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Abstract

This thesis focuses on the propagation of scale-speci�c (i.e., horizon-dependent) macroeconomic

shocks into asset prices. In particular, chapter 1 provides an introduction to the theory and meth-

ods necessary for understanding scale-dependencies in �nancial economics. First, I present the

multiresolution-based decompositions for weakly stationary time series of Ortu et al. (2013) and

discuss its connection with other techniques in the literature. Next, I analyse the power and size

properties of multi-scale variance ratio tests that distinguish a white noise process from a process

whose scale-dependent components are serially correlated. Finally, I present an extension of the

framework of Bandi et al. (2016) for scale-speci�c predictability. In chapter 2, I show that a single

factor that captures assets' exposure to business-cycle variation in macroeconomic uncertainty can

explain the level and cross-sectional di�erences of asset returns. In addition, I �nd that - in con-

trast with previous studies in the literature - macro uncertainty is not a valid risk factor under the

ICAPM. Chapter 3 provides an empirical assessment of Epstein-Zin preferences in the frequency

domain. I demonstrate that the strict conditions implied by the spectral decomposition of recursive-

preferences are not empirically satis�ed. That is, macroeconomic shocks with frequencies lower than

the business-cycle are not robustly priced in asset prices.
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Introduction to Thesis

In this thesis, I explore the link between �nancial markets and the macroeconomy. In particular,

I examine how scale-speci�c (i.e., horizon-dependent) macroeconomic shocks propagate to asset

prices. The core intuition behind this work is that shocks that a�ect an economy can be classi�ed

along two dimensions. That is, on the basis of their arrival time as in the standard Wold decomposi-

tion (see the early studies of Slutzky 1937; Yule 1927; Frisch 19331, for a theoretical systematization

see Wold, 1938 and for a review Diebold, 1998) and across their level of resolution (i.e., scale) as

measured by their half life in line with Ortu et al. (2013, 2016) and Bandi et al. (2016).

For instance, consider a zero-mean, weakly-stationary (purely non-deterministic) stochastic pro-

cess {gt}t∈Z. In line with the standard Wold decomposition the process gt can be written as a linear

combination of lagged values of a white noise process. That is, gt has an in�nite moving average

MA(∞) representation2 of the following form

gt =
∞∑
k=0

αkεt−k

where
∑∞

k=0 α
2
k < ∞, α0 = 1 and εt is a white noise process. In contrast, in the generalized

(i.e., multi-scale) Wold type decomposition of Bandi et al. (2016) the process can be represented

1Slutzky (1937) and Yule (1927) are the �rst to demonstrate that a moving average of a random series can generate
oscillations and periodicities when no such movements exist in the original data. The Slutzky-Yule e�ect led to the
formalization of ARMA processes.

2For classic text-book level treatments of time-series concepts see Hamilton (1994); Hayashi (2000) or Brockwell
and Davis (2009).
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(assuming again for simplicity and without any loss of generality that the process is zero-mean and

for a �xed J ≤ log2T where T is the length of gt) as

gt =

J∑
j=1

∞∑
k=0

αj,kε
(j)

t−k×2j

where the shocks ε
(j)
t , t = k × 2j , k ∈ Z that drive the time-series are now scale-speci�c (i.e., they

depend on both time t and scale j). This modelling approach implies that the scale-speci�c shocks

may carry unique information (i.e., scale-wise heterogeneity) and hence provides strong motivation

to analyze the relation between macroeconomic �uctuations and asset prices on a scale-by-scale

basis. More speci�cally, in this thesis I address the following questions:

• Are all macro uncertainty shocks created equal? In other words, do they have the same in-

formation content across di�erent horizons and scales? If not, what are the value implications

of macroeconomic shocks localized at a speci�c level of resolution?

• How do risk prices and risk exposures with respect to measures of macroeconomic activity

change as we alter the investment horizon (i.e., across di�erent time scales)?

• Are the strict conditions implied by Epstein-Zin preferences in the frequency domain empir-

ically satis�ed? That is, are low-frequency macro shocks robustly priced in asset prices?

Moreover, from a more technical perspective:

• How easy it is to detect persistent components of a time-series localized at low frequencies?

• Under what conditions does scale-speci�c predictability translate into long-horizon predictab-

ility?

The remainder of this thesis is structured as follows: Chapter 1 presents the econometric frame-

work necessary to understand scale-dependencies in �nancial economics. I concentrate on the prop-

erties of multi-scale variance ratio tests for serially correlated decimated components and on the link

2



between scale-speci�c predictability and long-horizon aggregation. Chapters 2 and 3 provide two

(robust) empirical studies linking macroeconomic �uctuations to asset prices. Speci�cally, chapter

2 focuses on business-cycle macro uncertainty while chapter 3 looks on both moments of macroe-

conomic activity (i.e., growth and volatility). A brief summary of the thesis along with a general

appendix are available at the end.
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Chapter 1

Understanding Scale-Dependencies in Financial

Economics: Theory and Methods

1.1 Introduction

This chapter serves as an introduction to time series modelling with multiple scales and scale-wise

heterogeneity. The theory and methods presented here provide the necessary background for the

empirical work in chapters 2 and 3. In particular, section 1.2 presents a persistence-based decom-

position for weakly stationary time series based on the work of Ortu, Tamoni, and Tebaldi (2013)

while section 1.3 discusses its connection with other techniques in the literature. Section 1.4 intro-

duces the econometric process of decimation which yields an alternative decimated decomposition

by using only a �nite-number of non-overlapping points. Section 1.5 describes the generalized (time

and scale) Wold representation implied by the decomposition of Ortu et al. (2013). Section 1.6

demonstrates that standard portmanteau tests for serial correlation fail to detect components loc-

alized at a speci�c level of persistence. Section 1.7 discusses the multi-scale variance ratio test of

Gençay and Signori (2015) for the white noise hypothesis and the modi�ed version of Ortu et al.

(2013) for a process whose decimated components are serially correlated. Section 1.8 analyzes the

size and power properties of the modi�ed variance ratio test through Monte Carlo simulations. Sec-

4



tion 1.9 discusses the link between scale-speci�c predictability and predictability upon aggregation.

Finally, section 1.10 presents the novel framework of Bandi and Tamoni (2016) for the analysis

of risk compensations on a scale-by-scale basis (i.e., across investment horizons) and section 1.11

concludes.

1.2 The Persistence-based Decomposition of Ortu et al. (2013)

Consider a weakly-stationary time series {gt}t∈Z. Let g
(j)
t denote �uctuations of the series with

half-life in the interval [2j−1, 2j), that is

g
(j)
t =

∑2(j−1)−1
i=0 gt−i

2(j−1)
−
∑2j−1

i=0 gt−i
2j

= π
(j−1)
t − π(j)

t (1.1)

where j ≥ 1, π
(0)
t ≡ gt and the element π

(j)
t satis�es the recursion

π
(j)
t =

π
(j−1)
t + π

(j−1)

t−2j−1

2
. (1.2)

For any 1 ≤ J ≤ log2T , the series {gt} can be written as

gt =
J∑
j=1

{
π

(j−1)
t − π(j)

t

}
+ π

(J)
t =

J∑
j=1

g
(j)
t + π

(J)
t , (1.3)

i.e. the series can be decomposed into a sum of components with half-life belonging to a speci�c

interval plus a long-run average. For instance, for J = 2 the time series of interest is given by

gt =
gt − gt−1

2︸ ︷︷ ︸
g
(1)
t

+
gt + gt−1 − gt−2 − gt−3

4︸ ︷︷ ︸
g
(2)
t

+
gt + gt−1 + gt−2 + gt−3

4︸ ︷︷ ︸
π
(2)
t

. (1.4)

Note that this decomposition is non-anticipative and can be computed using only past observations

(i.e., not subject to look-ahead bias).
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Nested within the MODWT family

The decomposition of Ortu et al. (2013) is identical to a multi-resolution based decomposition via

the Maximum Overlap Discrete Wavelet Transform (MODWT) where the extraction is based on the

Haar �lter {hl}10 = (1/2,−1/2). The di�erence is that the MODWT can accommodate several other

�lters (for instance Daubechies and Coi�et �lters). That is, the decomposition of Ortu et al. (2013)

is nested within the MODWT family. Below I illustrate this relationship. Most of my discussion

in this section closely follows the work of Percival and Walden (2000) and especially

Gençay, Selçuk, and Whitcher (2001, chapter 4) - I refer the interested reader to these

textbooks and the references therein for more information. For empirical applications of

wavelet analysis in �nance and economics see Ramsey (1999) and Crowley (2007).

The MODWT3 consists of a set of linear �lters which, given a time series y = {yt}t∈Z to be

�ltered, generate a collection of vectors of the same length that capture the characteristics of the

original series at di�erent time scales. In particular, a vector {hl} = (h0, . . . , hL−1) in RL gives rise

to a linear time invariant �lter by means of the convolution operation. The convolution of {hl} and

{yt} is the sequence

h ∗ yt =
l=∞∑
l=−∞

hlyt−1, ∀t (1.5)

where hl = 0 for all l < 0 and l ≥ L. A wavelet �lter {hl} of length L satis�es the following three

basic properties:

L−1∑
l=0

hl = 0,

L−1∑
l=0

h2
l = 1/2 and

∞∑
l=−∞

hlhl+2n = 0 for all integers n 6= 0. (1.6)

The �rst property (i.e., zero sum) ensures that hl is associated with a di�erencing operation and

3It is a common practice in the wavelet literature to distinguish the objects related to the Maximum Overlap
Discrete Wavelet Transform from those related to the Discrete Wavelet Transform (DWT) by using a tilde (∼) in
the �rst case. Since I only refer to the MODWT in this section I do not follow this convention. The MODWT is
also refereed to as the stationary DWT (Nason and Silverman, 1995), the translation-invariant DWT (Coifman and
Donoho, 1995) and the time-invariant DWT (Pesquet et al., 1996).
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thus identi�es changes in the data. The second property states that its L2 distance is 1/2. The third

property ensures that it is orthogonal to its even shifts. The natural complement to the wavelet

�lter is the scaling �lter {gl} de�ned by the quadrature mirror relationship4

gl = (−1)l+1hL−1−l (1.7)

for l = 0, . . . , L− 1. Similarly to Equation (1.6), the scaling �lter satis�es the following properties:

L−1∑
l=0

gl = 1,

L−1∑
l=0

g2
l = 1/2 and

∞∑
l=−∞

glgl+2n = 0 for all integers n 6= 0. (1.8)

In other words, instead of di�erencing consecutive blocks of observations the scaling �lter averages

them.

The MODWT of level M for a given time series {yt}Tt=1 can be organized into M + 1 vectors of

length T

w =
(
w´

1, . . . ,w
´
M ,v

´
M

)́
(1.9)

where Mmax ≤ log2T . In practice, the MODWT is computed recursively through a pyramid al-

gorithm (see Mallat, 1989a,b). For each iteration of the pyramid algorithm three objects are re-

quired: the data vector, the wavelet �lter hl and the scaling �lter gl. The �rst steps begins by

�ltering5 (convolving) the data with the wavelet and scaling �lters to obtain the �rst level wavelet

and scaling coe�cients:

w1,t =

L−1∑
l=0

hlyt−1 mod T and v1,t =

L−1∑
l=0

glyt−1 mod T (1.10)

4The quadrature mirror relationship between the �lters means that approximately perfect reconstruction of the
series is possible.

5Periodic boundary conditions are imposed on {yt}, that is yt ≡ ytmod T . Note that given two positive numbers
α (the dividend) and β (the divisor), αmodulo β (abbreviated as αmodβ) is the remainder of the Euclidean division
of α by β .
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for all t = 1, . . . , T . In the second step, the �ltering operations are applied to the scaling coe�cients

v1,t from the �rst iteration to obtain the second level wavelet and scaling coe�cients:

w2,t =

L−1∑
l=0

hlv1,t−1 mod T and v2,t =

L−1∑
l=0

glv1,t−1 mod T (1.11)

for all t = 1, . . . , T . Likewise, the mth step consists of applying the �ltering operations as above to

obtain the mth level of wavelet and scaling coe�cients:

wm,t =

L−1∑
l=0

hlvm,t−1 mod T and vm,t =

L−1∑
l=0

glvm,t−1 mod T (1.12)

for all t = 1, . . . , T . Keeping all vectors of wavelet coe�cients and the level M scaling coe�cients

yields the expression in (1.9).

In matrix notation, the MODWT can be represented as w =Wy whereW is the (M + 1)T ×T

matrix composed of the wavelet and scaling coe�cients arranged on a row-by-row basis, that is

W =



W1

W2

...

WM

VM


. (1.13)

Let dj =W>j wj for j = 1, . . . ,M de�ne the jth level wavelet detail associated with changes in {yt}

at scale j where wj =Wjy. For a decomposition level M = log2T the �nal wavelet detail dM+1 is

equal to the sample mean of the observations. A multiresolution analysis can now be de�ned as

yt =
M∑
j=1

dj,t + dM+1,t t = 1, . . . , T. (1.14)

where each observation yt is a linear combination of wavelet detail coe�cients.

For instance, consider the Haar wavelet �lter of length L = 2 given by {hl}10 = (h0, h1) =
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(1/2,−1/2) and the corresponding scaling �lter {gl}10 = (g0, g1) = (1/2, 1/2). The �rst level wavelet

and scaling coe�cients of a time series {yt} are given by

w1,t =
1

2
(yt − yt−1) and v1,t =

1

2
(yt + yt−1) (1.15)

for t = 1, . . . , T . Note that w1,t is equivalent to g
(1)
t and v1,t to π

(1)
t in Equation (1.3). The use of

the Haar �lter {hl}10 = (1/2,−1/2) is particular helpful since it relates scale-wise predictability to

aggregation (see section 1.9 for further discussion).

1.3 Comparison with Other Techniques

Financial economists have long been interested in extracting di�erent frequency components of a

time series. For instance, business cycle theory is primarily concerned with understanding �uctu-

ations in the range from 1.5 to 8 years. However, conventional methods for business cycles analysis

tend to sweep low-frequency oscillations into the trend. As a result, signi�cant information is re-

moved form the analysis and thus lost (see also Comin and Gertler, 2006). Below I present three

popular �ltering methods:

- Beveridge-Nelson (BN) decomposition

Beveridge and Nelson (1981) provide a model-based method for decomposing a non-stationary time

series into a permanent (i.e., trend) and a transitory (i.e., cyclical) component. In particular, assume

that the univariate time series yt is an I (1) process with Wold representation given by

∆yt = µ+ ψ (L) εt (1.16)

where ∆ = 1 − L and εt are i.i.d.
(
0, σ2

)
one-step-ahead forecast errors. The BN decomposition

de�nes the stochastic trend as the limiting forecast of the level of the series minus any deterministic

components given the current information set, that is
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τBNt ≡ lim
J→∞

E [yt+J − Jµ|Ft] = µ+ τBNt−1 + ψ (1) εt (1.17)

where Ft represents conditioning information available at time t. Note that the permanent com-

ponent is a pure random walk with drift µ and variance σ2ψ (1)2. The remaining movements in

the series are the I (0) transitory component, i.e. cBNt = yt − τBNt . In comparison with the BN

decomposition, the persistence-based decomposition of Ortu et al. (2013) allows for J �transitory�

components with di�erent levels of (calendar-time) persistence operating at di�erent frequencies.

Furthermore, within the framework of Ortu et al. (2013) the shocks are functions of both time and

scale.

- Hodrick-Prescott (HP) Filter

Hodrick and Prescott (1997) propose a procedure for representing a time series as the sum of a

smoothly varying growth (i.e., trend) component and a cyclical component. In particular, a given

time series {yt}Tt=1 can be written as

yt = τt + ct t = 1, . . . , T (1.18)

where the decomposition is obtained by solving the following minimization problem:

min
{τt}

{
T∑
t=1

(yt − τt)2 + λ
T∑
t=1

[(τt+1 − τt)− (τt − τt−1)]2
}
. (1.19)

The parameter λ > 0 penalizes variability in the growth component series. The larger the value

of λ the less �uctuations are present in the growth component. As λ → ∞, τt becomes a linear

deterministic trend. For quarterly data, Hodrick and Prescott (1997) propose to set λ = 1600.

Moreover, Ravn and Uhlig (2002) suggest that the parameter λ should be adjusted by multiplying

it with the fourth power of the observation frequency ratios, i.e. λ should equal 6.25 for annual data

and 129,600 for monthly data. The HP �lter is criticized on the basis that it distorts the dynamics

of the original time series (for instance, see Cogley and Nason, 1995 and Cogley, 2001) and induces
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spurious cycles if the original time series is di�erence stationary (see Harvey and Jaeger, 1993).

- Baxter-King (BK) Filter

Baxter and King (1999) propose a �nite moving-average approximation of an ideal band-pass �lter6.

The BK �lter is designed to extract the components of a time series with �uctuations in a particular

frequency range while removing higher and lower frequencies,

yft =
K∑

i=−K
wiyt−i = w (L) yt (1.20)

where L is the lag operator. The weights can be derived from the inverse Fourier transform of the

frequency response function under the constraint that the �lter gain is zero at zero frequency. This

restriction implies that the sum of the moving-average coe�cients must be zero. For quarterly data

Baxter and King (1999) recommend a lead-lag length of K = 12 while for annual data K = 3.

Note that the components of the BK �lter fail to capture a signi�cant fraction of the variability in

business-cycle frequencies (see Murray, 2003 and Guay and St.-Amant, 2005).

1.4 Decimation

The persistence-based decomposition in Equation (1.3) generates spurious serial correlation across

di�erent scales due to the mechanical overlapping of the moving averages that de�ne the components

g
(j)
t , for j = 1, . . . , J . Following Renaud et al. (2005) this representation of the original time series

{gt}t∈Z can be characterized as redundant. Ortu et al. (2013) and Bandi and Tamoni (2016)

de�ne an alternative decimated representation by selecting only the essential scale-wise information

contained in the extracted components. Through the process of decimation the original time series

can be summarized by a �nite number of non-overlapping points

{
g

(j)
t , t = k × 2j , k ∈ Z

}
(1.21)

6An ideal band-pass �lter removes the frequency components of a time series that lie within a particular range of
frequencies
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and

{
π

(j)
t , t = k × 2j , k ∈ Z

}
(1.22)

referred to as decimated components. This approach resembles the work of Müller and Watson

(2008) who extract the low-frequency dynamics of a time series by computing a �nite number of

weighted averages of the original data. However, within the framework of Ortu et al. (2013) the

components are scale-speci�c.

The result above follows from the fact that for any level of persistence J ≥ 1 a linear, invertible

operator7 T (J) can be de�ned that maps uniquely the decimated components into the time series

{gt}t∈Z (see Mallat, 1989a,b). For instance consider the simple case for J = 2. Assume the following

vector of decimated components

[
π

(2)
t , g

(2)
t , g

(1)
t , g

(1)
t−2

]>
(1.23)

built on a block of length 22 of the original series where

π
(2)
t =

1

4
(gt + gt−1 + gt−2 + gt−3) (1.24)

g
(2)
t =

1

2

(
gt + gt−1

2
− gt−2 + gt−3

2

)
(1.25)

g
(1)
t =

1

2
(gt − gt−1) (1.26)

g
(1)
t−2 =

1

2
(gt−2 − gt−3) (1.27)

and de�ne the transformation (Haar) matrix

7For the construction of T (J) in the general case see Daubechies (1990).
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T (2) =



1
4

1
4

1
4

1
4

1
4

1
4 −1

4 −1
4

1
2 −1

2 0 0

0 0 1
2 −1

2


. (1.28)

In terms of matrix operations, the following relation holds



π
(2)
t

g
(2)
t

g
(1)
t

g
(1)
t−2


= T (2)



gt

gt−1

gt−2

gt−3


. (1.29)

Ortu et al. (2013) and Bandi and Tamoni (2016) show that T (2) is orthogonal that is Λ(2) ≡

T (2)
(
T (2)

)> is diagonal. In addition, the diagonal elements of the matrix Λ(2) are non-vanishing8

(i.e., λ1 = λ2 = 1/4 and λ3 = λ4 = 1/2) so that
(
T (2)

)−1
=
(
T (2)

)> (
Λ(2)

)−1
is well-de�ned and

therefore



gt

gt−1

gt−2

gt−3


=
(
T (2)

)−1



π
(2)
t

g
(2)
t

g
(1)
t

g
(1)
t−2


. (1.30)

Equation (1.29) demonstrates how to de�ne the decimated components and Equation (1.30) how

to reconstruct uniquely the original time series {gt}t∈Z by letting t vary in
{
t = k × 2j , k ∈ Z

}
.

8The diagonal elements of the matrix Λ(J) are λ1 = λ2 = 1/2J and λk = 1/2J−j+1,k = 2j−1+1, . . . , 2j , j = 2, . . . , J
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Translation invariance property of decimation

For any h = 0, 1, . . . , 2j−1 the decimated components can be rewritten as
{
g

(j)

h+k×2j
, k ∈ Z

}
and{

π
(j)

h+k×2j
, k ∈ Z

}
. In other words, the dynamics of the subseries are translation invariant. This is

due to the fact that the matrix T (J) is independent of the parameter h (i.e., the MODWT is shift

invariant). Following Ortu et al. (2013) and without loss of generality, I let h = 0 when constructing

the decimated components (i.e., they are sampled every 2j times).

Modelling the dynamics of the decimated components

The decimated components can be represented as scale autoregressive processes (i.e., scale-wise AR)

on the time domain de�ned by decimation, i.e.

g
(j)

k×2j+2j
= ρjg

(j)

k×2j
+ ε

(j)

k×2j+2j
(1.31)

where the parameter ρj captures scale-speci�c persistence. The persistence in the raw series is an

increasing function of the dependence in scale ρj which can be signi�cantly low (see Bandi et al.,

2016 and for an application with macro uncertainty shocks chapter 2 - Table 2B.17). A similar

dynamic structure for decimated components exists also in the work of Dijkerman and Mazumdar

(1994) for multi-scale signal processing.

1.5 The Multi-scale Wold Decomposition of Bandi et al. (2016)

For a given level of persistence J , Equation (1.3) implies a Wold-type representation (understood

in the mean-squared sense) of the following kind:

gt =

J∑
j=1

∞∑
k=0

αj,kε
(j)

t−k×2j
+

∞∑
k=0

bJ,kπ
(J)

ε,t−k×2J ,t−(k+1)×2J+1
(1.32)

where
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ε
(j)
t = g

(j)
t − PMj,t−2j

g
(j)
t (1.33)

and PM
j,t−2j

is a projection mapping9 onto the closed subspaceMj,t−2j spanned by the sequence{
g

(j)

t−k×2j

}
k∈Z

,

αj,k = E
(
gt, ε

(j)

t−k×2j

)
, (1.34)

bJ,k = E
(
gt, π

(J)

ε,t−k×2J ,t−(k+1)×2J+1

)
(1.35)

and

π
(J)

ε,t−k×2J ,t−(k+1)×2J+1
=
√

2J

∑t−k×2J

i=t−(k+1)×2J+1 εi

2J

 (1.36)

with εt = gt − PMt−1gt satisfying Var (εt) = 1. Note that each αj,k is the coe�cient obtained by

projecting gt on the linear subspace of L2 (Ω,F ,P) generated by ε
(j)

t−k×2j
and that the sequence

{αj,k} is square-summable, that is
∑∞

k=0 (αj,k)
2 <∞ for any j ∈ N. In practice, the real coe�cients

αj,k are scale-speci�c impulse response functions that capture the e�ect of shocks with speci�c

persistence.

The multi-scale Wold decomposition10 allows any variable gt of a weakly stationary purely non-

deterministic stochastic process to be represented as the sum of scale-speci�c innovations ε
(j)
t de�ned

on the grid
{
t− k × 2j : k∈ Z

}
. In other words, the time series can be thought as a combination

of shocks classi�ed on the basis of their arrival time and scale. Intuitively, this modelling approach

of Bandi et al. (2016) generates a separation between scales in terms of their information content

(i.e., shocks are scale-speci�c) - thereby giving meaning to economic and �nancial relations which

may only be satis�ed at certain frequencies alone. Moreover, if

9For an introduction to Hilbert spaces and techniques - like the projection theorem - see Brockwell and Davis
(2009), Chapter 2.

10Similar multiresolution-based decompositions are available in Wong (1993).
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ε
(j)
t =

√
2j

(∑2j−1−1
i=0 εt−i

2j−1
−
∑2j−1

i=0 εt−i
2j

)
(1.37)

i.e. if scale-speci�c innovations are well-de�ned aggregates of high-frequency innovations, then

the information contained at every scale is an aggregate of that contained at higher frequencies.

Under this condition, Equation (1.32) will reduce to a classical Wold decomposition. However, this

restriction11 is not unique as it depends on the Haar �lter {hl}10 = (1/2,−1/2) used to extract the

components. A di�erent �lter would give rise to an alternative expression (i.e., the expression is

not economically motivated).

A proof of this result is available in Bandi et al. (2016). For completeness I present

below the simple case for J = 1. For conciseness, I let k = 0, 1, 2. First, note that

gt = a1,0ε
(1)
t + a1,1ε

(1)
t−2 + a1,2ε

(1)
t−4 + . . .+ (1.38)

+b1,0π
(1)
ε,t,t−1 + b1,1π

(1)
ε,t−2,t−3 + b1,2π

(1)
ε,t−4,t−5 + . . .

where

a1,0 = E
(
gt, ε

(1)
t

)
= E

(
gt,

εt√
2
− εt−1√

2

)
=
ψ0√

2
− ψ1√

2

a1,1 = E
(
gt, ε

(1)
t−2

)
= E

(
gt,

εt−2√
2
− εt−3√

2

)
=
ψ2√

2
− ψ3√

2

a1,2 = E
(
gt, ε

(1)
t−4

)
= E

(
gt,

εt−4√
2
− εt−5√

2

)
=
ψ4√

2
− ψ5√

2

...

11The standardization by
√

2j yields a unit variance for ε
(j)
t , that is

E

[(
ε
(j)
t

)2]
= 2jE

(∑2j−1−1
i=0 εt−i

2j−1
−
∑2j−1
i=0 εt−i

2j

)2
 = 2j

( 1

22(j−1)

) 2j−1−1∑
i=0

E
[
ε2t
]
−
(

1

22j

) 2j−1∑
i=0

E
[
ε2t
] = 1.
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b1,0 = E
(
gt, π

(1)
ε,t,t−1

)
= E

(
gt,

εt + εt−1√
2

)
=
ψ0√

2
+
ψ1√

2

b1,1 = E
(
gt, π

(1)
ε,t−2,t−3

)
= E

(
gt,

εt−2 + εt−3√
2

)
=
ψ2√

2
+
ψ3√

2

b1,2 = E
(
gt, π

(1)
ε,t−4,t−5

)
= E

(
gt,

εt−4 + εt−5√
2

)
=
ψ4√

2
+
ψ5√

2

with

ψj = E (gt, εt−j) .

Next, notice that

ψ0

(
1√
2
ε

(1)
t +

1√
2
π

(1)
ε,t,t−1

)
= ψ0εt

ψ1

(
− 1√

2
ε

(1)
t +

1√
2
π

(1)
ε,t,t−1

)
= ψ1εt−1

ψ2

(
1√
2
ε

(1)
t−2 +

1√
2
π

(1)
ε,t−2,t−3

)
= ψ2εt−2

ψ3

(
− 1√

2
ε

(1)
t−2 +

1√
2
π

(1)
ε,t−2,t−3

)
= ψ3εt−3

ψ4

(
1√
2
ε

(1)
t−4 +

1√
2
π

(1)
ε,t−4,t−5

)
= ψ4εt−4

ψ5

(
− 1√

2
ε

(1)
t−4 +

1√
2
π

(1)
ε,t−4,t−5

)
= ψ5εt−5

which yields the standard Wold representation

gt = ψ0εt + ψ1εt−1 + ψ2εt−2 + . . . . (1.39)

Hence, the classical Wold decomposition for weakly-stationary processes can be viewed as a statist-

ical and economic restriction resulting from the multi-scale. Most importantly, however, this result
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clearly suggests that traditional econometric methods for the analysis of covariance-stationary time

series (e.g., univariate ARMA models) fail to capture the sensitivity of economic and �nancial vari-

ables to shocks with heterogeneous persistence. For a thorough treatment in a univariate setting and

an introduction to multi-scale impulse response functions see Ortu, Severino, Tamoni, and Tebaldi

(2016). Finally while this decomposition is empirically appealing (i.e., the components are simply

rescaled di�erences of variables gt), a drawback is that correlation across components that refer to

di�erent scales cannot be ruled out. Ortu et al. (2016) develop an extended Wold decomposition

for stationary time series that addresses this issue - an orthogonalized version of the decomposition

discussed here - and allows in�nite levels of persistence.

1.6 Scale-speci�c Persistence Versus White Noise: Replicating the

example from Ortu et al. (2013)

Standard statistical tests12 (Box and Pierce, 1970; Ljung and Box, 1978) fail to detect components

localized at a speci�c level of persistence. In this section, I demonstrate this point by producing a

time series that is judged as a white noise while it contains a persistent component by construction.

This example is a replication from Ortu et al. (2013) (see page 2882) and provides the

basis for the Monte Carlo analysis later in this chapter. In particular, following Ortu et al.

(2013) I model directly the dynamics of the decimated components and for t = k × 2j , k ∈ Z I

assume that

g
(j)
t = ε

(j)
t , ∀j < J∗

12Given i.i.d. observations Box and Pierce (1970) show that the product between the number of observations and
the sum of k sample autocovariances is asymptotically distributed as a Chi-squared distribution with k degrees of
freedom. In other words, Q = T ×

∑k
m=1 τ̂

2
m ∼ χ2

m where T is the sample size and τ̂m denotes the autocorrelation
coe�cient at lag m. In practice, the strict restriction of independence and homogeneity is violated leading to
inaccurate statistical inference especially in small samples (see also Ljung and Box, 1978).
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g
(J∗)

t+2J∗
= ρJ∗g

(J∗)
t + ε

(J∗)

t+2J
∗ , (1.40)

π
(J∗)
t = η

(J∗)
t

where ε
(j)
t ∼ N

(
0, 2−j

)
, ∀j < J∗, η

(J∗)
t ∼ N

(
0, 2−J

∗)
and ε

(J∗)
t ∼ N

(
0, 2−J

∗
(1− ρ2

J∗)
)
. Moreover,

I assume that the decimated components are independent across levels of persistence (i.e., the

innovations ε
(j)
t , ε

(j′)
t are uncorrelated for j 6= j′ and ε

(j)
t is uncorrelated with η

(J∗)
t for all j).

As Equation (1.40) demonstrates all decimated components are independent normal innovations

except for one with an autoregressive structure. More speci�cally, the persistent component g
(J∗)
t

is an autoregressive process of order 1 in the dilated time of the corresponding scale and thus its

long-run variance is given by

Var
(
g

(J∗)
t

)
=

Var
(
ε

(J∗)
t

)
(1− ρ2

J∗)
= 2−J

∗
. (1.41)

Furthermore, note that the unconditional variance of the process is set equal to 1 since

Var (gt) =

J∗∑
j=1

Var
(
g

(j)
t

)
+ Var

(
π

(J∗)
t

)
=

J∗∑
j=1

2−j + 2−J
∗

= 1. (1.42)

Therefore, in line with the approach of Ortu et al. (2013) the persistent component g
(J∗)
t explains

exactly a fraction 2−J
∗
of the total variability of gt.

First, I simulate the components using the dynamics in (1.40). I set J∗ = 4 so that the persistent

component accounts only for 6.25% for the total variance and let ρJ∗ = 0.5. Then, I use the inverse

of the operator T (J) to reconstruct the series. In particular, I obtain the original series from the

following relation
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gt

gt−1

gt−2

gt−3

gt−4

gt−5

gt−6

gt−7

gt−8

gt−9

gt−10

gt−11

gt−12

gt−13

gt−14

gt−15



=
(
T (4)

)−1



π
(4)
t

g
(4)
t

g
(3)
t

g
(3)
t−8

g
(2)
t

g
(2)
t−4

g
(2)
t−8

g
(2)
t−12

g
(1)
t

g
(1)
t−2

g
(1)
t−4

g
(1)
t−6

g
(1)
t−8

g
(1)
t−10

g
(1)
t−12

g
(1)
t−14



. (1.43)

Figure 1.1 depicts the time series for the constructed process gt along with its autocorrelation and

cumulative distribution functions. Note that gt clearly resembles a Gaussian white noise. Figure 1.2

presents the simulated decimated components and their corresponding autocorrelation functions.

Similar to an AR(1) process the persistent component g
(4)
t has an autocorrelation function that

decays toward zero exponentially.

Table 1.1 presents descriptive statistics for the simulated decimated components and the series

gt. Moreover, I use the Kolmogorov-Smirnov test statistic to check for normality and the Ljung-Box

(1978) Q-test to check simultaneously for autocorrelation at multiple lags. The null hypothesis that

the constructed series comes from a standard normal distribution cannot be rejected. In addition,
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Figure 1.1: Constructed process gt

Notes: This �gure plots the time-series and presents the autocorrelation function and the cumulative
distribution function for the process {gt}, which is constructed by applying the inverse transforma-

tion matrix
(
T (4)

)−1
in the simulated components from Equation (1.40) for J∗ = 4 and pJ∗ = 0.5.
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I cannot reject the null that the �rst k = 1, 2, . . . , 5 autocorrelation coe�cients are jointly zero.

Overall, this example illustrates the importance of this decomposition as a �ltering procedure that

disentangles layers of a process with heterogeneous levels of persistence. In section 1.7, I present

a multi-scale variance ratio test that distinguishes a white noise process from a process whose

decimated components are serially correlated.

Table 1.1: Descriptive statistics for the simulated components and the constructed
series

Panel A Constructed series Decimated components

gt g
(1)
t g

(2)
t g

(3)
t g

(4)
t π

(4)
t

Mean -0.0133 -0.0096 -0.0061 0.0166 0.0028 -0.0133
Variance 1.0222 0.5073 0.2560 0.1288 0.0631 0.0670
Skewness -0.0071 -0.0036 -0.0433 0.0244 0.1544 -0.1073
Kurtosis 2.9274 3.0044 3.0487 2.9134 2.7945 3.0620
AC(1) 0.0057 -0.0282 -0.0504 -0.0076 0.5636 0.0842
# observations 8192 4096 2048 1024 512 512

Panel B

Kolmogorov-Smirnov: p-value 0.1151

Ljung-Box Q-test: lag 1 2 3 4 5
p-value 0.6049 0.6202 0.7121 0.8432 0.4045

Notes: Panel A reports descriptive statistics for the decimated components whose dynamics are
simulated according to Equation (1.40) and the constructed series gt. I present the mean, variance,
skewness, kurtosis as well as the autocorrelation coe�cient for the �rst lag. Panel B reports the
p-value of the Kolmogorov-Smirnov test for the null hypothesis that re-constructed series comes
from a standard normal distribution. Also, it reports the p-values of the Ljung-Box (1978) Q-test
for the null hypothesis that the �rst k = 1, 2, . . . , 5 autocorrelation coe�cients are jointly zero.
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1.7 The Multi-scale Variance Ratio Tests of Gençay and Signori

(2015)

Let {yt}t∈Z be a white noise process, i.e. E (yt) = 0, Var (yt) = σ2
y and Cov (yt, ys) = 0 for all s 6= t.

Theorem 3 in Gençay and Signori (2015) states that the wavelet variance ratio for a stationary

white noise process is given by

Em (y) ≡ WVarm (y)

Var (y)
=

1

2m
. (1.44)

That is, under the null of no serial correlation (i.e., H0 : Cov (yt, ys) = 0 for all s 6= t against

H1 : Cov (yt, ys) 6= 0 for some s 6= t) the wavelet variance at scale m contributes a ratio of 2−m to

the total variance. This is because

WVarm (y) ≡ Var (wm,t) =

ˆ 1/2

−1/2
Sm (f) df (1.45)

where wm,t is the process obtained by applying the time invariant �lter hm to {yt}. Gençay and

Signori (2015) demonstrate that since {yt} is a zero-mean stationary process, the spectral density

function of wm,t is Sm (f) = |Hm (f) |2Sy (f) where Hm (f) is the discrete Fourier transform of the

�lter13 and Sy (f) = σ2
y . Also,

´ 1/2
−1/2 |Hm (f) |2df = ||hm||2 due to Parseval's identity. Hence, it

follows that

WVarm (y) =

ˆ 1/2

−1/2
|Hm (f) |2Sy (f) df = σ2

y

ˆ 1/2

−1/2
|Hm (f) |2df = σ2

y ||hm||2 = σ2
y2
−m. (1.46)

Any departure from this benchmark provides the means to detect serial correlation. In particular,

13More speci�cally, let {yt} be a zero-mean stationary process with spectral density fy (·) and {xt} be the pro-
cess xt =

∑∞
j=−∞ ψjyt−j where

∑∞
j=−∞ |ψj | < ∞. Then {xt} has a spectral density fx (·) given by fx (λ) =

|ψ
(
eiλ
)
|2fy (λ) where ψ

(
e−iλ

)
=
∑∞
j=−∞ ψje

−ijλ. The operator ψ (B) =
∑∞
j=−∞ ψjB

j applied to {yt} is a time-
invariant linear �lter with weights {ψj} (see Brockwell and Davis, 2009 page 123).
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by testing the implications resulting from Equation (1.44) Gençay and Signori (2015) introduce a

family of test statistics14 for the white noise hypothesis. First, they demonstrate that

Êm,T (y) ≡
̂WVarm (y)

V̂ar (y)
=

∑T
t=1w

2
m,t∑T

t=1 y
2
m,t

p→ 1

2m
(1.47)

is a consistent estimator of the wavelet variance ratio and that Êm,T converges in probability to 2−m

even for (unconditionally) heteroskedastic white noise processes (i.e., for uncorrelated processes that

may fail to be covariance stationary).

Then under mild restrictions, that is if {yt} is a white noise process whose cross-joint cumulants

of order four are zero, they de�ne the following test statistics

GSm ≡
√

T

am

(
Êm,T −

1

2m

)
d→ N (0, 1) (1.48)

with

am =
∑
s∈Z

imax∑
i=imin

jmax∑
j>i

hm,ihm,jhm,i−shm,j−s,

where hm is the wavelet �lter used in the construction of Êm,T and imin = max(0, s), imax =

min(Lm, Ln+s)−2 and jmax = min(Lm, Ln+s)−1. For instance, if hm is the Haar �lter
(

1
2 ,−

1
2

)
the test statistics for the scales 1 to 4 are given by

GS1 =
√

4T

(
Ê1,T −

1

2

)
, GS2 =

√
32

3
T

(
Ê2,T −

1

4

)

GS3 =

√
256

15
T

(
Ê3,T −

1

8

)
, GS4 =

√
2048

71
T

(
Ê4,T −

1

16

)
respectively. Gençay and Signori (2015) show that each of these tests has strong power against

speci�c alternatives. For instance, for m = 1 the test has signi�cant power against AR(1) and

14For wavelet-based tests for serial correlation see also Lee and Hong (2001) and Duchesne (2006). The simulation
results in these studies indicate over-rejections and modest power in small samples.
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MA(1) alternatives.

Modi�ed Multi-scale Variance Ratio Tests for Decimated Components

Ortu et al. (2013) propose a modi�ed version of the test statistic in Equation (1.48) that distinguishes

a white noise process from a process whose decimated components are serially correlated. Assume

that {gt}t∈Z is weakly stationary with E (gt) = 0 and Var (gt) = σ2
g . Denote with

(
X

(J)
T

)>
= [gT , gT−1, . . . , g1] (1.49)

the vector collecting the observations of gt. Ortu et al. (2013) rely on the transformation matrix

T (J) to obtain the decimated components and build the variance decomposition of the series. Bandi

and Tamoni (2016) use the same method to obtain a covariance decomposition between two series

(see Section 1.11). In particular, similar to the simple case discussed in Section 1.2 it holds that

T (J)X
(J)
T =



π
(J)
T

g
(J)
T

g
(J−1)
T

g
(J−1)
T/2

g
(J−2)
T

g
(J−2)
3T/4

g
(J−2)
T/2

g
(J−2)
T/4

...

g
(1)
T

g
(1)
T−2

...

g
(1)
2



(1.50)
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Letting now g(j) =
[
g

(j)

2j
, . . . , g

(j)

k×2j
, . . . , g

(j)
T

]>
, the sample variance of gt can be computed as

(
X

(J)
T

)>
X

(J)
T

T
=

((
Λ(J)

)−1/2 T (J)X
(J)
T

)> ((
Λ(J)

)−1/2 T (J)X
(J)
T

)
T

(1.51)

=

∑J
j=1 2j

(
g(j)
)>

g(j)

T
+ 2J

(
π

(J)
T

)>
π

(J)
T

T
(1.52)

=

∑J
j=1 2j

(
g(j)
)>

g(j)

T
(1.53)

Ortu et al. (2013) show that the equality in Equation (1.51) holds because the matrix
(
Λ(J)

)−1/2 T (J)

is orthogonal15 (i.e., its columns are orthonormal) and hence the inner product
(
X

(J)
T

)>
X

(J)
T is

preserved. Equation (1.52) holds because the diagonal elements of the matrix Λ(J) are λ1 = λ2 =

1/2J and λk = 1/2J−j+1,k = 2j−1 + 1, . . . , 2j , j = 2, . . . , J . Equation (1.53) exploits the fact

that, given the stationarity assumption and for large samples, π
(J)
T is an unbiased estimator of the

population mean which is zero. In total, the above result shows that the variance of gt can be

expressed as the sum of the variances of its decimated components. The presence of the factor 2j

is justi�ed on the basis that the decimated component g(j) has T/2j observations.

The ratio of the sample variance of the decimated components at level of persistence j to the

sample variance of the time series

ξ̂j =
2j
(
g(j)
)ᵀ

g(j)(
X

(J)
T

)ᵀ
X

(J)
T

(1.54)

can be used as test statistic. In particular, in order to test the null hypothesis of no serial correlation

(i.e., H0 : ρk ≡ Cov(gt,gt−k)
Var(gt)

= 0 for all k ≥ 1 against H1 : ρk 6= 0 for some k ≥ 1) Ortu et al. (2013)

15Note that(
Λ(J)

)−1/2

T (J)

((
Λ(J)

)−1/2

T (J)

)ᵀ

=
(

Λ(J)
)−1/2

T (J)
(
T (J)

)ᵀ (
Λ(J)

)−1/2

=
(

Λ(J)
)−1/2

Λ(J)
(

Λ(J)
)−1/2

= I

where I is the identity matrix.
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employ the following test statistics which converge in distribution to a standard normal

√
T

aj

(
ξ̂j −

1

2j

)
d
→
N (0, 1) . (1.55)

The values of aj for di�erent resolution scales are given by

aj =

(
2j

2

)
2j × 22(j−1)

. (1.56)

Finally, as Ortu et al. (2013) point out the existence of a maximum degree of persistence in

the original series {gt} is equivalent to the existence of J such that the decimated component

π
(J)
t is white noise. In essence, the criterion to determine the optimal number of components to

be extracted is based on a sequential analysis of the series π
(J)
t , J = 1, 2, . . . which incorporates

�uctuations with persistence greater than 2J periods.

1.8 Monte Carlo Simulations

I investigate by means of Monte Carlo simulations the power and size properties of the modi�ed

multi-scale variance ratio test of Ortu et al. (2013). I repeat the simulation exercise in Section

1.6 for N = 5, 000 times and let ρJ∗ vary in the interval (0,1). For each simulation I compute

the rescaled test statistics ξ̂j for each level of persistence j = 1, . . . , 5 and carry out a two-tailed

test. Table 1.2 reports the probability of rejecting the null at a 5% level. The power of the test is

size-adjusted. That is, for a given sample size the power is computed using the empirical critical

values obtained from Monte Carlo simulations with 5,000 replications. The empirical critical values

for di�erent sample sizes are available in Table 1.5. Figures 1.3 and 1.4 plot simulated densities and

quantile-quantile plots of the variance ratio test statistic.

Overall, the multi-scale variance ratio test statistics do not signi�cantly over-reject or under-

reject the null hypothesis. Moreover even though the deviations of Var
(
g

(4)
t

)
from its large sample

mean (i.e., 1/24 = 6.25%) are small in this framework, the test displays desirable power properties
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at the time-scale at which the persistent component is localized (i.e., for j = 4). Also, as the sample

size increases the power of the test increases steadily. Similar results hold for J∗ = 5 and J∗ = 6.

However, as the level of resolution at which the persistent component is localized increases (i.e.,

J∗) the rejections rates decrease for T = 256. That is, it is harder to detect persistent components

localized at low-frequencies in small samples.

A few comments are in order here. First, in comparison with the results of Ortu et al.

(2013, see Table 1), the power of the test in my analysis is lower. This is because in their simulations

Ortu et al. (2013) calibrate the variance of the simulated decimated components in line with actual

consumption growth. In particular, the persistent component is localized at scale J∗ = 6 and

explains either 3%, 5% or 7% of the total variance. Within this setting, the test does display

desirable properties. Intuitively, the deviation of Var
(
g

(6)
t

)
from 1/26 ≈ 1.56% is large enough

to increase the power of the test at this level of resolution without leading to signi�cant over or

under-rejections at the remaining time-scales. For more general applications, however, I argue that

we need to be more cautious when interpreting the results of the test. For instance, when the test

is applied to macro uncertainty - as in chapter 2 - the null of no serial correlation is rejected at

multiple levels of resolution. This result does not mean that for all of the time-scales for which the

test gives a rejection the uncertainty components are scale-wise AR(1) processes. Instead, it means

that macro uncertainty contains a serially correlated decimated component in at least one of the

time-scales. Deriving the joint asymptotic distribution of the modi�ed variance ratio tests - in the

spirit of Gençay and Signori (2015) - could allow us to gain power and potentially resolve these

problems.
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Table 1.5: Empirical critical values for the multi-scale variance ratio test

Persistence level
j = 1 2 3 4 5 6 7

Panel A: T = 256

0.025 -1.8637 -1.7996 -1.7711 -1.6422 -1.4639 -1.2403 -0.9758
0.975 2.0381 2.1194 2.1127 2.2840 2.4112 2.4037 2.6789

Panel B: T = 512

0.025 -1.9437 -1.8501 -1.8223 -1.6988 -1.6208 -1.4420 -1.2483
0.975 1.9880 2.1963 2.0772 2.1396 2.3017 2.2829 2.4870

Panel C: T = 1024

0.025 -1.9623 -1.8396 -1.8995 -1.8161 -1.6937 -1.6083 -1.4596
0.975 1.9931 2.0147 1.9985 2.1434 2.1657 2.1917 2.4173

Panel D: T = 2048

0.025 -1.9798 -1.9023 -1.9523 -1.8439 -1.7929 -1.7277 -1.6358
0.975 1.9765 2.0992 1.9751 2.0251 2.1079 2.1688 2.2790

Notes: This table reports the empirical critical values of the distribution of the multi-scale variance
ratio test for di�erent sample sizes and j = 1, . . . , 7 at percentiles 0.025 and 0.975.
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Figure 1.3: Simulated densities of the multi-scale variance ratio test

Notes: These �gures plot simulated densities of the multi-scale variance ratio test statistic of Ortu
et al. (2013) for T = 512 and j = 1, . . . , 6. I implement 10,000 replications.
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Figure 1.4: Quantile-quantile plots of the multi-scale variance ratio test

Notes: These �gures plot quantile-quantile plots of the multi-scale variance ratio test statistic of
Ortu et al. (2013) for T = 512 and j = 1, . . . , 6. I implement 10,000 replications.
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1.9 On the Properties of Scale-speci�c Predictability

I present an extension of the framework for scale-speci�c predictability of Bandi et al. (2016). In

particular, I demonstrate theoretically and via simulations that predictability on the decimated

components of two series translates into predictability upon two-way (forward for the regressand,

backward for the regressor) adaptive aggregation of the series irrespective of the properties of the

scale-wise regressor. My work is motivated by the empirical relation between excess

market returns and macro uncertainty as documented in chapter 2.

First, consider the following scale-speci�c predictive system de�ned in Bandi et al. (2016). For

j = j∗ with j∗ ∈ {1, . . . , J}, let

x
(j∗)

k×2j∗+2j∗
= βj∗g

(j∗)

k×2j∗
(1.57)

g
(j∗)

k×2j∗+2j∗
= ρj∗g

(j∗)

k×2j∗
+ ε

(j∗)

k×2j∗+2j∗
(1.58)

while for j 6= j∗ assume that

x
(j)

k×2j
= u

(j)

k×2j
(1.59)

g
(j)

k×2j
= ε

(j)

k×2j
(1.60)

where k ∈ Z and the shocks u
(j)
t , ε

(j)
t satisfy Corr

(
u

(j)
t , ε

(j)
t

)
= 0, ∀t, j. Equations (1.57)-(1.60)

de�ne a predictive system on scale j∗. Bandi et al. (2016) show that a predictive relation local-

ized around the j∗th scale produces patterns of slope coe�cients and R2s which have a peak for

aggregation levels corresponding to the horizon 2j
∗
(i.e., hump-shaped dynamics).

However, hump-shaped structures arise naturally upon aggregation irrespective of the dynamics

of the regressor. That is, Equation (1.58) is not a necessary condition. For instance, consider the

following scale-speci�c predictive system for j∗ ∈ {1, . . . , J}
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x
(j∗)

k×2j∗+2j∗
= βj∗g

(j∗)

k×2j∗
(1.61)

g
(j∗)

k×2j∗
= σj∗ε

(j∗)

k×2j∗
(1.62)

where k ∈ Z and σj∗ denotes scale-speci�c variance, while for j ∈ {1, . . . , J} with j 6= j∗

x
(j)

k×2j
= u

(j)

k×2j
(1.63)

g
(j)

k×2j
= ε

(j)

k×2j
. (1.64)

This system di�ers from the one in Bandi et al. (2016) in the sense that the scale-

wise regressor is not an AR(1) process but a white noise-process. Simply put, two

scale-localized white noise processes - one of which predicts the other - can also yield

statistically signi�cant economic relations upon aggregation.

Theoretical Example: For simplicity, I assume that T = 8, j∗ = 1, J = 2 and I set all decimated

components in Equations (1.63)-(1.64) equal to zero (i.e.,
{
x

(j)

k×2j
, g

(j)

k×2j

}
= 0). Using the inverse

Haar transformation matrix I construct the raw series xt and gt. In particular, the time series gt is

equal to
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g8

g7

g6

g5

g4

g3

g2

g1



=



g
(1)
8

−g(1)
8

g
(1)
6

−g(1)
6

g
(1)
4

−g(1)
4

g
(1)
2

−g(1)
2



. (1.65)

Next, I aggregate the series over a horizon q = 2j
∗

= 2. The aggregated series are

g1,2 = 0 x1,2 = 0

g2,3 =
(
g

(1)
2 − g

(1)
4

)
/2 x2,3 =

(
x

(1)
2 − x

(1)
4

)
/2

g3,4 = 0 x3,4 = 0

g4,5 =
(
g

(1)
4 − g

(1)
6

)
/2 x4,5 =

(
x

(1)
4 − x

(1)
6

)
/2 = β1g2,3

g5,6 = 0 x5,6 = 0

g6,7 =
(
g

(1)
6 − g

(1)
8

)
/2 x6,7 =

(
x

(1)
6 − x

(1)
8

)
/2 = β1g4,5

g7,8 = 0 x7,8 = 0

Based on a basic block of 2 elements the predictive regression of xt+1,t+2 on gt−1,t yields

β̃ =
Cov (x4,5, g2,3)

V ar (g2,3)
= β1 (1.66)

and R2 = 100%. That is, there is a close one-to-one mapping between scale-speci�c predictability

and two-way aggregation irrespective of whether the scale-wise regressor is autoregressive. Note

that the addition of noise for j 6= j∗ (i.e., if
{
x

(j)

k×2j
, g

(j)

k×2j

}
6= 0 - for instance, if g

(j)

k×2j
is a scale-wise

AR process) leads to a blurring of the relation upon aggregation.

Moreover, the contemporaneous regression of xt+1,t+2 on gt+1,t+2 yields an inconsistent slope
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estimate since

β̃ =
Cov (x4,5, g4,5)

V ar (g4,5)
= β1

Cov (g2,3, g4,5)

V ar (g4,5)
= −β1

V ar
(
g

(1)
4

)
V ar

(
g

(1)
4

)
+ V ar

(
g

(1)
6

) . (1.67)

That is, β̃ has a wrong sign and is attenuated.

Simulations: I simulate scale-speci�c predictability by modelling the dynamics of the decimated

components of excess market returns and macro uncertainty according to Equations (1.61)-(1.64).

The relation is at scale j∗ = 6 with βj∗ = 5. For j 6= 6, u
(j)

k×2j
∼ N (0, σ

(j)
u ) and ε

(j)

k×2j
∼ N (0, σ

(j)
ε ).

That is, the decimated components are white noise shocks. The variances of the decimated compon-

ents (i.e., σ
(j)
u and σ

(j)
ε ) are calibrated to the data. I set T = 512 and implement 2,500 simulations.

For each simulation, I run forward/backward regressions

xt+1,t+h = αh + βhgt−h+1,t + zt,t+h (1.68)

where xt+1,t+h =
∑h

i=1 xt+i and gt−h+1,t =
∑h

i=1 gt−i+1 are (forward/backward) aggregates over a

horizon of length h. In addition, I run the equivalent contemporaneous regressions

xt+1,t+h = αh + βhgt+1,t+h + zt,t+h. (1.69)

Finally, I also consider forward/backward regressions under the null of absence of scale-speci�c

predictability. That is, I set βj∗ = 0 and let white noise shocks drive the decimated components at

scale j∗.

Table 1.6 presents the simulation results. I report the median of the slope estimates, rejection

probabilities at the 1%, 5% and 10% levels associated with Valkanov's (2003) rescaled t/
√
T stat-

istic16 and the median of the adjusted R2 statistics. In Panel A of Table 1.6 I run linear regressions

16As Bandi and Perron (2008) demonstrate, under the null of no dependence (i.e., βh = 0 in Equation 1.68) the
slope estimator is super-consistent. However, the standard t-statistic diverges with T leading to over-rejections of
the null of zero-slope. Similarly, the R2 converges to a random variable whose mean increases with the overlap.
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(with an intercept) of forward/backward aggregates over a horizon of length h. In Panel B I run

linear regressions (with an intercept) of contemporaneous aggregates over a horizon of length h and

in Panel C I run linear regressions (with an intercept) of forward/backward aggregates under the

null of absence of scale-speci�c predictability. An R2 of 11.99% is achieved for a level of aggregation

corresponding to 2j
∗

= 64 periods. Before and after, the predictive slopes and the R2s display a

hump-shaped behavior (see also Figure 1.5). This hump-shaped structure in both the predictive

slopes and the R2s is a signi�cant feature of the assumed data generating process. If aggregation

led to spurious predictability - by generating stochastic trends for instance - such patterns would

be prevented. Furthermore, in line with the theoretical predictions the contemporaneous regression

yields an inconsistent slope estimate with wrong sign for a level of aggregation corresponding to

2j
∗

= 64 periods. Under the null of absence of scale-speci�c predictability there is not a statistically

signi�cant relation upon aggregation.

1.10 Risk Decomposition Across Time-scales

Finally, I demonstrate how to decompose risk as proxied by the covariance between a risky factor

{ft}Tt=1 and the returns of an asset {rt}Tt=1 on a scale-by-scale basis and investigate scale-speci�c

risk compensations. The framework presented here is based on the work of Bandi and

Tamoni (2016). Let r
(J)
T and f

(J)
T denote the vectors collecting the T = 2J observations of the

series {rt} and {ft} respectively, that is

r
(J)
T = [rT , rT−1, . . . , r1]> and f

(J)
T = [fT , fT−1, . . . , f1]> . (1.70)

Similarly to Section 1.7, the sample covariance between rt and ft can be expressed as the sum of

the covariances of the decimated components
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Figure 1.5: Dynamics of slope coe�cients and R2's under di�erent simulation scenarios

Notes: These �gures plot the dynamics of the slope coe�cients and R2s across horizons under
di�erent simulation scenarios. The solid black lines represent the median of the slope estimates and
the median of the adjusted R2 statistics from regressions of forward-backward aggregates while the
dotted line from contemporaneous regressions. The solid grey lines represent the median βh and
the median adj. R2 from regressions of forward-backward aggregates under the null of absence of
scale-speci�c predictability.
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f (j) =
[
f

(j)

2j
, . . . , f

(j)

k×2j
, . . . , f

(j)
T

]>
and r(j) =

[
r

(j)

2j
, . . . , r

(j)

k×2j
, . . . , r

(j)
T

]>
. (1.71)

In particular, the sample covariance is given by

Cov [rt, ft] =

∑T
t=1 rtft
T

−
∑T

t=1 rt
T

∑T
t=1 ft
T

(1.72)

=

(
r

(J)
T

)> (
f

(J)
T

)
T

−
∑T

t=1 rt
T

∑T
t=1 ft
T

(1.73)

=

((
Λ(J)

)−1/2 T (J)r
(J)
T

)> ((
Λ(J)

)−1/2 T (J)f
(J)
T

)
T

−
∑T

t=1 rt
T

∑T
t=1 ft
T

(1.74)

=

∑J
j=1 2j

(
r(j)
)>

f (j)

T
+ 2J

π
(J)
r π

(J)
f

T
−
∑T

t=1 rt
T

∑T
t=1 ft
T︸ ︷︷ ︸

=0

(1.75)

and therefore

Cov [rt, ft] =

J∑
j=1

Cov
[
r

(j)

k×2j
f

(j)

k×2j

]
(1.76)

By using simple time-series techniques, Bandi and Tamoni (2016) provide a formal method to

analyze risk exposures at di�erent frequencies and subsequently study how the pricing of risk varies

across investment horizons. Note that the covariance-decomposition can also be extended to the

case where the components are not decimated, i.e.

Cov [rt, ft] =

J∑
j=1

Cov
[
r

(j)
t f

(j)
t

]
+ Cov

[
π(J)
r π

(J)
f

]
(1.77)

where the last term is the covariance of the long-run trends. See chapter 2 and 3 for applications

with macroeconomic uncertainty and macro growth and volatility risks respectively.

For similar wavelet-based variance/covariance decompositions that allow more general �lters see

also Gençay, Selçuk, and Whitcher (2001).
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1.11 Conclusions and Contribution

I have provided an introduction to the econometric framework necessary to understand scale-

dependencies in �nancial economics. My explicit contribution to the current body of work

is two-fold: First, I present an analysis of the size and power properties of the multi-scale vari-

ance ratio test of Ortu et al. (2013) that can distinguish a white noise process from a process whose

decimated components are serially correlated. More importantly, however, I show that scale-speci�c

predictability translates into predictability upon two-way aggregation irrespective of whether the

regressor is scale-autoregressive. To put it simply, two scale-localized white noise processes - one of

which predicts the other - can yield statistically signi�cant economic relations upon aggregation.
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Chapter 2

Business-Cycle Variation in Macroeconomic Uncertainty

and the Cross-Section of Expected Returns: Evidence for

Scale-Dependent Risks

2.1 Introduction

In this chapter, I decompose macroeconomic uncertainty into components with heterogeneous de-

grees of persistence and investigate the price of risk and the uncertainty premia associated with each

of these scale-dependent macroeconomic shocks. This approach allows me to identify a close link

between macroeconomic uncertainty and portfolio expected returns at business-cycle frequencies

which is not present in the raw series. I quantify aggregate uncertainty using the model-free index

of Jurado et al. (2015) that measures the common variation in the unforecastable component of a

large number of economic indicators. That is, in line with the core intuition of Jurado et al. (2015)

I start my empirical work from the premise that what matters for consumption and investment de-

cisions is not if the conditional volatility of a particular macroeconomic indicator has become more

or less dispersed. Instead, what is important is whether the state of the economy is more or less

predictable. To classify uncertainty shocks into layers with di�erent levels of persistence (i.e., on the

basis of their arrival time and scale) I rely on the multiresolution-based decomposition for weakly
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stationary time series of Ortu et al. (2013). Moreover, my study is based on the novel framework

for scale-based (i.e., horizon-speci�c) analysis of risk as proposed �rst in Bandi and Tamoni (2016)

and extended later by Boons and Tamoni (2016).

I �nd that a single business-cycle17 uncertainty factor that captures assets' exposure to low-

frequency variation in aggregate uncertainty can help explain the level and the cross-sectional dif-

ferences of asset returns. In particular, based on portfolio-level tests I show that uncertainty shocks

with persistence ranging from 32 to 128 months carry a negative price of risk of about -2% annually.

The price of risk for high-frequency �uctuations and for the innovations in the raw series of aggreg-

ate uncertainty (see Table 2A.1) is not signi�cant. In addition, I demonstrate that equity exposures

to macroeconomic uncertainty are also negative and hence uncertainty risk premia are positive. My

results remain statistically signi�cant after using a t-statistic cuto� of three as suggested by Harvey

et al. (2016) and are quantitatively similar irrespective of whether uncertainty is derived from 1, 3

or 12 months ahead forecasts. Furthermore, while misspeci�cation is an inherent feature of several

prominent asset pricing models (for instance, see Kan et al., 2013 and Gospodinov et al., 2014) I

show that the one-factor model with business-cycle macro uncertainty is correctly speci�ed. This

�nding is an important contribution in the existing literature.

My work follows and builds upon the novel work of Boons and Tamoni (2016) that emphasizes

the importance of low-frequency macro volatility shocks with persistence greater than 4 years in

determining asset prices. In comparison with Boons and Tamoni (2016) I do not restrict18 the price

of risk across scales and hence my empirical results are more precise about the exact time-scale (i.e.,

horizon) over which macroeconomic uncertainty matters (i.e., 32 to 128 months). In particular, I

document that only business-cycle variation in uncertainty drives asset prices. Fluctuations in macro

uncertainty with persistence greater than 128 months are not consistently priced in the cross-section

17Business-cycle dynamics correspond to periods of roughly 2-8 years - see Burns and Mitchell (1946) and the
survey of Diebold and Rudebusch (1996). More recently, Comin and Gertler (2006) argue that business cycles are
more persistent phenomena and suggest modelling �uctuations beyond 8 years.

18Note that I estimate separately the price of risk for each time-scale (i.e. I analyze the entire term structure of
risk prices). Boons and Tamoni (2016) focus on a more traditional (in the spirit of Beveridge and Nelson, 1981)
separation of high versus low-frequency components, i.e. they estimate a restricted two-factor model.

47



of expected returns (see Tables 2B.5 - 2B.7). In addition, I show that the quarterly results for macro

volatility risk in Boons and Tamoni (2016) are not robust to changes in the sampling frequency.

Speci�cally, using monthly data I �nd that low-frequency shocks in the volatility of industrial

production are not priced at the portfolio level (see Table 2B.8). On the contrary, my estimates for

the price of risk are free from dependencies on any single economic indicators, numerically similar

(i.e., -2%) and robust across di�erent test assets including: the 25 Fama and French (1993) size and

book-to-market portfolios, the 25 Fama and French (2015) size and investment portfolios, the 25

Fama and French (2015) book-to-market and operating pro�tability portfolios and the 25 Fama and

French (2016) size and variance portfolios. Also, my results suggest that the uncertainty shocks at

each scale carry unique information19 (i.e., scale-wise heterogeneity). That is, in the spirit of Bandi

et al. (2016) there is a simple statistical explanation of why the relation between macro uncertainty

and returns is only present at certain time-scales.

Moreover, I examine for monotonicity in the low-frequency uncertainty betas. I �nd that the

scale-speci�c risk loadings are increasing monotonically for portfolios sorted on size and investment.

An increase in low-frequency uncertainty has a smaller e�ect on large �rms and aggressive �rms

and hence these securities o�er smaller risk compensations - consistent with the well-known size

e�ect (i.e., one-period average returns decrease from small to big stocks) and the investment ef-

fect (i.e., one-period average returns decrease from conservative to aggressive stocks), respectively.

Similarly, scale-speci�c risk exposures decrease monotonically across book-to-market and dividend-

yield - consistent with the well-documented value and dividend-yield e�ects. Overall, I document

a low-frequency risk-return trade-o� for the valuation of portfolios exposed to �uctuations in mac-

roeconomic uncertainty.

My work adds to a new strand of research that examines how horizon-dependent shocks propag-

ate to asset prices. Bandi et al. (2016) introduce the novel notion of scale-speci�c predictability

and demonstrate its signi�cance as a channel through which economic relations may be valid at

19See Table 2B.17. Similar results can be seen in Bandi et al. (2016) for market variance and consumption variance.
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particular horizons (i.e., levels of resolution) without having to be satis�ed at all horizons. Ortu

et al. (2013) decompose consumption growth into components with heterogeneous levels of per-

sistence and analyze their implications within a Bansal and Yaron (2004) style economy. Bandi

and Tamoni (2016) show that �uctuations in consumption growth between 2 and 8 years can ex-

plain the di�erences in risk premia across book-to-market and size-sorted portfolios in line with the

Consumption CAPM. In a similar fashion, Kamara et al. (2015) study the pricing of Fama-French

factors across investment horizons. Noteworthy contributions in this area also include Yu (2012)

and Dew-Becker and Giglio (2016) who analyze the joint properties of returns and macroeconomic

growth at di�erent frequencies.

Furthermore, my work contributes to a voluminous literature that analyzes the determinants

of the cross-section of stock returns. For surveys of empirical literature on cross-sectional asset

pricing see Subrahmanyam (2010), Goyal (2012) and more recently Harvey et al. (2016). Within

this body of work two main lines of research are related to my study. The �rst part seeks to explain

the cross-sectional pattern in returns based on the insights of the long-run risks (LRR) model of

Bansal and Yaron (2004) which combines consumption and dividend growth rate dynamics governed

by persistent shocks and �uctuating economy uncertainty20. Notable factors motivated from this

framework include: long-horizon consumption growth rate (Parker and Julliard, 2005), long-run

consumption risk (Bansal et al., 2005) and fourth-quarter year over year (Q4-Q4) consumption

growth (Jagannathan and Wang, 2007). In line with Boons and Tamoni (2016), my study focuses

on the covariance of long-term returns with innovations in long-term uncertainty and hence is

distinct from the LLR framework which quanti�es assets' exposure to long-run risks using one-

period returns.

The second branch of this literature relies on the intuition of Merton's (1973) intertemporal

capital asset pricing model (ICAPM)21 to test for pricing of macroeconomic factors. In a seminal

20Due to the resulting low-frequency properties of the time series of aggregate consumption and dividends this
family of models is known as long-run risks models.

21Theoretical extensions of the ICAPM include Campbell (1993, 1996); Chen (2002); Brennan et al. (2004); Camp-
bell et al. (2014).
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paper, Merton (1973) demonstrates that in a multi-period economy investors have incentives to

hedge against future stochastic shifts in the investment and consumption opportunity sets. This

implies that state variables that are correlated with changes in investment opportunities play an

important role in determining asset returns. For an overview of studies that explore the cross-

sectional implications of ICAPM-motivated macroeconomic factors see Table 2A.3.

Recent studies suggest that macroeconomic uncertainty can also be thought of as a state variable

within the context of the ICAPM proxying for future investment and consumption opportunities22.

In particular, Ozoguz (2009) shows that investors' uncertainty about the state of the economy can

help explain the time-series variation in stock returns and their cross-sectional properties. Bali et al.

(2016) develop a simple extension of Merton's (1973) conditional asset pricing model with economic

uncertainty and show that uncertainty betas can explain the dispersion in individual stock returns

while Bali et al. (2014) demonstrate that macroeconomic risk is priced in the cross-section of hedge

funds. My work adds to this line of research in the following ways: First, I extend the study of Bali

et al. (2016) by demonstrating that only �uctuations in macroeconomic uncertainty with persistence

ranging from 32 to 128 months are consistently priced in the cross-section of portfolio returns while

short-lived �uctuations and the innovations in the raw series are not. Second, I document that future

excess aggregate returns are positively correlated with past uncertainty and thus the negative price

of risk for exposure to business-cycle macro uncertainty is inconsistent with the central economic

intuition underlying the ICAPM. That is, in the spirit of Maio and Santa-Clara (2012) and Boons

(2016) macroeconomic uncertainty is not a valid risk factor under the ICAPM.

The remainder of this chapter is organized as follows: Section 2.2 provides the empirical analysis,

including the extraction of the persistent components and cross-sectional regressions. Section 2.3

contains robustness checks and additional tests while Section 2.4 examines the monotonicity of the

scale-speci�c risk exposures. Section 2.5 concludes.

22Bloom et al. (2007), Bekaert et al. (2009), Chen (2010) and Bloom et al. (2012) also provide theoretical and
empirical evidence linking macroeconomic shocks to investment dynamics. For a review of the literature see Bloom
(2014).
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2.2 Empirical Analysis

2.2.1 Data Description

To measure macroeconomic uncertainty I use the model-free index23 of Jurado et al. (2015) that

aggregates uncertainty in the economy derived from various sources into one summary statistic.

Jurado et al. (2015) combine 132 macroeconomic series and 147 �nancial time series together into

one large macroeconomic dataset24 to provide a new measure of macroeconomic uncertainty de�ned

as the common variation in the unforecastable components. The �rst dataset (also used in Ludvigson

and Ng, 2009) represents a broad category of macroeconomic time series such as: real output and

income, employment, consumer spending, bond and stock market indexes and foreign exchange

measures. The second dataset (also used in Ludvigson and Ng, 2007) includes valuation ratios such

as dividend-price ratio and earnings-price ratio, default and term spreads, yields on corporate bonds

and a large cross-section of equity returns.

In particular, let ui,t (h) denote the h − period ahead uncertainty in the variable yi,t ∈ Yt =

(y1,t, . . . , yNy,t)
´ de�ned as the conditional volatility of the unforecastable component of its future

value, that is,

ui,t (h) ≡
√
E
[
(yi,t+h − E [yi,t+h|It])2 |It

]
(2.1)

where It is the information set25 available to investors at time t. Jurado et al. (2015) construct the

index of macroeconomic uncertainty by aggregating individual uncertainty at each date, i.e. the

h− period ahead aggregate uncertainty at time t is given by

23Previous studies have relied on proxies of uncertainty such as �uncertainty-related� key words in news publications
(Baker et al., 2013), cross-sectional dispersion of survey-based forecasts (Bali et al., 2016) and implied or realized
volatility of stock market returns (Bloom, 2009).

24The dataset is available from Sydney Ludvigson's website: http://www.econ.nyu.edu/user/ludvigsons/ .
25To estimate E [·|It] Jurado et al. (2015) form factors from a large set of predictors whose span is close to It and

approximate E [·|It] using the method of di�usion index forecasting (see Stock and Watson, 2002).
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ut (h) ≡ plimNy→∞

Ny∑
i=1

wiui,t (h) ≡ Ew [ui,t (h)] (2.2)

where wi = 1/Ny are aggregation weights. I rely on estimates of aggregate uncertainty derived

from 1, 3 and 12 months ahead forecasts. Throughout the chapter I use the notation ut for the

time series proxying for macroeconomic uncertainty leaving h understood when there is no chance

of confusion.

In Panel A of Table 2.1 I report descriptive statistics for the macroeconomic uncertainty index.

In addition, I examine the persistence of the uncertainty index through a battery of testing proced-

ures. I report the p-values of the Augmented Dickey-Fuller (ADF - Dickey and Fuller, 1979) and

Phillips-Perron (PP - Phillips and Perron, 1988) tests for unit root and the values of the KPSS (Kwi-

atkowski et al., 1992) test statistic for the null hypothesis of stationarity whose critical values are

0.347, 0.463 and 0.739 at the 10%, 5% and 1% signi�cance levels respectively. The null hypothesis

of a unit root is rejected at the 5% level with the ADF and PP tests for all measures of uncertainty.

Similarly, the results of a KPSS test con�rm that the series is stationary for all h = 1, 3, 12. Panel

B of Table 2.1 presents the mean and standard deviation for the equity risk premium26, de�ned as

the total rate of return on the stock market minus the prevailing short-term interest rate. Over the

sample period it has a mean of 5.71% and a standard deviation of 15.02%. Figure 2.1 plots the

index of macroeconomic uncertainty for h = 1, 3, 12. The shaded areas represent NBER recessions.

2.2.2 Scale-wise Heterogeneity in Aggregate Uncertainty

I begin by decomposing uncertainty into layers with heterogeneous levels of persistence using the

multiresolution-based decomposition of Ortu et al. (2013). In particular, let u
(j)
t denote �uctuations

of the uncertainty series with half-life in the interval [2j−1, 2j), that is

26The data for the equity risk premium and the default and term spread used in Section 2.2.4 are available from
Amit Goyal's website: http://www.hec.unil.ch/agoyal/
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u
(j)
t =

∑2(j−1)−1
i=0 ut−i

2(j−1)
−
∑2j−1

i=0 ut−i
2j

≡ π(j−1)
t − π(j)

t (2.3)

where j ≥ 1, π
(0)
t ≡ ut and the moving averages π

(j)
t satis�es the recursion

π
(j)
t =

π
(j−1)
t + π

(j−1)

t−2j−1

2
(2.4)

for j = 1, 2, 3, . . .. The derived series
{
u

(j)
t

}
t∈Z

captures �uctuations that survive to averaging over

2j−1 terms but disappear when the average involves 2j terms. For any J ≥ 1, the original series ut

can be written as a sum of components with half-life belonging to a speci�c interval plus a long-run

average, that is,

ut =

J∑
j=1

u
(j)
t + u

(>J)
t︸ ︷︷ ︸
≡π(J)

t

(2.5)

where u
(>J)
t incorporates �uctuations with persistence greater than 2J periods. The decomposition

of the time series is conducted using wavelet methods as in multiresolution analysis. In particular,

the extraction is based on the one-sided, linear Haar �lter. Moreover, the decomposition in Equation

(2.5) uses information only up to time t and hence is not subject to look-ahead bias. In contrast,

other popular �lters for business cycle analysis are estimated over the full sample (for instance, see

Hodrick and Prescott, 1997).

For my empirical analysis, I set J = 7 so that the maximum level of persistence corresponds to

the upper bound of business cycle frequencies. An interpretation of the j − th persistence level in

terms of the corresponding time spans in the case of monthly time series is available in Table 2.2.

Figures 2.2a and 2.2b depict the persistent components �ltered out of aggregate uncertainty. Note

that due to the initialization of the �ltering procedure I discard the �rst 2j − 1 observations for

each scale.

Furthermore, I use the multi-scale variance ratio test of Ortu et al. (2013) to test for serial
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correlation in the extracted uncertainty components u
(j)
t , j = 1, 2, . . . , 7. This test is based on a

new family of frequency-domain tests for serial correlation as introduced by Gençay and Signori

(2015) and exploits the fact that for a serial correlated process each component contributes a

di�erent percentage to the variance of the process. Speci�cally, let ξ̂j be the ratio of the sample

variance of the uncertainty components at level of persistence j to the sample variance of the time

series, i.e.

ξ̂j =
2j
(
u(j)
)ᵀ

u(j)(
X

(J)
T

)ᵀ
X

(J)
T

(2.6)

where
(
X

(J)
T

)ᵀ
= [uT , uT−1, . . . , u1] is the vector collecting the observations of {ut} and u(j) =[

u
(j)

2j
, . . . , u

(j)

k×2j
, . . . , u

(j)
T

]ᵀ
. That is, due to the overlapping of the moving averages that de�ne u

(j)
t

the elements of each component are �rst sampled every k × 2j , k ∈ Z times and thus the sample

variance is calculated from the decimated series. Under the null hypothesis of no serial correlation,

the rescaled test statistic
√

T
aj

(
ξ̂j − 1

2j

)
where aj =

(2
j

2 )
2j22(j−1) converges in distribution to a standard

normal. Ortu et al. (2013) suggest employing these rescaled test statistics to distinguish a white

noise process from a process whose (decimated) scale-dependent components are serially correlated.

Table 2.3 presents the results for the variance ratio test of Ortu et al. (2013) for di�erent levels

of persistence with bold values denoting rejection of the null at a 99% con�dence level. A white

noise model is strongly rejected at multiple levels of persistence. These results imply that at least

one of the uncertainty components can be represented as a scale autoregressive process on the

dilated time of the scale being considered. In other words, there exists j∗ ∈ {1, . . . , 7} such that

u
(j∗)

k×2j∗+2j∗
= ρj∗u

(j∗)

k×2j∗
+ ε

(j∗)

k×2j∗+2j∗
where k ∈ Z and the parameter ρj captures scale-speci�c

persistence - known as scale-wise AR. Estimation results of the multi-scale autoregressive system

are available in Appendix 2B (see Table 2B.17).

In total, the empirical evidence in this section provide strong support for a data generating

process in which low-frequency uncertainty shocks are not linear combinations of high-frequency
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shocks. That is, in line with the generalized Wold representation of Bandi et al. (2016) the uncer-

tainty shocks at each scale carry unique information (i.e., scale-wise heterogeneity) - thereby giving

meaning to economic relations which may be satis�ed at certain time-scales alone. Moreover, in-

novations for all scale-speci�c uncertainty components have to be computed before examining their

asset pricing implications (i.e., only the unexpected part of the uncertainty components should

command a risk premium).

2.2.3 Cross-sectional Implications

I test whether the innovations (i.e., ∆u
(j)
t ≡ u

(j)
t −u

(j)
t−1) in the persistent components �ltered out of

the uncertainty index can help explain the cross-sectional variation in asset prices. This approach

resembles empirical studies that test ICAPM-motivated macroeconomic factors by calculating in-

novations in state variables. To obtain the innovations for each scale j, I �rst extract the j − th

component and then I �rst-di�erence it. Under the one-sided, linear Haar �lter used in the extrac-

tion, �rst-di�erencing the component of a given time series is identical to taking components of the

�rst-di�erenced series (see Bandi et al., 2016).

Macroeconomic risk as proxied by the covariance between innovations in uncertainty (i.e., ∆ut)

and asset excess returns (i.e., Re,it ) can be decomposed across scales as follows (see the novel frame-

work of Bandi and Tamoni, 2016 and Boons and Tamoni, 2016)

Cov
[
Re,it ,∆ut

]
=

J∑
j=1

Cov
[
R
e,i(j)
t ,∆u

(j)
t

]
+ Cov

[
R
e,i(>J)
t ,∆u

(>J)
t

]
(2.7)

and hence the scale-wise (i.e., horizon-speci�c) risk exposures are de�ned as

βi(j) ≡
Cov

[
R
e,i(j)
t ,∆u

(j)
t

]
V ar

(
∆u

(j)
t

) and βi(>J) ≡
Cov

[
R
e,i(>J)
t ,∆u

(>J)
t

]
V ar

(
∆u

(>J)
t

) . (2.8)

In particular, in line with Boons and Tamoni (2016) I �rst run for each asset i (of size T ) the

following time-series regression
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R
e,i(j)
t = β

(j)
0 + βi(j)∆u

(j)
t + ε

(j)
t t = 1, . . . , T for each j = 1, . . . , 7, > 7, (2.9)

where Rt
e,i(j) denotes the components of asset excess returns associated with scale j at time t. Then

I estimate a cross-sectional regression of average portfolio returns on the estimated scale-speci�c

risk exposures βi(j)

Re,i = λ0,j + λjβ
i(j) + αi for each j = 1, . . . , 7, > 7, (2.10)

where Re,i denotes the average time-series excess return for asset i, λ0,j is the zero-beta excess

return associated with di�erent uncertainty components, λj is the relative price of risk for β
(j) (i.e.,

the scale-speci�c risk compensation)27 and αi is a pricing error. In essence, I am interested in the

ability of scale-dependent uncertainty shocks to explain aggregate portfolio returns. In addition, I

run Equations (2.9)-(2.10) for uncertainty shocks with persistence between 32 and 128 months (i.e.,

for a business-cycle uncertainty factor) where the corresponding beta for j = 6 : 7 is de�ned as

βi(6:7) ≡
Cov

[
R
e,i(6)
t +R

e,i(7)
t ,∆u

(6)
t + ∆u

(7)
t

]
V ar

(
∆u

(6)
t + ∆u

(7)
t

) ' βi(6)$(6) + βi(7)$(7) (2.11)

with $(6) =
V ar

(
∆u

(6)
t

)
V ar

(
∆u

(6)
t

)
+V ar

(
∆u

(7)
t

) and $(7) =
V ar

(
∆u

(7)
t

)
V ar

(
∆u

(6)
t

)
+V ar

(
∆u

(7)
t

) . That is, β(6:7) can be viewed

as a linear combination28 of the betas associated with the factors ∆u
(6)
t and ∆u

(7)
t with weights

depending on the relative contribution to total variance (see also Bandi and Tamoni, 2016 for a

similar approach using decimated components).

Following Campbell et al. (2014) and in line with the theoretical work of Black (1972) and

27I verify empirically that for j > 7 and for all test portfolios, assets' exposure to uncertainty shocks with persistence
greater than 27 = 128 months is not important for pricing. The results are available in Appendix 2B (see Tables
2B.5, 2B.6 and 2B.7).

28Asymptotically, the components are uncorrelated across scales. In sample, however, multiresolution �lters - like
the Haar �lter used for the extraction - only deliver nearly-uncorrelated components (see also Bandi and Tamoni,
2016 and Gençay et al., 2001) and therefore the relation in Equation (2.11) is not exact. For further discussion and
a comparison of β(6:7) versus β(6)$(6) + β(7)$(7) see Appendix 2B (see Figure 2B.2).
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the evidence29 in Krishnamurthy and Vissing-Jorgensen (2012) I leave the zero-beta risk-free rate

unrestricted. To determine whether uncertainty shocks with level of persistence j can explain the

cross-sectional variation in asset returns I look for an estimate λ̂j that remains signi�cant after

using a t-statistic cuto� of three as suggested by Harvey et al. (2016), for an intercept that is small

and statistically insigni�cant and a sample R2 signi�cantly di�erent from zero.

Table 2.4 presents the �rst-pass beta estimates for the 25 Fama and French (1993) size and book-

to-market portfolios along with their statistical signi�cance. The initial sample period is 1960:07 to

2013:05. The betas are estimated component-wise from Equation (2.9), that is regressing the j− th

component of returns on innovations in the j − th component of aggregate uncertainty. Given the

adopted time-series decomposition spurious autocorrelation at level of persistence j emerges as a

result of the 2j − 1 overlapping data. Thus, I compute Newey-West (1987) heteroskedasticity and

autocorrelation consistent (HAC) standard errors with 2j − 1 lags. To preserve space I only report

results30 for j = 6, 7 and j = 6 : 7. The scale-speci�c risk exposures for the test portfolios are

negative. The last rows of Table 2.4 show the Wald test-statistics and their corresponding p-values

from testing the joint hypothesis that all scale-dependent exposures are equal to zero. For j = 6

and j = 6 : 7 the null hypothesis in the joint test of signi�cance i.e. H0 : β1(j) = . . . = β25(j) = 0

is strongly rejected. Therefore, in the spirit of Kan and Zhang (1999) it is empirically sound to use

these scale-dependent betas as factors in cross-sectional regressions. In contrast, for j = 7 I cannot

reject the null that the scale-speci�c risk exposures are jointly zero.

Table 2.5 reports the estimates for the zero-beta excess return and the price of risk for each

scale for the 25 size and book-to-market portfolios along with the corresponding Fama-MacBeth31

(1973) test statistics in parentheses. In addition, I normalize the scale-wise risk exposures and

29Krishnamurthy and Vissing-Jorgensen (2012) suggest that investors' demand for Treasury Bills is driven by
liquidity and safety concerns and argue against the common practice of identifying the Treasury Bills as risk-free
interest rates.

30For j ∈ {1, 2, 3, 4, 5} the scale-speci�c risk exposures are jointly di�erent from zero across all test assets (results
available upon request).

31Given that the �rst-stage regressions are scale-wise, the Shanken correction (Shanken, 1992) is not directly applic-
able here. To deal with the error-in-variables problem (i.e., the estimation errors in the betas) I report bootstrapped
con�dence intervals for the second-pass estimates in Appendix 2B (Table 2B.14).
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estimate the price of risk per unit of cross-sectional standard deviation in uncertainty in percent

per year. I also report the p-value for the Kan et al. (2013) speci�cation test of H0 : R2 = 1

denoted as p
(
R2 = 1

)
. After taking into consideration the data-mining adjusted rate for t-statistics

of three, the lambda estimates for levels of persistence j = 1, . . . , 5 are insigni�cant. The estimated

price of risk for the innovations in the sixth uncertainty component λ̂6 is −0.69 with a t-statistic of

−4.57 while the intercept is 0.14 and insigni�cant (t-stat = 0.59). The coe�cient of determination

for this factor is high and equal to 72.35% (se(R̂2
(6)) = 0.138)32 and the mean absolute pricing

error (MAPE) across all securities is 1.11% per year. A standard deviation increase in exposure

to low-frequency uncertainty shocks leads to a decrease in portfolio returns by −2.30% annually.

Moreover, the estimated price of risk for the innovations in the seventh uncertainty component is

also negative with a t-statistic of -3.21. However the estimated zero-beta excess return for this case

is signi�cant at the 1% level (t-stat = 2.37). The performance of the business-cycle uncertainty

factor (i.e., ∆u
(6:7)
t ) is similar to ∆u

(6)
t with a cross-sectional R2 of 73.90% (se(R̂2

(6:7)) = 0.123) and

MAPE equal to 1.11% per year. Finally, for each of the low-frequency factors the Kan et al. (2013)

speci�cation test does not reject the hypothesis that the model is correctly speci�ed.

Since β(6) × λ6 > 0 (or equivalently β(6:7) × λ6:7 > 0) low-frequency uncertainty shocks carry

positive risk premia. My results are in contrast with the work of Campbell et al. (2014) who �nd that

in the post-1963 period equities have positive volatility betas and therefore negative risk premia.

However, my �ndings are in line with Boguth and Kuehn (2013), Bansal, Kiku, Shaliastovich, and

Yaron (2014) and Tédongap (2015) who provide evidence of negative exposure of asset returns to

alternative measures of volatility risk. In addition, my results are in agreement with Boons and

Tamoni (2016) who �rst show that the price of low-frequency volatility risk is negative and assets

have negative low-frequency volatility betas and thus long-run volatility risk premia are positive.

32When 0 < R2 < 1, R̂2 is asymptotically normally distributed around its true value and thus I cannot use

R̂2 ± 1.96× se(R̂2) to obtain a 95% con�dence interval. One way to construct con�dence intervals is by pivoting the
cumulative distribution function (cdf) (see section 9.2.3 in Casella and Berger, 2002). Kan and Robotti (2009) and
Kan and Robotti (2015) use the same method to construct con�dence intervals for the Hansen-Jagannathan distance
and the Hansen-Jagannathan bound respectively. To preserve space I only report con�dence intervals in Table 2.12.
The R2 for the business-cycle uncertainty factor is signi�cantly di�erent from zero across all test assets.
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Panel A of Figure 2.3 plots realized versus �tted average excess returns for the 25 size and

book-to-market FF portfolios where the priced factor is ∆u
(6:7)
t , that is, the innovations in low-

frequency uncertainty shocks (derived from monthly forecasts) with persistence ranging from 32 to

128 months. Each two-digit number represents a separate portfolio. The �rst digit refers to the

size quintile of the portfolio (1 being the smallest and 5 the largest), while the second digit refers

to the book-to-market quintile (1 being the lowest and 5 the highest). If the �tted and the realized

returns for each portfolio are the same then they should lie on the 45-degree line from the origin.

Panel A visually con�rms that the �t of the model is good. Similarly, Panel B shows that the factor

∆u
(6:7)
t is successful at explaining the size and value e�ects.

2.2.4 Relation with Business-Cycle Indicators and Macroeconomic Volatility

Risk

Next, I examine the relation of the low-frequency uncertainty factor u
(6:7)
t with macroeconomic

variables linked to �uctuations of the business cycle such as the term spread and default spread.

It is well-documented that these yield spreads are high around business-cycle troughs and low near

peaks (for instance, see Fama and French, 1989; Estrella and Hardouvelis, 1991 and Hahn and

Lee, 2006). In addition, the default spread and term spread are known to forecast macroeconomic

activity (Boons, 2016) and have long been used as proxies for credit market conditions and the

stance of monetary policy, respectively. Following Welch and Goyal (2008), the default spread

is de�ned as the di�erence between BAA and AAA-rated corporate bond yields. Similarly, the

term spread is de�ned as the di�erence between the long term yield on government bonds and the

three-month Treasury-bill rates. The correlation between the term spread and u
(6:7)
t is 0.11 and

statistically signi�cant at the 5% level. The correlation between the default spread and u
(6:7)
t is 0.48

and statistically signi�cant at the 1% level (see Figure 2.4). That is, an increase in low-frequency

aggregate uncertainty is closely associated with the deterioration of credit market conditions.

Moreover, I examine the correlation of u
(6:7)
t with the low-frequency macroeconomic volatility
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risk factor of Boons and Tamoni (2016). To measure macro volatility I consider the following

AR (1)−GARCH(1, 1) speci�cation

IPGt = µ+ φIPGt−1 + νt, (2.12)

σ2
t = ω0 + ω1ν

2
t−1 + ω2σ

2
t−1 (2.13)

where IPGt is the (latest vintage) seasonally-adjusted industrial production growth rate from the

FRED database of the St. Louis FED and IPV OL = σ̂t. The correlation between uncertainty

shocks with persistence between 32 and 128 months (i.e., u
(6:7)
t ) and macro volatility shocks with

persistence greater than 32 months (i.e., IPV OL
(>5)
t ) is 0.74 and statistically signi�cant at the 1%

level (see Figure 2.4). In other words, there is a close link between long-run uncertainty about the

state of the economy and low-frequency variation in the volatility of industrial production. However,

the correlation between ∆IPV OL
(>5)
t and innovations in the business-cycle uncertainty factor is

0.48 (for h = 1) and reduces further to 0.38 (for h = 12).

2.3 Robustness Checks and Additional Tests

2.3.1 Alternative Test Assets

I con�rm that my �ndings are robust by looking at alternative sets of test portfolios. I use the 25

Fama and French (2015) size and investment portfolios, the 25 Fama and French (2015) book-to-

market and operating pro�tability portfolios and the 25 Fama and French (2016) size and variance

portfolios. Below I discuss the cross-sectional estimates based on macroeconomic uncertainty derived

from monthly forecasts (i.e., ut (1)). The results for aggregate uncertainty derived from quarterly

(i.e., ut (3)) and annual (i.e., ut (12)) forecasts are similar.

Tables 2.6 and 2.7 report the �rst-pass scale-wise exposures and the cross-sectional estimates

for the 25 Fama and French (2015) size and investment portfolios, respectively. The initial sample

period is 1963:07 to 2013:05. For j = 6 and j = 6 : 7 the null H0 : β1(j) = . . . = β25(j) = 0 is
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strongly rejected while for j = 7 the component-wise exposures are not statistically di�erent from

zero. The estimated price of risk for the innovations in the sixth uncertainty factor is negative

(-0.52) with a t-statistic of -3.05 and the estimate of λ̂0,6 is not signi�cant (t-stat = 1.00). The

cross-sectional R2 is 51.52% (se(R̂2
(6)) = 0.286) and the MAPE across all securities is less than 1%

per year. Innovations in low-frequency uncertainty with persistence ranging between 64 and 128

months are also priced (t-stat = -3.83). However, the estimate for the zero-beta excess return is

signi�cant at the 1% level (t-stat = 2.91). The pricing performance of the business-cycle uncertainty

factor is considerably better among these test portfolios with a cross-sectional R2 of 73.00% and

the lowest sampling variability (i.e., se(R̂2
(6:7)) = 0.092). In addition, the null hypothesis that the

model is correctly speci�ed is not rejected. The price of risk per unit of cross-sectional standard

deviation in ∆u
(6:7)
t is -2.21%.

Tables 2.8 and 2.9 present the scale-speci�c risk exposures and the cross-sectional estimates for

the 25 Fama and French (2015) book-to-market and operating pro�tability portfolios. The initial

sample period is 1963:07 to 2013:05. Consistent with the results for the previous test portfolios for

j = 7 the hypothesis that all scale-dependent betas are zero is not rejected, that is, the proposed

factor is independent of the portfolio returns. The estimated price of risk for ∆u
(6)
t is -0.48 with a

t-statistic of -2.98 and the estimated zero-beta excess return is not signi�cant (t-stat = 1.03). The

cross-sectional R2 is 39.20% (se(R̂2
(6)) = 0.177) and the MAPE across all assets is 2.14% annually.

Furthermore, the estimated price of risk for ∆u
(6:7)
t is also signi�cant (t-stat = -3.35) with a similar

sample R2 but smaller standard error (se(R̂2
(6:7)) = 0.142). The price of risk per unit of cross-

sectional standard deviation in ∆u
(6:7)
t is -2.32%. It is worth emphasizing that for all scales the

speci�cation test rejects the hypothesis of a perfect �t.

Tables 2.10 and 2.11 provide the scale-speci�c risk exposures and the results from the cross-

sectional regressions for the 25 Fama and French (2016) size and variance portfolios. The initial

sample period is 1963:07 to 2013:05. The price of high-frequency uncertainty shocks (i.e., for

j = 1, . . . , 5) is small and insigni�cant. Low-frequency uncertainty with persistence between 32
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and 64 months carries a negative price of risk of -0.50 with a t-statistic of -2.92 and the intercept

is insigni�cant (t-stat = 0.85). The coe�cient of determination is equal to 20.60% but is not

signi�cantly di�erent from zero (se(R̂2
(6)) = 0.190). That is, using only the sample R2 I cannot

reject that the factor ∆u
(6)
t has essentially no explanatory power. In contrast, the cross-sectional

R2 for the business-cycle uncertainty factor is 54.84% (se(R̂2
(6:7)) = 0.164) and the null that the

model is correctly speci�ed is not rejected.

Figure 2.5 plots �tted versus realized average excess returns for the test portfolios of this section

where the priced factor is ∆u
(6:7)
t derived from monthly forecasts. Figure 2.6 plots the �tted excess

returns for the same portfolios. Finally, I repeat the analysis of the cross-sectional implications

by using equal weighted returns for all test portfolios. The results - available upon request - are

qualitatively and qualitatively similar.

2.3.2 Tests of Equality of Cross-Sectional R2's

Next, I compare the two competing beta pricing models based on the factors ∆u
(6)
t and ∆u

(6:7)
t

by asking whether they have the same population cross-sectional R2. My analysis is similar in

spirit with Kan et al. (2013). However, the sequential testing procedure suggested by Vuong (1989)

and described in Kan et al. (2013) is not applicable here since the two models are non-nested and

distinct33. Therefore, I perform directly the normal test of H0 : 0 < R2
(6) = R2

(6:7) < 1, that is, I

assume that both models are not perfectly speci�ed (i.e., I check if the population R2's are equal for

some value less than one) and rule out the scenario that the two beta pricing models are completely

irrelevant for explaining expected returns. Table 2.12 reports the results of the tests of equality

of the cross-sectional R2's where both models are estimated over the same period. There are no

su�cient evidence across all test assets to reject the null hypothesis. Two observations emerge from

33For instance, consider two competing beta pricing models. Let f1t, f2t and f3t be three sets of distinct factors
at time t where fit is of dimension Ki × 1, i = 1, 2, 3. Assume that model 1 uses f1t and f2t as factors while model
2 uses f1t and f3t. When K2 = 0 model 2 nests 1 as a special case. Similarly, when K3 = 0 model 1 nests model 2.
When K2 > 0 and K3 > 0 the two models are non-nested. Finally, when K2,K3 > 0 and K1 = 0 the two models are
non-nested and distinct.
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the results in Table 2.12. First, the limited precision of the estimates makes it di�cult to conclude

whether one model consistently outperforms the other. That is, even cases of large R2 di�erences do

not give rise to statistical rejections due to the high sampling variability of the cross-sectional R2's.

Kan and Robotti (2009) and Kan et al. (2013) report similar problems in the comparison of linear

asset pricing models using aggregate measures of pricing errors. Second, it is hard to distinguish

between the two models since the relative contribution of ∆u
(7)
t in Equation (2.11) is small (i.e.,

$(6) > $(7)).

2.3.3 Benchmark Results & Controlling for Fama-French Factors

Furthermore, I present in Table 2.13 benchmark results for the Fama and French (1993) three-

factor model (FF3) and the Fama and French (2015) �ve-factor model (FF5). The business-cycle

uncertainty factor performs better than the Fama-French models in the cross-sections of the size

and book-to-market and the size and investment portfolios. In particular, while the estimates of the

cross-sectional R2's are similar, the pricing performance of the FF3 and the FF5 model is driven by

a statistical signi�cant zero-beta excess return. In addition, both models are misspeci�ed (i.e., the

Kan et al., 2013 speci�cation test of H0 : R2 = 1 is strongly rejected). In contrast, the FF5 model

explains signi�cantly better the cross-sectional di�erences of assets sorted across book-to-market

and operating pro�tability. Also, for these test assets the uncertainty factor does not survive in

the presence of the pro�tability-based factor34. This �nding is in line with Wang and Yu (2015)

who demonstrate that the pro�tability premium (see Novy-Marx, 2013 and Hou et al., 2015) is not

driven by macroeconomic risk.

2.3.4 Predictability of Aggregate Returns

Finally, I test the ability of the scale-dependent shocks �ltered out of the index of macroeconomic

uncertainty to predict the components of aggregate stock returns with the same time-scale with the

34To preserve space I report the results in Appendix 2B (see Table 3B.10).
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following set of regressions

r
e(j)

t+2j
= β

(j)
0 + β(j)u

(j)
t + ε

(j)

t+2j
for j = 1, . . . , 7 (2.14)

where r
e(j)
t denotes the components of market excess returns associated with scale j at time t and

ε
(j)

t+2j
are scale-speci�c forecast errors. The lag between the regressand and the regressor means that

�uctuations of time-scale j forecast the next cycle of length 2j periods. In addition, since scale-wise

predictability implies predictability upon two-way (forward for the regressand, backward for the

regressor) adaptive aggregation of the series (see the novel work of Bandi et al., 2016) I run the

following regression

re
t+1,t+q

= aq + βqut−q+1,t + ηt+q (2.15)

where re
t+1,t+q

=
∑q

i=1 r
e
t+i denotes excess market returns between t + 1 and t + q and ut−q+1,t =∑q

i=1 ut−i+1 past uncertainty. The regressor and regressand are aggregated over non-overlapping

periods. Also, the regressor is adapted to time t information and therefore is non anticipative.

The reason for aggregating both the regressand and the regressor in Equation (2.15) resides in the

intuition of Bandi and Perron (2008) according to which economic relations may impact highly

persistent components of the variables while being hidden by short term noise.

Panel A of Table 2.14 presents the results for the component-wise equity risk premium predict-

ability35. I use Newey-West (1987) HAC standard errors with 2j − 1 lags and the Hansen-Hodrick

(1980) estimator. The coe�cient for the uncertainty component with degree of persistence j = 6

(i.e., the component that captures �uctuations in uncertainty between 32 and 64 months) is pos-

itive and statistical signi�cant at the 1% level with a NW corrected t-statistic of 3.84 and a HH

t-statistic of 3.45. For levels of persistence j = 1, . . . , 5 and for j = 7 the uncertainty coe�cients

are insigni�cant. Due to the initialization of the �ltering procedure and the lag between regressor

and regressand the e�ective sample for j = 7 is reduced substantially and therefore the statistical

35For reviews of the literature on stock return predictability see Welch and Goyal (2008), Cochrane (2008) and
more recently Lettau and Ludvigson (2010).
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inferences are based on a smaller period.

Panel B of Table 2.14 shows the results from the long-horizon predictive regression. I rely on

Newey-West (1987) corrected t-statistics36 with 2 × (q − 1) lags to correct for serial correlation

induced by the overlapping nature of the data. Also, to address any potential inferential problems

that arise in predictive regressions with persistent regressors (for instance, see Ferson et al., 2003)

I report Valkanov's (2003) rescaled test statistic37. To illustrate my �ndings, Figure 2.7 reports

scatter plots of excess market returns and past uncertainty at four levels of aggregation, namely

q = 8, 32, 64 and 128. In line with the framework of Bandi et al. (2016) aggregation begins to

reveal predictability over a horizon between 32 and 64 months (i.e., scale-wise predictability applies

for j = 6 and therefore 26−1 = 32 and 26 = 64). Moreover, the slope of the forward/backward

regression for a horizon equal to 64 months (i.e., βq=64 = 2.81) is numerically very close to the slope

of the relevant scale-wise predictive regression (i.e., β(j=6) = 3.06). However, dependence increases

in the long-run and the R2 for a horizon of 128 months is around 66%. In addition, there is a rough

tent-shaped behavior in the predictive slopes and R2's (see Figure 2.8). These results indicate that

uncertainty shocks with persistence between 64 and 128 months are also positive correlated with

future aggregate returns (i.e., if scale-wise predictability was present only for j = 6, the maximum

R2 would be achieved for a level of aggregation corresponding to 26 = 64 months). My �ndings

are in line with Bandi and Perron (2008) who report that future excess market returns and past

market variance are positively correlated in the long-run (i.e., between 6 and 10 years). Similarly,

I con�rm the results of Bandi et al. (2016) who document a scale-speci�c risk-return trade-o� in

market returns, that is, shocks in consumption and market variance with persistence between 8 and

16 years forecast positively future excess market returns with the same periodicity.

Overall, I demonstrate that business-cycle macroeconomic uncertainty as a risk factor does not

meet the restrictions proposed by Maio and Santa-Clara (2012) that prevent ICAPM from being a

36For arguments against the validity of standard econometric inference and the statistical pitfalls in long-run
predictive regressions in �nance see Ferson et al. (2003), Valkanov (2003), Lewellen (2004), Campbell and Yogo
(2006) and Boudoukh et al. (2008).

37For the right-tail critical values of t/
√
T at various percentiles see Appendix 2B (Table 2B.16).
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��shing license� for researchers. Speci�cally, the price of risk for exposure to business-cycle variation

in aggregate uncertainty is negative and thus inconsistent38 with how these shocks forecast aggregate

returns in the time-series. For instance, consider the cross-section with the 25 FF size and book-

to-market portfolios. The intertemporal hedging demand argument implies that the portfolio with

the least negative covariance with low-frequency uncertainty (i.e., the portfolio of small �rms with

small book-to-market values - 11 in Figure 2.3) will be the least attractive as hedge and thus o�er

the highest expected return. In contrast, the portfolio with the highest expected return is the one

with the most negative exposure (i.e., the portfolio of small �rms with high book-to-market values

- 15 in Figure 2.3).

To understand this point further, assume a candidate state variable zt and consider a discrete-

time approximation of the ICAPM in an unconditional form (see Maio and Santa-Clara, 2012 or

Chapter 9 in Cochrane, 2005)

E
(
Re,it

)
≈ γCov

(
Rit, Rm,t

)
+ γzCov

(
Rit,∆zt

)
(2.16)

where the �rst term on the right-hand side captures the market risk premium associated with the

CAPM, ∆zt denotes the innovations in the variable and γz is the covariance risk premium associated

with the candidate state variable. Assume that the state variable zt is positively correlated with

future aggregate returns i.e. Cov (zt, Rm,t+1) > 0. Also, that the return on asset i is negatively cor-

related with the (innovation in the) variable (i.e., Cov
(
Rit,∆zt

)
< 0) and thus negatively correlated

with future aggregate returns. If the risk price γz is negative it holds that γzCov
(
Rit,∆zt

)
> 0.

That is, even though the asset provides a hedge for reinvestment risk it earns a higher risk premium

than an asset with Cov
(
Rit,∆zt

)
= 0. The price of risk for zt is inconsistent with the ICAPM.

Thus, in contrast with the interpretation of Bali et al. (2014) and Bali et al. (2016) my results

suggest that macro uncertainty is not a valid risk factor under the ICAPM. The central di�erence is

that Bali et al. (2016) assume that �an increase in economic uncertainty reduces future investment

38I am indebted to Martijn Boons for pointing out this inconsistency in an earlier version of this draft.
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and consumption opportunities� while my results document a long-run risk-return trade-o� (i.e.,

future aggregate returns are positively correlated with past uncertainty).

2.3.5 Robustness Checks

In Appendix 2B I provide a battery of robustness checks. A brief summary is available here. Tables

2B.1 through 2B.4 present the estimates from the cross-sectional regressions using the same burn-in

period for all components. The results for all test assets remain quantitatively similar. In addition,

the model with the business-cycle uncertainty factor is correctly speci�ed in the joint cross-section

of the 5 industry portfolios and the 25 size and book-to-market portfolios (see Table 2B.9). The

uncertainty factor u
(6:7)
t remains statistically signi�cant after controlling for the Fama-French factors

(see Table 3B.10) and for exposure to momentum, short-term reversal, long-term reversal, liquidity

and portfolio characteristics (see Tables 2B.11a and 2B.11b ). Also, the results for the uncertainty

factor are similar if I estimate the innovations as the residuals from an AR(1) model �tted to the

factor (see Table 3B.1). Finally, I present bootstrapped con�dence intervals for the �rst-pass scale-

dependent betas (see Table 2B.13), the second-pass cross-sectional estimates (see Table 2B.14) and

the scale-wise predictive regressions (see Table 2B.15) using the bias-corrected percentile method

and the stationary bootstrap of Politis and Romano (1994).

2.4 Monotonicity in Scale-Speci�c Risk Exposures

In this section, I examine whether the scale-speci�c risk exposures with respect to the factors ∆u
(6)
t

and ∆u
(6:7)
t are monotonically increasing (or decreasing) across portfolios using the monotonic

relation (MR) test of Patton and Timmermann (2010). In essence, I look for monotonic patterns

in the scale-wise factor loadings that match known patterns in average excess returns for portfolios

sorted on various �rm characteristics. The MR test is nonparametric and is easily implemented

via bootstrap methods. To preserve the dependence in the original time-series I use the stationary

bootstrap of Politis and Romano (1994) where observations are drawn in blocks whose starting
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point and length are both random. The block length is drawn from a geometric distribution where

the average block size is set equal to 2739. For all MR tests I use 5,000 bootstrap replications.

Following Patton and Timmermann (2010) and in line with Hansen (2005) and Romano and Wolf

(2005) I implement a studentized version of the bootstrap. The MR test is designed so that the

alternative hypothesis is the one that the researcher hopes to prove - hence a monotonic relation is

con�rmed only if there is su�cient evidence in the data to reject the null (for more information see

Appendix A).

Tables 2.15a and 2.15b present the scale-speci�c risk exposures for one-way40 portfolio sorts and

the corresponding monotonicity tests. I consider average excess returns on a range of portfolios

sorted on security characteristics such as size (Panel A), long-term reversal (Panel B), short-term

reversal (Panel C), book-to-market (Panel D), investment (Panel E) and dividend yield (Panel F).

The �rst row in each panel reports average returns (in percent per month) for the test assets. The

�nal column in each panel presents the p-value for the monotonic relation (MR) test. Similarly,

the penultimate column presents the bootstrap p-value for the top-minus-bottom di�erence in the

corresponding returns and scale-wise betas.

Panel A of Table 2.15a shows that the MR test rejects the null of a �at or weakly decreasing

pattern across size in the risk loadings with respect to the factor ∆u
(6)
t for h = 1, 3 at the 10%

level. Similarly, the evidence in Panel E of Table 2.15b provide strong support for a monotonically

increasing relation in the scale-dependent risk exposures across investment. In particular, the MR

test detects a monotonically increasing pattern which is signi�cant at the 1% level for the risk

exposures to the factor ∆u
(6)
t and at the 5% level for the risk exposures to ∆u

(6:7)
t . Given that all

risk loadings are negative these results mean that an increase in low-frequency uncertainty has a

smaller e�ect on large �rms and aggressive �rms. Hence, consistent with the size and the investment

e�ects these securities o�er smaller risk compensations.

39Calculated based on the Politis and White (2004) estimator of the optimal average block length. Note that the
estimator is corrected to deal with the error in Lahiri's (1999) calculation of the variance for the stationary bootstrap
- see also Nordman (2009) and Patton et al. (2009).

40Additional results for two-way sorted portfolios are available upon request.
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In addition, there is statistically signi�cant evidence at the 10% level for a monotonically de-

creasing relation in the scale-speci�c risk loadings across book-to-market. This �nding is in line with

the value e�ect (i.e., one-period average returns increase from growth to value stocks). Also, it is

consistent with the work of Hansen et al. (2008) who show that cash �ows from value portfolios41 are

positively correlated with long-run shocks in the economy while cash �ows from growth portfolios

are not and hence investors holding value portfolios must be compensated for bearing the extra risk.

Moreover, low-frequency uncertainty betas decrease monotonically across stocks sorted on dividend

yield (the null is strongly rejected at the 1% level). Overall, these �ndings provide a clear economic

explanation for the well-documented size, value, dividend-yield and investment e�ects based on ex-

posures to low-frequency macro uncertainty. Finally, there is signi�cant evidence for an increasing

pattern in the risk exposures of securities sorted across long-term and short-term reversal. That is,

the top-minus-bottom di�erence in the corresponding scale-wise betas is statistically signi�cant at

the 5% level with respect to all factors.

2.5 Conclusions

I study how the pricing of macroeconomic uncertainty varies across investment horizons. In par-

ticular, I decompose aggregate uncertainty into heterogeneous - in terms of their persistence and

periodicity - components and investigate the risk compensations associated with each of these scale-

dependent macroeconomic shocks. Macroeconomic uncertainty is quanti�ed using the model-free

index of Jurado et al. (2015) that measures the common variation in the unforecastable component

of a large number of economic indicators. My study is based on the novel framework for scale-speci�c

analysis of risk proposed in Bandi and Tamoni (2016) and Boons and Tamoni (2016).

I document that a single business-cycle uncertainty factor that captures assets' exposure to

low-frequency variation in macroeconomic uncertainty can explain the level and the cross-sectional

41In a similar fashion, Kamara et al. (2015) �nd that the risk price for exposure to the HML factor of Fama
and French (1993) (i.e., the factor that measures the di�erence between the returns on portfolios of high and low
book-to-market stocks) peaks at a horizon of two to three years.
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di�erences of asset returns. In particular, I �nd that macroeconomic �uctuations with persistence

levels ranging from 32 to 128 months carry a negative price of risk about -2% annually. In addition,

equity scale-speci�c risk exposures are negative and thus uncertainty risk premia are positive. The

results are robust across di�erent test assets including: the 25 Fama and French (1993) size and

book-to-market portfolios, the 25 Fama and French (2015) size and investment portfolios, the 25

Fama and French (2015) book-to-market and operating pro�tability portfolios and the 25 Fama and

French (2016) size and variance portfolios. Moreover, my �ndings remain statistically signi�cant

after using a t-statistic cuto� of three as suggested by Harvey et al. (2016) and are qualitatively

and quantitatively similar irrespective of whether uncertainty is derived from monthly, quarterly or

annual forecasts. Furthermore, unlike several prominent asset pricing models (e.g., FF3 and FF5) I

demonstrate that the one-factor model with business-cycle macro uncertainty is correctly speci�ed.

In total, my study suggests that only business-cycle variation in uncertainty drives asset prices and

hence provides useful insights for the long-run risks literature. That is, in the spirit of Dew-Becker

and Giglio (2016) we should allow Epstein-Zin preferences to put more weight on business-cycle

frequency �uctuations compared to the standard Bansal and Yaron (2004) calibration (for instance,

see Ghosh and Constantinides, 2014).

Finally, I show that future excess aggregate returns are positively correlated with past uncer-

tainty and thus the negative price of risk for exposure to (low-frequency) macro uncertainty is

inconsistent with the central economic intuition underlying the ICAPM. In contrast, investors de-

mand higher risk compensations to hold portfolios that exhibit greater negative comovement with

low-frequency macroeconomic uncertainty, i.e. there is a low-frequency risk-return trade-o� for the

valuation of assets. Future research can expand my work in the cross-section of hedge fund and

mutual fund returns.
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Figure 2.1: Aggregate uncertainty

Notes: This �gure plots the index of macroeconomic uncertainty of Jurado et al. (2015) for h =
1, 3, 12. Data are monthly and span the period 1960:07 - 2013:05. The shaded areas represent
NBER recessions.
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Figure 2.2a: Persistence-based decomposition of aggregate uncertainty

Notes: This �gure plots the persistent components u
(j)
t for j = 1, . . . , 4 �ltered out of aggregate

uncertainty (derived from monthly forecasts - h = 1) and their corresponding sample autocorrelation
functions. Data are monthly and span the period 1960:07 - 2013:05. In the empirical analysis, I
discard the �rst 2j−1 observations for each scale due to the initialization of the �ltering procedure.
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Figure 2.2b: Persistence-based decomposition of aggregate uncertainty

Notes: This �gure plots the persistent components u
(j)
t for j = 5, 6, 7, > 7 �ltered out of aggregate

uncertainty (derived from monthly forecasts - h = 1) and their corresponding sample autocorrelation
functions. Data are monthly and span the period 1960:07 - 2013:05. In the empirical analysis, I
discard the �rst 2j−1 observations for each scale due to the initialization of the �ltering procedure.
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Figure 2.3: Cross-sectional �t - 25 FF size and book-to-market portfolios

Notes: Panel A plots realized versus �tted excess returns for the 25 size and book-to-market Fama

and French (1993) portfolios where the priced factor is ∆u
(6:7)
t , that is, the innovations in low-

frequency uncertainty shocks (derived from monthly forecasts) with persistence ranging from 32 to
128 months. Each two-digit number represents a separate portfolio. The �rst digit refers to the size
quintile of the portfolio (1 being the smallest and 5 the largest), while the second digit refers to the
book-to-market quintile (1 being the lowest and 5 the highest). The straight line is the 45-degree
line from the origin. Panel B plots the �tted excess return for each portfolio.
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Figure 2.4: Relation with default yield spread and macro volatility risk

Notes: Panel A plots macroeconomic uncertainty shocks with persistence ranging between 32 and

128 months (i.e., u
(6:7)
t ) along with the default yield spread which is de�ned as the di�erence between

BAA and AAA-rated corporate bond yields. Panel B plots u
(6:7)
t along with the macro volatility

risk factor of Boons and Tamoni (2016) (i.e., macro volatility shocks with persistence greater than

32 months - IPV OL
(>5)
t ). The shaded areas represent NBER recessions.
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Figure 2.5: Realized versus �tted excess returns: Alternative test portfolios

Notes: This �gure plots realized versus �tted excess returns for the alternative test portfolios where

the priced factor is ∆u
(6:7)
t , that is, the innovations in low-frequency uncertainty shocks (derived from

monthly forecasts) with persistence ranging from 32 to 128 months. The test assets include: the 25
FF size and investment portfolios (Panel A), the 25 FF book-to-market and operating pro�tability
portfolios (Panel B) and the 25 FF size and variance portfolios (Panel C). Each two-digit number
represents a separate portfolio. The straight line is the 45-degree line from the origin.
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Figure 2.6: Fitted excess returns: Alternative test portfolios

Notes: This �gure plots the �tted excess returns for the alternative test portfolios where the priced

factor is ∆u
(6:7)
t , that is, the innovations in low-frequency uncertainty shocks (derived from monthly

forecasts) with persistence ranging from 32 to 128 months. The test assets include: the 25 FF size
and investment portfolios (Panel A), the 25 FF book-to-market and operating pro�tability portfolios
(Panel B) and the 25 FF size and variance portfolios (Panel C).
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Figure 2.7: Market returns and past uncertainty at di�erent levels of aggregation

Notes: This �gure reports scatter plots of excess market returns and past uncertainty at four levels
of aggregation, namely q = 8, 32, 64 and 128.
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Figure 2.8: Hump-shaped dynamics in slope coe�cients and R2's

Notes: This �gure reports slope coe�cients and R2's values obtained by regressing forward-
aggregated excess market returns on backward-aggregated macro uncertainty.
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Table 2.1: Descriptive statistics

Panel A Aggregate uncertainty
ut (1) ut (3) ut (12)

Mean 0.6871 0.8494 0.9591
Median 0.6655 0.8263 0.9509
Min 0.5635 0.7105 0.8467
Max 1.1344 1.3385 1.2052
St. Deviation 0.0949 0.1020 0.0668
Skewness 1.8179 1.7791 1.2918
Kurtosis 6.9444 6.7326 4.9931
JB 761.40 703.60 281.70
ADF 0.0057 0.0023 0.0396
PP 0.0190 0.0209 0.0475
KPSS 0.1930 0.2119 0.4043
AC(1) 0.9866 0.9891 0.9943
AC(2) 0.9578 0.9651 0.9811

Panel B Equity risk premium
re ≡ rm − rf

E (re) 5.71%
σ (re) 15.02%

# observations 635

Notes: Panel A reports descriptive statistics for the model-free index of macroeconomic uncertainty
of Jurado et al. (2015) for h = 1, 3, 12. I report the sample mean, median, minimum, maximum,
standard deviation, skewness and kurtosis. In addition, I report the value of the Jarque-Bera
(1980) normality test, the p-values of the Augmented Dickey-Fuller (ADF - Dickey and Fuller,
1979) and Phillips-Perron (PP - Phillips and Perron, 1988) tests for unit root, the values of the
KPSS (Kwiatkowski et al., 1992) test statistic for the null hypothesis of stationarity whose critical
values are 0.347, 0.463 and 0.739 at the 10%, 5% and 1% signi�cance levels respectively as well as
autocorrelation coe�cients for the �rst and second lag. Panel B presents the mean and standard
deviation for the equity risk premium.
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Table 2.2: Frequency interpretation

Persistence level Monthly-frequency resolution

j = 1 1 - 2 months
j = 2 2 - 4 months
j = 3 4 - 8 months
j = 4 8 - 16 months
j = 5 16 - 32 months
j = 6 32 - 64 months
j = 7 64 - 128 months
j > 7 > 128 months

Notes: Frequency interpretation of the component u
(j)
t at level of persistence j in the case of monthly

time series. Each persistence level (or time-scale) is associated with a range of time horizons.

Table 2.3: Multi-scale variance ratio tests

ut (1) Persistence level
j = 1 2 3 4 5 6 7√

T
aj

(
ξ̂j − 1

2j

)
-15.7837 -8.5535 -3.9397 1.4228 12.0042 27.9433 29.4710

ut (3) Persistence level
j = 1 2 3 4 5 6 7√

T
aj

(
ξ̂j − 1

2j

)
-15.8286 -8.6762 -4.1963 1.3380 12.4039 29.4475 29.9408

ut (12) Persistence level
j = 1 2 3 4 5 6 7√

T
aj

(
ξ̂j − 1

2j

)
-15.9153 -8.9182 -4.8236 0.3004 11.4487 30.3735 33.4243

Notes: This table presents the results of the multi-scale variance ratio test for the macroeconomic
uncertainty series. The test statistic is given by

ξ̂j =
2j
(
u(j)
)ᵀ

u(j)(
X

(J)
T

)ᵀ
X

(J)
T

where
(
X

(J)
T

)ᵀ
= [uT , uT−1, . . . , u1] is the vector collecting the observations of {ut} and u(j) =[

u
(j)

2j
, . . . , u

(j)

k×2j
, . . . , u

(j)
T

]ᵀ
. Under the null hypothesis of no serial correlation, the rescaled test

statistic
√

T
aj

(
ξ̂j − 1

2j

)
where aj =

(2
j

2 )
2j22(j−1) converges in distribution to a standard normal. Bold

values reject the null hypothesis of no serial correlation at a 99% con�dence level. These results

imply that ∃j∗ ∈ {1, . . . , 7} such that u
(j∗)

k×2j∗+2j∗
= ρj∗u

(j∗)

k×2j∗
+ ε

(j∗)

k×2j∗+2j∗
.
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Table 2.4: Scale-speci�c risk exposures: 25 FF size and book-to-market portfolios

Size Book-to-market β(6) β(7) β(6:7)

Small LowBM -0.5009 (-0.7619) 0.8891 (0.8479) -0.3286 (-0.4172)
2BM -0.8292 (-1.7491) -0.0996 (-0.1249) -0.7378 (-1.3476)
3BM -1.1794 (-3.3176) -0.4014 (-0.6297) -1.0207 (-2.4147)
4BM -1.0991 (-3.1857) -0.5002 (-0.7768) -0.9490 (-2.3937)

HighBM -1.3221 (-3.5890) -0.9179 (-1.3207) -1.1782 (-2.8421)
2 LowBM -0.5355 (-0.8820) 0.7294 (0.9866) -0.5141 (-0.7595)

2BM -0.7527 (-1.8718) 0.0292 (0.0641) -0.7381 (-1.7754)
3BM -0.8812 (-3.2527) -0.6270 (-1.7518) -0.8648 (-3.0858)
4BM -1.0595 (-3.6246) -0.6058 (-1.6515) -0.9221 (-3.1867)

HighBM -1.1039 (-3.8263) -0.6804 (-1.6239) -1.0029 (-3.4157)
3 LowBM -0.4551 (-0.9432) 0.2801 (0.6001) -0.5600 (-1.0819)

2BM -0.9081 (-2.6138) -0.3593 (-0.9720) -0.9045 (-2.6204)
3BM -0.7960 (-3.3909) -0.4716 (-1.3342) -0.7760 (-3.1721)
4BM -1.0044 (-3.6011) -0.7243 (-2.2801) -0.9707 (-3.4232)

HighBM -0.9016 (-3.5585) -0.8654 (-2.3183) -0.8999 (-3.2320)
4 LowBM -0.3571 (-0.7628) 0.2956 (1.1102) -0.4984 (-1.0381)

2BM -0.7447 (-1.8865) -0.1957 (-0.5350) -0.7538 (-1.9587)
3BM -1.0108 (-2.5861) -0.6028 (-2.1452) -0.9759 (-2.5932)
4BM -1.0327 (-4.0000) -0.6834 (-2.3251) -0.9840 (-4.0463)

HighBM -1.0733 (-3.6085) -0.8784 (-3.2126) -1.0742 (-4.0577)
Big LowBM -0.3370 (-1.4223) 0.0721 (0.1365) -0.4900 (-1.8189)

2BM -0.4133 (-1.3696) -0.1998 (-0.6944) -0.4338 (-1.7910)
3BM -0.5888 (-1.7174) -0.2065 (-0.7524) -0.6023 (-1.7478)
4BM -0.6579 (-2.7198) -0.3567 (-1.0614) -0.6590 (-2.9868)

HighBM -0.5883 (-3.0566) -0.5782 (-1.1847) -0.5917 (-3.3996)

Wald-stat 232.88 34.34 314.71
p-value 0.0000 0.1008 0.0000

Notes: This table reports �rst-pass beta estimates for the Fama and French (1993) 25 size and
book-to-market portfolios (indexed by Small to Big and LowBM to HighBM). The betas are estim-
ated component-wise that is regressing low frequency components of returns on the low frequency
components of aggregate uncertainty. The associated t-statistics are based on Newey-West standard
errors with 2j − 1 lags. The last rows of the table present the Wald test-statistics and their cor-
responding p-values from testing the joint hypothesis that all component-wise exposures are equal
to zero, i.e. H0 : β1(j) = . . . = β25(j) = 0 for j = 6, 7 and j = 6 : 7 . The initial sample period is
1960:07 to 2013:05. Bold values denote statistically signi�cant beta estimates at a 95% con�dence
level.

82



Table 2.5: Cross-sectional regression: 25 FF size and book-to-market portfolios

Persistence level
j = 1 2 3 4 5 6 7 6:7

ut (1)
λ0,j 1.1321 0.9394 0.9242 0.3666 0.2484 0.1388 0.5814 0.0581

(4.2639) (4.0669) (4.3238) (1.7363) (1.1258) (0.5814) (2.3717) (0.2083)
λj 0.9062 0.3927 0.4412 -0.4048 -0.4815 -0.6867 -0.4016 -0.8315

(1.3752) (0.8124) (0.9648) (-1.3683) (-1.9901) (-4.5662) (-3.2124) (-4.3264)
price of risk 0.832% 0.534% 0.636% -0.593% -1.181% -2.296% -2.295% -2.274%

R2 9.861% 4.103% 5.734% 4.836% 19.080% 72.350% 75.271% 73.891%

se(R̂2) 0.1351 0.1034 0.1234 0.0815 0.2037 0.1378 0.2375 0.1224
p
(
R2 = 1

)
0.0074 0.0078 0.0087 0.0061 0.0102 0.2412 0.2956 0.3139

MAPE 2.075% 2.191% 2.199% 2.068% 1.818% 1.106% 1.156% 1.114%

ut (3)
λ0,j 0.8821 0.9203 0.9129 0.3682 0.2189 0.1709 0.5836 0.1109

(3.6045) (3.7609) (4.0607) (1.4875) (0.9945) (0.7260) (2.4041) (0.4097)
λj 0.1843 0.2041 0.2946 -0.3428 -0.5189 -0.7172 -0.4259 -0.8476

(0.5834) (0.6652) (0.8311) (-1.0914) (-2.1283) (-4.5630) (-3.3841) (-4.3044)
price of risk 0.407% 0.455% 0.564% -0.560% -1.277% -2.311% -2.340% -2.285%

R2 2.365% 2.982% 4.507% 4.308% 22.305% 73.295% 78.251% 74.617%

se(R̂2) 0.0837 0.0915 0.1127 0.0899 0.2204 0.1399 0.2066 0.1311
p
(
R2 = 1

)
0.0062 0.0072 0.0080 0.0051 0.0117 0.2526 0.3255 0.3229

MAPE 2.177% 2.177% 2.197% 2.074% 1.758% 1.093% 1.075% 1.079%

ut (12)
λ0,j 0.8354 0.9365 0.9217 0.2302 0.1801 0.2641 0.6407 0.2278

(4.1869) (4.1552) (4.0731) (0.9144) (0.8476) (1.1221) (2.6882) (0.8350)
λj 0.0951 0.1150 0.1318 -0.2364 -0.3230 -0.4253 -0.2284 -0.4856

(0.5941) (0.8194) (0.8588) (-1.5547) (-2.5357) (-4.5387) (-2.9019) (-4.0302)
price of risk 0.337% 0.561% 0.577% -0.855% -1.531% -2.339% -2.182% -2.336%

R2 1.615% 4.524% 4.709% 10.047% 32.070% 75.103% 68.037% 77.922%

se(R̂2) 0.0564 0.1135 0.1139 0.1446 0.2591 0.1226 0.2665 0.1147
p
(
R2 = 1

)
0.0037 0.0082 0.0083 0.0059 0.0187 0.2766 0.1920 0.3653

MAPE 2.192% 2.175% 2.187% 1.963% 1.608% 1.069% 1.315% 1.029%

# observ. 633 631 627 619 603 571 507 507

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R2 for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of H0 : R2 = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year.
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Table 2.6: Scale-speci�c risk exposures: 25 FF size and investment portfolios

Size Investment β(6) β(7) β(6:7)

Small LowINV -1.1200 (-2.2307) -0.1662 (-0.1765) -0.8675 (-1.3650)
2INV -1.1872 (-3.2284) -0.6092 (-0.9970) -1.0014 (-2.3562)
3INV -1.1366 (-2.9889) -0.3606 (-0.5467) -0.8248 (-2.0585)
4INV -0.9103 (-2.2375) -0.0737 (-0.0970) -0.6303 (-1.3769)

HighINV -0.9164 (-1.5872) 0.5206 (0.5706) -0.5485 (-0.8763)
2 LowINV -1.0506 (-2.8382) -0.2213 (-0.4769) -0.9057 (-2.2926)

2INV -1.1051 (-3.6219) -0.2644 (-0.7496) -0.9361 (-3.1464)
3INV -0.9175 (-3.2796) -0.5730 (-1.5613) -0.8206 (-2.8159)
4INV -1.0290 (-2.8218) -0.5773 (-1.5479) -0.8791 (-2.7272)

HighINV -0.4554 (-0.8509) 0.6900 (1.0437) -0.2919 (-0.5306)
3 LowINV -0.8943 (-2.8294) -0.5110 (-1.1239) -0.8393 (-2.5474)

2INV -0.9508 (-4.3582) -0.4117 (-1.5624) -0.8773 (-3.8509)
3INV -1.0130 (-3.0823) -0.6046 (-2.1461) -0.9796 (-2.9490)
4INV -0.7656 (-2.3062) -0.2933 (-0.9971) -0.6984 (-2.2268)

HighINV -0.5589 (-1.2466) 0.2557 (0.4666) -0.4893 (-1.1264)
4 LowINV -0.8714 (-2.5750) -0.1561 (-0.4289) -0.7953 (-2.2618)

2INV -0.9142 (-2.8876) -0.8326 (-5.9665) -0.9537 (-3.5627)
3INV -0.8657 (-2.6096) -0.4513 (-1.8898) -0.8334 (-2.5484)
4INV -0.7374 (-2.2310) -0.2962 (-1.0284) -0.7393 (-2.3292)

HighINV -0.5138 (-0.9971) 0.3429 (0.9388) -0.5362 (-1.0823)
Big LowINV -0.6084 (-2.0728) -0.3640 (-1.3694) -0.6866 (-2.4206)

2INV -0.4469 (-2.0689) -0.2986 (-1.0654) -0.5334 (-2.8270)
3INV -0.4509 (-2.1827) -0.3037 (-0.6296) -0.5617 (-2.8922)
4INV -0.3990 (-1.3400) -0.0047 (-0.0089) -0.4729 (-1.4432)

HighINV -0.0768 (-0.2104) 0.5503 (1.3040) -0.2040 (-0.5535)

Wald-stat 219.52 30.44 302.68
p-value 0.0000 0.2082 0.0000

Notes: This table reports �rst-pass beta estimates for the Fama and French (2015) 25 size and
investment portfolios (indexed by Small to Big and LowINV to HighINV). The betas are estimated
component-wise that is regressing low frequency components of returns on the low frequency com-
ponents of aggregate uncertainty. The associated t-statistics are based on Newey-West standard
errors with 2j − 1 lags. The last rows of the table present the Wald test-statistics and their cor-
responding p-values from testing the joint hypothesis that all component-wise exposures are equal
to zero, i.e. H0 : β1(j) = . . . = β25(j) = 0 for j = 6, 7 and j = 6 : 7. The initial sample period is
1963:07 to 2013:05. Bold values denote statistically signi�cant beta estimates at a 95% con�dence
level.
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Table 2.7: Cross-sectional regression: 25 FF size and investment portfolios

Persistence level
j = 1 2 3 4 5 6 7 6:7

ut (1)
λ0,j 1.0158 0.9535 0.9140 0.4723 0.2240 0.2322 0.7261 0.1923

(6.5483) (6.0353) (5.6282) (1.8269) (0.8921) (1.0019) (2.9121) (0.6872)
λj 0.6478 0.4381 0.3776 -0.2852 -0.4474 -0.5147 -0.4063 -0.8591

(2.1639) (1.2332) (1.0184) (-0.6915) (-1.5581) (-3.0417) (-3.8261) (-4.6799)
price of risk 0.869% 0.623% 0.571% -0.429% -1.064% -1.757% -1.927% -2.212%

R2 12.346% 6.233% 5.195% 2.940% 18.497% 51.221% 55.409% 73.006%

se(R̂2) 0.1219 0.1108 0.1149 0.0903 0.2257 0.2858 0.2299 0.0922
p
(
R2 = 1

)
0.0150 0.0092 0.0145 0.0033 0.0043 0.0529 0.0833 0.2508

MAPE 1.983% 2.064% 2.097% 2.039% 1.663% 0.924% 1.364% 0.985%

ut (3)
λ0,j 0.7545 0.8693 0.8571 0.4515 0.2002 0.2605 0.7391 0.2531

(3.5739) (4.6675) (5.0998) (1.6789) (0.8113) (1.1360) (3.0064) (0.9309)
λj 0.0382 0.1630 0.1918 -0.2678 -0.4820 -0.5338 -0.4400 -0.8672

(0.1269) (0.5949) (0.6432) (-0.7210) (-1.7000) (-3.0814) (-4.1403) (-4.6254)
price of risk 0.082% 0.343% 0.377% -0.467% -1.168% -1.775% -2.028% -2.227%

R2 0.111% 1.895% 2.264% 3.476% 22.282% 52.221% 61.365% 74.027%

se(R̂2) 0.0189 0.0697 0.0784 0.1015 0.2447 0.2854 0.2099 0.0934
p
(
R2 = 1

)
0.0055 0.0063 0.0117 0.0031 0.0043 0.0565 0.1119 0.2645

MAPE 2.110% 2.126% 2.129% 2.021% 1.586% 0.915% 1.256% 0.963%

ut (12)
λ0,j 0.9153 0.8810 0.8246 0.2888 0.1573 0.3194 0.8018 0.4021

(5.7966) (5.1554) (4.9691) (1.0854) (0.6689) (1.3954) (3.3523) (1.4791)
λj 0.1566 0.0895 0.0634 -0.2112 -0.3025 -0.3290 -0.2238 -0.4750

(1.0985) (0.7131) (0.4990) (-1.2331) (-2.1389) (-3.3864) (-3.2885) (-4.5760)
price of risk 0.539% 0.406% 0.287% -0.832% -1.448% -1.867% -1.771% -2.166%

R2 4.745% 2.647% 1.316% 11.031% 34.222% 57.812% 46.790% 70.012%

se(R̂2) 0.0969 0.0812 0.0584 0.1772 0.2816 0.2693 0.2467 0.1424
p
(
R2 = 1

)
0.0087 0.0094 0.0121 0.0021 0.0053 0.0843 0.0715 0.2089

MAPE 2.108% 2.114% 2.133% 1.878% 1.381% 0.849% 1.459% 1.078%

# observ. 598 596 592 584 568 536 472 472

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R2 for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of H0 : R2 = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year.
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Table 2.8: Scale-speci�c risk exposures: 25 FF book-to-market and operating pro�t-
ability portfolios

Book-to-market OP β(6) β(7) β(6:7)

LowBM LowOP -0.1602 (-0.2770) 0.8929 (1.6452) -0.1982 (-0.2797)
2OP -0.2790 (-0.4899) 0.6963 (1.6806) -0.3823 (-0.5860)
3OP -0.0074 (-0.0239) 0.4036 (1.1918) -0.1426 (-0.4149)
4OP -0.0794 (-0.2298) 0.2298 (0.6090) -0.2949 (-0.8174)

HighOP -0.4692 (-2.0722) 0.0888 (0.2289) -0.5698 (-2.2028)
2 LowOP -0.5683 (-1.3027) 0.5149 (1.5602) -0.4956 (-1.0818)

2OP -0.4982 (-1.5679) 0.1717 (0.4596) -0.5130 (-2.1381)
3OP -0.7042 (-1.8614) -0.2990 (-0.9634) -0.7192 (-1.8243)
4OP -0.4309 (-1.5860) -0.2366 (-1.1351) -0.4553 (-2.0486)

HighOP -0.5134 (-1.3984) -0.2084 (-0.7791) -0.4887 (-1.7064)
3 LowOP -0.7152 (-1.8557) -0.0756 (-0.2187) -0.7105 (-1.6405)

2OP -0.7224 (-3.0868) -0.3823 (-1.6974) -0.6556 (-3.0527)
3OP -0.8449 (-2.2236) -0.5333 (-2.5179) -0.8639 (-2.3189)
4OP -0.7867 (-1.8388) -0.2780 (-0.8720) -0.6926 (-1.6636)

HighOP -0.5035 (-1.5997) 0.0093 (0.0362) -0.3667 (-1.4344)
4 LowOP -0.9043 (-4.9999) -0.3856 (-1.6370) -0.8006 (-4.8099)

2OP -0.9072 (-4.1810) -0.5199 (-2.1765) -0.8270 (-4.2185)
3OP -0.8659 (-1.9691) -0.3979 (-1.0391) -0.7247 (-1.6776)
4OP -0.8016 (-3.3689) -0.2106 (-0.8644) -0.6879 (-3.1197)

HighOP -0.8364 (-2.6551) -0.5127 (-1.5724) -0.8108 (-3.4822)
HighBM LowOP -0.7207 (-3.4777) -0.4234 (-1.4925) -0.6597 (-3.5634)

2OP -1.1440 (-4.8047) -0.7773 (-3.7088) -1.0345 (-5.0630)
3OP -0.5849 (-1.7228) -0.1924 (-0.5618) -0.4100 (-1.4220)
4OP -1.2605 (-3.7818) -0.6525 (-1.4035) -0.9647 (-3.0400)

HighOP -1.6851 (-2.9725) -1.3934 (-1.6294) -1.6050 (-2.3655)

Wald-stat 109.40 27.32 136.18
p-value 0.0000 0.3399 0.0000

Notes: This table reports �rst-pass beta estimates for the Fama and French (2015) 25 book-to-
market and operating pro�tability portfolios (indexed by LowBM to HighBM and LowOP to Hig-
hOP). The betas are estimated component-wise that is regressing low frequency components of
returns on the low frequency components of aggregate uncertainty. The associated t-statistics are
based on Newey-West standard errors with 2j − 1 lags. The last rows of the table present the Wald
test-statistics and their corresponding p-values from testing the joint hypothesis that all component-
wise exposures are equal to zero, i.e. H0 : β1(j) = . . . = β25(j) = 0 for j = 6, 7 and j = 6 : 7.
The initial sample period is 1963:07 to 2013:05. Bold values denote statistically signi�cant beta
estimates at a 95% con�dence level.
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Table 2.9: Cross-sectional regression: 25 FF book-to-market and operating pro�tability
portfolios

Persistence level
j = 1 2 3 4 5 6 7 6:7

ut (1)
λ0,j 1.3931 1.1400 0.6585 0.1557 0.3432 0.2438 0.6235 0.2989

(4.8391) (4.3727) (3.6163) (0.6980) (1.6182) (1.0298) (2.7259) (1.1748)
λj 1.8470 1.0794 0.1037 -0.5246 -0.2538 -0.4761 -0.4767 -0.6375

(3.4545) (2.2878) (0.3355) (-2.3075) (-1.3845) (-2.9832) (-3.3816) (-3.3535)
price of risk 1.625% 1.362% 0.171% -1.118% -0.760% -2.101% -2.806% -2.322%

R2 23.931% 16.801% 0.271% 11.607% 5.392% 39.193% 57.417% 39.300%

se(R̂2) 0.0647 0.1116 0.0174 0.0844 0.0785 0.1769 0.1781 0.1418
p
(
R2 = 1

)
0.0128 0.0041 0.0074 0.0146 0.0130 0.0236 0.0193 0.0151

MAPE 2.252% 2.496% 2.726% 2.519% 2.513% 2.140% 1.778% 2.231%

ut (3)
λ0,j 1.3892 1.3460 0.7437 0.2136 0.3210 0.2632 0.6530 0.3255

(5.4807) (4.5328) (3.9400) (0.9783) (1.4982) (1.1230) (2.8758) (1.2899)
λj 0.9348 0.8626 0.1983 -0.3984 -0.2861 -0.5065 -0.4846 -0.6781

(3.4858) (2.3421) (0.7393) (-1.8920) (-1.5146) (-2.9861) (-3.3262) (-3.3478)
price of risk 2.070% 1.557% 0.417% -0.919% -0.846% -2.120% -2.788% -2.376%

R2 38.839% 21.961% 1.611% 7.841% 6.678% 39.899% 56.667% 41.156%

se(R̂2) 0.1442 0.1530 0.0460 0.0796 0.0859 0.1784 0.1823 0.1465
p
(
R2 = 1

)
0.0173 0.0046 0.0068 0.0132 0.0131 0.0229 0.0169 0.0137

MAPE 2.086% 2.418% 2.721% 2.579% 2.475% 2.138% 1.835% 2.190%

ut (12)
λ0,j 1.0909 1.1320 0.8136 0.2038 0.2507 0.3190 0.6946 0.3887

(4.5646) (4.5708) (4.3255) (0.9213) (1.1215) (1.3921) (3.0863) (1.5558)
λj 0.4042 0.3133 0.1285 -0.2004 -0.2147 -0.3100 -0.2926 -0.4199

(2.5614) (2.1199) (1.1203) (-2.0143) (-2.0058) (-3.0097) (-3.1887) (-3.3174)
price of risk 1.217% 1.343% 0.645% -1.002% -1.167% -2.179% -2.735% -2.499%

R2 13.426% 16.329% 3.864% 9.321% 12.726% 42.155% 54.525% 45.510%

se(R̂2) 0.0834 0.1282 0.0712 0.0864 0.1070 0.1781 0.1882 0.1547
p
(
R2 = 1

)
0.0092 0.0049 0.0067 0.0131 0.0134 0.0231 0.0103 0.0110

MAPE 2.595% 2.554% 2.678% 2.558% 2.424% 2.116% 1.915% 2.083%

# observ. 598 596 592 584 568 536 472 472

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R2 for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of H0 : R2 = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year. 87



Table 2.10: Scale-speci�c risk exposures: 25 FF size and variance portfolios

Size Variance β(6) β(7) β(6:7)

Small LowVAR -1.1606 (-3.5863) -0.7345 (-1.6874) -0.9466 (-2.9859)
2VAR -1.2850 (-2.8327) -0.4523 (-0.6993) -1.0397 (-2.1856)
3VAR -1.3079 (-2.4115) -0.0177 (-0.0230) -0.9911 (-1.7242)
4VAR -1.2232 (-1.8982) 0.2793 (0.2828) -0.8966 (-1.2095)

HighVAR -0.9090 (-1.2744) 0.7338 (0.5819) -0.4671 (-0.5643)
2 LowVAR -0.9340 (-4.3935) -0.7218 (-2.5135) -0.8440 (-4.3259)

2VAR -1.0235 (-2.6018) -0.2386 (-0.5293) -0.8386 (-2.1262)
3VAR -0.9767 (-2.3317) -0.0206 (-0.0416) -0.7478 (-1.8825)
4VAR -0.9362 (-1.5825) 0.4148 (0.5140) -0.7424 (-1.1184)

HighVAR -0.7694 (-1.1172) 0.6201 (0.7757) -0.5766 (-0.7060)
3 LowVAR -0.8350 (-4.4499) -0.7499 (-3.2149) -0.8037 (-5.1894)

2VAR -0.9104 (-3.0623) -0.3883 (-1.5002) -0.7994 (-3.0519)
3VAR -0.9149 (-2.5530) -0.1175 (-0.3102) -0.7744 (-2.2277)
4VAR -0.9450 (-1.8311) -0.0912 (-0.1553) -0.8452 (-1.5384)

HighVAR -0.6686 (-1.0818) 0.5420 (0.6846) -0.5754 (-0.8017)
4 LowVAR -0.9398 (-5.0146) -0.7900 (-4.0962) -0.9152 (-7.2006)

2VAR -0.8017 (-3.0439) -0.4354 (-2.9370) -0.7400 (-3.6318)
3VAR -0.7233 (-2.1036) -0.1906 (-0.8387) -0.6923 (-2.1734)
4VAR -0.7092 (-1.4634) 0.0082 (0.0240) -0.6789 (-1.4322)

HighVAR -0.7757 (-1.2303) 0.2322 (0.4126) -0.7986 (-1.1640)
Big LowVAR -0.5397 (-4.9913) -0.4779 (-1.1703) -0.5785 (-6.2919)

2VAR -0.3767 (-1.5519) -0.0298 (-0.0660) -0.5307 (-2.2999)
3VAR -0.3656 (-1.6518) -0.0278 (-0.0777) -0.4467 (-2.1484)
4VAR -0.1042 (-0.2670) 0.2740 (0.7075) -0.2174 (-0.5725)

HighVAR -0.3852 (-0.6956) 0.1239 (0.3307) -0.4943 (-0.8780)

Wald-stat 215.32 25.07 366.01
p-value 0.0000 0.4582 0.0000

Notes: This table reports �rst-pass beta estimates for the Fama and French (2016) 25 size and
variance portfolios (indexed by Small to Big and LowVAR to HighVAR). The betas are estimated
component-wise that is regressing low frequency components of returns on the low frequency com-
ponents of aggregate uncertainty. The associated t-statistics are based on Newey-West standard
errors with 2j − 1 lags. The last rows of the table present the Wald test-statistics and their cor-
responding p-values from testing the joint hypothesis that all component-wise exposures are equal
to zero, i.e. H0 : β1(j) = . . . = β25(j) = 0 for j = 6, 7 and j = 6 : 7. The initial sample period is
1963:07 to 2013:05. Bold values denote statistically signi�cant beta estimates at a 95% con�dence
level.
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Table 2.11: Cross-sectional regression: 25 FF size and variance portfolios

Persistence level
j = 1 2 3 4 5 6 7 6:7

ut (1)
λ0,j 1.0913 0.8877 0.8075 0.6649 0.7690 0.1962 0.7476 -0.1131

(6.4114) (5.3266) (5.0955) (3.4745) (4.0675) (0.8494) (2.9177) (-0.3569)
λj 0.8990 0.3657 0.2113 -0.0189 0.1029 -0.5079 -0.3932 -1.2460

(1.5366) (0.7471) (0.4787) (-0.0627) (0.4269) (-2.9246) (-1.9058) (-5.3519)
price of risk 1.380% 0.689% 0.460% -0.063% 0.452% -1.809% -2.054% -2.908%

R2 13.822% 3.421% 1.524% 0.028% 1.423% 20.607% 27.355% 54.840%

se(R̂2) 0.1582 0.0912 0.0661 0.0098 0.0692 0.1898 0.1976 0.1644
p
(
R2 = 1

)
0.0002 0.0014 0.0017 0.0018 0.0017 0.0072 0.0004 0.0721

MAPE 2.825% 2.986% 3.008% 2.953% 3.008% 2.371% 2.595% 1.827%

ut (3)
λ0,j 0.8787 0.8114 0.7996 0.6752 0.7336 0.2171 0.7602 -0.0194

(4.7070) (4.6350) (4.9123) (3.4839) (3.9278) (0.9437) (3.0352) (-0.0624)
λj 0.2011 0.1271 0.1406 -0.0070 0.0726 -0.5390 -0.4439 -1.2545

(0.6176) (0.4227) (0.4273) (-0.0263) (0.2982) (-2.9948) (-2.0740) (-5.1685)
price of risk 0.591% 0.396% 0.420% -0.027% 0.313% -1.844% -2.186% -2.918%

R2 2.538% 1.128% 1.272% 0.005% 0.681% 21.427% 30.986% 55.231%

se(R̂2) 0.0828 0.0549 0.0615 0.0042 0.0479 0.1928 0.1940 0.1699
p
(
R2 = 1

)
0.0013 0.0014 0.0016 0.0017 0.0018 0.0079 0.0022 0.0711

MAPE 2.998% 2.992% 3.010% 2.959% 3.006% 2.342% 2.468% 1.832%

ut (12)
λ0,j 0.6689 0.7507 0.7887 0.6118 0.6018 0.2404 0.8178 0.1788

(5.1362) (4.6092) (4.8082) (3.1967) (3.2878) (0.9901) (3.5698) (0.5214)
λj -0.0194 0.0323 0.0544 -0.0316 -0.0284 -0.3763 -0.2151 -0.7293

(-0.1144) (0.2220) (0.3802) (-0.2502) (-0.2128) (-3.5909) (-1.7500) (-4.0420)
price of risk -0.085% 0.199% 0.372% -0.248% -0.210% -2.120% -1.987% -3.067%

R2 0.052% 0.285% 0.999% 0.445% 0.307% 28.315% 25.623% 61.006%

se(R̂2) 0.0098 0.0271 0.0545 0.0395 0.0321 0.2013 0.2107 0.1278
p
(
R2 = 1

)
0.0031 0.0019 0.0016 0.0020 0.0021 0.0110 0.0004 0.0694

MAPE 2.914% 2.973% 3.007% 2.909% 2.921% 2.227% 2.654% 1.775%

# observ. 598 596 592 584 568 536 472 472

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R2 for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of H0 : R2 = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year.
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Table 2.12: Tests of equality of cross-sectional R2's

h = 1 h = 3 h = 12

∆u
(6)
t ∆u

(6:7)
t ∆u

(6)
t ∆u

(6:7)
t ∆u

(6)
t ∆u

(6:7)
t

Panel A
R2 62.416% 73.891% 63.443% 74.617% 67.543% 77.922%

se(R̂2) 0.2183 0.1224 0.2211 0.1311 0.2049 0.1147
2.5% CI

(
R2
)

0.1803 0.5167 0.2273 0.5103 0.2984 0.5616
97.5% CI

(
R2
)

1.0000 0.9701 1.0000 1.0000 1.0000 1.0000
di�erence -0.1148 -0.1117 -0.1038

p
(
R2

(6) = R2
(6:7)

)
0.4089 0.3804 0.5598

Panel B
R2 68.268% 73.006% 69.186% 74.027% 72.563% 70.012%

se(R̂2) 0.1968 0.0922 0.1942 0.0934 0.1742 0.1424
2.5% CI

(
R2
)

0.3267 0.5629 0.3403 0.5836 0.4144 0.4361
97.5% CI

(
R2
)

1.0000 0.9265 1.0000 0.9361 1.0000 0.9728
di�erence -0.0474 -0.0484 0.0255

p
(
R2

(6) = R2
(6:7)

)
0.8115 0.7930 0.9196

Panel C
R2 50.719% 39.300% 51.061% 41.156% 51.640% 45.510%

se(R̂2) 0.1454 0.1418 0.1477 0.1465 0.1522 0.1547
2.5% CI

(
R2
)

0.2384 0.1188 0.2391 0.1198 0.2457 0.1517
97.5% CI

(
R2
)

0.7846 0.6689 0.8047 0.6938 0.8269 0.7596
di�erence 0.1142 0.0991 0.0613

p
(
R2

(6) = R2
(6:7)

)
0.1482 0.1515 0.1950

Panel D
R2 32.819% 54.840% 33.656% 55.231% 39.255% 61.006%

se(R̂2) 0.2250 0.1644 0.2260 0.1699 0.2201 0.1278
2.5% CI

(
R2
)

0.0000 0.2588 0.0000 0.2565 0.0000 0.3677
97.5% CI

(
R2
)

0.7946 0.8670 0.7975 0.9318 0.8191 0.8655
di�erence -0.2202 -0.2158 -0.2175

p
(
R2

(6) = R2
(6:7)

)
0.1119 0.1220 0.3680

Notes: This table reports tests of equality of the cross-sectional R2's of the two competing models

based on the factors ∆u
(6)
t and ∆u

(6:7)
t which are estimated over the same period (Panel A: #ob-

serv=507, Panels B-D: #observ=472). I report the sample cross-sectional R2 and its standard error
for each model, the 95% con�dence interval for R2 which is obtained by pivoting the cdf, the di�er-
ence between the R2's and the p-value for the (normal) test of H0 : 0 < R2

(6) = R2
(6:7) < 1 denoted

as p
(
R2

(6) = R2
(6:7)

)
. The reported p-values are two-tailed p-values. The test assets include: the 25

FF size and book-to-market portfolios (Panel A), the 25 FF size and investment portfolios (Panel
B), the 25 FF book-to-market and operating pro�tability portfolios (Panel C) and the 25 FF size
and variance portfolios (Panel D). 90



Table 2.13: Benchmark results

λ0 λMKT λSMB λHML λRMW λCMA
R2

p
(
R2 = 1

)
se(R̂2)

Panel A 25 FF size and book-to-market
FF3 1.1103 -0.5860 0.1778 0.4138 - - 66.560% 0.0001

(3.7619) (-1.6140) (1.2666) (3.0169) 0.1460
[3.3791] [-1.4863] [1.2722] [3.0206]

FF5 0.9421 -0.4611 0.2564 0.3687 0.5107 -0.0142 77.950% 0.0007
(3.1163) (-1.2548) (1.8439) (2.6944) (2.7784) (-0.0575) 0.1084
[2.5523] [-1.0863] [1.8403] [2.5476] [2.2142] [-0.0359]

Panel B 25 FF size and investment
FF3 0.9590 -0.3379 0.2109 0.6055 - - 74.415% 0.0023

(3.2698) (-0.9306) (1.4811) (3.3346) 0.1099
[2.7528] [-0.8470] [1.4717] [3.1248]

FF5 0.8245 -0.2109 0.2407 0.3824 0.1107 0.3576 75.834% 0.0004
(2.4468) (-0.5328) (1.6776) (1.6740) (0.5787) (3.6348) 0.1091
[1.9450] [-0.4484] [1.5803] [1.2581] [0.4088] [3.5325]

Panel C 25 FF book-to-market and operating pro�tability
FF3 0.1686 0.3696 0.0247 0.5255 - - 71.126% 0.0106

(0.3580) (0.7267) (0.0874) (3.3733) 0.1405
[0.2695] [0.5638] [0.0679] [3.3014]

FF5 0.7580 -0.2738 1.0895 0.2237 0.5063 -0.0583 93.405% 0.9534
(1.4494) (-0.4985) (2.7552) (1.4268) (3.5418) (-0.2933) 0.0532
[1.1686] [-0.4125] [2.2228] [1.3061] [2.9390] [-0.2426]

Panel D 25 FF size and variance
FF3 0.1980 0.3438 -0.0091 0.9930 - - 47.852% 0.0000

(1.1010) (1.2297) (-0.0568) (4.1240) 0.1593
[0.7195] [1.0642] [-0.0596] [3.5421]

FF5 1.1941 -0.5890 0.2995 -0.7029 1.4874 -1.6425 86.040% 0.0792
(6.2037) (-2.0752) (1.9802) (-2.4626) (7.3199) (-5.9008) 0.0644
[3.2846] [-1.4610] [1.7875] [-1.4275] [4.1041] [-3.1551]

Notes: This table reports the estimates for the zero-beta excess return and the price of risk for
each factor in the Fama and French (1993) three-factor model (FF3) and the Fama and French
(2015) �ve-factor model (FF5) along with the corresponding Fama-MacBeth (1973) test statistics
in parentheses. The factors include the value-weight excess return on the market portfolio (MKT),
the size factor (SMB, small minus big), the value factor (HML, high minus low book-to-market), the
operating pro�tability factor (RMW, robust minus weak pro�tability) and the investment factor
(CMA, conservative minus aggressive investment). In addition, I report the sample R2 for each
cross-sectional regression along with its standard error and the p-value for the Kan et al. (2013)
speci�cation test of H0 : R2 = 1. Finally, I report the Kan et al. (2013) misspeci�cation-robust
test statistics in square brackets.
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Table 2.14: Equity risk premium predictability

Panel A: scale-wise predictive regressions

Time-scale / Persistence level
j = 1 2 3 4 5 6 7

ut (1) βj 17.0671 4.9732 -1.3015 1.2821 -1.4753 3.0551 0.3395
NW t-stat (1.2109) (0.6536) (-0.1805) (0.3057) (-0.5219) (3.8358) (0.1636)
HH t-stat (1.3849) (0.6896) (-0.1735) (0.3544) (-0.5445) (3.4481) (0.2996)
Adj.R2 (%) [0.19%] [0.08%] [0.03%] [0.10%] [0.40%] [4.25%] [0.12%]

ut (3) βj 14.4789 8.0920 -1.2110 1.5114 -1.4172 2.8094 0.4748
NW t-stat (0.9460) (1.0158) (-0.1697) (0.3622) (-0.5530) (3.8691) (0.2462)
HH t-stat (1.1196) (1.0802) (-0.1647) (0.4063) (-0.5929) (3.2111) (0.4812)
Adj.R2 (%) [0.13%] [0.21%] [0.03%] [0.16%] [0.43%] [4.42%] [0.28%]

ut (12) βj 12.8635 21.4342 -0.5482 3.2158 -1.2089 4.2765 1.2757
NW t-stat (0.3885) (1.3916) (-0.0440) (0.4033) (-0.2845) (3.7904) (0.4530)
HH t-stat (0.4795) (1.7927) (-0.0458) (0.4490) (-0.3339) (3.0029) (1.0020)
Adj.R2 (%) [0.02%] [0.34%] [0.00%] [0.23%] [0.12%] [4.56%] [1.00%]

# observations 632 628 620 604 572 508 380

Panel B: long-horizon predictive regressions (forward/backward aggregates)

Horizon
q = 16 32 48 64 96 128 192

ut (1) βq -0.0515 1.1232 2.3776 2.8096 3.8981 5.1908 2.7207
NW t-stat (-0.0313) (0.6605) (1.3904) (2.4831) (4.4502) (10.1284) (4.4648)

t/
√
T {-0.0040} {0.1158} {0.2717} {0.3597} {0.6867} {1.4034∗∗} {0.4223}

Adj.R2 (%) [-0.16%] [1.15%] [6.73%] [11.32%] [31.99%] [66.35%] [14.90%]

ut (3) βq -0.1223 0.9830 2.2031 2.6418 3.7424 4.8934 2.1587
NW t-stat (-0.0810) (0.6294) (1.3859) (2.4979) (4.4820) (10.1448) (4.2962)

t/
√
T {-0.0103} {0.1100} {0.2739} {0.3666} {0.7174} {1.4596∗∗} {0.3664}

Adj.R2 (%) [-0.16%] [1.03%] [6.83%] [11.71%] [33.93%] [68.09%] [11.57%]

ut (12) βq -0.0663 2.1299 4.0386 4.6292 6.0664 7.0527 0.4706
NW t-stat (-0.0325) (1.2430) (2.8174) (5.2286) (6.0294) (7.9741) (1.0098)

t/
√
T {-0.0037} {0.1672} {0.3734} {0.4871} {0.9069∗} {1.5274∗∗} {0.0651}

Adj.R2 (%) [-0.16%] [2.56%] [12.11%] [19.08%] [45.12%] [70.03%] [0.03%]

Notes: Panel A reports the results of scale-wise predictive regressions of the components of S&P
500 index excess returns on the components of macroeconomic uncertainty. For each regression,
the table reports OLS estimates of the regressors, Newey-West (1987) and Hansen-Hodrick (1980)
corrected t-statistics with 2j − 1 lags in parentheses and adjusted R2 statistics in square brackets.
Panel B presents the results of regressions (with an intercept) of forward/backward aggregates
over a horizon q. Panel B reports OLS estimates of the regressors, Newey-West (1987) corrected
t-statistics with 2 × (q − 1) lags in parentheses, Valkanov's (2003) rescaled test statistics in curly
brackets and adjusted R2 statistics in square brackets. Signi�cance at the 5%, 2.5% and 1% level
based on the rescaled t-statistic is indicated by ∗, ∗∗ and ∗∗∗ respectively.
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Table 2.15b: Monotonicity tests for scale-speci�c risk exposures

Panel D Book-to-Market Top−bottom MR
Low 2 3 4 High p-value p-value

Average Return 0.4200 0.5385 0.5701 0.6902 0.8421 0.0033 0.0078
For returns - H0 : R5 ≤ . . . ≤ R1 vs H1 : R5 > . . . > R1

For risk-loadings - H0 : β
(j)
5 ≥ . . . ≥ β(j)

1 vs H1 : β
(j)
5 < . . . < β

(j)
1

β(6) h = 1 -0.3088 -0.5302 -0.7102 -0.8052 -0.7867 0.0112 0.0462

β(6) h = 3 -0.2374 -0.4622 -0.6278 -0.7258 -0.7093 0.0126 0.0418

β(6) h = 12 -0.1874 -0.5846 -0.8600 -1.0516 -1.0232 0.0142 0.0344

β(6:7) h = 1 -0.4482 -0.5226 -0.7029 -0.7677 -0.7427 0.2038 0.0978

β(6:7) h = 3 -0.3534 -0.4507 -0.6197 -0.6895 -0.6731 0.1716 0.0782

β(6:7) h = 12 -0.3967 -0.5988 -0.8744 -1.0284 -1.0160 0.1292 0.0404

Panel E Investment Top−bottom MR
Low 2 3 4 High p-value p-value

Average Return 0.7585 0.5776 0.5203 0.5129 0.4030 0.0034 0.0240
For returns - H0 : R5 ≥ . . . ≥ R1 vs H1 : R5 < . . . < R1

For risk-loadings - H0 : β
(j)
5 ≤ . . . ≤ β(j)

1 vs H1 : β
(j)
5 > . . . > β

(j)
1

β(6) h = 1 -0.7509 -0.5922 -0.5566 -0.4761 -0.1936 0.0050 0.0052

β(6) h = 3 -0.6774 -0.5274 -0.4775 -0.3953 -0.1201 0.0060 0.0034

β(6) h = 12 -0.9480 -0.7339 -0.6222 -0.4407 0.0781 0.0076 0.0034

β(6:7) h = 1 -0.7146 -0.6328 -0.6323 -0.5333 -0.2676 0.0394 0.0330

β(6:7) h = 3 -0.6385 -0.5644 -0.5431 -0.4425 -0.1809 0.0336 0.0186

β(6:7) h = 12 -0.8805 -0.8331 -0.7714 -0.5562 -0.0329 0.0294 0.0128

Panel F Dividend Yield Top−bottom MR
Low 2 3 4 High p-value p-value

Average Return 0.4520 0.5479 0.5028 0.6402 0.6058 0.1909 0.3302
For returns - H0 : R5 ≤ . . . ≤ R1 vs H1 : R5 > . . . > R1

For risk-loadings - H0 : β
(j)
5 ≥ . . . ≥ β(j)

1 vs H1 : β
(j)
5 < . . . < β

(j)
1

β(6) h = 1 0.0139 -0.4367 -0.6084 -0.6519 -1.0399 0.0002 0.0044

β(6) h = 3 0.0670 -0.3637 -0.5436 -0.5818 -0.9337 0.0004 0.0058

β(6) h = 12 0.3794 -0.4203 -0.7676 -0.8340 -1.3937 0.0004 0.0048

β(6:7) h = 1 -0.1342 -0.4913 -0.5693 -0.6434 -1.0320 0.0078 0.0022

β(6:7) h = 3 -0.0578 -0.4056 -0.5052 -0.5662 -0.9306 0.0064 0.0034

β(6:7) h = 12 0.1636 -0.5196 -0.7459 -0.8461 -1.4417 0.0022 0.0030

Notes: This table presents the scale-speci�c risk exposures with respect to the factors ∆u
(6)
t and

∆u
(6:7)
t for h = 1, 3, 12 for various one-way portfolio sorts and the corresponding monotonicity

tests. The sorting variables are: book-to-market (Panel D), investment (Panel E) and dividend-
yield (Panel F). The �rst row in each panel reports average excess returns (in percent per month) for
the test assets. The �nal column in each panel presents the p-value for the monotonic relation (MR)
test. Similarly, the penultimate column presents the bootstrap p-value for the top-minus-bottom
di�erence in the corresponding returns and scale-wise betas.
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Appendix 2A: Results for Raw Series and Previous Studies

Table 2A.1: Cross-sectional regressions using the raw series of aggregate uncertainty

Panel A 25 FF size and book-to-market
λ0 λu R2 p

(
R2 = 0

)
MAPE

ut (1) 0.6038 (2.0306) -0.1844 (-0.3039) 0.52% 0.8580 2.12%
ut (3) 0.6091 (2.0568) -0.1251 (-0.2883) 0.55% 0.8343 2.12%
ut (12) 0.3370 (1.2950) -0.2794 (-1.1998) 7.68% 0.5173 1.95%

Panel B 25 FF size and investment
λ0 λu R2 p

(
R2 = 0

)
MAPE

ut (1) 0.7411 (3.3525) 0.0398 (0.0828) 0.04% 0.9548 2.09%
ut (3) 0.5821 (2.2972) -0.1497 (-0.3915) 1.10% 0.7443 2.04%
ut (12) 0.3729 (1.4918) -0.2089 (-1.0464) 7.62% 0.4250 1.91%

Panel C 25 FF book-to-market and operating pro�tability
λ0 λu R2 p

(
R2 = 0

)
MAPE

ut (1) 0.4466 (1.9274) -0.2766 (-0.6264) 0.80% 0.8515 2.72%
ut (3) 0.7573 (3.1434) 0.1737 (0.5037) 0.66% 0.8285 2.73%
ut (12) 0.3585 (1.6464) -0.1667 (-1.0829) 2.76% 0.6558 2.69%

Panel D 25 FF size and variance
λ0 λu R2 p

(
R2 = 0

)
MAPE

ut (1) 0.8117 (3.9496) 0.1809 (0.3826) 1.04% 0.7324 2.97%
ut (3) 0.7505 (3.7272) 0.0635 (0.1896) 0.26% 0.8617 2.95%
ut (12) 0.5941 (3.0081) -0.0560 (-0.3189) 0.66% 0.8042 2.86%

Notes: This table reports the estimates for the zero-beta excess return (λ0) and the price of risk
(λu) for the innovations in the raw series of aggregate uncertainty along with the corresponding
Fama-MacBeth (1973) test statistics in parentheses. The innovations are the residuals from an
AR (1) model �tted to the factor. The test assets include: the 25 FF size and book-to-market
portfolios (Panel A), the 25 FF size and investment portfolios (Panel B), the 25 FF book-to-market
and operating pro�tability portfolios (Panel C) and the 25 FF size and variance portfolios (Panel
D). In addition, I report the sample R2 for each cross-sectional regression, the p-value for the Kan
et al. (2013) test of H0 : R2 = 0 denoted as p

(
R2 = 0

)
and the mean absolute pricing error (MAPE)

across all securities expressed in percent per year.
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Table 2A.2: Long-horizon predictive regressions - forward aggregates only

Horizon
q = 16 32 48 64 96 128 192

ut (1) βq -0.1226 -0.0580 0.0539 0.1835 0.5760 1.2656 2.9976
NW t-stat (-0.5098) (-0.1664) (0.1110) (0.2624) (0.8686) (1.9620) (4.0198)

t/
√
T {-0.0636} {-0.0228} {0.0181} {0.0463} {0.1219} {0.2224} {0.5108}

Adj.R2 (%) [0.254%] [-0.112%] [-0.135%] [0.063%] [1.544%] [5.671%] [27.141%]

ut (3) βq -0.1284 -0.0750 0.0254 0.1473 0.5213 1.2026 2.8640
NW t-stat (-0.5715) (-0.2322) (0.0562) (0.2255) (0.8168) (1.8767) (3.9568)

t/
√
T {-0.0717} {-0.0316} {0.0092} {0.0403} {0.1196} {0.2299} {0.5387}

Adj.R2 (%) [0.364%] [-0.061%] [-0.162%] [0.006%] [1.481%] [6.046%] [29.310%]

ut (12) βq -0.2248 -0.0661 0.2016 0.6129 1.4199 2.5474 5.1227
NW t-stat (-0.6845) (-0.1541) (0.3495) (0.8109) (1.7440) (2.5685) (4.4368)

t/
√
T {-0.0823} {-0.0182} {0.0478} {0.1178} {0.2322} {0.3545} {0.7739}

Adj.R2 (%) [0.531%] [-0.131%] [0.077%] [1.352%] [5.818%] [13.472%] [46.187%]

Notes: This table presents the results of long-horizon predictive regressions over a horizon q using
only forward aggregates, i.e. regressions of the form

re
t+1,t+q

= aq + βqut + ηt,t+q

where re
t+1,t+q

=
∑q

i=1 r
e
t+i denotes excess market returns between t + 1 and t + q and ut macro

uncertainty at time t. For each regression, the table reports OLS estimates of the regressors,
Newey-West (1987) corrected t-statistics with q lags in parentheses, Valkanov's (2003) rescaled test
statistics in curly brackets and adjusted R2 statistics in square brackets. Signi�cance at the 5%,
2.5% and 1% level based on the rescaled t-statistic is indicated by ∗, ∗∗ and ∗∗∗ respectively. For
the right-tail critical values of t/

√
T at various percentiles see the Internet Appendix.
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Appendix 2B: Robustness Checks and Additional Results

This Appendix contains additional results and robustness checks that are omitted in the main

chapter for brevity.

Same burn-in period

In the main results I discard the �rst 2j − 1 observations for each scale, that is, I use a burn-in

speci�c period for each component and rely on the maximum number of observations possible for

each time-scale to conduct statistical and economic inferences. Here I adopt a di�erent approach

to initialize the �ltering procedure. Speci�cally, I use the same burn-in period for all components

which implies a reduction of the e�ective sample for j ∈ {1, 2, 3, 4, 5, 6}. Tables 2B.1 through 2B.4

present the results from the cross-sectional regressions for the same sub-period. The results for all

test assets remain quantitatively similar.

Uncertainty shocks with persistence greater than 128 months

I report the results for low-frequency uncertainty shocks with persistence greater than 27 = 128

months (see Table 2B.5). The factor ∆u
(>7)
t cannot explain the cross-sectional variation in the

25 FF size and book-to-market portfolios, the 25 FF size and investment and the 25 FF size and

variance portfolios. Also, the null that the model is correctly speci�ed (i.e., H0 : R2 = 1) is strongly

rejected. In contrast, low-frequency uncertainty shocks with persistence greater than 128 months

are priced in the cross-section of the 25 FF book-to-market and operating pro�tability portfolios.

However, the estimates of the zero-beta excess return are statistically signi�cant at the 1% level for

all h = 1, 3, 12. Also, the factor has a higher MAPE in comparison with ∆u
(6:7)
t and the speci�cation
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test rejects the hypothesis of a perfect �t. In addition, the explanatory power of the factor is limited.

(i.e., for h = 1: se(R̂2
(>7)) = 0.085, for h = 3: se(R̂2

(>7)) = 0.084 and for h = 12: se(R̂2
(>7)) = 0.081).

Similar results (see Table 2B.6) hold for low-frequency uncertainty shocks with persistence ranging

between 128 and 256 months (i.e., the priced factor is ∆u
(8)
t ). Also, con�dence intervals for the

sample cross-sectional R2 for ∆u
(>7)
t and ∆u

(8)
t are available in Table 2B.7.

Results for the low-frequency macro volatility risk factor of Boons and Tamoni

(2015) - monthly data

In line with Boons and Tamoni (2016) I extract from the volatility of monthly industrial production

low-frequency shocks with persistence greater than 32 months. Note that IPVOL is estimated using

an AR (1) − GARCH(1, 1) model over the full sample. Table 2B.8 reports the estimates for the

zero-beta excess return and the price of risk for the innovations in macro volatility shocks with

persistence greater than 32 months. The factor ∆IPV OL
(>5)
t is not priced in any of the test assets.

From this perspective my study complements Boons and Tamoni (2016) by showing that investors

care about scale-dependent economic uncertainty irrespective of their portfolio rebalancing period.

5 industry portfolios plus 25 FF size and book-to-market

Following the suggestion of Lewellen et al. (2010) and Daniel and Titman (2012) I relax the tight

(i.e., low-dimensional) factor structure of the test assets and I use the 25 FF size and book-to-

market and the 5 FF industry portfolios which are priced together. That is, I include the industry

portfolios to provide a higher hurdle for the proposed factor (i.e., the cross-sectional variation in the

expected returns is higher). Since the asymptotic results in Kan et al. (2013) become less reliable

as the number of test assets increases (e.g. the asymptotic distribution of the sample cross-sectional

R2), I only add the 5 industry portfolios. The results in Table 2B.9 remain similar and the model

with the business-cycle uncertainty factor is correctly speci�ed.
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Controlling for Fama-French factors

Table 3B.10 presents results from cross-sectional regressions where I control for exposure to the

Fama-French's factors. The control factors include the value-weight excess return on the market

portfolio (MKT), the size factor (SMB, small minus big), the value factor (HML, high minus low

book-to-market), the operating pro�tability factor (RMW, robust minus weak pro�tability) and the

investment factor (CMA, conservative minus aggressive investment). Except for the test assets sor-

ted across book-to-market and operating pro�tability, the business-cycle uncertainty factor remains

statistically signi�cant in the presence of the control factors (see also the discussion in Section 3.3.

of the main chapter).

Controlling for momentum, short-term reversal, long-term reversal, liquidity and

portfolio characteristics

Tables 2B.11a and 2B.11b report estimates for the price of risk (λ6:7) for u
(6:7)
t after controlling for

exposure to the value-weight excess return on the market portfolio (MKT), the size factor (SMB),

the value factor (HML), the momentum factor (MOM), the short-term reversal factor (STR), the

long-term reversal factor (LTR), the liquidity factor (LIQ), the log size (log (ME)) and the log

book-to-market ratio (log (B/M)). I estimate the risk exposures for the MKT, SMB, HML, MOM,

STR and LTR factors using the same time-series regression and the risk-loadings for the LIQ factor

separately as in Pastor and Stambaugh (2003). The business-cycle uncertainty factor remains

statistically signi�cant in the presence of the control factors.

Residuals from an AR(1) model �tted to u
(6:7)
t

Under the one-sided, linear Haar �lter used for the extraction decomposing across time-scales

changes in aggregate uncertainty is equivalent to calculating changes in the scale-speci�c uncer-

tainty series. Thus, in the main chapter I estimate the innovations in the scale-speci�c uncertainty

components by �rst-di�erencing each series. For robustness, I present in Table 3B.1 the cross-
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sectional estimates for the business-cycle uncertainty factor where the innovations are the residuals

from an AR(1) model �tted to the factor u
(6:7)
t . The results remain quantitatively similar across all

test assets.

Bootstrapped con�dence intervals for the �rst and second-pass cross-sectional

estimates

I calculate con�dence intervals for the �rst-pass scale-dependent betas for u
(6:7)
t using the bias-

corrected percentile method and the stationary bootstrap procedure described in Appendix A. For a

survey of bootstrap procedures for constructing con�dence regions see Diciccio and Romano (1988).

The results are available in Table 2B.13. Bold values denote statistically signi�cant beta estimates

at a 90% con�dence level. Several of the estimated betas are individually statistical signi�cant, that

is, the bootstrap-based con�dence regions do not include zero.

Moreover, for each bootstrap replication b = 1, . . . , 5, 000 I estimate a cross-sectional regression

of average portfolio excess returns (original data) on the pseudo-sample of the scale-speci�c risk

exposures. I report con�dence intervals using the bias-corrected percentile method for the zero-

beta excess return (λ0,6:7), the price of risk (λ6:7) and the sample R2. The results are available

in Table 2B.14. The main di�erence with the results in the main chapter is that for the 25 FF

book-to-market and operating pro�tability portfolios the estimates of the zero-beta excess return

remain statistically signi�cant. Two comments are in order here. First, for these test assets the

model is misspeci�ed. Second, the scale-speci�c risk exposures are estimated with error in the �rst-

pass scale-wise regression. In contrast, the popular Fama-MacBeth (1973) test-statistics reported

in the main paper do not account for estimation errors in the betas or for a potentially misspeci�ed

model. Note that since the �rst-pass regressions are scale-wise, the Shanken (1992) correction or

the misspeci�cation-robust t-statistics of Kan et al. (2013) are not directly applicable here.
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Bootstrapped con�dence intervals for the scale-wise predictive regressions

Table 2B.15 reports bootstrapped con�dence intervals for the scale-wise predictive regressions for

j = 6, 7 using the bias-corrected percentile method and the stationary bootstrap of Politis and

Romano (1994). In Panel A of Table 2B.15 the average block size in this case is set equal to 32 -

calculated based on the Politis and White (2004) estimator. In Panel B of Table 2B.15 the block

size is set equal to 2j . For j = 6 the coe�cients from the scale-wise predictive regressions are

statistically signi�cant.

Valkanov's (2003) rescaled t-statistic

The standard t-statistics in long-horizon regressions do not converge to well-de�ned distributions

(for instance, see Valkanov, 2003 and Bandi and Perron, 2008). To address this inferential problem

I rely on Valkanov's (2003) rescaled t/
√
T statistic. In particular, as in Valkanov's framework I

assume that the underlying data-generating processes are

ret+1 = βut + ε1,t+1 (2B.1)

ut = %ut−1 + ε2,t+1 (2B.2)

where ρ = 1 + c/T and the parameter c measures deviations from unity in a decreasing (at rate T )

neighbourhood of 1. Also, I assume that the vector [ε1,t+1 , ε2,t+1 ] is a vector martingale di�erence

sequence with covariance matrix
[
σ2

11 σ12;σ21 σ
2
22

]
. Following Bandi and Perron (2008) I let the

portion of the overlap to be a constant fraction of the sample size, that is, h = [λT ]. Table 2B.16

reports the right-tail critical values of t/
√
T at various percentiles. I simulate the distribution of

t/
√
T for samples of length T = 635. I implement 5,000 replications. It is important to highlight

that I only adopt this framework to address the inferential problems that arise in predictive regres-

sions with persistent regressors. As I demonstrate in Table 2B.17 the data-generating process for

uncertainty is a multi-scale autoregressive process, i.e. a system in which high-frequency shocks are
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not linear combinations of low-frequency shocks (see also the novel work of Bandi et al., 2016).

Multi-scale autoregressive system

Table 2B.17 reports the estimation results of the multi-scale autoregressive system for macro uncer-

tainty. For j ∈ {1, 5} the uncertainty components can be represented as scale-wise AR processes,

i.e. u
(j)

k×2j+2j
= ρju

(j)

k×2j
+ ε

(j)

k×2j+2j
where k ∈ Z. My results are similar with the estimates for

consumption shocks in Ortu et al. (2013) (see page 2905). Note that as Bandi et al. (2016) point

out the dependence ρj in time-scale j is signi�cantly lower than the dependence of the raw series.

Moreover, I estimate the half-life for each autoregressive component which is given by:

HL (j) =
ln (0.5)

ln (|ρj |)
× 2j . (2B.3)

The presence of the factor 2j is justi�ed on the basis that the decimated component at time-scale j

is de�ned on the grid
{
k × 2j : k∈ Z

}
. The estimated half-life for j = 1 is close to the lower bound

of the corresponding interval [2j−1, 2j) while for j = 5 lies in the middle.

In line with the novel work of Bandi et al. (2016) (see also section 1.5) these results imply

a generalized Wold-type representation for the macroeconomic uncertainty series in which low-

frequency macro shocks are not linear combinations of high frequency macro shocks. That is, the

uncertainty shocks at each scale carry unique information.

Percentage contribution of u
(j)
t and IPV OL

(j)
t to total variance

Panel A of Table 2B.18 shows the percentage contribution of each individual component to the

total variance of the time-series for aggregate uncertainty. Approximate con�dence intervals for the

variance of the components are computed based on the Chi-squared distribution with one degree of

freedom (see also Percival, 1995). Note that by de�nition Var (ut) =
∑J

j=1 Var
(
u

(j)
t

)
+Var

(
u

(>J)
t

)
.

The �rst seven persistent components �ltered out of the uncertainty index account for 74.91% of the

total variance of the series. Fluctuations in uncertainty with persistence ranging between 1 and 2
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months (i.e., high-frequency) account only for 0.65% of the total variance with a lower and an upper

con�dence bounds of 0.56% and 0.77% respectively. Low-frequency �uctuations with persistence

between 32 and 64 months explain 22.89% of the total variance with a lower and an upper con�dence

bounds of 14.51% and 41.42% respectively. Similarly, shocks with persistence between 64 and 128

months explain 18.73% of the total variation in the series with a lower and an upper con�dence

bounds of 9.55% and 52.02% respectively. Figure 2B.1 depicts the scale-speci�c contribution of

each component to the variance of the uncertainty series along with a comparison of the di�erent

methods for constructing con�dence intervals.

Panel B of Table 2B.18 presents the percentage contribution of each individual component to

the total variance for the volatility of industrial production. Shocks with persistence greater than

32 months (i.e., IPV OL
(>5)
t ) account only for 10.45% of the total variance of the series.

Beta comparison: β(6:7) versus β(6)$(6) + β(7)$(7)

In Equation (2.11) β(6:7) can be viewed as a linear combination of β(6) and β(7) with weights

depending on the relative contribution of the corresponding factor to total variance. The extracted

components are only nearly-uncorrelated across scales (i.e., Cov
(

∆u
(6)
t ,∆u

(7)
t

)
' 0) and therefore

this relation is not exact. In Figure 2B.2 I illustrate the di�erence by plotting β(6:7) versus β(6)$(6)+

β(7)$(7) for the size and book-to-market portfolios. I estimate β(6) and β(7) over the same sub-

period where $(6) = 0.8647 and $(7) = 1 − $(6). Note that Bandi and Tamoni (2016) follow a

similar approach to calculate a business-cycle consumption factor, however, they use the decimated

components which are uncorrelated across scales.

Transformations on characteristics

Size and book-to-market are not linear across portfolios (i.e., a lot of small �rms - all the value in the

largest-cap portfolios). For controls I use log of the book-to-market ratio and log size as a fraction

of total market value (to remove the trend). Figures 2B.3 and 2B.4 depict the transformations.
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Figure 2B.1: Scale-speci�c contribution to variance

Notes: This �gure plots the scale-speci�c contributions to the time series of aggregate uncertainty
(derived from monthly forecasts) along with the relevant con�dence bounds.

105



Figure 2B.2: Beta comparison: β(6:7) versus β(6)$(6) + β(7)$(7)

Notes: This �gure plots β(6:7) versus β(6)$(6) +β(7)$(7) for the size and book-to-market portfolios.
I estimate β(6) and β(7) over the same sub-period (i.e., I discard the �rst 27−1 observations) where
$(6) = 0.8647 and $(7) = 1−$(6).
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Figure 2B.3: Transformations on characteristics - logs

Notes: This �gure plots the log transformations on the portfolio characteristics. Note that size
and book-to-market are not linear across portfolios (i.e., a lot of small �rms - all the value in the
largest-cap portfolios).
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Figure 2B.4: Transformations on characteristics - logs over time

Notes: This �gure plots the log transformations on the portfolio characteristics over time. For
controls I use log size as a fraction of total market value (to remove the trend).
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Table 2B.1: Cross-sectional regression with the same burn-in period: 25 FF size and
book-to-market portfolios

Persistence level
j = 1 2 3 4 5 6 7 6:7

ut (1)
λ0,j 0.8872 0.9814 1.0401 0.5502 0.3493 0.2078 0.5814 0.0581

(2.8483) (3.3550) (4.1622) (2.4048) (1.4251) (0.8401) (2.3717) (0.2083)
λj 0.3719 0.4399 0.5986 -0.1891 -0.3654 -0.5922 -0.4016 -0.8315

(0.5038) (0.8220) (1.2698) (-0.6207) (-1.3914) (-3.9006) (-3.2124) (-4.3264)
price of risk 0.401% 0.623% 0.939% -0.286% -0.844% -2.090% -2.295% -2.274%

R2 2.303% 5.547% 12.586% 1.172% 10.168% 62.416% 75.271% 73.891%

se(R̂2) 0.0846 0.1266 0.1681 0.0431 0.1603 0.2183 0.2375 0.1224
p
(
R2 = 1

)
0.0157 0.0186 0.0225 0.0175 0.0212 0.1692 0.2956 0.3139

MAPE 2.029% 2.077% 2.025% 1.949% 1.752% 1.091% 1.156% 1.114%

ut (3)
λ0,j 0.8213 0.9419 1.0123 0.5725 0.3148 0.2364 0.5836 0.1109

(2.9482) (3.1862) (3.8181) (2.1542) (1.2817) (0.9652) (2.4041) (0.4097)
λj 0.1154 0.2264 0.4008 -0.1399 -0.4083 -0.6232 -0.4259 -0.8476

(0.3574) (0.6799) (1.0331) (-0.4201) (-1.5297) (-3.9064) (-3.3841) (-4.3044)
price of risk 0.287% 0.532% 0.801% -0.233% -0.950% -2.107% -2.340% -2.285%

R2 1.175% 4.037% 9.167% 0.776% 12.888% 63.443% 78.251% 74.617%

se(R̂2) 0.0656 0.1123 0.1586 0.0402 0.1832 0.2211 0.2066 0.1311
p
(
R2 = 1

)
0.0164 0.0179 0.0220 0.0167 0.0226 0.1765 0.3255 0.3229

MAPE 2.059% 2.063% 2.052% 1.965% 1.717% 1.079% 1.075% 1.079%

ut (12)
λ0,j 0.7899 0.9717 1.0263 0.4595 0.2511 0.3083 0.6407 0.2278

(3.2865) (3.5045) (3.8459) (1.6573) (1.0452) (1.2606) (2.6882) (0.8350)
λj 0.0597 0.1283 0.1854 -0.1238 -0.2727 -0.3784 -0.2284 -0.4856

(0.3289) (0.8453) (1.0747) (-0.7572) (-1.9470) (-3.9801) (-2.9019) (-4.0302)
price of risk 0.221% 0.679% 0.835% -0.457% -1.223% -2.174% -2.182% -2.336%

R2 0.696% 6.587% 9.958% 2.986% 21.366% 67.543% 68.037% 77.922%

se(R̂2) 0.0425 0.1435 0.1654 0.0850 0.2285 0.2049 0.2665 0.1147
p
(
R2 = 1

)
0.0045 0.0196 0.0224 0.0168 0.0296 0.2109 0.1920 0.3653

MAPE 2.057% 2.058% 2.031% 1.880% 1.602% 1.039% 1.315% 1.029%

# observ. 507

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R2 for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of H0 : R2 = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year. 109



Table 2B.2: Cross-sectional regression with the same burn-in period: 25 FF size and
investment portfolios

Persistence level
j = 1 2 3 4 5 6 7 6:7

ut (1)
λ0,j 0.9391 0.9872 1.1510 0.6117 0.2569 0.3080 0.7261 0.1923

(4.5809) (4.9284) (6.3034) (2.2124) (0.9453) (1.2341) (2.9121) (0.6872)
λj 0.2204 0.2402 0.6047 -0.2596 -0.6163 -0.6327 -0.4063 -0.8591

(0.5611) (0.7201) (1.8107) (-0.5637) (-1.9119) (-3.5367) (-3.8261) (-4.6799)
price of risk 0.353% 0.471% 1.037% -0.344% -1.227% -2.139% -1.927% -2.212%

R2 1.862% 3.312% 16.054% 1.763% 22.461% 68.268% 55.409% 73.006%

se(R̂2) 0.0714 0.0903 0.1607 0.0627 0.2058 0.1968 0.2299 0.0922
p
(
R2 = 1

)
0.0123 0.0108 0.0256 0.0079 0.0094 0.1465 0.0833 0.2508

MAPE 2.132% 2.108% 1.927% 2.088% 1.760% 0.835% 1.364% 0.985%

ut (3)
λ0,j 0.7808 0.9588 1.0764 0.5910 0.2313 0.3454 0.7391 0.2531

(3.0598) (4.2776) (5.7037) (1.9993) (0.8556) (1.4005) (3.0064) (0.9309)
λj -0.0250 0.1290 0.3366 -0.2447 -0.6571 -0.6545 -0.4400 -0.8672

(-0.0857) (0.5183) (1.1657) (-0.5785) (-2.0648) (-3.5701) (-4.1403) (-4.6254)
price of risk -0.066% 0.357% 0.726% -0.383% -1.360% -2.153% -2.028% -2.227%

R2 0.066% 1.902% 7.868% 2.190% 27.604% 69.186% 61.365% 74.027%

se(R̂2) 0.0146 0.0720 0.1294 0.0746 0.2236 0.1942 0.2099 0.0934
p
(
R2 = 1

)
0.0114 0.0107 0.0220 0.0081 0.0104 0.1566 0.1119 0.2645

MAPE 2.151% 2.132% 2.061% 2.077% 1.668% 0.817% 1.256% 0.963%

ut (12)
λ0,j 0.9459 0.9549 1.0526 0.3977 0.2035 0.4250 0.8018 0.4021

(4.5562) (4.4838) (5.5522) (1.3158) (0.7773) (1.7359) (3.3523) (1.4791)
λj 0.0810 0.0587 0.1352 -0.2208 -0.3997 -0.3929 -0.2238 -0.4750

(0.5789) (0.5494) (1.0451) (-1.1216) (-2.5562) (-3.7941) (-3.2885) (-4.5760)
price of risk 0.390% 0.391% 0.647% -0.782% -1.679% -2.205% -1.771% -2.166%

R2 2.270% 2.283% 6.248% 9.129% 42.082% 72.563% 46.790% 70.012%

se(R̂2) 0.0844 0.0825 0.1144 0.1505 0.2409 0.1742 0.2467 0.1424
p
(
R2 = 1

)
0.0116 0.0162 0.0225 0.0053 0.0176 0.2061 0.0715 0.2089

MAPE 2.126% 2.131% 2.088% 1.925% 1.401% 0.792% 1.459% 1.078%

# observ. 472

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R2 for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of H0 : R2 = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year. 110



Table 2B.3: Cross-sectional regression with the same burn-in period: 25 FF book-to-
market and operating pro�tability portfolios

Persistence level
j = 1 2 3 4 5 6 7 6:7

ut (1)
λ0,j 0.8186 1.2477 0.8519 0.1140 0.2877 0.3041 0.6235 0.2989

(3.3733) (4.2837) (3.9400) (0.4268) (1.2030) (1.2003) (2.7259) (1.1748)
λj 0.2089 0.8050 0.2607 -0.7548 -0.5021 -0.5992 -0.4767 -0.6375

(0.5940) (1.8648) (0.7979) (-2.8855) (-2.4681) (-3.4823) (-3.3816) (-3.3535)
price of risk 0.267% 1.193% 0.486% -1.584% -1.426% -2.638% -2.806% -2.322%

R2 0.521% 10.370% 1.718% 18.290% 14.831% 50.719% 57.417% 39.300%

se(R̂2) 0.0177 0.0924 0.0431 0.0607 0.1043 0.1454 0.1781 0.1418
p
(
R2 = 1

)
0.0109 0.0059 0.0083 0.0146 0.0160 0.0252 0.0193 0.0151

MAPE 2.769% 2.734% 2.766% 2.598% 2.655% 2.068% 1.778% 2.231%

ut (3)
λ0,j 1.1732 1.2312 0.8545 0.1514 0.2802 0.3314 0.6530 0.3255

(4.7428) (4.0781) (3.9143) (0.5900) (1.1628) (1.3229) (2.8758) (1.2899)
λj 0.4962 0.4942 0.1928 -0.6164 -0.5248 -0.6341 -0.4846 -0.6781

(2.1715) (1.5993) (0.6912) (-2.5972) (-2.5241) (-3.4662) (-3.3262) (-3.3478)
price of risk 1.402% 1.158% 0.452% -1.397% -1.492% -2.647% -2.788% -2.376%

R2 14.329% 9.775% 1.487% 14.221% 16.238% 51.061% 56.667% 41.156%

se(R̂2) 0.1086 0.1116 0.0436 0.0661 0.1091 0.1477 0.1823 0.1465
p
(
R2 = 1

)
0.0068 0.0065 0.0085 0.0150 0.0153 0.0226 0.0169 0.0137

MAPE 2.469% 2.675% 2.753% 2.628% 2.598% 2.062% 1.835% 2.190%

ut (12)
λ0,j 0.8234 1.1336 0.9077 0.1657 0.2497 0.4047 0.6946 0.3887

(3.4519) (4.2409) (4.1396) (0.6456) (0.9956) (1.6534) (3.0863) (1.5558)
λj 0.0736 0.1906 0.1156 -0.2907 -0.3349 -0.3806 -0.2926 -0.4199

(0.5681) (1.5413) (0.9401) (-2.6401) (-2.8365) (-3.4100) (-3.1887) (-3.3174)
price of risk 0.317% 1.119% 0.636% -1.462% -1.779% -2.662% -2.735% -2.499%

R2 0.733% 9.132% 2.953% 15.590% 23.064% 51.640% 54.525% 45.510%

se(R̂2) 0.0275 0.1087 0.0627 0.0786 0.1244 0.1522 0.1882 0.1547
p
(
R2 = 1

)
0.0097 0.0061 0.0079 0.0149 0.0145 0.0184 0.0103 0.0110

MAPE 2.783% 2.682% 2.702% 2.626% 2.469% 2.050% 1.915% 2.083%

# observ. 472

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R2 for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of H0 : R2 = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year. 111



Table 2B.4: Cross-sectional regression with the same burn-in period: 25 FF size and
variance portfolios

Persistence level
j = 1 2 3 4 5 6 7 6:7

ut (1)
λ0,j 0.9154 0.9365 0.9270 0.8118 0.9052 0.2634 0.7476 -0.1131

(3.6746) (4.6809) (5.0342) (3.8169) (4.2425) (1.0479) (2.9177) (-0.3569)
λj 0.2279 0.2043 0.2387 0.0327 0.1234 -0.6392 -0.3932 -1.2460

(0.3501) (0.4984) (0.5191) (0.0938) (0.4158) (-3.5242) (-1.9058) (-5.3519)
price of risk 0.365% 0.553% 0.565% 0.104% 0.484% -2.249% -2.054% -2.908%

R2 0.862% 1.987% 2.073% 0.070% 1.520% 32.819% 27.355% 54.840%

se(R̂2) 0.0482 0.0706 0.0700 0.0150 0.0721 0.2250 0.1976 0.1644
p
(
R2 = 1

)
0.0051 0.0033 0.0038 0.0036 0.0032 0.0265 0.0004 0.0721

MAPE 3.085% 3.051% 3.050% 3.049% 3.066% 2.070% 2.595% 1.827%

ut (3)
λ0,j 0.8213 0.8958 0.9153 0.8214 0.8640 0.2947 0.7602 -0.0194

(3.5579) (4.4027) (4.8013) (3.8130) (4.0972) (1.1756) (3.0352) (-0.0624)
λj 0.0360 0.0949 0.1572 0.0375 0.0834 -0.6735 -0.4439 -1.2545

(0.1072) (0.3554) (0.4577) (0.1228) (0.2796) (-3.5781) (-2.0740) (-5.1685)
price of risk 0.117% 0.393% 0.512% 0.138% 0.321% -2.278% -2.186% -2.918%

R2 0.089% 1.003% 1.702% 0.123% 0.670% 33.656% 30.986% 55.231%

se(R̂2) 0.0161 0.0507 0.0666 0.0202 0.0484 0.2260 0.1940 0.1699
p
(
R2 = 1

)
0.0050 0.0045 0.0043 0.0040 0.0032 0.0271 0.0022 0.0711

MAPE 3.051% 3.058% 3.058% 3.054% 3.068% 2.054% 2.468% 1.832%

ut (12)
λ0,j 0.7329 0.8848 0.9180 0.7619 0.7181 0.3502 0.8178 0.1788

(4.2543) (4.5921) (4.7806) (3.5566) (3.4867) (1.3298) (3.5698) (0.5214)
λj -0.0279 0.0405 0.0711 -0.0099 -0.0390 -0.4407 -0.2151 -0.7293

(-0.1798) (0.3420) (0.4655) (-0.0693) (-0.2384) (-3.9382) (-1.7500) (-4.0420)
price of risk -0.172% 0.380% 0.521% -0.076% -0.254% -2.460% -1.987% -3.067%

R2 0.193% 0.935% 1.763% 0.038% 0.419% 39.255% 25.623% 61.006%

se(R̂2) 0.0218 0.0493 0.0678 0.0114 0.0379 0.2201 0.2107 0.1278
p
(
R2 = 1

)
0.0064 0.0045 0.0043 0.0039 0.0038 0.0314 0.0004 0.0694

MAPE 2.994% 3.062% 3.061% 3.017% 2.978% 1.980% 2.654% 1.775%

# observ. 472

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R2 for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of H0 : R2 = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year. 112



Table 2B.5: Cross-sectional regressions for ∆u
(>7)
t

Panel A 25 FF size and book-to-market
λ0,>7 λ>7 R2 p

(
R2 = 1

)
MAPE # observ.

h = 1 0.7020 (2.4547) -0.0024 (-0.0247) 0.004% 0.0161 2.045%
507h = 3 0.6924 (2.4338) -0.0134 (-0.1271) 0.093% 0.0167 2.062%

h = 12 0.6929 (2.5010) -0.0084 (-0.1394) 0.113% 0.0166 2.065%

Panel B 25 FF size and investment
λ0,>7 λ>7 R2 p

(
R2 = 1

)
MAPE # observ.

h = 1 0.8998 (3.2180) 0.1006 (1.2163) 10.069% 0.0038 1.924%
472h = 3 0.8926 (3.2023) 0.1019 (1.1443) 8.796% 0.0037 1.953%

h = 12 0.8840 (3.1762) 0.0591 (1.0594) 8.341% 0.0033 1.966%

Panel C 25 FF book-to-market and operating pro�tability
λ0,>7 λ>7 R2 p

(
R2 = 1

)
MAPE # observ.

h = 1 0.4956 (2.1311) -0.1931 (-3.6946) 21.244% 0.0115 2.771%
472h = 3 0.4930 (2.1200) -0.2159 (-3.7853) 22.855% 0.0123 2.755%

h = 12 0.5106 (2.2299) -0.1226 (-3.8924) 19.293% 0.0144 2.877%

Panel D 25 FF size and variance
λ0,>7 λ>7 R2 p

(
R2 = 1

)
MAPE # observ.

h = 1 0.6619 (2.2730) -0.1396 (-1.7127) 19.577% 0.0076 3.002%
472h = 3 0.6609 (2.2712) -0.1540 (-1.7347) 20.171% 0.0077 2.997%

h = 12 0.6833 (2.3682) -0.0802 (-1.4883) 14.338% 0.0062 3.093%

Notes: This table reports the estimates for the zero-beta excess return (λ0,>7) and the price of risk
(λ>7) for low-frequency uncertainty shocks with persistence greater than 27 = 128 months (i.e.,

the priced factor is ∆u
(>7)
t ) along with the corresponding Fama-MacBeth (1973) test statistics in

parentheses. In addition, I report the sample R2 for each cross-sectional regression, the p-value for
the Kan et al. (2013) test of H0 : R2 = 1 denoted as p

(
R2 = 1

)
and the mean absolute pricing

error (MAPE) across all securities expressed in percent per year. The test assets include: the 25
FF size and book-to-market portfolios (Panel A), the 25 FF size and investment portfolios (Panel
B), the 25 FF book-to-market and operating pro�tability portfolios (Panel C) and the 25 FF size
and variance portfolios (Panel D).
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Table 2B.6: Cross-sectional regressions for ∆u
(8)
t

Panel A 25 FF size and book-to-market

λ0,8 λ8 R2 se(R̂2) MAPE # observ.
h = 1 0.7397 (2.5555) -0.0618 (-0.6243) 2.627% 0.0847 2.066%

379h = 3 0.7353 (2.5534) -0.0768 (-0.7041) 3.349% 0.0945 2.072%
h = 12 0.7475 (2.6676) -0.0452 (-0.6743) 3.229% 0.0947 2.073%

Panel B 25 FF size and investment

λ0,8 λ8 R2 se(R̂2) MAPE # observ.
h = 1 0.7967 (2.7041) 0.0052 (0.0639) 0.052% 0.0169 1.738%

344h = 3 0.7947 (2.7136) 0.0023 (0.0266) 0.009% 0.0069 1.744%
h = 12 0.7930 (2.7643) -0.0007 (-0.0120) 0.002% 0.0032 1.750%

Panel C 25 FF book-to-market and operating pro�tability

λ0,8 λ8 R2 se(R̂2) MAPE # observ.
h = 1 0.6304 (2.3098) -0.1498 (-2.3513) 16.211% 0.1149 2.110%

344h = 3 0.6333 (2.3181) -0.1692 (-2.3330) 17.401% 0.1215 2.088%
h = 12 0.6565 (2.4148) -0.1025 (-2.2238) 14.739% 0.1116 2.136%

Panel D 25 FF size and variance

λ0,8 λ8 R2 se(R̂2) MAPE # observ.
h = 1 0.7003 (2.3065) -0.1446 (-1.6947) 41.160% 0.3077 2.120%

344h = 3 0.7048 (2.3359) -0.1591 (-1.7022) 42.254% 0.3104 2.102%
h = 12 0.7299 (2.4950) -0.0945 (-1.6421) 39.579% 0.3084 2.145%

Notes: This table reports the estimates for the zero-beta excess return (λ0,8) and the price of risk
(λ8) for low-frequency uncertainty shocks with persistence ranging between 128 and 256 months

(i.e., the priced factor is ∆u
(8)
t ) along with the corresponding Fama-MacBeth (1973) test statistics

in parentheses. In addition, I report the sample R2 for each cross-sectional regression, its standard
error and the mean absolute pricing error (MAPE) across all securities expressed in percent per
year. The test assets include: the 25 FF size and book-to-market portfolios (Panel A), the 25
FF size and investment portfolios (Panel B), the 25 FF book-to-market and operating pro�tability
portfolios (Panel C) and the 25 FF size and variance portfolios (Panel D).
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Table 2B.7: ∆u
(>7)
t and ∆u

(8)
t : Con�dence intervals for R2

h = 1 h = 3 h = 12

∆u
(>7)
t ∆u

(8)
t ∆u

(>7)
t ∆u

(8)
t ∆u

(>7)
t ∆u

(8)
t

Panel A
R2 0.004% 2.627% 0.093% 3.349% 0.113% 3.229%

se(R̂2) 0.0031 0.0847 0.0157 0.0945 0.0173 0.0947
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
97.5% CI

(
R2
)

0.0238 0.2065 0.0449 0.2308 0.0473 0.2214

Panel B
R2 10.069% 0.052% 8.796% 0.009% 8.341% 0.002%

se(R̂2) 0.1513 0.0169 0.1417 0.0069 0.1458 0.0032
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
97.5% CI

(
R2
)

0.3997 0.0405 0.3748 0.0230 0.3906 0.0259

Panel C
R2 21.244% 16.211% 22.855% 17.401% 19.293% 14.739%

se(R̂2) 0.0845 0.1149 0.0840 0.1215 0.0815 0.1116
2.5% CI

(
R2
)

0.0496 0.0000 0.0763 0.0000 0.0378 0.0000
97.5% CI

(
R2
)

0.3935 0.3987 0.4013 0.4121 0.3567 0.3863

Panel D
R2 19.577% 41.160% 20.171% 42.254% 14.338% 39.579%

se(R̂2) 0.2069 0.3077 0.2093 0.3104 0.1826 0.3084
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
97.5% CI

(
R2
)

0.6080 1.0000 0.6640 1.0000 0.5488 1.0000

Notes: This table reports the sample cross-sectional R2, its standard error and its 95% con�dence
interval for low-frequency uncertainty shocks with persistence greater than 27 = 128 months (i.e.,

the priced factor is ∆u
(>7)
t ) and for low-frequency uncertainty shocks with persistence ranging

between 128 and 256 months (i.e., the priced factor is ∆u
(8)
t ). I calculate the con�dence interval

for the sample R2 by pivoting the cdf. The test assets include: the 25 FF size and book-to-market
portfolios (Panel A), the 25 FF size and investment portfolios (Panel B), the 25 FF book-to-market
and operating pro�tability portfolios (Panel C) and the 25 FF size and variance portfolios (Panel
D).
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Table 2B.8: Cross-sectional regressions for ∆IPV OL
(>5)
t

Panel A 25 FF size and book-to-market

Innovations from: λ0 λ
∆IPV OL

(>5)
t

R2 se(R̂2) p
(
R2 = 1

)
MAPE

First-Di�erences 0.0989 (0.3886) -0.0281 (-2.1067) 20.022% 0.2039 0.0114 1.782%
95% Con�dence Interval for R2: [0.0000, 0.6240]

Residuals - AR(1) 0.0262 (0.1022) -0.0302 (-2.3703) 20.165% 0.1812 0.0129 1.837%
95% Con�dence Interval for R2: [0.0000, 0.5975]

Panel B 25 FF size and investment

Innovations from: λ0 λ
∆IPV OL

(>5)
t

R2 se(R̂2) p
(
R2 = 1

)
MAPE

First-Di�erences 0.1757 (0.6162) -0.0207 (-1.4589) 15.591% 0.2071 0.0004 1.761%
95% Con�dence Interval for R2: [0.0000, 0.5743]

Residuals - AR(1) 0.1306 (0.4391) -0.0218 (-1.5254) 15.104% 0.1932 0.0004 1.766%
95% Con�dence Interval for R2: [0.0000, 0.5267]

Panel C 25 FF book-to-market and operating pro�tability

Innovations from: λ0 λ
∆IPV OL

(>5)
t

R2 se(R̂2) p
(
R2 = 1

)
MAPE

First-Di�erences 0.2435 (1.1145) -0.0150 (-1.8551) 9.399% 0.1077 0.0160 2.393%
95% Con�dence Interval for R2: [0.0000, 0.3134]

Residuals - AR(1) 0.2522 (1.1398) -0.0139 (-1.7847) 8.268% 0.1008 0.0152 2.425%
95% Con�dence Interval for R2: [0.0000, 0.2954]

Panel D 25 FF size and variance

Innovations from: λ0 λ
∆IPV OL

(>5)
t

R2 se(R̂2) p
(
R2 = 1

)
MAPE

First-Di�erences 0.7049 (3.0789) 0.0019 (0.1511) 0.161% 0.0210 0.0019 2.986%
95% Con�dence Interval for R2: [0.0000, 0.0533]

Residuals - AR(1) 0.7364 (2.9672) 0.0031 (0.2282) 0.363% 0.0338 0.0018 2.987%
95% Con�dence Interval for R2: [0.0000, 0.0750]

Notes: This table reports the estimates for the zero-beta excess return (λ0) and the price of risk(
λ

∆IPV OL
(>5)
t

)
for the innovations in macro volatility shocks with persistence greater than 32

months (i.e., the priced factor is ∆IPV OL
(>5)
t - see Boons and Tamoni, 2016) along with the

corresponding Fama-MacBeth (1973) test statistics in parentheses. In addition, I report the sample
R2 for each cross-sectional regression, its standard error, the p-value for the Kan et al. (2013) test
of H0 : R2 = 1 denoted as p

(
R2 = 1

)
and the mean absolute pricing error (MAPE) across all

securities expressed in percent per year. The test assets include: the 25 FF size and book-to-market
portfolios (Panel A), the 25 FF size and investment portfolios (Panel B), the 25 FF book-to-market
and operating pro�tability portfolios (Panel C) and the 25 FF size and variance portfolios (Panel
D).
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Table 2B.9: Cross-sectional regression with the same burn-in period: 25 FF size and
book-to-market plus 5 FF industry portfolios

Persistence level
j = 1 2 3 4 5 6 7 6:7

ut (1)
λ0,j 0.6482 0.7162 0.9796 0.4788 0.3493 0.3922 0.7021 0.3296

(2.5666) (2.8093) (4.1880) (2.0995) (1.5397) (1.6921) (2.9600) (1.3127)
λj -0.2164 -0.0775 0.3776 -0.3953 -0.4921 -0.4921 -0.3362 -0.6293

(-0.4406) (-0.1959) (0.8865) (-1.4694) (-2.1747) (-3.3567) (-2.8454) (-3.7462)
price of risk -0.339% -0.151% 0.601% -0.694% -1.200% -1.965% -1.910% -1.926%

R2 1.704% 0.339% 5.359% 7.146% 21.386% 57.387% 54.205% 55.111%

se(R̂2) 0.0700 0.0308 0.1018 0.1060 0.1682 0.1909 0.2482 0.1372
p
(
R2 = 1

)
0.0270 0.0281 0.0261 0.0213 0.0313 0.1596 0.1543 0.1734

MAPE 2.084% 2.121% 2.150% 1.973% 1.753% 1.322% 1.538% 1.473%

ut (3)
λ0,j 0.6248 0.7137 0.8959 0.4438 0.3238 0.4143 0.7150 0.3610

(2.3068) (2.5563) (3.5530) (1.8558) (1.4082) (1.7974) (3.0474) (1.4586)
λj -0.1413 -0.0513 0.1604 -0.3776 -0.5307 -0.5197 -0.3582 -0.6568

(-0.4820) (-0.1813) (0.4486) (-1.3429) (-2.2648) (-3.3699) (-2.9894) (-3.7292)
price of risk -0.391% -0.144% 0.333% -0.728% -1.315% -1.988% -1.983% -1.970%

R2 2.273% 0.308% 1.647% 7.876% 25.709% 58.707% 58.399% 57.682%

se(R̂2) 0.0859 0.0302 0.0645 0.1233 0.1907 0.1921 0.2323 0.1402
p
(
R2 = 1

)
0.0292 0.0302 0.0319 0.0157 0.0332 0.1690 0.1421 0.1879

MAPE 2.050% 2.125% 2.183% 1.946% 1.688% 1.297% 1.475% 1.431%

ut (12)
λ0,j 0.6406 0.7509 0.9050 0.3587 0.2903 0.4672 0.7605 0.4553

(2.6388) (2.8272) (3.5765) (1.4524) (1.2512) (2.0195) (3.2917) (1.8065)
λj -0.0780 -0.0088 0.0764 -0.2269 -0.3300 -0.3200 -0.1856 -0.3741

(-0.4964) (-0.0723) (0.4799) (-1.6604) (-2.6141) (-3.5016) (-2.4855) (-3.5451)
price of risk -0.365% -0.060% 0.358% -0.967% -1.574% -2.041% -1.768% -1.956%

R2 1.985% 0.054% 1.904% 13.883% 36.831% 61.861% 46.449% 56.873%

se(R̂2) 0.0721 0.0133 0.0698 0.1644 0.2122 0.1778 0.2634 0.1683
p
(
R2 = 1

)
0.0307 0.0314 0.0319 0.0192 0.0596 0.2026 0.1175 0.1733

MAPE 2.071% 2.143% 2.180% 1.825% 1.570% 1.272% 1.641% 1.444%

# observ. 507

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I normalize the scale-wise risk exposures and estimate the price of risk per
unit of cross-sectional standard deviation in exposure in percent per year. I also report the sample
R2 for each cross-sectional regression and its standard error, the p-value for the Kan et al. (2013)
test of H0 : R2 = 1 and the mean absolute pricing error (MAPE) across all securities expressed in
percent per year. 117



Table 2B.10: Controlling for Fama-French factors

λMKT λSMB λHML λRMW λCMA λ6:7
R2

MAPE

Panel A
h = 1 0.1881 0.1328 0.1693 0.2887 0.0536 -0.5001 85.546%

(0.8549) (0.9324) (1.1591) (1.5571) (0.2033) (-3.8181) 0.964%
h = 3 0.2141 0.1229 0.1577 0.2904 0.0385 -0.5288 85.668%

(0.9828) (0.8560) (1.0689) (1.5777) (0.1443) (-3.7145) 0.980%
h = 12 0.2521 0.1311 0.1021 0.2558 0.0081 -0.3484 86.244%

(1.1774) (0.9198) (0.6750) (1.3930) (0.0302) (-3.9708) 0.960%

Panel B
h = 1 0.1354 0.2019 -0.6788 0.5167 0.1285 -0.8351 85.287%

(0.5845) (1.3718) (-2.2638) (2.8650) (1.1421) (-5.1764) 0.726%
h = 3 0.1761 0.1879 -0.7213 0.5301 0.1070 -0.8908 85.448%

(0.7704) (1.2683) (-2.3959) (2.9311) (0.9240) (-5.1083) 0.730%
h = 12 0.2713 0.2413 -0.7833 0.4967 0.0670 -0.5324 86.016%

(1.2165) (1.6391) (-2.5874) (2.7704) (0.5461) (-4.9612) 0.738%

Panel C
h = 1 0.5365 1.2004 0.2846 0.5571 0.1401 0.2086 96.375%

(2.3269) (2.9695) (1.7329) (3.8878) (0.6948) (1.2954) 0.760%
h = 3 0.5314 1.2170 0.2955 0.5578 0.1552 0.2370 96.437%

(2.3232) (2.9869) (1.7752) (3.8928) (0.7597) (1.3382) 0.753%
h = 12 0.5064 1.1675 0.3099 0.5570 0.1571 0.1371 96.280%

(2.2504) (2.9350) (1.7964) (3.8854) (0.7569) (1.2358) 0.757%

Panel D
h = 1 0.0380 0.0688 -0.6081 1.0639 -0.9212 -0.9560 96.508%

(0.1689) (0.4504) (-2.1305) (5.7040) (-3.5735) (-7.3772) 0.787%
h = 3 0.0891 0.0428 -0.5974 1.0479 -0.9302 -1.0085 96.548%

(0.3989) (0.2791) (-2.0749) (5.6347) (-3.6090) (-7.1615) 0.859%
h = 12 0.2095 0.1135 -0.5872 1.0080 -0.9914 -0.5847 95.926%

(0.9522) (0.7475) (-2.0085) (5.4643) (-3.8483) (-6.7793) 0.919%

Notes: This table reports estimates for the price of risk (λ6:7) for the business-cycle uncertainty

factor (i.e., u
(6:7)
t ) after controlling for exposure to the Fama-French factors. The control factors

include the value-weight excess return on the market portfolio (MKT), the size factor (SMB, small
minus big), the value factor (HML, high minus low book-to-market), the operating pro�tability
factor (RMW, robust minus weak pro�tability) and the investment factor (CMA, conservative minus
aggressive investment). The test assets include: the 25 FF size and book-to-market portfolios (Panel
A), the 25 FF size and investment portfolios (Panel B), the 25 FF book-to-market and operating
pro�tability portfolios (Panel C) and the 25 FF size and variance portfolios (Panel D).
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Table 2B.15: Bias-corrected bootstrapped con�dence intervals for the scale-wise pre-
dictive regressions

Persistence level
j = 6 7

Panel A β6 95% CI 90% CI β7 95% CI 90% CI
ut (1) 3.0551 [1.4756, 6.0636] [1.8041, 5.3278] 0.3395 [-3.1428, 5.9147] [-2.7186, 4.8427]
ut (3) 2.8094 [1.3877, 5.5145] [1.6605, 4.8525] 0.4748 [-2.8301, 5.3620] [-2.4174, 4.4883]
ut (12) 4.2765 [2.0514, 8.2260] [2.5017, 7.2297] 1.2757 [-3.4772, 7.7966] [-2.8486, 6.5519]

Panel B β6 95% CI 90% CI β7 95% CI 90% CI
ut (1) 3.0551 [1.7187, 7.1527] [1.9222, 5.8410] 0.3395 [-2.6837, 5.2625] [-2.2762, 4.4559]
ut (3) 2.8094 [1.5703, 6.5430] [1.7769, 5.3312] 0.4748 [-2.3966, 4.7325] [-2.0368, 4.0177]
ut (12) 4.2765 [2.3730, 10.1137] [2.7444, 8.2692] 1.2757 [-2.4808, 7.7078] [-1.8131, 6.6627]

Notes: This table reports bootstrapped con�dence intervals for the scale-wise predictive regressions
for j = 6, 7 using the bias-corrected percentile method and the stationary bootstrap of Politis and
Romano (1994). In Panel A the average block size is set equal to 32 - calculated based on the
Politis and White (2004) estimator. In Panel B the block size is set equal to 2j . Bold values denote
statistically signi�cant estimates.
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Table 2B.16: Tails of t/
√
T at various percentiles

Horizon
q = 16 32 48 64 96 128 192

ut (1) forward aggregates only
0.950 0.2665 0.3772 0.4558 0.5057 0.6005 0.6491 0.7115
0.975 0.3234 0.4492 0.5383 0.6075 0.7201 0.7877 0.8277

ρ = 0.9866 0.995 0.4280 0.5885 0.7028 0.8024 0.9504 1.0453 1.1008
δ = −0.1511 forward/backward aggregates

0.950 0.2767 0.3994 0.5128 0.6240 0.7933 0.9541 1.1051
0.975 0.3282 0.4751 0.6092 0.7411 0.9794 1.1978 1.3902
0.995 0.4360 0.6147 0.8306 1.0062 1.3594 1.7184 1.8800

ut (3) forward aggregates only
0.950 0.2742 0.3939 0.4692 0.5251 0.6379 0.7058 0.7612
0.975 0.3310 0.4644 0.5555 0.6383 0.7588 0.8350 0.8943

ρ = 0.9891 0.995 0.4292 0.7246 0.7246 0.8331 1.0020 1.0866 1.2024
δ = −0.1853 forward/backward aggregates

0.950 0.2812 0.4072 0.5169 0.6367 0.8205 0.9746 1.1388
0.975 0.3308 0.4877 0.6249 0.7510 0.9966 1.1973 1.4137
0.995 0.4359 0.6242 0.8474 1.0262 1.3924 1.7084 1.8487

ut (12) forward aggregates only
0.950 0.2848 0.4029 0.4814 0.5615 0.6783 0.7506 0.8379
0.975 0.3342 0.4692 0.5901 0.6688 0.7955 0.8947 0.9854

ρ = 0.9943 0.995 0.4336 0.6199 0.7600 0.8968 1.0777 1.2356 1.3408
δ = −0.1494 forward/backward aggregates

0.950 0.2885 0.4132 0.5317 0.6525 0.8252 1.0021 1.1553
0.975 0.3368 0.4925 0.6352 0.7760 0.9924 1.2395 1.3988
0.995 0.4495 0.6573 0.8381 1.0130 1.4407 1.6930 1.8793

Notes: This table reports the right-tail critical values of t/
√
T at various percentiles (bold values).

I simulate the distribution of t/
√
T for samples of length T = 635. I implement 5,000 replications.

The distribution depends on two nuisance parameters c and δ. The parameter c = (ρ− 1)T
measures deviations from unity in a decreasing (at rate T ) neighbourhood of 1. The parameter δ
measures the covariance of the innovations in Equations (2B.1) and (2B.2).

125



Table 2B.17: Multi-scale autoregressive process estimates

Persistence level
j = 1 2 3 4 5 6 7

h = 1
ρj 0.2705*** 0.0248 -0.0400 -0.1641 -0.3935*** -0.0754 -0.1542

Half-life (years) 0.0883 - - - 1.9816 - -
NW t-stat (3.4609) (0.2591) (-0.3005) (-1.1020) (-3.6137) (-0.4605) (-0.9950)
HH t-stat (3.0862) (0.2362) (-0.3243) (-1.1537) (-4.0802) (-0.6381) (-1.1568)
Adj.R2 (%) [7.323%] [0.062%] [0.160%] [2.697%] [12.705%] [0.411%] [2.118%]

h = 3
ρj 0.3374*** 0.1102 0.0113 -0.1616 -0.4088*** -0.0735 -0.1585

Half-life (years) 0.1063 - - - 2.0663 - -
NW t-stat (3.6730) (0.9750) (0.0773) (-1.0817) (-3.7222) (-0.4723) (-1.0689)
HH t-stat (3.2867) (0.9118) (0.0837) (-1.1550) (-4.1870) (-0.6657) (-1.3829)
Adj.R2 (%) [11.398%] [1.224%] [0.013%] [2.613%] [13.780%] [0.402%] [2.350%]

h = 12
ρj 0.5237*** 0.2988** 0.1783 -0.0776 -0.4668*** -0.0577 -0.1410

Half-life (years) 0.1786 0.1913 - - 2.4262 - -
NW t-stat (6.5071) (2.3747) (1.1613) (-0.5492) (-4.0443) (-0.4037) (-0.9011)
HH t-stat (5.6739) (2.1486) (1.2162) (-0.5892) (-4.4465) (-0.6243) (-2.8856)
Adj.R2 (%) [27.443%] [8.990%] [3.193%] [0.607%] [18.844%] [0.271%] [2.227%]

# observations 632 628 620 604 572 508 380

Notes: This table reports the estimation results of the multi-scale autoregressive system. For each

level of persistence j ∈ {1, . . . , 7} I run a regression of the uncertainty component u
(j)

t+2j
on its

own lagged component u
(j)
t . For each regression, the table reports OLS estimates of the regressors,

Newey-West (1987) and Hansen-Hodrick (1980) corrected t-statistics with 2j−1 lags in parentheses
and adjusted R2 statistics in square brackets. ***,**,* denote statistical signi�cance at 1%, 5% and
10% level respectively. Half-lives (in years) are obtained by HL (j) = (ln (0.5) / ln (|ρj |))× 2j/12.
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Table 2B.18: Percentage contribution to total variance

Panel A
ut (1) Persistence level
j = 1 2 3 4 5 6 7

Var
(
u

(j)
t

)
0.0065 0.0184 0.0455 0.0912 0.1712 0.2289 0.1873

Lower con�dence bound 0.0056 0.0153 0.0366 0.0682 0.1160 0.1451 0.0955
Upper con�dence bound 0.0077 0.0225 0.0582 0.1283 0.2780 0.4142 0.5202

ut (3) Persistence level
j = 1 2 3 4 5 6 7

Var
(
u

(j)
t

)
0.0053 0.0154 0.0404 0.0888 0.1728 0.2357 0.1900

Lower con�dence bound 0.0046 0.0128 0.0324 0.0660 0.1167 0.1485 0.0967
Upper con�dence bound 0.0062 0.0188 0.0520 0.1259 0.2821 0.4305 0.5300

ut (12) Persistence level
j = 1 2 3 4 5 6 7

Var
(
u

(j)
t

)
0.0027 0.0086 0.0250 0.0644 0.1458 0.2288 0.2144

Lower con�dence bound 0.0023 0.0070 0.0194 0.0466 0.0965 0.1449 0.1077
Upper con�dence bound 0.0033 0.0108 0.0333 0.0949 0.2455 0.4150 0.6169

Panel B
IPV OLt Persistence level
j = 1 2 3 4 5 6 7

Var
(
IPV OL

(j)
t

)
0.2043 0.2034 0.2073 0.1717 0.1088 0.0511 0.0205

Lower con�dence bound 0.1826 0.1775 0.1691 0.1330 0.0768 0.0351 0.0126
Upper con�dence bound 0.2301 0.2354 0.2603 0.2304 0.1660 0.0811 0.0388

Notes: Panel A presents the percentage contribution of each individual component to the total
variance of the time-series for aggregate uncertainty. Panel B presents the percentage contribu-
tion of each individual component to the total variance for the volatility of industrial production.
Approximate con�dence intervals for the variance of the components are computed based on the
Chi-squared distribution with one degree of freedom (see also - Percival, 1995).
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Chapter 3

Are Low-Frequency Macroeconomic Risks Priced in

Asset Prices? A Critical Appraisal of Epstein-Zin

Preferences

3.1 Introduction

In a seminal paper Bansal and Yaron (2004) show that concerns about long-run42 expected growth

and time-varying uncertainty about future economic prospects drive asset prices. These two channels

of macroeconomic risks (i.e., growth and volatility) can jointly explain the level and cross-sectional

di�erences in asset prices. Recently, Dew-Becker and Giglio (2016) quantify the meaning of long-

run in the content of Epstein-Zin preferences by deriving the exact weights that these preferences

place upon di�erent frequencies. They demonstrate that Epstein-Zin preferences isolate their weight

almost exclusively on very low-frequencies (on cycles lasting centuries).

In this chapter, I test if the strict constraints that Epstein-Zin preferences impose in the fre-

quency domain on asset pricing models are empirically satis�ed. In particular, I examine if mac-

42For a review of the long-run risks literature see Bansal (2007) and for econometric estimation techniques see
Constantinides and Ghosh (2011), Grammig and Schaub (2014) and Schorfheide et al. (2014). For the out-of-sample
performance see Ferson et al. (2013). Long-run risk can also arise endogenously through consumption smoothing
(Kaltenbrunner and Lochstoer, 2010) or via uncertainty and learning about the parameters governing the aggregate
consumption process (Collin-Dufresne et al., 2016; Johannes et al., 2016).
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roeconomic shocks with frequencies lower than the business-cycle are robustly priced in the cross-

section of expected returns and evaluate the economic signi�cance of the corresponding risk premia.

First, I rely on the novel framework for scale-based (i.e., horizon-speci�c) analysis of risk as pro-

posed in Boons and Tamoni (2016) to conduct inferences about the degree of covariability of asset

returns and (innovations in) macroeconomic series across time-scales. Speci�cally, I decompose

macro series into layers with di�erent layers of resolution (i.e., across di�erent frequencies) using

the multiresolution-based decomposition of Ortu et al. (2013). Then, I analyse the price of risk for

the scale-dependent macro shocks and their ability to explain the cross-sectional variation in asset

prices. In line with Dew-Becker and Giglio (2016) I quantify low-frequency shocks as shocks that

last longer than the business-cycle - rather than shocks that last hundreds of years as implied by

Epstein-Zin preferences. That is, I allow �uctuations on broader ranges of frequencies to be priced

when testing the theoretical predictions of Epstein-Zin preferences.

I �nd that macroeconomic shocks with frequencies lower than the business-cycle are not signif-

icantly priced in the equity market. That is, the price of risk for the low-frequency �uctuations is

economically small and thus not in line with the theoretical predictions of Epstein-Zin preferences

(i.e., the power at low frequencies does not determine risk premia). In addition, the risk premia

have wrong sings and the low-frequency risk exposures cannot explain the size and value e�ects.

These results remain similar irrespective of the type and length of the wavelet �lter used in the

multiresolution-based decomposition. Moreover, I draw similar conclusions if I use the econometric

framework of Müller and Watson (2015) to estimate the low-frequency risk exposures (i.e., using

betas from regressions of cosine transforms).

My work complements previous studies that question the key mechanism of the long-run risk

(LRR) framework and its ability to explain observed features of asset market data. For instance,

Beeler and Campbell (2012) document several empirical di�culties for the LRR model as calibrated

by Bansal and Yaron (2004) and Bansal et al. (2012). Epstein et al. (2014) provide a quantitative

assessment of how much the temporal resolution of risk matters. They show that the implied timing
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premia (i.e., the fraction of the consumption stream that an agent is willing to give up in order for

all risk to be resolved in the next period) required to match key moments of market returns are

too large. I add to this line of research by demonstrating that the strict restrictions imposed in the

frequency domain by the recursive utility are not empirically satis�ed.

Instead, following Boons and Tamoni (2016) I demonstrate that the economically relevant set of

frequencies for asset pricing are those that correspond to the upper bound of business-cycle length

�uctuations. In particular, an asset pricing model with a single factor that captures variation in the

�rst or second moment of macroeconomic activity at frequencies ranging from 4 to 8 years explains

the cross-sectional variation in portfolio returns and is also correctly speci�ed. Moreover, the risk

loadings with respect to business-cycle frequencies match known patterns in average returns. That

is, assets o�er di�erent risk compensations because they are di�erentially exposed to macroeco-

nomic risks in this speci�c frequency range. My work builds upon the novel approach of Boons and

Tamoni (2016) but it does so from a distinct perspective. That is, by showing that low-frequency

macro factors have essentially no explanatory power and empirically assessing Epstein-Zin prefer-

ences. Moreover, my study is related43 to Bandi and Tamoni (2016) who demonstrate the success

of business-cycle consumption risk in explaining the cross-sectional di�erences in asset prices. Spe-

ci�cally, using a redundant - instead of a decimated - decomposition I show that the one-factor

model of Bandi and Tamoni (2016) with business-cycle consumption risk is also correctly speci�ed.

Finally, my results are in line with chapter 2 in which I show that macro uncertainty shocks with

persistence longer than 128 months are not robustly priced in asset prices.

In total, my work provides strong empirical support for a data generating process in the spirit

of Bandi and Tamoni (2016) in which the expected return of an asset is directly related to its

covariance with macro risks at horizons ranging from 4 to 8 years. Simply put, from the point

of view of asset pricing business-cycle frequencies are of �rst-order importance. In light of these

�ndings I argue that we need risk preferences that put more weight on business-cycles instead of

43Notable contributions in this branch of the literature that explores how scale-dependent shocks propagate to
asset prices also include Ortu et al. (2013) and Bandi et al. (2016).
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cycles lasting centuries as the recursive utility does. In addition, the conclusion of Dew-Becker

and Giglio (2016) that long-run risks are signi�cantly priced in asset prices while business-cycle

�uctuations are not is drawn early. For instance, the risk loadings of the 25 FF size and book-to-

market portfolio returns with respect to the low-frequency macro shocks in Dew-Becker and Giglio

(2016) decrease across both directions44 (i.e., size and value) which is di�cult to justify empirically.

The remainder of this chapter is organized as follows: Section 3.2 discusses the asset pricing

restrictions imposed by Epstein-Zin preferences in the frequency domain in line with the spectral

decomposition of the pricing kernel by Dew-Becker and Giglio (2016). Section 3.3 provides the

empirical analysis, section 3.4 contains several robustness checks, section 3.5 explains why the

recursive utility fails and section 3.6 concludes.

3.2 Motivation - Spectral Decomposition of Epstein-Zin Prefer-

ences

Consider a discrete-time real endowment economy where the agent's preferences over the consump-

tion stream Ct are described by the recursive utility function of Epstein and Zin (1989) and Weil

(1989). These preferences allow for separation between the coe�cient of risk aversion and the elas-

ticity of intertemporal substitution (EIS). In particular, the utility function is de�ned recursively

as

Vt =

[
(1− δ)C

1−γ
θ0
t + δ

(
Et

[
V 1−γ
t+1

]) 1
θ0

] θ0
1−γ

(3.1)

where δ ∈ (0, 1) denotes the subjective discount factor, γ > 0 is the relative risk aversion coe�cient,

ψ > 0 is the elasticity of intertemporal substitution (EIS) and θ0 = 1−γ
1−1/ψ . Note that when θ0 = 1,

i.e. when γ = 1/ψ, the standard time-separable power utility is obtained as a special case.

In a recent study Dew-Becker and Giglio (2016) demonstrate that in any log-linear asset pricing

44See Table A2 in the internet appendix of Dew-Becker and Giglio (2016).
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model the price of risk that investors assign to economic �uctuations at di�erent frequencies can

be analytically derived. Speci�cally, the spectral decomposition of Epstein-Zin preferences in the

Bansal and Yaron (2004) model with time-varying volatility yields the following spectral weighting

function for consumption:

ZEZ−SVC (ω) = γ + 2 (γ − ρ)

∞∑
j=1

θj cos (ωj) (3.2)

where ρ = 1/ψ (i.e., the inverse EIS) and θ is the parameter that comes from the Campbell and

Shiller (1988) log-linearisation of the return on the agent's wealth portfolio (i.e., θ =
(
1 +DP

)−1

where DP is the dividend-price ratio for the wealth portfolio). Similarly, the spectral weighting

function for consumption volatility is

ZEZ−SV
σ2 (ω) = θk1

(ρ− γ)

1− ρ

1 + 2
∞∑
j=1

θj cos (ωj)

 (3.3)

where k1 is a constant that depends on the underlying process driving consumption growth. The

frequency-speci�c price of risk for consumption shocks depends only on the investor's preferences.

In contrast, the magnitude of ZEZ−SV
σ2 depends on the dynamics of the economy through k1. That

is, there is not a complete separation between preferences and consumption dynamics in this case.

In addition, the shape of ZEZ−SV
σ2 depends only on the parameter θ.

The fraction of the mass in the range of frequencies between ω1 and ω2 is given by

´ ω2

ω1
Z (ω) dω´ π

0 Z (ω) dω
. (3.4)

I use Equation (3.4) to estimate45 the exact weights that Epstein-Zin preferences place in the

following three economically motivated intervals: frequencies lower than the business-cycle (i.e.,

ω1 = 0 and ω2 = 2π/32), business-cycle frequencies (i.e., ω1 = 2π/32 and ω2 = 2π/6) and high-

45Note that
∑∞
j=0 θ

j2 cos (ωj) can be simpli�ed using Euler's formula and properties of absolutely convergent series
(i.e.,

∑
< = <

∑
).
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frequencies (i.e., ω1 = 2π/6 and ω2 = π). Table 3.1 reports the theoretical pricing weights for these

frequency ranges. The results are obtained from an annual calibration. In Panel A I set θ = 0.975

which corresponds to a 2.56% annual dividend price ratio. In addition, I report the median cycle of

a shock in years (i.e., the median cycle corresponds to the frequency for which the pricing weight

is split into two halves). Table 3.1 demonstrates that the main e�ect of an increase in risk aversion

is to shift the mass to low frequencies (Dew-Becker and Giglio (2016) show that the total weight

placed on the spectrum is equal to
(´ π

0 ZEZ−SVC (ω) dω
)
/π = γ). Also, the median cycle of both

consumption growth and volatility shocks across all calibrations is greater than 130 years.

Figure 3.1 plots the theoretical spectral weighting functions ZEZ−SVC and ZEZ−SV
σ2 under Epstein-

Zin preferences for various parametrizations. The x-axis lists the cycle length in years. In line with

the results in Table 3.1 we observe that the mass of both functions is isolated near frequency zero.

In total, these �ndings demonstrate that under recursive preferences low-frequencies are priced

strongly while business-cycle frequencies are not quantitatively important for asset pricing. That is,

around 90% of the weight that determines risk premia lies on frequencies lower than the business-

cycle. In addition, these results greatly highlight the estimation problem underlying Epstein-Zin

preferences, i.e. the weights lie on frequencies close to zero for which traditional inference tools of

spectral analysis are not directly applicable due to the scarcity of low-information (see the discussion

in the Appendix).

3.3 Empirical Analysis

3.3.1 Data

In a consumption-based asset pricing model with Epstein-Zin preferences the pricing kernel is driven

by persistent shocks to consumption. Since consumption su�ers from a number of measurement

problems (for instance, see Savov, 2011; Qiao, 2013) and in line with Boons and Tamoni (2016) I

quantify macroeconomic activity using the growth rate of industrial production46 (IPG). Moreover,

46Liu and Zhang (2008) also use IPG as a common risk factor driving the pricing kernel.
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I explore the robustness of all results using other macro variables such as GDP growth and volatility.

This approach allows me to generalize the analysis and examine if and how the low-frequency

dynamics of the economy are priced.

IPGt is de�ned as IPGt = log IPt − log IPt−1 where IPt is the seasonally-adjusted industry

production index (INDPRO series) in month t from the FRED database of the St. Louis FED.

Quarterly growth rates are calculated by compounding monthly growth rates. The sample period is

1962:Q1 to 2014:Q4 (the starting period is in line with most work on cross-sectional asset pricing).

In addition, to measure macro volatility I consider the following AR (1)−GARCH(1, 1) speci�cation

IPGt = µ+ φIPGt−1 + νt, (3.5)

σ2
t = ω0 + ω1ν

2
t−1 + ω2σ

2
t−1 (3.6)

where IPV OL = σ̂t. I estimate Equations (3.5) and (3.6) using the full sample. Estimation results

are available in Table 3.2. The estimates of ω1 and ω2 are both signi�cant implying macro volatility

is time varying.

My main test assets are the 5 FF industry and 25 FF size and book-to-market portfolios which

are priced together. That is, in the spirit of Lewellen et al. (2010) I include the FF industry

portfolios to provide a higher hurdle for the frequency-dependent macroeconomic factors. I only

add the 5 industry portfolios because the asymptotic distribution of the sample cross-sectional R2

becomes less reliable as the number of test assets increases (this approach is in line with Kan et al.,

2013).

3.3.2 Econometric Framework & Cross-Sectional Analysis

I am interested in the ability of the scale-dependent macroeconomic shocks �ltered out of IPG and

IPV OL to explain aggregate portfolio returns. I begin by decomposing the macro series of interest

into layers with heterogeneous levels of persistence using the multiresolution-based decomposition

of Ortu et al. (2013). In particular, let u
(j)
t denote �uctuations of the macro series with half-life in
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the interval [2j−1, 2j), that is

u
(j)
t =

∑2(j−1)−1
i=0 ut−i

2(j−1)
−
∑2j−1

i=0 ut−i
2j

≡ π(j−1)
t − π(j)

t (3.7)

where j ≥ 1, π
(0)
t ≡ ut and the moving averages π

(j)
t satis�es the recursion

π
(j)
t =

π
(j−1)
t + π

(j−1)

t−2j−1

2
(3.8)

for j = 1, 2, 3, . . .. The derived series
{
u

(j)
t

}
t∈Z

captures �uctuations that survive to averaging over

2j−1 terms but disappear when the average involves 2j terms. For any J ≥ 1, the original series ut

can be written as a sum of components with half-life belonging to a speci�c interval plus a long-run

average, that is,

ut =
J∑
j=1

u
(j)
t + u

(>J)
t︸ ︷︷ ︸
≡π(J)

t

. (3.9)

The decomposition of the time series is conducted using wavelet methods as in multiresolution

analysis via the Maximum Overlap Discrete Wavelet Transform (MODWT). In particular, the

extraction is based on the one-sided, linear Haar �lter. I set J = 5 so that the maximum time-

scale corresponds to the upper bound of business-cycle frequencies and u
(>5)
t captures shocks lower

than the business-cycle (i.e., lower than 8 years). In line with the MODWT I also extend this

decomposition to allow for �lters of di�erent type and length as a robustness check (see Section 1.2

for more details).

The covariance between asset excess returns
(
Re,it

)
and innovations (i.e., the unexpected part)

in macroeconomic series (∆ut ≡ ut − ut−1)47 can be decomposed across time-scales as follows48 (see

Boons and Tamoni, 2016 or Bandi and Tamoni, 2016 for a decimated decomposition)

47The results are quantitatively similar if I use residuals from an AR(1) model - see Table 3B.1.
48This result holds irrespectively of the wavelet �lter used for the decomposition. For instance, see Chapter 7 in

Gençay et al. (2001).
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Cov
[
Re,it ,∆ut

]
=

J∑
j=1

Cov
[
R
e,i(j)
t ,∆u

(j)
t

]
+ Cov

[
R
e,i(>J)
t ,∆u

(>J)
t

]
(3.10)

and thus the scale-dependent risk exposures are de�ned as

βi(j) ≡
Cov

[
R
e,i(j)
t ,∆u

(j)
t

]
V ar

(
∆u

(j)
t

) and βi(>J) ≡
Cov

[
R
e,i(>J)
t ,∆u

(>J)
t

]
V ar

(
∆u

(>J)
t

) . (3.11)

The approach of Boons and Tamoni (2016) for cross-sectional asset pricing di�ers from the standard

Fama-MacBeth (1973) methodology in the �rst step, i.e. in the way that the risk exposures are

estimated. In particular, I �rst run for each asset i (of size T ) the following time-series regression

R
e,i(j)
t = β

(j)
0 + βi(j)∆u

(j)
t + ε

(j)
t t = 1, . . . , T for each j = 1, . . . , 5, > 5, (3.12)

where R
e,i(j)
t denotes the components of asset excess returns associated with scale j at time t. Then

I estimate a cross-sectional regression of average portfolio returns on the estimated scale-speci�c

risk exposures βi(j)

Re,i = λ0,j + λjβ
i(j) + αi,j for each j = 1, . . . , 5, > 5, (3.13)

where Re,i denotes the average time-series excess return for asset i, λ0,j is the zero-beta excess return

associated with time-scale j, λj is the relative price of risk for β(j) (i.e., the frequency-speci�c risk

compensation) and αi,j is a pricing error.

To determine whether the scale-dependent macroeconomic shocks are priced I look for an estim-

ate λ̂j that remains signi�cant after using a t-statistic cuto� of three as suggested by Harvey et al.

(2016), for an intercept that is small and statistically insigni�cant and a sample R2 signi�cantly

di�erent from zero. When 0 < R2 < 1, R̂2 is asymptotically normally distributed around its true

value and thus we cannot use R̂2 ± 1.96 × se(R̂2) to obtain a 95% con�dence interval. Instead, I
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construct con�dence intervals by pivoting49 the cumulative distribution function (cdf). Kan and

Robotti (2009) and Kan and Robotti (2015) use the same method to construct con�dence intervals

for the Hansen-Jagannathan distance and the Hansen-Jagannathan bound respectively.

Table 2.4 presents the scale-dependent risk exposures for business-cycle length �uctuations. I

use Newey-West (1987) heteroskedasticity and autocorrelation consistent (HAC) standard errors

with 2j − 1 lags. In the spirit of Kan and Zhang (1999) it is empirically sound to use the risk

exposures from Equation (3.12) as factors in cross-sectional asset pricing (i.e., not useless factors).

Moreover, the risk loadings with respect to macro volatility are negative, that is, assets tend to

realize low returns when macro volatility is rising. This result is in line with the evidence in Boons

and Tamoni (2016).

Table 3.4 reports the estimates for the zero-beta excess return and the price of risk across

time-scales for innovations in macro shocks �ltered out of IPG (in Panel A) and IPV OL (in

Panel B) along with the corresponding Fama-MacBeth (1973) test statistics in parentheses. In

addition, I normalize the frequency-speci�c risk exposures and estimate the price of risk per unit

of cross-sectional standard deviation in percent per year. I also report the p-value for the Kan

et al. (2013) speci�cation test of H0 : R2 = 1 denoted as p
(
R2 = 1

)
. Innovations in low-frequency

macroeconomic shocks (i.e., lower than 8 years) �ltered out from the �rst and the second moment

of industrial production are not priced in the cross-section of expected returns. In both cases the

estimated risk premia are economically small and have wrong signs (i.e., β̂
(>5)
∆IPG × λ̂∆IPG(>5) < 0

and β̂
(>5)
∆IPV OL × λ̂∆IPV OL(>5) < 0), the estimates of the zero-beta excess returns are statistically

signi�cant and the cross-sectional R2's are not signi�cantly di�erent from zero. That is, ∆IPG(>5)

and ∆IPV OL(>5) are not priced.

On the other hand, the estimated price of risk for ∆IPG
(5)
t is 0.38 with a t-statistic of 2.55 while

the intercept is insigni�cant. The coe�cient of determination for this factor is equal to 56.70% and

is signi�cantly di�erent from zero. In addition, the Kan et al. (2013) miss-speci�cation test does

49For more information see section 9.2.3 in Casella and Berger (2002).
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not reject the null hypothesis that the model is correctly speci�ed. Similarly, ∆IPV OL
(5)
t carries

a negative price of risk of -0.10 with a t-statistic of -3.26 and the intercept is insigni�cant (t-stat =

1.48). The cross-sectional R2 is 60.78%, statistically signi�cant and with lower sampling variability

(i.e., se(R̂2
(5)) = 0.1026). In addition, the null hypothesis that the model is correctly speci�ed is

not rejected. Note that since β̂
(5)
∆IPG× λ̂∆IPG(5) > 0 and β̂

(5)
∆IPV OL× λ̂∆IPV OL(5) > 0 business-cycle

growth and volatility shocks carry positive risk premia.

These results complement the earlier study of Boons and Tamoni (2016) who emphasize the

importance of macro growth and volatility shocks with persistence greater than 4 years for cross-

sectional asset pricing. I do not dispute the fact that the Boons and Tamoni (2016) factors are

robustly priced in asset prices. Rather, I show that their pricing performance is mainly driven by

a business-cycle component. That is, in contrast with the theoretical restrictions of Epstein-Zin

preferences and the results in Dew-Becker and Giglio (2016) I explicitly demonstrate that low-

frequency macro factors have essentially no explanatory power. Instead, business-cycle �uctuations

are of �rst-order importance for asset pricing.

Figure 3.2 plots realized versus �tted average excess returns for the 25 size and book-to-

market FF portfolios and the 5 FF industry where the priced factors are the innovations (i.e.,

�rst-di�erences) in the scale-speci�c macro shocks for j = 5 and j > 5. Each two-digit number

represents a separate portfolio. The �rst digit refers to the size quintile of the portfolio (1 being

the smallest and 5 the largest), while the second digit refers to the book-to-market quintile (1 being

the lowest and 5 the highest). If the �tted and the realized returns for each portfolio are the same

then they should lie on the 45-degree line from the origin.

3.4 Robustness Checks

In this section I verify the robustness of my results using several checks.
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3.4.1 Leakage and other Filters

An ideal band-pass �lter �lter exhibits positive values only inside the desired frequency interval and

is zero at all other frequencies. In contrast, the squared gain functions associated with the Haar

wavelet �lter at each level of resolution j (i.e., at each time-scale) do not decay rapidly outside their

nominal frequency range. That is, the Haar �lter is a poor approximation to an ideal band-pass �lter

(see Figure 3.3). To address this issue I use the least asymmetric (LA) Daubechies �lter of length

8 and perform a similar multiresolution-based decomposition. The LA(8) wavelet su�ers from less

leakage at the edge of each frequency band and hence is a much better approximation to an ideal

band-pass �lter than the Haar (see Figure 3.4). At each time-scale I estimate the unexpected part

of the scale-speci�c macroeconomic shocks using the residuals from an AR(1) model. Table 3.5

provides the cross-sectional estimates. The results for IPV OL remain quantitatively similar.

The preferred decomposition is the one used by Ortu et al. (2013) and Boons and Tamoni

(2016) since under the one-sided, linear Haar �lter used for the extraction there is a close relation

between scale-speci�c and long-horizon betas (see also Bandi and Tamoni, 2016). In addition, for

macroeconomic series that are less volatile (e.g., IPG or GDP Growth) wavelet �lters of length 4

or less are more appropriate (see Crowley, 2007).

3.4.2 Comparison: Business-Cycle Frequencies (j = 5) vs Low-Frequencies (j >

5)

I compare the two factors that capture variation in macro activity at frequencies ranging between 4

and 8 years (i.e., j = 5) and frequencies lower than 8 years (i.e., j > 5) by estimating the following

cross-sectional regression

Re,i = λ0 + λ5β
i(5) + λ>5β

i(>5) + αi (3.14)

where the scale-speci�c risk loadings are estimated from two separate time-series regressions as in

Equation (3.12). Table 3.6 reports the cross-sectional estimates. Adding the low-frequency macro
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factor does not improve the cross-sectional �t relative to a model with a single business-cycle factor.

In particular, the risk premium associated with the low-frequency macro shocks is not statistically

signi�cant. This result remains similar irrespective of the type and length of the wavelet �lter used

for the multi-resolution based decomposition.

3.4.3 Consumption Growth

The results remain similar if I replace industrial production growth with consumption measured as

the growth rate in real per capita non-durable consumption (seasonally adjusted at annual rates)

from the Bureau of Economic Analysis. Panel A of Table 3.7 presents the cross-sectional estimates.

The sampling period is quarterly from 1952:Q2 to 2012:Q4. The results for j = 5 are in line with

Bandi and Tamoni (2016) who use a decimated decomposition (i.e., they sample the scale-dependent

macro shocks every k × 2j , k ∈ Z times) while for j > 5 the consumption shocks are not priced.

Also, I cannot reject the null that the one-factor model with business-cycle consumption risk of

Bandi and Tamoni (2016) is correctly speci�ed50.

3.4.4 GDP Growth and Volatility

Panels B and C of Table 3.7 present the results for GDP growth and volatility respectively. GDP

growth is the growth rate in the Real Gross Domestic Product (seasonally adjusted at annual rates)

from the Bureau of Economic Analysis (series GDPC96) while GDP VOL is estimated using an

AR(1)-GARCH(1,1) model over the full sample. The sampling period is from 1962:Q1 to 2014:Q4.

The cross-sectional �t of a business-cycle factor �ltered out of GDP growth and volatility remains

similar.

50If I exclude the 5 FF industry portfolios the sample R2 is equal to 65.725%, se(R̂2)=0.1844 and p
(
R2 = 1

)
is

0.1165.
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3.4.5 Monotonicity in Risk Loadings

Moreover, I examine if the frequency-speci�c risk exposures match known patters in average returns.

That is, I test if the risk loadings are monotonically increasing (or decreasing) across portfolios using

the monotonic relation (MR) test of Patton and Timmermann (2010). The MR test is designed so

that the alternative hypothesis is the one that we want to prove and therefore a monotonic relation

is con�rmed only if there is su�cient evidence in the data to reject the null. For example, for assets

sorted on portfolios across book-to-market the null and alternative hypothesis for the MR tests are

the following: for portfolio returns H0 : R5 ≤ . . . ≤ R1 vs H1 : R5 > . . . > R1, for risk loadings

with respect to ∆IPG
(j)
t H0 : β

(j)
5 ≤ . . . ≤ β

(j)
1 vs H1 : β

(j)
5 > . . . > β

(j)
1 and for risk-loadings

with respect to ∆IPV OL
(j)
t H0 : β

(j)
5 ≥ . . . ≥ β

(j)
1 vs H1 : β

(j)
5 < . . . < β

(j)
1 where the direction is

reversed because the risk price is negative. I implement the MR test using the stationary bootstrap

of Politis and Romano (1994) where the average block size is calculated based on the Politis and

White (2004) estimator51. For all MR test I use 5,000 replications.

Table 2.15b presents the frequency-speci�c risk exposures with respect to the factors ∆IPG
(j)
t

and ∆IPV OL
(j)
t for j = 5 (i.e., business-cycle frequencies) and j > 5 (i.e., frequencies lower

than 8 years) for one-way portfolio sorts and the corresponding monotonicity tests. Only the risk

loadings at business-cycle frequencies match the size and values e�ects. That is, asset o�er di�erent

risk compensations because they are di�erentially exposed to macro risks at this frequency range.

Similar results hold for consumption growth (see Table 3B.9).

3.4.6 Low-Frequency Betas from OLS Regressions of Cosine Transforms

Furthermore, I rely on the econometric approach of Müller and Watson (2015) to conduct inferences

about the degree of covariability between (innovations) in macro shocks and asset excess returns

in frequencies lower than the business cycle. Then, I use the low-frequency betas as regressors in

the second-pass of the Fama-MacBeth (1973) methodology. In particular, I extract low-frequency

51For details on how to test for monotonic patterns in risk exposures see Appendix A.

141



information by computing a �nite number (q) of weighted averages of the original data where the

weights are known and deterministic low-frequency trigonometric series (i.e., discrete cosine trans-

forms)52. Within this framework estimation and inference about the low-frequency covariability

of the series is based only on the properties of the q weighted averages which are approximately

multivariate normal. That is, the inference problem is solved by classic results about inference in

small Gaussian samples.

Low-Frequency Weighted Averages: Let xt denote the economic variable of interest that is

observed for t = 1, . . . , T . Following Müller and Watson (2008, 2015) I isolate53 the low-frequency

information in xt using weights associated with the cosine transform, where the n − th weight is

given by

Ψn (s) =
√

2 cos (nπs) for n = 1, . . . , q, (3.15)

so that Ψn (t/T ) has period 2T/n. The n− th weighted average is then denoted by

XTn =

ˆ 1

0
Ψn (s)xbsT c+1ds = ιnTT

−1
T∑
t=1

Ψn

(
t− 1/2

T

)
xt (3.16)

where ιnT = (2T/nπ) sin (nπ/2T ) for all �xed n ≥ 1 and bsT c denotes the integer part of sT ∈ R.

The weighted averages XTn, n = 1, . . . , q, capture variation in xt corresponding to frequencies lower

than qπ/T . The weights Ψn add to zero and therefore XTn is invariant to location shifts of the

sample.

Asymptotic Approximations and Inference in a I (0) Model: Müller and Watson (2008)

demonstrate that suitably scaled partial sums of the weighted averages are normally distributed in

large samples if xt satis�es certain persistence properties. That is, for a model-speci�c κ: T 1−κXT
a∼

52For a thorough discussion regarding the choice of weights for extracting the low-frequency components see Müller
and Watson (2008). Similar properties hold for other transforms such as discrete Fourier or sine.

53I would like to thank Mark Watson for making the code available in his personal website:
https://www.princeton.edu/~mwatson/.
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N (0, Σ) where XT = (XT1, . . . , XTq)
′
and the covariance matrix Σ depends on the speci�c model

of low-frequency variability (i.e., Σ is determined by the parameters characterizing the persistence

of xt). In particular for the I (0) case, T−1/2XT
a∼ N

(
0, ω2Iq

)
where ω2 is the long-run variance.

Low-Frequency Risk Exposures in a Multivariate I (0) Model: Now, let xt denote an

h× 1 vector of time series. Partition xt into a scalar rt and a k × 1 vector zt where k = h− 1 with

corresponding cosine transforms

√
T

 RTn

ZTn

⇒
 Rn

Zn

 ∼ N
0,


Ωrr Ωrz

Ωzr Ωzz︸ ︷︷ ︸
≡Ω



 (3.17)

where Ω is the long-run covariance matrix of xt. Standard statistical theory concerning i.i.d.

multivariate normal samples can be used to obtain inference. In particular, εn = Rn −Z
′
nβ is i.i.d.

N
(
0, σ2

)
where σ2 = Ωrr − ΩrzΩ

−1
zz Ωzr and β = Ω−1

zz Ωzr is the population regression coe�cient

in a regression of Rn on Zn, n = 1, . . . , q. The R2 in this regression measures the fraction in the

low-frequency variability in rt that can be explained by the low-frequency variability in zt. Moreover

as long as k < q, β̂ =
(∑q

n=1 ZnZ
′
n

)−1 (∑q
n=1 ZnZ

′
n

)
. For scalar elements of β usual t-statistic

inference is applicable. In particular, β̂ follows a student-t distribution with q−k degrees of freedom.

Choice of q: For 53 years of data (T = 212 quarters) a small number of projection coe�cients

(q = 13) capture variability lower than the business cycle regardless of the sampling frequency, that

is, the cut-o� periodicity is equal to 2∗T
q = 32.62 quarters or approximately 8.15 years.

The I (0) Assumption and Inference about Persistence: In general, the low-frequency

methods described in this section are appropriate for both weakly and highly persistent processes.

However, the I (0) assumption is crucial for conducting statistical inference about β. For inference

in the cointegrated case see Müller and Watson (2013) and for the large size distortions that arise in
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the local-to-unity case see Elliott (1998). To conduct inference about the persistence parameters I

use three optimal tests that direct power to di�erent alternatives. First, I consider the low-frequency

versions of the point optimal (i.e., best power against the alternative) unit root and stationarity

tests derived in Müller and Watson (2008). In particular, I test the I (0) null hypothesis against

the point alternative of a local-level model with parameter b = ba > 0 using the low-frequency

stationarity test (LFST)

LFST =

∑q
n=1X

2
Tn∑q

n=1X
2
Tn

(
1 + ba/ (nπ)2

)−1 (3.18)

where ba is a parameter that governs the relative importance of the I (1) component in the local-

level model54. For ba = 10 the test exhibits near optimality for a wide range of values of b (see

Müller and Watson, 2013). In addition, I test the unit root model using the likelihood ratio statistic

LFUR =
X
′
TΣ (c0)−1XT

X
′
TΣ (ca)

−1XT

(3.19)

where XT = (XT1, . . . , XTq)
′
, Σ (c0) is the covariance matrix under the null (i.e., the I (1) model

with c0 = 0), Σ (ca) is the covariance matrix under the alternative and the statistic is labelled

low-frequency unit root (LFUR). Following Müller and Watson (2015) and Elliott (1999) I set

ca = 10.

Also, I consider a weighted average power (WAP) optimal test. That is, I use a point-optimal

test for the null (H0 : d = d0) versus the alternative (Ha : d = da) and construct a con�dence set

by collecting the values of d0 that are not rejected. In line with Müller and Watson (2015) I use

a weighting function that is uniform on −0.5 < d < 1.5. This approach allows a generalization of

the I (0) and I (1) dichotomy in the spirit of the fractionally integrated model I (d) where d is not

restricted to take on integer values (for instance, see Baillie, 1996).

54The local-level model decomposes xt into an I (0) and I (1) component, that is, xt = e1t + (b/T )
∑T
s=1 e2s where

{e1t} and {e2t} are mutually uncorrelated I (0) processes with the same long-run variance. I (0) behaviour follows
when b = 0. For more information see Harvey (1990).
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Panel A of Table 3.10 reports the results for the persistence tests. The low-frequency variability

in the macro series is consistent with the I (0) model. Hence, it is empirically sound to conduct

inference about the degree of low-frequency covariability between asset returns and these variables

using the Müller and Watson (2015) approach. Table 3.9 presents the low-frequency betas from

OLS regressions of cosine transforms. In particular, for each asset i I estimate the risk exposures

in a regression of Re,in on Zn, that is,

Re,in = βZn n = 1, . . . , q. (3.20)

where Re,in and Zn denote the low-frequency weighted averages constructed from asset's i excess

returns and innovations (i.e., residuals from an AR(1) model) in macro series respectively. Panel

B of Table 3.10 presents the cross-sectional estimates for three di�erent frequency cut-o�s (i.e.,

q = 11, 12, 13). In line with the results from the multiresolution-based decompositions I �nd that

the low-frequency macro shocks are not priced.

3.4.7 Frequency Domain Risk Exposures

Finally, in the spirit of Kalyvitis and Panopoulou (2013) I calculate the gain55 between asset returns

and the macro series (i.e., IPG or IPV OL) at a speci�c frequency and then use the estimates as

regressors in the second step of the Fama-MacBeth (1973) methodology. In particular, the gain

between portfolio's i excess returns Re,i and industrial production at frequency ω is de�ned as the

ratio between the co-spectra of the series and the spectrum of IPG given by

GRe,i,IPG (ω) =
|fRe,i,IPG (ω) |
fIPG,IPG (ω)

(3.21)

where fRe,i,IPG is the cross-spectrum of the two-series and is complex-valued and fIPG,IPG is the

55I use demeaned series to estimate the spectral measures based on Welch's (1967) method with a Hamming
window and 50% overlap. For details regarding window designs see Chapter 2 in Stoica and Moses (2005). Note that
while I use this approach as a robustness check the transition between the frequency domain and the time domain is
ad hoc.
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spectrum of IPG. The gain can be considered as the frequency domain analogue of the regression

coe�cient (for instance, see Engle, 1974) and is always positive.

The results in Table 3.11 remain quantitatively similar. At business-cycle frequencies ĜRe,i,IPG×

λ̂ > 0 and ĜRe,i,IPV OL× λ̂ > 0 and hence the estimated macro growth and volatility risk premia are

positive. In contrast, for frequencies lower than 8 years the risk premia have wrong signs and the

corresponding factors are not robustly priced. Similar results hold for GDP growth and volatility

(see Table 3B.11). Figure 3.5 presents the price of risk in percent per year across all frequencies.

There is a clear pick in the risk prices at frequencies close to the upper bound of the business-cycle.

3.5 Why Do Epstein-Zin Preferences Fail?

To understand why the recursive utility does not work and give some economic meaning to its

failure consider the innovations in the log stochastic discount factor (for details see Dew-Becker and

Giglio, 2016)

∆Et+1mt+1 ≈− γ∆Et+1 (∆Ct+1)− (γ − ρ)
∞∑
j=1

θj∆Et+1 (∆Ct+1+j) (3.22)

− θk1
(ρ− γ)

1− ρ

(
∆Et+1

(
σ2
t+1

)
+
∞∑
j=1

θj∆Et+1

(
σ2
t+1+j

))

where ∆Et+1 = Et+1 −Et denotes the change in expectations. In Equation (3.22), ∆Et+1 (∆Ct+1)

captures current consumption conditions while
∑∞

j=1 ∆Et+1 (∆Ct+1+j) news about long-run future

consumption growth. Similarly,
∑∞

j=1 ∆Et+1

(
σ2
t+1+j

)
captures news about long-run future con-

sumption volatility. In essence, under Epstein-Zin preferences what drives the theoretical pricing

weights and hence risk premia are news about shocks in consumption growth and volatility that last

centuries (i.e., with a median cycle greater than 130 years) and are orthogonal (i.e., not related) to

current conditions. Assuming that investors are endowed with this amount of news and allowing
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this information to drive asset prices is unrealistic and very hard to justify empirically.

3.6 Conclusions

In this chapter, I examine whether the strict conditions that Epstein-Zin preferences impose in the

frequency domain on asset pricing models are empirically satis�ed. I �nd that macroeconomic shocks

with frequencies lower than the business-cycle are not robustly priced in asset prices. In addition, the

estimated risk premia are economically small, carry wrong signs and the low-frequency risk exposures

fail to match known patterns in average returns (i.e., size and value e�ects). Instead, I demonstrate

that the economic relevant frequencies for asset pricing are mainly those that correspond to the

upper bound of business-cycle frequencies (i.e., 4 to 8 years). In this frequency range the theoretical

pricing weights that Epstein-Zin preferences place are only around 4%. My results remain robust

and quantitatively similar irrespective of how macro growth and volatility are quanti�ed or how the

frequency-speci�c risk exposures are estimated.

Overall, my work highlights the need for risk preferences that put less weight on cycles lasting

centuries and allow investors to be more risk averse to business-cycle frequencies. An alternative

approach is to specify risk preferences with a �at weighting function in the frequency domain (e.g.,

power utility or external habit formation - Campbell and Cochrane, 1999) and use scale-dependent

consumption components to drive the pricing kernel and thus generate business-cycle correlated risk

premia (for instance, see Bandi and Tamoni, 2016).
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Figure 3.1: Theoretical pricing weighting functions for Epstein-Zin preferences

Notes: This �gure plots the theoretical spectral weighting functions for consumption (Panel A)
and consumption volatility (Panel B) under Epstein-Zin preferences. γ is the relative risk aversion
coe�cient and ψ the elasticity of intertemporal substitution (EIS). The results are obtained from
an annual calibration with θ = 0.975 which corresponds to a 2.56% annual dividend price ratio

(i.e., θ =
(
1 +DP

)−1
). The x-axis lists the cycle length in years (given a frequency of ω the

corresponding cycle has length 2π/ω periods).
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Figure 3.2: Cross-sectional �t

Notes: This �gure plots realized versus �tted excess returns for the 25 size and book-to-market Fama
and French (1993) portfolios and the 5 FF industry where the priced factors are the innovations
(i.e., �rst-di�erences) in the scale-speci�c macro shocks for j = 5 and j > 5. Each two-digit number
represents a separate portfolio. The �rst digit refers to the size quintile of the portfolio (1 being
the smallest and 5 the largest), while the second digit refers to the book-to-market quintile (1 being
the lowest and 5 the highest). The straight line is the 45-degree line from the origin.
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Figure 3.3: Frequency domain representation: Haar wavelet �lter

Notes: This �gure plots the frequency response (i.e., the squared gained function) of the Haar �lter
at levels of resolution j = 1, . . . , 5, > 5. Frequencies with positive weights outside of the nominal
range (i.e., the vertical red lines) correspond to the leakage associated with this approximation to
an ideal band-pass �lter. Frequency is in units of cycles per period, which is radian frequency
normalized by 2π.
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Figure 3.4: Frequency domain representation: LA(8) wavelet �lter

Notes: This �gure plots the frequency response (i.e., the squared gained function) of the Daubechies
Least Asymmetric �lter of length 8 (LA(8)) at levels of resolution j = 1, . . . , 5, > 5. Frequencies
with positive weights outside of the nominal range (i.e., the vertical red lines) correspond to the
leakage associated with this approximation to an ideal band-pass �lter. Frequency is in units of
cycles per period, which is radian frequency normalized by 2π.
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Figure 3.5: Price of risk from frequency domain risk exposures

Notes: This �gure plots the price of risk in percent per year for the macro shocks across frequencies.
To estimate the risk prices I use the normalized gains between asset returns and the macro series
at each frequency as regressors in the second pass of the Fama-MacBeth (1973) methodology. The
frequency speci�c risk exposures are always positive - see Equation (3.21) - and therefore the low
frequency risk premia carry wrong signs. The x-axis lists the cycle length in years (given a frequency
of ω the corresponding cycle has length 2π/ω periods). I use demeaned series to estimate the spectral
measures based on Welch's (1967) method with a Hamming window and 50% overlap.
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Table 3.1: Theoretical pricing weights for Epstein-Zin preferences

Panel A - ZEZ−SVC Weight (%) in Frequencies Median Cycle Weight (%) in
γ ψ (EIS) > 8 years 1.5 - 8 years < 1.5 years (in years) 4 - 8 years

2.5 1.5 69.03% 12.17% 18.80% 138.24 4.67%
2.5 2 74.74% 10.81% 14.45% 167.55 4.52%
5 1.5 80.45% 9.45% 10.10% 195.43 4.38%
5 2 83.30% 8.78% 7.92% 208.95 4.31%
7.5 1.5 84.25% 8.55% 7.20% 213.42 4.28%
7.5 2 86.16% 8.10% 5.75% 222.26 4.24%
10 2 87.58% 7.76% 4.66% 228.81 4.20%

Panel B - ZEZ−SV
σ2 Weight (%) in Frequencies Median Cycle Weight (%) in

θ DP > 8 years 1.5 - 8 years < 1.5 years (in years) 4 - 8 years

0.960 4.17% 86.99% 10.76% 2.25% 153.96 6.50%
0.965 3.63% 88.61% 9.43% 1.96% 176.39 5.70%
0.970 3.09% 90.23% 8.09% 1.68% 206.31 4.90%
0.975 2.56% 91.86% 6.74% 1.40% 248.20 4.09%
0.980 2.04% 93.49% 5.39% 1.11% 311.03 3.28%

Notes: This table reports the theoretical pricing weights for consumption (Panel A) and consump-
tion volatility (Panel B) under Epstein-Zin preferences in di�erent frequency ranges. γ is the relative

risk aversion coe�cient, ψ the elasticity of intertemporal substitution (EIS) and θ =
(
1 +DP

)−1

where DP is the dividend-price ratio for the wealth portfolio. In Panel A the results are obtained
from an annual calibration with θ = 0.975 which corresponds to a 2.56% annual dividend price
ratio. In Panel B the shape of ZEZ−SV

σ2 (and hence the weights) depends only on θ. Also, I report
the median cycle in years (i.e., the median cycle corresponds to the frequency for which the pricing
weight is split into two halves).

Table 3.2: AR(1)-GARCH(1,1) �t

µ φ ω0 ω1 ω2

Estimate 0.0047 0.4914 7.96E-05 0.3040 0.3517
Std. Error 0.0012 0.0794 2.49E-05 0.0818 0.1631

Notes: This table reports the estimates for the following speci�cation: IPGt = µ+ φIPGt−1 + νt,
where σ2

t = ω0 + ω1ν
2
t−1 + ω2σ

2
t−1. The sample period is 1962:Q1 to 2014:Q4. Bold values denote

statistically signi�cant estimates at a 95% con�dence level.
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Table 3.3: Scale-speci�c risk exposures

Size Book-to-market Panel A - IPG Panel B - IPVOL
Small LowBM 4.0615 (2.3587) -7.1271 (-0.5163)

2BM 4.9565 (3.4651) -11.0553 (-1.0944)
3BM 5.4196 (3.9546) -16.2839 (-1.7211)
4BM 5.2345 (3.5456) -18.0221 (-2.0146)

HighBM 7.1047 (4.0767) -22.3852 (-2.4101)
2 LowBM 3.6032 (2.7275) -6.2003 (-0.5440)

2BM 3.0875 (3.8597) -9.1357 (-1.1931)
3BM 3.8616 (4.3223) -12.9265 (-2.2168)
4BM 4.6606 (5.8665) -18.6692 (-3.2022)

HighBM 5.5915 (3.8623) -22.0407 (-2.9285)
3 LowBM 3.2898 (2.7561) -7.3420 (-0.7343)

2BM 3.6470 (4.5451) -14.1497 (-1.9788)
3BM 3.6631 (6.2559) -13.8604 (-2.7438)
4BM 4.2653 (3.6623) -17.1972 (-2.6265)

HighBM 4.4334 (3.9634) -20.1132 (-3.5106)
4 LowBM 2.1394 (2.4089) -4.6602 (-0.5660)

2BM 3.1143 (3.7338) -10.9030 (-1.5701)
3BM 4.1466 (3.1829) -15.0852 (-1.7441)
4BM 3.5600 (3.6093) -16.6233 (-3.0151)

HighBM 4.8815 (3.6945) -18.7705 (-2.8532)
Big LowBM 1.8552 (2.2206) -3.4436 (-0.4933)

2BM 2.6870 (3.4145) -9.5265 (-1.7591)
3BM 2.5276 (3.2209) -12.6822 (-2.2650)
4BM 2.9551 (3.5861) -13.2140 (-2.2243)

HighBM 2.9540 (6.1883) -14.6385 (-5.5588)

Industry 1 Consum. 3.3498 (5.4492) -11.9538 (-2.6403)
Industry 2 Manuf. 1.7633 (3.4149) -5.3715 (-1.2556)
Industry 3 HiTech 2.2295 (2.7424) -10.1037 (-2.4871)
Industry 4 Health -0.1721 (-0.1862) 1.6506 (0.2781)
Industry 5 Other 2.9394 (3.1315) -12.3844 (-1.6416)

Wald-stat 225.66 172.24
p-value 0.0000 0.0000

Notes: This table reports �rst-pass beta estimates for the Fama and French (1993) 25 size and book-
to-market portfolios (indexed by Small to Big and LowBM to HighBM) and the 5 FF industry. The
betas are estimated component-wise that is regressing scale-speci�c components of returns on the
scale-speci�c components of macro shocks. The associated t-statistics are based on Newey-West
standard errors with 2j − 1 lags. The last rows of the table present the Wald test-statistics and
their corresponding p-values from testing the joint hypothesis that all component-wise exposures
are equal to zero, i.e. H0 : β1(j) = . . . = β30(j) = 0 for j = 5. The initial sample period is 1962:Q1
to 2014:Q4. Bold values denote statistically signi�cant beta estimates at a 95% con�dence level.
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Table 3.4: Cross-sectional regressions: 5 FF industry and 25 FF size and book-to-
market portfolios

Persistence level / Time-scale
j = 1 2 3 4 5 > 4 > 5

Horizon
1 - 2 2 - 4 4 - 8 8 - 16 16 - 32 > 16 > 32

in quarters

Panel A - IPG
λ0,j 3.3538 2.0587 1.5998 0.8166 1.0522 0.4911 3.2058

(3.6105) (3.6436) (2.4106) (1.0952) (1.4964) (0.7158) (3.4181)
λj 1.8642 0.3317 0.2108 0.3190 0.3796 0.5028 -0.1860

(2.4274) (1.0623) (1.0671) (1.6752) (2.5545) (2.8691) (-2.0738)
price of risk 1.865% 0.988% 0.996% 1.606% 2.131% 1.981% -0.917%

R2 39.501% 10.645% 10.583% 29.808% 56.695% 45.387% 10.493%

se(R̂2) (0.2171) (0.1716) (0.1681) (0.2593) (0.2513) (0.1318) (0.1002)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.1117 0.1999 0.0000
97.5% CI

(
R2
)

0.8113 0.4420 0.4707 0.7925 1.0000 0.7193 0.3113
p
(
R2 = 1

)
0.0185 0.0094 0.0111 0.0064 0.0894 0.0452 0.0449

MAPE 1.855% 2.254% 2.325% 1.849% 1.297% 1.709% 2.041%

Panel B - IPVOL
λ0,j 1.9246 2.2404 2.3416 1.6946 1.2109 1.1536 2.6466

(3.3524) (3.8338) (3.0952) (1.9639) (1.4831) (1.2143) (2.4610)
λj 0.2644 0.0473 -0.0937 -0.0844 -0.0966 -0.0846 0.0152

(1.8358) (0.4964) (-1.5971) (-2.2113) (-3.2556) (-2.5505) (0.5667)
price of risk 1.631% 0.414% -1.047% -1.195% -2.207% -1.487% 0.489%

R2 30.217% 1.867% 11.707% 16.514% 60.781% 25.569% 2.980%

se(R̂2) (0.2512) (0.0728) (0.1474) (0.0821) (0.1026) (0.1422) (0.0983)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0115 0.4208 0.0000 0.0000
97.5% CI

(
R2
)

0.7898 0.1544 0.4208 0.3449 0.8154 0.5512 0.2421
p
(
R2 = 1

)
0.0088 0.0168 0.0346 0.0156 0.1561 0.0361 0.0167

MAPE 1.963% 2.455% 2.288% 2.114% 1.403% 1.939% 2.157%

# observ. 210 208 204 196 180 196 180

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of risk (λj)
for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in parentheses.
The priced factors are the innovations (i.e., �rst-di�erences) in the scale-speci�c components �ltered
out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize the scale-wise risk exposures
and estimate the price of risk per unit of cross-sectional standard deviation in exposure in percent
per year. I also report the sample R2 for each cross-sectional regression and its standard error,
the 95% con�dence interval for R2 which is obtained by pivoting the cdf, the p-value for the Kan
et al. (2013) test of H0 : R2 = 1 and the mean absolute pricing error (MAPE) across all securities
expressed in percent per year. The initial sample period is 1962:Q1 to 2014:Q4.
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Table 3.5: Robustness: Multiresolution decomposition with a LA(8) wavelet �lter

Time-scale
j = 1 2 3 4 5 4:5 > 5

Frequency Resolution
1 - 2 2 - 4 4 - 8 8 - 16 16 - 32 8 - 32 > 32

in quarters

Panel A - IPG
λ0,j 0.8392 2.5063 1.5282 0.4927 1.7243 0.6186 2.8500

(1.2119) (3.4513) (2.1473) (0.6631) (2.1529) (0.8321) (3.1814)
λj -0.4532 0.4842 0.1570 0.2388 0.0837 0.2235 -0.0306

(-1.7793) (1.4364) (1.0454) (2.0496) (3.4240) (2.3302) (-2.2260)
price of risk -1.287% 1.148% 0.940% 1.779% 2.347% 1.962% -1.792%

R2 18.821% 14.384% 9.434% 36.577% 68.717% 48.064% 40.056%

se(R̂2) (0.1534) (0.1635) (0.1617) (0.2225) (0.0711) (0.2615) (0.2669)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.5658 0.0000 0.0000
97.5% CI

(
R2
)

0.4797 0.4801 0.4325 0.7763 0.8304 1.0000 0.9109
p
(
R2 = 1

)
0.0104 0.0072 0.0125 0.0107 0.2227 0.0598 0.0208

MAPE 1.988% 2.150% 2.380% 1.774% 1.281% 1.467% 1.544%

Panel B - IPVOL
λ0,j 3.3873 2.6769 2.4595 1.4778 1.1172 0.9728 2.9092

(3.8158) (4.5119) (3.4852) (1.9498) (1.4158) (1.2990) (2.9405)
λj 0.1869 -0.0330 -0.0077 -0.0597 -0.0370 -0.0639 0.0079

(2.6515) (-0.5554) (-0.1920) (-3.2623) (-3.4294) (-2.9875) (1.5647)
price of risk 1.599% -0.452% -0.145% -1.409% -2.383% -2.004% 1.308%

R2 29.040% 2.229% 0.225% 22.946% 70.882% 50.133% 21.346%

se(R̂2) (0.1174) (0.0825) (0.0246) (0.0451) (0.1358) (0.1517) (0.2213)
2.5% CI

(
R2
)

0.0835 0.0000 0.0000 0.1525 0.4539 0.1996 0.0000
97.5% CI

(
R2
)

0.5206 0.1987 0.0599 0.3264 0.9604 0.7896 0.6739
p
(
R2 = 1

)
0.0259 0.0217 0.0225 0.0281 0.2437 0.0756 0.0100

MAPE 2.029% 2.394% 2.474% 1.953% 1.237% 1.528% 1.841%

# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model �tted to the frequency-
speci�c components �ltered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R2 for each cross-sectional
regression and its standard error, the 95% con�dence interval for R2 which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of H0 : R2 = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.

156



T
a
b
le
3
.6
:
C
o
m
p
a
ri
so
n
:
B
u
si
n
e
ss
-c
y
c
le
fr
e
q
u
e
n
c
ie
s
v
s
lo
w
-f
re
q
u
e
n
c
ie
s

P
an
el
A
-
IP
G

F
il
te
r:

In
n
ov
at
io
n
s:

λ
0

λ
∆
I
P
G

(5
)

t
λ

∆
I
P
G

(>
5
)

t
R

2
M
A
P
E

H
aa
r

F
ir
st
-D
i�
.

1.
41
64

(2
.2
74
8)

0.
36
22

(2
.5
41
3)

-0
.0
71
1

(-
1.
12
15
)

58
.1
09
%

1.
21
4%

H
aa
r

A
R
(1
)
R
es
id
.

1.
01
11

(1
.4
13
6)

0.
37
90

(2
.7
47
8)

-0
.0
53
2

(-
0.
81
94
)

55
.4
49
%

1.
34
4%

D
(4
)

A
R
(1
)
R
es
id
.

1.
74
80

(1
.7
07
8)

0.
08
27

(2
.6
43
3)

-0
.0
08
3

(-
0.
53
24
)

73
.9
38
%

1.
12
0%

D
(6
)

A
R
(1
)
R
es
id
.

1.
91
98

(1
.8
72
3)

0.
07
40

(2
.5
30
0)

-0
.0
11
2

(-
0.
70
90
)

74
.1
01
%

1.
12
9%

L
A
(8
)

A
R
(1
)
R
es
id
.

2.
02
90

(1
.9
83
8)

0.
06
89

(2
.4
55
6)

-0
.0
13
3

(-
0.
84
33
)

73
.9
23
%

1.
13
5%

L
A
(1
2)

A
R
(1
)
R
es
id
.

2.
15
33

(2
.1
18
4)

0.
06
33

(2
.3
69
0)

-0
.0
16
0

(-
1.
00
73
)

73
.6
25
%

1.
14
2%

L
A
(1
6)

A
R
(1
)
R
es
id
.

2.
21
43

(2
.1
87
4)

0.
06
07

(2
.3
26
5)

-0
.0
17
5

(-
1.
08
71
)

73
.5
67
%

1.
14
6%

L
A
(2
0)

A
R
(1
)
R
es
id
.

2.
24
43

(2
.2
22
4)

0.
05
94

(2
.3
06
1)

-0
.0
18
2

(-
1.
12
41
)

73
.6
50
%

1.
14
6%

C
(6
)

A
R
(1
)
R
es
id
.

1.
76
45

(1
.7
22
6)

0.
08
17

(2
.6
30
6)

-0
.0
08
6

(-
0.
54
97
)

73
.9
61
%

1.
12
1%

C
(1
2)

A
R
(1
)
R
es
id
.

2.
04
97

(2
.0
05
7)

0.
06
79

(2
.4
41
1)

-0
.0
13
8

(-
0.
86
95
)

73
.8
83
%

1.
13
7%

P
an
el
B
-
IP
V
O
L

F
il
te
r:

In
n
ov
at
io
n
s:

λ
0

λ
∆
I
P
V
O
L
(5

)
t

λ
∆
I
P
V
O
L
(>

5
)

t
R

2
M
A
P
E

H
aa
r

F
ir
st
-D
i�
.

1.
39
97

(1
.2
99
9)

-0
.0
95
8

(-
3.
26
93
)

0.
01
18

(0
.4
42
5)

62
.5
67
%

1.
32
2%

H
aa
r

A
R
(1
)
R
es
id
.

1.
32
73

(1
.2
11
7)

-0
.0
98
0

(-
3.
23
31
)

0.
01
22

(0
.4
96
2)

60
.3
30
%

1.
37
3%

D
(4
)

A
R
(1
)
R
es
id
.

0.
96
26

(0
.8
86
8)

-0
.0
39
1

(-
3.
41
39
)

-0
.0
00
7

(-
0.
13
02
)

69
.8
29
%

1.
23
3%

D
(6
)

A
R
(1
)
R
es
id
.

1.
11
75

(1
.0
12
7)

-0
.0
37
1

(-
3.
35
95
)

0.
00
01

(0
.0
27
5)

71
.6
63
%

1.
20
2%

L
A
(8
)

A
R
(1
)
R
es
id
.

1.
24
69

(1
.1
19
6)

-0
.0
35
9

(-
3.
31
61
)

0.
00
09

(0
.1
59
5)

72
.7
08
%

1.
18
0%

L
A
(1
2)

A
R
(1
)
R
es
id
.

1.
42
20

(1
.2
65
6)

-0
.0
34
2

(-
3.
26
18
)

0.
00
18

(0
.3
29
8)

73
.6
43
%

1.
16
0%

L
A
(1
6)

A
R
(1
)
R
es
id
.

1.
51
60

(1
.3
42
3)

-0
.0
33
2

(-
3.
23
71
)

0.
00
22

(0
.4
08
6)

73
.9
98
%

1.
14
8%

L
A
(2
0)

A
R
(1
)
R
es
id
.

1.
56
34

(1
.3
78
9)

-0
.0
32
5

(-
3.
22
99
)

0.
00
24

(0
.4
36
7)

74
.1
82
%

1.
13
9%

C
(6
)

A
R
(1
)
R
es
id
.

0.
97
62

(0
.8
97
8)

-0
.0
38
9

(-
3.
40
95
)

-0
.0
00
6

(-
0.
11
68
)

70
.0
22
%

1.
22
9%

C
(1
2)

A
R
(1
)
R
es
id
.

1.
27
44

(1
.1
42
5)

-0
.0
35
6

(-
3.
30
80
)

0.
00
10

(0
.1
85
8)

72
.8
92
%

1.
17
5%

N
ot
es
:
T
h
is
ta
b
le
re
p
or
ts
th
e
es
ti
m
at
es

fo
r
th
e
ze
ro
-b
et
a
ex
ce
ss
re
tu
rn

an
d
th
e
p
ri
ce

of
ri
sk

fo
r
in
n
ov
at
io
n
s
in

m
ac
ro

sh
o
ck
s

w
it
h
b
u
si
n
es
s-
cy
cl
e
fr
eq
u
en
ci
es

an
d
fr
eq
u
en
ci
es

lo
w
er

th
an

th
en

b
u
si
n
es
s-
cy
cl
e
�
lt
er
ed

ou
t
of

IP
G

(P
an
el
A
)
an
d
IP
V
O
L

(P
an
el
B
)
al
on
g
w
it
h
th
e
co
rr
es
p
on
d
in
g
F
am

a-
M
ac
B
et
h
(1
97
3)

te
st

st
at
is
ti
cs

in
p
ar
en
th
es
es
.
I
al
so

re
p
or
t
th
e
sa
m
p
le
R

2

fo
r
ea
ch

cr
os
s-
se
ct
io
n
al

re
gr
es
si
on

an
d
th
e
m
ea
n
ab
so
lu
te

p
ri
ci
n
g
er
ro
r
(M

A
P
E
)
ac
ro
ss

al
l
se
cu
ri
ti
es

ex
p
re
ss
ed

in
p
er
ce
n
t

p
er

ye
ar
.
T
h
e
sc
al
e-
sp
ec
i�
c
ri
sk

lo
ad
in
gs

ar
e
es
ti
m
at
ed

fr
om

tw
o
se
p
ar
at
e
ti
m
e-
se
ri
es

re
gr
es
si
on
s
as

in
E
q
u
at
io
n
(3
.1
2)
.

T
h
e
�
rs
t
co
lu
m
n
sp
ec
i�
es

th
e
�
lt
er

u
se
d
fo
r
th
e
d
ec
om

p
os
it
io
n
an
d
th
e
se
co
n
d
h
ow

th
e
in
n
ov
at
io
n
s
ar
e
q
u
an
ti
�
ed
.
T
h
e

te
st

as
se
ts

ar
e
th
e
5
F
F
in
d
u
st
ry

an
d
th
e
25

F
F
si
ze

an
d
b
o
ok
-t
o-
m
ar
ke
t
p
or
tf
ol
io
s
w
h
ic
h
ar
e
p
ri
ce
d
to
ge
th
er
.

157



T
a
b
le
3
.7
:
R
o
b
u
st
n
e
ss
:
C
o
n
su
m
p
ti
o
n
a
n
d
G
D
P

P
an
el
A
-
C
G

F
il
te
r-
In
n
ov
at
io
n
s:

λ
0
,j

λ
j

p
ri
ce

of
ri
sk

R
2

95
%
C
I
( R2)

p
( R2

=
1)

M
A
P
E

j
=

5

H
aa
r-
F
ir
st
-D
i�
.

0.
85
52

0.
22
68

1.
83
2%

50
.9
50
%

0.
16
83

0.
86
29

0.
06
52

1.
44
2%

(1
.3
54
5)

(2
.9
64
4)

(0
.1
85
2)

H
aa
r-
A
R
(1
)
R
es
id
.

0.
75
43

0.
20
10

1.
84
3%

51
.5
54
%

0.
12
51

0.
91
45

0.
06
06

1.
41
8%

(1
.1
77
4)

(2
.8
97
3)

(0
.2
02
3)

j
>

5

H
aa
r-
F
ir
st
-D
i�
.

1.
77
64

0.
03
80

0.
31
2%

1.
47
7%

0.
00
00

0.
12
43

0.
02
42

2.
13
1%

(3
.1
91
7)

(0
.5
80
4)

(0
.0
48
3)

H
aa
r-
A
R
(1
)
R
es
id
.

1.
53
41

0.
05
92

0.
60
7%

5.
59
1%

0.
00
00

0.
25
80

0.
02
03

2.
02
7%

(2
.7
53
1)

(1
.0
53
6)

(0
.0
99
6)

P
an
el
B
-
G
D
P
G
ro
w
th

F
il
te
r-
In
n
ov
at
io
n
s:

λ
0
,j

λ
j

p
ri
ce

of
ri
sk

R
2

95
%
C
I
( R2)

p
( R2

=
1)

M
A
P
E

j
=

5

H
aa
r-
F
ir
st
-D
i�
.

1.
14
84

0.
20
38

2.
18
5%

59
.5
88
%

0.
14
46

1.
00
00

0.
10
03

1.
29
9%

(1
.6
47
6)

(2
.6
72
6)

(0
.2
44
9)

H
aa
r-
A
R
(1
)
R
es
id
.

0.
82
32

0.
19
98

2.
20
0%

60
.4
02
%

0.
17
05

1.
00
00

0.
10
82

1.
32
4%

(1
.1
20
9)

(2
.8
04
9)

(0
.2
21
7)

j
>

5

H
aa
r-
F
ir
st
-D
i�
.

1.
88
43

0.
07
30

0.
48
3%

2.
90
5%

0.
00
00

0.
11
77

0.
04
84

2.
19
4%

(2
.4
41
2)

(2
.1
73
7)

(0
.0
35
9)

H
aa
r-
A
R
(1
)
R
es
id
.

1.
83
53

0.
07
92

0.
53
2%

3.
53
9%

0.
00
00

0.
12
93

0.
04
87

2.
18
6%

(2
.3
38
4)

(2
.3
85
8)

(0
.0
40
8)

P
an
el
C
-
G
D
P
V
O
L

F
il
te
r-
In
n
ov
at
io
n
s:

λ
0
,j

λ
j

p
ri
ce

of
ri
sk

R
2

95
%
C
I
( R2)

p
( R2

=
1)

M
A
P
E

j
=

5

H
aa
r-
F
ir
st
-D
i�
.

1.
26
89

-0
.0
31
3

-2
.2
86
%

65
.2
04
%

0.
47
52

0.
83
26

0.
17
75

1.
34
7%

(1
.5
55
3)

(-
3.
29
18
)

(0
.1
04
3)

H
aa
r-
A
R
(1
)
R
es
id
.

1.
22
46

-0
.0
31
4

-2
.2
56
%

63
.4
92
%

0.
45
12

0.
84
38

0.
16
33

1.
39
0%

(1
.4
84
8)

(-
3.
27
50
)

(0
.1
00
3)

j
>

5

H
aa
r-
F
ir
st
-D
i�
.

2.
50
06

0.
00
38

0.
47
6%

2.
82
4%

0.
00
00

0.
22
67

0.
01
65

2.
13
2%

(2
.7
87
1)

(0
.5
12
5)

(0
.1
01
0)

H
aa
r-
A
R
(1
)
R
es
id
.

2.
50
37

0.
00
39

0.
49
6%

3.
07
1%

0.
00
00

0.
23
59

0.
01
62

2.
12
3%

(2
.7
90
8)

(0
.5
32
6)

(0
.1
07
3)

N
ot
es
:
T
h
is
ta
b
le
re
p
or
ts
th
e
es
ti
m
at
es

fo
r
th
e
ze
ro
-b
et
a
ex
ce
ss
re
tu
rn

(λ
0
,j

)
an
d
th
e
p
ri
ce

of
ri
sk

(λ
j
)
fo
r
j

=
5
an
d
j
>

5
al
on
g
w
it
h
th
e
co
rr
es
p
on
d
in
g
F
am

a-
M
ac
B
et
h
(1
97
3)

te
st
st
at
is
ti
cs

in
p
ar
en
th
es
es

fo
r
co
n
su
m
p
ti
on

gr
ow

th
(P
an
el
A
),
G
D
P

gr
ow

th
(P
an
el
B
)
an
d
G
D
P
vo
la
ti
li
ty

(P
an
el
C
).
In

ad
d
it
io
n
,
I
n
or
m
al
iz
e
th
e
sc
al
e-
w
is
e
ri
sk

ex
p
os
u
re
s
an
d
es
ti
m
at
e
th
e

p
ri
ce

of
ri
sk

p
er

u
n
it
of

cr
os
s-
se
ct
io
n
al

st
an
d
ar
d
d
ev
ia
ti
on

in
ex
p
os
u
re

in
p
er
ce
n
t
p
er

ye
ar
.
I
al
so

re
p
or
t
th
e
sa
m
p
le

R
2

fo
r
ea
ch

cr
os
s-
se
ct
io
n
al
re
gr
es
si
on

an
d
it
s
st
an
d
ar
d
er
ro
r,
th
e
95
%

co
n
�
d
en
ce

in
te
rv
al
fo
r
R

2
w
h
ic
h
is
ob
ta
in
ed

b
y
p
iv
ot
in
g

th
e
cd
f,
th
e
p
-v
al
u
e
fo
r
th
e
K
an

et
al
.
(2
01
3)

te
st

of
H

0
:
R

2
=

1
an
d
th
e
m
ea
n
ab
so
lu
te

p
ri
ci
n
g
er
ro
r
(M

A
P
E
)
ac
ro
ss

al
l
se
cu
ri
ti
es

ex
p
re
ss
ed

in
p
er
ce
n
t
p
er

ye
ar
.
T
h
e
te
st

as
se
ts

ar
e
th
e
5
F
F
in
d
u
st
ry

an
d
th
e
25

F
F
si
ze

an
d
b
o
ok
-t
o-
m
ar
ke
t

p
or
tf
ol
io
s
w
h
ic
h
ar
e
p
ri
ce
d
to
ge
th
er
.

158



Table 3.8: Monotonicity tests for scale-speci�c risk exposures

Panel A Size Top−bottom MR

Low 2 3 4 High p-value p-value

Average Return 2.4179 2.3523 2.2285 2.0582 1.4224 0.0605 0.1096

Factor: Innovations:

IPG, j = 5
First-Di�. 4.2226 3.3879 3.1681 2.7663 1.9246 0.0466 0.0638

AR(1) Resid. 4.9743 4.1516 3.9305 3.5817 2.9966 0.0708 0.0576

IPG, j > 5
First-Di�. 2.1038 3.9455 5.2230 4.4296 5.1834 0.8526 0.8524

AR(1) Resid. 2.2378 3.9573 5.1772 4.4781 5.4797 0.8674 0.8298

IPVOL, j = 5
First-Di�. -14.4232 -11.3900 -11.3147 -10.5324 -7.3189 0.1334 0.2616

AR(1) Resid. -15.1306 -12.4025 -12.3119 -12.1835 -9.5072 0.1912 0.2510

IPVOL, j > 5
First-Di�. -4.7783 -13.8111 -18.2973 -16.8347 -22.7112 0.9394 0.9212

AR(1) Resid. -4.1431 -12.9705 -17.9019 -17.5293 -24.5734 0.9640 0.9140

Null and Alternative Hypotheses for Monotonicity Test

For returns: H0 : R5 ≥ . . . ≥ R1 vs H1 : R5 < . . . < R1

For IPG risk-loadings: H0 : β
(j)
5 ≥ . . . ≥ β(j)

1 vs H1 : β
(j)
5 < . . . < β

(j)
1

For IPVOL risk-loadings: H0 : β
(j)
5 ≤ . . . ≤ β(j)

1 vs H1 : β
(j)
5 > . . . > β

(j)
1 (price of risk negative)

Panel B Book-to-Market Top−bottom MR

Low 2 3 4 High p-value p-value

Average Return 1.4157 1.6715 1.7245 2.1067 2.6175 0.0084 0.0178

Factor: Innovations:

IPG, j = 5
First-Di�. 1.6775 2.3736 2.8378 2.7424 3.2512 0.0286 0.1638

AR(1) Resid. 2.5485 3.2639 3.8851 3.6583 4.1725 0.0246 0.3546

IPG, j > 5
First-Di�. 5.6696 4.8496 3.7237 2.8250 4.6462 0.7044 0.7092

AR(1) Resid. 6.0051 4.8577 3.8964 3.0853 4.7825 0.7406 0.6654

IPVOL, j = 5
First-Di�. -2.8198 -9.1464 -12.6079 -12.8469 -16.5351 0.0020 0.0104

AR(1) Resid. -4.6676 -10.9427 -14.6865 -14.1683 -17.4667 0.0010 0.1340

IPVOL, j > 5
First-Di�. -20.9278 -18.9825 -17.8095 -15.0369 -20.4243 0.5544 0.6070

AR(1) Resid. -23.1213 -19.9025 -18.7947 -15.6145 -20.1773 0.6944 0.6754

Null and Alternative Hypotheses for Monotonicity Test

For returns: H0 : R5 ≤ . . . ≤ R1 vs H1 : R5 > . . . > R1

For IPG risk-loadings: H0 : β
(j)
5 ≤ . . . ≤ β(j)

1 vs H1 : β
(j)
5 > . . . > β

(j)
1

For IPVOL risk-loadings: H0 : β
(j)
5 ≥ . . . ≥ β(j)

1 vs H1 : β
(j)
5 < . . . < β

(j)
1 (price of risk negative)

Notes: This table presents the frequency-speci�c risk exposures with respect to the factors ∆IPG
(j)
t

and ∆IPV OL
(j)
t for j = 5 (i.e., business-cycle frequencies) and j > 5 (i.e., frequencies lower than 8

years) for one-way portfolio sorts and the corresponding monotonicity tests. The sorting variables
are size (Panel A) and book-to-market (Panel B). The �rst row in each panel reports average
excess returns (in percent per quarter) for the test assets. The �nal column in each panel presents
the p-value for the monotonic relation (MR) test. Similarly, the penultimate column presents the
bootstrap p-value for the top-minus-bottom di�erence in the corresponding returns and scale-wise
betas.
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Table 3.9: Low-frequency risk exposures from OLS regressions of cosine transforms

Size Book-to-market Panel A - IPG Panel B - IPVOL
Small LowBM 1.6246 (0.4567) 1.7353 (0.1518)

2BM 0.9550 (0.2994) -0.6212 (-0.0608)
3BM 1.8573 (0.6362) -3.0890 (-0.3277)
4BM 2.8741 (0.9701) -4.7059 (-0.4842)

HighBM 3.4190 (1.1434) -5.5335 (-0.5580)
2 LowBM 0.7756 (0.2928) -2.7807 (-0.3294)

2BM 0.7183 (0.3693) -2.5494 (-0.4115)
3BM 1.2848 (0.6331) -5.4391 (-0.8511)
4BM 2.8759 (1.4325) -6.3927 (-0.9571)

HighBM 2.7748 (1.3353) -2.9972 (-0.4251)
3 LowBM 1.0272 (0.4622) -6.0646 (-0.8746)

2BM 1.1654 (0.6031) -4.9715 (-0.8164)
3BM 1.4443 (0.8183) -2.6021 (-0.4536)
4BM 2.1598 (1.1630) -6.9731 (-1.1788)

HighBM 1.4852 (0.7633) -3.2755 (-0.5211)
4 LowBM 0.1775 (0.0988) -7.7922 (-1.4784)

2BM 1.8113 (1.0612) -9.0789 (-1.7959)
3BM 3.0282 (1.8326) -9.7109 (-1.8451)
4BM 2.9081 (2.3629) -9.1506 (-2.3165)

HighBM 2.9749 (2.0998) -4.6433 (-0.9083)
Big LowBM 2.1240 (1.3457) -11.6802 (-2.7682)

2BM 1.9703 (1.2880) -9.9237 (-2.2828)
3BM 3.3404 (2.0422) -12.4262 (-2.5462)
4BM 3.2330 (2.7110) -9.6730 (-2.4541)

HighBM 2.4956 (1.6988) -5.4032 (-1.0848)

Industry 1 Consum. 1.4603 (0.9905) -8.2829 (-1.9413)
Industry 2 Manuf. 1.7613 (1.5073) -8.3192 (-2.5366)
Industry 3 HiTech 3.0380 (1.4763) -7.7019 (-1.1359)
Industry 4 Health 2.7236 (1.3275) -14.2207 (-2.5035)
Industry 5 Other 4.5623 (2.7788) -13.7929 (-2.5515)

Notes: This table reports low-frequency risk-exposures from a time-series regression between q = 13
weighted averages constructed from asset excess returns and (innovations) in macro series based on
the Müller and Watson (2015) framework. Note that the low-frequency betas follow a Student-t
distribution with 12 degrees of freedom (q−k = 13− 1). Bold values denote statistically signi�cant
beta estimates at a 90% con�dence level.
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Table 3.10: Persistence tests and cross-sectional regressions

Panel A AR(1) Resid. from IPG AR(1) Resid. from IPVOL

q 13 12 13 12
Cut-o� periodicity (in years) 8.1538 8.8333 8.1538 8.8333

LFST p-values 0.2671 0.2919 0.4326 0.3663
LFUR p-values 0.0087 0.0077 0.0034 0.0238
MLE for d 0.0500 0.0300 0.0400 0.0900
C.I. for d
67% level ( -0.14, 0.37) ( -0.16, 0.37) ( -0.17, 0.36) ( -0.12, 0.44)
90% level ( -0.49, 0.58) ( -0.49, 0.57) ( -0.33, 0.55) ( -0.32, 0.66)
95% level ( -0.49, 0.69) ( -0.49, 0.69) ( -0.49, 0.65) ( -0.49, 0.77)

Panel B Test assets: 5 FF industry and the 25 FF size and book-to-market portfolios

AR(1) Resid. from λ0 λ price of risk R2 MAPE
IPG, q = 13 2.0947 0.1300 0.520% 3.019% 2.432%

(2.4246) (1.1286) cut-o� periodicity = 8.1538
IPG, q = 12 2.2451 0.0630 0.267% 0.794% 2.434%

(2.6152) (0.5743) cut-o� periodicity = 8.8333
IPG, q = 11 2.0194 0.1628 0.681% 5.176% 2.406%

(2.4077) (1.5986) cut-o� periodicity = 9.6364

IPVOL, q = 13 2.8709 0.0755 1.155% 14.885% 2.085%
(3.0138) (1.4927) cut-o� periodicity = 8.1538

IPVOL, q = 12 2.8302 0.0726 1.402% 21.928% 1.957%
(3.1730) (1.7804) cut-o� periodicity = 8.8333

IPVOL, q = 11 2.7825 0.0520 0.792% 6.995% 2.230%
(2.8230) (1.1199) cut-o� periodicity = 9.6364

Notes: Panel A reports the results of the low-frequency persistence tests for the innovations in
the macro series. LFST and LFUR are low-frequency point-optimal tests for the I (0) and I (1)
models. In addition, I report the maximum likelihood estimate (MLE) of d in the I (d) model
and con�dence intervals which are constructed by inverting weighted average power (WAP) tests.
Panel B reports the estimates for the zero-beta excess return (λ0) and the price of risk (λ) for
low-frequency macro shocks along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. In addition, I report the sample R2 for each cross-sectional regression and the mean
absolute pricing error (MAPE) across all securities expressed in percent per year. The test assets
are the 5 FF industry and the 25 Fama and French (1993) size and book-to-market portfolios priced
together. The sample period is 1962:Q1 to 2014:Q4.
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Table 3.11: Cross-sectional regressions using frequency domain risk exposures

Panel A - IPG
Freq. (ω) Cycle length in years λ0 λ price of risk R2 MAPE

0.0491 32.00 2.8145 -0.4311 -1.368% 20.889% 2.144%
(3.4329) (-2.6219)

0.0982 16.00 3.1191 -0.4538 -1.168% 15.216% 2.127%
(3.2217) (-2.1607)

0.1963 8.00 0.5828 0.9445 1.735% 33.588% 1.916%
(0.6617) (3.9770)

0.2209 7.11 0.2304 1.0646 2.115% 49.912% 1.601%
(0.3142) (4.1554)

0.2454 6.40 0.3608 0.9152 2.088% 48.638% 1.625%
(0.5437) (3.2099)

0.3927 4.00 1.9556 0.1284 0.413% 1.906% 2.382%
(2.7175) (0.4823)

0.7854 2.00 3.0728 -0.1135 -0.718% 5.750% 2.323%
(4.4563) (-0.8933)

Panel B - IPVOL
Freq. (ω) Cycle length in years λ0 λ price of risk R2 MAPE

0.0491 32.00 3.2545 -0.2956 -2.020% 45.525% 1.604%
(3.6134) (-3.0562)

0.0982 16.00 3.0655 -0.1644 -0.978% 10.675% 2.159%
(2.7367) (-1.3242)

0.1963 8.00 0.3675 0.3635 2.352% 61.697% 1.393%
(0.4621) (4.5846)

0.2209 7.11 0.5606 0.3364 2.426% 65.682% 1.299%
(0.7647) (4.4432)

0.2454 6.40 0.7956 0.3020 2.393% 63.886% 1.309%
(1.1396) (4.2552)

0.3927 4.00 1.9216 0.0532 0.504% 2.838% 2.341%
(3.1052) (0.6159)

0.7854 2.00 4.2950 -0.1539 -1.581% 27.869% 1.997%
(6.0026) (-2.6338)

Notes: This table reports the estimates for the zero-beta excess return (λ0) and the price of risk
(λ) for the frequency-speci�c macro shocks along with the corresponding Fama-MacBeth (1973)
test statistics in parentheses. The regressors are the estimated gains between asset returns and the
macro series at frequency ω. In addition, I report the sample R2 for each cross-sectional regression
and the mean absolute pricing error (MAPE) across all securities expressed in percent per year.
The test assets are the 5 FF industry and the 25 Fama and French (1993) size and book-to-market
portfolios priced together. The sample period is 1962:Q1 to 2014:Q4. I use demeaned series to
estimate the spectral measures based on Welch's (1967) method with a Hamming window and 50%
overlap.
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Appendix 3A: Scarcity of Low-Frequency Information

I explore the frequency-domain properties of the time series of interest (i.e., IPG or IPV OL)

using their periodograms. A periodogram is a representation of a time-series as a superposition of

sinusoidal waves of various frequencies. Figure 3A.1 plots the periodograms for the macro series.

The shaded areas represent frequencies lower than the business-cycle. The very small number of

periodogram ordinates in the low-frequency region (i.e., 6 points) re�ects the scarcity of information

about low-frequency phenomena in the data and highlights the estimation problem underlying

Epstein-Zin preferences. That is, the weight that determines risk premia in asset pricing models

based on recursive preferences lies on frequencies about which we have limited information.

Since the estimation of the spectral density of a series {xt}T1 depends heavily on the asymptotic

distribution56 as T → ∞ of the periodogram ordinates, Figure 3A.1 greatly highlights the core

intuition behind the work of Müller and Watson (2008, 2015). That is, given the limited number of

periodogram ordinates in the low-frequency region inference about the value of the spectral density

based on averaging periodogram ordinates is not applicable here (i.e., the asymptotics are based

on the assumption that the spectrum is �xed and continuous). Even with a lag window estimator

inference about the value of the long-run variance (i.e., spectral density at zero) of a series like

consumption growth that contains a highly persistent component is not trivial. In particular, a

persistent trend in a series induces a peak in its spectral density around frequency zero and thus

the con�dence intervals from many estimators have poor coverage. For a thorough discussion see

Dew-Becker (2016). This point raises concerns regarding the in�nite-horizon results in Kalyvitis

and Panopoulou (2013) who estimate the degree of covariability between portfolio returns and

consumption growth at zero.

56For an introduction to spectral analysis see Chapter 6 in Hamilton (1994) and for a more formal treatment
Chapters 4 and 10 in Brockwell and Davis (2009). For the asymptotic properties of the periodogram and the
asymptotic behaviour of discrete spectral average estimators see Sections 10.3 and 10.4 in Brockwell and Davis
(2009).
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Figure 3A.1: Periodograms

Notes: This �gure plots the periodograms for industrial production growth (Panel A) and industrial
production volatility (Panel B). The shaded areas represent frequencies lower than the business-
cycle. The limited number of periodogram ordinates in the shaded areas re�ects the scarcity of
information about low-frequency phenomena in the data (i.e., traditional inference tools of spec-
tral analysis are not directly applicable at frequencies close to zero) and highlights the estimation
problem underlying Epstein-Zin preferences.
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Appendix 3B: Robustness Checks and Additional Results

This Appendix contains additional results and robustness checks that are omitted in the main

chapter for brevity.

Residuals from an AR(1) model

Table 3B.1 presents the cross-sectional estimates for the scale-speci�c macro shocks �ltered out of

IPG and IPVOL where the innovations are the residuals from an AR(1) model �tted to the factor.

The results remain quantitatively similar.

Cross-sectional regressions with di�erent �lters

I examine whether the choice of the wavelet �lter a�ects the pricing of the frequency-speci�c macroe-

conomic shocks. I use Daubechies Extremal Phase (denoted as D), Daubechies Least Asymmetric

(denoted as LA) and Coi�et (denoted as C) types of �lters which are the most widely used ortho-

gonal and compactly supported families of �lters (see Percival and Walden, 2000). In addition I

allow the length of each �lter to vary. I refer to each wavelet type and length together, for instance

LA(12) refers to the Daubechies Least Asymmetric �lter that has a length of 12. The results in

Tables 3B.2 - 3B.8 remain similar.
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Table 3B.1: Robustness check: Residuals from an AR(1) model

Persistence level / Time-scale
j = 1 2 3 4 5 > 4 > 5

Horizon
1 - 2 2 - 4 4 - 8 8 - 16 16 - 32 > 16 > 32

in quarters

Panel A - IPG
λ0,j 1.9087 2.3529 1.4803 0.6737 0.7305 0.2091 3.1792

(2.8542) (3.5492) (2.1944) (0.8476) (0.9775) (0.2836) (3.2821)
λj -0.2664 0.5213 0.2496 0.3333 0.3915 0.5070 -0.1772

(-0.6234) (1.2959) (1.1951) (1.7005) (2.6520) (2.9895) (-1.9279)
price of risk -0.369% 1.122% 1.086% 1.604% 2.092% 2.025% -0.877%

R2 1.550% 13.736% 12.583% 29.755% 54.624% 47.395% 9.604%

se(R̂2) (0.0427) (0.1730) (0.1782) (0.2556) (0.2303) (0.1090) (0.1022)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.1373 0.2826 0.0000
97.5% CI

(
R2
)

0.1051 0.4833 0.5146 0.8088 1.0000 0.6949 0.2846
p
(
R2 = 1

)
0.0139 0.0086 0.0112 0.0061 0.0753 0.0528 0.0477

MAPE 2.342% 2.232% 2.324% 1.869% 1.408% 1.755% 2.032%

Panel B - IPVOL
λ0,j 2.3672 2.2193 2.5245 1.9856 1.0728 1.2629 2.6556

(3.5881) (3.8070) (3.7130) (2.2357) (1.2306) (1.2231) (2.5077)
λj 0.1545 0.0400 -0.0438 -0.0582 -0.1013 -0.0748 0.0157

(1.5042) (0.5440) (-0.6930) (-1.4138) (-3.1984) (-2.1085) (0.6282)
price of risk 1.336% 0.476% -0.515% -0.804% -2.098% -1.291% 0.560%

R2 20.276% 2.476% 2.831% 7.476% 54.925% 19.277% 3.912%

se(R̂2) (0.2247) (0.0892) (0.0835) (0.0794) (0.0853) (0.1586) (0.1147)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.4030 0.0000 0.0000
97.5% CI

(
R2
)

0.6270 0.2129 0.1885 0.2473 0.7135 0.5300 0.2951
p
(
R2 = 1

)
0.0117 0.0161 0.0267 0.0160 0.1187 0.0344 0.0136

MAPE 2.129% 2.444% 2.408% 2.200% 1.511% 2.030% 2.118%

# observ. 210 208 204 196 180 196 180

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model �tted to the scale-speci�c
components �ltered out of IPG (Panel A) and IPVOL (Panel B). In addition, I report the sample
R2 for each cross-sectional regression and its standard error, the 95% con�dence interval for R2

which is obtained by pivoting the cdf, the p-value for the Kan et al. (2013) test of H0 : R2 = 1
denoted as p

(
R2 = 1

)
and the mean absolute pricing error (MAPE) across all securities expressed

in percent per year. The initial sample period is 1962:Q1 to 2014:Q4 and the test assets are the 5
FF industry and the 25 FF size and book-to-market portfolios which are priced together.
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Table 3B.2: Multiresolution decomposition with a D(4) wavelet �lter

Time-scale
j = 1 2 3 4 5 4:5 > 5

Frequency Resolution
1 - 2 2 - 4 4 - 8 8 - 16 16 - 32 8 - 32 > 32

in quarters

Panel A - IPG
λ0,j 0.8226 2.5302 1.5292 0.4938 1.5343 0.5984 2.8222

(1.1293) (3.4283) (2.1396) (0.6411) (1.9721) (0.7958) (3.1738)
λj -0.4677 0.4907 0.1581 0.2358 0.0949 0.2245 -0.0300

(-1.6969) (1.3349) (1.0348) (1.9460) (3.4063) (2.2757) (-2.2127)
price of risk -1.255% 1.097% 0.934% 1.748% 2.409% 1.948% -1.789%

R2 17.896% 13.125% 9.316% 35.316% 72.418% 47.376% 39.938%

se(R̂2) (0.1565) (0.1611) (0.1614) (0.2421) (0.1292) (0.2696) (0.2684)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.4913 0.0000 0.0000
97.5% CI

(
R2
)

0.4865 0.4692 0.4321 0.8462 0.9709 0.9988 0.9312
p
(
R2 = 1

)
0.0096 0.0080 0.0123 0.0094 0.2741 0.0587 0.0201

MAPE 1.997% 2.191% 2.375% 1.773% 1.181% 1.466% 1.556%

Panel B - IPVOL
λ0,j 3.3573 2.5299 2.4725 1.4331 1.0013 0.9186 2.8584

(3.7292) (4.3140) (3.5591) (1.8861) (1.3167) (1.2238) (2.9323)
λj 0.1904 -0.0080 -0.0132 -0.0648 -0.0384 -0.0655 0.0076

(2.4873) (-0.1284) (-0.3092) (-3.2067) (-3.2159) (-2.9331) (1.5150)
price of risk 1.564% -0.109% -0.233% -1.420% -2.350% -2.008% 1.287%

R2 27.769% 0.129% 0.579% 23.310% 68.927% 50.312% 20.664%

se(R̂2) (0.1311) (0.0204) (0.0386) (0.0457) (0.1555) (0.1683) (0.2227)
2.5% CI

(
R2
)

0.0409 0.0000 0.0000 0.1533 0.4260 0.1772 0.0000
97.5% CI

(
R2
)

0.5462 0.0512 0.0884 0.3337 1.0000 0.8226 0.6352
p
(
R2 = 1

)
0.0227 0.0196 0.0233 0.0279 0.1919 0.0731 0.0103

MAPE 2.057% 2.445% 2.465% 1.967% 1.242% 1.519% 1.841%

# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model �tted to the frequency-
speci�c components �ltered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R2 for each cross-sectional
regression and its standard error, the 95% con�dence interval for R2 which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of H0 : R2 = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3B.3: Multiresolution decomposition with a D(6) wavelet �lter

Time-scale
j = 1 2 3 4 5 4:5 > 5

Frequency Resolution
1 - 2 2 - 4 4 - 8 8 - 16 16 - 32 8 - 32 > 32

in quarters

Panel A - IPG
λ0,j 0.8286 2.5187 1.5272 0.4952 1.6491 0.6103 2.8385

(1.1745) (3.4418) (2.1420) (0.6569) (2.0809) (0.8172) (3.1771)
λj -0.4578 0.4892 0.1575 0.2370 0.0879 0.2238 -0.0301

(-1.7524) (1.4017) (1.0424) (2.0031) (3.4380) (2.3075) (-2.2163)
price of risk -1.279% 1.132% 0.939% 1.765% 2.380% 1.957% -1.789%

R2 18.578% 13.981% 9.407% 36.041% 70.668% 47.788% 39.937%

se(R̂2) (0.1550) (0.1636) (0.1617) (0.2316) (0.0899) (0.2649) (0.2678)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.5540 0.0000 0.0000
97.5% CI

(
R2
)

0.5140 0.4416 0.4110 0.8323 0.8749 0.9578 0.9300
p
(
R2 = 1

)
0.0101 0.0071 0.0124 0.0094 0.2541 0.0583 0.0204

MAPE 1.989% 2.163% 2.378% 1.775% 1.240% 1.466% 1.550%

Panel B - IPVOL
λ0,j 3.3972 2.6275 2.4641 1.4543 1.0617 0.9499 2.8880

(3.8071) (4.4529) (3.5161) (1.9234) (1.3682) (1.2700) (2.9383)
λj 0.1885 -0.0240 -0.0096 -0.0619 -0.0375 -0.0642 0.0078

(2.6260) (-0.3958) (-0.2359) (-3.2499) (-3.3469) (-2.9530) (1.5471)
price of risk 1.585% -0.327% -0.178% -1.421% -2.376% -2.005% 1.302%

R2 28.516% 1.167% 0.339% 23.350% 70.431% 50.166% 21.162%

se(R̂2) (0.1172) (0.0601) (0.0302) (0.0430) (0.1604) (0.1612) (0.2223)
2.5% CI

(
R2
)

0.0696 0.0000 0.0000 0.1536 0.3974 0.1931 0.0000
97.5% CI

(
R2
)

0.5168 0.1410 0.0661 0.3327 1.0000 0.8138 0.6608
p
(
R2 = 1

)
0.0256 0.0209 0.0228 0.0282 0.2257 0.0739 0.0106

MAPE 2.038% 2.419% 2.471% 1.955% 1.239% 1.522% 1.840%

# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model �tted to the frequency-
speci�c components �ltered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R2 for each cross-sectional
regression and its standard error, the 95% con�dence interval for R2 which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of H0 : R2 = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3B.4: Multiresolution decomposition with a LA(12) wavelet �lter

Time-scale
j = 1 2 3 4 5 4:5 > 5

Frequency Resolution
1 - 2 2 - 4 4 - 8 8 - 16 16 - 32 8 - 32 > 32

in quarters

Panel A - IPG
λ0,j 0.8458 2.4926 1.5351 0.4842 1.8120 0.6291 2.8661

(1.2469) (3.4598) (2.1614) (0.6628) (2.2391) (0.8506) (3.1905)
λj -0.4522 0.4744 0.1555 0.2419 0.0785 0.2232 -0.0314

(-1.8178) (1.4675) (1.0426) (2.1187) (3.3675) (2.3639) (-2.2510)
price of risk -1.301% 1.161% 0.936% 1.797% 2.294% 1.972% -1.801%

R2 19.234% 14.717% 9.345% 37.359% 65.690% 48.521% 40.478%

se(R̂2) (0.1520) (0.1643) (0.1607) (0.2118) (0.0522) (0.2579) (0.2653)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.5675 0.0000 0.0000
97.5% CI

(
R2
)

0.4964 0.4666 0.4187 0.7644 0.7669 1.0000 0.9381
p
(
R2 = 1

)
0.0097 0.0073 0.0127 0.0138 0.1907 0.0553 0.0217

MAPE 1.984% 2.140% 2.383% 1.768% 1.332% 1.466% 1.532%

Panel B - IPVOL
λ0,j 3.3414 2.7232 2.4550 1.5144 1.2033 1.0054 2.9393

(3.7847) (4.5573) (3.4447) (1.9780) (1.4946) (1.3336) (2.9402)
λj 0.1847 -0.0420 -0.0054 -0.0568 -0.0359 -0.0638 0.0081

(2.6169) (-0.7251) (-0.1396) (-3.2529) (-3.4965) (-3.0578) (1.5817)
price of risk 1.617% -0.580% -0.106% -1.382% -2.377% -2.005% 1.310%

R2 29.709% 3.671% 0.119% 22.092% 70.529% 50.185% 21.401%

se(R̂2) (0.1261) (0.1048) (0.0179) (0.0477) (0.0975) (0.1356) (0.2191)
2.5% CI

(
R2
)

0.0836 0.0000 0.0000 0.1325 0.5522 0.2617 0.0000
97.5% CI

(
R2
)

0.5324 0.2539 0.0467 0.3277 0.9055 0.7796 0.6186
p
(
R2 = 1

)
0.0248 0.0238 0.0222 0.0276 0.2457 0.0791 0.0103

MAPE 2.021% 2.360% 2.477% 1.961% 1.238% 1.535% 1.843%

# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model �tted to the frequency-
speci�c components �ltered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R2 for each cross-sectional
regression and its standard error, the 95% con�dence interval for R2 which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of H0 : R2 = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3B.5: Multiresolution decomposition with a LA(16) wavelet �lter

Time-scale
j = 1 2 3 4 5 4:5 > 5

Frequency Resolution
1 - 2 2 - 4 4 - 8 8 - 16 16 - 32 8 - 32 > 32

in quarters

Panel A - IPG
λ0,j 0.8400 2.4894 1.5445 0.4745 1.8546 0.6346 2.8775

(1.2514) (3.4617) (2.1756) (0.6554) (2.2826) (0.8604) (3.1989)
λj -0.4551 0.4669 0.1538 0.2444 0.0757 0.2229 -0.0322

(-1.8503) (1.4796) (1.0342) (2.1668) (3.3234) (2.3896) (-2.2757)
price of risk -1.317% 1.166% 0.927% 1.811% 2.264% 1.980% -1.811%

R2 19.699% 14.840% 9.167% 37.944% 63.960% 48.929% 40.951%

se(R̂2) (0.1517) (0.1640) (0.1618) (0.2063) (0.0575) (0.2550) (0.2641)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0051 0.5333 0.0277 0.0000
97.5% CI

(
R2
)

0.4806 0.4619 0.4029 0.7688 0.7706 1.0000 0.9412
p
(
R2 = 1

)
0.0099 0.0073 0.0128 0.0079 0.1746 0.0573 0.0251

MAPE 1.977% 2.137% 2.386% 1.760% 1.357% 1.462% 1.520%

Panel B - IPVOL
λ0,j 3.2988 2.7454 2.4531 1.5410 1.2564 1.0292 2.9611

(3.7514) (4.5786) (3.4203) (1.9925) (1.5479) (1.3550) (2.9370)
λj 0.1831 -0.0461 -0.0042 -0.0549 -0.0350 -0.0639 0.0082

(2.5695) (-0.8075) (-0.1094) (-3.2246) (-3.5096) (-3.1151) (1.5884)
price of risk 1.628% -0.640% -0.083% -1.360% -2.369% -2.007% 1.307%

R2 30.092% 4.475% 0.073% 21.403% 70.028% 50.253% 21.316%

se(R̂2) (0.1348) (0.1150) (0.0140) (0.0548) (0.0782) (0.1236) (0.2172)
2.5% CI

(
R2
)

0.0531 0.0000 0.0000 0.1108 0.5696 0.2835 0.0000
97.5% CI

(
R2
)

0.5814 0.2842 0.0394 0.3281 0.8603 0.7299 0.6338
p
(
R2 = 1

)
0.0250 0.0249 0.0220 0.0227 0.2490 0.0819 0.0105

MAPE 2.018% 2.341% 2.478% 1.967% 1.239% 1.540% 1.845%

# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model �tted to the frequency-
speci�c components �ltered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R2 for each cross-sectional
regression and its standard error, the 95% con�dence interval for R2 which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of H0 : R2 = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3B.6: Multiresolution decomposition with a LA(20) wavelet �lter

Time-scale
j = 1 2 3 4 5 4:5 > 5

Frequency Resolution
1 - 2 2 - 4 4 - 8 8 - 16 16 - 32 8 - 32 > 32

in quarters

Panel A - IPG
λ0,j 0.8298 2.4911 1.5542 0.4647 1.8744 0.6374 2.8863

(1.2433) (3.4610) (2.1881) (0.6452) (2.3036) (0.8654) (3.2062)
λj -0.4586 0.4613 0.1521 0.2464 0.0741 0.2227 -0.0329

(-1.8780) (1.4847) (1.0238) (2.2027) (3.2994) (2.4108) (-2.2980)
price of risk -1.332% 1.168% 0.916% 1.823% 2.249% 1.988% -1.821%

R2 20.160% 14.895% 8.959% 38.414% 63.136% 49.302% 41.393%

se(R̂2) (0.1520) (0.1638) (0.1600) (0.2027) (0.0616) (0.2521) (0.2630)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0222 0.5341 0.0012 0.0000
97.5% CI

(
R2
)

0.5031 0.4757 0.4028 0.7706 0.7589 1.0000 0.9444
p
(
R2 = 1

)
0.0100 0.0074 0.0129 0.0145 0.1655 0.0590 0.0260

MAPE 1.970% 2.136% 2.389% 1.753% 1.367% 1.456% 1.509%

Panel B - IPVOL
λ0,j 3.2660 2.7597 2.4521 1.5626 1.2865 1.0479 2.9785

(3.7268) (4.5954) (3.4040) (2.0030) (1.5819) (1.3704) (2.9328)
λj 0.1819 -0.0483 -0.0034 -0.0535 -0.0344 -0.0639 0.0083

(2.5321) (-0.8541) (-0.0894) (-3.1893) (-3.5092) (-3.1588) (1.5910)
price of risk 1.634% -0.674% -0.068% -1.342% -2.365% -2.007% 1.303%

R2 30.337% 4.958% 0.049% 20.819% 69.808% 50.278% 21.200%

se(R̂2) (0.1445) (0.1226) (0.0114) (0.0588) (0.0742) (0.1146) (0.2157)
2.5% CI

(
R2
)

0.0388 0.0000 0.0000 0.0973 0.5625 0.2974 0.0000
97.5% CI

(
R2
)

0.5912 0.3039 0.0346 0.3361 0.8524 0.7420 0.6431
p
(
R2 = 1

)
0.0238 0.0256 0.0219 0.0222 0.2353 0.0923 0.0107

MAPE 2.016% 2.328% 2.480% 1.973% 1.236% 1.543% 1.846%

# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model �tted to the frequency-
speci�c components �ltered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R2 for each cross-sectional
regression and its standard error, the 95% con�dence interval for R2 which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of H0 : R2 = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3B.7: Multiresolution decomposition with a C(6) wavelet �lter

Time-scale
j = 1 2 3 4 5 4:5 > 5

Frequency Resolution
1 - 2 2 - 4 4 - 8 8 - 16 16 - 32 8 - 32 > 32

in quarters

Panel A - IPG
λ0,j 0.8220 2.5297 1.5293 0.4936 1.5454 0.5996 2.8238

(1.1323) (3.4294) (2.1402) (0.6422) (1.9826) (0.7980) (3.1742)
λj -0.4669 0.4906 0.1579 0.2359 0.0941 0.2244 -0.0300

(-1.7039) (1.3416) (1.0352) (1.9515) (3.4118) (2.2790) (-2.2132)
price of risk -1.259% 1.100% 0.934% 1.750% 2.407% 1.949% -1.789%

R2 17.998% 13.211% 9.318% 35.395% 72.318% 47.423% 39.944%

se(R̂2) (0.1564) (0.1612) (0.1614) (0.2414) (0.1251) (0.2692) (0.2684)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.4854 0.0000 0.0000
97.5% CI

(
R2
)

0.4736 0.4811 0.4321 0.8579 0.9714 1.0000 0.9311
p
(
R2 = 1

)
0.0097 0.0080 0.0124 0.0095 0.2726 0.0590 0.0202

MAPE 1.996% 2.188% 2.375% 1.773% 1.186% 1.465% 1.555%

Panel B - IPVOL
λ0,j 3.3626 2.5405 2.4715 1.4353 1.0065 0.9216 2.8614

(3.7381) (4.3301) (3.5546) (1.8900) (1.3214) (1.2284) (2.9329)
λj 0.1902 -0.0097 -0.0128 -0.0645 -0.0383 -0.0653 0.0076

(2.5032) (-0.1553) (-0.3007) (-3.2113) (-3.2286) (-2.9345) (1.5184)
price of risk 1.566% -0.131% -0.227% -1.420% -2.353% -2.008% 1.288%

R2 27.858% 0.187% 0.548% 23.317% 69.104% 50.296% 20.719%

se(R̂2) (0.1300) (0.0246) (0.0376) (0.0457) (0.1538) (0.1679) (0.2227)
2.5% CI

(
R2
)

0.0564 0.0000 0.0000 0.1510 0.3814 0.1739 0.0000
97.5% CI

(
R2
)

0.5155 0.0641 0.0862 0.3338 0.9855 0.8239 0.6185
p
(
R2 = 1

)
0.0230 0.0198 0.0232 0.0279 0.1948 0.0732 0.0103

MAPE 2.055% 2.443% 2.466% 1.966% 1.242% 1.519% 1.841%

# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model �tted to the frequency-
speci�c components �ltered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R2 for each cross-sectional
regression and its standard error, the 95% con�dence interval for R2 which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of H0 : R2 = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3B.8: Multiresolution decomposition with a C(12) wavelet �lter

Time-scale
j = 1 2 3 4 5 4:5 > 5

Frequency Resolution
1 - 2 2 - 4 4 - 8 8 - 16 16 - 32 8 - 32 > 32

in quarters

Panel A - IPG
λ0,j 0.8401 2.5042 1.5294 0.4910 1.7388 0.6203 2.8527

(1.2176) (3.4528) (2.1497) (0.6625) (2.1671) (0.8351) (3.1829)
λj -0.4529 0.4825 0.1567 0.2394 0.0828 0.2235 -0.0307

(-1.7860) (1.4417) (1.0449) (2.0607) (3.4179) (2.3358) (-2.2301)
price of risk -1.290% 1.150% 0.939% 1.782% 2.339% 1.964% -1.793%

R2 18.901% 14.438% 9.418% 36.716% 68.287% 48.144% 40.124%

se(R̂2) (0.1533) (0.1634) (0.1615) (0.2212) (0.0669) (0.2608) (0.2666)
2.5% CI

(
R2
)

0.0000 0.0000 0.0000 0.0000 0.5706 0.0143 0.0000
97.5% CI

(
R2
)

0.4868 0.4537 0.4196 0.7970 0.8168 0.9876 0.9753
p
(
R2 = 1

)
0.0105 0.0072 0.0125 0.0110 0.2094 0.0602 0.0209

MAPE 1.987% 2.148% 2.380% 1.773% 1.289% 1.467% 1.542%

Panel B - IPVOL
λ0,j 3.3808 2.6853 2.4586 1.4842 1.1304 0.9780 2.9142

(3.8119) (4.5209) (3.4784) (1.9553) (1.4280) (1.3048) (2.9405)
λj 0.1866 -0.0345 -0.0072 -0.0592 -0.0368 -0.0638 0.0079

(2.6482) (-0.5844) (-0.1826) (-3.2624) (-3.4430) (-2.9984) (1.5677)
price of risk 1.602% -0.474% -0.138% -1.405% -2.384% -2.005% 1.308%

R2 29.163% 2.453% 0.204% 22.813% 70.901% 50.150% 21.360%

se(R̂2) (0.1182) (0.0864) (0.0234) (0.0458) (0.1298) (0.1485) (0.2209)
2.5% CI

(
R2
)

0.0769 0.0000 0.0000 0.1481 0.4702 0.2340 0.0000
97.5% CI

(
R2
)

0.5277 0.2075 0.0523 0.3234 0.9573 0.7872 0.6766
p
(
R2 = 1

)
0.0258 0.0221 0.0225 0.0280 0.2443 0.0762 0.0100

MAPE 2.027% 2.389% 2.474% 1.954% 1.236% 1.529% 1.841%

# observ. 210 208 204 196 180 180 180

Notes: This table reports the estimates for the zero-beta excess return (λ0,j) and the price of
risk (λj) for each scale j along with the corresponding Fama-MacBeth (1973) test statistics in
parentheses. The priced factors are the residuals from an AR(1) model �tted to the frequency-
speci�c components �ltered out of IPG (Panel A) and IPVOL (Panel B). In addition, I normalize
the scale-wise risk exposures and estimate the price of risk per unit of cross-sectional standard
deviation in exposure in percent per year. I also report the sample R2 for each cross-sectional
regression and its standard error, the 95% con�dence interval for R2 which is obtained by pivoting
the cdf, the p-value for the Kan et al. (2013) test of H0 : R2 = 1 and the mean absolute pricing error
(MAPE) across all securities expressed in percent per year. The initial sample period is 1962:Q1 to
2014:Q4 and the test assets are the 5 FF industry and the 25 FF size and book-to-market portfolios
which are priced together.
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Table 3B.9: Monotonicity tests - risk exposures with respect to consumption growth

Panel A Size Top−bottom MR
Low 2 3 4 High p-value p-value

Average Return 2.5273 2.4643 2.3596 2.1788 1.6142 0.0540 0.1052
Factor: Innovations:

CG, j = 5
First-Di�. 7.5269 5.9658 5.4755 4.9459 3.6878 0.0968 0.0664

AR(1) Resid. 9.2826 7.3213 6.6320 6.0459 4.6809 0.0590 0.0298

CG, j > 5
First-Di�. 11.5480 10.3283 9.7070 8.6477 8.7718 0.2796 0.2604

AR(1) Resid. 13.7571 10.9536 9.5592 9.1356 9.0241 0.1620 0.1768
Null and Alternative Hypotheses for Monotonicity Test

For returns: H0 : R5 ≥ . . . ≥ R1 vs H1 : R5 < . . . < R1

For CG risk-loadings: H0 : β
(j)
5 ≥ . . . ≥ β(j)

1 vs H1 : β
(j)
5 < . . . < β

(j)
1

Panel B Book-to-Market Top−bottom MR
Low 2 3 4 High p-value p-value

Average Return 1.6029 1.7924 1.9863 2.2214 2.6464 0.0121 0.0006
Factor: Innovations:

CG, j = 5
First-Di�. 3.4811 4.3839 5.2996 5.5229 6.2314 0.0468 0.0102

AR(1) Resid. 4.2415 5.3141 6.4794 6.8205 7.6033 0.0194 0.0026

CG, j > 5
First-Di�. 9.0839 7.8512 8.8235 8.1679 10.1217 0.3716 0.3420

AR(1) Resid. 9.6880 7.3403 9.0684 8.9702 10.0594 0.4750 0.6882
Null and Alternative Hypotheses for Monotonicity Test

For returns: H0 : R5 ≤ . . . ≤ R1 vs H1 : R5 > . . . > R1

For CG risk-loadings: H0 : β
(j)
5 ≤ . . . ≤ β(j)

1 vs H1 : β
(j)
5 > . . . > β

(j)
1

Notes: This table presents the frequency-speci�c risk exposures with respect to the factors ∆CG
(j)
t

for j = 5 (i.e., business-cycle frequencies) and j > 5 (i.e., frequencies lower than 8 years) for one-
way portfolio sorts and the corresponding monotonicity tests. The sorting variables are size (Panel
A) and book-to-market (Panel B). The �rst row in each panel reports average excess returns (in
percent per quarter) for the test assets. The �nal column in each panel presents the p-value for the
monotonic relation (MR) test. Similarly, the penultimate column presents the bootstrap p-value
for the top-minus-bottom di�erence in the corresponding returns and scale-wise betas.
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Table 3B.10: Controlling for Fama-French factors and momentum

Factor Innovations λMKT λSMB λHML λMOM λ5
R2

MAPE

Panel A
IPG, j = 5 First-Di�. 1.3701 0.2798 0.7306 2.5117 0.2753 78.801%

(1.9164) (0.6286) (1.3944) (2.0315) (2.3715) 1.282%
AR(1) Resid. 1.3214 0.4438 0.8626 2.2230 0.2062 77.944%

(1.7596) (1.0093) (1.6624) (1.8511) (1.9115) 1.289%
IPVOL, j = 5 First-Di�. 1.4931 0.6055 0.5558 2.4288 -0.0577 78.175%

(2.1318) (1.3239) (0.9650) (2.0357) (-2.2178) 1.255%
AR(1) Resid. 1.4423 0.6409 0.6091 2.2352 -0.0553 78.030%

(2.0333) (1.3972) (1.0710) (1.8800) (-2.1063) 1.265%

Panel B
GDP Growth, j = 5 First-Di�. 1.3620 0.1812 0.6463 2.6037 0.1735 80.812%

(1.9757) (0.3983) (1.2976) (2.0962) (3.5020) 1.239%
AR(1) Resid. 1.1602 0.2937 0.6818 2.2164 0.1432 80.157%

(1.6162) (0.6562) (1.3524) (1.8480) (3.1015) 1.255%
GDP VOL, j = 5 First-Di�. 1.4134 0.5217 0.3096 2.1640 -0.0237 79.330%

(2.0257) (1.1662) (0.5243) (1.8154) (-2.6770) 1.257%
AR(1) Resid. 1.4151 0.5551 0.4043 2.1091 -0.0217 78.798%

(2.0147) (1.2410) (0.6905) (1.7734) (-2.4755) 1.274%

Notes: This table reports estimates for the price of risk (λ5) for the business-cycle macro factors
�ltered out of industrial production (Panel A) and GDP (Panel B) after controlling for exposure
to the value-weight excess return on the market portfolio (MKT), the size factor (SMB), the value
factor (HML) and the momentum factor (MOM). The test assets include the 5 FF industry and
the 25 FF size and book-to-market portfolios which are priced together.
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Table 3B.11: Cross-sectional regressions using frequency domain risk exposures

Panel A - GDP Growth
Freq. (ω) Cycle length in years λ0 λ price of risk R2 MAPE

0.0491 32.00 2.8896 -0.2652 -1.391% 21.600% 2.117%
(3.3915) (-2.4715)

0.0982 16.00 2.6431 -0.0840 -0.339% 1.283% 2.383%
(2.4777) (-0.5946)

0.1963 8.00 0.4125 0.5561 1.762% 34.653% 1.856%
(0.5347) (3.9909)

0.2209 7.11 0.4441 0.5431 2.026% 45.776% 1.660%
(0.6402) (3.8300)

0.2454 6.40 0.6391 0.4706 2.120% 50.145% 1.599%
(0.9861) (3.3822)

0.3927 4.00 1.7051 0.0899 0.784% 6.856% 2.295%
(2.5707) (0.8736)

0.7854 2.00 2.7572 -0.0311 -0.453% 2.294% 2.364%
(4.2272) (-0.5499)

Panel B - GDP VOL
Freq. (ω) Cycle length in years λ0 λ price of risk R2 MAPE

0.0491 32.00 3.2282 -0.3992 -2.105% 49.434% 1.376%
(3.6847) (-3.3270)

0.0982 16.00 3.4116 -0.3211 -1.646% 30.227% 1.817%
(3.2594) (-2.3097)

0.1963 8.00 -0.1535 0.2522 2.012% 45.184% 1.780%
(-0.1976) (3.7791)

0.2209 7.11 0.0572 0.1953 2.127% 50.466% 1.599%
(0.0773) (3.1904)

0.2454 6.40 0.4022 0.1475 2.113% 49.814% 1.586%
(0.5727) (2.8684)

0.3927 4.00 -0.7051 0.1058 2.119% 50.071% 1.533%
(-0.7635) (3.1131)

0.7854 2.00 3.2335 -0.0210 -0.628% 4.395% 2.378%
(4.5048) (-0.9133)

Notes: This table reports the estimates for the zero-beta excess return (λ0) and the price of risk
(λ) for the frequency-speci�c macro shocks along with the corresponding Fama-MacBeth (1973)
test statistics in parentheses. The regressors are the estimated gains between asset returns and the
macro series at frequency ω. In addition, I report the sample R2 for each cross-sectional regression
and the mean absolute pricing error (MAPE) across all securities expressed in percent per year.
The test assets are the 5 FF industry and the 25 Fama and French (1993) size and book-to-market
portfolios priced together. The sample period is 1962:Q1 to 2014:Q4. I use demeaned series to
estimate the spectral measures based on Welch's (1967) method with a Hamming window and 50%
overlap.
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Table 3B.12: Low-frequency risk exposures from OLS regressions of cosine transforms
- GDP

Size Book-to-market Panel A - GDP Growth Panel B - GDP VOL
Small LowBM 2.0258 (0.4119) 8.4167 (0.2030)

2BM 1.1926 (0.2707) -22.2232 (-0.6089)
3BM 2.9100 (0.7255) -27.2278 (-0.8140)
4BM 4.5945 (1.1387) -31.4923 (-0.9146)

HighBM 5.1223 (1.2531) -44.5065 (-1.3049)
2 LowBM -1.1114 (-0.3041) -13.4946 (-0.4422)

2BM 0.4423 (0.1640) -21.0920 (-0.9673)
3BM 1.5700 (0.5584) -39.4870 (-1.8819)
4BM 4.1186 (1.4959) -39.5256 (-1.7639)

HighBM 4.0290 (1.4158) -31.3226 (-1.2976)
3 LowBM -0.6267 (-0.2029) -26.9639 (-1.0892)

2BM 0.7483 (0.2772) -31.4754 (-1.5129)
3BM 1.4402 (0.5833) -30.7453 (-1.6161)
4BM 2.7385 (1.0590) -43.8356 (-2.3299)

HighBM 2.5043 (0.9436) -39.0487 (-1.9407)
4 LowBM -1.1933 (-0.4859) -28.9536 (-1.5206)

2BM 1.6259 (0.6721) -44.4465 (-2.7444)
3BM 3.4850 (1.4665) -42.7529 (-2.4055)
4BM 3.6513 (2.0677) -39.5180 (-3.0562)

HighBM 3.7022 (1.8310) -36.4998 (-2.2782)
Big LowBM 0.9841 (0.4242) -33.5944 (-1.9725)

2BM 1.5272 (0.6912) -45.7457 (-3.3864)
3BM 3.3373 (1.3690) -53.0754 (-3.3685)
4BM 3.5614 (1.9566) -41.6802 (-3.2701)

HighBM 2.1647 (0.9973) -41.9540 (-2.8815)

Industry 1 Consum. 1.2474 (0.5981) -37.5885 (-2.6765)
Industry 2 Manuf. 1.3935 (0.8137) -35.5437 (-3.3543)
Industry 3 HiTech 1.8326 (0.6024) -30.3834 (-1.2472)
Industry 4 Health 1.4692 (0.4892) -28.0008 (-1.1613)
Industry 5 Other 4.7552 (1.8569) -43.7766 (-2.1018)

Notes: This table reports low-frequency risk-exposures from a time-series regression between q = 13
weighted averages constructed from asset excess returns and (innovations) in macro series based on
the Müller and Watson (2015) framework. Note that the low-frequency betas follow a Student-t
distribution with 12 degrees of freedom (q−k = 13− 1). Bold values denote statistically signi�cant
beta estimates at a 95% con�dence level. Note that the low-frequency betas for GDP Growth are
not statistically signi�cant (i.e., useless factor).

177



Table 3B.13: Cross-sectional regressions using low-frequency betas based on the Müller
and Watson (2015) framework - GDP

Test assets: 5 FF industry and the 25 FF size and book-to-market portfolios

AR(1) Resid. from λ0 λ price of risk R2 MAPE
GDP Growth, q = 13 1.8108 0.2582 1.715% 32.830% 1.956%

(2.3935) (3.3193) cut-o� periodicity = 8.1538
GDP Growth, q = 12 1.8764 0.2465 1.620% 29.273% 2.023%

(2.4731) (3.2129) cut-o� periodicity = 8.8333
GDP Growth, q = 11 1.9890 0.2084 1.326% 19.617% 2.183%

(2.5744) (2.6681) cut-o� periodicity = 9.6364

GDP VOL, q = 13 1.9564 -0.0123 -0.574% 3.678% 2.388%
(1.8045) (-0.8121) cut-o� periodicity = 8.1538

GDP VOL, q = 12 2.1468 -0.0068 -0.329% 1.206% 2.416%
(1.9704) (-0.4473) cut-o� periodicity = 8.8333

GDP VOL, q = 11 2.7747 0.0138 1.021% 11.623% 2.107%
(2.8850) (1.1726) cut-o� periodicity = 9.6364

Notes: This table reports the estimates for the zero-beta excess return (λ0) and the price of risk (λ)
for low-frequency macro shocks along with the corresponding Fama-MacBeth (1973) test statistics
in parentheses. In addition, I report the sample R2 for each cross-sectional regression and the mean
absolute pricing error (MAPE) across all securities expressed in percent per year. The test assets
are the 5 FF industry and the 25 Fama and French (1993) size and book-to-market portfolios priced
together. The sample period is 1962:Q1 to 2014:Q4.
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Conclusion to Thesis

In this thesis, I analyze how scale-dependent macroeconomic shocks propagate to asset prices.

Chapter 1 provides an introduction to time-series modelling with multiple scales and scale-wise

heterogeneity building mainly upon the studies of Ortu et al. (2013), Bandi et al. (2016) and Bandi

and Tamoni (2016). While chapter 1 serves as introduction to the topic, I contribute in the existing

literature in the following ways: First, I present new results for the power and size properties of the

modi�ed multi-scale variance ratio test of Ortu et al. (2013). Second, I demonstrate theoretically

and via simulations that there is a close one-to-one mapping between scale-speci�c predictability

and two-way aggregation irrespective of whether the scale-wise regressor is autoregressive.

In chapter 2, I show that a single factor that captures assets' exposure to business-cycle variation

in macroeconomic uncertainty can explain the level and cross-sectional di�erences of asset returns.

In particular, based on portfolio-level tests I demonstrate that uncertainty shocks with persistence

ranging from 32 to 128 months carry a negative price of risk of about -2% annually. The price of

risk for innovations in the raw series of aggregate uncertainty and for high-frequency �uctuations is

not signi�cant. Also, equity exposures are negative and hence risk premia are positive. I quantify

macroeconomic uncertainty using the model-free index of Jurado et al. (2015) and my results remain

quantitatively similar irrespective of whether uncertainty is derived from monthly, quarterly or

annual forecasts..

In chapter 3, I test if the theoretical conditions that Epstein-Zin preferences impose in the

frequency domain for asset pricing models are empirically satis�ed. My work is motivated by the
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spectral decomposition of the pricing kernel under recursive preferences by Dew-Becker and Giglio

(2016). I �nd that macroeconomic shocks with frequencies lower than the business-cycle are not

robustly priced in the cross-section of expected returns. In addition, the estimated risk premia are

economically small, have wrong signs and the low-frequency risk exposures fail to match known

patters in average returns. In total, this chapter highlights the need for risk preferences that allow

investors to be more risk averse to business-cycle frequencies and put less weight on cycles lasting

centuries.

Overall, the central recommendation of my work is that empirical studies should pay more

attention to the information content of scale-speci�c macroeconomic shocks. Furthermore, my

thesis demonstrates that - in contrast with the conventional wisdom of the long-run risks literat-

ure - business-cycle length �uctuations are of �rst-order importance for asset pricing and hence

stabilisation and monetary policies should focus at this speci�c frequency range. That is, in line

with mainstream macroeconomic theory central banks should aim the e�ects of their policies (e.g.,

smoothing out output and consumption) primarily at business-cycle frequencies - rather than trying

to reduce uncertainty about very long-run growth rates.

Limitations and Directions for Future Work

In chapter 1, the modi�ed multi-scale variance ratio tests demonstrate modest power in small

samples when there is a persistent component in the time-series localized at low-frequencies. De-

riving the asymptotic joint distribution of these tests could allow to gain power. In chapters 2

and 3 my analysis is purely non-structural and lacks a formal theoretical set-up. What is more,

the empirical evidence in these chapters cannot be nested within standard asset pricing models.

From this perspective, promising directions for future work include risk preferences with horizon

dependent risk aversion (as a starting point see Andries et al., 2015) or asset pricing models that

incorporate multi-scale pricing kernels. Moreover, in chapter 3 the exact theoretical mapping (or

potential di�erences in power) between the three econometric techniques is not clear. Finally, on
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the empirical front two interesting extensions include: i) performing a scale-by-scale decomposition

of the risk exposures with respect to the market factor to investigate scale-dependent downside

risk (for instance, see Lettau et al. 2014 and Dobrynskaya, 2014) and ii) modelling the dependence

of macro uncertainty and volatility shocks across di�erent time horizons via wavelet-based hidden

Markov trees. In the spirit of Gençay et al. (2010), I expect that a state (regime) with low macro

uncertainty at a long time horizon is most likely followed by low macro uncertainty states at shorter

time horizons. In contrast, a high macro uncertainty state at long time horizons will not necessarily

imply a high macro uncertainty state at shorter time horizons (i.e., I expect macro uncertainty to

exhibit asymmetric vertical dependence across di�erent time horizons).

182



Additional Appendices

Appendix A: Monotonicity in Factor Loadings

I present how to implement the monotonic relation (MR) test of Patton and Timmermann (2010)

to test for monotonicity in factor loadings. The MR test speci�es a �at or weakly pattern under

the null hypothesis and a strictly monotonic relation under the alternative57. The main advantage

of the test is that it makes no parametric assumptions on the distribution from which the data

are drawn. Below I describe the MR methodology for the general case with the extension for

horizon-speci�c exposures being straightforward (for instance, using component-wise regressions as

in Equation (3.12)).

Let {ri,t, i = 1, . . . , N ; t = 1, . . . , T} be the set of returns recorded for N assets over T time

periods which is regressed on K risk factors F t = (F1,t, . . . , FK,t)
´, that is,

ri,t = βiF t + ei,t (A.1)

where βi = (β1,i, . . . , βK,i). The associated hypotheses58 on the j − th parameter (1 ≤ j ≤ K) in

the above regression is

57I would like to thank Andrew Patton for making the code available in his personal website:
http://public.econ.duke.edu/~ap172/
58To test for monotonically decreasing patters the order of the assets is simply reversed.
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H0 : βj,N ≤ βj,N−1 ≤ . . . ≤ βj,1 versus (A.2)

H1 : βj,N > βj,N−1 > . . . > βj,1. (A.3)

The alternative hypotheses can be rewritten as

H1 : min
i=1,...,N

{βj,i − βj,i−1} > 0 (A.4)

that is if the smallest value of {βj,i − βj,i−1} > 0 then it must be that {βj,i − βj,i−1} > 0 for all

i = 1, . . . , N .

Patton and Timmermann (2010) use the stationary bootstrap of Politis and Romano (1994)

to randomly draw a new sample of returns and factors
{
r̃

(b)
i,τ(t), i = 1, . . . , N ; τ (1) , . . . , τ (T )

}
and{

F
(b)
τ(t), τ (1) , . . . , τ (T )

}
where τ (t) is the new time index which is a random draw from the original

set {1, . . . , T} and b is an indicator for the bootstrap number which runs from b = 1 to b = B.

To preserve any cross-sectional dependencies in returns the randomized time index τ (t) is common

across portfolios. Moreover, observations are re-sampled in blocks - to preserve the dependence

in the original series - where the size of each block is random and determined by a geometric

distribution. The bootstrap regression takes the form

r̃
(b)
i,τ(t) = β

(b)
i F

(b)
τ(t) + e

(b)
i,τ(t). (A.5)

The null hypothesis is imposed by subtracting the estimated parameter β̂i from the parameter

estimate obtained on the bootstrapped series β̂
(b)

i . The test statistic for the bootstrap sample -

motivated by Equation (A.4) - is computed as

J
(b)
j,T ≡ min

i=1,...,N

{(
β̂

(b)
j,i − β̂j,i

)
−
(
β̂

(b)
j,i−1 − β̂j,i−1

)}
. (A.6)
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Patton and Timmermann (2010) then count the number of times a pattern at least as unfavourable

against the null as that observed in the real sample emerges. An estimate of the p-value for the

null hypothesis is given by

p̂ =
1

B

B∑
b=1

1
{
J

(b)
j,T > Jj,T

}
(A.7)

where the indicator 1
{
J

(b)
j,T > Jj,T

}
is one if J

(b)
j,T > Jj,T and otherwise zero. When the bootstrap

p-value is less than 0.05 there are signi�cant evidence against the null in favor of a monotonically

increasing relation. To eliminate the impact of cross-sectional heteroskedasticity Patton and Tim-

mermann (2010) suggest implementing a studentized version of the bootstrap in line with Hansen

(2005) and Romano and Wolf (2005).

Appendix B: Asymptotic Distribution of R2

Let f be a K − vector of factors , R a vector of returns on N assets with mean µR and covariance

matrix VR and β the N ×K matrix of regression betas. The K − factor beta pricing model is given

by µR = Xγ where X = [1N , β] and γ = [γ0, γ1]. The pricing errors of the N assets are given by

e = µR −Xγ and the cross-sectional R2 is de�ned as

R2 = 1− Q

Q0
(B.1)

where Q = éWe denotes the aggregate pricing-error measure, Q0 = é0We0 the cross-sectional

variance of mean returns, e0 =
[
IN − 1N

(
1́NW1N

)−1
1́NW

]
µR deviations of mean returns from

their cross-sectional average and W is an N ×N weighting matrix (throughout this thesis I assume

that W = IN - OLS case).

When 0 < R2 < 1, the asymptotic distribution of R2 is given by

185



√
T
(
R̂2 − R2

)
a→ N

0,
∞∑

j=−∞
E[ntnt+j ]

 (B.2)

where nt = 2
[
−utyt + (1− R2)vt

]
/Q0, ut = éW (Rt − µR), vt = é0W (Rt − µR) and yt is the

normalized stochastic discount factor.

When the model is correctly speci�ed (i.e., R2 = 1)

√
T
(
R̂2 − 1

)
a→
N−K−1∑
j=1

ξj
Q0

xj (B.3)

where the xj 's are independent χ
2
1 random variables and the ξj 's are the eigenvalues of P

′
W

1
2SW

1
2P

where P is an N × (N −K − 1) orthonormal matrix with columns orthogonal to W
1
2C, S is the

asymptotic covariance matrix of 1√
T

∑T
t=1 εtyt, εt = Rt − µR − β (ft − µf ). Equation (B.3) can be

used as a speci�cation test.

Pivoting the cdf

Plot the 100(a/2) and 100(1− a/2) percentiles of the distribution of R̂2 for di�erent values of R2.

Draw a horizontal line at the observed value of R̂2. The horizontal line will intersect �rst the

100(1−a/2) percentile line and then the 100(a/2) line. The interval between these two intersection

points gives a 100(1− a)% con�dence interval.
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