
PG, j > 5 First-Diff. 2.1038 3.9455 5.2230 4.4296 5.1834 0.8526 0.8524
’ AR(1) Resid. 2.2378 3.9573 5.1772 4.4781 5.4797 0.8674 0.8298
IPVOL, j = 5 First-Diff. -14.4232  -11.3900 -11.3147 -10.5324  -7.3189 0.1334 0.2616
’ AR(1) Resid. -15.1306 -12.4025 -12.3119 -12.1835 -9.5072 0.1912 0.2510
IPVOL, j > 5 First-Diff. -4.7783 -13.8111 -18.2973 -16.8347 -22.7112 0.9394 0.9212
’ AR(1) Resid.  -4.1431 -12.9705 -17.9019 -17.5293 -24.5734 0.9640 0.9140
Null and Alternative Hypotheses for Monotonicity Test
For returns: Hy:R5>...>Rivs HH: Rs < ... < Ry
For IPG risk-loadings: Hy : 5éj) >...> ﬂ§j) vs Hy : ﬁéj) <...< ﬂ:Ej)
For IPVOL risk-loadings: Hy : ﬁéj) <...< By) vs Hj : ﬁéj) >..> By) (price of risk negative)
Panel B Book-to-Market Top—bottom MR
Low 2 3 4 High p-value p-value
Average Return 1.4157 1.6715 1.7245 2.1067 2.6175 0.0084 0.0178
Factor: Innovations:
. First-Diff. 1.6775 2.3736 2.8378 2.7424 3.2512 0.0286 0.1638
PG, j =5 AR(1) Resid. 2.5485 3.2639 3.8851 3.6583 4.1725 0.0246 0.3546
PG, j > 5 First-Diff. 5.6696 4.8496 3.7237 2.8250 4.6462 0.7044 0.7092
’ AR(1) Resid. 6.0051 4.8577 3.8964 3.0853 4.7825 0.7406 0.6654
IPVOL, j = 5 First-Diff. -2.8198  -9.1464 -12.6079 -12.8469 -16.5351 0.0020 0.0104
’ AR(1) Resid.  -4.6676 -10.9427 -14.6865 -14.1683 -17.4667 0.0010 0.1340
IPVOL, j > 5 First-Diff. -20.9278 -18.9825 -17.8095 -15.0369 -20.4243 0.5544 0.6070
’ AR(1) Resid. -23.1213 -19.9025 -18.7947 -15.6145 -20.1773 0.6944 0.6754
Null and Alternative Hypotheses for Monotonicity Test
For returns: Hy:Rs<...<RyvsHi:Rs>...> Ry
For IPG risk-loadings: Hy : ﬁéj) <...<Z By) vs Hy : ﬁéj) >.0> ﬂy)
For IPVOL risk-loadings: Hy : Béj) >...> ﬁ%j) vs Hy : Béj) <...< ﬁ%j) (price of risk negative)

Notes: This table presents the frequency-specific risk exposures with respect to the factors Al PGEJ )
and A7 PVOL,EJ ) for j =5 (i.e., business-cycle frequencies) and j > 5 (i.e., frequencies lower than 8
years) for one-way portfolio sorts and the corresponding monotonicity tests. The sorting variables
are size (Panel A) and book-to-market (Panel B). The first row in each panel reports average
excess returns (in percent per quarter) for the test assets. The final column in each panel presents
the p-value for the monotonic relation (MR) test. Similarly, the penultimate column presents the
bootstrap p-value for the top-minus-bottom difference in the corresponding returns and scale-wise
betas.
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Table 3.9: Low-frequency risk exposures from OLS regressions of cosine transforms

Size Book-to-market Panel A - IPG Panel B - IPVOL
Small LowBM 1.6246  (0.4567) 17353 (0.1518)
2BM 0.9550  (0.2994) 0.6212  (-0.0608)
3BM 1.8573  (0.6362) 23.0890  (-0.3277)
ABM 2.8741  (0.9701) 47059 (-0.4842)
HighBM 3.4190  (1.1434) 55335 (-0.5580)
2 LowBM 0.7756  (0.2928) 27807 (-0.3294)
2BM 0.7183  (0.3693) -2.5494 (-0.4115)
3BM 12848 (0.6331) -5.4391  (-0.8511)
4BM 2.8759  (1.4325) 6.3927  (-0.9571)
HighBM 27748 (1.3353) 29972 (-0.4251)
3 LowBM 1.0272  (0.4622) -6.0646  (-0.8746)
9BM 11654 (0.6031) 4.9715  (-0.8164)
3BM 1.4443  (0.8183) -2.6021 (-0.4536)
4BM 2.1598  (1.1630) 6.9731  (-1.1788)
HighBM 14852 (0.7633) -3.2755  (-0.5211)
4 LowBM 0.1775  (0.0988) 77922 (-1.4784)
9BM 1.8113  (1.0612)  -9.0789  (-1.7950)
3BM 3.0282 (1.8326)  -9.7109 (-1.8451)
ABM 2.9081 (2.3629)  -9.1506 (-2.3165)
HighBM 2.9749  (2.0998) 14.6433  (-0.9083)
Big LowBM 21240 (1.3457)  -11.6802 (-2.7682)
2BM 1.9703  (1.2880) -9.9237  (-2.2828)
3BM 3.3404 (2.0422) -12.4262 (-2.5462)
4BM 3.2330 (2.7110)  -9.6730  (-2.4541)
HighBM 2.4956  (1.6988) 54032 (-1.0848)
Industry 1 Consum. 1.4603  (0.9905) -8.2829  (-1.9413)
Industry 2 Manuf. 1.7613  (1.5073) -8.3192  (-2.5366)
Industry 3 HiTech 3.0380  (1.4763) 77019 (-1.1359)
Industry 4 Health 2.7236  (1.3275)  -14.2207 (-2.5035)
Industry 5 Other 4.5623 (2.7788) -13.7929 (-2.5515)

Notes: This table reports low-frequency risk-exposures from a time-series regression between ¢ = 13
weighted averages constructed from asset excess returns and (innovations) in macro series based on
the Miiller and Watson (2015) framework. Note that the low-frequency betas follow a Student-t
distribution with 12 degrees of freedom (¢ — k = 13 —1). Bold values denote statistically significant
beta estimates at a 90% confidence level.
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Table 3.10: Persistence tests and cross-sectional regressions

Panel A AR(1) Resid. from IPG AR(1) Resid. from IPVOL
q 13 12 13 12
Cut-off periodicity (in years) 8.1538 8.8333 8.1538 8.8333
LFST p-values 0.2671 0.2919 0.4326 0.3663
LFUR p-values 0.0087 0.0077 0.0034 0.0238
MLE for d 0.0500 0.0300 0.0400 0.0900
C.IL for d
67% level (-0.14, 0.37) (-0.16,0.37) (-0.17, 0.36) (-0.12, 0.44)
90% level (-0.49,0.58) (-0.49,0.57) (-0.33, 0.55) (-0.32, 0.66)
95% level (-0.49, 0.69) (-0.49, 0.69) ( -0.49, 0.65) (-0.49, 0.77)
Panel B Test assets: 5 FF industry and the 25 FF size and book-to-market portfolios
AR(1) Resid. from o A price of risk R? MAPE
IPG, ¢ =13 2.0947 0.1300 0.520% 3.019% 2.432%
(2.4246) (1.1286) cut-off periodicity = 8.1538
IPG, ¢ =12 2.2451 0.0630 0.267% 0.794% 2.434%
(2.6152) (0.5743) cut-off periodicity = 8.8333
IPG, ¢=11 2.0194 0.1628 0.681% 5.176% 2.406%
(2.4077) (1.5986) cut-off periodicity — 9.6364
IPVOL, ¢ =13 2.8709 0.0755 1.155% 14.885% 2.085%
(3.0138) (1.4927) cut-off periodicity = 8.1538
IPVOL, ¢ =12 2.8302 0.0726 1.402% 21.928% 1.957%
(3.1730) (1.7804) cut-off periodicity = 8.8333
IPVOL, ¢ =11 2.7825 0.0520 0.792% 6.995% 2.230%
(2.8230) (1.1199) cut-off periodicity = 9.6364

Notes: Panel A reports the results of the low-frequency persistence tests for the innovations in
the macro series. LFST and LFUR are low-frequency point-optimal tests for the I (0) and (1)
models. In addition, I report the maximum likelihood estimate (MLE) of d in the I (d) model
and confidence intervals which are constructed by inverting weighted average power (WAP) tests.
Panel B reports the estimates for the zero-beta excess return (Ag) and the price of risk (\) for
low-frequency macro shocks along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I report the sample R? for each cross-sectional regression and the mean
absolute pricing error (MAPE) across all securities expressed in percent per year. The test assets
are the 5 FF industry and the 25 Fama and French (1993) size and book-to-market portfolios priced
together. The sample period is 1962:Q1 to 2014:Q4.
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Table 3.11: Cross-sectional regressions using frequency domain risk exposures

Panel A - IPG

Freq. (w) Cycle length in years Ao A price of risk R? MAPE

0.0491 32.00 2.8145 -0.4311 -1.368% 20.889%  2.144%
(3.4329) (-2.6219)

0.0982 16.00 3.1191 -0.4538 -1.168% 15.216% 2.127%
(3.2217)  (-2.1607)

0.1963 8.00 0.5828 0.9445 1.735% 33.588% 1.916%
(0.6617)  (3.9770)

0.2209 7.11 0.2304 1.0646 2.115% 49.912% 1.601%
(0.3142)  (4.1554)

0.2454 6.40 0.3608 0.9152 2.088% 48.638% 1.625%
(0.5437)  (3.2099)

0.3927 4.00 1.9556 0.1284 0.413% 1.906%  2.382%
(2.7175)  (0.4823)

0.7854 2.00 3.0728  -0.1135 -0.718% 5.750%  2.323%
(4.4563)  (-0.8933)

Panel B - IPVOL

Freq. (w) Cycle length in years Ao A price of risk R? MAPE

0.0491 32.00 3.2545  -0.2956 -2.020% 45.525% 1.604%
(3.6134)  (-3.0562)

0.0982 16.00 3.0655  -0.1644 -0.978% 10.675% 2.159%
(2.7367)  (-1.3242)

0.1963 8.00 0.3675 0.3635 2.352% 61.697% 1.393%
(0.4621)  (4.5846)

0.2209 7.11 0.5606 0.3364 2.426% 65.682% 1.299%
(0.7647)  (4.4432)

0.2454 6.40 0.7956 0.3020 2.393% 63.886% 1.309%
(1.1396)  (4.2552)

0.3927 4.00 1.9216 0.0532 0.504% 2.838% 2.341%
(3.1052)  (0.6159)

0.7854 2.00 4.2950 -0.1539 -1.581% 27.869% 1.997%
(6.0026) (-2.6338)

Notes: This table reports the estimates for the zero-beta excess return (A\g) and the price of risk
(A) for the frequency-specific macro shocks along with the corresponding Fama-MacBeth (1973)
test statistics in parentheses. The regressors are the estimated gains between asset returns and the
macro series at frequency w. In addition, I report the sample R? for each cross-sectional regression
and the mean absolute pricing error (MAPE) across all securities expressed in percent per year.
The test assets are the 5 FF industry and the 25 Fama and French (1993) size and book-to-market
portfolios priced together. The sample period is 1962:Q1 to 2014:Q4. I use demeaned series to
estimate the spectral measures based on Welch’s (1967) method with a Hamming window and 50%

overlap.
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Appendix 3A: Scarcity of Low-Frequency Information

I explore the frequency-domain properties of the time series of interest (i.e., IPG or IPVOL)
using their periodograms. A periodogram is a representation of a time-series as a superposition of
sinusoidal waves of various frequencies. Figure 3A.1 plots the periodograms for the macro series.
The shaded areas represent frequencies lower than the business-cycle. The very small number of
periodogram ordinates in the low-frequency region (i.e., 6 points) reflects the scarcity of information
about low-frequency phenomena in the data and highlights the estimation problem underlying
Epstein-Zin preferences. That is, the weight that determines risk premia in asset pricing models
based on recursive preferences lies on frequencies about which we have limited information.

Since the estimation of the spectral density of a series {xt}ip depends heavily on the asymptotic
distribution®® as T — oo of the periodogram ordinates, Figure 3A.1 greatly highlights the core
intuition behind the work of Miiller and Watson (2008, 2015). That is, given the limited number of
periodogram ordinates in the low-frequency region inference about the value of the spectral density
based on averaging periodogram ordinates is not applicable here (i.e., the asymptotics are based
on the assumption that the spectrum is fixed and continuous). Even with a lag window estimator
inference about the value of the long-run variance (i.e., spectral density at zero) of a series like
consumption growth that contains a highly persistent component is not trivial. In particular, a
persistent trend in a series induces a peak in its spectral density around frequency zero and thus
the confidence intervals from many estimators have poor coverage. For a thorough discussion see
Dew-Becker (2016). This point raises concerns regarding the infinite-horizon results in Kalyvitis
and Panopoulou (2013) who estimate the degree of covariability between portfolio returns and

consumption growth at zero.

*For an introduction to spectral analysis see Chapter 6 in Hamilton (1994) and for a more formal treatment
Chapters 4 and 10 in Brockwell and Davis (2009). For the asymptotic properties of the periodogram and the
asymptotic behaviour of discrete spectral average estimators see Sections 10.3 and 10.4 in Brockwell and Davis
(2009).
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Figure 3A.1: Periodograms
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Notes: This figure plots the periodograms for industrial production growth (Panel A) and industrial
production volatility (Panel B). The shaded areas represent frequencies lower than the business-
cycle. The limited number of periodogram ordinates in the shaded areas reflects the scarcity of
information about low-frequency phenomena in the data (i.e., traditional inference tools of spec-
tral analysis are not directly applicable at frequencies close to zero) and highlights the estimation
problem underlying Epstein-Zin preferences.
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Appendix 3B: Robustness Checks and Additional Results

This Appendix contains additional results and robustness checks that are omitted in the main

chapter for brevity.

Residuals from an AR(1) model

Table 3B.1 presents the cross-sectional estimates for the scale-specific macro shocks filtered out of
IPG and IPVOL where the innovations are the residuals from an AR(1) model fitted to the factor.

The results remain quantitatively similar.

Cross-sectional regressions with different filters

I examine whether the choice of the wavelet filter affects the pricing of the frequency-specific macroe-
conomic shocks. T use Daubechies Extremal Phase (denoted as D), Daubechies Least Asymmetric
(denoted as LA) and Coiflet (denoted as C) types of filters which are the most widely used ortho-
gonal and compactly supported families of filters (see Percival and Walden, 2000). In addition I
allow the length of each filter to vary. I refer to each wavelet type and length together, for instance
LA(12) refers to the Daubechies Least Asymmetric filter that has a length of 12. The results in

Tables 3B.2 - 3B.8 remain similar.
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Table 3B.1: Robustness check: Residuals from an AR(1) model

Persistence level / Time-scale

j= 1 2 3 4 5) >4 )
 Horizon 1-2 9.4 4-8 8-16  16-32 - 16 ~ 32
in quarters
Panel A - IPG
Ao, 1.9087 2.3529 1.4803 0.6737 0.7305 0.2091 3.1792
(2.8542)  (3.5492) (2.1944) (0.8476) (0.9775) (0.2836)  (3.2821)
Aj -0.2664 0.5213 0.2496 0.3333 0.3915 0.5070 -0.1772
(-0.6234) (1.2959) (1.1951)  (L.7005)  (2.6520) (2.9895) (-1.9279)
price of risk -0.369% 1.122% 1.086% 1.604% 2.092% 2.025% -0.877%
R 1.550% 13.736% 12.583%  29.755% = 54.624%  47.395% 9.604%
se(R?) (0.0427)  (0.1730)  (0.1782)  (0.2556)  (0.2303)  (0.1090)  (0.1022)
2.5% CI (Rz) 0.0000 0.0000 0.0000 0.0000 0.1373 0.2826 0.0000
97.5% CT(R?) 01051 04833  0.5146  0.8088 10000  0.6949  0.2846
P (R2 = 1) 0.0139 0.0086 0.0112 0.0061 0.0753 0.0528 0.0477
MAPE 2.342% 2.232% 2.324% 1.869% 1.408% 1.755% 2.032%
Panel B - IPVOL
Ao, 2.3672 2.2193 2.5245 1.9856 1.0728 1.2629 2.6556
(3.5881) (3.8070) (3.7130) (2.2357) (1.2306) (1.2231)  (2.5077)
Aj 0.1545 0.0400 -0.0438 -0.0582 -0.1013 -0.0748 0.0157
(1.5042)  (0.5440) (-0.6930) (-1.4138) (-3.1984) (-2.1085) (0.6282)
price of risk 1.336% 0.476% -0.515%  -0.804%  -2.098%  -1.291% 0.560%
R? 20.276%  2.476% 2.831% 7.476% 54.925% 19.277% 3.912%
se(R?) (0.2247)  (0.0892) (0.0835)  (0.0794)  (0.0853)  (0.1586)  (0.1147)
2.5% CI (RQ) 0.0000 0.0000 0.0000 0.0000 0.4030 0.0000 0.0000
97.5% CI (RQ) 0.6270 0.2129 0.1885 0.2473 0.7135 0.5300 0.2951
p (R2 = 1) 0.0117 0.0161 0.0267 0.0160 0.1187 0.0344 0.0136
MAPE 2.129% 2.444% 2.408% 2.200% 1.511% 2.030% 2.118%
# observ. 210 208 204 196 180 196 180

Notes: This table reports the estimates for the zero-beta excess return (Ao ;) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model fitted to the scale-specific
components filtered out of IPG (Panel A) and IPVOL (Panel B). In addition, I report the sample
R? for each cross-sectional regression and its standard error, the 95% confidence interval for R?
which is obtained by pivoting the cdf, the p-value for the Kan et al. (2013) test of Hy : R%? =1
denoted as p (R2 = 1) and the mean absolute pricing error (MAPE) across all securities expressed
in percent per year. The initial sample period is 1962:Q1 to 2014:Q4 and the test assets are the 5
FF industry and the 25 FF size and book-to-market portfolios which are priced together.
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Table 3B.2: Multiresolution decomposition with a D(4) wavelet filter

Time-scale
j = 1 2 3 4 5 4:5 > 5
Frequency Resolution 24 4-8 §-16  16-32  8-32 - 32
1 quarters
Panel A - IPG
o,j 0.8226 2.5302 1.5292 0.4938 1.5343 0.5984 2.8222
(1.1293)  (3.4283) (2.1396) (0.6411) (1.9721) (0.7958) (3.1738)
Aj -0.4677 0.4907 0.1581 0.2358 0.0949 0.2245 -0.0300
(-1.6969) (1.3349) (1.0348) (1.9460) (3.4063) (2.2757) (-2.2127)
price of risk -1.255% 1.097% 0.934% 1.748% 2.409% 1.948%  -1.789%
R? 17.896% 13.125%  9.316%  35.316% 72.418% 47.376%  39.938%
se(R?) (0.1565)  (0.1611)  (0.1614)  (0.2421)  (0.1292)  (0.2696)  (0.2684)
2.5% CI (R? 0.0000 0.0000 0.0000 0.0000 0.4913 0.0000 0.0000
97.5% CI (R ) 0.4865 0.4692 0.4321 0.8462 0.9709 0.9988 0.9312
D (R2 = 1) 0.0096 0.0080 0.0123 0.0094 0.2741 0.0587 0.0201
MAPE 1.997% 2.191% 2.375% 1.773% 1.181% 1.466% 1.556%
Panel B - IPVOL
Ao,j 3.3573 2.5299 2.4725 1.4331 1.0013 0.9186 2.8584
(3.7292)  (4.3140) (3.5591) (1.8861) (1.3167) (1.2238) (2.9323)
Aj 0.1904 -0.0080 -0.0132 -0.0648 -0.0384 -0.0655 0.0076
(2.4873)  (-0.1284) (-0.3092) (-3.2067) (-3.2159) (-2.9331) (1.5150)
price of risk 1.564%  -0.109%  -0.233%  -1.420% -2.350%  -2.008% 1.287%
R? 27.769%  0.129% 0.579%  23.310% = 68.927% 50.312%  20.664%
se(R?) (0.1311)  (0.0204)  (0.0386)  (0.0457)  (0.1555)  (0.1683)  (0.2227)
2.5% CI (RQ) 0.0409 0.0000 0.0000 0.1533 0.4260 0.1772 0.0000
97.5% CI (R2) 0.5462 0.0512 0.0884 0.3337 1.0000 0.8226 0.6352
D (R2 = 1) 0.0227 0.0196 0.0233 0.0279 0.1919 0.0731 0.0103
MAPE 2.057% 2.445% 2.465% 1.967% 1.242% 1.519% 1.841%
# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (o) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model fitted to the frequency-
specific components filtered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R? for each cross-sectional
regression and its standard error, the 95% confidence interval for R? which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of Hy : R?> = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3B.3: Multiresolution decomposition with a D(6) wavelet filter

Time-scale
j = 1 2 3 4 5 4:5 >5
Frequency Resolution 2.4 4-8 8-16  16-32  8-32 -~ 32
1 quarters
Panel A - IPG
Ao, 0.8286 2.5187 1.5272 0.4952 1.6491 0.6103 2.8385
(1.1745)  (3.4418)  (2.1420)  (0.6569) (2.0809)  (0.8172) (3.1771)
Aj -0.4578 0.4892 0.1575 0.2370 0.0879 0.2238  -0.0301
(-1.7524)  (1.4017)  (1.0424) (2.0031) (3.4380) (2.3075) (-2.2163)
price of risk -1.279%  1.132%  0.939%  1.765%  2.380%  1.957%  -1.789%
R? 18.578%  13.981%  9.407%  36.041% 70.668%  47.788%  39.937%
se(R?) (0.1550)  (0.1636)  (0.1617)  (0.2316)  (0.0899)  (0.2649)  (0.2678)
2.5% CI (R? 0.0000 0.0000 0.0000 0.0000 0.5540 0.0000 0.0000
97.5% CI (R”) 0.5140 04416 04110  0.8323  0.8749  0.9578  0.9300
p(R*=1) 0.0101 0.0071 0.0124 0.0094 0.2541 0.0583 0.0204
MAPE 1.989%  2.163%  2.378%  1.775%  1.240%  1.466% = 1.550%
Panel B - IPVOL
Ao,j 3.3972 2.6275 2.4641 1.4543 1.0617 0.9499 2.8880
(3.8071)  (4.4529) (3.5161)  (1.9234) (1.3682)  (1.2700)  (2.9383)
Aj 0.1885  -0.0240  -0.0096  -0.0619 = -0.0375  -0.0642 0.0078
(2.6260) (-0.3958) (-0.2359) (-3.2499) (-3.3469) (-2.9530) (1.5471)
price of risk 1.585%  -0.327%  -0.178%  -1.421%  -2.376%  -2.005%  1.302%
R? 28.516%  1.167%  0.339%  23.350% 70.431% 50.166% 21.162%
se(R?) (0.1172)  (0.0601)  (0.0302)  (0.0430) (0.1604) (0.1612)  (0.2223)
2.5% CI (R?) 0.0696 0.0000 0.0000 0.1536 0.3974 0.1931 0.0000
97.5% CI (R?) 0.5168 0.1410 0.0661 0.3327 1.0000 0.8138 0.6608
p(R*=1) 0.0256 0.0209 0.0228 0.0282 0.2257 0.0739 0.0106
MAPE 2.038%  2.419%  2471%  1.955%  1.239%  1.522%  1.840%
# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (o) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model fitted to the frequency-
specific components filtered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R? for each cross-sectional
regression and its standard error, the 95% confidence interval for R? which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of Hy : R?> = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3B.4: Multiresolution decomposition with a LA(12) wavelet filter

Time-scale
j = 1 2 3 4 5 4:5 > 5
Frequency Resolution 24 4-8 §-16  16-32  8-32 - 32
1 quarters
Panel A - IPG
Ao,j 0.8458 2.4926 1.5351 0.4842 1.8120 0.6291 2.8661
(1.2469) (3.4598) (2.1614) (0.6628) (2.2391) (0.8506)  (3.1905)
)\j -0.4522 0.4744 0.1555 0.2419 0.0785 0.2232 -0.0314
(-1.8178)  (1.4675) (1.0426) (2.1187) (3.3675) (2.3639) (-2.2510)
price of risk -1.301% 1.161% 0.936% 1.797% 2.294% 1.972%  -1.801%
R? 19.234%  14.717%  9.345%  37.359%  65.690%  48.521%  40.478%
se(R?) (0.1520)  (0.1643)  (0.1607)  (0.2118)  (0.0522)  (0.2579)  (0.2653)
2.5% CI (R? 0.0000 0.0000 0.0000 0.0000 0.5675 0.0000 0.0000
97.5% CI (R ) 0.4964 0.4666 0.4187 0.7644 0.7669 1.0000 0.9381
D (R2 = 1) 0.0097 0.0073 0.0127 0.0138 0.1907 0.0553 0.0217
MAPE 1.984% 2.140% 2.383% 1.768% 1.332% 1.466% 1.532%
Panel B - IPVOL
o,j 3.3414 2.7232 2.4550 1.5144 1.2033 1.0054 2.9393
(3.7847)  (4.5573)  (3.4447)  (1.9780)  (1.4946) (1.3336)  (2.9402)
Aj 0.1847 -0.0420 -0.0054 -0.0568 -0.0359 -0.0638 0.0081
(2.6169) (-0.7251) (-0.1396) (-3.2529) (-3.4965) (-3.0578) (1.5817)
price of risk 1.617%  -0.580%  -0.106%  -1.382%  -2.377%  -2.005% 1.310%
R? 29.709%  3.671% 0.119%  22.092% = 70.529% 50.185%  21.401%
se(R?) (0.1261)  (0.1048)  (0.0179)  (0.0477)  (0.0975)  (0.1356)  (0.2191)
2.5% CI (RQ) 0.0836 0.0000 0.0000 0.1325 0.5522 0.2617 0.0000
97.5% CI (R2) 0.5324 0.2539 0.0467 0.3277 0.9055 0.7796 0.6186
D (R2 = 1) 0.0248 0.0238 0.0222 0.0276 (0.2457 0.0791 0.0103
MAPE 2.021% 2.360% 2.477% 1.961% 1.238% 1.535% 1.843%
# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (o) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model fitted to the frequency-
specific components filtered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R? for each cross-sectional
regression and its standard error, the 95% confidence interval for R? which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of Hy : R?> = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios

which are priced together.
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Table 3B.5: Multiresolution decomposition with a LA(16) wavelet filter

Time-scale
j = 1 2 3 4 5 4:5 >5
Frequency Resolution 2.4 4-8 8-16  16-32  8-32 -~ 32
1 quarters
Panel A - IPG
Ao, 0.8400 2.4894 1.5445 0.4745 1.8546 0.6346 2.8775
(1.2514)  (3.4617)  (2.1756)  (0.6554) (2.2826)  (0.8604)  (3.1989)
Aj -0.4551 0.4669 0.1538 0.2444 0.0757 0.2229  -0.0322
(-1.8503) (1.4796) (1.0342) (2.1668) (3.3234) (2.3896) (-2.2757)
price of risk -1.317%  1.166%  0.927%  1.811%  2.264%  1.980%  -1.811%
R? 19.699%  14.840%  9.167%  37.944%  63.960% 48.929%  40.951%
se(R?) (0.1517)  (0.1640)  (0.1618)  (0.2063)  (0.0575)  (0.2550)  (0.2641)
2.5% CI (R? 0.0000 0.0000 0.0000 0.0051 0.5333 0.0277 0.0000
97.5% CI (R?) 0.4806 0.4619 0.4029 0.7688 0.7706 1.0000 0.9412
p(R*=1) 0.0099 0.0073 0.0128 0.0079 0.1746 0.0573 0.0251
MAPE 1.977%  2.137%  2.386%  1.760%  1.357%  1.462%  1.520%
Panel B - IPVOL
Ao,j 3.2988 2.7454 2.4531 1.5410 1.2564 1.0292 2.9611
(3.7514)  (4.5786)  (3.4203)  (1.9925) (1.5479)  (1.3550)  (2.9370)
Aj 0.1831  -0.0461  -0.0042  -0.0549  -0.0350  -0.0639  0.0082
(2.5695)  (-0.8075) (-0.1094) (-3.2246) (-3.5096) (-3.1151) (1.5884)
price of risk 1.628%  -0.640%  -0.083%  -1.360%  -2.369%  -2.007%  1.307%
R? 30.092%  4.475%  0.073%  21.403%  70.028% 50.253% 21.316%
se(R?) (0.1348)  (0.1150)  (0.0140)  (0.0548)  (0.0782)  (0.1236)  (0.2172)
2.5% CI (R?) 0.0531 0.0000 0.0000 0.1108 0.5696 0.2835 0.0000
97.5% CI (R?) 0.5814  0.2842  0.0394  0.3281  0.8603  0.7299  0.6338
p(R*=1) 0.0250 0.0249 0.0220 0.0227 0.2490 0.0819 0.0105
MAPE 2.018%  2.341%  2478%  1.967% = 1.239%  1.540%  1.845%
# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (o) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model fitted to the frequency-
specific components filtered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R? for each cross-sectional
regression and its standard error, the 95% confidence interval for R? which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of Hy : R?> = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios

which are priced together.
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Table 3B.6: Multiresolution decomposition with a LA(20) wavelet filter

Time-scale
j = 1 2 3 4 5 4:5 >5
Frequency Resolution 2.4 4-8 8-16  16-32  8-32 -~ 32
1 quarters
Panel A - IPG
Ao, 0.8298 2.4911 1.5542 0.4647 1.8744 0.6374 2.8863
(1.2433)  (3.4610)  (2.1881)  (0.6452) (2.3036) (0.8654)  (3.2062)
Aj -0.4586  0.4613 0.1521 0.2464 0.0741 0.2227  -0.0329
(-1.8780)  (1.4847)  (1.0238) (2.2027)  (3.2994) (2.4108) (-2.2980)
price of risk -1.332%  1.168%  0.916%  1.823%  2.249%  1.988%  -1.821%
R? 20.160% 14.895%  8.959%  38.414%  63.136%  49.302%  41.393%
se(R?) (0.1520)  (0.1638)  (0.1600)  (0.2027)  (0.0616)  (0.2521)  (0.2630)
2.5% CI (R? 0.0000 0.0000 0.0000 0.0222 0.5341 0.0012 0.0000
97.5% CI (R?) 0.5031 0.4757 0.4028 0.7706 0.7589 1.0000 0.9444
p(R*=1) 0.0100 0.0074 0.0129 0.0145 0.1655 0.0590 0.0260
MAPE 1.970%  2.136%  2.389%  1.753%  1.367%  1.456%  1.509%
Panel B - IPVOL
Ao,j 3.2660 2.7597 2.4521 1.5626 1.2865 1.0479 2.9785
(3.7268)  (4.5954)  (3.4040)  (2.0030) (1.5819)  (1.3704)  (2.9328)
Aj 0.1819  -0.0483  -0.003¢  -0.0535  -0.0344  -0.0639  0.0083
(2.5321)  (-0.8541) (-0.0894) (-3.1893) (-3.5092) (-3.1588) (1.5910)
price of risk 1.634%  -0.674%  -0.068%  -1.342%  -2.365%  -2.007%  1.303%
R? 30.337%  4.958%  0.049%  20.819% = 69.808% 50.278%  21.200%
se(R?) (0.1445)  (0.1226)  (0.0114)  (0.0588)  (0.0742)  (0.1146)  (0.2157)
2.5% CI (R?) 0.0388 0.0000 0.0000 0.0973 0.5625 0.2974 0.0000
97.5% CI (R?) 0.5912  0.3039  0.0346  0.3361 = 0.8524  0.7420  0.6431
p(R*=1) 0.0238 0.0256 0.0219 0.0222 0.2353 0.0923 0.0107
MAPE 2.016%  2.328%  2480%  1.973%  1.236%  1.543%  1.846%
# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (o) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model fitted to the frequency-
specific components filtered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R? for each cross-sectional
regression and its standard error, the 95% confidence interval for R? which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of Hy : R?> = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios

which are priced together.
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Table 3B.7: Multiresolution decomposition with a C(6) wavelet filter

Time-scale
j = 1 2 3 4 5 4:5 > 5
Frequency Resolution 24 4-8 §-16  16-32  8-32 - 32
1 quarters
Panel A - IPG
o,j 0.8220 2.5297 1.5293 0.4936 1.5454 0.5996 2.8238
(1.1323)  (3.4294) (2.1402) (0.6422) (1.9826) (0.7980) (3.1742)
Aj -0.4669 0.4906 0.1579 0.2359 0.0941 0.2244 -0.0300
(-1.7039)  (1.3416)  (1.0352) (1.9515) (3.4118) (2.2790) (-2.2132)
price of risk -1.259% 1.100% 0.934% 1.750% 2.407% 1.949%  -1.789%
R? 17.998% 13.211%  9.318%  35.395%  72.318%  47.423%  39.944%
se(R?) (0.1564)  (0.1612)  (0.1614)  (0.2414)  (0.1251)  (0.2692)  (0.2684)
2.5% CI (R? 0.0000 0.0000 0.0000 0.0000 0.4854 0.0000 0.0000
97.5% CI (R ) 0.4736 0.4811 0.4321 0.8579 0.9714 1.0000 0.9311
D (R2 = 1) 0.0097 0.0080 0.0124 0.0095 0.2726 0.0590 0.0202
MAPE 1.996% 2.188% 2.375% 1.773% 1.186% 1.465% 1.555%
Panel B - IPVOL
Ao,j 3.3626 2.5405 2.4715 1.4353 1.0065 0.9216 2.8614
(3.7381)  (4.3301)  (3.5546)  (1.8900) (1.3214) (1.2284)  (2.9329)
Aj 0.1902 -0.0097 -0.0128 -0.0645 -0.0383 -0.0653 0.0076
(2.5032)  (-0.1553) (-0.3007) (-3.2113) (-3.2286) (-2.9345) (1.5184)
price of risk 1.566%  -0.131%  -0.227%  -1.420%  -2.353%  -2.008% 1.288%
R? 27.858%  0.187% 0.548%  23.317% = 69.104% 50.296%  20.719%
se(R?) (0.1300)  (0.0246)  (0.0376)  (0.0457)  (0.1538)  (0.1679)  (0.2227)
2.5% CI (RQ) 0.0564 0.0000 0.0000 0.1510 0.3814 0.1739 0.0000
97.5% CI (R2) 0.5155 0.0641 0.0862 0.3338 0.9855 0.8239 0.6185
D (R2 = 1) 0.0230 0.0198 0.0232 0.0279 0.1948 0.0732 0.0103
MAPE 2.055% 2.443% 2.466% 1.966% 1.242% 1.519% 1.841%
# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (o) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model fitted to the frequency-
specific components filtered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R? for each cross-sectional
regression and its standard error, the 95% confidence interval for R? which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of Hy : R?> = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3B.8: Multiresolution decomposition with a C(12) wavelet filter

Time-scale
j = 1 2 3 4 5 4:5 > 5
Frequency Resolution 24 4-8 §-16  16-32  8-32 - 32
1 quarters
Panel A - IPG
o,j 0.8401 2.5042 1.5294 0.4910 1.7388 0.6203 2.8527
(1.2176)  (3.4528) (2.1497) (0.6625) (2.1671) (0.8351)  (3.1829)
Aj -0.4529 0.4825 0.1567 0.2394 0.0828 0.2235 -0.0307
(-1.7860)  (1.4417)  (1.0449) (2.0607) (3.4179) (2.3358) (-2.2301)
price of risk -1.290% 1.150% 0.939% 1.782% 2.339% 1.964%  -1.793%
R? 18.901% 14.438%  9.418%  36.716% 68.287% 48.144%  40.124%
se(R?) (0.1533)  (0.1634)  (0.1615)  (0.2212)  (0.0669)  (0.2608)  (0.2666)
2.5% CI (R? 0.0000 0.0000 0.0000 0.0000 0.5706 0.0143 0.0000
97.5% CI (R ) 0.4868 0.4537 0.4196 0.7970 0.8168 0.9876 0.9753
D (R2 = 1) 0.0105 0.0072 0.0125 0.0110 0.2094 0.0602 0.0209
MAPE 1.987% 2.148% 2.380% 1.773% 1.289% 1.467% 1.542%
Panel B - IPVOL
Ao,j 3.3808 2.6853 2.4586 1.4842 1.1304 0.9780 2.9142
(3.8119)  (4.5209)  (3.4784) (1.9553)  (1.4280) (1.3048)  (2.9405)
Aj 0.1866 -0.0345 -0.0072 -0.0592 -0.0368 -0.0638 0.0079
(2.6482)  (-0.5844) (-0.1826) (-3.2624) (-3.4430) (-2.9984) (1.5677)
price of risk 1.602%  -0.474%  -0.138%  -1.405%  -2.384%  -2.005% 1.308%
R? 29.163%  2.453% 0.204%  22.813% = 70.901% 50.150% 21.360%
se(R?) (0.1182)  (0.0864)  (0.0234)  (0.0458)  (0.1298)  (0.1485)  (0.2209)
2.5% CI (RQ) 0.0769 0.0000 0.0000 0.1481 0.4702 0.2340 0.0000
97.5% CI (R2) 0.5277 0.2075 0.0523 0.3234 0.9573 0.7872 0.6766
D (R2 = 1) 0.0258 0.0221 0.0225 0.0280 0.2443 0.0762 0.0100
MAPE 2.027% 2.389% 2.474% 1.954% 1.236% 1.529% 1.841%
# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (o) and the price of
risk (A;) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model fitted to the frequency-
specific components filtered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R? for each cross-sectional
regression and its standard error, the 95% confidence interval for R? which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of Hy : R?> = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3B.9: Monotonicity tests - risk exposures with respect to consumption growth

Panel A Size Top—bottom MR
Low 2 3 4 High p-value p-value
Average Return 2.5273 24643 23596 2.1788  1.6142 0.0540 0.1052
Factor: Innovations:
CG.j=5 First-Diff. 7.5269  5.9658 5.4755 4.9459  3.6878 0.0968 0.0664
’ AR(1) Resid.  9.2826  7.3213 6.6320 6.0459  4.6809 0.0590 0.0298
CG.j>5 First-Diff. 11.5480 10.3283 9.7070 8.6477  8.7718 0.2796 0.2604
’ AR(1) Resid. 13.7571 10.9536 9.5592 9.1356  9.0241 0.1620 0.1768
Null and Alternative Hypotheses for Monotonicity Test
For returns: Hy:Rs5>...>2Rivs H :R;<...< Ry
For CG risk-loadings: Hy: Y > .. >89 vs Hy: gV < ... < g
Panel B Book-to-Market Top—bottom MR
Low 2 3 4 High p-value p-value
Average Return 1.6029  1.7924 1.9863 2.2214  2.6464 0.0121 0.0006
Factor: Innovations:
CG. j=5 First-Diff. 34811  4.3839 5.2996 5.5229  6.2314 0.0468 0.0102
’ AR(1) Resid.  4.2415  5.3141 6.4794 6.8205  7.6033 0.0194 0.0026
CG.j>5 First-Diff. 9.0839 7.8512 8.8235 8.1679 10.1217 0.3716 0.3420
’ AR(1) Resid.  9.6880  7.3403 9.0684 8.9702 10.0594 0.4750 0.6882

Null and Alternative Hypotheses for Monotonicity Test

For returns:
For CG risk-loadings:

Hy: Ry <...<RiyvsH{:Rs>...> Ry
Ho:ﬁéj)g...gﬁﬁj) vsHl:ﬁéj)>...>ﬁ{J)

Notes: This table presents the frequency-specific risk exposures with respect to the factors ACG;

()

for j = 5 (i.e., business-cycle frequencies) and j > 5 (i.e., frequencies lower than 8 years) for one-
way portfolio sorts and the corresponding monotonicity tests. The sorting variables are size (Panel
A) and book-to-market (Panel B). The first row in each panel reports average excess returns (in
percent per quarter) for the test assets. The final column in each panel presents the p-value for the
monotonic relation (MR) test. Similarly, the penultimate column presents the bootstrap p-value
for the top-minus-bottom difference in the corresponding returns and scale-wise betas.
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Table 3B.10: Controlling for Fama-French factors and momentum

2
Factor Innovations AMKT ASMB ANHML AMOM As ﬁ
Panel A
IPG, j=5 First-Diff. 1.3701 0.2798 0.7306 2.5117 0.2753 78.801%
(1.9164) (0.6286) (1.3944) (2.0315) (2.3715) 1.282%
AR(1) Resid. 1.3214 0.4438 0.8626 2.2230 0.2062 77.944%
(1.7596) (1.0093) (1.6624) (1.8511) (1.9115) 1.289%
IPVOL, j =5 First-Diff. 1.4931 0.6055 0.5558 2.4288 -0.0577  78.175%
(2.1318) (1.3239) (0.9650) (2.0357) (-2.2178) 1.255%
AR(1) Resid. 1.4423 0.6409 0.6091 2.2352 -0.0553  78.030%
(2.0333) (1.3972) (1.0710) (1.8800) (-2.1063) 1.265%
Panel B
GDP Growth, j =5 First-Diff. 1.3620 0.1812 0.6463 2.6037 0.1735 80.812%
(1.9757) (0.3983) (1.2976) (2.0962) (3.5020) 1.239%
AR(1) Resid. 1.1602 0.2937 0.6818 2.2164 0.1432 80.157%
(1.6162) (0.6562) (1.3524) (1.8480) (3.1015) 1.255%
GDP VOL, j =5 First-Diff. 1.4134 0.5217 0.3096 2.1640 -0.0237  79.330%
(2.0257) (1.1662) (0.5243) (1.8154) (-2.6770) 1.257%
AR(1) Resid. 1.4151 0.5551 0.4043 2.1091 -0.0217  78.798%
(2.0147) (1.2410) (0.6905) (1.7734) (-2.4755) 1.274%

Notes: This table reports estimates for the price of risk (\5) for the business-cycle macro factors
filtered out of industrial production (Panel A) and GDP (Panel B) after controlling for exposure
to the value-weight excess return on the market portfolio (MKT), the size factor (SMB), the value
factor (HML) and the momentum factor (MOM). The test assets include the 5 FF industry and
the 25 FF size and book-to-market portfolios which are priced together.
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Table 3B.11: Cross-sectional regressions using frequency domain risk exposures

Panel A - GDP Growth

Freq. (w) Cycle length in years Ao A price of risk R? MAPE
0.0491 32.00 2.8896 -0.2652 -1.391% 21.600% 2.117%
(3.3915)  (-2.4715)

0.0982 16.00 2.6431 -0.0840 -0.339% 1.283%  2.383%
(2.4777)  (-0.5946)

0.1963 8.00 0.4125 0.5561 1.762% 34.653% 1.856%
(0.5347)  (3.9909)

0.2209 7.11 0.4441 0.5431 2.026% 45.776% 1.660%
(0.6402)  (3.8300)

0.2454 6.40 0.6391 0.4706 2.120% 50.145% 1.599%
(0.9861)  (3.3822)

0.3927 4.00 1.7051 0.0899 0.784% 6.856%  2.295%
(2.5707)  (0.8736)

0.7854 2.00 2.7572 -0.0311 -0.453% 2.294%  2.364%
(4.2272)  (-0.5499)

Panel B - GDP VOL

Freq. (w) Cycle length in years Ao A price of risk R? MAPE

0.0491 32.00 3.2282 -0.3992 -2.105% 49.434% 1.376%
(3.6847)  (-3.3270)

0.0982 16.00 3.4116 -0.3211 -1.646% 30.227% 1.817%
(3.2594)  (-2.3097)

0.1963 8.00 -0.1535 0.2522 2.012% 45.184% 1.780%
(-0.1976)  (3.7791)

0.2209 7.11 0.0572 0.1953 2.127% 50.466% 1.599%
(0.0773)  (3.1904)

0.2454 6.40 0.4022 0.1475 2.113% 49.814% 1.586%
(0.5727)  (2.8684)

0.3927 4.00 -0.7051 0.1058 2.119% 50.071% 1.533%
(-0.7635)  (3.1131)

0.7854 2.00 3.2335 -0.0210 -0.628% 4.395% 2.378%
(4.5048)  (-0.9133)

Notes: This table reports the estimates for the zero-beta excess return (A\g) and the price of risk
(A) for the frequency-specific macro shocks along with the corresponding Fama-MacBeth (1973)
test statistics in parentheses. The regressors are the estimated gains between asset returns and the
macro series at frequency w. In addition, I report the sample R? for each cross-sectional regression
and the mean absolute pricing error (MAPE) across all securities expressed in percent per year.
The test assets are the 5 FF industry and the 25 Fama and French (1993) size and book-to-market
portfolios priced together. The sample period is 1962:Q1 to 2014:Q4. I use demeaned series to
estimate the spectral measures based on Welch’s (1967) method with a Hamming window and 50%

overlap.
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Table 3B.12: Low-frequency risk exposures from OLS regressions of cosine transforms
- GDP

Size Book-to-market Panel A - GDP Growth Panel B - GDP VOL

Small LowBM 2.0258 (0.4119) 8.4167 (0.2030)
2BM 1.1926 (0.2707) -22.2232  (-0.6089)
3BM 29100  (0.7255) 272278 (-0.8140)
4BM 4.5945 (1.1387) -31.4923  (-0.9146)

HighBM 51223 (1.2531) ~44.5065  (-1.3049)

2 LowBM 11114 (0.3041) 1134946 (-0.4422)
2BM 0.4423  (0.1640) 221.0920  (-0.9673)

3BM 1.5700 (0.5584) -39.4870  (-1.8819)

ABM 41186 (1.4959) -39.5256  (-1.7639)

HighBM 4.0290 (1.4158) -31.3226  (-1.2976)

3 LowBM -0.6267 (-0.2029) -26.9639  (-1.0892)
2BM 0.7483 (0.2772) -31.4754  (-1.5129)

3BM 14402 (0.5833) -30.7453  (-1.6161)

4BM 2.7385 (1.0590) -43.8356  (-2.3299)

HighBM 2.5043 (0.9436) -39.0487  (-1.9407)

4 LowBM 211933 (-0.4859) -28.9536  (-1.5206)
2BM 1.6259  (0.6721) _44.4465  (-2.7444)

3BM 34850  (1.4665) -42.7529  (-2.4055)

ABM 36513 (2.0677) -39.5180 (-3.0562)

HighBM 37022 (1.8310) -36.4998 (-2.2782)

Big LowBM 0.9841 (0.4242) -33.5944  (-1.9725)
2BM 15272 (0.6912) -45.7457 (-3.3864)

3BM 3.3373 (1.3690) -53.0754 (-3.3685)

4BM 3.5614 (1.9566) -41.6802 (-3.2701)

HighBM 21647  (0.9973) -41.9540 (-2.8815)

Industry 1 Consum. 1.2474 (0.5981) -37.5885 (-2.6765)
Industry 2 Manuf. 1.3935 (0.8137) -35.5437 (-3.3543)
Industry 3 HiTech 1.8326  (0.6024) 230.3834  (-1.2472)
Industry 4 Health 14692 (0.4892) 228.0008  (-1.1613)
Industry 5 Other 47552 (1.8569) _43.7766  (-2.1018)

Notes: This table reports low-frequency risk-exposures from a time-series regression between ¢ = 13
weighted averages constructed from asset excess returns and (innovations) in macro series based on
the Miiller and Watson (2015) framework. Note that the low-frequency betas follow a Student-t
distribution with 12 degrees of freedom (¢ —k = 13 —1). Bold values denote statistically significant
beta estimates at a 95% confidence level. Note that the low-frequency betas for GDP Growth are
not statistically significant (i.e., useless factor).
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Table 3B.13: Cross-sectional regressions using low-frequency betas based on the Miiller
and Watson (2015) framework - GDP

Test assets: 5 FF industry and the 25 FF size and book-to-market portfolios

AR(1) Resid. from Ao A price of risk R? MAPE

GDP Growth, ¢ =13 1.8108  0.2582 1.715%  32.830% 1.956%
(2.3935)  (3.3193) cut-off periodicity = 8.1538

GDP Growth, g =12 1.8764  0.2465 1.620%  29.273% 2.023%
(2.4731)  (3.2129) cut-off periodicity = 8.8333

GDP Growth, ¢ =11  1.9890  0.2084 1.326% 19.617% 2.183%

(2.5744)  (2.6681)  cut-off periodicity = 9.6364

GDP VOL, ¢ =13 1.9564  -0.0123 -0.574% 3.678%  2.388%
(1.8045) (-0.8121) cut-off periodicity = 8.1538

GDP VOL, g =12 2.1468  -0.0068 -0.329% 1.206%  2.416%
(1.9704) (-0.4473)  cut-off periodicity — 8.8333

GDP VOL, ¢ =11 2.7747 0.0138 1.021% 11.623% 2.107%
(2.8850) (1.1726)  cut-off periodicity — 9.6364

Notes: This table reports the estimates for the zero-beta excess return (Ag) and the price of risk (\)
for low-frequency macro shocks along with the corresponding Fama-MacBeth (1973) test statistics
in parentheses. In addition, I report the sample R? for each cross-sectional regression and the mean
absolute pricing error (MAPE) across all securities expressed in percent per year. The test assets
are the 5 FF industry and the 25 Fama and French (1993) size and book-to-market portfolios priced
together. The sample period is 1962:Q1 to 2014:Q4.
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Conclusion to Thesis

In this thesis, I analyze how scale-dependent macroeconomic shocks propagate to asset prices.
Chapter 1 provides an introduction to time-series modelling with multiple scales and scale-wise
heterogeneity building mainly upon the studies of Ortu et al. (2013), Bandi et al. (2016) and Bandi
and Tamoni (2016). While chapter 1 serves as introduction to the topic, I contribute in the existing
literature in the following ways: First, I present new results for the power and size properties of the
modified multi-scale variance ratio test of Ortu et al. (2013). Second, I demonstrate theoretically
and via simulations that there is a close one-to-one mapping between scale-specific predictability
and two-way aggregation irrespective of whether the scale-wise regressor is autoregressive.

In chapter 2, I show that a single factor that captures assets’ exposure to business-cycle variation
in macroeconomic uncertainty can explain the level and cross-sectional differences of asset returns.
In particular, based on portfolio-level tests I demonstrate that uncertainty shocks with persistence
ranging from 32 to 128 months carry a negative price of risk of about -2% annually. The price of
risk for innovations in the raw series of aggregate uncertainty and for high-frequency fluctuations is
not significant. Also, equity exposures are negative and hence risk premia are positive. I quantify
macroeconomic uncertainty using the model-free index of Jurado et al. (2015) and my results remain
quantitatively similar irrespective of whether uncertainty is derived from monthly, quarterly or
annual forecasts..

In chapter 3, I test if the theoretical conditions that Epstein-Zin preferences impose in the

frequency domain for asset pricing models are empirically satisfied. My work is motivated by the
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spectral decomposition of the pricing kernel under recursive preferences by Dew-Becker and Giglio
(2016). I find that macroeconomic shocks with frequencies lower than the business-cycle are not
robustly priced in the cross-section of expected returns. In addition, the estimated risk premia are
economically small, have wrong signs and the low-frequency risk exposures fail to match known
patters in average returns. In total, this chapter highlights the need for risk preferences that allow
investors to be more risk averse to business-cycle frequencies and put less weight on cycles lasting
centuries.

Overall, the central recommendation of my work is that empirical studies should pay more
attention to the information content of scale-specific macroeconomic shocks. Furthermore, my
thesis demonstrates that - in contrast with the conventional wisdom of the long-run risks literat-
ure - business-cycle length fluctuations are of first-order importance for asset pricing and hence
stabilisation and monetary policies should focus at this specific frequency range. That is, in line
with mainstream macroeconomic theory central banks should aim the effects of their policies (e.g.,
smoothing out output and consumption) primarily at business-cycle frequencies - rather than trying

to reduce uncertainty about very long-run growth rates.

Limitations and Directions for Future Work

In chapter 1, the modified multi-scale variance ratio tests demonstrate modest power in small
samples when there is a persistent component in the time-series localized at low-frequencies. De-
riving the asymptotic joint distribution of these tests could allow to gain power. In chapters 2
and 3 my analysis is purely non-structural and lacks a formal theoretical set-up. What is more,
the empirical evidence in these chapters cannot be nested within standard asset pricing models.
From this perspective, promising directions for future work include risk preferences with horizon
dependent risk aversion (as a starting point see Andries et al., 2015) or asset pricing models that
incorporate multi-scale pricing kernels. Moreover, in chapter 3 the exact theoretical mapping (or

potential differences in power) between the three econometric techniques is not clear. Finally, on
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the empirical front two interesting extensions include: i) performing a scale-by-scale decomposition
of the risk exposures with respect to the market factor to investigate scale-dependent downside
risk (for instance, see Lettau et al. 2014 and Dobrynskaya, 2014) and ii) modelling the dependence
of macro uncertainty and volatility shocks across different time horizons via wavelet-based hidden
Markov trees. In the spirit of Gengay et al. (2010), I expect that a state (regime) with low macro
uncertainty at a long time horizon is most likely followed by low macro uncertainty states at shorter
time horizons. In contrast, a high macro uncertainty state at long time horizons will not necessarily
imply a high macro uncertainty state at shorter time horizons (i.e., I expect macro uncertainty to

exhibit asymmetric vertical dependence across different time horizons).
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Additional Appendices

Appendix A: Monotonicity in Factor Loadings

I present how to implement the monotonic relation (MR) test of Patton and Timmermann (2010)
to test for monotonicity in factor loadings. The MR test specifies a flat or weakly pattern under
the null hypothesis and a strictly monotonic relation under the alternative®’. The main advantage
of the test is that it makes no parametric assumptions on the distribution from which the data
are drawn. Below I describe the MR methodology for the general case with the extension for
horizon-specific exposures being straightforward (for instance, using component-wise regressions as
in Equation (3.12)).

Let {ri+, i=1,...,N;t =1,...,T} be the set of returns recorded for N assets over T  time

periods which is regressed on K risk factors Fy = (Fig, ..., FKyt)’, that is,

Tiﬂg = /BlFt + 61‘775 (Al)

where 8; = (B1,--.,Bk.i). The associated hypotheses® on the j — th parameter (1 < j < K) in

the above regression is

571 would like to thank Andrew Patton for making the code available in his personal website:
http://public.econ.duke.edu/ " apl172/
8To test for monotonically decreasing patters the order of the assets is simply reversed.
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Ho . lﬁj,N < /Bj,Nfl <...< ﬂ]ﬂ Versus (AQ)

H1 : ,Bj7N > ,Bijfl >0 > Bj,l' (A3)

The alternative hypotheses can be rewritten as

Hi: ) minN {/Bjﬂ‘ — ﬁj7z‘_1} >0 (A4)

i=1,...,
that is if the smallest value of {f;; — B;,—1} > 0 then it must be that {8;; — B;;—1} > 0 for all
i=1,...,N.

Patton and Timmermann (2010) use the stationary bootstrap of Politis and Romano (1994)

to randomly draw a new sample of returns and factors {fgbg(t), i=1,...,N;7(1),...,7 (T)} and
{ng()t), T(1),...,7 (T)} where 7 (t) is the new time index which is a random draw from the original

set {1,...,7} and b is an indicator for the bootstrap number which runs from b = 1 to b = B.
To preserve any cross-sectional dependencies in returns the randomized time index 7 (t) is common
across portfolios. Moreover, observations are re-sampled in blocks - to preserve the dependence
in the original series - where the size of each block is random and determined by a geometric
distribution. The bootstrap regression takes the form

=(6)  _ 3(b) gn(b) (b)
Tiry = Bi Friy T iz (A.5)

@, T

The null hypothesis is imposed by subtracting the estimated parameter BZ from the parameter
~ (b
estimate obtained on the bootstrapped series ,BE ). The test statistic for the bootstrap sample -

motivated by Equation (A.4) - is computed as
. 50) 5 G A
= i { (80 = B) - (B0 = i)} (A9)
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Patton and Timmermann (2010) then count the number of times a pattern at least as unfavourable
against the null as that observed in the real sample emerges. An estimate of the p-value for the

null hypothesis is given by

B
p= % S 1{sh> Jj,T} (A7)

where the indicator 1 {J;f)T) > Jj,T} is one if J;? > Jjr and otherwise zero. When the bootstrap
p-value is less than 0.05 there are significant evidence against the null in favor of a monotonically
increasing relation. To eliminate the impact of cross-sectional heteroskedasticity Patton and Tim-
mermann (2010) suggest implementing a studentized version of the bootstrap in line with Hansen

(2005) and Romano and Wolf (2005).

Appendix B: Asymptotic Distribution of R?

Let f be a K — vector of factors , R a vector of returns on IV assets with mean pg and covariance
matrix Vi and 8 the N x K matrix of regression betas. The K — factor beta pricing model is given
by pur = X+ where X = [1n, ] and v = [y0,71]. The pricing errors of the N assets are given by
e = pur — X~y and the cross-sectional R? is defined as

RZ_1- 9 (B.1)

Qo

where (Q = éWe denotes the aggregate pricing-error measure, Qo = €yWeq the cross-sectional
variance of mean returns, ey = [IN —1n (1}VW1N)_1 INW] ur deviations of mean returns from
their cross-sectional average and W is an N x N weighting matrix (throughout this thesis I assume
that W =1y - OLS case).

When 0 < R? < 1, the asymptotic distribution of R? is given by
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VT (13:2 - RQ) Ao, i Elnn] (B.2)

j=—00
where n; = 2 [—utyt +(1 —RQ)Ut] /Qo, uy = éW (Ry — uR), vy = égW (Ry — ugr) and y; is the
normalized stochastic discount factor.

When the model is correctly specified (i.e., R? = 1)

. N-K-1 ,
VT <R2 - 1) 503 fjoxj (B.3)
j=1

where the x;’s are independent X% random variables and the &;’s are the eigenvalues of P'W3SWsP
where P is an N x (N — K — 1) orthonormal matrix with columns orthogonal to W%C, S is the
asymptotic covariance matrix of % Z?zl €tyt, € = Ry — pr — B (ft — py). Equation (B.3) can be

used as a specification test.

Pivoting the cdf

Plot the 100(a/2) and 100(1 — a/2) percentiles of the distribution of R? for different values of R2.
Draw a horizontal line at the observed value of R?. The horizontal line will intersect first the
100(1 — a/2) percentile line and then the 100(a/2) line. The interval between these two intersection

points gives a 100(1 — a)% confidence interval.
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