
 

 
 

 

 

Genetic improvement of grass pea 
(Lathyrus sativus) for low β-L-ODAP 

content 
 

 
Peter Martin Ferdinand Emmrich 

John Innes Centre 

 

 

 

Thesis for the degree of Doctor of Philosophy (PhD) 

Submitted for examination to the University of East Anglia in September 2016 

Final version including minor corrections submitted in June 2017 

 

This copy of the thesis has been supplied on condition that anyone who consults it is 

understood to recognise that its copyright rests with the author and that use of any 

information derived there from must be in accordance with current UK Copyright Law. In 

addition, any quotation or extracts must include full attribution. 



ii   

 

 
 

 

 

Table of contents 

 

 

Table of contents ........................................................................................................ ii 

Abstract .................................................................................................................. viii 

List of Abbreviations .................................................................................................. ix 

Acknowledgements .................................................................................................. xii 

List of figures ........................................................................................................... xiv 

List of tables .............................................................................................................xix 

Chapter 1 – General introduction .................................................................................... 1 

1.1 Food security in the 21st century ..................................................................... 1 

1.1.1 The need for increased diversity of food production .................................... 1 

1.1.2 The potential of Lathyrus sativus ................................................................... 2 

1.2 History of grass pea cultivation ........................................................................ 4 

1.2.1 From Neolithic staple to orphan crop ............................................................ 4 

1.2.2 Lathyrism – a neurodegenerative disease caused by grass pea .................... 6 

1.3 The neurotoxin β-L-ODAP ................................................................................ 9 

1.3.1 Biosynthesis of β-L-ODAP in grass pea ........................................................ 11 

1.3.2 The ecophysiological role of β-L-ODAP ........................................................ 14 

1.3.3 Mitigation of grass pea toxicity through food processing ........................... 15 

1.3.4 Physiological breakdown of β-L-ODAP ........................................................ 16 

1.3.5 Potential biomedical applications of β-L-ODAP ........................................... 16 

1.4 Low-ODAP genotypes of grass pea ................................................................. 17 

1.4.1 Released low-ODAP varieties of grass pea .................................................. 17 



iii   

 

 
 

1.4.2 Attempts to produce ODAP-free genotypes ................................................ 18 

1.4.3 The importance of the genotype x environment interaction for β-L-ODAP 

production ................................................................................................... 19 

1.5 Towards the rapid domestication of grass pea ................................................ 20 

1.5.1 The problem of grass pea toxicity has not been fully resolved ................... 20 

1.5.2 From minor crop to major industrial product: the case of oilseed rape ..... 22 

1.5.3 Approaches taken in this study .................................................................... 23 

Chapter 2 – Screening grass pea germplasm for low-ODAP genotypes ........................... 25 

2.1 Introduction .................................................................................................. 25 

2.1.1 Diversity of grass pea germplasm ................................................................ 25 

2.1.2 Breeding of low-ODAP varieties .................................................................. 26 

2.1.3 Variation in seed β-L-ODAP concentrations between individual seeds and 

between growth environments ................................................................... 28 

2.1.4 Methods for measuring ODAP concentrations ............................................ 28 

2.2 Materials and methods .................................................................................. 32 

2.2.1 Germplasm ................................................................................................... 32 

2.2.2 Production of seed material for germplasm assays .................................... 34 

2.2.3 Comparison of extraction media ................................................................. 34 

2.2.4 Sensitivity and linearity testing of the plate-based spectrophotometric 

assay ............................................................................................................. 35 

2.2.5 Spectrophotometric assay for ODAP concentrations in individual seeds ... 36 

2.2.6 Spectrophotometric assay for ODAP in bulk seed samples ......................... 37 

2.2.7 Calculation of ODAP concentrations from absorbance readings ................ 38 

2.3 Results and discussion ................................................................................... 40 

2.3.1 Optimisation of the spectrophotometric method ....................................... 40 

2.3.2 Seed ODAP variation between batches grown in different conditions ....... 43 

2.3.3 ODAP concentrations in seeds of accessions from the IPK population ....... 46 

2.3.4 ODAP concentrations in seeds of accessions from the USDA population ... 48 



iv   

 

 
 

2.3.5 ODAP concentrations in seeds of accessions from the EIAR population ..... 52 

2.3.6 Screening for L-2,3-diaminopropionic acid accumulating accessions ......... 59 

2.4 Summary....................................................................................................... 60 

Chapter 3 – Identification of low-ODAP grass peas from a mutagenised population ....... 61 

3.1 Introduction .................................................................................................. 61 

3.1.1 Increasing genetic variation by mutagenesis ............................................... 61 

3.1.2 Approaches to mutagenesis ........................................................................ 62 

3.1.3 Selecting an appropriate screening method................................................ 64 

3.1.4 Plant tissue used for the mutant screen and adaptations of the screening 

method ......................................................................................................... 65 

3.1.5 Pathway analysis by mutant screening ........................................................ 67 

3.2 Materials and methods .................................................................................. 68 

3.2.1 Origin of the mutant population .................................................................. 68 

3.2.2 Assessment of mutation density ................................................................. 70 

3.2.3 Optimisation of seed scarification ............................................................... 71 

3.2.4 Growth conditions and sample preparation for the mutant screen ........... 72 

3.2.5 The high-throughput spectrophotometric assay ......................................... 75 

3.2.6 Automated data handling ............................................................................ 80 

3.2.7 Confirmation of low-ODAP mutants by testing individual seeds ................ 81 

3.2.8 Synthesis of 13C-labelled β-L-ODAP .............................................................. 81 

3.2.9 Characterisation of low-ODAP mutant lines by mass spectrometry ........... 85 

3.2.10 Genetic analysis by crossing ........................................................................ 90 

3.3 Results and discussion ................................................................................... 92 

3.3.1 Assessment of the mutant population derived from LSWT11 .................... 92 

3.3.2 Optimisation of the mutant screening method ........................................... 93 

3.3.3 Selection of mutants relative to their plate ................................................. 96 

3.3.4 Scarification and priming ............................................................................. 97 

3.3.5 Data handling and selection of putative mutants ....................................... 98 



v   

 

 
 

3.3.6 Low-toxin mutants identified ...................................................................... 98 

3.3.7 Confirmation of low-ODAP mutants ............................................................ 99 

3.3.8 Synthesis of a heavy-isotope-labelled internal standard for LCMS ........... 105 

3.3.9 Confirmation and characterisation of mutants ......................................... 111 

3.3.10 Accumulation of L-DAP in low-ODAP mutants .......................................... 116 

3.3.11 Genetic analysis ......................................................................................... 117 

3.3.12 Other mutant phenotypes ......................................................................... 130 

3.4 Summary..................................................................................................... 133 

Chapter 4 – Identification of candidate genes encoding metabolic enzymes in the β-L-

ODAP biosynthetic pathway ....................................................................................... 134 

4.1 Introduction ................................................................................................ 134 

4.1.1 A reverse genetics approach to identify target genes for the development 

of zero-toxin grass pea genotypes ............................................................. 134 

4.1.2 The putative pathway for β-L-ODAP synthesis suggests candidate gene 

families for some of the enzymes involved ............................................... 137 

4.1.3 Transient expression allows assays of gene function in planta ................. 140 

4.2 Materials and methods ................................................................................ 142 

4.2.1 Extraction of RNA from grass pea tissues .................................................. 142 

4.2.2 Generation of TruSeq RNA libraries ........................................................... 143 

4.2.3 Paired-end sequencing .............................................................................. 144 

4.2.4 Quality control of sequencing data............................................................ 144 

4.2.5 Transcriptome assembly ............................................................................ 145 

4.2.6 Automatic annotation of assembled transcripts ....................................... 145 

4.2.7 Reverse transcription of RNA from seven tissues of grass pea ................. 145 

4.2.8 Design of primers for amplification of ODAP synthase candidate genes .. 146 

4.2.9 PCR amplification of candidate BAHD-acyltransferases from cDNA ......... 149 

4.2.10 Amplification of destination vectors.......................................................... 150 

4.2.11 Assembly of expression clones using Gateway™ recombination .............. 151 



vi   

 

 
 

4.2.12 Transformation of Agrobacterium tumefaciens by electroporation ......... 155 

4.2.13 Agroinfiltration of candidate gene expression vectors.............................. 156 

4.2.14 LCMS measurement of L-DAP and β-L-ODAP in derivatised N. benthamiana 

extracts ...................................................................................................... 158 

4.3 Results and discussion ................................................................................. 159 

4.3.1 Quality of extracted RNA ........................................................................... 159 

4.3.2 Summary of sequencing results ................................................................. 161 

4.3.3 Transcriptome assembly ............................................................................ 161 

4.3.4 Identification of a candidate gene encoding an oxalyl-CoA synthetase in 

grass pea .................................................................................................... 162 

4.3.5 Identification of transcripts encoding putative BAHD-acyltransferases ... 164 

4.3.6 Identification of ODAP-synthase candidates among the putative BAHD 

acyltransferases ......................................................................................... 168 

4.3.7 Amplification of putative BAHD-acyltransferases from grass pea cDNA ... 172 

4.3.8 Transient expression of ODAP-synthase candidates in N. benthamiana .. 180 

4.4 Summary..................................................................................................... 185 

Chapter 5 – General discussion ................................................................................... 186 

5.1 Variation in β-L-ODAP levels among grass pea germplasm ............................ 186 

5.2 Comparison of low-ODAP induced mutant lines and released low-ODAP 

varieties ................................................................................................................. 187 

5.3 Crossing low-ODAP genotypes ..................................................................... 188 

5.4 A potential oxalyl-CoA synthetase revealed by the grass pea transcriptomes 190 

5.5 Investigating the grass pea ODAP-synthase .................................................. 192 

5.6 Is L-DAP an intermediate in the synthesis of β-L-ODAP in grass pea? ............. 197 

5.7 The physiological role of β-L-ODAP .............................................................. 198 

5.8 Platform development for the rapid domestication of grass pea ................... 199 

5.9 Bringing low-/zero-ODAP grass peas into the field ........................................ 201 

Appendix ................................................................................................................... 205 

App. 1 Chapter 2 – Screening grass pea germplasm for low-ODAP genotypes ........... 205 



vii   

 

 
 

App. 1.1 Standard concentrations used alongside spectrophotometric assays .......... 205 

App. 1.2 Standard curves used for calibration of spectrophotometric assays ............ 206 

App. 1.3 Raw data of seed ODAP concentrations of grass pea accessions .................. 212 

App. 1.4 Seed morphologies of seeds obtained from USDA ........................................ 229 

App. 1.5 Segregation in seed morphologies within sub-accessions ............................ 237 

App. 2 Chapter 3 – Identification of low-ODAP grass peas from a mutagenised 

population ............................................................................................................. 238 

App. 2.1 Example metadata file ................................................................................... 238 

App. 2.2 R-script for selection of low-ODAP and high-background samples during the 

mutant screen ............................................................................................ 238 

App. 2.3 LCMS calibration for single seed measurements (using external β-L-ODAP 

standards) .................................................................................................. 243 

App. 2.4 Calibration curves used to calculate β-L-ODAP concentrations of grass pea 

tissue samples measured by LCMS using the internal standard ............... 244 

App. 3 Chapter 4 – Identification of candidate genes encoding metabolic enzymes in 

the β-L-ODAP biosynthetic pathway ........................................................................ 247 

App. 3.1 SortMeRNA command used for the processing of sequencing reads ........... 247 

App. 3.2 Trim Galore command ................................................................................... 247 

App. 3.3 Trinity assembly commands .......................................................................... 247 

App. 3.4 Commands used for open reading frame prediction and automatic annotation

 ................................................................................................................... 247 

App. 3.5 Alignment of grass pea BAHD acyltransferases selected as ODAP-synthase 

candidates .................................................................................................. 248 

App. 3.6 Phylogenetic tree of candidate clade of BAHD-ATs including related species

 ................................................................................................................... 249 

App. 3.7 Predicted change in protein structure caused by the deletion in the BAHD10 

clone ........................................................................................................... 250 

Bibliography .............................................................................................................. 251 

 



viii   

 

 
 

 

 

Abstract 

 

Grass pea (Lathyrus sativus) is a legume crop with great potential for global food security 

due to its exceptional tolerance to drought and flooding. The main limitation of this crop is 

the presence of the toxin β-L-oxalyl-2,3-diaminopropionic acid (β-L-ODAP) in its seeds and 

green tissues, which can cause paralysis in humans if grass pea is consumed over long 

periods. The objective of this study was to develop means to identify grass pea genotypes 

with reduced or zero seed β-L-ODAP content and to investigate the biosynthetic pathway 

of this compound in grass pea. To this end, collections of grass pea germplasm were 

screened for variation in seed β-L-ODAP levels. Considerable variation in β-L-ODAP levels 

was observed but no β-L-ODAP-free plants were identified. To increase the available 

variation for this trait, an EMS-mutagenised population was screened for low/zero-ODAP 

mutants. This mutant screen yielded 14 low-ODAP mutant lines, three of which were 

characterised using a mass spectrometry method, employing a stable-isotope-labelled 

isoform of β-L-ODAP as an internal standard. Both the development of the mass 

spectrometry method and the synthesis of the internal standard were performed for the 

purposes of this project. The three characterised lines yielded seed β-L-ODAP-contents 

below existing low-ODAP varieties, although none were β-L-ODAP-free. To further 

investigate the synthesis of β-L-ODAP, RNA was extracted from several tissues of grass pea 

and sequenced to create tissue specific transcriptomes. These were interrogated to identify 

candidate genes, which were tested using heterologous expression in Nicotiana 

benthamiana. One candidate gene of the BAHD-acyltransferase family was confirmed as an 

enzyme capable of catalysing the synthesis of β-L-ODAP. The identification of a set of low-

ODAP mutants and the ODAP-synthase gene represent significant advances towards 

understanding the role of β-L-ODAP in grass pea and the development of grass pea 

genotypes free of this neurotoxin. 
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Chapter 1 – General introduction 

1.1 Food security in the 21st century 

1.1.1 The need for increased diversity of food production 

About 2500 species of crop plants have undergone domestication (Meyer et al., 2012), but 

the vast majority of global food and feed production is covered by just a small number of 

crop species. Two thirds of global food calorie production involves just four crop species: 

maize, wheat, rice and soybean (Tilman et al., 2011; Ebert, 2014). Major crop species such 

as these have undergone extensive breeding in traditional farming systems and more 

recently in scientifically-directed breeding programmes. These efforts have led to vast 

improvements in crops, particularly with regard to yield, disease resistance and geographic 

range. The advances made during the green revolution have allowed global agricultural 

systems to outpace the growth in demand for food despite the fourfold increase in the 

human population over the course of the twentieth century (Krausmann et al., 2009). 

However, during this period, global food supplies have become more homogenous, with 

increasing reliance on a small number of species supplying the majority of calories for 

human nutrition (Khoury et al., 2014). 

To keep up with the rise in global human and livestock populations, global food and feed 

production must be increased by 100-110% between 2005 and 2050 (Tilman et al., 2011), a 

goal we are unlikely to reach, according to current trends in crop yields (Ray et al., 2013). 

Currently, a quarter of global agricultural land suffers from water stress, a figure that rises 

to 40% when considering only land under irrigation (Gassert, 2013). The amount of land 

suffering water stress through periodic or chronic drought is likely to increase over the 

course of the 21st century due to the effects of climate change (Dai, 2013). This means that 

crops that are able to deliver high yields under conditions of water stress will be essential 

to maintain and increase yields as climate change progresses. This has made improved 

drought tolerance a major objective in crop development by breeding (Cattivelli et al., 

2008; Langridge and Reynolds, 2015; Tuberosa, 2012) and genetic engineering (Hu and 

Xiong, 2014). 
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1.1.2 The potential of Lathyrus sativus 

A complementary approach to the continued improvement of major crop species to 

maintain sustainable food and feed production in the face of climate change is to increase 

the use of currently underutilised crops that already show favourable characteristics in 

terms of tolerance to drought and other environmental stress factors (Massawe et al., 

2016). One such species is Lathyrus sativus, commonly called grass pea, a grain legume 

species and the most commonly cultivated species of the diverse genus Lathyrus, which 

includes ~160 other species (Asmussen and Liston, 1998). Other names for this crop include 

khesari (India and Bangladesh), guaya (Ethiopia), 家山黧豆 jia shan li dou (China), cicerchia 

(Italy), almorta (Spain) and chickling vetch (UK and USA). Grass pea is currently grown on an 

estimated 1.50 million hectares worldwide, with an annual production of 1.20 million 

tonnes (Kumar et al., 2011a), though as most of this production occurs on marginal land 

owned by poor smallholder farmers, accurate figures are difficult to gather. Most of the 

production is in South Asia, in particular Bangladesh, India, Nepal and Afghanistan as well 

as Ethiopia and Eritrea. Reported yields under experimental conditions vary widely from 

420 to 3860 kg/ha/yr in Italy (Piergiovanni et al., 2011); from 1079 to 1583 kg/ha/yr in 

Turkey (Karadag and Yavuz, 2010); from 1318 to 1795 kg/ha/yr in India (Campbell, 1997) 

and up to more than 5 t/ha/yr in variety tests under favourable conditions in Ethiopia 

(Tsegaye et al., 2005). This indicates that there is a substantial gap between the yields 

commonly achieved in existing farming systems and the potential yields that can be 

achieved by using improved varieties and higher farming inputs. More informative than 

these yield figures under experimental conditions are yields achieved in realistic farm 

settings. In the common ‘utera’ farming setting, where grass pea is sown by broadcasting 

seed into a standing rice crop and grows up between the rice straw, yields between 509 

and 783 kg/ha/yr have been observed. Across all farm settings in the Indian state of West 

Bengal, average yields in the period of 2001-2011 have ranged from 628 to 1172 kg/ha/yr 

(personal communication from Prof S.K. Samanta, Bidhan Chandra Agricultural University 

(BCKV), West Bengal).  

Beyond its yield potential, grass pea has been claimed as having remarkable yield stability  

compared to other legume crops (Zhelyazkova et al., 2016) in the face of drought and 

flooding. It has also been noted anecdotally for its tolerance to salinity, heat stress, insect 

herbivory and some fungal diseases (Yang and Zhang, 2005; Vaz Patto et al., 2006), 

although detailed comparative studies involving several species in multiple environments 

are limited. Lathyrus sativus appears to be better able to maintain photochemical efficiency 
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during mild and severe water stress than other legume crops (Silvestre et al., 2014). These 

characteristics have allowed grass pea to be cultivated in agricultural settings unsuitable for 

other crops, especially on marginal cropland with poor soils and unpredictable rainfall 

patterns. Today, grass pea is an important food crop in smallholder-agriculture in India, 

Bangladesh, Nepal, Ethiopia and Eritrea and is also cultivated in China, Pakistan, 

Afghanistan, Australia, the Mediterranean circumference, Eastern Europe and Chile as both 

a feed and food crop (Campbell, 1997). It is capable of highly efficient nitrogen fixation 

through its symbiosis with Rhizobium leguminosarum bv. viciae (Jiao et al., 2011a; Drouin 

et al., 2000). A nitrogen fixation rate of 124 kg/ha/yr has been recorded (Schulz et al., 

1999), making grass pea a highly efficient crop for increasing soil nitrogen, especially in dry 

conditions. Grass pea can be grown in low-input agriculture in marginal areas and makes a 

crucial contribution to the food security of poor smallholder farmers (Girma et al., 2011; 

Haque et al., 1996; Bhowmick, 2013). Its use as an insurance crop for times when natural 

disasters wipe out all other food sources has made grass pea a life-saver for millions of 

people during times of food shortages (Girma et al., 2011; Girma and Korbu, 2012). Grass 

pea is an important crop during lean times in Bangladesh, as it can be harvested as a 

nutritious leafy vegetable during the lean season when few other foods are available 

(Hussain, 1989). Grass pea produces seed with very high protein concentration of up to 

29.9 % w/w as measured by the Kjeldahl method (Bisignano et al., 2002; Aletor et al., 1994) 

and is rich in lysine. The quality of the grass pea protein is limited only by its low levels of 

sulphur-containing amino acids (methionine and cysteine) as well as tryptophan (Pastor-

Cavada et al., 2011), as with other grain legumes (Iqbal et al., 2006). The spectrum of 

essential amino acids in grass pea complements the spectrum found in most cereals, which 

are rich in sulphur-containing amino acids, but poor in lysine. Grass pea is an excellent low-

input crop: it can be sown by broadcasting; it does not require irrigation or fertilizer and is 

less susceptible to insect pests than most other legumes (Campbell, 1997). This makes it 

ideal for smallholder farmers who cannot utilize the economies of scale necessary to grow 

high-input crops profitably and who do not have the necessary education to correctly apply 

complicated agricultural management practises. Grass pea seeds contain significant 

quantities of the non-protein amino acid homoarginine, which is catabolised into the 

vasodilating hormone nitric oxide and is associated with cardiovascular health benefits 

(Rao, 2011).  
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1.2 History of grass pea cultivation 

1.2.1 From Neolithic staple to orphan crop 

Grass pea is an ancient crop species. Based on archeobotanical and phytogeographical 

evidence, the origin of cultivation of L. sativus has been suggested to be the Balkan 

peninsula (Kislev, 1989). No truly wild Lathyrus sativus persists today, although the plant 

occasionally appears as a weed among other crops and growing in the wild as escapees 

from cultivation (Jackson and Yunus, 1984). The species L. sativus is likely derived from its 

closest wild relative L. cicera (red pea) (Belaid et al., 2006). Fossilised seeds of L. sativus and 

allied species (L. cicera and L. ochrus) have been found in several Neolithic sites in the 

fertile crescent, Eastern Europe and the Mediterranean, dated to earlier than 6000 BCE 

(Coward et al., 2008; Kislev, 1989; Peña-Chocarro et al., 2013; Marinova, 2007). The earliest 

fossils of grass pea used for human consumption date back to the middle pre-pottery 

Neolithic era (8200-7500 BCE) in the Euphrates valley (Ferrio et al., 2012). This places grass 

pea among the earliest crops to be domesticated by humans. Evidence of grass pea 

cultivation has been found at bronze age sites in India, Greece (Valamoti et al., 2010), the 

Levant (Van Zeist and Bakker-Heeres, 1985; Mahler-Slasky and Kislev, 2010) and Ethiopia 

(Butler et al., 1999). Despite this ancient origin of the crop, grass pea is not currently grown 

as a major crop globally and the acreage under cultivation with grass pea has been 

decreasing. Comparatively little scientific research or breeding efforts have been focused 

on it, and hence genetic resources remain very limited. Several sets of genetic markers 

have been described for grass pea (Chapman, 2015; Lioi and Galasso, 2013; Shiferaw, 2013; 

Sun et al., 2012; Yang et al., 2014), but no detailed genetic map has been released to date. 

Limited transcriptomic data are available (Chapman, 2015; Matasci et al., 2014), but do not 

cover all tissues of the plant and no genome sequence for grass pea is available, to date. 

Modern grass pea cultivars retain many unwanted characteristics that have been bred out 

of other legume crops such as pea. These include indeterminate growth, sprawling growth 

habit, single podding and a low harvest index (Campbell, 1997) as well as high contents of 

trypsin inhibitors (Wang et al., 1998) and tannins (Aletor et al., 1994). One hypothesis 

proposed to explain this lack of success in improvement of grass pea is that the conflicting 

breeding goals of improving grass pea as a seed crop (by improving seed yield) and as a 

forage crop (by improving herbage yield) have cancelled each other out, leading to little 

substantial improvement in either direction (Smartt, 1984). 
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Figure 1. Painting of a flowering shoot and developing pod of Lathyrus sativus. Reproduced from Curtis’s 
Botanical Magazine vol. 3-4 1790/91 
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1.2.2 Lathyrism – a neurodegenerative disease caused by grass pea 

The primary issue limiting the use of grass pea as a food security crop is its association with 

a debilitating neurodegenerative disease, which can occur if grass pea seeds comprise 

more than a third of the caloric intake of a human for at least three months (Dufour, 2011). 

This disease has been observed since antiquity, with the earliest surviving description by 

the Greek physician Hippocrates (460-377 BCE), followed by other ancient sources 

including the Greek physician Galen, the Roman naturalist Pliny the Elder and the Persian 

polymath Ibn Sīnā (lat. Avicenna) (Dastur and Iyer, 1959; Hendley, 1903). The disease is 

marked by an irreversible spastic paraparesis of the legs, followed by muscular atrophy 

(Khan et al., 1995). Patients present with a scissor-like gait and further progression of the 

disease leads to complete immobilisation of the legs. Mild symptoms can be reversed if 

discovered early and grass pea consumption is stopped, but once the disease has 

progressed, the condition becomes permanent. Recent neuroimaging data suggest that the 

aetiology of the disease is due to spinal motor neurons rather than the motor cortex in the 

brain (Meiner and Gotkine). As the disease is much more likely to affect people suffering 

from malnourishment, particularly with regard to sulphur-containing amino acids (Van 

Moorhem et al., 2011), this can have a devastating impact among the poorest, who often 

rely heavily on grass pea in countries such as Ethiopia, India, Bangladesh and Afghanistan 

(Dufour, 2011; El-Moneim et al., 1999).  

This disease was named ‘lathyrism’ by the Italian physician Arnaldo Cantani in 1873 

(Cantani, 1873). The diagnosis is now commonly specified as neurolathyrism, to distinguish 

it from the separate syndromes osteolathyrism and angiolathyrism, both caused by a 

deficiency in collagen crosslinking, primarily induced by the toxin β-aminopropionitrile 

(BAPN) (Dasler and Stoner, 1959; Lees et al., 1990). BAPN is produced by the catabolism of 

2-cyanoethyl-isoxazolin-5-one, a compound which is found in green tissues of several 

species of the Lathyrus genus, especially Lathyrus odoratus (Ikegami et al., 1984). 

Symptoms of osteolathyrism include a weakness of connective tissues, resulting in bone 

deformity. When affecting the cardiovascular system (angiolathyrism), the reduced 

collagen crosslinking can result in aortic aneurisms. Other compounds, which are not 

present in Lathyrus tissues, including semicarbazide, thiosemicarbazide, benzoic hydrazide 

and aminoacetonitrile, have also been identified as osteolathyrogens (Dawson et al., 2002; 

Dawson et al., 1990; Chowdhury and Davis, 1989; Schultz and Ranney, 1988). Symptoms of 

osteolathyrism have been observed among a minority of patients suffering neurolathyrism 

in Bangladesh (Haque et al., 1997). However, the levels of 2-cyanoethyl-isoxazolin-5-one in 
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Lathyrus sativus are low and the disease is more commonly associated with the 

consumption of Lathyrus odoratus, hence its alternative name ‘odoratism’ (Dastur and Iyer, 

1959). The concentrations of 2-cyanoethyl-isoxazolin-5-one in grass pea tissues were not 

studied as part of this thesis. 

The risk of neurolathyrism has led to grass pea being considered a food of last resort and a 

food only for the poor in many countries where it is cultivated. To contain the risk of 

neurolathyrism, several governments have legislated against the cultivation or sale of grass 

pea. The first such ban was implemented by an edict by Georg the Duke of Wurttemberg in 

1671, which had to be reinforced by Georg’s successors, as the use of grass pea in the 

country continued (Cohn and Streifler, 1983). By the beginning of the 20th century, several 

other countries had placed restrictions on the cultivation or the sale of grass pea (Hendley, 

1903). Grass pea used to be a traditional crop in several provinces of China. During the 

drought in central China in the 1970s, grass pea was used heavily to sustain farming 

populations, but this was followed by an epidemic of lathyrism that led to the crop being 

outlawed. Recent interest in grass pea as a crop for agriculture in marginal soils, 

particularly for feed uses, has brought about calls for the reintroduction of grass pea to 

China (Yang and Zhang, 2005). After several epidemics of neurolathyrism following periods 

of drought, the governments of some Indian states banned the sale of grass pea, as well as 

the use of grass pea to pay the wages of workers. The production of the crop in subsistence 

agriculture was not banned and continued, as did the (outlawed) use of grass pea flour as 

an adulterant for more expensive besan (chickpea) flour (Pradesh, 2008). Due to 

improvements in infrastructure and farm yields, the diversity of food sources available to 

the poorest in India has improved over the last thirty years. As the number of people 

relying solely on grass pea has decreased, so has the number of cases of lathyrism. This has 

led some observers to consider lathyrism a threat of the past. Yet, epidemics of 

neurolathyrism have occurred during times of extreme drought when other crops have 

become unavailable, such as during the 1998/99 famines in Ethiopia (Woldeamanuel et al., 

2012; Getahun et al., 1999; Haimanot et al., 2005) and Afghanistan (Simpson, 2002). 

The disease disproportionately affects young men (Hendley, 1903; Haque et al., 1996; 

Dwivedi and Prasad, 1964; Haimanot et al., 2005; Haimanot et al., 1990), but the reasons 

for this gender disequilibrium are unclear. In most cases of neurolathyrism among farming 

populations, only a small proportion (~6%) of the population that relies heavily on grass 

pea develops neurolathyrism (Getahun et al., 1999; Haque et al., 1996; Dufour, 2011). In a 

comprehensive study involving more than a million people in northern and central Ethiopia 
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(the primary areas of grass pea cultivation in the country), a neurolathyrism prevalence of 

0.3 % was observed, ranging from 0.01 % to 0.75 % between districts (Haimanot et al., 

1993). This means that in conditions where no other food sources are physically accessible 

or affordable by the poor, the risk of neurolathyrism may be worth taking if the alternative 

is starvation. The two-edged nature of grass pea as both life-saving crop during times of 

famine and war, but also a toxic crop that can gravely endanger people who consume it, is 

exemplified in the engraving Gracias á la almorta (Thanks to the Grass pea) by Francisco de 

Goya, which is reproduced in Figure 2. The engraving shows Spanish civilians eating grass 

pea, with one of them already suffering from paralysis. During a famine in Madrid in 1811-

12, which occurred during the Peninsular war (1807-1814), grass pea remained one of the 

few foods still available.  

 

 

Figure 2. Gracias á la almorta - engraving by Francisco de Goya, part of the series Los Desastres de la Guerra. 
Depicted are Spanish civilians sharing a meal of grass pea during a famine in 1811/12. The woman in the 
foreground appears to suffer symptoms of neurolathyrism. 
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1.3 The neurotoxin β-L-ODAP 

The compound β-N-oxalyl-L-α,β-diaminopropionic acid (β-L-ODAP), (structure shown in 

Figure 3) has been identified as the causative agent of neurolathyrism (Rao et al., 1964; 

Murti et al., 1964; Spencer et al., 1986). In medical literature, β-L-ODAP is often referred to 

as β-N-oxalyl-amino-alanine (BOAA) (Aletor et al., 1994; Gannon and Terrian, 1989; 

Ormandy and Jope, 1990; Pai and Ravindranath, 1993; Ross et al., 1989; Weiss et al., 1989) 

and occasionally as L-3-oxalylamino-2-amino propionic acid (OAP) (Mehta et al., 1983). The 

compound induced acute convulsions in 1-day-old chicks (Rao et al., 1964) and hind-leg 

paralysis in squirrel monkeys (Saimiri sciureus) when introduced into the cerebrospinal fluid 

by lumbar puncture (Lakshmanan et al., 1971). No symptoms were observed following 

chronic oral administration of up to 6 mg/g body weight/day β-L-ODAP to squirrel 

monkeys, although an increase in the dose to 8 mg/g/day led to acute neurotoxicity 

causing the death of experimental animals after 3-5 days. This study was based on a small 

sample size of only three animals (Mehta et al., 1983). The ethical implications of testing on 

primates make this species unsuitable as an animal model. Symptoms akin to human 

neurolathyrism (spastic paraparesis of the legs) have been induced in rats though repeated 

injection of small doses of β-L-ODAP into the skin at the back of the animal (Kusama-Eguchi 

et al., 2005; 2010).  

Neurotoxins  

A neurotoxin is a substance that is poisonous or destructive to nerve tissues. Neurotoxic 

exposures that threaten human health can be the result of a wide range of factors, 

including: air pollution (e.g. ultrafine particulate matters, ozone); toxic heavy metals in 

drinking water (e.g. as a result of soil acidification or industrial runoffs); medical or 

recreational drug use (e.g. opioid abuse); venomous exposures (e.g. snake bites) and 

dietary uptake (including plant-derived neurotoxins such as cyanogens from cassava or 

β-L-ODAP from grass pea, microbial products such as ethanol or botulinum toxin and 

animal-derived neurotoxins such as pufferfish tetradotoxin) (Tshala-Katumbay and 

Spencer, 2007; 2015). 
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Figure 3. Structural formula of β-L-ODAP 

 

β-L-ODAP appears to act as an analogue to glutamate, which serves as a common 

neurotransmitter in animals. This causes β-L-ODAP to interfere with the transport of 

glutamate and its decarboxylation into γ-aminobutyric acid (GABA) (Ross et al., 1985), 

which may explain the excitotoxic (convulsive) effects observed in some experimental 

animals, although these symptoms are not apparent in humans. β-L-ODAP also acts as a 

competitive antagonist to glutamate on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptors, causing neurotoxic effects in rat brains (Ross et al., 1989; Kusama-

Eguchi et al., 2010). An isomer of β-L-ODAP, α-L-ODAP is also found in grass pea tissues, but 

makes up only around 5 % w/w of total ODAP (Arentoft and Greirson, 1995; Roy and Rao, 

1968). The α-isomer does not appear to be neurotoxic (Chase et al., 1985). Besides several 

species of the Lathyrus genus, β-L-ODAP is found in species of the legume genera Acacia 

and Crotalaria (Quereshi et al., 1977; Evans and Bell, 1979), as well as the unrelated genus 

Panax (Kuo et al., 2003). 

One of the most striking descriptions of the effects of β-L-ODAP consumption on human 

physiology stems from one of the darkest chapters of history. Between 1941 and 1944, 

several thousand Romanian and Ukrainian Jews were held at the concentration camp at 

Vapniarka, Ukraine, by the fascist government of Romania. During this period, prisoners 

were fed from a leftover consignment of horse-feed, resulting in a highly deficient diet, 

consisting primarily of 160 g of barley and 200 g of boiled grass pea per day with an 

estimated β-L-ODAP-concentration of 0.25 % w/w (Lambein et al., 2001). The grass pea 

ration was later increased to 400 g per day. Within one month of the ration being 

increased, the first of the prisoners started experiencing symptoms of neurolathyrism. Over 

the following six months, an epidemic of neurolathyrism developed, with up to 60 % of the 

prisoner population showing symptoms – a much higher proportion than normally 
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observed among human populations heavily dependent on grass pea (Getahun et al., 1999; 

Haimanot et al., 2005; Dwivedi and Prasad, 1964; Haque et al., 1996). The increased ration 

corresponded to an estimated dose of 1 g β-L-ODAP/day (Lambein et al., 2001). The 

physician Dr Arthur Kessler, himself one of the prisoners, diagnosed and documented the 

spread of the disease (Westmore and Weisz, 2013). He noted that the incidence of 

neurolathyrism was lower among the prisoners who were made to work in the forest 

outside the camp and conjectured that the small amounts of roots, berries and tree nuts 

that these prisoners ate while working helped to partially protect them against 

neurolathyrism (Lambein et al., 2001). This protective effect may be due to the presence of 

sulfur-containing amino acids, which present at very low concentrations in grass pea but 

have been shown to protect against β-L-ODAP toxicity in cell culture experiments (Kusama-

Eguchi et al., 2011), in these foraged foods. The data collected by Dr Kessler during his 

internment provide the best estimate of the toxicity of β-L-ODAP to humans and 

underscore the importance of malnutrition in the aetiology of neurolathyrism. 

Another toxin, L-2,4-diaminobutyric acid (DABA), which also induces symptoms of 

neurolathyrism is found in several Lathyrus species, in particular L. sylvestris (Rowe et al., 

1993), L. latifolius (Barrow et al., 1974) and L. hirsutus (Holbrook et al., 2015) but not in L. 

sativus or L. cicera (Bell, 1964). DABA toxicity is a problem for grazing animals feeding on 

wild Lathyrus species (Holbrook et al., 2015), but very rarely affects humans, as these 

species are not used as food crops.  

1.3.1 Biosynthesis of β-L-ODAP in grass pea 

Since the identification of β-L-ODAP as the toxin responsible for neurolathyrism, several 

research groups have investigated the biosynthetic pathway by which this compound is 

produced in grass pea, primarily using enzyme extracts (Malathi et al., 1968; Malathi et al., 

1970; Malathi et al., 1967; Ikegami et al., 1993) and radioisotope feeding (Kuo et al., 1994; 

Kuo et al., 1998; Kuo and Lambein, 1991; Lambein et al., 1990). This research led to the 

pathway shown in Figure 4 being proposed. Not all steps in the pathway have been proven 

experimentally and some of the intermediates remain hypothetical. The pathway appears 

to branch from primary metabolism with the formation of β-(isoxazolin-5-on-2-yl)-alanine 

(BIA) from O-acetyl-serine and the (hypothetical) intermediate isoxazolin-5-one, a reaction 

catalysed by a cysteine synthase (Ikegami et al., 1991). BIA is also found in many other 

legumes, including pea (Pisum sativum) (Schenk and Werner, 1991) and lentil (Lens 

culinaris) (Kuo et al., 1998). Carbon-14 introduced in the form of radiolabelled BIA is 
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incorporated into β-L-ODAP in callus tissue and developing pods of grass pea (Kuo and 

Lambein, 1991; Kuo et al., 1994; Lambein et al., 1990), but the exact steps of the 

biosynthesis are not known. The formation of L-2,3-diaminopropionic acid (L-DAP, also 

referred to as DAPRO or DAPA) has been demonstrated in vitro using an enzyme extract 

from grass pea (Ikegami et al., 1999), but attempts to prove the presence of this compound 

in grass pea tissues have been unsuccessful. It is believed that this synthesis intermediate is 

short-lived and does not accumulate to detectable levels in grass pea. As early as the late 

1960s, Malathi et al. were able to partially purify two enzymes from grass pea that 

catalysed the ATP-dependent synthesis of oxalyl-coenzyme A from oxalic acid and 

coenzyme A and the formation of β-L-ODAP from L-DAP and oxalyl-CoA during in vitro 

experiments. These enzymes were labelled oxalyl-CoA synthetase and β-L-ODAP-synthase, 

respectively (Malathi et al., 1968; 1970; 1967). However, the genes encoding these 

enzymes have not been identified or located on a genetic map of grass pea to date. If these 

enzymes can be extracted again and sufficiently purified it may be possible to ascertain 

their amino acid sequence and use it to identify the genes encoding these enzymes in grass 

pea. 
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Figure 4. Proposed pathway for β-L-ODAP synthesis. Redrawn based on publications by Yan et al., Malathi et al., 
Kuo, Ikegami and Lambein (Malathi et al., 1970; Ikegami et al., 1991; Ikegami et al., 1999; Kuo et al., 1998; Kuo 
et al., 1994; Kuo and Lambein, 1991; Yan et al., 2006). Hypothetical intermediates are shown in square brackets.  

  

? 

? ? 

? 



14  Chapter 1 – General introduction 

 

 
 

1.3.2 The ecophysiological role of β-L-ODAP 

Several hypotheses have been proposed for the role of β-L-ODAP in the physiology of grass 

pea and its interaction with the environment, but evidence for these remains slight. The 

most obvious possibility is that β-L-ODAP serves as a defence compound against shoot 

herbivores. This is supported by the pattern of β-L-ODAP concentrations observed in 

seedlings and tissues of juvenile and mature plants. The toxin accumulates primarily in 

young tissues, which are vulnerable to herbivores but of importance to the plant’s further 

potential photosynthetic activity (Jiao et al., 2006; Kuo et al., 1994; Xiong et al., 2015). In 

most mature tissues, toxin levels are very low. This mirrors the distribution of defence 

compounds in other species (Ballhorn et al., 2009). Purified β-L-ODAP has been shown to 

reduce the growth of insect larvae of the rice moth (Corcyra cephalonica) (Rao et al., 1964). 

Yet to date, no study has been published confirming β-L-ODAP as an insect feeding inhibitor 

in L. sativus although a weak effect of inhibited feeding due to β-L-ODAP and other non-

protein amino acids has been observed in Acacia ssp. and L. latifolius (Bell et al., 1996). 

When exposed to storage pests, reduced-ODAP varieties of grass pea did not show 

increased infestation (Roy and Bhat, 1975) 

The inclusion of large amounts of grass pea in the diets of livestock leads to negative 

effects on growth (Hanbury et al., 2000; Enneking, 2011), but it is unclear whether this is 

due to β-L-ODAP or other antinutritional factors (Aletor et al., 1994; Roy and Bhat, 1975; 

Wang et al., 1998). It is unclear whether the diet of any large herbivore in the wild would 

be so heavily reliant on grass pea that the relatively low toxicity of β-L-ODAP would result 

in an evolutionary advantage to the plant.  

Another proposed biological function is that β-L-ODAP is involved in responses to oxidative 

stress, as evidenced by the strong negative correlation between β-L-ODAP levels and 

reactive oxygen species in leaves (Jiao et al., 2011b). This could mean that β-L-ODAP is 

directly connected to the remarkable drought tolerance of grass pea. However, other 

research did not find any direct relationship between β-L-ODAP and free radical 

metabolism (Xing et al., 2001). As β-L-ODAP can accumulate to high concentrations in plant 

tissues without becoming toxic to the plant (Jiang et al., 2013; Jiao et al., 2006), it is 

possible that the compound acts as an osmoprotectant to prevent osmotic changes causing 

cell damage. One study found increased levels of reactive oxygen species scavenging 

molecules and other osmoprotectants in grass pea compared to pea in response to drought 

(Jiang et al., 2013).  
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β-L-ODAP acts as a chelator of bivalent metal cations such as Zn2+, Cu2+, Fe2+ and Mn2+. In 

addition, the levels of β-L-ODAP in grass pea tissues show a marked response to the 

availability of certain metal ions in the soil (Lambein et al., 1994; Xiong et al., 2014; 

Lambein, 2000). The chelating action of β-L-ODAP may be related to its toxicity in animals 

(Lambein et al., 1994). 

Because the biological role of β-L-ODAP in grass pea remains controversial, it is unclear 

what effect a mutation that completely disrupts the production of this compound would 

have on the physiology and agricultural utility of the mutant plant. It is conceivable that 

grass pea plants without β-L-ODAP would be highly susceptible to certain pests or would be 

compromised in their ability to withstand abiotic stresses. However, no increased 

susceptibility to biotic or abiotic stress factors has been recorded for previously developed 

low-ODAP varieties. Genotypes with 80-90 % lower β-L-ODAP concentrations in their 

tissues than common landraces are now being cultivated successfully in several countries 

(Akter et al., 2015; Kumar et al., 2011a; Siddique et al., 2006). The most direct route to 

investigate the ecophysiological role of β-L-ODAP in grass pea remains to develop β-L-

ODAP-free genotypes and test their performance under various biotic and abiotic stress 

conditions alongside near-isogenic genotypes containing β-L-ODAP. 

1.3.3 Mitigation of grass pea toxicity through food processing 

The toxin β-L-ODAP  is contained in all organs of the plant, with highest concentrations in 

young shoot, leaf and developing pods (Jiao et al., 2006). Grass pea seeds are commonly 

consumed in a variety of forms, such as dhal, sauce (e.g. the Ethiopian shiro wot), or as 

roasted and salted immature pods eaten as a snack (Dufour, 2011). To a lesser extent, grass 

pea shoots are eaten as a leafy vegetable, usually after steaming or boiling. These methods 

of preparation reduce the toxicity to some extent by leaching out the toxin through 

steeping or boiling and discarding the water or by partial conversion of β-L-ODAP into 

nontoxic α-L-ODAP (Padmajaprasad et al., 1997). Boiling and fermentation with the fungal 

species Rhizopus oligosporus and Aspergillus oryzae appear to be more effective at 

reducing toxicity than roasting, but do not result in complete detoxification 

(Padmajaprasad et al., 1997; Ramachandran et al., 2005; Yigzaw et al., 2004; Kuo et al., 

1995). Ethnographic studies in Ethiopia and India show that, besides some inaccurate 

beliefs (for example that the steam coming off a pot of boiling grass peas is highly toxic), 

most consumers are well aware of the dangers associated with eating grass pea and use 

specific preparation techniques to reduce toxicity (Girma et al., 2011; Butler et al., 1999). 
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However, no method of food preparation is able to detoxify grass pea entirely. In addition, 

consumers may be forced to switch to food preparation methods that are less efficient at 

reducing toxicity (e.g. by not discarding the water after boiling grass pea seeds) if water or 

fuel are limited, as is common during times of drought.  

1.3.4 Physiological breakdown of β-L-ODAP 

There appears to be a catabolic pathway for the breakdown of β-L-ODAP in humans, which 

is less efficient or non-existent in other animals. Human volunteers who consumed cooked 

grass pea seeds or controlled amounts of pure β-L-ODAP excreted less than 1 % of it in their 

urine, but increased their excretion of oxalic acid (Pratap Rudra et al., 2004). In mice, rats 

and chicks, much greater proportions (between 21.1 % and 75.2 %) of orally or 

intraperitoneally administered radiolabelled β-L-ODAP were excreted in urine (Jyothi et al., 

1998). The breakdown of β-L-ODAP in humans may provide an explanation for the typically 

observed low incidence of neurolathyrism in human populations relying heavily on grass 

pea (Barrow et al., 1974; Dufour, 2011; Girma et al., 2011; Haque et al., 1996). It is also 

possible that there is genetic variation in the susceptibility to neurolathyrism among the 

human population (Pratap Rudra et al., 2004), but no study to identify genetic markers 

associated with susceptibility to neurolathyrism has been conducted.  

1.3.5 Potential biomedical applications of β-L-ODAP 

β-L-ODAP may have bioactive properties that could make it a useful compound for 

biomedical applications. In addition to  species of the genera Lathyrus, Acacia and 

Crotalaria, β-L-ODAP is also found as an abundant free amino acid in ginseng (Panax spp.) 

where it is commonly referred to by the trivial name dencichine (Kuo et al., 2003). This has 

led to investigations of whether low doses of β-L-ODAP could be associated with the health 

benefits ascribed to ginseng (Lambein, 2000). β-L-ODAP has known hemostatic properties, 

which appear to be due to a vasoconstrictive effect, rather than any effect on blood 

clotting (Okuda et al., 1990). To capitalise on this bioactive property, the Chinese company 

Yunnan Baiyao (Kunming, Yunnan Province) is developing band-aids containing β-L-ODAP to 

reduce blood flow (Wang et al., 2014). In addition, β-L-ODAP is being investigated for 

bioactive properties that may be beneficial in the treatment of hypoxia (Eslavath et al., 

2016) and Alzheimer’s disease (Rao, 2011) and has recently been patented as a drug for the 

treatment of thrombocytopenia (Lan et al., 2016). 
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1.4 Low-ODAP genotypes of grass pea 

1.4.1 Released low-ODAP varieties of grass pea 

There is considerable variation for β-L-ODAP concentrations among grass pea genotypes. 

Seed β-L-ODAP concentrations ranging from 0.1% to 2.5 % w/w have been reported (Yadav 

and Mchta, 1995; Kumar et al., 2011a). The most commonly applied threshold for low-

ODAP genotypes is 0.1 % of dry seed weight (Asthana, 1995; Chakrabarti et al., 1999) and 

several varieties that are reported to have β-L-ODAP concentrations below this threshold 

have now been released (Siddique et al., 2006). These include the low-ODAP varieties BioL-

212 (Ratan), Mahateora, LS 8246 and Prateek, which were derived from Indian germplasm 

through breeding and (in the case of Ratan) selection of somaclonal variation in tissue 

culture (Kumar et al., 2011a; Sawant et al., 2011; Chakrabarti et al., 1999; Santha and 

Mehta, 2001; Tsegaye et al., 2005). Somaclonal variation is genetic variation caused by the 

mutagenic effect of tissue culture which may result, for example, in chromosome 

rearrangements or transposable element activations (Bairu et al., 2011). A new low-toxin 

variety, Bidhan Khesari 1, is currently under development at Bidhan Chandra Agricultural 

University (BCKV) in the state of West Bengal (personal communication, Abhimanyu Sarkar, 

JIC). Low-toxin varieties have also been released by the Bangladesh Agricultural Research 

Institute (BARI) under the names BARI Khesari 1, 2 and 3 (Akter et al., 2015). One low-toxin 

variety, Ceora, was developed by the Centre for Legumes in Mediterranean Agriculture 

(CLIMA) in Australia (Siddique et al., 2006). Although grass pea is cultivated to a 

considerable extent in Ethiopia, only one low-ODAP variety of grass pea (Wasie) has been 

released in this country to date (Kumar et al., 2011a). This variety was produced through a 

collaboration between the Ethiopian Institute for Agricultural Research (EIAR) and the 

International Centre for Agricultural Research in the Dry Areas (ICARDA). Several accessions 

are currently undergoing multi-location trials conducted by EIAR, with a focus on improving 

agronomic characteristics and stability in β-L-ODAP content to enable the development of 

future improved low-ODAP varieties (personal communication, Alemu Abate, Aksum 

University, Ethiopia). 

These varieties represent an important advance in the improvement of grass pea. Their low 

β-L-ODAP levels reduce the risk of neurolathyrism among consumers. However, none of 

these varieties have achieved the goal of an entirely β-L-ODAP-free crop. A strong genotype 

x environment interaction has been observed for the production of β-L-ODAP. This causes 
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β-L-ODAP levels to be increased significantly under conditions of stress, in particular 

cultivation in soils low in Zn2+ or high in Fe3+ as well as under conditions of drought (Fikre et 

al., 2006; Fikre et al., 2011; Polignano et al., 2009). This has raised justified concern about 

whether these lines will be safe to consume when they are grown by smallholder farmers 

under extreme environmental conditions (Fikre et al., 2008). 

1.4.2 Attempts to produce ODAP-free genotypes 

Since the discovery of the toxin by Rao et al. (1964) all attempts to find β-L-ODAP-free grass 

pea genotypes by screening natural germplasm, have been unsuccessful (Kumar et al., 

2011a). This makes studies of the function of β-L-ODAP and its role in the aetiology of 

lathyrism after prolonged grass pea consumption very difficult. A few mutant screens have 

been performed with grass pea, but none of them have focused on finding a low-/zero-β-L-

ODAP line (Rybiński, 2003; Talukdar, 2009b) or they have screened only very small numbers 

of mutant families without identifying stable low-ODAP lines (Nerkar, 1972, 1973, 1976). 

The main difficulties are the resources needed to grow a large population of mutants up to 

maturity and the lack of high-throughput screening methods. 

Several research groups are now hoping to develop transgenic grass pea lines that are free 

of β-L-ODAP, by adding genes encoding enzymes that degrade β-L-ODAP or one of the 

intermediates of its synthesis (Kumar et al., 2016; Yadav and Mchta, 1995). Another option 

for reducing β-L-ODAP production by a transgenic route would be to overexpress the 

pathway producing the γ-glutamyl derivative of BIA, which is already present in Lathyrus 

sativus in order to divert metabolites away from the β-L-ODAP biosynthesis pathway (Kuo 

et al., 1998). There are at least two apparent problems with these approaches. Firstly, any 

system in which the enzymatic pathway of β-L-ODAP synthesis has not been disrupted in a 

way that makes the synthesis impossible is inherently unstable as any loss of expression of 

the transgene through mutation or transcriptional downregulation would result in the re-

emergence of the toxin. Secondly, the legal regulatory issues associated with the 

introduction of a genetically modified crop, could severely delay the translation of β-L-

ODAP-free grass pea genotypes into varieties, especially in the main grass-pea-growing 

countries, India, Bangladesh and Ethiopia. If β-L-ODAP-free genotypes of grass pea could be 

developed that do not fall under GMO-regulation, these could be made available to 

smallholder farmers much faster and with lower costs associated with varietal 

development and testing.  
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1.4.3 The importance of the genotype x environment interaction for β-L-ODAP 
production 

Current evidence on the toxicity of β-L-ODAP and the socioeconomic context of grass pea 

consumption suggest that it is the toxin levels under stress conditions, not under normal 

conditions, that need to be considered to make grass pea safe. Four factors contribute to 

this effect. Firstly, stress conditions, in particular drought and flooding, are likely to affect 

all the crops in a regional farming system, causing crop losses and thus scarcity of food and 

money. This may result in an increased consumption of grass pea relative to other foods, as 

grass pea is more likely to withstand the stress conditions making it more available and 

affordable than many other foods (Girma et al., 2011; Butler et al., 1999). Secondly, the 

reduced food intake overall in poor households as well as the decreased diversity of food 

may cause malnutrition, leading to heightened susceptibility to lathyrism (Enneking, 2011). 

Thirdly, the β-L-ODAP levels in grass pea are increased under most stress conditions (Haque 

et al., 2011; Jiao et al., 2011a; Fikre et al., 2008; Jiang et al., 2013; Xiong et al., 2006), again 

resulting in increased toxin consumption. And fourthly, traditional methods of detoxifying 

grass pea for food may be compromised, in particular in times of drought, as the water and 

fuel necessary for prolonged steeping and boiling of grass pea seeds may be unavailable, 

leading people to switch to alternative and less safe methods of food preparation (Dufour, 

2011; Girma et al., 2011).  

These arguments are supported by the epidemiology of lathyrism. Outbreaks of the disease 

follow an epidemic fashion during or shortly after periods of extreme drought (Getahun et 

al., 1999; Haque et al., 1996; Simpson, 2002). Cases of lathyrism during normal 

environmental conditions are almost unheard of, even among the poorest (Girma et al., 

2011). For these reasons, the toxin levels of released varieties under stress conditions are 

highly relevant for the safety of the crop, more so than the levels under normal conditions. 

Even high-toxin grass pea lines, such as most of the landraces currently cultivated by 

smallholders, are likely to be safe to consume, even as a significant part of the diet, as long 

as other food sources and detoxifying methods of food preparation are available (Girma et 

al., 2011). On the other hand, the factors described may compound to make even a 

normally low-toxin variety unsafe to consume in large amounts under particularly adverse 

conditions. Hence, the sensitivity of β-L-ODAP production to the environment and the 

mechanism by which it is regulated require closer attention and the generation of varieties 

that produce none or very little of the toxin, even under the most adverse conditions, 

should remain a major objective of breeding. 
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1.5 Towards the rapid domestication of grass pea 

1.5.1 The problem of grass pea toxicity has not been fully resolved 

Over the course of the past decade, several researchers have argued that the problem 

posed by β-L-ODAP in grass pea may have been overstated (Lambein, 2000; Rao, 2011; 

Lambein and Kuo, 2013). With the development of low-ODAP varieties, widespread 

knowledge of the risks of grass pea consumption and the emergence of more resilient food 

systems in some previously food insecure areas, new cases of neurolathyrism have become 

rare, leading to it being labelled “a disease of the past” (Singh and Rao, 2013). 

Various natural toxins are present in commonly used food crops, such as solanine in crops 

of the nightshade family (e.g. potato, tomato and aubergine) (Willimott, 1933) or 

canavanine in several species of legumes (Bell et al., 1978), but their toxicity can be 

managed through correct storage and food processing procedures, so these food crops are 

not commonly thought of as poisonous. The perception of toxicity as a manageable risk 

may be more difficult to achieve for grass pea, as the crop has been strongly associated 

with famine and disease in the past.  

A close parallel to the problem of neurotoxicity in grass pea is the toxicity of cassava 

(Manihot esculenta), caused by cyanogenic compounds (linamarin and lotaustralin) in the 

tubers. Despite the different chemical nature of these compounds, their consumption can 

result in a disease (konzo) with remarkable similarities to neurolathyrism – spastic paralysis 

of the legs that is often permanent – but can also result in acute cyanide poisoning and 

other health complications. Like grass pea, cassava is an important food security crop with 

high tolerance to drought. Cassava tubers, including genotypes with high cyanogen content 

(generally associated with bitterness) can be effectively detoxified using prolonged 

steeping and boiling (Cardoso et al., 2005). Low-cyanogen (sweet or cool) genotypes of 

cassava are available, but many smallholder farmers in South America and Africa prefer 

bitter varieties of cassava, as they are considered more durable in harsh climatic conditions 

and less susceptible to insect pests in the field and during storage of the harvested tubers 

(Chiwona-Karltun et al., 1998; Wilson and Dufour, 2002). The long preparation process 

necessary to detoxify the tubers is also considered to disincentivise theft. This preference 

has led to bitter cassava varieties persisting in agriculture despite the risk of toxicity and 
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the availability of very-low-toxin varieties. This highlights the importance of developing 

low-/zero-ODAP grass pea varieties that are suited to the needs of local farmers and testing 

them under realistic farming conditions. 

The shift away from grass pea as a staple food and its inclusion in more diverse diets could 

help to build a new image of grass pea as a nutritious functional food, rather than a 

potentially toxic food of the poor. There are early signs that interest in grass pea may be on 

the rise again, especially for uses as green manure and as a fodder crop in China (Yang and 

Zhang, 2005), Australia (Siddique et al., 2006), the USA (Rao and Northup, 2011) and in 

Balkan countries (Mikic et al., 2011). In India there have been country-wide bans on the 

sale of food products derived from grass peas first implemented in 1961 and last reinforced 

in 2011 (FSSAI, 2011), as well as additional bans in several states. On 6 November 2015 the 

Food Safety and Standards Authority of India (FSSAI) issued a statement that the remaining 

bans on the sale of grass pea should be lifted, as the released low-toxin varieties can now 

be considered safe under most conditions, but this has proved controversial (Anand, 2016). 

In Ethiopia, where there has not been any outright ban on the cultivation or sale of grass 

pea, the crop has been increasing in acreage since 2000 (Haimanot et al., 2005; Girma and 

Korbu, 2012).  

However, the spectre of toxicity associated with grass pea is still hampering efforts to 

improve this crop. Even if there is no evidence that reduced-ODAP varieties of grass pea 

still pose a risk of neurolathyrism, changing the thinking of research funding bodies, 

breeders, national agricultural authorities and individual farmers will be a very slow process 

as long as the possibility of toxicity persists. An important reason for this is that, to date, no 

animal model that accurately reflects the symptoms of human neurolathyrism as the result 

of oral consumption of β-L-ODAP has been developed (Mehta et al., 1983), as all existing 

animal models that show chronic hind leg paraparesis rely on injection of β-L-ODAP 

(Kusama-Eguchi et al., 2005; Kusama-Eguchi et al., 2010; Mehta et al., 1980; Mehta et al., 

1976; Parker et al., 1979). In the absence of an appropriate animal model, it has been 

impossible to determine a safe level of β-L-ODAP consumption. Based on nutritional 

surveys, daily consumption of as much as 2 g of β-L-ODAP from grass pea may not cause 

any symptoms in humans not suffering malnourishment (Lambein and Kuo, 2013). 

While there is no experimentally established threshold below which the concentration of β-

L-ODAP in grass pea tissues can be regarded as safe, there are no known cases of human 

neurolathyrism from the consumption of only low-toxin grass peas. However the scarcity of 
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data on the usage of low-toxin grass pea varieties and on the epidemiology of 

neurolathyrism makes it difficult to draw any conclusions from this. This is further 

complicated by the apparent effect of nutritional status on the aetiology of lathyrism and 

the increased production of β-L-ODAP in the plant due to various abiotic stress factors. As 

argued above, for the full potential of grass pea as a food security crop to be realised, it 

needs to be made safe not only under normal conditions, when it forms part of a mixed 

diet, but also when populations are forced to rely heavily on grass pea in deficient diets.  

Both the problem of toxicity under extreme circumstances and its perception as a 

dangerous food, which keeps grass pea from being improved and advocated in the first 

place, need to be resolved. The most promising approach to address both these aims 

remains to develop grass pea genotypes completely free of β-L-ODAP. 

The year 2016 marks the UN Food and Agriculture Organisation’s International Year of 

Pulses. In the words of the Global Pulse Confederation (an industry body), this year 

represents a “galvanizing moment to draw together key actors to further the contributions 

pulses make to health, nutrition, and sustainability” (GPC, 2016). Legume crops have great 

potential in meeting global food needs, especially due to their high protein content and low 

environmental impact, due to their symbiotic nitrogen fixation (Foyer et al., 2016). This 

project therefore makes a timely contribution to this goal. If the issue of toxicity in grass 

pea can resolved by developing genotypes with no β-L-ODAP or only safe levels of this 

toxin, regardless of the environmental conditions, it could kick-start the rapid 

domestication of grass pea from an orphan crop to a high-yielding, nutritious and 

sustainable crop for food and feed security in water-stressed areas.  

 

1.5.2 From minor crop to major industrial product: the case of oilseed rape 

An example of the usage of a minor crop species being revolutionised by the removal of its 

key limitations is the breeding of food-quality rapeseed (Brassica napus) varieties in the 

1970s. Before this, the uses of rapeseed oil were limited to a few industrial applications, for 

example as a lubricant in marine engineering, as high levels of erucic acid, the most 

common fatty acid in rapeseed oil, and glucosinolates rendered the oil unpalatable. This 

picture changed dramatically with the introduction of low erucic acid varieties from 1970 

and low glucosinolate varieties from 1975 (Kondra and Stefansson, 1970; Jönsson, 1977). 

These two changes allowed for the favourable nutritional characteristics of the oil and the 
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crop's high oil yield in temperate regions to be utilised for the production of food oils. In 

order to emphasise the different qualities of the new product and to set it apart from the 

limitations associated with rapeseed oil in the minds of many consumers, the new varieties 

were branded as "canola" (CANada Low erucic Acid). This re-branding was so successful 

that this name has virtually replaced the name of the crop in several countries. Between 

1970 and 2000 the worldwide production of oilseed rape/canola increased from 5 Mt to 40 

Mt (Baranyk and Fábry, 1999). Through the removal of the crucial factors limiting the 

acceptability of oilseed rape as a food crop, the advantages of this crop, including its high 

yield in temperate climates, and favourable fatty acid composition (Scarth and McVetty, 

1999) were unlocked, rapidly making it the world’s third largest oil crop in terms of 

production (FAO, 2013).  

 

1.5.3 Approaches taken in this study 

My objective in this PhD project was (i) to identify low- or zero-ODAP genotypes and 

mutants of grass pea and (ii) to better understand the synthesis of this compound in the 

crop, with the long-term goal of developing reliably safe varieties of grass pea. To this end, I 

used three approaches: the screening of existing grass pea germplasm for low-ODAP 

accessions; a mutant screen to identify low-/zero-ODAP plants from a mutagenised 

population of grass pea which might also facilitate the study of β-L-ODAP synthesis through 

forward genetics; a reverse genetic approach to identify genes involved in β-L-ODAP 

biosynthesis using sequence analysis and biochemical assays. 

No entirely undomesticated Lathyrus sativus accessions are known, but considerable 

diversity exists among grass pea populations under cultivation. I therefore screened 

populations of grass pea germplasm with the aim of identifying accessions with reduced or 

zero-levels of β-L-ODAP. For this purpose, I adapted an existing spectrophotometric 

method to make it possible to screen large numbers of grass pea accessions for their 

variation in β-L-ODAP levels. I focused first on screening two populations ofgermplasm 

collected from around the world by seed banks in Germany and the United States. In 

collaboration with an Ethiopian researcher, I screened a larger population of landraces 

collected from Ethiopia and Eritrea, to identify diversity as yet untapped by breeders. The 

screening of grass pea germplasm for low-ODAP accessions is described in Chapter 2.  
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To increase the phenotypic diversity for β-L-ODAP content beyond the diversity present in 

germplasm collections, I screened an EMS-mutagenised population of grass pea. This 

method was appropriate for two reasons. Firstly, the ideotype (a grass pea mutant lacking 

β-L-ODAP) represents a loss of a naturally occurring function and should be possible to 

achieve by the inactivation of one or several genes. Secondly, very little is known about the 

genetics of toxin production or of grass pea in general, ruling out rational approaches to 

metabolic engineering. To be able to screen a large mutagenised population, I further 

streamlined the spectrophotometric method used in Chapter 2 to allow highly parallelised 

screening of a large mutant population. I used this to screen a population of over 3000 M2 

families, a total of nearly 37000 plants, for low-/zero-ODAP mutants. From this population, 

I identified several mutant families with reduced β-L-ODAP concentrations in seedlings, 

shoots and seeds, but none that were entirely toxin-free. The method development for the 

mutant screen and the subsequent confirmation, characterisation and crossing of the 

identified mutants are described in Chapter 3.  

To deliver on the goal of β-L-ODAP-free grass peas it may be necessary to first gain a better 

understanding of the genetic and biochemical basis of toxin production. To complement 

the forward genetics approach, I developed resources to enable a reverse genetics 

approach to investigate β-L-ODAP-biosynthesis. For this reason, I extracted and sequenced 

RNA from seven tissues at different developmental stages, with the help of The Genome 

Analysis Centre (TGAC). Based on the biochemistry of the proposed β-L-ODAP-biosynthetic 

pathway, and comparison to predicted protein sequences in related species, I identified a 

set of candidate genes for the enzyme catalysing the final step of synthesis. To test their 

functionality, I cloned the most promising of these genes, transiently expressed them in 

Nicotiana benthamiana leaves and supplied the tissue with the intermediates of the 

reaction. Transcriptome sequencing, sequence analysis and testing of candidate genes 

through heterologous expression are described in Chapter 4.  

The implications of these discoveries for the development of improved varieties of grass 

pea and our understanding of β-L-ODAP synthesis are discussed in Chapter 5.  
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Chapter 2 – Screening grass pea 

germplasm for low-ODAP genotypes 

2.1 Introduction 

2.1.1 Diversity of grass pea germplasm 

Grass pea is an ancient crop and both its benefits as a hardy food crop and the risk it may 

pose have been understood since antiquity  (Erskine et al., 1994; Jackson and Yunus, 1984). 

Over 8000 years of cultivation, grass pea has been grown in many different areas around 

the world – the Balkans, South and Central Asia, East Africa, all around the Mediterranean, 

Central and Eastern Europe and, more recently, in China, Peru, Australia and Canada 

(Campbell, 1997). This long history of widespread cultivation implies that there might exist 

considerable genetic diversity in the primary gene pool of grass pea,  which is supported by  

isozyme analysis (Gutiérrez-Marcos et al., 2006). Diversity can be observed for many 

phenotypes; flower colour, seed size, seed colour and patterning and biomass production 

(Tadesse and Bekele, 2003a; Vaz Patto and Rubiales, 2014; Polignano et al., 2005). This 

diversity is partially correlated with the geographic spread of grass pea cultivation. While 

most European accessions produce white flowers and large, flattened, cream coloured 

seeds, most South Asian accessions produce blue flowers and smaller, more rounded, dark 

and speckled seeds (Campbell, 1997). The most important issue holding back breeding 

efforts that would enable more widespread utilisation of grass pea as a food and fodder 

crop is the fact that it contains β-L-ODAP, a toxin believed to cause neurolathyrism in 

humans (Girma and Korbu, 2012; Yang and Zhang, 2005). If the diversity observed for other 

phenotypes mentioned above also exists for β-L-ODAP concentration in the seed, then low- 

or zero-toxin accessions may already occur within the existing germplasm of grass pea. 

Screening germplasm collections for such accessions therefore could provide the basis for 

the development of new, safer varieties. 

Today, grass pea is mostly grown by smallholder farmers, as there is little formal trading in 

most countries (in part due to bans in India and China) and virtually no export market. Most 

farmers grow grass pea for their own consumption and as insurance for when their other 

crops fail due to its better resilience to unforeseeable weather extremes compared to 
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other legume crops, and especially its ability to withstand both drought and flooding 

(Campbell, 1997; Sarker et al., 2001). There have been some breeding efforts for grass pea 

in recent decades that have led to the release of several low-ODAP grass pea varieties in 

Bangladesh and India, but grass pea’s status as a minor crop and the risk of human disease 

associated with it have limited the interest of breeders. Different regions have been 

claimed as the primary centres of diversity of grass pea, in particular South Asia (Wang et 

al., 2015; Chowdhury and Slinkard, 2000) and the Ethiopian highlands (Vavilov, 1927), but 

the putative centre of origin is in the Balkan peninsula based on archeobotanical evidence 

(Kislev, 1989), although grass pea is only very rarely grown in this region today (Mikic et al., 

2011). 

Grass pea germplasm from the Ethiopian highlands (a geographic area including much of 

Ethiopia, Eritrea and parts of Somaliland) has been studied primarily by Ethiopian scientists 

and breeders for over 50 years, but their attempts to improve grass pea genetically, in 

particular with regard to seed β-L-ODAP content have not had the success that was hoped 

for (Girma and Korbu, 2012). Yet it is likely that among the many local landraces of the area 

there exists untapped genetic diversity that could be useful for future breeding of grass 

pea. The Ethiopian highlands have been described as one of the five (later subdivided and 

expanded to twelve) principal centres of crop diversity by Vavilov (Vavilov, 1927). This 

region is an ancient agricultural centre and harbours a great amount of genetic diversity in 

cereal, vegetable and pulse crops, following thousands of years of selective breeding by 

smallholder farmers (Engels and Hawkes, 1991). The highly fragmented geography of the 

area, with many steep mountains more than 4000 m in height and narrow valleys with non-

navigable rivers, may have impeded trade and cultural exchange, allowing considerable 

genetic diversity to develop among the crops cultivated across the region. 

2.1.2 Breeding of low-ODAP varieties  

Several breeding programmes have been undertaken to develop new low-ODAP varieties 

with seed ODAP concentrations below the (arbitrary) threshold of 0.1 % w/w). Most efforts 

have been based on germplasm from the Indian subcontinent. This has led to the release of 

the low-ODAP varieties BioL-212 (Ratan), Mahateora, LS 8246 and Prateek, as well as the 

medium-toxin varieties Pusa-24 and Nirmal (B1) (Campbell and Briggs, 1987; Dixit et al., 

2016). The breeding relationships between these varieties are shown in Figure 5. The 

medium-toxin varieties Pusa-24 and Nirmal (B1) were derived by selection from Indian 

grass pea germplasm. The low-ODAP variety Ratan was derived from a selection of a callus 
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from a tissue culture population of Pusa-24 as part of a screen for somaclonal variation in 

ODAP content (Santha and Mehta, 2001). This variety was later crossed with the pink-

flowered high-ODAP variety JRL-2 to create the pink-flowered low-ODAP variety Mahateora 

(Sastri, 2008). The variety LS8246 was derived by selection from Pusa-24 and its low-ODAP 

phenotype is likely be due to a naturally occurring mutation. A population of 64 single-seed 

selections from Pusa-24 were grown at Morden, Manitoba, Canada. These plants were 

selfed and seeds produced from offspring plants were assayed for ODAP. One plant was 

selected as having a very low ODAP content. Seed from this plant was bulked to give rise to 

LS8246 (Campbell and Briggs, 1987). LS8246 was crossed with the high-ODAP Indian 

landrace a-60 tolerant to powdery mildew to give rise to the variety Prateek (Sastri, 2008). 

Low-toxin varieties have also been released in Bangladesh under the names BARI Khesari 1, 

2 and 3 (Akter et al., 2015). One low-toxin variety, Ceora, has been developed in Australia 

(Siddique et al., 2006). Only one improved variety of grass pea (Wasie) has been released in 

Ethiopia to date (Kumar et al., 2011a).  

 

 

Figure 5. Relationships between Indian grass pea varieties (shown in bold). Low-toxin varieties are shown in 
green, medium-toxin varieties are shown in orange, high-toxin varieties are shown in red. 

 

These varieties represent an important advance in the improvement of grass pea. Their 

reduced toxin levels reduce the risk of neurolathyrism among consumers. However, none 

of these varieties have achieved the goal of an entirely β-L-ODAP-free crop. The ODAP 

content of existing “low-toxin” varieties can increase to potentially dangerous levels if the 
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plants are grown under adverse environmental conditions (Fikre et al., 2008). However, it is 

conceivable that among the existing genetic diversity there are accessions with low seed 

ODAP contents that have not been assayed previously. Such accessions could form the 

basis for future breeding programmes to develop novel low-toxin varieties. Depending on 

the genetic basis for the low toxin phenotypes, it is possible that alleles from yet unknown 

low-toxin accessions could be crossed into the background of existing low-toxin genotypes 

to reduce further β-L-ODAP levels in the plant or to eliminate the toxin entirely. I therefore 

assayed collections of grass pea germplasm to identify previously unknown low-toxin 

accessions. To access as much diversity as possible, I focused on international collections of 

germplasm comprising accessions collected from grass pea cultivating countries around the 

world, as well as a population of landraces collected from the Ethiopian highlands region. 

2.1.3 Variation in seed β-L-ODAP concentrations between individual seeds and 
between growth environments 

The conditions of cultivation appear to have a significant impact on the amount of β-L-

ODAP a grass pea plant produces (Xiong et al., 2006; Fikre et al., 2011; Jiao et al., 2011a; 

Xing et al., 2001). This is important agronomically, as the amount of ODAP present in grass 

pea seeds may become dangerously high under some conditions during the growing 

season, in particular late-season drought (Fikre et al., 2011). This sensitivity of ODAP 

production to growth conditions may complicate experiments to compare grass pea 

genotypes, if material is sampled from plants grown in different environments. As I have 

argued in section 1.4.3, the β-L-ODAP-levels present in a grass pea plant under conditions 

of environmental stress may be more relevant for the selection of safe genotypes than β-L-

ODAP-levels under non-stressed conditions. To estimate the extent of variation in β-L-

ODAP-levels in the seeds of grass pea plants grown under different experimental 

conditions, I tested seed batches of five Indian grass pea varieties (LSWT11, Mahateora, 

Ratan, Pusa-24 and Nirmal) grown in field conditions in West Bengal, India and in 

glasshouse and field conditions at JIC. For this experiment, I measured the β-L-ODAP- 

concentrations in five individual seeds from each batch, allowing me to measure the 

variation between individual seeds. I used these data to inform the design of the 

experiments to measure β-L-ODAP concentrations in the grass pea germplasm collections. 

2.1.4 Methods for measuring ODAP concentrations 

Several methods have been described to measure the amount of β-L-ODAP in grass pea 

tissues. The Rao method, a spectrophotometric assay (Rao, 1978), named after its inventor 
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S.L.N. Rao, uses o-phthalaldehyde (OPA) and β-mercaptoethanol and was the first reliable 

quantitative method to measure ODAP-levels in grass pea tissues. Its accuracy and 

precision have been improved through later modifications by other researchers (Briggs et 

al., 1983; Hussain et al., 1994). More recent methods to measure ODAP concentrations in 

grass pea make use of high performance liquid chromatography (HPLC) (Yan et al., 2005) or 

capillary zone electrophoresis (CZE) (Arentoft and Greirson, 1995). Techniques using liquid 

chromatography mass spectrometry (LCMS) (Koh et al., 2005) or gas chromatography mass 

spectrometry (GCMS) (Xie et al., 2007) have been described to measure ODAP in ginseng 

(Panax spp.), but have not yet been applied to grass pea. These methods offer better 

accuracy and sensitivity than the Rao method, but they are more costly and time 

consuming, as they require samples to be processed one-by-one. The spectrophotometric 

method has been the most widely used assay for ODAP in grass pea samples, because it 

relies on simple equipment that can be found in most laboratories, even those with few 

resources (Tadesse and Bekele, 2003b; Campbell, 1997; Srivastava and Srivastava, 2006).  

Several variations of this method have been described in the literature (Rao, 1978; Briggs et 

al., 1983; Hussain et al., 1994), but all are based on the same basic reaction of 2,3-

diaminopropionic acid with β-mercaptoethanol and o-phthalaldehyde in the presence of a 

tetraborate buffer system to form a yellow soluble pigment. The concentration of the 

pigment can be estimated by measuring absorbance at 420nm using a spectrophotometer. 

Hussain et al. have published a reaction scheme for this reaction (redrawn in Figure 6A) 

(Hussain et al., 1994). The reaction products shown in this publication appear unlikely, as in 

each of the two products one of the carbon atoms in the six membered rings with 

delocalised electrons is also shown to have four covalent bonds. In addition, the reaction as 

shown would imply the loss of seven hydrogen and two oxygen atoms per reaction 

between the substrates and the products, although no production of gas is observed in the 

reaction. Figure 6B shows my proposed correction of the structural formulae of the 

products of this reaction. The corrected reaction scheme implies the loss of four hydrogen 

and two oxygen atoms (i.e. two water molecules) per reaction. 
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Figure 6. Colour forming reaction used in the spectrophotometric assay. The 1-alkylthio-2alkylisoindole 
compounds have a characteristic absorption peak at 420 nm. A) reaction scheme as given by Hussain et al. 
(1994) B) Proposed corrected reaction products  

  

A 

B 
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The 1-alkylthio-2-alkylisoindoles that are produced by this reaction have a very different 

absorption spectrum to the monoamino acids that also react with OPA/β-mercaptoethanol 

(Simons Jr and Johnson, 1976), allowing for low background readings. While more accurate 

methods to measure ODAP concentrations are now available, this method still provides the 

most scalable protocol. The chemistry of this assay provides flexibility when processing 

large numbers of samples as all reactions are end-point reactions and all chemicals and 

materials are stable at room temperature for the duration of the assay.  

Building on the adjustments to the spectrophotometric method made by Briggs et al. 

(Briggs et al., 1983) I scaled down the chemistry used for the final, colour-forming reaction 

to allow measurements in plate format. This method was used to assay the ODAP- 

concentrations in the germplasm collections. I assayed the Ethiopian grass pea germplasm 

collection together with Alemu Abate, an Ethiopian researcher from Aksum University, 

Ethiopia, during a placement at the Biosciences Eastern and Central Africa (BecA) Hub in 

Nairobi, Kenya, because of the difficulty of accessing this germplasm. The low cost and 

equipment requirements of the spectrophotometric assay will allow my collaborator to 

apply the spectrophotometric ODAP assay to germplasm screening and pre-breeding 

projects at his home institution. 
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2.2 Materials and methods 

2.2.1 Germplasm 

Three different sources of germplasm were used to assess the natural diversity of ODAP 

levels present in the global grass pea population. The first was a population collected by 

the Institut für Pflanzenkunde (IPK) in Gatersleben, Germany, which contained 44 lines of 

grass pea collected from several countries, mostly from south and south-east Europe. To 

add to this population, 96 grass pea accessions were requested from the United States 

Department of Agriculture at Pullman, Washington, USA, which maintains an international 

collection of many crop species. To increase the overall diversity of the population, 

accessions from countries that were not represented in the IPK population were selected 

from the population held at the USDA seed bank. Where possible, local landraces, rather 

than varieties, were selected in order to capture local variation. However, the passport 

information associated with some of the accessions was incomplete, meaning that the 

exact origin was not known for all. Detailed lists of accessions obtained from each 

population along with their geographic origins are provided in Appendix 1.1.3. 

Further attempts were made to complement these grass pea germplasm collections by 

contacting the seed collections held by the International Centre for Agricultural Research in 

the Dry Areas (ICARDA), Aleppo, Syria and the Université de Pau in France, the two largest 

collections of grass pea accessions. However, no seeds were forthcoming from either 

source. The ICARDA seed bank has been unable to distribute seeds as their main seed store 

at Aleppo has been disrupted by the Syrian civil war, although their seed collection has 

been duplicated at other centres. The Université de Pau collection has ceased active 

distribution and is now held at the Conservatoire Botanique National des Pyrénées et de 

Midi Pyrénées (CBNPMP), where it is not being regularly regenerated (personal 

communication, Jocelyne Cambecèdes, CBNPMP, France), placing available grass pea 

diversity at risk. 

The accessions received from the two germplasm collections, along with the varieties 

provided by BCKV, India, covered virtually the entire range of countries in which grass pea 

is grown (see Figure 7).  
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A collection of 413 Ethiopian grass pea landraces was previously assembled by the Debre 

Zeit Research Centre (DZRC) under the supervision of the Ethiopian Institute for Agricultural 

Research (EIAR). Seeds were collected from a total of 85 districts (woredas) in the regions 

Oromia (western, central and southern Ethiopia), Tigray (northern Ethiopia) and Amhara 

(northwestern Ethiopia), as well as one district from the Somali region of Ethiopia. Three 

additional accessions in this population were collected from southern Eritrea before the 

country’s independence from Ethiopia in 1993. This population was supplemented by 10 

grass pea accessions from Australia, which had been donated to the Ethiopian Biodiversity 

Institute (EBI). 

2.2.2 Production of seed material for germplasm assays 

Seeds of the accessions obtained from IPK and USDA collections and of the Indian grass pea 

varieties LSWT11, Mahateora, Nirmal, Ratan and Pusa-24 were sown in rows in the field at 

JIC (five seeds per accession). The plants were grown up a wire-mesh support for climbing 

inside a protective cage to exclude birds, rabbits and rodents. The plots were irrigated as 

required by rainfall patterns, but not fertilised. Plants of the Indian varieties were also 

grown in glasshouses at JIC during February to June and during September to January. The 

shoots of mature plants were harvested, air-dried and threshed to release the seeds. The 

seeds of each accession were pooled at the threshing stage. For cultivation in the 

glasshouse, seeds were scarified by rubbing with sandpaper and imbibed in water for 48 h 

before being  sown into 10-litre rose pots, with six plants per pot. During winter and 

autumn months plants were grown under mercury halide (Hydrargyrum Quartz Iodide, 

HQI) lamps to ensure at least 12 h of light every day. The glasshouses were also heated to 

prevent temperatures from falling below 15 °C. Plants were left to mature and dry in the 

field or in their pots before being harvested and threshed. After this, seeds were stored at 

4 °C in dry storage before being used in the assay. The EIAR population was maintained at 

DZRC and all the seeds used for ODAP-testing were grown in field plots at the DZRC, 

Bishoftu (Ethiopia). After harvest, the seeds were stored in a dry seed-storage unit at 4 °C. 

2.2.3 Comparison of extraction media 

For water extraction, ground seed meal (20 mg) was weighed out and suspended in 5 ml of 

deionised water, followed by incubation in a water bath at 95 °C for 15 minutes. For 

ethanol extraction, ground seed meal (20 mg) was suspended in 5 ml 60 % v/v ethanol in 

deionised water, followed by overnight incubation in an orbital shaker at room 

temperature. In both cases, five replicate extractions were performed. After extraction, 
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samples were centrifuged at 3100 g for 30 min in an Eppendorf 5810R centrifuge 

(Eppendorf, Hamburg, Germany). The supernatant (100 µl) was mixed with 200 µl of 3M 

KOH solution and incubated at 95 °C for 30 min. The reaction product (300 µl) was 

transferred to a spectrophotometer cuvette, diluted with 700 µl of deionised water and 

mixed with 2 ml of reaction buffer (7.5 mM o-phthaldialdehyde (OPA), 0.5 M potassium 

tetraborate tetrahydrate, 1 % v/v ethanol, 0.2 % v/v β-mercaptoethanol) by tapping the 

cuvette on the bench. Reactions were incubated at room temperature for 30 min. 

Absorbance was measured using a cuvette spectrophotometer (Lambda Bio, PerkinElmer, 

Waltham, Massachusetts, USA) 

2.2.4 Sensitivity and linearity testing of the plate-based spectrophotometric assay 

Eight samples of ground seed meal of variety LS007 (sample weights ranging from 10.7 mg 

to 17.7 mg) were suspended in 1 ml of deionised water and extracted by incubating in a 

water bath at 95 °C for 30 minutes.  Separately, a 3.2 mM solution of β-L-ODAP standard 

(Lathyrus Technologies, Hyderabad, India) in 3M KOH was prepared. This solution was 

serially diluted twofold with 3M KOH ten times to produce a dilution series from 0.0031 

mM to 3.2 mM. These solutions were incubated at 95 °C for 30 minutes to hydrolyse β-L-

ODAP to L-DAP. In a 96-well, flat-bottom plate (Greiner Bio-One, Alphen aan Den Rijn, 

Netherlands) suitable for use in plate spectrophotometers, one aliquot of 10 µl of each of 

the supernatants was mixed with 20 µl of each of the standard dilutions in 3M KOH or 3M 

KOH with no L-DAP. A separate plate was prepared containing eight replicates of 20 µl of 

the L-DAP standard solutions mixed with 10 µl of deionised water.  

O-phthalaldehyde/tetraborate reaction buffer was prepared by dissolving 5.29 g of 

potassium tetraborate tetrahydrate (Sigma-Aldrich, St. Louis, Missouri, USA) in 42 ml of 

dH2O, by shaking and gently warming the mixture. Separately, 34.6 mg of o-phthalaldehyde 

(Sigma-Aldrich) were dissolved in 346 µl of absolute ethanol and 69 µl of β-

mercaptoethanol (Sigma-Aldrich). Once both o-phthalaldehyde and potassium tetraborate 

were fully dissolved, both solutions were combined. The resulting 42.4 ml of reagent buffer 

were sufficient for processing 96 samples in microtitre plates, including both hydrolysed 

and non-hydrolysed aliquots. This buffer is more dilute than the reagent buffer used by 

Briggs et al. (1983), who diluted sample extracts with water prior to the addition of the 

reagent buffer. The final concentration of reagents in the reaction was the same in the 

experiments described here and in the method developed by Briggs et al. (Briggs et al., 

1983; Hussain et al., 1994).  
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For the colour-forming reaction, 220 µl of OPA/tetraborate buffer were added to each well 

of the plates containing samples and standards. Plates were left to incubate at room 

temperature for 25 minutes. Absorbance at 420 nm was measured using a plate 

spectrophotometer (VersaMax, Molecular Devices, Wokingham, UK). 

2.2.5 Spectrophotometric assay for ODAP concentrations in individual seeds 

To measure the ODAP concentrations of seed batches produced in different settings, 

individual seeds were assayed. Seeds were clamped using a rubber-padded peg and drilled 

using a benchtop drill (Xenox, Föhren, Germany) to extract seed meal from the storage 

cotyledons as shown in Figure 8. Care was taken to avoid the embryonic axis of the seed by 

drilling into the flattened side of the seed, which is opposite the embryonic axis. This was to 

allow the seed to germinate later to produce progeny, if needed.  

 

 

Figure 8. Drilling to collect seed meal material from the storage  
cotyledons of individual seeds. Care was taken to avoid drilling into the  
embryonic axis of the seed, allowing the seed to be sown after drilling,  
if needed. The seed was held in place during drilling using a peg. 

Seed meal was collected in a microcentrifuge tube and dried for 48 hours in a freeze-drier 

(BenchTop SLC®, Virtis, Gardiner, New York, USA). Dried meal samples were weighed and 
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the weights recorded electronically to allow later normalisation. A scaled-down version of 

the spectrophotometric method as modified by Briggs et al. (1983) was used to measure 

ODAP concentrations in seed samples. Volumes and sample weights were scaled down for 

extractions and reactions to take place in plate format. This allowed parallelised processing 

of samples using multi-channel pipettes and rapid measurement using a plate-

spectrophotometer. 

Free amino acids (including L-DAP and ODAP) were extracted from the seed meal; 600 µl of 

60 % v/v ethanol in distilled water were added to each sample, followed by incubation at 

room temperature in a shaking incubator for 22 h. Samples were centrifuged at 16,250 g in 

a benchtop centrifuge (Biofuge Pico, Heraeus, Hanau, Germany) for 10 minutes. An aliquot 

(80 µl) of the supernatant of each extracted sample was transferred into a 96-well 

microtitre plate (Sterilin, Newport, UK), and 160 µl of 3M KOH solution were added to each 

well. Plates were sealed firmly and clamped tightly between aluminium plates to prevent 

leakage. The plates were submerged in a water bath at 95 °C for 30 minutes to hydrolyse 

ODAP to L-DAP. After this, the plates were submerged in water at room temperature to 

cool them down before drying and releasing the clamps, to prevent the ethanol in the 

solution from boiling off. 

OPA/tetraborate buffer was prepared as described in section 2.2.4. For the colour-forming 

reaction, 30 µl of hydrolysate was mixed with 220 µl of OPA/tetraborate buffer in a 96-well 

microtitre plate with a clear flat bottom (Greiner Bio-One, Alphen aan Den Rijn, 

Netherlands). Separately, another flat-bottom plate was loaded with 20 µl of 3 M 

potassium hydroxide solution and 10 µl of non-hydrolysed supernatant from the overnight 

extraction, immediately followed by 220 µl of OPA/tetraborate buffer.  

The reaction mixture in each well was mixed by gentle sideways tapping of the plate, 

followed by incubation at room temperature for 30 minutes. Absorbance at 420 nm was 

measured using an optical plate reader (Indian varieties, IPK population and USDA 

population – VersaMax, Molecular Devices, Wokingham, UK; EIAR population – FLUOStar® 

Omega, BMG Labtech, Ortenberg, Germany). 

2.2.6 Spectrophotometric assay for ODAP in bulk seed samples 

To measure seed-ODAP concentrations of grass pea accessions directly from germplasm 

collections, bulk meal samples of milled seeds were used. Dry seed samples (5 g of IPK and 

USDA population seeds; 9 g of EIAR population seeds) were weighed out and ground for ca. 



38  Chapter 2 – Screening grass pea germplasm for low-ODAP genotypes 

 

 
 

1 minute using a coffee mill (IPK population – BISTRO electric coffee grinder, Bodum, 

Triengen, Switzerland; USDA population – F20342 Coffee mill, Krups, Solingen, Germany; 

EIAR population – CBM4 Coffee and Spice Grinder, Black+Decker, Towson, Maryland, USA) 

and collected in a 50 ml Falcon tube. Between millings, the coffee mills were wiped clean 

using 95 % v/v ethanol and allowed to dry. Dry ice was inserted into the mill between 

millings every 3-5 samples to stop the mill from overheating. Dry ice was removed before 

adding the next sample. 

For the germplasm screen, the extraction of ODAP from ground seed samples and 

hydrolysis was performed as described by Briggs et al. (1983), but the colour-forming 

reaction was performed in plate-format, using scaled-down chemistry to allow automated 

measurement using an absorbance plate-reader. An amount between 0.4 g and 0.5 g of 

seed meal from air-dried seeds was weighed out for each sample and the exact weight 

recorded. To each sample, 10 ml of 60 % v/v ethanol in dH2O were added to extract free 

amino acids. Samples were left to extract with the tubes positioned horizontally on an 

orbital shaker at room temperature for between 22 h and 36 h. After this, samples were 

stored upright at 4 °C for up to 24 h until used in the assay. Samples were centrifuged for 

15 minutes at 3100 g in a Eppendorf 5810R centrifuge (Eppendorf, Hamburg, Germany) to 

separate the extracted seed meal from the supernatant containing the extracted amino 

acids. Of this supernatant, 2 ml were mixed with 4 ml of 3M KOH solution in dH2O. This 

reaction mixture was incubated in tightly capped 15 ml Falcon tubes for 30 minutes at 95 

°C to hydrolyse ODAP to L-DAP. Tubes were chilled back to room temperature before 

opening to prevent the boiling off of ethanol from the solution. Following hydrolysis, the 

colour forming reaction using the OPA/tetraborate reaction buffer was performed in 96-

well flat-bottomed microtitre plates as described in section 2.2.4. Three technical replicates 

were prepared for each hydrolysed sample, along with one plate containing 10 µl of non-

hydrolysed extract, 20 µl of 3M KOH and 220 µl of OPA/tetraborate buffer.  

 

2.2.7 Calculation of ODAP concentrations from absorbance readings 

The 420 nm absorbance readings of non-hydrolysed samples were subtracted from the 

readings of the hydrolysed samples to exclude absorbance caused by the polystyrene plate 

bottom, the extraction buffer, potassium hydroxide solution and reagent buffer as well as 

other compounds extracted from the seed tissue. The difference between the two values 
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served as a measure for ODAP concentration. The dry weight of samples, which had been 

recorded before the extraction, was used to normalise the results. 

A set of eleven (individual seed samples, IPK population bulk samples and USDA population 

bulk samples) or seven (EIAR population bulk samples) linear dilutions of L-DAP.HCl (Sigma-

Aldrich, St. Louis, Missouri, USA) was included on each measurement plate as a positive 

control of the colour forming reaction and to establish a standard curve for calibration of 

the assay. Aliquots (30 µl) of known concentrations of L-DAP.HCl in 2 M KOH solution were 

dispensed into the flat-bottom plates. OPA/tetraborate reagent buffer (220 µl) was added 

to each L-DAP.HCl standard and to one well containing 30 µl of 2M KOH solution with no L-

DAP.HCl. Concentrations of L-DAP.HCl were chosen to cover the expected range of 

equivalent seed ODAP concentrations. Standard concentrations used alongside the 

experiments testing single seeds from different seed batches, and bulk samples from the 

three germplasm collections, are shown in Appendix 1.1. 

Linear regressions of standard curves were calculated using the LINEST function in 

Microsoft Excel for Windows 2013. The same software was used to calculate seed ODAP 

concentrations using the following formula: 

 

���� =
����� ���������×����

�������×	���������
	×100	% 

Conc seed ODAP concentration in % w/w 

Ahyd absorbance reading of hydrolysed sample after the colour- 

forming reaction (averaged across technical replicates) 

Anon-hyd absorbance reading of non-hydrolysed sample 

Vext Volume of extraction buffer 

msample Mass of the seed meal sample 

astandard Slope of the standard curve 

 

The software was also used to calculate means and standard errors and to plot bar charts 

and scatterplots representing the data. Histograms were plotted using the programming 

environment RStudio (version 0.98.1060, https://www.rstudio.com/), running the 

statistical programming language R (version 3.1.2, https://cran.r-

project.org/bin/windows/). 
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2.3 Results and discussion 

2.3.1 Optimisation of the spectrophotometric method 

Two media have been described for extracting ODAP from grass pea tissues for the 

spectrophotometric method: water and 60 % v/v ethanol in water. For extraction in water, 

samples are incubated at 95 °C for 15-30 minutes while 60 % v/v ethanol extractions are 

done at room temperature overnight. To decide which medium to use for my experiments I 

performed the spectrophotometric assay using five extractions each, using water or 60 % 

v/v ethanol on samples of LS007 seed meal. The spectrophotometric assay was performed 

as described in section 2.2.4. Water extraction produced absorbance readings with mean 

0.161 ± 0.011 (standard error). Extraction with 60 % v/v ethanol produced absorbance 

readings of mean 0.154 ± 0.007 (standard error). These results are also shown in Figure 9.  

 

Figure 9. Absorbance measurements at 420nm of the spectrophotometric 
assay based on grass pea seed meal samples (20 mg) extracted using 
water or 60 % v/v ethanol in water as extraction media. Boxes show lower 
and upper quartiles surrounding the median, whiskers show the most 
extreme datapoint within 1.5 times the interquartile range from the box. 
Circles show outliers beyond that range.  

 

Both extraction methods produced similar mean results, but the extraction method using 

60 % v/v ethanol resulted in slightly lower variation between the replicates. A problem with 

using water as the extraction medium became apparent while processing these samples. 

After the incubation at 95 °C the sample suspension had taken on a thick, gel-like 

consistency, which prevented the seed meal and the supernatant from properly separating 
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during centrifugation. This problem did not occur when using 60% v/v ethanol, nor when 

using water for extraction of ODAP from samples other than seed meal. A different 

problem occurred when using 60 % v/v ethanol for extraction of ODAP from green tissues, 

as ethanol also extracted chlorophyll, which could lead to unwanted background noise in 

the spectrophotometric assay. For this reason, I decided to rely on 60 % v/v ethanol for the 

extraction of ODAP from seed meal samples, but use water for the extraction of ODAP from 

other tissues, as described in the next chapter. 

To test the linearity and sensitivity of the plate-based spectrophotometric assay I compared 

the absorbance caused by non-hydrolysed seed meal extract spiked with serial dilutions of 

L-DAP and the L-DAP standard series alone. I extracted free amino acids from eight samples 

of grass pea seed meal (variety LS007, sample weights ranging from 10.7 mg to 17.7 mg). 

These samples did not undergo hydrolysis treatment. Aliquots of the extract were spiked 

with serial dilutions of β-L-ODAP (Lathyrus Technologies, Hyderabad, India) in 3M KOH, 

which had been hydrolysed to produce L-DAP. This allowed me to measure the background 

absorbance caused by compounds other than β-L-ODAP in the extract. As shown in Figure 

10, the serial dilutions of L-DAP produced absorbance values that increase linearly with L-

DAP concentration in the range of 0.025 mM to 3.2 mM (blue curve). These molar 

concentrations of L-DAP were equivalent to extracts of grass pea samples of 15 mg with β-

L-ODAP concentrations ranging from 0.018 % to 2.25 % w/w of dry weight. At L-DAP 

concentrations lower than 0.025 mM, the absorbance measurements showed great 

variation between readings, indicating the detection limit of this assay. The non-hydrolysed 

grass pea extracts with added L-DAP (which is equivalent to hydrolysed extracts from grass 

pea samples with varying β-L-ODAP concentrations) produced significantly higher readings 

than the L-DAP standards at low L-DAP concentrations (green curve). This shows that 

blanking was necessary to remove the background absorbance caused by other compounds 

in the extract. After subtracting the absorbance measurements of the non-hydrolysed 

extracts alone, the readings of the blanked spiked extracts (orange curve) became 

indistinguishable from the readings of the dilution series for L-DAP alone. This showed that 

the plate-based assay is sufficiently sensitive and accurate to allow the measurement of β-

L-ODAP in grass pea samples containing β-L-ODAP in the range indicated by the literature 

(Tay et al., 2000; Sharma et al., 2000; Campbell, 1997; Sarwar et al., 1995; Deshpande and 

Campbell, 1992). The measurement of absorbance produced by non-hydrolysed samples 

was necessary to correctly blank readings and produce accurate measurements, especially 

at low concentrations of L-DAP/β-L-ODAP. 
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Figure 10. Linearity of absorbance values produced by the spectrophotometric method. blue: serial dilution of 
DAP; green: serial dilution of L-DAP and non-hydrolysed extract without blanking; orange: serial dilution of DAP 
and non-hydrolysed extract, blanked to remove the background absorbance present in non-hydrolysed extract 
without L-DAP. Each datapoint represents an average of eight samples, error bars denote standard error. Both 
axes are logarithmic (base 2). 

ODAP occurs in two isomers, an α- and a β-form, depending on to which of the two amino 

groups the oxalyl-residue is attached. One limitation of the spectrophotometric method of 

measuring ODAP is its inability to differentiate between the α- and β- isomers of ODAP 

(Hussain et al., 1994). This is because of the hydrolysis step of the assay in which both α- 

and β-L-ODAP are converted into the same compound, L-2,3-diaminopropionic acid (L-

DAP). Only the β-isomer appears to cause lathyrism, while the α-isomer is non-toxic (Chase 

et al., 1985; Wu et al., 1976). Both isomers are produced when the molecule is synthesised 

chemically, but the biosynthesis of the compound in the plant appears to differentiate 

strongly between the two forms, leading to 95% of ODAP present being the toxic β-isomer 

(Roy and Rao, 1968). The two isomers spontaneously interconvert via a reversible, non-

enzymatic reaction (see Figure 11), leading to an equilibrium of 60% β-isomer and 40% α-

isomer at room temperature (Abegaz et al., 1993). This reaction occurs slowly at room 

temperature and at neutral pH, but faster at alkaline or acidic pH and higher temperatures 

(Padmajaprasad et al., 1997).  
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The production of α-L-ODAP instead of β-L-ODAP has been proposed as a breeding target 

for grass pea (Campbell, 1997), because it was hoped that this might retain any positive 

effects the compound might have on the physiology of the plant while removing its toxic 

effects on mammals. However, no germplasm accumulating an increased proportion of α-L-

ODAP has been identified. In addition, it must be remembered that grass pea seeds and 

shoots are usually prepared for human consumption by steeping and boiling in water 

(Enneking, 2011; Dufour, 2011), methods that are traditionally used to destroy ODAP. 

Normally this leads to the partial detoxification of the tissue as some of the β-L-ODAP is 

converted into the non-toxic α-isomer, approaching a pH- and termperature-dependent 

equilibrium (Padmajaprasad et al., 1997). This processing method would have the opposite 

effect on high-α-/low-β-L-ODAP tissues on the other side of this equilibrium, leading to the 

production of β-L-ODAP. For this reason, I decided not to try to differentiate between the 

two isomers while conducting the mutant screen, but rather to use the spectrophotometric 

method, which effectively measures total ODAP concentration in a sample, despite this 

limitation. 

2.3.2 Seed ODAP variation between batches grown in different conditions 

To test whether environmental effects are likely to impact the toxin levels measured in the 

seeds of the grass pea accessions used in this study, I measured the toxin concentration in 

individual seeds of 6 genotypes: LSWT11, LS007, Pusa-24, Nirmal, Ratan and Mahateora 

grown in different environments.  

I measured the ODAP concentrations in five individual seeds of different seed batches 

grown in a glasshouse and in the field at the JIC as well as seeds directly provided by BCKV 

and, in the case of one genotype (Pusa-24), by the USDA seed bank, using the methods 

described in sections 2.2.4 and 2.2.7. The results of this experiment are shown in Figure 12. 

These data showed remarkable differences between batches of the same accessions grown 

in different settings. In particular, seeds grown in a heated glasshouse at the JIC during 

Figure 11. Spontaneous isomerisation between α- and β-ODAP 
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winter 2015/2016 (batch ‘JIC glasshouse 2016’) contained lower concentrations of ODAP 

than seeds grown at the JIC in a glasshouse during summer 2015 (batch ‘JIC glasshouse 

2015’). This difference was significant (p < 0.01) for the varieties Pusa-24 and Mahateora. 

While this did not provide a measurement of the impact of any one specific environmental 

factor on ODAP-production, it gave an indication of the variability that could be expected 

from different experimental conditions.  

Only seeds of the variety Mahateora contained consistently less than 0.1 % w/w ODAP, the 

commonly applied, albeit arbitrary, threshold (Asthana, 1995; Chakrabarti et al., 1999) for 

low-toxin varieties. Despite being classed as a low-toxin variety, seed batches of Ratan 

(BioL-212) displayed an averageODAP concentration much higher than this threshold.  

 

  

Figure 12. Seed ODAP concentrations in grass pea varieties grown in different settings. Each bar represents the 
mean of five individual seeds. Absent bars indicate that no seed batch from this source was available. Error bars 
denote standard error. ** denotes significance at the p < 0.01 level. Individual seed measurements for the seed 
batch marked with a black arrow are displayed in Figure 13. 

 

The variation in seed ODAP concentrations observed between different growth conditions 

indicated that the seeds of accessions grown in different environments cannot be 

compared directly. This represents a limitation of the germplasm screening dataset, 

because differences between the environmental conditions between the JIC field in the UK 

(where the seeds of the IPK and USDA populations were grown) and the DZRC field (where 

the seeds of the EIAR population were grown) may have affected ODAP- concentrations. 

Because accessions may display genotype-specific responses to environmental conditions it 
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would not be permissible to test a small number of accessions in different environments 

and use these data to normalise ODAP concentrations of the entire population. For this 

reason, accessions in the EIAR population were not directly compared to the accessions in 

the IPK and USDA collections. 

In addition, some batches showed very high seed-to-seed variations in ODAP 

concentrations (example shown in Figure 13). In this batch of Ratan, two seeds would have 

been classed as low-toxin, while three would not. While some seed-to seed variation may 

be expected due to the phenotypic plasticity, this extreme variation, only observed in some 

seed batches, suggests that these batches may have been contaminated, either by physical 

admixture of seeds of another accession during harvest or by inadvertent outcrossing of 

the plants.  

 

 

Figure 13. ODAP concentrations in individual seeds of Ratan (BioL-212) grown in a glasshouse at the JIC in 
summer 2015 

 

Because the method of obtaining seed meal by drilling individual seeds is labour-intensive 

and cannot be easily scaled up, testing a representative sample of individual seeds to 

obtain accurate averages of seed ODAP concentrations of germplasm collections 

comprising hundreds of accessions would be prohibitively time-consuming. As an 

alternative, bulk samples of seed meal produced from dozens of individual seeds could be 

used to measure average seed ODAP concentrations of grass pea accessions. This would 

also result in a more meaningful measurement of an accession’s seed ODAP content, as it 
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would be correlated directly with the absolute ODAP content of a portion of seeds to be 

consumed. To obtain the same average from testing individual seeds, a large number of 

seeds would have to be assayed to prevent the results from being skewed by accidentally 

selecting unrepresentative seeds. In addition the average calculated from individual seed 

measurements would have to be weighted according to the total mass of each seed 

measured to prevent small seeds with abnormal ODAP concentrations from distorting the 

average. Measuring individual seeds could also introduce issues of unconscious bias in 

selecting seeds for individual seed measurements and uneven distribution of ODAP inside 

the seed, as only the storage cotyledons were drilled during the collection of material from 

single seeds. For these reasons I decided to rely on bulk samples of seed meal for 

measuring average ODAP concentrations in the seeds of accessions from the germplasm 

collections. 

2.3.3 ODAP concentrations in seeds of accessions from the IPK population 

A population of 44 grass pea accessions collected from several countries cultivating grass 

pea by the IPK, Gatersleben, Germany, was assayed for seed ODAP concentrations using 

the methods described in sections 2.2.6 and 2.2.7. The ODAP concentration of each of the 

IPK population accessions as well as the Indian grass pea varieties grown and assayed 

alongside (using bulk samples) are shown in Figure 14. All the seeds used in this experiment 

were grown in the field at the JIC, Norwich, UK. The IPK population did not contain any 

accessions that would be classed as ‘low-toxin’ accessions based on the commonly used 

threshold of 0.1 % w/w. While there was significant variation between ODAP contents of 

some of these accessions, none of them stood out as breeding material for the 

development of new low-ODAP varieties. The ODAP concentrations of the accessions 

tested in this population did not correlate with their country of origin. For example, seed 

ODAP concentrations in the seven samples from Greece ranged from 0.259 % to 0.400 % 

w/w. The number and geographic range of accessions in this collection are limitations of 

this dataset. Important grass pea cultivating areas of the world, especially South Asia and 

the Ethiopian highlands are not well represented. Instead, the IPK collection contains many 

accessions from the Northern Mediterranean and Eastern Europe regions, where grass pea 

is cultivated only on very limited acreages and primarily as livestock feed (Milczak et al., 

2001; Tavoletti et al., 2005; Başaran et al., 2011). The limited variation in ODAP levels in 

this population reflects this lack of diversity. 
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The population exhibited 2.5-fold variation in seed ODAP concentration with a population 

mean of 0.31 % w/w with standard deviation 0.049 %. The distribution of ODAP 

concentrations in the population is shown in Figure 15. Seed ODAP concentrations and 

countries of origin for each accession are given in Appendix 1.3. 

 

Figure 15. Distribution of seed ODAP concentrations of accessions from the IPK population. All seeds were grown 
in the field at the JIC, Norwich, UK in summer 2015. 

 

2.3.4 ODAP concentrations in seeds of accessions from the USDA population 

To increase the diversity of germplasm from grass pea cultivating regions for analysis of 

ODAP contents, I requested 96 accessions from the USDA seed bank at Pullman, 

Washington, USA. Inspection of the seed packets from the USDA population showed that 

the seed phenotypes within individual seed packets were highly diverse (example shown in 

Figure 16). In particular, many packets contained dark, speckled seeds as well as cream-

coloured non-speckled seeds, along with variation in seed size. In total, out of 96 

accessions requested from USDA, 48 contained two distinct seed types and 4 contained 

three distinct seed types. The proportions of seed types varied: in some accessions almost 

all seeds had the same seed morphology, while some accessions were equally split 

between their different seed types. 
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Figure 16. Photo of seeds of accession PI 255368 (Former Serbia and Montenegro) as received from the USDA 
seed collection. Seeds have been separated by seed morphology. Individual seed types were treated as separate 
sub-accessions in the following experiment. 

 

This intra-accession morphological diversity could be caused either by phenotypic plasticity, 

leading to different appearances of genetically very similar seeds, or by an underlying 

genetic variability. The first appears unlikely, as this range of variation in seed morphology 

has not been reported for any genetically uniform accessions of grass pea, and did not 

appear in the other germplasm collections used in this study. If the phenotypic variation is 

caused by underlying genetic variation, this could be due to either a physical mixture of 

seeds, or a genetic mixture. A physical mixture would have resulted if seeds of genetically 

different mother plants were combined during harvesting or the later processing of the 

seeds. A genetic mixture would be present if the accession contained heterozygous 

individuals that caused traits to segregate when selfed. Both kinds of mixtures could reflect 

genetic diversity within the sample when the accession was first collected (accessions did 

not undergo single-seed descent) or be the result of accidental contamination or unwanted 

outcrossing during the regeneration of the accessions at the seed bank. If a simple physical 

mixture is present, sorting the seeds according to their morphology should resolve this, 

though it might not be clear which seed type represents the original accession. I therefore 

split up the seeds from highly variable seed packets into two or three groups as required 

and treated them as separate samples from then on. The seed morphologies and 

separation into subaccessions are shown in Appendix 1.4. If this variation exists due to 

heterozygosity in the original accessions, it does not pose a problem for a diversity screen. 

It is, however, possible that this heterozygosity within accessions in the germplasm 

collection has been caused by unwanted hybridisation events between different accessions 

in the several generations over which they have been maintained. Although the grass pea 

flower is cleistogamous and hence self-fertile, highly variable rates of outcrossing have 

been reported, ranging from as low as 2.2 % (Chowdhury and Sllnkard, 1997) to as high as 
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36 % (Gutiérrez-Marcos et al., 2006). If the accessions have been grown side-by-side in an 

open field without netting to prevent pollinators from accessing the flowers, it is possible 

that outcrossing has occurred. 

When harvesting the seeds of plants grown in the field at the JIC (the offspring of the seeds 

obtained from USDA), it became apparent that many sub-accessions which I had separated 

based on their seed morphology produced seeds that again segregated for seed 

morphology (see Appendix 1.5). This suggested that the mixed seed morphologies 

observed in the previous generation were not just the result of physical contamination, but 

likely represented genetic mixtures resulting from outcrossing. This result is reminiscent of 

the large seed-to-seed variations in ODAP concentrations observed in the experiment 

comparing batches of seed of Indian grass pea varieties (see section 2.3.2). Outcrossing of 

breeding stock and accessions in seed banks could erode the diversity of stored germplasm 

collections and frustrate breeding efforts. It is therefore imperative that plants grown for 

the multiplication and regeneration of seeds of accessions in germplasm collections are 

kept under netting to prevent pollinators from accessing their flowers and providing 

outcrossing.  

Seeds of accessions obtained from the USDA population were sown at the JIC and grown 

during the summer of 2015. Harvested seeds were ground up as bulk samples and assayed 

for their ODAP concentration in three technical replicates as described in sections 2.2.6 and 

2.2.71. The mean seed ODAP concentration of this population was 0.389 % w/w, with 

standard deviation of 0.123 %. The distribution of β-L-ODAP concentrations is shown in 

Figure 17. Seed ODAP concentrations and countries of origin for each accession are given in 

Appendix 1.3. The lowest-ODAP accession in the USDA population contained 0.040 % w/w 

ODAP. This was sub-accession A (separated according to seed morphology) of LS8246 

(USDA accession ID PI 506418), a low-toxin variety developed in Canada (Campbell and 

Briggs, 1987) by selection breeding from the Indian variety Pusa-24. The seeds produced by 

sub-accession B of LS8246 had a much higher ODAP concentration (0.345 % w/w). This may 

indicate that sub-accession B is a physical contaminant of this low-ODAP accession. The 

sub-accession with the highest ODAP concentrationwas PI 667269/B USA IFLS 432 Sel 519 

(0.763 % w/w). Sub-accession PI 667269/A also showed a high ODAP concentration (0.660 

% w/w). 

                                                           
1 The USDA population was assayed by Di Yang (DY) of the University of East Anglia (UEA) under my 
supervision. Experimental design was done by me and experimental work was done by DY. All data 
analysis presented in this thesis was performed by me. The data presented in this section, along with 
her own analysis, will formed part of DY’s Masters thesis submitted to UEA. 
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Figure 17. Histogram showing the distribution of ODAP concentrations in accessions in the USDA population. All 
seeds were grown in the field at the JIC in summer 2015. 

Overall, the ODAP concentrations of accessions in the USDA population showed a much 

wider spread than the ODAP concentrations of accessions in the IPK population, which may 

reflect greater genetic diversity among the USDA population. No geographical pattern of 

toxin distribution was apparent among these samples. This population included breeding 

lines (from USA and India), local cultivars and landraces. Several accessions contained 

intermediate levels of β-L-ODAP (between 0.1 % and 0.2 % w/w). These were the two 

breeding lines from USA (IFLS 385 Sel 504 and IFLS 394 Sel 528), the Turkish cultivar 

Murdumuk, the Turkish landrace PI 206891 (sub-accession A) and the Greek accession CPI 

14162 (sub-accession A). Among the Indian cultivars provided by BCKV, Pusa-24 and Nirmal 

showed intermediate ODAP concentrations. The cultivars LSWT11 and Mahateora, which 

were used as high- and low-ODAP controls in later experiments, were shown to contain 

0.317 % w/w  and 0.039 % w/w respectively. The cultivar Ratan was not included in this 

analysis as the evidence discussed in the previous section indicated that ODAP levels in this 

seed sample were highly variable, potentially due to contamination. 

It is unlikely that differences in growth conditions at the seed centres at USDA, IPK and 

BCKV would have an impact on the β-L-ODAP levels observed in these experiments, 

because all the seeds used for the assays were grown in the field at JIC. An apparently 

transient epigenetic effect has been observed to affect β-L-ODAP concentrations in grass 



52  Chapter 2 – Screening grass pea germplasm for low-ODAP genotypes 

 

 
 

pea tissues depending on environmental conditions. Shoot tips, stems and leaves of plants 

of the same genotype of grass pea, grown under well-watered conditions, contained higher 

concentrations of β-L-ODAP if the mother plant had been grown under simulated drought 

conditions. The difference between offspring of plants grown under simulated drought and 

well-watered conditions decreased over the lifetime of the offspring plants and seeds 

produced by these plants did not show significant differences in β-L-ODAP concentrations 

(Jiao et al., 2006). It is conceivable that similar epigenetic effects induced by the differences 

in the growth conditions of the previous generation could affect the β-L-ODAP levels in the 

plants grown at JIC. However, such differential effects would have likely worn off over the 

lifetime of the plants at JIC, allowing the seeds produced by these plants to be compared 

(Jiao et al., 2006) 

2.3.5 ODAP concentrations in seeds of accessions from the EIAR population 

The total ODAP concentrations in seeds of grass pea accessions from the EIAR population 

were measured using the spectrophotometric method described in sections 2.2.6 and 2.2.7 

using three technical replicates of measurements based on one extraction from bulk seed 

meal samples. The population includes accessions obtained from Eritrea (3 accessions) and 

Australia (10 accessions), but most were collected from sites in Ethiopia (413 accessions). 

All seeds used in this experiment were grown during the same season at Debre Zeit 

Research Centre (Ada’a Chukala district, Oromia, Ethiopia)2. The distribution of ODAP levels 

in the population is shown in Figure 18. Seed ODAP concentrations and passport data for 

each accession are given in Appendix 1.3. The great majority of accessions fell within a 

distribution of ODAP levels with mean 0.368 % w/w and standard deviation of 0.051 % of 

dry seed weight. One accession, (ID 236701, originating from Bahir Dar in northern 

Ethiopia) contained a noticeably higher seed ODAP concentration of 0.61 % w/w. Eight 

accessions exhibited seed ODAP concentrations below 0.15 % w/w. Of these accessions, 

seven originated from Australia. These were produced by a breeding programme for low-β-

L-ODAP genotypes and thus did not represent previously unknown low-ODAP germplasm. 

Seed ODAP concentrations of all the accessions from Australia are shown in detail in Figure 

19.  

                                                           
2 The EIAR population was assayed in collaboration with Alemu Abate (AA) of Aksum University, 
Tigray, Ethiopia. Experimental design was done by both of us, while most of the lab work carrying 
out the assay was done by AA, under my supervision. All data analysis presented in this thesis was 
performed by me. The data presented in this section, along with his own analysis, will also form part 
of AA’s PhD thesis to be submitted to Aksum University.  
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Of the accessions collected from Ethiopia, one (ID 242217 from the district Guba Lafto, 

North Wello zone, Amhara region) stood out for having a low seed ODAP concentration of 

0.136 % w/w. It would not be classed as a low-toxin accession according to the 0.1 % w/w 
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Figure 18. Distribution of seed ODAP concentrations in the EIAR grass pea germplasm collection. All seeds were 
grown at DZRC, Ada’a Chukala, Ethiopia 

Figure 19. ODAP concentrations in seeds of grass pea accessions originating from Australia, 
ordered by ODAP concentration. Values shown are based on three technical replicates. 
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threshold. However, this accession could be useful for the breeding of new low-toxin 

varieties if crossed with other accessions. This and the Australian low-ODAP accessions will 

be utilised in a pre-breeding programme for new low-ODAP varieties adapted to the 

Ethiopian climate that is now being planned by the EIAR. 

The majority of accessions (395 out of 426) in the EIAR population have associated passport 

information on their geographic origin, including the administrative region and district 

(woreda) of origin. A smaller number of accessions (132) also have geographic coordinates 

detailing their exact origin, but these data are missing for most accessions in the 

population. The map depicted in Figure 20 shows the average seed ODAP concentration of 

the accessions from each district that is represented in the population. For comparison, 

false colour maps showing average annual rainfall and maximum temperatures are shown 

in Figure 21. The distributions of seed ODAP concentration in accessions from districts from 

which ten or more accessions have been collected are shown in Figure 22. No clear 

patterns of correlation between seed ODAP concentrations and collection sites emerge 

from these data. Accessions from the dry and hot Tigray region in the north of the country 

do not show higher or lower ODAP concentrations than accessions from the more 

temperate Amhara and Oromia regions in the centre of the country. The three 

westernmost districts represented in the population (districts Bure, Nejo and Nole Kaba, all 

in the Oromia region) all had seed ODAP concentrations below the population average. This 

is also the part of the country with the highest annual rainfall. However, as each of these 

three districts is represented by only a single accession in the population, this may not be a 

valid correlation. More accessions from this region would need to be tested to ascertain if a 

robust correlation exists. 
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Figure 20. Map of Ethiopia, coloured according to the average ODAP concentrations of grass pea accessions 
originating from each district (woreda). Districts which are represented by ten or more accessions in the EIAR 
population are marked with the number of accessions sampled from there. Distributions of seed ODAP 
concentrations of accessions from these districts are shown in Figure 22. Figure produced using Photoshop CS5. 
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Figure 21. Maps of Ethiopia showing A) average annual rainfall in mm and B) average annual maximum 
temperatures in °C (Vreugdenhil et al., 2012). Figure reproduced with permission. 
 



57  Chapter 2 – Screening grass pea germplasm for low-ODAP genotypes 

 

 
 

  

Figure 22. Distributions of seed ODAP concentrations of accessions originating from individual districts (woredas) 
in the EIAR grass pea population. Districts represented by ten or more accessions in the population are displayed. 
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For a subset of the EIAR population (287 accessions) the accession passport data included 

the altitude of the collection sites. The Ethiopian highlands are a geologically young region 

with an extremely varied landscape marked by steep sloped mountains and deep valleys  

(Williams et al., 2004). I plotted the seed ODAP conccentration of accessions for which 

altitude data were available against the altitude of their collection sites to test whether 

there was any correlation between the two factors (see Figure 23). All seeds used in this 

experiment were grown at DZRC, Bischoftu, Oromia, Ethiopia, at an elevation of 1920 m. 

 

Figure 23. Seed ODAP concentrations of accessions of the EIAR population for which passport altitude data was 
also available plotted against the altitude of their collection site. A linear trend line is displayed.  

No association between altitude of collection sites and seed ODAP concentration was 

observed. A linear regression produced a virtually flat slope (m = -3.6 x 10-7) with extremely 

low explanatory power for the variation in the data (R2 = 3.7 x 10-6). This implied that there 

was no genotypic adaptation of the levels of seed ODAP to different altitudes, or at least 

none that persists when accessions are grown side by side. This could be because there is 

no evolutionary or breeding pressure selecting for different seed ODAP levels at different 

altitudes or because the amount of seed exchange and intercrossing of accessions between 

cultivation areas of different altitude obscures any genotypic differences in ODAP 

production that do exist.  

The absence of associations between altitude or geographic origin and seed ODAP levels 

suggests that different levels of ODAP production do not confer advantages or 

disadvantages in the different agricultural settings in the geographic range investigated. In 
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contrast, the absence of any zero- or very low ODAP accessions in this landrace collection 

could imply that ODAP fulfils some physiological role in the plant and that its absence might 

be selected against by evolution or breeding. A comparison across a number of different 

growth conditions of near-isogenic lines of grass pea differing only in the ODAP production 

in their tissues would be necessary to ascertain whether low or zero-ODAP content in the 

seed would compromise the crop in agricultural settings.  

2.3.6 Screening for L-2,3-diaminopropionic acid accumulating accessions  

One limitation of any spectrophotometric assay based on absorbance at a single 

wavelength of visible light is a lack of specificity. Any other compound in the sample that 

also causes absorbance at 420 nm would distort the ODAP measurement. One way to 

exclude this background noise was to take a second measurement of absorbance at 420 nm 

of samples that had not been hydrolysed prior to mixing with the OPA/β-mercaptoethanol 

reagent buffer. Subtracting the absorbance of the non-hydrolysed sample after the colour-

forming reaction removes the absorbance caused by the sample container, buffer, 

compounds unaffected by the hydrolysis and suspended particles. The difference between 

the two absorbance readings corresponds to compounds that were affected by the 

hydrolysis treatment, in particular ODAP, which is turned into L-DAP, and reacts with the 

OPA reagent.   

Measuring the absorbance of the non-hydrolysed extract in the presence of the reagent 

buffer also accounts for any L-DAP that may already be present in the sample before 

hydrolysis. While L-DAP has never been shown to be present at measurable levels in grass 

pea tissues, it has been proposed as the intermediate immediately preceding β-L-ODAP in 

its synthetic pathway (Ikegami et al., 1999; Kuo et al., 1994; Kuo and Lambein, 1991). Any 

such L-DAP would react with β-mercaptoethanol and o-phthalaldehyde in both the 

hydrolysed and non-hydrolysed samples. By subtracting the absorbance values of the latter 

from the former, this could be excluded, leaving the difference as a measure of hydrolysed 

ODAP. Among the accessions screened in these experiments, none showed abnormally 

high absorbance readings at 420 nm in samples that had not undergone the hydrolysis 

treatment. If any such samples had been observed, this would have pointed to these 

accessions being L-DAP accumulators, which could have provided insight into the 

biosynthesis of β-L-ODAP. However, no accessions accumulating levels of L-DAP that could 

be measured using the spectrophotometric assay were present among the accessions 

included in this study.  
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2.4 Summary 

I screened three grass pea populations by measuring the amount of ODAP in bulk seed 

meal samples using a spectrophotometric assay, with the aim of identifying grass pea 

accessions with low amounts of ODAP in their seeds. I screened two international 

germplasm collections, which included accessions from all countries in which grass pea is 

currently cultivated or has been cultivated in the recent past. I also screened a population 

of landraces collected from the Ethiopian highlands, one of the regions where grass pea is 

currently grown as a significant food crop. By including germplasm from a wide 

geographical distribution as well as germplasm that had been developed through centuries 

of informal selection in a highly divided landscape, I aimed to capture as much as possible 

of the existing genetic diversity of grass pea in order to identify low-ODAP genotypes that 

could be used for future breeding programmes. However, my screen did not identify any 

new low-toxin accessions – the only accessions with seed ODAP concentrations below 0.1 

% w/w derived from breeding programmes and do not represent previously unknown low-

toxin genotypes. Among the Ethiopian germplasm, one accession showed intermediate 

seed ODAP concentration of around 0.14 % w/w, which is similar to previously identified 

medium-toxin varieties such as Pusa-24 or Nirmal. This accession may be of value to 

breeders if ODAP levels are not greatly increased under conditions of environmental stress. 

No geographical patterns of seed ODAP concentrations were identified in either the 

international or the Ethiopian populations. These results reflect the difficulty that breeders 

have faced in developing low-ODAP grass pea material over the course of the past fifty 

years. As the natural variation for this particular trait appears to be limited, with only very 

few low-ODAP and no zero-ODAP accessions identified, it may be very difficult to breed 

zero-ODAP varieties using natural variation alone. I concluded that a means to induce 

greater genetic diversity for this trait might be necessary to achieve this breeding objective. 
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Chapter 3 – Identification of low-ODAP 

grass peas from a mutagenised population 

3.1 Introduction 

3.1.1 Increasing genetic variation by mutagenesis 

The genes underpinning the synthesis of ODAP in plant tissues are still unknown and the 

available genomic and genetic resources for grass pea are limited. A classical approach to 

increasing the available variability of traits in plant populations has been to induce a higher 

than natural rate of mutations, by the application of physical, chemical or biological 

mutagens. The Mutant Variety Database maintained by the UN Food and Agriculture 

Organisation, includes more than 3200 varieties derived by mutagenesis of over 215 plant 

species, three quarters of them crops (FAO/IAEA, 2016) This is particularly useful in 

situations where the loss of a function, such as the biosynthesis of a toxin, is the goal. In 

the past, this approach has, for example, been used to reduce the concentration of 

antinutritional factors in common bean (Sparvoli et al., 2016) and soybean (Manjaya, 

2009). Crucially, this kind of mutagenesis does not require any of the regulatory or 

biosynthetic genes to be known, as the screen operates entirely on the level of phenotypes.   

In addition, mutagenesis as a tool for crop improvement is largely free of the legal 

regulatory hurdles that complicate the introduction of genetically modified crops in most 

jurisdictions (Parry et al., 2009). With the exception of Canada, currently the only country 

where mutant varieties are regulated as ‘plants with novel traits’ along with genetically 

modified varieties and some conventionally bred varieties (Jones, 2015), most jurisdictions 

do not place plant varieties derived by random mutagenesis under any specific regulation 

beyond rules applying to all new plant varieties (Kumar et al., 2017). 

As there is no readily available means of eliminating the production of β-L-ODAP by 

conventional breeding (Kumar et al., 2011a), due to the absence of β-L-ODAP-free relatives 

in the gene-pool, a mutagenesis approach may be the most promising route to toxin-free 

grass peas. Drawbacks of mutagenesis are the high cost and practical difficulties of growing 

and screening a sufficiently large population of mutants, and the difficulty of identifying the 

causative mutations at the molecular level. To conduct a mutant screen for low-ODAP grass 
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pea mutants two things are needed: a mutant population of sufficient size and mutation 

density and a robust and efficient method of measuring ODAP. 

 

3.1.2 Approaches to mutagenesis 

A number of different strategies have been used to generate mutagenised populations of 

plants for research and breeding purposes. Mutagens broadly fall into three separate 

categories: physical, biological and chemical. Physical mutagenesis is achieved by 

bombarding plant tissues with high doses of radiation. The most commonly used physical 

mutagens are fast neutrons and γ-radiation. These physical mutagens disrupt the DNA, 

causing large deletions, which normally lead to the complete inactivity of affected genes. 

Biological mutagens are nucleic acids, such as transposons or T-DNA introduced using 

Agrobacterium tumefaciens, which are embedded in the genome often with a bias towards 

insertion in gene-rich regions. These typically cause the genes they insert into or near to to 

be inactivated, but they may also result in gain-of-function alleles, e.g. by activating a 

normally silent host gene. A drawback of physical and biological mutagens for use in a 

mutant screen is that they cause high mortality among mutants, limiting the density of 

mutations that can be achieved (Maple and Møller, 2007). Chemical mutagens are 

compounds that interfere with a cell's ability to repair its own DNA or themselves cause 

mutations by intercalating into the DNA double helix, causing errors in endogenous DNA 

replication. Chemical mutagens generally cause smaller scale mutations, such as single 

nucleotide replacements or small insertion/deletion mutations. These can result in the 

complete inactivation of a gene, but also in different levels of expression or activity of the 

gene product and, in rare cases, loss or gain of specific regulatory or metabolic functions of 

a gene. This can be an advantage compared to physical and biological mutagens, as it 

allows the generation of allelic series of mutants with varying levels of activity, in addition 

to null alleles. For example, the allelic series comprising a complete knockout mutation and 

six missense changes with less severe effects in the rice OsDREB (dehydration responsive 

element binding) gene provided promising material for the development of rice cultivars 

with improved drought resistance (Till et al., 2007).  

Grass pea is a diploid (2n=14) species (Campbell, 1997). This limits the doses of mutagens 

that can be applied, as many essential genes may have only one copy in the haploid 

genome, causing any inactivating mutations to be homozygous lethal, resulting in a high 

death rate of mutants. On the other hand, the same reasoning makes it easier to discover 
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loss-of-function mutations of non-essential genes. In a series of studies published in 

1976/77 Nerkar subjected several grass pea cultivars to γ-rays, as well as 

ethylmethanesulphonate (EMS) and N-nitroso-N-methyl urea (NMU), two commonly used 

chemical mutagens, finding EMS and NMU to be more effective at causing mutations, 

although the effects differed according to the grass pea genotype used (Nerkar, 1976, 

1977b, a). These three mutagens were also compared in a 1987 study by Singh and 

Chaturvedi, who found γ-rays to be most efficient in causing mutations (i.e. causing the 

least damage per mutation), while being the least effective (in terms of mutations per 

comparable dose). NMU was found to be the most effective, but least efficient, while EMS 

was intermediate in both measures (Singh and Chaturvedi, 1987). These results contrast 

with the findings of a 2001 study by Waghmare and Mehra, who found EMS to be more 

efficient and effective than γ-rays (Waghmare and Mehra, 2001), as observed in other 

legumes (Kharkwal, 1998; Shah et al., 2008). A 2012 study by Tripathy et al. compared EMS 

and γ-rays to the chemical mutagen N-ethyl-N-nitro-N-nitrosoguanidine (ENNG) and found 

the latter to be the most effective and efficient mutagen (Tripathy et al., 2012). 

Mutagenesis has already been used to increase the amount of available variation of traits 

in grass pea. The first attempt to generate low-toxin mutants by means of chemical and 

physical mutagens was made by Nerkar (1972), who claimed to have identified low-toxin 

mutant families, although no toxin-free mutants were found. However, a total of only 974 

individual M2 plants (split into four separate mutagenesis treatments) were screened and 

the limited amount of detail given on experimental procedures and characteristics of the 

reported mutants restrict the usefulness of this study. A larger mutant screen using N-

nitroso-N-methylurea (NMU) and sodium azide (NaN3), involving 1640 M2 families derived 

from the two Polish cultivars Derek and Krab, was conducted in 2003 (Rybiński, 2003). This 

study selected 20 mutant families from the population and then screened for variation in a 

range of phenotypes of leaf, stem, stipule, flower, pod and seed morphology, plant habit, 

branching and maturation as well as variation in agronomically relevant traits impacting on 

yield, including seed weight per plant, 100-seed weight and days to maturity. In a follow-up 

study, the researchers also identified mutants in seed microstructure (Rybinski et al., 2006). 

The researchers did not, however, screen for variation in ODAP content. As part of another 

mutant screen for morphological mutations, performed using gamma irradiation, dwarf 

mutants, distichous pedicel (double-flowered) and tendril-less mutants of grass pea have 

been identified (Talukdar, 2009a, b, 2013) Despite the obvious utility of toxin-free grass pea 

varieties and the likely amenability of this breeding goal to a mutant screen approach, no 



64  Chapter 3 – Identification of low-ODAP grass peas from a mutagenised population 

 

 
 

sufficiently large screen has been published identifying low- or zero-toxin mutants. This is 

likely due to the low priority of grass pea for most research funding bodies and the 

practical difficulty of screening a large population of grass pea mutants for their ODAP 

content. 

 

3.1.3 Selecting an appropriate screening method 

As discussed in the previous chapter (see section 2.1.4), a number of methods for 

measuring β-L-ODAP in grass pea and ginseng (Panax spp.) tissues have been described in 

the literature, including capillary zone electrophoresis (CZE) (Arentoft and Greirson, 1995), 

high performance liquid chromatography (HPLC) (Yan et al., 2005), liquid chromatography 

mass spectrometry (LCMS) (Koh et al., 2005) and gas chromatography mass spectrometry 

(GCMS) (Xie et al., 2007). The method that has been used most widely to measure ODAP in 

grass pea samples, especially when large numbers of samples were processed, is the 

spectrophotometric method, also called the ‘Rao-method’ (Rao, 1978), which has been 

modified and improved by other researchers (Briggs et al., 1983; Hussain et al., 1994). 

Although it is less accurate and sensitive than some other methods, its low cost in terms of 

equipment and consumables have made it the method of choice for many laboratories 

(Tadesse and Bekele, 2003b; Campbell, 1997; Srivastava and Srivastava, 2006). Crucially, 

the chemistry of this assay method allows the processing of many samples in parallel, 

which can be measured rapidly using a plate spectrophotometer. In contrast, CZE and 

chromatography-based methods all rely on sequential measurement of samples. These 

processes can be automated using an autosampler, but not parallelised without prohibitive 

costs. While these methods are clearly preferable for the accurate measurement of ODAP 

content in a small number of samples, they cannot easily be scaled up to assay the tens of 

thousands of samples that need to be processed during a mutant screen. The aim of my 

mutant screen was to identify mutants with severely reduced ODAP content and in 

particular entirely ODAP-free mutants. Because of the large expected difference between 

wild-type-levels of ODAP and the ODAP contents in mutants in ODAP synthesis, a highly 

accurate assay was not required. Hence, the level of accuracy provided by the 

spectrophotometric method was sufficient for this application. After developing a scaled-

down, plate-based version of the assay, which I used to measure ODAP concentrations in 

the seeds of grass pea germplasm collections, as described in the previous chapter, I 

improved the assay for the purposes of a mutant screen by parallelising and streamlining 
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several of its steps. The assay cannot differentiate between the two isomers α- and β-L-

ODAP, but instead measures total ODAP levels. Hence the mutant screen could strictly 

speaking only identify low-ODAP mutants, rather than low-β-L-ODAP mutants, but because 

β-L-ODAP represents 95 % of the total ODAP in grass pea tissues (Roy and Rao, 1968) and 

the two isomers are able to interconvert in aqueous solutions (Abegaz et al., 1993), a 

measurement of total ODAP was considered sufficient to identify low-β-L-ODAP mutants. 

 

3.1.4 Plant tissue used for the mutant screen and adaptations of the screening method 

The ODAP toxin is present in all tissues of the plant, but accumulates to the highest levels in 

seeds and young tissues of the shoot. ODAP concentrations are particularly high in young 

shoot tips of seedlings, in young leaves and immature seeds (Jiao et al., 2006; Srivastava 

and Srivastava, 2006). Flowers, roots, stems, tendrils and mature leaves of the plant 

contain only small amounts of the toxin. It is unclear whether the toxin is synthesised in all 

of these tissues or is synthesised only in some tissues and then transported into others. As 

the toxin is a very small water-soluble metabolite, it is conceivable that it might be 

passively transported into some tissues, without a specific transport mechanism. The 

spectrophotometric assay for ODAP was first described for seed meal samples because this 

is the tissue most used for human consumption. It has since been used to measure ODAP 

concentrations in other tissues as well. However the use of seed meal samples poses two 

problems for a large-scale mutant screen. 

Firstly, it is conceivable that ODAP may be synthesised in maternal tissues and deposited 

into the seed during seed development. Thus, even if an embryo of the M2 generation 

carries a homozygous mutation that prevents all ODAP production, its cotyledons may 

contain some ODAP that has been synthesised in its heterozygous mother plant. In order to 

prevent this, the next generation of seeds (M3) would have to be assessed, which would 

require many thousands of M2 plants to be grown to maturity. 

Secondly, grass pea seeds are very hard when dry and do not break when shaken with 

grinding beads. The only ways to obtain seed meal is by using a drill or mill. Drilling seeds is 

a useful method to obtain meal from the storage cotyledons of a seed without destroying 

the embryo, allowing the same plant to be planted and grown to maturity. However, it is a 

laborious procedure, as each seed has to be individually chipped to remove the tough 

testa, fixed under the drill and carefully drilled to collect the meal. Afterwards, the drill 
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needs to be cleaned well to prevent contamination. While mills or grinders can break down 

the testa, they require larger amounts of seeds, necessitating the bulking of seeds (which 

might be segregating for ODAP content). This may lead to mutants in segregating M2 

families being overlooked and only mutant families with the necessary number of seeds 

can be included. In addition, cleaning out a mill after each sample is even more time 

consuming than cleaning a drill.  

An alternative to using seed meal samples is to collect samples of young shoots that have 

just emerged from the soil. This tissue contains very high concentrations of ODAP, even 

exceeding levels in the seeds (Jiao et al., 2006). As this is a tissue grown independently 

from the mother plant, the risk of confusing maternal effects is reduced. However, it is still 

possible that part of the ODAP measured in the young shoot has been synthesised in the 

mother plant, deposited in the seed and then translocated into the young shoot upon 

germination.  

Shoots contain chlorophyll, which absorbs light at the wavelength that is used in the 

spectrophotometric assay for ODAP (420nm). If chlorophyll is extracted alongside ODAP, 

this may result in an unwanted background reading in the assay. For this reason, water 

needs to be used for the extraction, rather than ethanol, which has been used in some 

variations of the Rao method (Briggs et al., 1983), as the solubility of chlorophyll in water is 

much lower than in ethanol. 

Due to the number of samples that need to be collected, variation in the time needed to 

imbibe and germinate seeds and unavoidable variation in the orientation of the seed and 

the planting depth, the stage of development of the seedlings varies after seven days. 

Instead of collecting samples from each mutant family after the same amount of time, 

samples should be collected at the same stage of seedling development, as far as possible. 

Due to variability resulting from collecting shoot tips by hand from seedlings at varying 

stages of development, some variation in the fresh weight of collected samples was 

unavoidable. It might have been possible to weigh each sample after collection in order to 

normalise the results of the assay by the weight of each sample. However, this slows down 

sample collection significantly. Sample weight variation was estimated to be unlikely to 

account for more than a twofold variation in the assay result based on a preliminary 

experiment weighing a subset of the selected shoot tip samples (data not shown). The aim 

of the mutant screen was to find metabolic mutations that make the plants incapable of 

producing the toxin. Thus the only reading expected in true zero-ODAP mutants would be 
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at the background level due to the limited sensitivity of the assay and potential maternal 

effects. Therefore, I chose not to weigh samples before extraction, and instead rely on 

retesting to remove false positives that were selected only because of their low sample 

weight. 

3.1.5 Pathway analysis by mutant screening 

Mutants found by screening a mutagenised population can be used to study biochemical 

pathways (Huang and Sternberg, 2006). In many cases, the phenotype that the mutant 

screen selects for, such as the abundance of a specific metabolite, is affected by several 

genes. These include genes that encode enzymes, which catalyse successive steps in the 

metabolic pathway and regulatory genes, which encode gene products that regulate the 

expression and activity of these enzymes. By crossing mutants and testing the F1 

generation for whether they exhibit a mutant or wild type phenotype for the trait in 

question, it is possible to identify complementation groups, each of which is composed of 

individuals carrying different mutations in the same gene. By screening enough mutant 

families and assigning them to complementation groups, it is possible to ascertain the 

number of metabolic and regulatory genes that significantly affect the trait. By analysing 

the metabolite profiles of these mutants it is possible to identify the metabolic steps that 

are affected by the mutations in each complementation group. Metabolites that 

accumulate beyond the wild type levels are likely to be upstream of the enzyme affected by 

the mutation, while metabolites with reduced levels in the mutant are likely to be 

downstream of the affected enzyme. These data can also be used to support or refute 

whether certain metabolites are intermediates in a biochemical pathway. 
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3.2 Materials and methods 

3.2.1 Origin of the mutant population 

The mutant population used in this screen was provided by Manash Chatterjee of 

BenchBio, Gujarat, India. The parent variety used in the mutant screen, designated 

LSWT11, was obtained from an Indian plant breeder. The variety is a common landrace in 

this part of India, with a medium to high ODAP content, small, dark and mottled seeds and 

blue flowers. The variety did not undergo single seed descent before being used for 

mutagenesis. Mutagenesis was performed by the company BenchBio using a proprietary 

mutagenesis protocol (Chantreau et al., 2013) employing EMS at a concentration of 0.75 %. 

This method of mutagenesis was used to generate a mutant population that could also be 

used for a reverse genetic TILLING (targeting induced local lesions in genomes) approach. 

The mutagenized generation of seeds (M1) was sown in India and grown to maturity to 

collect M2 seeds. Each M1 plant was grown in isolation to prevent outcrossing. All seeds 

from one M1 plant formed one M2 family and each M2 family was collected into an 

individual seed packet. All seeds were treated with the fungicide Thiram to prevent growth 

of mould. An overview of the process used to generate the mutant population and of the 

terminology used to describe the different generations of seeds and plants is shown in 

Figure 24. 
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Figure 24: Schematic representation of the procedure used to generate the material used in the mutant screen and 
of the terminology used in this thesis. Steps A, B and C were performed by BenchBio, Vapi, Gujarat, India, steps D, E 
and F were performed at JIC as part of this thesis. 

A    M1 seed – treated 
with 0.75% v/v EMS 
solution to cause 
mutations 

12x 12x 12x 

B    M1 plants – grown in 
isolation, each giving rise 
to one M2 family by self-
fertilisation 

C    M2 seed were treated 
with Thiram to prevent 
moulding and collected 
into seed packets (one 
packet per family) 

D    M2 seedlings were 
used for the ODAP 
assay, the plants were 
left to re-sprout after 
sample collection 

E    selected M2 plants 
(low-ODAP and 
morphological mutants) 
were potted up and 
grown to maturity 

other M2 
seedlings were 

discarded 

F    M3 seeds were 
collected and used for 
further experiments 
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3.2.2 Assessment of mutation density 

To estimate the mutation density of the mutant populations, large-effect chlorophyll 

mutations, such as albino, xantha and chlorina mutations were counted among the 

seedlings of the mutant population while conducting the screen. In addition, DNA was 

extracted from one plant each of 768 M2 families to measure heterozygosity and mutation 

density. Leaf samples were collected into 1.2 ml sample collection tube strips, which were 

stacked into plates for parallel processing. Four young leaflets were collected from each 

plant, aiming for 100 mg of fresh weight. Samples were flash frozen in liquid N2 and 

lyophilised in a Virtis BenchTop SLC® freeze-drier (Virtis, Gardiner, New York, USA) for 48 h. 

A 4 mm steel grinding ball was added to each sample. Samples were ground by shaking at 

20 Hz for one minute, followed by inverting the tubes and shaking at 20 Hz for another 

minute. Tubes were centrifuged at 2500 g for 20 seconds to detach sample powder from 

the lids of the collection tubes. To extract DNA, 750 µl of extraction buffer (200 mM Tris-

HCl pH 7.5, 2 M NaCl, 25 mM EDTA, 0.5 % v/v sodium dodecylsulfate (SDS), 2 % v/v 

polyvinylpyrrolidone (PVP)), pre-heated to 65 °C, were added to each sample. Samples 

were further homogenised and re-suspended by shaking for 1 minute at 30 Hz, inverting 

the plate and shaking again. Plates were clamped between metal plates to prevent tubes 

from opening and submerged in a water bath at 65 °C for 60 minutes, followed by 

centrifugation at 5000 g for 15 minutes. The supernatant from each tube was transferred 

into a new tube and 400 µl of phenol:chloroform were added. Tubes were sealed 

immediately, inverted ten times to mix the contents and centrifuged at 5000 g for 15 

minutes. The upper (aqueous) phase was removed to new collection tubes and an equal 

amount of chloroform was added. Tubes were again sealed, inverted ten times and 

centrifuged at 5000 g for 15 minutes. The aqueous phase was transferred to new collection 

tubes. DNase-free RNase was added to a concentration of 20 µg/ml followed by incubation 

at 37 °C for 15 minutes to degrade contaminating RNA. To precipitate DNA, 40 µl 3M 

sodium acetate pH 5.2 and 400 µl 100 % isopropanol were added and mixed by inverting 

the tubes. Tubes were left at room temperature for an hour and centrifuged at 5000 g for 

45 minutes. The supernatant was poured off and the pellet was rinsed with 400 µl 70 % v/v 

ethanol (pre-chilled on ice) and left at 4 °C for 1 hour. Samples were centrifuged at 5000 g 

for 10 minutes to reattach the pellets. The supernatant was poured off and the washing 

step (adding ethanol, incubation at 4°C and centrifugation) was repeated once. The 

supernatant was removed and pellets were left to air-dry. Dried DNA samples were shipped 

to Brad Till at the joint laboratory of the International Atomic Energy Agency (IAEA) and the 
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Food and Agriculture Organisation (FAO) of the United Nations in Seibersdorf, Austria. The 

heterozygosity present in the parent variety and the mutation density in the mutant 

population were estimated by Ayse Sen and Brad Till using the methods described by Till et 

al. (2006).  

3.2.3 Optimisation of seed scarification  

A number of scarification and seed priming techniques were compared to identify the most 

suitable method to improve germination rate and synchronicity for the mutant screen. Dry 

control seeds were compared to seeds that had been scraped using sandpaper and seeds 

that had been chipped using scissors. In addition, chipped and non-chipped seeds were 

soaked in water overnight.  All seeds (12 seeds each of untreated and dry scraped sets, 24 

seeds each of wetted only, wetted scraped and wetted chipped sets) were sown into 

individual pots containing John Innes No. 2 compost with 20 % v/v grit. Germination was 

scored 7 days later. 

For sandpaper scarification, seeds were placed on a foam mat soft enough that the seeds 

could be slightly pressed into it to hold them in place during scratching. Because some 

seeds were liable to break during the scarification process, 15 seeds from each M2 family 

were scarified together, to ensure that at least 12 would be intact for sowing. Seeds were 

then scratched using medium-coarse sandpaper glued to the bottom of a pipette tip box as 

shown in Figure 25. The sandpaper was surrounded by a 2 mm deep plastic edge that 

prevented it from scraping directly on the foam mat. Holding the pipette box, it was 

possible to press the seeds into the foam to stop them from flying out and scarify them by 

vigorously moving the box back and forth for about 15 seconds. 

 
 

 

A B 

Figure 25. Rapid scarification method for grass pea seeds A) Sandpaper at bottom of pipette tip box and 
foam mat (face-down mouse mat) B) 15 seeds of each M2 family were rubbed for about 15 seconds. 
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3.2.4 Growth conditions and sample preparation for the mutant screen 

The mutant screen was conducted in two parts: a pilot screen including 768 M2 families 

and a main screen including the remaining 2352 M2 families. The purpose of the pilot 

screen was to estimate the variability of ODAP content in the population, test all the 

methods associated with the mutant screen and resolve any problems. Consequently, 

minor changes were made to some of the methods for the main screen, as described in the 

following. 

Seeds of M2 families were scarified with sandpaper as described in the previous section. 

The scarified seeds were sown individually into 13x22 well trays (pilot screen) or 12x19 well 

trays (main screen) filled with John Innes No. 2 compost with 20 % v/v grit, covered with 

sieved John Innes No. 2 and watered immediately. The trays were then placed in a lit (HQI 

lamps), temperature-controlled (18°C during night, 25°C during day) glasshouse for the 

pilot screen (September to December) or an unlit, heated glasshouse (min. 15°C) for the 

main screen (April to June), as shown in Figure 26. During the main screen, the trays were 

separated using white transparent perspex dividers, in order to prevent plants from 

different trays from getting entangled. Plants used in the crosses (October to February) 

were grown under sodium lamps in a heated glasshouse (min 15°C). 

 

 

Figure 26. Arrangement of plants in 12x19 well trays during the main screen, just before harvesting. Each 
column of seedlings in a tray represents one M2 family.  
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For the pilot screen, three additional seeds of each family were scarified and planted in the 

thirteenth row at the bottom of each tray. These seedlings were then used to replace those 

seedlings in the other twelve rows that did not germinate, just before harvesting shoot tips. 

All seedlings in the thirteenth well that were not needed were discarded. While these 

replacement seedlings allowed for a reduction in the number of missing samples in the 

assay, it proved to be very laborious and slowed down the collection of samples 

significantly. This would have made it difficult to collect a much larger number of young 

shoot samples in one day, as was needed for the main screen. It was therefore decided not 

to sow replacement seeds in the main screen. This also made it practical to switch to larger 

trays with only 12 rows, which allowed more soil and space for each seed. 

Seven to nine days after sowing, depending on the growth stage of the seedlings, cuttings 

between 5 mm to 10 mm long from the top of each seedling were collected, aiming for 15 

mg of fresh weight as shown in Figure 27. Samples were collected using atraumatic surgical 

tweezers with horizontal teeth (Graefe Fixation Forceps. World Precision Instruments, 

Sarasota, Florida, USA), which allowed harvesting without crushing the samples, thus 

reducing the risk of cross-contamination. The samples were placed into 1.2 ml deep-well 

polystyrene plates which were sealed with a gas-permeable film. The plates were stored on 

dry ice prior to freeze-drying. 

 

 

Figure 27. Sample collection using Graefe fixation  
forceps. 
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For each sample plate a form was completed to record which mutant family was placed in 

each row of the plate. As twelve samples were collected of each mutant family, each family 

was placed in a single row on the plate. Seeds that failed to germinate were skipped, 

resulting in empty wells on the collection plate. Skipped seeds were noted down on the 

collection form, so they would not result in false positives, i.e. samples that were counted 

as ODAP-free. The dates of sowing and sample collection as well as any unusual 

observations such as albino seedlings were also noted. Each collection form was then 

digitised using an html-form (see example form in Appendix 2.1), which created a text-file 

containing the metadata for each plate. This file was used by the data analysis script 

(described below) to match absorbance readings to the individual plants (listed by their 

positions in the growth trays) and to exclude missing samples.  

As the assay procedure was more time consuming than the sampling procedure, some 

samples had to be stored until they could be assayed. Samples were lyophilised for 36 h in 

a BenchTop SLC® (Virtis, Gardiner, New York, USA) freeze-dryer. After this, the samples in 

the 96-well collection plates, were sealed in gas-impermeable bags together with a pouch 

of silica gel, and were stored at 4°C prior to the assay.  

Plants were left to grow while assays were conducted and rapidly developed new branches 

from cotyledal buds or, where present, axillary buds. Leaf samples were collected from the 

same plants. Perspex dividers were placed between trays as shown in Figure 28. Plants that 

were selected as putative low-ODAP mutants were re-sampled by harvesting the top 

leaflets eight and ten weeks after sowing for the second and third passes of the mutant 

screen, respectively. At this stage, plants that had produced flowers were screened for 

flower colour mutations, which may eventually be useful as phenotypic markers for varietal 

development. All plants that had been selected in the third pass of the mutant screen and 

all flower colour mutants were transferred into individual pots. Other plants were 

discarded. 
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Figure 28. Three weeks after sowing, perspex dividers were inserted between the trays to stop plants from 
different trays from getting entangled.  

 

3.2.5 The high-throughput spectrophotometric assay 

To aid the extraction of ODAP, the samples had to be homogenised. A 4mm steel ball was 

added to each well containing a freeze-dried tissue sample (see Figure 29) and each plate 

was covered with a reusable silicone sealing mat. 

 

Figure 29. Deep-well plate containing freeze-dried shoot tip samples and  
steel balls prior to grinding 

 

The samples were pulverised by shaking the plates for 30 seconds at 18 Hz, before inverting 

the plate and repeating. Shaking frequencies above 18 Hz had to be avoided as higher 
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speeds risked the bottoms of the extraction plates being shattered by the grinding balls if 

no liquid medium was present. Care was also taken to remove any glue debris, which could 

fall into the wells if plates were sealed with self-adhesive film and placed into a -80°C 

freezer, since glue in the wells prevented proper grinding.  

To extract ODAP from ground tissue samples, 600 µl of sterile dH2O was added to each 

sample and the reusable silicone sealing mat was replaced. Shaking was repeated for 30 

seconds at 25 Hz for two orientations of the plate to suspend the sample meal and to break 

down the tissue further. As the water in the container softened the impact of the grinding 

bead, this shaking frequency did not break the bottom of the container. The plates were 

clamped between aluminium plates to prevent the build-up of pressure inside the wells 

from breaking the seal. The plates were then submerged in a water bath at 95°C for 20 

minutes. This arrangement is shown in Figure 30. 

After centrifugation of the plates for 10 minutes at 2500 g, 80 µl of extract were 

transferred into a PCR plate containing 160 µl of 3M KOH. The plates were sealed, clamped 

and submerged in the water bath at 95°C for 30 minutes.  
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Figure 30. Stack of deep-well plates containing ground seedling shoot tip  
samples and water and sealed with silicone mats. Collection plates are  
separated by aluminium plates and held together by clamps 

 

To prepare 100 ml of the o-phthalaldehyde/tetraborate reagent for assaying ODAP, 82 mg 

of o-phthalaldehyde (Sigma-Aldrich, St. Louis, Missouri, USA) were dissolved in 818 µl 

ethanol and 164 µl β-mercaptoethanol. Separately, 12.5 g of potassium tetraborate 

tetrahydrate (Sigma-Aldrich, St. Louis, Missouri, USA) were dissolved in 99 ml of dH20, 

forming a 0.409 M solution. The mixture was gently warmed in a water bath to help 

dissolve the potassium tetraborate tetrahydrate and allowed to cool to room temperature 

before the OPA/ethanol/β-mercaptoethanol solution was added. The spectrophotometric 

method described by Briggs et al. uses a more concentrated version of this reagent buffer 

with a potassium tetraborate concentration of 0.5 M, but additional dH2O is added to the 

hydrolysed sample extracts prior to the colour-forming reaction (Hussain et al., 1994; 

Briggs et al., 1983). The reagent could be kept at 4 °C for up to three days before use.   

Two clear optical flat-bottomed plates (Greiner Bio One, Kremsmünster, Austria) were 

prepared for each plate of samples. In the first, 30 µl of hydrolysed extract and 220 µl of 
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OPA/tetraborate buffer were added to each well. In the second, 20 µl of 3 M KOH, 10 µl of 

non-hydrolysed extract and 220 µl of OPA/tetraborate buffer were added, and left for no 

longer than five minutes between combining the KOH solution and extract before addition 

of the tetraborate buffer. The absorbance at 420 nm was measured in each well of 

hydrolysed and non-hydrolysed sample. Readings were taken at 25°C using an automated 

absorbance plate reader (VersaMax, Molecular Devices, Wokingham, UK). The procedure of 

the spectrophotometric assay is summarised in Figure 31. 
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Transfer 30 µl of hydrolysed 

extract to a flat-bottom plate 

Collect 10 - 20 mg of seedling 

shoot tips (fresh weight) on dry ice 

Add a grinding bead to each well 

Grind samples in plate using TissueLyser 

Add 600 µl dH2O to the sample and grind again 

Incubate at 95 °C for 20 min in a water bath 

Centrifuge at 2575 g for 10 min 

Add 80 µl of extract to each well 

prepare PCR plate with 160 µl of 3 M KOH per well 

Incubate plate at 95 °C for 30 min 

in a water bath 

add 220 µl OPA/tetraborate buffer  

add 20 µl of 3 M KOH and 220 µl 

OPA/tetraborate buffer 

Transfer 10 µl of non-hydrolysed 

extract to a flat-bottom plate 

Shake and incubate at 

room temp. for 15 min 

Measure absorbance at 420 nm 

using plate reader 

Freeze-dry for 36h 

Shake and incubate at 

room temp. for 15 min 

Measure absorbance at 420 nm 

using plate reader 

Figure 31. Overview flowchart of the spectrophotometric method for measuring ODAP in plate format 
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3.2.6 Automated data handling 

Raw data from the assay were handled by a specially designed R-script (see Appendix 2.2), 

which read in the metadata for each plate from the digitised sample collection forms as 

well as the results from the hydrolysed and non-hydrolysed assays of each plate. The script 

then calculated an estimated ODAP content (using the formula described in section 2.2.7, 

but using a constant factor instead of the slope of a standard curve and without 

normalising for sample weight) for each sample and generated a single list with the results, 

containing one line for each sample. Every sample with an estimated ODAP content lower 

than half the median of its plate was then scored as ‘selected’, while all other samples were 

scored as ‘rejected’. These results were saved in a column containing ‘1’ for each selected 

sample and a ‘0’ for each rejected sample. 

To narrow down the number of selected samples by removing false positives caused by 

maternal effects, low sample weight or other factors, all plants that were selected in the 

first pass of the screen were tested again. By this point, the plants were between five and 

six weeks old and had grown up into a dense mat. Samples were collected from the 

youngest, not fully expanded leaves at the top of each plant. Samples that passed the filter 

again were tested a third time. In the third test, each sample was weighed prior to freeze-

drying in order to normalise the reading according to the sample weight. 

The high-throughput spectrophotometric assay was prone to a number of artefacts. In 

particular, specks of dust or scratches on the plates used for the spectrophotometric 

measurements caused very high spurious readings for some samples. This caused false 

negatives (high readings in low-toxin samples) when it occurred on the hydrolysed plates 

and false positives (low readings in normal-toxin samples) when it occurred on non-

hydrolysed plates. These false positives presented as individual samples with very low or 

even negative estimated ODAP contents, while the rest of the family was usually classified 

as ‘rejected’. The list of results was screened manually to remove these events, by 

inspecting the plates of each sample classed as selected to check whether a sample was 

present in the well, whether any specks of dust or debris might have interfered with the 

reading and whether the visible colour of the solution in each well was consistent with the 

reading provided by the plate reader. Samples that could be ruled out for any of these 

reasons and individual samples that gave only a borderline positive result with no other 

samples in the family being classed as ‘selected’, were curated out. 
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3.2.7 Confirmation of low-ODAP mutants by testing individual seeds 

To measure the β-L-ODAP concentration in seeds from low-toxin mutants identified in the 

mutant screen, as well as in the progeny of crosses performed to assess gene 

complementation and to enable pathway analysis, ODAP concentrations in individual seeds 

were assayed. The same method as described in section 2.2.4 was used. Briefly, seeds were 

clamped with a peg with rubber pads, orienting the embryo towards the peg. The 

cotyledons of the seed were carefully drilled using a benchtop drill (Xenox, Föhren, 

Germany), without breaking the seed or damaging the embryonic axis of the seed. Seed 

meal was collected into microcentrifuge tubes and freeze-dried. The weights of freeze-

dried samples were recorded. For measurements using the spectrophotometric method, 60 

% v/v ethanol was used as the extraction medium. ODAP concentrations were measured 

using the assay method from the original mutant screen. As negative controls, seeds of the 

Pisum sativum variety Cameor (provided by Anne Edwards, JIC) and Cicer arietinum flour 

(bought from Sainsbury’s Supermarket in Norwich – variety unknown) were included. 

3.2.8 Synthesis of 13C-labelled β-L-ODAP 

L-DAP.HCL (50 mg, Sigma-Aldrich, St. Louis, Missouri, USA) was dissolved in 0.9 ml of 

deionised water. The solution was adjusted to pH 10 using saturated LiOH solution and 

maintained at 30°C in a glycerol bath. Separately 0.5 ml of 13C diethyl oxalate (Sigma-

Aldrich, St. Louis, Missouri, USA) was mixed with 0.54 ml of ethanol. This mixture was 

added dropwise to the L-DAP solution over the course of two hours, while stirring at 30 °C. 

The experimental arrangement is shown in Figure 32. Every 10 minutes, the pH of the 

reaction solution was measured and adjusted back to pH 10 using LiOH solution.  
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Figure 32. Experimental arrangement for the transeste- 
rification reaction. The reaction mixture is stirred using a  
magnetic stir bar in the flask. The temperature of the  
water bath is automatically maintained at 30 °C. 

 

During this period, the transesterification reaction took place, producing the intermediate 

13C-labelled β-ethyl-oxalyl diaminopropionic acid and other products as shown in Figure 33. 

The reaction was left for another 30 minutes before evaporating to dryness under a 

vacuum at 40°C in a rotary evaporator (Rotavapor R-215, Büchi Labortechnik, Flawil, 

Switzerland). 
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Figure 33. Transesterification reaction forming 13C-labelled β-ethyloxalyl-L-diaminopropionic acid, along with 
other products. Ethanol is formed as a side product (not shown) 

 

The dry reaction products were suspended in 25 ml of water that had been adjusted to pH 

10 using LiOH solution. This solution was then heated to 70°C and incubated over 20h, 

while being stirred slowly. This resulted in the deprotection of the remaining ester group 

and the formation of 13C-labelled β-L-ODAP as shown in Figure 34. 

 

Figure 34. Hydrolysis reaction resulting in the deprotection of the remaining ester group, forming β-L-ODAP. 
Ethanol is formed as a side product (not shown) 

 

To remove salt, unreacted substrates and unwanted side products from the reaction 

products, the solution was passed through an ion-exchange column. The column was 

prepared by washing 9 ml of Dowex 50WX8-400 resin, first with water, then with 1 M HCl 
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to remove residues of degraded polymer. The column was then flushed with water until 

the flow-through was back at neutral pH. The reaction products were then passed through 

the column, followed by 25 ml of water to flush out residues of the reaction products, 

while retaining salts. The flow through was collected in a 100 ml flask as shown in Figure 

35A. The product was freeze-dried (SP Scientific Sentry 2.0, Virtis, Gardiner, New York, USA) 

overnight and weighed before re-dissolving in 50 ml of water.  

 

 

Figure 35. Experimental arrangements of A) the purification and desalting of reaction products and B) their 
purification and separation into 5 ml fractions. 

 

To remove remaining salts and to separate 13C-β-L-ODAP from the side products of the 

reaction, the products were passed through an ion exchange column a second time. The 

column was prepared and washed as before, but using 17.7 ml of Dowex 50WX8-400 resin. 

The dissolved reaction products (pH < 7) were passed through the column followed by 

water as shown in Figure 35B. The flow-through was collected into 35 fractions of 5 ml 

each. The column was then flushed with 300 ml of 0.2 M acetic acid, and 60 fractions of 5 

ml each were collected. Samples from each fraction were loaded on a 96-well microtiter 

plate, and the spectrophotometric assay for ODAP (as described in section 2.2.4) was 

A B 
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performed, measuring the absorbance at 420 nm of both hydrolysed and non-hydrolysed 

samples to identify which fractions contained L-DAP and ODAP. Appropriate fractions were 

then combined and freeze-dried. The dry combined fractions were tested using proton and 

13C spectra measured using a Bruker Avance III 400 MHz NMR instrument (Bruker, Billerica, 

Massachusetts, USA) and analysed using the TopSpin version 3.2 software package. The 

resulting spectra were compared to the spectra of the two isomers of ODAP and 2,3-

diaminopropionic acid (Abegaz et al., 1993) to identify the bulked fraction containing 13C-β-

L-ODAP. 

 

3.2.9 Characterisation of low-ODAP mutant lines by mass spectrometry 

The amounts of β-L-ODAP contained in eight tissues/developmental stages of five 

genotypes of grass pea were measured using LCMS. The parent variety of the mutant 

screen, LSWT11, the Indian low-ODAP variety Mahateora and the three mutant lines 1264-

2, 4884-2 and 4946-7 were included in this experiment. 

Eight tissues were harvested from each genotype: 

 leaves of 5-week-old plants grown in a controlled environment room (CER) 

 whole roots of 5-week-old plants grown in a CER 

 mature, open flowers of 8-week-old plants grown in a glasshouse 

 early pods (containing immature seeds) of 9-12-week-old plants, grown in a 

glasshouse 

 late pods (containing immature seeds) of 9-12-week-old plants, grown in a 

glasshouse 

 seeds collected from the plants in the glasshouse 

 seedling shoot tips germinating from these seeds (3 days after germination) 

 seedling roots germinating from these seeds (3 days after germination) 

The classification of pod growth stages (shown in Figure 36) is equivalent to that used by 

Srivastava and Srivastava (2006).  



86  Chapter 3 – Identification of low-ODAP grass peas from a mutagenised population 

 

 
 

 

Figure 36. Categorisation of pod growth stages. Equal weights of pods at  
stages A and B were combined to form the 'early pod' samples. Equal 
 weights of pods at stages C and D were combined to form the 'late pod'  
samples. Pods at stages E and F were not used in this assay 

 

In the case of seedling shoot and root tips, three samples, each consisting of tissues from 

between 3 and 6 seedlings were collected. For all other tissues, samples were harvested 

from six individual plants and bulked. All these tissues, with the exception of seeds, were 

harvested into liquid nitrogen and then stored at -80 °C. Seeds were harvested when the 

pods had matured and dried and were stored in dry air at 4 °C. 

Leaf, root, flower, early pod and late pod samples were ground using a mortar and pestle, 

chilled with liquid N2. To process seed samples, a coffee mill (BISTRO electric coffee grinder, 

Bodum, Triengen, Switzerland) was used to grind the seeds coarsely before grinding these 

samples finely using a mortar and pestle chilled with liquid N2. Care was taken not to let 

A B 

C D 

E F 
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any samples thaw during grinding. Ground samples were freeze-dried in a BenchTop SLC® 

freeze drier (Virtis, Gardiner, New York, USA). To process the seedling shoot, and seedling 

root samples, tissues were freeze-dried before grinding. Samples were ground using one 4 

mm steel ball per tube in a TissueLyser ball mill (Retsch, Haan, Germany) shaking at 18 Hz 

for two minutes. After freeze drying, three replicates of each ground sample were weighed 

out, aiming for sample weights of 5.5 mg. Accurate sample weights were noted down for 

later calculation of tissue β-L-ODAP concentrations. Dry samples were stored in sealed 

tubes at 4 °C. 

The 13C-labelled β-L-ODAP standard was added to each sample prior to extraction. The 

standard was dissolved in deionised water to make a 250 µg/ml solution. An amount of this 

internal standard was added to each sample, aiming to be within an order of magnitude of 

the sample’s ODAP content. To account for the expected higher β-L-ODAP content in 

samples of LSWT11, 40 µl of this solution were added to each sample of this genotype, 

while only 10 µl were added to each sample of Mahateora, 1264-2, 4884-2 and 4946-7. 

Samples of LSWT11 were diluted 4 times more than the other genotypes after the 

derivatisation. This allowed the ODAP concentrations of all samples to be measured using 

the same standard curve. 

Extractions were performed using the method described by Kuo et al. for the extraction of 

free amino acids, including β-L-ODAP, from tissues of Asian ginseng (Panax ginseng) (Kuo et 

al., 2003). To each sample of finely ground, freeze-dried tissue, 500 µl of 70 % v/v HPLC-

grade ethanol in RO-water were added and left to extract overnight in a shaking incubator. 

Samples were centrifuged for 30 minutes at 16,250 g in a Biofuge Pico centrifuge (Heraeus, 

Hanau, Germany). Supernatants were removed into new tubes and pellets were re-

suspended in 500 µl of 70 % v/v ethanol and centrifuged again. Supernatants were added 

to the supernatants of the first extraction. These steps were repeated a third time. The 

combined supernatants of all three extraction cycles were evaporated to dryness in a 

GeneVac (EZ-2 Elite, Genevac, Ipswich, UK). The dried extracts were re-dissolved in 1ml of 

RO-water.   

A series of β-L-ODAP (Lathyrus Technologies, Hyderabad, India) standards was prepared by 

mixing a 0.05 mg/ml solution and diluting it threefold, seven times. This resulted in a range 

of standard solutions equivalent to extracts from 5 mg grass pea tissue samples with β-L-

ODAP concentrations ranging from 0.00046 % to 1 % of dry weight (w/w). Heavy-isotope-
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labelled standard was added to each of these standard solutions to a concentration of 2.5 

µg/ml, the same concentration as in the sample extracts.  

Sample extracts and β-L-ODAP standards were derivatised using AccQ-Tag™ reagent 

(Waters, Milford, Massachusetts, USA). The reagent was dissolved in the diluent provided 

by the manufacturer and used immediately. Derivatisation was performed following the 

manufacturer’s instructions. Briefly, 20 µl of each sample extract and each standard 

solution were mixed with 60 µl of AccQ-Tag™ borate buffer. To this, 20 µl of dissolved 

AccQ-Tag™ reagent were added, mixed immediately and incubated at 55 °C for 10 minutes. 

The derivatised samples were diluted 1:10000 (in three dilution steps) before LCMS 

injection. 

A Xevo triple quadrupole TQ-S instrument (Waters, Milford, Massachusetts, USA) was used 

to measure the β-L-ODAP contents of samples and standards. To identify suitable mass 

transitions to create a tuning file, the automatic calibration protocol of the MassLynx 

software (Waters) was used. For the purposes of calibration, a standard solution containing 

10 µM of β-L-ODAP standard, which had been derivatised using the AccQ-Tag™ reagent as 

described above, was injected directly.  

The four major mass transitions, which were identified by this algorithm, were used to 

detect β-L-ODAP in multi-reaction monitoring (MRM) mode. These mass transitions were 

347.1 u  116.1 u, 

347.1 u  145.1 u, 

347.1 u  171.1 u and 

347.1 u  303.1 u. 

Of these mass transitions, 347.1 u  171.1 u showed the highest intensity. The mass of the 

released fragment corresponded to the molecular mass of the derivatisation group. This 

mass transition was used for quantification of β-L-ODAP. The mass transition 349.1 u  

171.1 u was used to measure the internal standard di-13C-β-L-ODAP. 

To measure β-L-ODAP contents, a volume of 5 µl of each sample was injected into a Kinetex 

2.6 μm EVO C18 100 Ǻ 100 x 2.1 mm column with a C18 guard column (Phenomenex, 

Macclesfield, UK). The solvent profiles for this experiment are shown in Table 1. 
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Table 1. Solvent profiles used for the injection of derivatised grass pea extracts to measure 
β-L-ODAP. Transitions between solvent mixtures were made using linear gradients. 

Time (min) Flow rate 

(ml/min) 

5 mM ammonium 

acetate in H2O 

(HPLC-grade) 

in % v/v 

Methanol 

(HPLC-grade)  

in % v/v 

0 0.4 95 5 

8 0.4 90 10 

10 0.4 40 60 

11 0.4 40 60 

12 0.4 92 8 

17 0.4 92 8 

 A subset of the derivatised samples was also assayed for the presence of the synthesis 

intermediates O-acetylserine (OAS) and L-2,3-diaminopropionic acid (L-DAP). The injection 

method used for the β-L-ODAP measurements caused L-DAP and OAS to coelute with other 

compounds during the flushing of the column with the organic solvent. This necessitated 

the use of a different injection method to measure these compounds. Because no stable 

isotope labelled (SIL) internal standard was available for these compounds and only a single 

dilution of each standard compound was run alongside the samples, rather than a series of 

standard dilutions that could be used to determine a calibration curve, this assay served as 

a qualitative measurement of the presence of these compounds in the tissues. The solvent 

profiles used to test for OAS and L-DAP are shown in Table 2. 

Table 2. Solvent profiles used for the injection of derivatised grass pea extracts to measure 
β-L-ODAP, L-DAP and OAS. Transitions between solvent mixtures were made using linear 
gradients. 

Time (min) Flow rate 

(ml/min) 

Water + 0.1% formic 

acid (HPLC-grade) 

in % v/v 

Acetonitrile  

(HPLC-grade) 

in % v/v 

0 0.6 99 1 

0.4 0.4 99 1 

7.0 0.4 75 25 

8.5 0.4 10 90 

9 0.4 10 90 

9.1 0.4 99 1 

12.6 0.4 99 1 
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 Two mass transitions were used to measure the presence of L-DAP. 

275.1 u  171.1 u and  

445.1 u  171.1 u. 

The mass/charge ratios of the two ions prior to fragmentation corresponded to the single- 

and double-derivatised compound respectively. OAS was measured using the mass 

transition 318.1 u  171.1 u. 

The ODAP concentrations in analysed samples were calculated using the MassLynx 

software package version 4.1 (Waters, Milford, Massachusetts, USA) based on the 

calibration curve (see Appendix 1.2) calculated from the measurements of the series of β-L-

ODAP standards. The intensity of the internal standard peak was used to normalise the 

measurements of samples and standard dilutions. 

 

3.2.10 Genetic analysis by crossing 

In order to assess gene complementation between separate mutant lines, crosses were 

performed. Because grass pea flowers are self-fertile, care must be taken to prevent the 

stigma of a flower from coming into contact with mature pollen of the same flower. To 

achieve this, the anthers of the female parent flower were removed before they could 

dehisce and fertilise the flower. The parts of the grass pea flower are shown in Figure 37. 

To cross grass pea mutant lines and varieties used as controls, pollen was transferred from 

a mature flower (the male parent) to the stigma of the emasculated flower using the 

procedure described below.  

 

Figure 37. Parts of the grass pea flower. A) side view in cross section B) frontal view of a complete flower 

 

standard (petal) 

sepal 

wing (petal) 

keel (petal) 

anther 

stigma 

A B 
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An immature flower, with the standard still joined up at the front and with all petals still 

showing a yellowish-green colouration was selected as the pollen acceptor (see stages A 

and B in Figure 38). The recipient flower was marked with a jeweller’s tag with the parents 

of the cross written on it. Using a scalpel, the still-closed standard petal was sliced through 

from bottom to top to make the inside of the flower accessible. The top and bottom of the 

flower were gently pressed to open up the wing petals. A small incision was made from the 

centre to the top of the keel, about 1 mm to the left of the sagittal plane. Using tweezers, 

the immature pollen sacs and anthers were removed carefully, without damaging the 

carpel. A mature flower was selected as the pollen donor. Flowers that were used as pollen 

donors were in stages C and D in Figure 38, just after the standard has opened and the 

anthers have dehisced. Viable grass pea pollen has a rich golden colour and a powdery 

texture. Using a scalpel, the pollen donor flower was cut off from the paternal parent plant. 

The standard and wing petals of the pollen donor flower were removed using tweezers. 

The base of the keel was grasped with tweezers on the right side, without grasping the 

enclosed carpel and a tear in the keel was made towards the front of the flower, but not 

over the pollen sacs. A portion of pollen was removed from the pollen sacs and the hollow 

at the tip of the keel using tweezers and applied to the stigma at the tip of the pistil of the 

recipient flower. One pollen donor flower was used to pollinate between 3 and 5 

recipients. Before opening a new pollen donor flower, scalpel and tweezers were wiped 

with 70 % v/v ethanol. 

 

A B C D E F 

Figure 38. Stages of development of the grass pea flower. The top row shows intact flowers side-on, the bottom row 
shows flowers with the right half of the petals removed.  Flowers remain at each of these stages for roughly one day, 
but may take several days to fully senesce. 
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3.3 Results and discussion 

3.3.1 Assessment of the mutant population derived from LSWT11 

The average 100-seed weight of the M2 families was estimated as 6.05 g (standard 

deviation 2.32 g) by weighing and counting the seeds in ten seed packets. I used this value 

to estimate the number of seeds in each packet by weighing and subtracting the weight of 

the empty paper bag (0.51 g, standard deviation 0.01 g).  

The average seed number per family was 141.9 (median = 105.3, SD = 119.1). I selected the 

3060 M2 families with the highest number of seeds to be included in the mutant screen. 

The average number of seeds in each of these families was 199.0 (median = 163.0, SD = 

118.4). The distribution of estimated seed numbers per family is shown in Figure 39. 

 

Figure 39. Histogram showing the distribution of seed numbers per M2 family in the mutant population. Seed 
numbers were estimated based on the weight of each seed packet 

  

Among the 3060 M2 mutant families screened, 26 families (0.85 %) included albino and 52 

families (1.69 %) included other large-effect chlorophyll mutants, such as chlorotic, chlorina 

and xantha mutations.  

Results on the quality of the mutant population were provided by Ayse Sen and Brad Till of 

the FAO/IAEA-lab in Seibersdorf Austria (personal communication). The mutation density in 

the population was estimated to be in the order of one mutation per 850 kbp, based on 
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four mutations being found in a sample region of 4835 bp among 704 samples. This 

mutation density is low for a diploid population mutagenised by EMS. It is possible that this 

result underestimates the true mutation density present in the population, as the analysis 

was based on two gene targets only, but multiple primer pairs, which may have introduced 

bias. On the other hand, Sen and Till noted that two of the identified mutations 

represented the same nucleotide change (C1032Y in the gene PhyA), which is highly 

unlikely to occur independently in two mutants, and thus might represent heterozygosity. If 

this was the case it would mean that the true mutation density of the population was even 

lower. These results correspond to the low number of mutant families containing 

chlorophyll mutants. The mutation density that can be achieved without reducing the 

viability of the population below 50 % (a common target value) differs between and even 

within species (Henikoff et al., 2004). However, the obtained mutation density was very 

low compared with the densities of most previously described diploid TILLING populations 

with densities of 1/380 kbp on average (Wang et al., 2012). A population with such a low 

mutation density would likely reveal very few mutants for every target gene if used for 

TILLING, unless an unusually large population of DNA extracts was screened every time, 

increasing the cost of the method. For this reason, and due to the mediocre performance 

of the parent variety under glasshouse and field conditions in the UK (low germination 

frequency without scarification as shown below, low yield compared to other varieties – 

personal communication, Abhimanyu Sarkar, JIC), we decided not to proceed with the 

production of a TILLING platform based on this present mutant population. A new mutant 

population, based on the variety LS007 is now being produced for this purpose, but this is 

not part of the present thesis (personal communication, Abhimanyu Sarkar, JIC). 

 

3.3.2 Optimisation of the mutant screening method 

The parent variety LSWT11 showed poor germination frequency without treatment. Seven 

days after sowing, only 25 % of seeds had germinated (Table 3). Germination frequency 

was greatly improved by individually chipping the seeds with scissors or scraping them with 

sandpaper. Both of these methods were equally efficient in promoting germination, but 

scraping with sandpaper was much faster. Soaking the untreated or chipped seeds in water 

overnight before planting did not further improve germination frequency.  
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Table 3. Germination results of LSWT11 seeds subjected to various pre-sowing treatments  

Treatment Seeds sown Seeds germinated 

after 7 days 

Germination 

frequency in % 

Dry, untreated 12  3 25 

Dry, scraped 12 9 75 

Wet, untreated 24 (6 imbibed) 8 33 

Dry, chipped 24 18 75 

Wet, chipped 24 (all imbibed) 17 71 

 

Based on these results, I decided to use sandpaper scraping to scarify the seeds for the 

mutant screen. To streamline this process, I developed the scarification method using foam 

mats and pipette boxes lined with sandpaper described in section 3.2.3. This scarification 

method proved to be significantly better than scratching individual seeds by hand. 

Combined with the optimisation of the growth conditions, it resulted in a high germination 

frequency of 96.6 % across the entire mutant screen.  

In a preliminary experiment to test the plate-based format for the mutant screen, I assayed 

a set of 49 LSWT11 shoot samples using the method described in section 3.2.5. I ground up 

freeze-dried samples and extracted free amino acids by incubating them in 1 ml of water at 

95 °C for 30 minutes. I processed aliquots of these extracts with and without the hydrolysis 

treatment and added the OPA/tetraborate reagent buffer. In addition, I measured a set of 

mock extractions, which did not include any grass pea tissue. These mock extractions were 

also subjected to hydrolysis and non-hydrolysis treatments and OPA/tetraborate buffer 

was added. For the non-hydrolysed mock extractions, water was added instead of 3M KOH 

solution. Figure 40 shows the results of this experiment. Considerable variation was 

observed among the absorbance values of hydrolysed samples (mean 0.168, standard 

deviation 0.033). This variation may be due to genetic variation within the variety, 

phenotypic plasticity, slight variation in developmental stages assayed, variation in sample 

size (sample weights were not recorded) and assay noise. Despite this variation, the 

distribution of absorbance values obtained from hydrolysed samples was clearly separated 

from the distribution of absorbance values measured for non-hydrolysed samples (mean 

0.058, standard deviation 0.004). This experiment showed that the assay using seedling 



95  Chapter 3 – Identification of low-ODAP grass peas from a mutagenised population 

 

 
 

shoot tip samples produced low background measurements compared to the signal. An 

ODAP-free sample would result in similar absorbance values after both hydrolysis and non-

hydrolysis treatments, making it easy to select from the screening results. Selecting 

samples with less than half the median ODAP-content as measured by the assay could 

capture most mutants with strongly reduced ODAP biosynthesis. Samples that were 

erroneously selected, e.g. due to their low sample size, could be excluded by manual 

curation and retesting. 

 

Figure 40. Boxplot showing the absorbance values produced by the spectrophotometric assay run on a set of 
LSWT11 seedling samples (+S) or mock extractions (-S), which underwent hydrolysis (+H) and non-hydrolysis (-H) 
treatments. Boxes range from the 25th to the 75th percentile in each distribution, outliers are shown as open 
circles. 

The small, but significant (p<0.0001) difference between hydrolysed and non-hydrolysed 

mock extractions showed that the presence of KOH solution affects the absorbance reading 

even without hydrolysis taking place. For this reason I decided to add 3 M KOH to both 

hydrolysed and non-hydrolysed sample extracts, to prevent absorbance caused by KOH 

itself being counted as absorbance caused by the reaction of hydrolysed ODAP with OPA 

and β-mercaptoethanol. To test if the addition of KOH to the sample extracts during the 

non-hydrolysis treatment caused ODAP to be partially hydrolysed at room temperature 

before the addition of OPA/tetraborate reagent due to the time needed to pipette 

reagents on the entire plate, I conducted an additional experiment. Four reaction mixtures 

were prepared, each in three replicates. Reaction 1 contained 10 µl 0.2 mM β-L-ODAP 

standard solution, 20 µl dH2O and 220 µl OPA/tetraborate reagent. Reaction 2 contained 10 

µl 0.2 mM β-L-ODAP standard solution and 20 µl 3M KOH solution, which were mixed and 

left to incubate at room temperature for 60 minutes before addition of 220 µl 
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OPA/tetraborate reagent. Reaction 3 contained the same constituents as reaction 2, but β-

L-ODAP and KOH solutions were left to incubate for only 1 min. Reaction 4 again contained 

the same constituents but KOH-solution was added after the OPA/tetraborate buffer. After 

the addition of the OPA/tetraborate buffer, all reactions were left to incubate for 30 

minutes at room temperature. Absorbance at 420 nm was measured using a plate 

spectrophotometer (VersaMax, Molecular Devices, Wokingham, UK). Results of this 

experiment are shown in Table 4. 

Table 4. Absorbance values produced by four variations of the non-hydrolysis treatment. 

 
Description 

absorbance at 420 nm 

± standard error (n=3) 

Reaction 1 No KOH 0.0405 ± 0.0012 

Reaction 2 60 min pre-incubation at RT 0.0453 ± 0.0023 

Reaction 3 1 min pre-incubation at RT 0.0424± 0.0014 

Reaction 4 KOH added after OPA reagent 0.0422 ± 0.0010 

 

As observed before, the presence of KOH in the reaction mixture affected the absorbance 

values obtained (reaction 4 vs. reaction 1). Leaving β-L-ODAP to pre-incubate with KOH 

solution at room temperature for 60 minutes resulted in slightly increased absorbance 

values due to partial hydrolysis, but no notable difference was observed after 1 minute of 

pre-incubation. Based on these results I decided to add 3 M KOH to sample extracts for 

non-hydrolysis treatments, followed by addition of the OPA/tetraborate within 1 minute. 

This sequence of steps (adding the smaller volume first) helped to prevent wells being 

accidentally skipped during pipetting when performing the highly parallelised assay. 

 

3.3.3 Selection of mutants relative to their plate 

A number of non-genetic factors may introduce variation in the spectrophotometric assay 

that could confuse the mutant screen and lead to type I and type II errors. Among these, 

some are likely to affect an entire plate of samples that are processed in parallel, rather 

than individual samples. These include: 

- Harvesting performed by different people, resulting in different average amounts 

of tissue  

- Harvesting on different days and times of day (risk of physiological effects) 
- Batch differences in buffer mixtures 
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- Age of OPA-buffer (made fresh every 3-4 days) 
- Slight differences in timing of steps during the assay (small effect since the assay 

uses only end-point reactions) 
- Different freezing treatment (time on dry ice, -20°C storage and +4°C after freeze 

drying) 
- Different length of freeze drying (between 23h and 3 days) 

 

To exclude factors that are more likely to cause between-plate variation, rather than 

between-sample variation, I chose to define the thresholds for the identification of low 

toxin samples in relation to each 96-well plate, rather than using a single arbitrary 

threshold for the entire population. In the first pass of the screen, each sample that gave a 

ODAP value of less than half the median of their plate was selected for re-testing. The same 

selection method was repeated for the second pass. In the third pass of the screen, 

samples were weighed first in order to normalise the results by tissue amount. Only plants 

that gave an average reading of less than two standard deviations below the control 

average were selected. 

To exclude false positives, i.e. plants that were wrongly identified as low-toxin, all plants 

that are selected as low-toxin in the first pass of the screen were sampled again (taking 

young leaf tissue from juvenile plants).  

3.3.4 Scarification and priming 

In preliminary experiments, LSWT11 seeds and seeds of the mutant population germinated 

poorly without prior treatment. This could have presented a problem for the mutant screen 

as seeds that failed to germinate would have resulted in missing data, necessitating re-

screening of many mutant families. Screening twelve seeds of an M2 family should give a 

nearly 97 % chance of including at least one homozygous mutant, provided the 

homozygous mutant allele does not cause seed abortion: 

 

�1 	�
3
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��

� 100	%	 = 96.8	% 

 

I therefore devised a method for rapidly scarifying all the seeds from one mutant family 

together, in order to increase the frequency of germination substantially. Scarifying boxes 

and blocks lined with sandpaper, as used to scarify Medicago seeds (Garcia et al., 2006), 
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cannot be used easily to scarify grass pea seeds, because of the compact wedge shape of 

these seeds (especially for small-seeded varieties). Due to this shape, seeds could slip out 

or escape scarification if they were slightly smaller than other seeds being scarified at the 

same time. To get around this problem, I developed a scarifying method where seeds of 

different sizes could be held in place at the same time. 

3.3.5 Data handling and selection of putative mutants 

In order to process the large amount of data created by the mutant screen I relied on 

computational processing to identify putative mutants. For this purpose I wrote a HTML 

data entry form to digitise the metadata generated during sample collection and a script 

using the statistical programming language R, which processed metadata and 

spectrophotometric measurements to select putative mutants from the dataset. I manually 

curated these results to remove false positives and selected a subset of these individuals 

for repeated tests using the spectrophotometric method. In total, the mutant population 

underwent three rounds of testing to narrow down the number of putative mutants. 

3.3.6 Low-toxin mutants identified 

Both pilot and main screens revealed low-toxin mutants that I investigated further by re-

testing to exclude false positives3. Many of the mutant families with low-toxin mutants 

contained more than one individual with abnormally low toxin content. The numbers of 

putative mutants identified in the pilot and main screens and the numbers of mutants that 

were confirmed in the second and third pass of the mutant screen are shown in Table 5. 

 

  

                                                           
3 A substantial part of the experimental work for this mutant screen has been performed by Kalyani 
Kallam and Hsi-Hua Wang (both at JIC), under my supervision. All analysis is presented here was 
performed by me. These data have not been submitted elsewhere 
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Table 5. Summary of results of the mutant screen, using the high-throughput spectrophotometric method. In 
each cell the total number of screened M2 families or individuals is shown. Numbers in brackets are the numbers 
screened in the pilot and main screens, respectively.  * samples were not weighed before the assay ** samples 
were weighed before the assay to normalise the measurement by the amount of sample taken, giving a more 
accurate result for toxin levels 

 First pass screen Second pass screen Third pass screen 

Type of screen Not normalised* Not normalised* Norm. by weight** 

Number of M2 families 
screened 

3060 
(770 + 2290) 

314 
(90+224) 

52 
(19 + 33) 

Number of plants 
screened 

36696 
(9240 + 27456) 

625 
(176 + 449) 

97 
(29 + 68) 

Number of M2 families 
that passed the filter 

314 
(90 + 224) (after 
manual curation) 

52 
(19 + 33) 

37 
(4+33) 

Number of M2 plants 
that passed the filter 

625 
(176 + 449) (after 
manual curation) 

97 
(29 + 68) 

68 
(6 + 62) 

 

Using the high-throughput assay, I successfully identified putative low-ODAP mutants from 

the mutagenized population. The limited sensitivity of the spectrophotometric assay meant 

that I could not infer whether any of these mutants were entirely ODAP-free from these 

data alone.  

3.3.7 Confirmation of low-ODAP mutants 

The plants identified as low-ODAP mutants that passed through three rounds of testing 

during the pilot screen were transferred into individual pots eleven weeks after sowing and 

left to mature and set seed. The same was attempted during the main screen, but most of 

these plants did not establish well in the new pots and died without producing any seeds. 

High temperatures in the glasshouse, insufficiently deep pots and high pressure of thrips 

and powdery mildew may have contributed to these problems.  

In order to identify new putative mutant plants to replace those lost from the main screen, 

as well as to confirm the originally identified mutant families, I sowed out 12 additional 

seeds from the original packets of each of the 33 M2 families selected in the main screen, 

which had been scored as low-ODAP in the three passes of screening. These seeds were 

scarified and sown into deep-rooting pots. Seedling shoot tips and top leaflets of these 
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plants were harvested and assayed using the spectrophotometric method to identify low-

ODAP mutant plants. Results of these experiments are shown in Figure 41. The correlation 

of ODAP concentrations in seedling shoot tip and top leaflet samples from the same plants 

is shown in Figure 42. This also narrowed down the list of mutant families, as not all of 

them were again found to contain low-toxin mutant plants. Based on these data, individual 

mutant plants were selected for further experiments.  

 

Figure 41. ODAP concentrations of the replacement plants of M2 families selected during the main screen. No 
standard series was included in these experiments, hence ODAP concentration in the shoot tip samples could not 
be calculated in absolute numbers. The estimated ODAP concentration is therefore given in arbitrary units. A) 
seedling shoot samples, B) top leaflet samples of six-week-old plants 

A 

B 
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Individuals with very low-ODAP concentrations in either the seed or seedling screens and 

low-ODAP outliers compared to the rest of their M2 families were selected for further 

investigation. Overall, individuals from 13 M2 families from the main screen, and 

individuals from 4 M2 families from the pilot screen (not included in Figure 41) were 

chosen to form individual mutant lines. The name of each mutant line was composed of the 

ID of the M2 family and the ID of the individual low-ODAP mutant plant that was selected 

out of the twelve individuals screened in the family, e.g. the offspring of plant two of the 

M2-family 490 were designated as mutant line 490-2. Seeds produced by the selected 

plants were scarified and sown. Samples of seedling shoot tip tissue were collected and 

analysed for their ODAP concentrations using the spectrophotometric method. Results are 

shown in Figure 43. The mutant lines 627-7, 3298-4, 1264-1, 992-4 and 1874-5 did not 

reproduce the low-ODAP phenotype in this generation and were discarded.  

 

Figure 42: Correlation of ODAP concentrations in seedling shoot tips and leaflets of mature plants 
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Figure 43. ODAP concentration in young shoots of selected mutants and controls and varieties, measured by the 
spectrophotometric method. Results are displayed in percent relative to the parent variety LSWT11. Error bars 
denote standard error based on three biological replicates. 

 

The lines 44-1; 51-9; 490-2,3 and 4; 992-8; 1172-1; 1264-2; 1390-4; 1548-3; 1874-2 and 11; 

2003-6 and 7, 2158-10, 3720-9, 4884-2 and 4946-7 were retained and used for crossing 

experiments. Some flowers of these plants were allowed to self-fertilise to produce seed. 

Seed meal from individual seeds was assayed for ODAP concentration using the 

spectrophotometric method. Results are shown in Figure 44.  
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Figure 44. Seed ODAP concentrations of varieties and mutant lines, as well as pea and chickpea seed meal 
samples, measured by the spectrophotometric method. Error bars denote standard error based on five seeds 
analysed. 

The selected mutant lines showed strongly reduced ODAP concentrations in seeds, seedling 

shoots and leaf tissue (second and third pass of the mutant screen) compared to the parent 

variety, which was reproduced in the following generation (shoot tip results shown in 

Figure 43, seed results shown in Figure 44). The lowest of these values were in a similar 

range to previously released low-toxin varieties, such as Mahateora (Bhowmick, 2013), 

Ratan (Santha and Mehta, 2001) or Ceora (Siddique et al., 2006). It is conceivable that the 

newly described mutations could be introgressed into existing low-ODAP varieties to 

further reduce their β-L-ODAP content. The parent variety used in this screen had a high 

ODAP content, representative of the resilient, small-seeded landraces that are often grown 

in subsistence agriculture. This variety was selected to make low-ODAP mutants easier to 

identify against a high-ODAP background. In the genetic background of an already low-

toxin elite variety, these mutations might cause a further decrease in toxin content. The 

mutants thus represent a significant advance in the breadth of genetic material for the 

breeding of low-toxin grass peas. In addition, they may represent mutations that could help 

to reduce the environmental sensitivity of toxin production that complicates the breeding 
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of reliable low-toxin varieties (Fikre et al., 2006; 2011). Further tests involving the growth 

of the mutant lines under different environments known to increase toxin production, such 

as high Fe3+, low Zn2-, drought or high salinity, will be needed to ascertain whether any of 

the mutants represent useful traits in this regard. 

However, the mutant screen did not reveal any mutations that led to the complete loss of 

toxin synthesis. This result could be for one of, or a combination of, several reasons: 

 No null allele was generated in the mutagenesis. The mutation density of the 

population was lower than what was aimed for, as shown by the low frequency of 

chlorophyll mutations and the data provided by Sen and Till. It is possible that no 

mutation occurred in the entire population that could render a gene product 

essential for the synthesis of β-L-ODAP completely non-functional. 

 β-L-ODAP is essential for the survival of the plant. If the synthesis of β-L-ODAP or an 

intermediate were essential for the plant, any mutation that stops the synthesis of 

β-L-ODAP, or the relevant intermediate, entirely would render the plant inviable 

(i.e. the mutation is homozygous lethal). In this scenario all mutants that knock out 

toxin synthesis entirely would be missing from the analysis.  

 The genes involved in β-L-ODAP biosynthesis and its regulation are redundant. If 

more than one gene encoding enzymes for each step of the biosynthetic pathway 

were present, then no single mutation in a gene encoding a biosynthetic enzyme 

would knock out synthesis entirely. If loss of any duplicated genes causes less than 

a 50 % drop in toxin synthesis, this might not have been picked up in the mutant 

screen, due to the inherent inaccuracy of the screening method. Thus even 

recombining the identified mutants might fail to reduce the toxin levels to zero, as 

the remaining activity would be due to small-effect genes that the initial mutant 

screen did not pick up. Similarly, if the regulation of β-L-ODAP synthesis occurs 

through redundant regulatory pathways, then even the complete knockout of one 

of the regulatory pathways that activate production might not reduce toxin 

production to zero. Instead, it might cause only a reduction of toxin synthesis under 

specific environmental conditions, potentially leading to unexpectedly high toxin 

levels in different environments. 

 The β-L-ODAP content measured in the screen is swamped by a maternal effect. If 

β-L-ODAP itself, or an intermediate of its synthesis were produced in the mother 

and deposited in the developing seed and then translocated into the shoot tip 

during germination, it may have confused the results of the first stage of the 
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mutant screen, where very young tissues were used. This could lead to the β-L-

ODAP content of seedlings to be overestimated if the seedling is homozygous for a 

mutation that reduces toxin synthesis, while its mother plant is heterozygous, 

resulting in low-/zero-ODAP mutants being erroneously rejected. 

 

It is also possible that several of these factors may be at play at the same time. For 

example, some genes involved in the biosynthesis pathway of β-L-ODAP may be essential, 

especially the earliest steps and the synthesis of oxalyl-CoA, because they are 

simultaneously involved in different, essential, cellular processes, while the genes 

responsible for the later steps of β-L-ODAP synthesis, such as the synthesis of L-DAP and β-

L-ODAP itself, might be duplicated.  

3.3.8 Synthesis of a heavy-isotope-labelled internal standard for LCMS 

To quantify the amount of β-L-ODAP contained in these samples accurately using LCMS, it 

was necessary to include an internal standard that was chemically similar to β-L-ODAP, but 

could be distinguished by its mass spectrum. Stable-isotope-labelled (SIL) compounds, 

which contain atoms of uncommon, but stable isotopes, are well-suited for this as their 

chemical properties are nearly identical to the compound to be measured, resulting in both 

compounds undergoing the same chemical reactions (Stokvis et al., 2005).  By adding a 

known quantity of SIL-β-L-ODAP to a sample with unknown β-L-ODAP content prior to 

extraction, it is possible to normalise the result of an LCMS experiment according to the 

efficiency of the extraction and derivatisation. With a higher number of atoms in a 

molecule, the chances of it containing naturally occurring heavy isotopes are increased. 

Depending on the size of the molecule in question, a greater number of heavy isotope 

atoms in the molecule are necessary to differentiate the mass spectrum of the labelled 

compound from the naturally-occurring heavier molecules reliably. Based on the sum 

formula of β-L-ODAP (C5H8N2O5) and the relative abundances of heavy isotopes of carbon, 

hydrogen, nitrogen and oxygen in the environment, expected ratios of β-L-ODAP isotopic 

homologs of different molecular weights can be calculated, assuming specific isotopes are 

not strongly selected for during the biosynthesis of β-L-ODAP. The mass of β-L-ODAP 

containing only the most common isotopes is 176.043 u. For every molecule of this mass, 

0.06 molecules of approximately 177 u and 0.01 molecules of approximately 178 u are 

likely to exist in grass pea samples due to these naturally occurring heavy isotopes. To 
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differentiate the internal standard from naturally occurring heavy isotopic homologs, the 

incorporation of a mass of at least 2 u was necessary.  

In order to enable accurate measurement of β-L-ODAP using LCMS, I thus tried to 

synthesise β-L-ODAP labelled with two carbon-13 atoms as an internal standard. I started 

by synthesising unlabelled β-L-ODAP to establish a synthesis technique that I could use to 

synthesise the labelled compound by substituting a 13C-labelled substrate. My first attempt 

was to synthesise dimethyl oxalate by combining oxalic acid dihydrate with 

(trimethylsilyl)diazomethane (TMS-diazomethane) in diethyl ether. This was unsuccessful 

as the reaction products were contaminated with by-products. I tried to resolve this issue 

by azeotropically removing the crystal water in the oxalic acid dihydrate and adding TMS-

diazomethane in excess. This was successful, but the yield of this reaction was too low to 

continue to the next step of the reaction. I therefore tried a different approach to 

synthesising dimethyl oxalate (Jaoui et al., 2004). For this reaction, I combined oxalic acid 

dihydrate with methanol in the presence of BF3.Et2O as a catalyst. Despite several steps of 

separation and extraction many contaminants were left in the reaction products. I 

abandoned this synthesis approach and instead attempted to reproduce a previously 

described one-step synthesis method for β-L-ODAP (Harrison et al., 1977), following the 

method described in section 3.2.8. This method was successful in producing β-L-ODAP.  

To produce di-13C-labelled β-L-ODAP, I followed the same process, but using diethyl oxalate 

13C2 (Sigma-Aldrich, St Louis, Missouri, USA) instead of unlabelled diethyl oxalate. After an 

initial purification and desalting step using an ion exchange column, I passed the reaction 

products through a second ion exchange column, flushed the column with water and 0.2 M 

acetic acid and collected 95 fractions of 5 ml each. I then sampled each fraction and 

performed the spectrophotometric ODAP assay with and without prior hydrolysis. As 

shown in the results from hydrolysed samples in Figure 45, products that hydrolysed to L-

DAP eluted from the column in three phases. The fractions 16 to 22 also showed slightly 

higher than background absorbance values when non-hydrolysed samples were used. 

Based on these data, I pooled the fractions in four groups: F I (fractions 2 to 13); F II 

(fractions 16 to 22); F III (fractions 25 to 49) and F IV (fractions 50 to 69). The fractions in 

between (14, 15, 23 and 24) were not included in these pooled fractions to reduce cross-

contamination. 
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The identity of the reaction products in the pooled fractions was confirmed using NMR 

spectroscopy. Figure 46 shows the structure of β-L-ODAP for reference. The proton-NMR 

spectra of the first three pooled fractions and an unlabelled β-L-ODAP standard are shown 

in Figure 47. Fraction F IV was not included in this experiment because it did not appear to 

contain significant amounts of product (see Figure 45). Because the samples were dissolved 

in D2O, hydrogen atoms in hydroxyl, amino and imino groups are replaced with deuterium 

atoms, rendering them NMR-inactive. Hence, only the hydrogen atoms attached to the 

carbon atoms 2 and 3 produced peaks in the proton NMR.  

 

Figure 46. Structural formula of β-L-ODAP. Carbon atoms are numbered in red. In the heavy-isotope labelled 
isoform, carbon atoms 4 and 5 are replaced with carbon-13 atoms. Due to the chirality of the carbon atom 2, 
the two hydrogen atoms bound to carbon atom 3 produced separate peak groups in the NMR spectrum (3a and 
3b) 
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Figure 47. Proton NMR spectra of the pooled fractions F I, F II and FIII of reaction products of the SIL-β-L-ODAP 
synthesis and unlabelled β-L-ODAP. Samples were dissolved in D2O and measured using a Bruker 400 MHz 
instrument.  

 

All spectra contained a dominant HDO-peak (water containing one 1H and one 2H atom) 

which was used to align the spectra. The spectrum of Fraction F I did not match the 

spectrum of the β-L-ODAP sample. However, three main peak groups in this spectrum (a 

doublet of doublets at 4.39 ppm, a doublet of doublets at 3.84 ppm and a doublet of 

triplets at 3.67 ppm) could indicate that this sample contained α-L-ODAP. Other groups of 

peaks present in this spectrum were likely due to other by-products of the reaction. The 

spectrum of Fraction F II contained several complex multiplets, indicating that probably F II 

contained several compounds. As shown in Figure 45, the individual fractions that were 

combined to form F II gave higher-than-background readings in the spectrophotometric 

assay without hydrolysis. This suggested the presence of leftover L-DAP that did not react. 

Bis-oxalyl-α,β-L-diaminopropionic acid may be another by-product contained in this 

fraction. The proton-NMR spectrum of fraction F III contained a doublet of doublets 

centred at 4.13 ppm and two doublets of doublets centred at 3.75 ppm and 3.85 ppm 

respectively. This corresponded to the spectrum of the β-L-ODAP control and to the 

proton-NMR spectrum of β-L-ODAP recorded in the literature (Abegaz et al., 1993). The 

spectrum of Fraction F III also contained a singlet peak at 2.07 ppm (not shown), which was 
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most likely due to contamination with a volatile organic solvent (methanol or acetone) left 

in the NMR-tube, rather than a contamination of the dry sample. These data indicated that 

F III contained the desired product. 

To confirm that Fraction F III contained 13C-labelled β-L-ODAP, a carbon-13-NMR was run 

on the F III and β-L-ODAP standard samples. The results are shown in Figure 48. The 

chemical shifts of the peaks corresponding to carbon atoms 1, 2 and 3 were identical in 

both spectra. The peak corresponding to two carbonyl groups in positions 4 and 5 was 

barely discernible against the background noise in the β-L-ODAP standard, but was very 

prominent in the spectrum of F III. This indicated an extremely high rate of 13C-atoms in 

these positions.  

 

 

Figure 48. Carbon-13-NMR spectrum of Fraction F III and β-L-ODAP standard. Carbon atoms are labelled as in 
Figure 46. The spectrum of F III is scaled down to accomodate the large peak resulting from the 13C atoms in 
positions 4 and 5. 

 

These results showed that Fraction F III contained di-13C-labelled β-L-ODAP, with no visible 

contaminants. After freeze-drying this fraction, 4.2 mg of residue were retained. This was 

only 6.7 % w/w of the theoretical yield of 62.6 mg, if all of the reaction substrates had been 
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turned into di-13C-β-L-ODAP. However, the obtained amount was of high purity and 

sufficient for my subsequent LCMS experiments. 

3.3.9 Confirmation and characterisation of mutants 

Having identified putative mutants with low ODAP contents using the spectrophotometric 

screen, I needed to confirm these data using an independent method of measurement. 

Methods using High Performance Liquid Chromatography (HPLC) have previously been 

described to measure β-L-ODAP contents (Zhu et al., 2006; Kuo et al., 2003; Fikre et al., 

2008; Ghosh et al., 2015). Separation of extracted free amino acids on a HPLC column 

allows fluorometric measurement of ODAP. These methods were not applicable for use in a 

mutant screen, because they were not as easily scalable as the spectrophotometric 

method. However, they allowed for more accurate measurements. HPLC methods are also 

able to separate the two isomers of ODAP to measure the ratio between α- and β-L-ODAP 

in a sample. The accuracy and sensitivity of this method can be further improved by 

coupling the chromatographic separation of compounds with mass analysis using mass 

spectrometry. Because seeds are the most commonly-used tissue for ODAP analyses and 

the most important tissue for human consumption, measurements of ODAP concentration 

in seeds are ultimately more relevant than the ODAP concentration in young shoot tips or 

leaves. I therefore screened meal samples from seeds produced by putative mutant plants 

using an LCMS method developed for this purpose. This was especially useful in handling 

samples from low-ODAP mutants and varieties as it allowed for very low limits of detection. 

To ascertain whether the low-toxin phenotype apparent in the young shoots of the mutant 

lines also affected the toxin concentration in the seeds, I tested seed meal extracted from 

individual mutant seeds by drilling into individual seeds as described in section 2.2.5 and 

measuring the β-L-ODAP concentration using LCMS. In this preliminary experiment, the 

internal standard described in the previous section was not used, and instead I relied on a 

series of external standards (see calibration curve in Appendix 1.2). Apart from the use of 

external standards only, the methods described in section 3.2.9 (solvent profile shown in 

Table 1) were used. The results of this experiment are shown in Figure 49. These data 

confirmed the relative levels of ODAP in LSWT11 and the mutant and low-ODAP lines, but 

LCMS measurements of ODAP were overall much higher than the previous 

spectrophotometric measurements in individual seeds described in section 3.3.7. However, 

the averages produced by the varieties LSWT11, P-24, Mahateora and Nirmal were similar 

to the β-L-ODAP concentrations measured in bulk seed samples by the spectrophotometric 
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method as shown in section 2.3.4 (Ratan was not measured in the bulk seed meal 

experiment).  

 

Figure 49. ODAP concentrations in individual M3 seeds of selected mutant lines and controls, measured by mass 
spectrometry using a series of external standards. Results from individual seeds are shown to display the high 
seed-to-seed variation observed in the control varieties. Shown in red is the parent variety LSWT11, blue the 
selected low-toxin mutants and green the four Indian low-toxin cultivars. Brackets denote samples of M3 seeds 
from the same M2 families. 

Large variations were seen between the ODAP concentrations of individual seeds, 

especially among the parent variety LSWT11 and the low-ODAP varieties P-24 and Nirmal. 

Similarly large variations between individual seeds of the varieties were seen using 

spectrophotometric measurements, as described in section 2.3.2. The variety Ratan, which 

gave highly variable results in the experiment described earlier, gave consistent results 

among the three seeds included in this experiment. The variety Mahateora showed low 

ODAP concentrations with little variation between seeds in both this experiment and the 

spectrophotometric measurements. Four mutant families included seed samples from 

more than one individual that was selected in the mutant screen: 490, 1548, 1874 and 

2003. The high variability between seeds may be due to genetic diversity within varieties or 

phenotypic plasticity.  

I also used LCMS to measure levels of β-L-ODAP in eight tissues of five genotypes of grass 

pea (the parent variety of the mutant screen, the low-ODAP variety Mahateora and three 

putative mutant lines identified in the screen), allowing me to further characterise these 

mutant lines. To reduce the variability associated with individual seed samples, I decided to 
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rely on bulked seed samples (seed meal ground from ~5 g of seeds) in order to get a better 

average value without having to test a large number of samples. 

The labour-intensive sample extraction methods, the cost of chemicals necessary for 

preparing samples for mass spectrometry (in particular the derivatisation agent and the 

internal standard) and limited availability of the instrument constrained the number of 

samples that could be analysed using the LCMS method using the internal standard. I 

therefore chose three mutant lines for detailed characterisation by measuring their ODAP 

concentrations in seedling shoots, seedling roots, leaves and roots, flowers, early and late 

pods and mature seeds. This range of tissues covered all developmental stages of the plant 

(seedling, juvenile, flowering, podding and seed maturity), in order to reveal any tissue-

specific mutant phenotypes. I decided on using the mutant lines 4884-2 and 4946-7 

because of their low ODAP concentrations measured by the spectrophotometric method 

(shown in Figure 44 in section 3.3.7). The mutant line 1874-11 showed the lowest seed 

ODAP concentration in the spectrophotometric experiment, but insufficient seeds of this 

line were available for it to be included in this experiment. I also included mutant line 1264-

2, which showed intermediate ODAP-levels. For comparison, I included samples from all 

tissues of the varieties LSWT11 (the parent variety of the mutants) and Mahateora, the 

only low-ODAP variety to give consistent low-ODAP results in my experiments, as well as 

seed, seedling shoot and seedling root samples of pea (Pisum sativum) as a negative 

control. Three replicate extractions were made of each tissue. Samples were extracted, 

processed and measured according to the methods described in section 3.2.9. 

Figure 50 shows the results of this experiment. The relative patterns of β-L-ODAP 

concentrations across the surveyed tissues were consistent among the five genotypes 

included in the experiment. The highest ODAP concentrations (2.8 % w/w of dry weight in 

LSWT11) were seen in the shoot tips of seedlings, followed by the root tips of seedlings. 

Lower levels of ODAP were observed in the leaves and flowers of the plant. ODAP 

concentrations in early pods of LSWT11 were notably higher than in late pods, consistent 

with earlier findings (Srivastava and Srivastava, 2006). This reduction in β-L-ODAP 

concentrations in developing pods may be caused by the β-L-ODAP being diluted by the 

large increase in dry mass during the seed filling stage. The ODAP concentration in LSWT11 

seeds was 0.362 % w/w ± 0.007 % (standard error), a much higher value than measured 

using the spectrophotometric method, but in line with the LCMS measurements of single 

seed samples (which did not include the use of the SIL-internal standard). Only very small 

quantities of β-L-ODAP were found in the roots of the plant. The β-L-ODAP concentrations 
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in seedling shoots and seedling roots far exceed the β-L-ODAP concentrations in the seeds 

in all genotypes. This could suggest that β-L-ODAP is synthesised in both the shoot and root 

of grass pea seedlings at a high rate. However, these tissues have only a fraction of the dry 

mass of seeds. It is therefore possible that a large proportion of the β-L-ODAP observed in 

seedling tissues is relocated from the storage cotyledons during the germination process, 

despite β-L-ODAP in the seed being much lower as a percentage of dry weight than in the 

seedling shoot and root tips.  
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The low-ODAP variety Mahateora and the three newly identified low-ODAP mutant lines 

each contained significantly lower amounts of β-L-ODAP in all tissues than LSWT11 

(Student’s t-test p<0.001), with the exception of roots, where the (extremely low) levels of 

β-L-ODAP were not significantly different between LSWT11 and the other genotypes. Pea 

(Pisum sativum cv. Frisson) seedling shoot tip, seedling root tip and seed meal samples, 

which were included in this experiment as a negative control did not contain any 

detectable amounts of β-L-ODAP. The mean seed β-L-ODAP concentration in Mahateora 

was 0.0581 % w/w ± 0.0007 % (standard error). The β-L-ODAP concentrations in all three 

surveyed mutant lines were significantly (p<0.01) lower than this. Lines 1264-2 and 4946-7 

contained marginally less β-L-ODAP than Mahateora, with 0.0528 % w/w ± 0.0003 % and 

0.0517 % w/w ± 0.0008 %, respectively. Seeds of the mutant line 4884-2, however, 

contained only 0.0285 % w/w ± 0.0006 % of β-L-ODAP, less than half the seed β-L-ODAP 

concentration of Mahateora. The mutant line 4884-2 also contained significantly lower 

amounts of β-L-ODAP in seedling shoots and seedling roots than Mahateora (p<0.01). 

These mutant lines may thus prove to be useful breeding material in developing grass pea 

varieties with further reduced β-L-ODAP content, especially if their low-ODAP phenotypes 

are due to mutations in different genes. 

3.3.10 Accumulation of L-DAP in low-ODAP mutants 

The spectrophotometric assay relies on the colour-forming reaction between L-DAP, β-

mercaptoethanol and o-phthalaldehyde. In order to convert ODAP into DAP, the extracts 

were first hydrolysed. However, to exclude background noise caused by other compounds 

in the extract and the reading method, a second plate with non-hydrolysed samples was 

prepared and this reading was subtracted from the hydrolysed reading.  

This conveniently served as a screening method for mutants accumulating L-DAP, which is 

believed to be the last intermediate in the synthesis of ODAP. In wild-type plants, L-DAP 

levels were below the sensitivity threshold of the spectrophotometric method. If any 

mutants were impaired in the last step of the synthesis, causing them to accumulate L-DAP, 

this should have produced high reading in the non-hydrolysed plate. However, no such 

samples were observed in the entire mutant screen. This points to the metabolic enzyme 

responsible for the last step of the synthesis of ODAP being redundant or, alternatively to a 

separate efficient breakdown mechanism for L-DAP that prevents it from accumulating in 

the young shoot. 
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A subset of samples used for the LCMS measurements to measure β-L-ODAP in the tissues 

of three mutant lines, LSWT11 and Mahateora was also qualitatively screened for the 

presence of O-acetyl-serine (OAS) and L-DAP. OAS was present in most tissues, but L-DAP 

was not detectable in any tissue of either the mutant lines or the varieties, despite the high 

sensitivity of the LCMS instrument.  

3.3.11 Genetic analysis 

In order to ascertain the number of separate mutated genes in a population of mutants 

with similar phenotypic alterations it was necessary to perform complementation tests to 

determine whether mutations were or were not allelic. This relied on the assumptions that 

the mutant phenotype (low/zero ODAP) was recessive and mutated function could be 

restored to its wild-type state by the presence of a single wild-type allele of each of the 

mutated genes. For this analysis, mutants were assumed to be homozygous, as they were 

selected from an M2 population, and were crossed with each other. Where possible, each 

mutant in the set was crossed with each other mutant reciprocally. The F1 individuals 

resulting from these crosses were then screened for ODAP concentrations. Crosses in which 

the function was restored to the wild-type state could be expected to involve mutations in 

different genes, because the offspring carried one dominant functional allele of each 

mutated gene. Crosses in which the function was not restored could be expected to involve 

mutations in the same gene: in such cases the offspring carried two dysfunctional alleles, 

one from each of its parents. By performing this analysis on a set of mutants that were 

crossed in every combination, it was possible to infer the number of separate loci that were 

mutated in the set. If a sufficient number of mutants can be obtained from a mutant 

population, this can be used to derive the number of separate essential genes for a 

particular genetic function, such as the number of enzymatic steps in a metabolic pathway.  

Two varieties of grass pea that are currently cultivated in India, Nirmal (Asthana, 1995) and 

Mahateora (Bhowmick, 2013), were included in the complementation analysis. Nirmal 

served as a high-β-L-ODAP parent line alongside the mutant parent variety LSWT11, while 

Mahateora was included to screen for complementation with the low-ODAP mutant lines. I 

decided not to include the low-ODAP variety Bio L212 (Ratan) in the complementation 

analysis, because the low-ODAP phenotype of Mahateora derives from Ratan. Hence, these 

two varieties are likely to be part of the same complementation group and only one 

needed to be included in the crossing. I decided to use Mahateora because its pink flower 



118  Chapter 3 – Identification of low-ODAP grass peas from a mutagenised population 

 

 
 

phenotype allowed me to ascertain whether crosses with the blue-flowered LSWT11 plants 

and low-ODAP mutants had been successful. 

I performed crosses between the low-toxin mutant lines 44-1, 51-9, 490-4, 992-8, 1172-1, 

1264-2, 1390-4, 1548-3, 1874-11, 2003-7, 2158-10, 3720-9, 4884-2 and 4946-7. Because of 

the large number of lines in the crossing set, I aimed at performing each cross five times, 

including reciprocal crosses, with each line being the female parent in at least two of them. 

Due to poor performance of some of the plants, not all crosses could be completed. In 

total, I performed 671 individual crosses. Out of these, 250 crosses produced at least one 

seed, a take efficiency of 37.3 %. Crosses were performed in two batches. 

To find out which mutants were allelic, I analysed the toxin concentrations of seeds 

resulting from these crosses and seeds from each parent line (mutant lines, LSWT11 and 

Nirmal) using the spectrophotometric assay. If a cross had produced more than one seed, I 

tested the ODAP concentrations in up to three seeds. All mutant lines and the variety 

Mahateora showed low concentrations of ODAP, while the parent variety LSWT11 and the 

variety Nirmal showed high toxin concentrations. After drilling into each seed to extract 

material for the assay, I allowed the seeds to germinate and planted them into individual 

pots. I harvested seedling shoots eight days after imbibition and again performed the 

spectrophotometric assay on these samples. The ODAP concentrations of the seeds 

resulting from the F1 crosses and the shoot tips of seedlings germinating from these seeds 

were strongly correlated, as shown in Figure 51. 
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Figure 51. Correlation of ODAP concentrations in the seeds of high- and low-ODAP lines and the first batch of F1 
hybrids with the ODAP concentrations in the shoot tips of seedlings which had germinated from these seeds. Red 
lines show the thresholds used to categorise individuals as high- or low-ODAP. 

To identify events of gene complementation, I categorised the results of these 

measurements as either high- or low-ODAP, based on empirically assigned thresholds for 

the categorisation, as shown in Figure 51. The categorised crossing results are shown in 

Table  6. 
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Table  6. Categorised ODAP concentrations of parent lines and F1 hybrids resulting from the first batch of 
crosses, based on seed and seedling shoot results. In each case where more than one cross was successful and 
where more than one seed was produced by a cross, measurement resulted in the same categorisation. * 
indicates that two individual crosses of these parents were successful. Categorisations of parental lines are 
shown in italics 

 
male 

parent 
LSWT 

11 
44-1 51-9 

490-
2,3,4 

992-8 1172-1 
1548-

2,3 
1874-
2,11 

2003-
6,7,10 

Nirmal 
Maha-
teora 

female 

parent  
high low low low low low low low low high low 

LSWT11 high 
 

high 
 

high* high* 
  

high* 
 

high 
 

44-1 low low* 
          

51-9 low low low 
 

low 
    

low low 
 

490-2,3,4 low low 
       

low 
  

992-8 low 
  

low low 
    

low 
 

low 

1172-1 low 
           

1548-2,3  low 
 

low 
  

low* 
   

low* low low 

1874-2,11 low low 
 

low low low 
   

Low low high 

2003-6,7,10 low low 
  

low* low* 
    

low low 

Nirmal high high 
          

Mahateora low low 
        

low* 
 

 

Only a single cross between two low-ODAP lines (1874-11 x Mahateora), generated a high-

ODAP F1 hybrid. All other crosses between low-ODAP parents resulted in low-ODAP F1 

hybrids. All crosses between high-ODAP (LSWT11 or Nirmal) and low-ODAP parents 

(mutant lines or Mahateora) generated low-ODAP F1 hybrids if the female parent (pollen 

acceptor) was low-ODAP, but high-ODAP F1 hybrids if the male parent (pollen donor) was 

low-ODAP. These results were consistent between seeds and seedling shoot tips.  

As shown in Table  6, reciprocal crosses between high- and low-ODAP parents generally did 

not result in F1 hybrids with the same ODAP concentrations. An example of this is shown in 

Figure 52. Both hybrids showed ODAP concentrations between their high-ODAP and low-

ODAP parents, but the hybrid originating from the cross in which the maternal parent is 

low-ODAP contained much less ODAP than the hybrid of the reciprocal cross in which the 

maternal parent was high-ODAP.  
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Figure 52. ODAP concentrations in seedling shoot tips for the reciprocal cross of LSWT11 with the low-ODAP 
mutant line 1874-11. 

Plots showing the correlations between the ODAP concentrations in seedlings of F1 hybrids 

with the ODAP concentrations in their highest ODAP parent and in their maternal parents 

are presented in Figure 53. The correlation with the maternal parents was stronger (R2 = 

0.5862) than the correlation with the highest ODAP parent (R2 = 0.1204). Correlations 

between F1 hybrids and the lower ODAP parent or the paternal parent gave R2-values of 

0.2354 and 0.0075, respectively (not shown in figure). 
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Figure 53. ODAP concentrations (relative units) in seeds resulting from F1 crosses between high- and low- ODAP 
plants plotted against the ODAP concentrations in seedling shoot tips of A) the line of their highest ODAP parent 
and B) the line of their mother plant. Linear trend lines are shown with their associated R2 values. 
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If the high-ODAP phenotype were dominant, the ODAP concentration of the F1 hybrids 

would be determined by the parent with the higher ODAP concentration. However, ODAP 

concentrations of the seedling shoot tip of F1 hybrids were only poorly correlated with the 

higher ODAP parent. A better correlation existed with the ODAP concentrations of seedling 

shoot tips of the line used as the maternal parent.  

There are several possible explanations for this apparent maternal effect. If a flower was 

not successfully pollinated during the crossing procedure and was not correctly 

emasculated, it may have self-fertilised. In this experiment, this would have resulted in 

offspring with ODAP concentrations similar to their maternal parents. This possibility could 

be excluded by monitoring other phenotypes in order to prove the crossing was successful. 

As none of these mutants differed from the parent variety in easily observable 

morphological phenotypes, this could not be done for the majority of crosses. However, 

the variety Mahateora produces pink flowers, a phenotype recessive to the blue flowers 

produced by LSWT11. Of the three crosses where Mahateora was the female parent and 

LSWT11 or a mutant line was the male parent, two produced plants with blue flowers, 

while one produced a plant with pink flowers. The pink-flowered plant was likely due to a 

self-fertilisation event and was excluded from the analysis, but the other two plants 

showed that low-toxin seeds were indeed produced from successful crosses between a 

low- and a high-toxin variety, but only if the low-toxin variety was the female parent.  

The observed maternal effect in these two, and potentially other, crosses between high- 

and low-β-L-ODAP parents could be due to the deposition of ODAP into the developing 

seed by the maternal parent plant, i.e. a sporophytic depositional maternal effect. This β-L-

ODAP could be relocalised into the developing shoot tip upon germination, leading to 

relatively high or low levels of β-L-ODAP in this tissue, depending on the mother plant. 

Similarly, if an intermediate of the biosynthesis downstream of the synthetic step that is 

disrupted by the mutation was deposited into the seed during its development, it could 

result in β-L-ODAP levels in the seed and seedling that were not representative of the plant 

itself, but of its maternal parent. While such an effect could result in a mutant phenotype in 

the embryo and the young seedling, it is unlikely to persist over the lifetime of the plant as 

any compound that is present in, but not produced by, the seedling would be diluted as the 

plant grows and potentially be degraded. 
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Alternatively, there may be a component of gametophytic maternal inheritance to the 

production of β-L-ODAP, either if an enzyme or regulatory factor involved in its 

biosynthesis is transferred cytoplasmically (if it is encoded by a chloroplastic gene), or if it is 

affected by genomic imprinting. This would be observed in the pattern of inheritance of 

high- and low-ODAP phenotypes, because the low-ODAP mutant phenotype would be 

passed down strictly in the maternal line and would persist throughout the lifetime of the 

plant. This would cause an inheritance pattern of the low-ODAP phenotype that looked as 

though all crosses had failed due to self-fertilisation. 

There is disagreement in the literature about the inheritance pattern of β-L-ODAP content. 

While Nerkar (1972) described the inheritance of β-L-ODAP levels as Mendelian, despite 

observing continuous variation in toxin concentrations in the segregating generation, 

Quader et al. (1987) as well as Tiwari and Campbell (1996)  described quantitative 

inheritance patterns when low- and high-ODAP varieties were crossed, with the F1 

generation exhibiting intermediate levels and the F2 generation segregating continuously 

across the entire parental range. Comparing the results of crosses between four low toxin 

varieties, Tiwari and Campbell found the broad-sense heritability of ODAP concentrations 

in the seed to vary between 17 % and 92 %, indicating a complex pattern of control (Tiwari 

and Campbell, 1996). The maternal effect I observed was reminiscent of effects observed 

by Quader et al. (1987) and Tiwari and Campbell (1996) who speculated about the 

existence of cytoplasmic factors affecting ODAP content. However, no further evidence has 

been published to substantiate these hypotheses.  

To test whether this maternal effect would persist as the F1-plants grew older, I repeated 

the analysis on top leaflets collected from the same plants four weeks later. The ODAP 

levels measured in these samples were lower than in seed and seedling shoot tip samples, 

while the background measurements (absorbance readings of non-hydrolysed samples) 

were much higher. This made categorisation of F1 hybrids as high- or low-ODAP difficult. 

For this reason, I introduced a ‘medium-ODAP’ category, which was not used to infer 

complementation. Categorisation of ODAP concentrations in leaf samples from batch 1 

crosses are shown in Figure 54. The intermediate phenotypes seen in this experiment raise 

the possibility that ODAP concentrations in leaves follow a pattern of partial dominance, 

with heterozygotes displaying ODAP concentrations between the concentrations seen in 

homozygotic mutant and homozygotic wild type individuals. 
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Figure 54. ODAP concentrations of leaf samples of five-week-old F1 plants from the first batch 
of crosses, ordered from high to low. Red and orange lines show the thresholds applied for 
categorisation into high-, medium- and low-ODAP individuals 

 

As shown in Table 7, reciprocal crosses between high- and low-ODAP parents produced 

consistent results when leaf samples from 5-week-old plants were measured. All crosses 

between high- and low-ODAP parents resulted in F1 plants categorised as high- or medium-

ODAP, regardless of whether the high-ODAP parent was maternal or paternal. This shows 

that the maternal effect observed in seedlings and seeds either does not affect leaf tissues 

or wears off as the plant grows. This would not be observed in plants that were the result 

of unwanted self-fertilisation. However, the possibility that those five-week-old ‘F1’ plants 

that still show the maternal phenotype in their leaves (e.g. the cross 992-8 x Mahateora in 

Table 7) have resulted from self-fertilisation cannot be excluded.  This indicates that the 

maternal effect could be explained by sporophytic deposition or by gametophytic genomic 

imprinting, i.e. epigenetic marks that are lost as the plant ages. A gametophytic cytoplasmic 

effect (involving extra-chromosomally encoded genes) would not explain the wearing off of 

this effect. 
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Table 7. Categorised ODAP concentrations of parent lines and F1 hybrids resulting from the first batch of 
crosses, based on measurements of top leaflets from 5-week-old plants. Categorisations of parental lines shown 
in italics 

 
Male 

parent 
LSWT 

11 
44-1 51-9 

490-
2,3,4 

992-8 
1172-

1 
1548-

2,3 
1874-
2,11 

2003-
6,7,10 

Nirmal 
Maha-
teora 

Female 
parent  

high low low med low low low low low high low 

LSWT11 high 
 

high 
 

high high 
  

high 
 

high 
 

44-1 low high 
          

51-9 low high med 
 

med 
    

high med 
 

490-2,3,4 med med 
       

med 
  

992-8 low 
  

med low 
    

low 
 

low 

1172-1 low 
           

1548-2,3 low 
 

med 
  

med 
   

med med low 

1874-
2,11 

low high 
 

med med high 
   

med med med 

2003-
6,7,10 

low high 
  

low med 
    

med low 

Nirmal high high 
          

Maha-
teora 

low med 
        

low 
 

 

However, the very low overall level of ODAP in these leaf samples and the variability of the 

background reduced the number of data points that could be used to infer 

complementation groups. I therefore analysed additional crosses. Because of the high 

degree of correlation between seed and seedling shoot ODAP concentrations, I skipped the 

collection of seed material by drilling each seed and only harvested seedling shoot samples 

for analysis. As with the first batch of crosses, the ODAP concentration of F1 seedlings 

resulting from crosses between high- and low-ODAP parents corresponded to the ODAP 

concentrations in their maternal parents (not shown). Hence, these data were not used to 

infer complementation. Leaf samples were collected from eight-week-old plants. To gather 

additional data, both the youngest pair of leaflets and the youngest fully expanded leaf 

were collected and assayed separately. Individuals were categorised as high-, medium- or 

low-ODAP based on both measurements as shown in Figure 55. Individuals for which the 

two measurements were in disagreement were not included in the inference of 

complementation groups. When processing these samples, I observed much higher 

readings from non-hydrolysed samples than previously seen. Subtracting these 

measurements from the readings of hydrolysed samples led to negative values in some 

cases and potentially contributed to the issues of disagreement between youngest leaflet 
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and expanded leaflet samples. This shows the limitations of the spectrophotometric assay 

when measuring ODAP in adult green tissues. 

 

Figure 55. ODAP concentrations of leaf samples of eight-week-old F1 plants of the second batch of crosses. 
ODAP concentrations of the youngest leaflets are plotted against concentrations of fully expanded leaflets of the 
same plants. Symbols in red, orange and green show F1 plants categorised as high-, medium- and low-ODAP, 
respectively. Individuals for which the two samples disagreed are shown in purple. Negative values result from 
high background readings. 

Despite these caveats, several crosses between low-ODAP mutant lines resulted in high-

ODAP F1 plants, indicating complementation. I proceeded to infer complementation groups 

based on high- and low-ODAP hybrids, assuming that crosses of low-ODAP mutant in the 

same complementation group would result in a low-ODAP hybrid, while crosses between 

mutants in different complementation groups would result in high-ODAP hybrids. The 

combined results of leaf measurements of both batches of crosses and the hypothesised 

complementation groups are shown in Table 8. Two complementation groups emerged 

from these data. Group 1 includes the mutant lines 44-1, 992-8, 1264-2, 1548-3, 1390-4, 

2003-7 and 2158-10 as well as the low-ODAP variety Mahateora. Group 2 includes the 

mutant lines 490-2, 1874-11, 3720-9 and 4946-7. Some crosses resulted in conflicting 

results. For example, the cross 2003-7 x 51-9 produced a low-ODAP hybrid, while the 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2O
D

A
P

 c
o

n
ce

n
tr

at
io

n
in

 y
o

u
n

ge
st

 f
u

lly
 e

xp
an

d
e

d
 le

af
le

t 
(%

 d
ry

 w
e

ig
h

t)

ODAP concentration in youngest leaflets (% dry weight)

high

med

low

dis



128  Chapter 3 – Identification of low-ODAP grass peas from a mutagenised population 

 

 
 

reciprocal cross (51-9 x 2003-7) resulted in a high-ODAP hybrid. Low ODAP readings in 

which the phenotype of the supposed hybrid matches the mother plant may be the result 

of failed crosses (i.e. self-fertilisation events). This is likely the case in the Mahateora x 

Nirmal cross that produced a low-ODAP plant. For this reason, crosses between low-ODAP 

parents that apparently resulted in low-ODAP F1 offspring could not be counted as 

conclusive evidence that both parents belong to the same complementation group. Hence, 

the complementation hypothesis presented here is preliminary and will be confirmed or 

revised using ODAP concentration data from seeds produced by the F1 plants (ongoing). 

Three mutant lines, 51-9, 1172-1 and 4884-2 could not be assigned to either group and may 

be members of additional complementation groups. This places two of the mutant lines 

which were characterised by LCMS (1264-2 and 4946-7), as described in the previous 

section, into separate complementation groups, while line 4884-2 cannot be assigned to 

either group based on the available evidence. 
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The observation of gene complementation in these crosses showed that not all of the 

observed mutations are in the same genes. The complementation hypothesis compiled 

from these data implied that at least two mutated genes are represented among the 15 

low-ODAP lines included in the crossing. The three ungrouped mutant lines may be placed 

in either group with more evidence or they may form one or more additional groups. These 

mutants may thus provide a useful tool for understanding the genetics of β-L-ODAP 

production in grass pea. However, many crosses had to be excluded from the 

complementation analysis, because the resulting individuals could not be categorised as 

high- or low-ODAP. To gain more confidence in these complementation groups, the analysis 

should be repeated using seed material produced by the F1 plants, which I was not able to 

complete due to time constraints. These seeds themselves are F2 individuals, i.e. the selfed 

offspring of the F1 hybrids. The ODAP concentration in the seeds can be expected to be 

subject to the maternal effect observed previously. As ODAP measurements in seed 

samples did not suffer from the high background readings observed in adult green tissues, 

these results should allow a better categorisation of samples into high- and low-ODAP, 

enabling complementation groups to be inferred with more confidence. 

Importantly, the complementation observed in the crossing experiments with Mahateora 

indicate that some of the mutants are likely to contain mutations in different genes 

involved in the synthesis of β-L-ODAP or its regulation than the genes that confer the low-

ODAP phenotype in this variety, which is related to several other low-ODAP grass pea 

varieties that are currently being cultivated. Some of the mutants described here thus 

appear to contain mutant alleles that could be introgressed into existing low-ODAP 

varieties to further reduce their ODAP contents.  

3.3.12 Other mutant phenotypes 

While the content of ODAP in the young shoots was the only phenotype for which the 

entire mutant population was screened methodically, a number of other mutations also 

became apparent in the population. Among these were chlorophyll mutations such as 

albino, chlorina and xantha mutations that became visible in the young seedlings. While 

the numbers of these can give some indication of the mutation density in the population, 

there was little value to these mutants otherwise, as none of them survived through to 

seed set. 

While the collected shoot samples were screened for their ODAP content, the plants were 

left in the trays for more than six weeks. This was enough time for many of them to start 
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producing flowers. Several families included plants with changed flower colours. Besides 

the wild-type purplish blue flowers, with pink spots at the centre of the standard petal, the 

following mutant phenotypes were observed: white flowers with blue centres, entirely pink 

or peach-coloured flowers and entirely white flowers. These mutant phenotypes are shown 

in Figure 56. 

A B 

C D 

E F 

G H 

Figure 56. Types of flower colour mutants observed in the mutant population, 
showing back and front views. A,B) wild type; C,D) partial blue; E,F) peach; 
G,H) white 
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White flowers with pink centres, which are seen in some Indian landraces were not 

observed, neither were entirely blue flowers without the pink centre or back. This implied 

that the synthesis of the flower pigments (which are anthocyanins) proceeds from the pink 

to the blue compound, as no mutation led to the loss of the pink, but not also of the blue 

pigment. The observed mutant flower colours may be interesting to breeders of 

ornamentals as well as food crops, as flower colour is an easily observable phenotype that 

can be used to differentiate a released variety from other varieties and landraces. Since 

these mutant phenotypes are recessive to the wild-type blue-flowered phenotype, changes 

in flower colour could also serve as a warning that a population of plants has been 

contaminated by outcrossing. 
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3.4 Summary 

By adapting an existing spectrophotometric method for measuring ODAP content in grass 

pea tissues, I developed a high-throughput assay enabling a single researcher to screen 

over a thousand samples in one day. Using this assay I screened 3060 M2 families of a EMS-

mutagenised grass pea population, a total of 36696 plants for mutants with reduced ODAP 

content. A total of 41 M2 families were selected in three passes of the screening method. 

The selected mutants were confirmed through re-testing in the following generation. 

Several of these mutants contained substantially lower amounts of ODAP than their parent 

variety and would be classed as ‘low-toxin varieties’ according to the widely used threshold 

of 0.1 % w/w of β-L-ODAP in dry seeds, but no mutant with zero ODAP content was 

identified. To confirm these results using an independent method, I synthesised β-L-ODAP 

labelled with carbon-13 atoms to serve as an internal standard for LCMS. Using an LCMS 

method developed for this purpose I further characterised three mutant lines, designated 

1264-2, 4884-2 and 4946-7 by measuring β-L-ODAP concentrations in seedling shoot and 

root tips, leaves, roots, flowers, early and late pods and mature seeds. Tissues of the parent 

variety of the mutant population, LSWT11, and the low-ODAP variety Mahateora were 

included for comparison. Comparing samples grown in the same environment and 

measured using LCMS, all three mutant lines showed strongly reduced β-L-ODAP 

concentrations in all tissues except roots compared to LSWT11, and lower seed β-L-ODAP 

concentrations than Mahateora. The mutant line 4884-2 showed a seed β-L-ODAP 

concentration less than half that of Mahateora. Fourteen low-ODAP mutant lines selected 

from the screen and Mahateora were included in a complementation screen. This analysis 

was complicated by an apparent maternal effect on ODAP concentrations in seed and 

seedling tissues and high background readings when testing older tissues. However, the 

data showed complementation between some of the low-ODAP mutants, indicating at least 

two separate allelic groups. The newly identified mutants will form very valuable breeding 

material for the development of future low-ODAP varieties of grass pea. 
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Chapter 4 – Identification of candidate 

genes encoding metabolic enzymes in the 

β-L-ODAP biosynthetic pathway 

 

4.1 Introduction 

4.1.1 A reverse genetics approach to identify target genes for the development of zero-
toxin grass pea genotypes  

The low-toxin mutants that I was able to identify, described in the previous chapter, shared 

two important characteristics with the low-toxin varieties of grass pea that had previously 

been released: they produced low, but measurable non-zero levels of β-L-ODAP. Reports 

exist of previously described low-ODAP varieties with markedly increasing toxin contents 

under stressful conditions (Fikre et al., 2011; Fikre et al., 2006; Girma and Korbu, 2012). My 

objective was to develop zero-toxin lines, because unless toxin content can be shown to be 

reliably below an as yet-to-be-established safe threshold consistently, it will be difficult to 

establish that any new mutant plants are safer than existing varieties. Moreover, the 

intermediate levels of toxin resulting from high-low crosses suggest a strong maternal 

influence on ODAP levels. This means that a better understanding of the genetic basis of 

the toxin production, in particular of the enzymes involved in the synthesis, was necessary. 

Identifying genes encoding enzymes responsible for toxin synthesis, would open the way to 

developing grass pea plants unable to produce β-L-ODAP through targeted screening for 

mutations in these genes using TILLING (Henikoff et al., 2004) or disruption of those genes 

by means of genome editing (Belhaj et al., 2013). 

One way to identify such genes is to use a forward genetics mapping approach, including 

crossing high- and low-ODAP lines that differ in a number of genetic markers and 

measuring the toxin levels in the F2 offspring of these crosses to map genes involved in 

toxin production. However, this would require a genetic map for grass pea with sufficient 

markers to map genes with a high degree of accuracy, which does not currently exist (Skiba 

et al., 2007). While a large set of microsatellite loci has recently been described in grass pea 

(Yang et al., 2014), only a small minority of these microsatellites have been characterised as 



135 Chapter 4 – Identification of candidate genes encoding metabolic enzymes in the β-L-ODAP biosynthetic pathway 

 

 
 

polymorphic markers or linked to a genetic map of Lathyrus sativus chromosomes (Lioi and 

Galasso, 2013; Sun et al., 2012). In addition, these experiments would be complicated by 

the long generation time of grass pea, the difficulty of reliably crossing its self-pollinating 

flowers and the non-trivial problems with scoring ODAP-production phenotypes. While 

such an approach might identify important quantitative trait loci (QTL), it would be unclear, 

until the very end, whether such QTL represent regulatory or metabolic genes and whether 

they could be useful targets for developing entirely toxin-free plants. While a forward 

genetics approach to mapping and identifying biosynthetic genes is feasible, it would 

require a considerable amount of time and resources.  

A reverse genetics approach might be considered more promising. By gathering a genome-

wide dataset of expressed genes, it should be possible to identify candidates for the genes 

encoding enzymes of the pathway given the existing knowledge of the β-L-ODAP 

biosynthetic pathway. A limited number of candidate genes could be followed up 

experimentally to confirm whether any encode enzymes that catalyse the relevant 

reactions. These genes would provide very promising targets for reverse genetics 

approaches to develop reduced-toxin or toxin-free grass peas.  

No suitable genome or transcriptome dataset existed for grass pea that could be used to 

identify candidate genes. The genus Lathyrus contains species with a wide variety in 

genome sizes from 3.35 Gbp up to 16.6 Gbp (Narayan, 1998). The genome size of Lathyrus 

sativus appears to be subject to intraspecific variation (Ghasem et al., 2011; Nandini et al., 

1997), leading to the genome size of various Lathyrus sativus accessions being estimated as 

low as 6.8 Gbp and as high as 10.8 Gbp (Nandini et al., 1997). Despite the rapid advances in 

genome sequencing technology in recent years, sequencing and assembling a genome of 

this size is a significant undertaking. 

The grass pea genome contains a large amount of repetitive sequences and many 

potentially duplicated gene regions (Narayan, 1982), making the assembly of reads into 

large contiguous sequences likely to be difficult. Hence, producing an accurate and reliable 

reference genome for grass pea from which candidate genes could be extracted is likely to 

be time consuming and very expensive. No such genome sequencing project has been 

started to date. The African Orphan Crops Consortium which, in 2014, set out to sequence 

the full genomes of 101 plant species (Fox, 2013), decided to forego grass pea, despite 

including species of far lower economic importance, such as baobab, species with much 
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larger genomes such as fava bean, and species that can hardly be classified as African 

orphan crops, such as onion.  

Rather than sequencing the entire genome of grass pea, a more affordable, and for the 

purpose of finding candidate genes perhaps more promising approach, involves sequencing 

the transcriptome of grass pea followed by de-novo assembly without a reference genome 

(Grabherr et al., 2011). This approach reduces the overall amount of sequencing that is 

necessary, as only the expressed genes are sequenced, while the much larger non-coding 

regions of the genome are ignored. This also reduces the difficulty in assembling the reads 

computationally, as the coding sequences are likely to be less repetitive than non-coding 

sequences. Sequencing the transcriptome nevertheless raises some complications, as it 

captures only genes that are currently expressed in the tissues from which RNA is 

extracted. Genes that are only expressed at very low levels, for example transcription 

factors, and secondly genes that are only highly expressed in specific tissues or 

developmental stages may be missed or mis-assembled due to insufficient read depth. In 

trying to find candidates for the metabolic enzymes involved in the synthesis of β-L-ODAP, 

the low expression might not be a problem in this case, as the enzymes necessary for the 

synthesis of such a common metabolite (>2 % of dry weight in some tissues) are likely to be 

expressed at significant levels. Even if there are copies of these genes with low expression 

that play a minor role in the synthesis, it should be possible to identify these by homology 

searches, if the major genes can be found first. The second issue of missing genes because 

they are primarily expressed in other tissues might pose more of problem, because the 

exact sites of β-L-ODAP synthesis are unknown. While the toxin accumulates in the young 

shoot tips, young leaves, immature pods and seeds as shown in the previous chapter (see 

section 3.3.9), it is unclear whether toxin synthesis is restricted to these tissues or whether 

some of the toxin is transported to these tissues from elsewhere. This means that RNA 

from several tissues, representing different parts of the plant and different developmental 

stages needs to be sequenced in order to ensure capture of the relevant genes and to be 

able to compare their expression levels between tissues.  

Grass pea was one of the species included in the 1000 Plant Genomes Project and an RNA 

sample was sequenced (Matasci et al., 2014) (despite its title, this project involved the 

sequencing of transcriptomes, not whole genomes), but the tissue that was used in this 

experiment (mature roots) does not contain significant amounts of ODAP and is therefore 

unlikely to be a major site of ODAP production. This means that genes encoding enzymes 

that are responsible for the synthesis of β-L-ODAP in high-toxin tissues (the germinating 
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shoot tip, young leaves and early pods) might not be expressed in the roots and could be 

missed as candidates.  

In 2015, another transcriptome dataset from grass pea was published (Chapman, 2015), 

however, this dataset also covered only one tissue (leaves) and is based on a small number 

of reads (15.8 million). In order to identify candidate genes encoding enzymes involved in 

β-L-ODAP synthesis, a more extensive transcriptome, covering high- and low-toxin tissues 

was needed. 

 

4.1.2 The putative pathway for β-L-ODAP synthesis suggests candidate gene families 
for some of the enzymes involved 

The biosynthetic pathway leading to the production of β-L-ODAP is still poorly understood. 

The currently proposed biosynthetic pathway is shown in Figure 57. By feeding grass pea 

seedlings with radiolabelled β-(isoxazolin-5-on-2-yl)-alanine (BIA), Kuo et al. showed that 

BIA is an intermediate in the synthesis of β-L-ODAP (Kuo and Lambein, 1991; 1994; 1998). 

BIA itself is produced by many legume species, including pea, lentil and chickpea (Kuo et al., 

1998). Ikegami et al. were able to show that BIA is converted to L-DAP, the immediate 

precursor of β-L-ODAP (Malathi et al., 1970) in vitro by an enzyme extracted from grass pea 

(Ikegami et al., 1999), but the reaction mechanism and the exact intermediate steps 

remained unclear.  

In a separate reaction, oxalyl-CoA is formed by the ligation of oxalic acid and coenzyme A 

(Malathi et al., 1970). The enzyme catalysing this reaction may be a homolog of the 

recently identified oxalyl-CoA synthases from Arabidopsis thaliana (Foster et al., 2012) and 

Medicago truncatula (Foster et al., 2016). Oxalyl-CoA then acts as the acyl-donor for the 

acyltransfer reaction forming β-L-ODAP. Oxalyl-CoA is part of a pathway for the breakdown 

of oxalic acid in plants. Oxalic acid is a common metabolite in plants, and is involved in 

several catabolic pathways (Yu et al., 2010), but also serves a variety of functions itself, 

including metal detoxification and deterrence against insect feeding (Franceschi and 

Nakata, 2005). However, oxalic acid is also produced by some necrotrophic pathogens, in 

particular Sclerotinia sclerotiorum (Williams et al., 2011) as a means to suppressing host 

defences and inducing cell death (Kim et al., 2008). 
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Figure 57. Proposed pathway for β-L-ODAP synthesis. Redrawn based on publications by Yan et al., Malathi et 
al., Kuo, Ikegami and Lambein (Malathi et al., 1970; Ikegami et al., 1991; Ikegami et al., 1999; Kuo and Lambein, 
1991; Kuo et al., 1994; Kuo et al., 1998; Yan et al., 2006). Hypothetical intermediates are shown in square 
brackets. None of the proposed enzymes (shown in bold) have been identified to date in grass pea. (Note: this 
figure is identical to Figure 4 in Chapter 1 and has been reproduced here for ease of reference.) 
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In order to prevent oxalic acid (and calcium oxalate crystals) from accumulating to toxic 

levels, many plants have pathways for breaking down oxalic acid (Lane et al., 1993; Foster 

et al., 2012). One of these pathways converts oxalate to oxalyl-CoA, which is then 

decarboxylated to form formyl-CoA. Enzymes catalysing this reaction have been partially 

purified from grass pea (Malathi et al., 1970) as well as several other legume species 

(Adsule and Barat, 1977), but no corresponding gene has yet been identified in these 

species. However, an enzyme catalysing the formation of oxalyl-CoA was recently identified 

in Arabidopsis thaliana (Foster et al., 2012) and named ACYL ACTIVATING ENZYME3  

(AtAAE3; At3g48990). Homologs of this enzyme that are able to catalyse the same reaction 

have since been identified in the budding yeast Saccharomyces cerevisiae (Foster and 

Nakata, 2014) and in the model legume Medicago truncatula (Foster et al., 2016). Green 

fluorescent protein (GFP) tagging has revealed that this enzyme is most likely localised in 

the cytosol (Foster et al., 2012; 2016). The Medicago truncatula enzyme MtAAE3 consists 

of 515 amino acids and is encoded by the open reading frame (ORF) of the gene 

Medtr3g035130. The sequence of both the A. thaliana and the M. truncatula enzymes 

could be used to identify oxalyl-CoA synthetase candidate genes from the grass pea 

transcriptome through sequence homology. 

The final reaction, forming β-L-ODAP from L-DAP and oxalyl-CoA, has been suggested to 

involve an acyltransfer reaction. Two plant enzyme families have been described which 

catalyse acyltransfer reactions transferring groups other than aminoacyl-groups: the Serine 

Carboxypeptidase-Like (SCPL) acyltransferases and the BAHD acyltransferases (Bontpart et 

al., 2015), a family named after its first four enzymes to be identified: benzylalcohol O-

acetyltransferase (BEAT), anthocyanin O-hydroxycinnamoyltransferase (AHCT), anthranilate 

N-hydroxycinnamoyl/benzoyltransferase (HCBT), and deacetylvindoline 4-O-

acetyltransferase (DAT).  

SCPL acyltransferases belong to a large family of enzymes which catalyse acyltransfer 

reactions using donor 1-O-glucosides (Milkowski and Strack, 2004). It is unlikely that the 

ODAP-forming reaction is catalysed by an enzyme of this family, as it would not use oxalyl-

CoA, but would instead require Oxalyl-1-O-glucoside, contrary to the existing experimental 

evidence (Malathi et al., 1970). In addition, all SCPL-acyltransferases that have been 

described to date catalyse O-acylations, rather than N-acylations (Bontpart et al., 2015). 

BAHD acyltransferases, on the other hand, use CoA-derived donor molecules and are 

known to catalyse both O-acylations and N-acylations. This highly versatile superfamily of 

enzymes facilitates a wide range of metabolic steps in plants involving the transfer of acyl 
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groups, such as the acylation of anthocyanins (Unno et al., 2007), the production of green-

leaf volatiles for herbivory defence (D'Auria et al., 2007a), the production of floral scent 

compounds (Dudareva et al., 1998), the esterification of cell wall saccharides (Bartley et al., 

2013) and many other functions. Overall, more than 60 BAHD-acyltransferases have been 

assigned biochemical functions to date (Tuominen et al., 2011). 

To identify candidate genes for the BAHD-acyltransferases catalysing the synthesis of β-L-

ODAP in grass pea, I posited four criteria that these genes are likely to fulfil: 

(i) The gene either does not have a close homologue in related species that do not 

produce ODAP, or differs in the predicted amino acid sequence of the 

metabolically active HXXXD-domain 

(ii) The gene is part of a cluster of closely related genes in grass pea 

(iii) The gene has homology to known enzymes that catalyse N-acylation reactions 

(iv) The gene’s pattern of expression across tissues and developmental stages of 

the grass pea plant is correlated with the pattern of toxin distribution 

The BAHD-acyltransferase (BAHD-AT) family of genes is well known for its biochemical 

versatility: individual enzymes may accept several substrates, catalysing different reactions, 

and small changes in amino acid sequence may or may not result in major changes in 

substrate specificity and biochemical function (D'Auria, 2006; Ma et al., 2005). This makes it 

difficult to draw conclusions regarding the likely functions of a BAHD-AT gene based on its 

sequence alone. The highly conserved HXXXD-domain, which determines the shape of the 

enzyme’s binding pocket, is particularly sensitive to changes in sequence. Mutations of the 

conserved histidine and aspartic acid residues generally result in non-functional enzymes, 

though some known BAHD-ATs do not share the glycine that typically follows this sequence 

(D'Auria, 2006). Mutations among the three variable amino acids in the domain can easily 

alter substrate specificity and this may be a mechanism by which BAHD-AT family members 

with novel functions evolve, making enzymes with altered active sites the most promising 

candidates for identifying new functions.  

4.1.3 Transient expression allows assays of gene function in planta  

To establish whether a candidate gene fulfils a certain biological role, one of the most 

informative and straightforward methods is to express it in another organism and test 

whether the function of interest is gained by the host (Kapila et al., 1997). In plant systems 

the expression of foreign genes can be achieved through stable transformation or through 

transient expression (Marillonnet et al., 2005). Stable transformation requires the germline 

of an organism to be transformed with the foreign DNA, allowing it to be passed on to the 
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offspring. This is particularly important when studying the effect of genes at different 

stages of plant development or when the expression of the transgene in future generations 

of the plant is desired, such as in the development of a transgenic crop. Functional studies 

using transient expression, on the other hand, deliver results much more quickly, as the 

gene of interest can be delivered into the cells of an already established plant, allowing its 

effects to be measured a few days later. This also allows genes to be studied that might 

have detrimental effects if they were expressed at a high level at earlier stages of 

development. 

For testing the ODAP synthase candidates, transient expression was chosen, because it 

allowed results to be gained rapidly. For transient expression experiments, I decided to use 

Nicotiana benthamiana as a host plant, because it grows quickly, is easily infiltrated and 

can deliver very high levels of transient expression of foreign genes (Sainsbury and 

Lomonossoff, 2008). Crucially, N. benthamiana does not produce β-L-ODAP naturally, 

allowing me to test for this function in a β-L-ODAP-free background. The pEAQ-HT vector 

system developed by the lab of George Lomonossoff is specifically adapted to produce very 

high levels of expression of transgenes in Nicotiana benthamiana (Sainsbury et al., 2009; 

Peyret and Lomonossoff, 2013) and has been used in many studies using transient 

expression assays (Kanagarajan et al., 2012; Duvenage et al., 2013; Tan et al., 2014). It can 

be used in conjunction with the Gateway cloning system (Invitrogen) to rapidly produce 

highly efficient expression vectors containing any ORF of interest.  

As described in the previous chapter (see section 3.3.9), LCMS provided a highly sensitive 

method of measuring the presence of β-L-ODAP in plant tissues. This has allowed me to 

measure the production of small amounts of β-L-ODAP in N. benthamiana tissues 

expressing candidate genes from grass pea to identify ODAP-forming enzymes. 
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4.2 Materials and methods 

4.2.1 Extraction of RNA from grass pea tissues 

Samples were collected from seven tissues of grass pea (accession LSWT11) plants. These 

tissues were the same as those used for mass spectrometric measurements of β-L-ODAP, 

described in Chapter 3 (see section 3.2.9), with the exception of mature seeds, which were 

not included in the transcriptome. The tissues were collected and ground in the same way 

as described in section 3.2.9. Briefly, tissue samples were collected from the shoot and root 

tips of seedlings 8 days after imbibition, from whole leaves and whole roots of 5-week-old 

plants and flowers, and from early and late pods of 2-month-old plants. The samples were 

flash-frozen in liquid nitrogen and ground using a mortar and pestle chilled with liquid 

nitrogen. Mortars and pestles were cleaned before use with ethanol and baked at 200 °C 

for 2 h to destroy RNases. The laboratory bench and all other instruments used during 

grinding and RNA extraction were treated with RNaseZAP (Thermo Fischer Scientific, 

Waltham, Massachusetts, USA). 

Ground tissue samples of seedling shoot tips, seedling root tips, leaves, roots and flowers 

were extracted using an RNeasy® Plant Mini kit (Qiagen, Hilden, Germany), following the 

manufacturer’s instructions. This extraction method relies on lysing the cells to release 

RNA, followed by a bind-wash-elute procedure using spin columns containing a silica 

membrane. RNA extraction from early and late pods was unsuccessful using the RNeasy® 

Plant Mini kit or TRIzol-reagent (Thermo Fischer Scientific, Waltham, Massachusetts, USA) 

using standard manufacturer protocols. Hence, RNA from these two tissues was extracted 

and purified using the Spectrum Plant Total RNA kit (Sigma-Aldrich, St Louis, Missouri, 

USA), following the manufacturer’s protocol. This protocol is similar to the Qiagen RNeasy® 

Plant Mini kit in that it uses a spin column and a bind-wash-elute procedure, but uses 

different (proprietary) buffer solutions and also includes a DNase treatment before the 

RNA is eluted from the silica membrane. RNA concentrations of extracts from all tissue 

samples were estimated spectrophotometrically using a Nanodrop 1000 instrument 

(Thermo Fischer Scientific, Waltham, Massachusetts, USA). 
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4.2.2 Generation of TruSeq RNA libraries 

Library generation, sequencing and transcriptome assembly were performed by The 

Genome Analysis Centre (TGAC), now the Earlham Institute (EI), Norwich, UK. Quality 

control of RNA samples was performed using Qubit dsDNA High Sensitivity and RNA High 

Sensitivity assays (Life technologies, Carlsbad, California, USA) and a 2100 Bioanalyzer 

instrument using the Agilent RNA 6000 kit. RNA libraries were constructed using the TruSeq 

RNA protocol (Illumina, San Diego, California, USA). In short: mRNA was extracted from 1 

μg of purified RNA by poly-A pull-down-extraction using biotinylated beads. This RNA was 

fragmented and reverse transcribed into first-strand DNA, followed by second-strand 

synthesis. 3’-overhangs were removed through 3’ to 5’ exonuclease activity and blunt ends 

were formed by polymerase activity to fill in any 5’ overhangs. A single ‘A’ nucleotide was 

added to the 3’ ends of the double-stranded fragments, to create complementary 

overhangs with a single ‘T’ nucleotide on the 3’-end of indexing adapter sequences, 

allowing the DNA samples to be labelled with 6bp sample-specific adapter sequences 

before loading onto the flow-cell, allowing samples from different tissues to be pooled (see 

Table 9).  

Table 9. Sequences of indexing adapters used to differentiate sequence 
originating from different tissues 

Tissue of origin Indexing adapter sequence 

Seedling shoot tip 5’ – CGATGT – 3’ 

Seedling root tip 5’ – TGACCA – 3’ 

Leaf 5’ – CAGATC – 3’ 

Root 5’ – CCGTCC – 3’ 

Flower 5’ – CTTGTA – 3’ 

Early pod 5’ – GGCTAC – 3’ 

Late pod 5’ – AGTCAA – 3’ 

 

Unligated adapters, adapter multimers and short fragments were removed by bead-based 

size selection using AMPure XP beads (Beckman Coulter, Brea, California, USA). To increase 

the concentration of DNA prior to sequencing and to enrich fragments that had been 

properly labelled on both ends, PCR was performed using the reverse complements of the 

relevant adapters as non-specific PCR-primers. Aliquots of the DNA libraries were run on a 

PerkinElmer GX instrument using the DNA High Sensitivity Reagent kit (PerkinElmer, 
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Waltham, Massachusetts, USA) to measure insert size. DNA concentration was measured 

using a Qubit dsDNA High Sensitivity assay. 

4.2.3 Paired-end sequencing 

DNA libraries were normalised by equal concentrations and pooled to a total concentration 

of 10 nM using 10 mM Tris-Cl buffer pH 8.5 (Qiagen, Hilden, Germany). This library pool 

was denatured using NaOH, by making a solution containing 2 nM DNA and 0.1 M NaOH. 5 

μl of this solution were mixed with 995 μl HT1 buffer (Illumina, San Diego, California, USA). 

120 μl of this diluted library pool were mixed with 1.2 μl PhiX Control v3 (Illumina, San 

Diego, California, USA) as a sequencing control. Clonal clustering of the flow-cell was 

performed by an Illumina cbot instrument using the TruSeq Paired-End Cluster Generation 

kit v3 and following the PE_amplification_Linearization_Blocking_PrimerHyb_v8 recipe 

(Illumina, San Diego, California, USA). Sequencing was performed using an Illumina 

HiSeq2500 system (Control Software 1.5.15.1 and RTA 1.13.48), following the 

manufacturer’s instructions. One library pool containing DNA derived from the seedling 

shoot tip, seedling root tip, leaf, root and flower samples was run on duplicate flow-cell 

lanes using TruSeq SBS v3 High Sensitivity sequencing chemistry for 100 cycles of each 

paired-end read. A separate library pool containing seedling shoot tip, root, flower, early 

pod and late pod samples was on a single flow-cell lane using TruSeq SBS v4 High Sensitivity 

sequencing chemistry for 126 cycles of each paired-end read. Sequencing reads were de-

multiplexed according to the 6 bp indexing adapters using the CASAVA 1.8 software 

package (Illumina, San Diego, California, USA) allowing for a single one-base-pair mismatch 

per library. Read files were converted into FASTQ format using the bcl2fastq conversion 

software (Illumina, San Diego, California, USA). 

4.2.4 Quality control of sequencing data 

Sequence quality control was performed using the FastQC algorithm (fastqc-0.11.2, 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to check for basic quality 

control metrics in the raw data including base quality scores, sequence length distribution 

and sequence duplication. The kmer-based contamination-screening pipeline Kontaminant 

(developed in-house by TGAC) (http://www.tgac.ac.uk/kontaminant/) was used to screen 

and filter for contamination in the raw reads.  

The SortMeRNA algorithm (http://bioinfo.lifl.fr/RNA/sortmerna/) was used for filtering, 

mapping and operational taxonomic unit (OTU) picking of reads. SortMeRNA uses a file of 
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reads (fasta or fastq format) and one or several ribosomal RNA database file(s) as inputs 

and separates out rRNA and rejected reads from the mRNA reads. 

Trim_galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore) was used 

to trim away adapter sequences. The commands used to run these algorithms are shown in 

Appendix 3.2. 

4.2.5 Transcriptome assembly 

RNA-Seq reads from the seven tissue/developmental stage-specific Illumina libraries were 

de novo assembled into separate transcriptomes using Trinity v2.1.1 (Grabherr et al., 

2011). TransDecoder (http://transdecoder.github.io) was used to predict open reading 

frames and generate predicted proteins from within each set of assemblies. The software 

CD-HIT (Li and Godzik, 2006) was used to construct a non-redundant set of 95,793 protein 

sequences derived from the union of the seven sets. From these, 86,038 representative 

cognate transcript assemblies encoding these proteins were identified and used to 

construct a reduced reference sequence. Read counting was performed against this 

reference to measure transcript abundance across the seven tissues using the software 

package RSEM (Li and Dewey, 2011). Commands are shown in Appendix 3.3. 

4.2.6 Automatic annotation of assembled transcripts 

The results from the sequencing were processed using TGAC’s in-house algorithm AnnotF, 

as used by De Vega et al. for the annotation of the red clover draft genome (De Vega et al., 

2015). ORFs were predicted from each assembled contig, searching all six possible reading 

frames for triplets encoding methionine and stop codons. All potential ORFs comprising 

more than 100 codons were translated in-silico to generate a predicted proteome. The 

processed dataset was then screened using a BLAST2GO (Conesa et al., 2005) scan that 

compared the predicted proteins against the NCBI database in order to annotate each 

contig with its closest match by amino acid sequence homology. In addition, each predicted 

protein sequence was scanned using InterProSCAN 5 (Jones et al., 2014) to predict 

functionally characterised domains. Commands are shown in Appendix 3.4. 

4.2.7 Reverse transcription of RNA from seven tissues of grass pea 

The RNA samples that were extracted and purified for sequencing to produce the multi-

tissue transcriptome were re-used to produce cDNA for cloning the ORFs of candidate 

genes. Besides the samples chosen for sequencing, all other RNA samples that had been 
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prepared in parallel and which also passed the quality check prior to sequencing (using the 

Qubit and Bioanalyzer systems as described) were reverse transcribed to generate cDNA.  

The nucleic acid content of each sample was measured spectrophotometrically using a 

Nanodrop 8000 instrument (Thermo Fischer Scientific, Waltham, Massachusetts, USA). As 

these samples had already passed a quality control step no further DNAse treatment was 

performed on these samples.  

First-strand cDNA-synthesis was performed using SuperScript II reverse transcriptase 

(Thermo Fisher Scientific). For each reaction 16 µl of template RNA, 2 µl of 10mM dNTPs 

(2.5mM of each nucleotide) and 2 µl 0.5 µg/µl oligo dT primers were mixed. The mix was 

incubated at 65 °C for 5 minutes, followed by 1 minute on ice. Separately, a master mix was 

prepared containing (for each sample): 4 µl 10X reverse transcriptase buffer, 8 µl 25 mM 

MgCl2, 2 ul 0.1 M DTT and 2 µl RNaseOUT. To each sample containing template RNA, dNTPs 

and primers, 18 µl of this master mix were added, followed by incubation at 42 °C for 2 

minutes. Then, 2 µl of SuperScript II reverse transcriptase were added to each sample and 

the reactions were incubated at 42 °C for 50 minutes, followed by termination at 70 °C for 

15 minutes. After chilling the reaction products on ice for 2 minutes, 2 µl of RNase H were 

added to each reaction followed by incubation at 37 °C for 20 minutes to degrade any RNA 

left over.  

4.2.8 Design of primers for amplification of ODAP synthase candidate genes 

The Gateway™ cloning system was used to clone the candidate genes. This cloning system 

relies on the specific and reversible exchange of att-stites between DNA sequences, 

catalysed by two clonase enzymes. Briefly, PCR products of the genes to be cloned are 

produced to include the attB1 and attB2 sites at their 5’ and 3’ ends, respectively. The attB 

sites (and the DNA fragment between them) recombine with the attP sites (and the DNA 

fragment between them) on the donor vector, catalysed by the BP clonase. The 

recombination of the attB and attP sites forms new sites called attL sites. These recombine 

with the attR sites on the destination vector, catalysed by the LR clonase, which again 

forms attB sites on the expression vector including the gene to be expressed. 

All forward primers were designed to include the following sequence at their 5’ ends: 

5’ – GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATG – 3’ 

This sequence includes the attB1 binding site for Gateway™ recombination, a Shine-

Dalgarno sequence to allow the genes to be expressed in bacteria (not performed as part of 
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this study), a Kozak sequence for expression in eukaryotes and a start codon. This sequence 

was followed by 18-23 gene-specific nucleotides downstream of the start codons of the 

candidate genes which served as specific PCR-primer regions. In the case of three of the 

candidate genes (BAHD 9, BAHD 10 and BAHD 11) the sequence immediately following the 

start codon was a poor region for PCR-priming with low (< 33 %) GC content. In order to 

allow efficient amplification of these sequences, the 18 bases following the start codon, 

were substituted with alternative codons that are common in Pisum sativum. This 

sequence was added in between the upstream sequence required for cloning and the gene 

specific priming region following this sequence. The inserted 18 nucleotides were the same 

for all three candidate genes where this issue occurred. 

sequence following start codon (native): GAT TCC GTG AAA GTA ATA 

in amino acids:   D      S      V       K      V      I 

alternative codons (used in the primer): GAC TCA GTC AAG GTT ATC 

All reverse primers were designed to include the following sequence at their 5’ ends: 

5’ – GGGGACCACTTTGTACAAGAAAGCTGGGTTTTA – 3’ 

This sequence includes the reverse complements of the attB2 binding site and a stop 

codon. This stop codon is not strictly necessary, as the amplified region also included the 

native stop codon of the candidate genes. Gene specific primer regions were selected from 

the ends of the coding sequence for each candidate gene, up to and including the stop 

codon. In cases where the end of a candidate gene did not form an acceptable primer 

region, a primer region up to 100bp downstream of the stop codon was selected.  

Gene specific regions were selected to have predicted melting temperatures between 54 °C 

and 57 °C. All complete oligonucleotides were checked for self-annealing and secondary 

structures using the Integrated DNA technologies OligoAnalyzer 3.1 tool 

(https://www.idtdna.com/calc/analyzer). The sequences of the final oligonucleotides used 

are shown in Table 10.  
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4.2.9 PCR amplification of candidate BAHD-acyltransferases from cDNA 

PCR reactions were set up to amplify the candidate ORFs for cloning into expression 

vectors. For each candidate, cDNA derived from the grass pea tissue with the highest 

expression level for this candidate (according to RSEM read counts) was used (see Table 

11). 

Table 11. Tissue origin of cDNA used for amplification of ODAP-synthase candidates 

Gene model ID cDNA source 

Shoot_1_m.69767 BAHD 1 seedling root tip 

Flower_1_m.81855 BAHD 2 Seedling shoot tip 

Early_pod_2_m.99813 BAHD 3 Late pod 

Leaf_1_rep_2_m.77806 BAHD 4 Late pod 

Radicle_3_m.76038 BAHD 5 Seedling root tip 

Radicle_3_56696 BAHD 6 Root 

Late_pod_1_m.7957 BAHD 7 Late pod 

Root_3_m.113511 BAHD 8 Seedling shoot tip 

Early_pod_2_m.70389 BAHD 9 Seedling shoot tip 

Early_pod_2_m.70388 BAHD 10 Seedling shoot tip 

Root_3_m.101418 BAHD 11 Seedling shoot tip 

 

For each PCR reaction, 1 µl of template cDNA was mixed with 1 µl of forward primer (10 

µM), 1 µl of reverse primer (10 µM), 2 µl DEPC-treated water and 5 µl of 2X GOTaq® G2 

Green master mix containing polymerase, proprietary G2 reaction buffer, 1.6 mM total 

dNTPs and yellow and blue loading dyes (Promega, Madison, Wisconsin, USA). PCR 

reactions were run according to the protocol shown in Table 12. 

Table 12. PCR protocol for the amplification of candidate ODAP-
synthases from grass pea cDNA 

Step Temperature Duration 

First denaturation 95 °C 2 min 

40 
cycles 

denaturation 95 °C 30 sec 

annealing 52 °C 30 sec 

elongation 72 °C 1 min 30 sec 

Final elongation 72 °C 10 min 
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PCR products were purified using a QIAquick PCR purification kit (Qiagen, Hilden, 

Germany), following the manufacturer’s instructions. Briefly, this purification method uses 

a bind-wash-elute procedure in spin-columns containing a silica membrane to remove 

primers, nucleotides, enzymes and salts from the PCR product. This was followed by PEG 

8000 precipitation to remove primer dimers and any other smaller DNA fragments from the 

PCR products. A PEG 8000 solution containing 30 mM MgCl2 was prepared and sterilised by 

filtration through a 0.45 μm sterile filter. To precipitate DNA fragments >400 bp, 60 μl of 

this solution were mixed with 90 μl of TE buffer (pH 8.0) and 30 μl PCR product and the 

mixture was centrifuged in a benchtop centrifuge at 16,250 g for 20 minutes. The 

supernatant was discarded and the pellet resuspended in 30 μl 10 mM Tris-Cl buffer pH 8.5 

(Qiagen, Hilden, Germany). To further purify PCR products of the right size, 20 μl of this 

solution were loaded onto a 1 % w/v agarose gel, which was set to run for 1 h at 35 V to 

separate DNA fragments by size. Bands at the expected size of ~1300 bp were excised from 

the gel under brief UV-illumination. DNA was extracted from these gel bands using a 

QIAquick gel extraction kit (Qiagen, Hilden, Germany), following the manufacturer’s 

instructions. Briefly, the agarose slice was solubilised, followed by a bind-wash-elute 

procedure using spin-columns containing silica membranes to remove agarose, ethidium 

bromide and salts. The concentration of purified fragments was estimated 

spectrophotometrically using a Nanodrop 8000 instrument (Thermo Fischer Scientific, 

Waltham, Massachusetts, USA).  

4.2.10 Amplification of destination vectors 

In order to culture cells harboring the destination vectors and the donor vector, it was 

necessary to use a strain of Escherichia coli (such as DB3.1) resistant to the ccdB gene 

contained within the cloning site of the vector, as this gene is lethal to most strains of E. 

coli, allowing for the selection of successful constructs at a later stage. Competent DB3.1 

cell suspension (20 µl), 1 µl of pEAQ-HT-DEST1 plasmid carrying either the Gateway™ 

cloning attachment sites or a GFP gene as a positive control and 19 µl of dH2O were mixed 

and incubated on ice for 30 minutes. The suspension was then subjected to a heat shock by 

submersion in a 42 °C water bath for 90 seconds followed by incubation at 37 °C for 1 hour. 

Of the suspension, 20 µl and 100 µl were then plated onto lysogeny broth (LB) agar plates 

containing 10 µg/ml gentamycin or 50 µg/ml kanamycin for the pDONR207 donor vector or 

the pEAQ-HT-DEST1 destination vector respectively. Plates were incubated overnight at 37 

°C. Single colonies from these plates were inoculated into 10 ml liquid LB medium 

containing the same concentration of antibiotic. These liquid cultures were again incubated 
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overnight at 37 °C in a shaking incubator. Plasmids were extracted from these cultures 

using a QIAquick spin miniprep kit (Qiagen, Hilden, Germany) following the manufacturer’s 

instructions. Briefly, bacteria are lysed and lysates cleared by centrifugation, followed by a 

bind-wash-elute procedure using spin-columns containing a silica membrane. Separate 

liquid cultures (2 ml) were mixed with equal volumes of 40 % glycerol for long-term storage 

at -80 °C. Glycerol stocks of the entry clones were kept for future use and as a back-up.  

4.2.11 Assembly of expression clones using Gateway™ recombination 

To generate entry clones containing the cDNA of the candidate genes, 7 µl of PCR product 

in 10 mM Tris-HCl buffer pH 8.5 (Qiagen, Hilden, Germany) were mixed with 1 µl 

pDONR207 (see map in Figure 58) in 10 mM Tris-HCl buffer pH 8.5 (150 ng/µl). To this 

mixture, 2 µl of BP Clonase II enzyme (Sigma-Aldrich, St Louis, Missouri, USA) were added 

and the reaction was incubated at room temperature overnight. The reaction was stopped 

by adding 1 µl proteinase K solution and incubating for 10 minutes at 37 °C. The entry 

clones were transformed into E. coli DH5α (a ccdB-sensitive strain) by mixing 2 µl of the 

reaction product with 50 µl of competent cell suspension, incubating the cells on ice for 60 

minutes, followed by a heat shock in a water bath at 42 °C for 90 seconds. The use of a 

ccdB-sensitive strain at this point ensures that any bacteria transformed with the 

unchanged destination vector (not including the cloned gene, but still containing the ccdB 

gene) are rendered unviable. After the heat shock, 250 µl of SOC medium (2 % w/v bacto-

tryptone, 0.5% w/v bacto yeast extract, 0.05 % w/v NaCl, 2.5mM KCl, 0.01M MgCl2, 20mM 

glucose) were added to each transformation and the cells were allowed to recover in a 

shaking incubator at 37 °C for 1 h. Of the suspension, 20 µl and 100 µl were then plated 

onto LB agar plates containing 10 µg/ml gentamycin. These plates were incubated at 37 °C 

overnight. 
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Figure 58. Map of the pDONR207 donor vector. Annotated features (clockwise): rrnB_T1, rrnB_T2 – 
transcriptional terminators; attP – Gateway cloning sites; ccdB – selection gene lethal to F- strains of E.coli; 
CAT/CamR – chloramphenicol acetyltransferase (chloramphenicol selectable marker); GmR – gentamycin 
resistance gene (selectable marker); ColE1 - bacterial replication origin. Drawn using CLCbio Main Workbench 
6.5 (https://www.qiagenbioinformatics.com/) 

 

Bacterial colonies were picked from each plate using a toothpick and transferred into 100ul 

of dH2O. These suspensions were incubated at 95 °C for 10-15 minutes to extract DNA for 

PCR. PCR reactions were set up by mixing 3 µl of extracts with 1 µl attL1 primer, 1 µl attL2 

primer (both 10 µM) and 5 µl GOTaq G2 Green Master Mix (Promega, Madison, Wisconsin, 

USA). 

attL1 primer: 5’ – TCGCGTTAACGCTAGCATGGATCTC – 3’ 

attL2 primer: 5’ – GTAACATCAGAGATTTTGAGACAC – 3’ 

Fragments were amplified using the PCR protocol shown in Table 13. The size of PCR 

products was checked by running 4 µl of each PCR product on a 1 % w/v agarose 

electrophoresis gel containing 0.01 % v/v ethidium bromide.  
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Table 13. Colony PCR protocols to amplify inserts from entry clones 

Step Temperature Duration 

First denaturation 95 °C 2 min 

40 
cycles 

denaturation 95 °C 30 sec 

annealing 52 °C 30 sec 

elongation 72 °C 1 min 30 sec 

Final elongation 72 °C 10 min 

 

The remaining 6 μl of the sample with the expected product size was purified using a 

QIAquick PCR purification kit (Qiagen, Hilden, Germany), as described in section 4.2.9. The 

purified product was eluted in 34 μl of 10 mM Tris-Cl pH 8.5 buffer. To confirm the identity 

of the cloned sequences, 17 μl of each purified PCR product were mixed with 2 μl of attL1 

primer (10 μM), while the remaining 17 μl were mixed with 2 μl attL2 primer. These 

mixtures were sent for sequencing (Eurofins, Luxembourg).  

The forward and reverse sequences obtained were combined into single contigs using the 

CLCbio Main Workbench package 6.5 (https://www.qiagenbioinformatics.com/), using 

sequencing traces to resolve conflicts between the forward and reverse sequences. The 

assembled contigs were compared to the cDNA sequences retrieved from the 

transcriptome to check for amplification errors.  

The liquid cultures derived from the single colonies that gave rise to the highest quality 

sequences were selected for further processing. Plasmids were extracted from these 

cultures using a plasmid miniprep kit (Qiagen, Hilden Germany) as described in section 

4.2.10. Due to the quantity of liquid culture (10 ml), double volumes of buffers were used 

to suspend and lyse the cells. The lysate was applied to the spin columns in two batches, 

discarding the liquid between centrifugations. The concentration of extracted entry clone 

plasmids was estimated by spectrophotometric measurement using a Nanodrop 8000 

instrument (Thermo Fischer Scientific, Waltham, Massachusetts, USA). 

Expression clones were assembled using the LR reaction to combine the coding sequences 

carried on the entry clones with the regulatory sequences on the pEAQ-HT-DEST1 

destination vector (see map in Figure 59). For each reaction, 150 ng of entry clone were 

mixed with 250 ng of destination vector and TE buffer (pH 8.0) to a volume of 8 μl. On ice, 2 

μl of Gateway LR Clonase II mix (Invitrogen) were added to these solutions. The reactions 

were incubated for 25 °C for 1 h. Reactions were stopped by adding 1 μl proteinase K and 
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incubating at 37 °C for 10 minutes. E. coli DH5α cells were transformed with the reaction 

product as described for the products of the BP reaction. After allowing the transformed 

cells to recover in SOC medium, 20 μl and 100 μl of the cell suspension were spread onto LB 

agar plates containing 50 μg/ml kanamycin. The plates were incubated at 37 °C overnight.  

 

Figure 59. Map of the pEAQ-HT-DEST1 destination vector. Annotated features in clockwise order: LB, RB – left 
and right border of the T-DNA; NPT II, NPT III – neomycin phosphotransferase (kanamycin selectable marker); 
CaMV t35S – Cauliflower Mosaic Virus 35S transcriptional terminator; p19 – inhibitor of gene silencing; CaMV 
p35S Cauliflower Mosaic Virus 35S promoter; NosT – nopaline synthase transcriptional terminator; CPMV RNA-2 
3’UTR, CPMV RNA-2 5’UTR – Cowpea Mosaic Virus RNA-2 untranslated regions (modified); attR2, attR1 – 
Gateway cloning sites; ccdB – selection gene lethal to F- strains of E.coli; CmR – chloramphenicol resistance gene 
(selectable marker); ColE1 - bacterial replication origin; trfA – plasmid RK2 replication initiation protein; oriV – 
eukaryotic replication origin. Drawn using CLCbio Main Workbench (https://www.qiagenbioinformatics.com/) 

 

Single colonies were picked from these plates and used to inoculate 10 ml LB liquid cultures 

containing 50 μg/ml kanamycin, which were incubated at 37 °C overnight. In addition, cells 

from the same colonies were suspended in 100 μl water and incubated at 95 °C for 10 

minutes. The incubated suspension was used as a template for colony PCR, by mixing 3 μl 

of it with 1 μl attB1 primer (10 μM), 1 μl attB2 primer (10 μM) and 5 μl GOTaq G2 Green 

Master Mix. PCR reactions were run using the protocol shown in Table 14. The identity of 

PCR products was confirmed by size using gel electrophoresis and sequencing from both 

ends using the attB primer pair, as described above. 
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Table 14. Colony PCR protocols to amplify inserts from expression clones 

Step Temperature Duration 

First denaturation 95 °C 2 min 

33 
cycles 

denaturation 95 °C 30 sec 

annealing 50 °C 30 sec 

elongation 72 °C 1 min 30 sec 

Final elongation 72 °C 10 min 

 

Expression clones were extracted from overnight cultures using a QIAquick plasmid 

miniprep kit (Qiagen, Hilden, Germany), as described in section 4.2.10. 

4.2.12 Transformation of Agrobacterium tumefaciens by electroporation 

Electrocompetent Agrobacterium tumefaciens cells of the strain GV3101 pMP90 (Koncz and 

Schell, 1986) were taken from storage at -80 °C and allowed to thaw on ice. 50 μl of 

bacterial suspension were gently mixed with 1 µl of plasmid solution (~150 ng DNA/μl). As a 

positive control of transient expression in N. benthamiana, an additional sample of 50 μl of 

electrocompetent GV3101 cells was mixed with 4 μl of pEAQ-HT-GFP solution (15 ng 

DNA/μl). The suspensions were transferred into electroporation cuvettes with a gap size of 

2 mm. Electroporation was performed using a GenePulser device (Bio-Rad, Hercules, 

California, USA) set to a voltage of 2.5 kV with capacitance of 25 μF  and resistance of 400 

Ω. Time constants were recorded as 9.9 msec or 10.0 msec. Immediately following 

electroporation, 1 ml of L medium was added to each cuvette and the cells were allowed to 

recover on ice for 30 minutes followed by incubation in a shaking incubator at 28 °C for 2 

hours. Aliquots of 10 µl and 100 µl of the transformed bacterial suspension were spread on 

LB-agar plates containing 10 µg/ml rifampicin and 50 µg/ml kanamycin. These plates were 

incubated for two days at 30 °C. Single colonies were picked from these plates and 

inoculated into 10 ml LB medium containing 50 µg/ml kanamycin and 10 µg/ml rifampicin. 

The cultures were incubated for three days in a shaking incubator at 28 °C. From these 

liquid cultures, glycerol stocks were produced by mixing 1 ml of liquid culture with 1 ml of 

40% glycerol solution. Glycerol stocks were stored at -80 °C. Of the remaining liquid 

cultures, 10 µl were transferred into fresh LB medium containing 50 µg/ml kanamycin and 

10 µg/ml gentamycin and the new cultures were incubated at 28 °C in a shaking incubator 

overnight. To confirm that the cells in these cultures carried the candidate genes, PCRs 

using a primer pair targeting the attB sites of the expression plasmids were performed. To 
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release the plasmids 1µl of liquid culture was mixed with 30 µl of RO-water and incubated 

at 95 °C for 15 minutes. An aliquot (3 µl) of this solution was used as a template in a PCR 

reaction analogous to the one described in Table 14. Reaction products were run on a 1% 

w/v agarose electrophoresis gel.  

4.2.13 Agroinfiltration of candidate gene expression vectors 

The Agrobacterium cultures grown overnight were spun down in a tabletop centrifuge at 

2235 g for 15 minutes to pellet the cells. After removing the supernatant, the cells were 

resuspended in agroinfiltration solution (10 mM MgCl2, 10 mM 2-(N-

morpholino)ethanesulfonic acid (MES) and 200 µM acetosyringone in distilled water, 

adjusted to pH 5.6 using potassium hydroxide). Acetosyringone increases transformation 

efficiency by inducing the Agrobacterium vir gene cluster, which is involved in mediating 

gene transfer into the plant cells (Godwin et al., 1991). The suspensions were incubated at 

room temperature on a tilting table for 3 hours then diluted in Agroinfiltration solution to 

OD600 = 0.2 prior to infiltration. 

Nicotiana benthamiana plants were grown up in a glasshouse during June (average 16 

hours of daylight/day) for 3-4 weeks in well-watered conditions. For each infiltration, a 

small nick was made on the abaxial side of a leaf, using a sterile needle, taking care not to 

puncture the entire leaf, but only to open up the mesophyll intercellular space (Figure 

60A). A syringe containing the bacterial suspension was then placed onto this nick and the 

suspension was gently pushed into the leaf mesophyll intercellular space until at least 90% 

of the leaf area was infiltrated (Figure 60B). In some cases, up to three injection sites were 

needed to achieve this. Each leaf was infiltrated with a total of 400 - 800 μl of bacterial 

suspension, three leaves of each plant were infiltrated and each leaf was treated as one 

biological replicate. Each plant was injected with only one suspension to avoid cross-

contamination. 
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Three days after infiltration with Agrobacterium suspension, the same leaves were 

infiltrated with metabolite solutions, using the same methodology. Plants were infiltrated 

with either 1mM L-DAP in water (pH 6 adjusted with KOH); 1mM L-DAP and 1mM oxalic 

acid in water (pH 6, adjusted with KOH) or water (mock). Each plant was injected with only 

one metabolite solution to avoid cross-contamination. 

Entire infiltrated leaves were harvested five days after agroinfiltration, i.e. two days after 

infiltration with metabolite solutions and flash-frozen in liquid nitrogen. Leaf samples were 

ground using a mortar and pestle, chilled with liquid nitrogen, followed by 24 h freeze 

drying (BenchTop SLC®, Virtis, Gardiner, New York, USA). 5 mg of each sample were 

weighed out. Free amino acids were extracted by adding 500 µl of 70% ethanol in water 

(HPLC-grade) and shaking the suspension overnight at 20°C. The suspensions were 

centrifuged for 30 min at 16,250 g in a benchtop centrifuge. The supernatant was 

transferred into a fresh microcentrifuge tube and the pellet was resuspended in another 

500 µl 70% ethanol and left to extract for another 30 minutes before centrifugation. The 

supernatant was again transferred and the extraction was repeated a third time. The 

supernatants of all three extraction steps were combined and evaporated to dryness in a 

GeneVac (EZ-2 Elite, Genevac, Ipswich, UK). The dried extracts were re-dissolved in 1 ml of 

RO-water by vortexing and incubation at 55 °C for 20 minutes.  

Standard solutions of β-L-ODAP and L-DAP.HCl containing 50 mg/ml of the respective 

compounds were prepared and processed in parallel with the sample extracts using the 

AccQ-Tag derivatisation procedure (Waters, Milford, Massachusetts, USA), as in section 

3.2.9. Dissolved sample extract (20 µl) or standard solution were mixed with 60 µl of AccQ-

Tag borate buffer. To this, 20 µl of dissolved AccQ-Tag reagent were added, mixed 

A B 

Figure 60. Photographs of Agrobacterium infiltration into Nicotiana benthamiana leaves. A) a small nick is 
made on the abaxial side of the leaf. B) The Agrobacterium suspension is pushed into this nick and 
percolates through the mesophyll intercellular space 
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immediately and incubated at 55 °C for 10 minutes. The derivatised samples were diluted 

1:1500 before LCMS injection. 

4.2.14 LCMS measurement of L-DAP and β-L-ODAP in derivatised N. benthamiana 
extracts 

L-DAP and β-L-ODAP in samples and standards were measured using a Xevo triple 

quadrupole TQ-S instrument (Waters, Milford, Massachusetts, USA). A volume of 5 µl of 

each sample was injected into a Kinetex 2.6 μm EVO C18 100 Ǻ 100 x 2.1 mm column with a 

C18 guard column (Phenomenex, Macclesfield, UK). The solvent profiles for this experiment 

are shown in Table 15.  

Table 15. Solvent profiles used for the injection of derivatised N. benthamiana extracts. 
Linear gradients were used for all changes in solvent mixtures. 

Time (min) Flow rate 

(ml/min) 

Water + 0.1% formic 

acid (HPLC-grade) 

Acetonitrile  

(HPLC-grade) 

0 0.6 99% 1% 

0.4 0.4 99% 1% 

7.0 0.4 75% 25% 

8.5 0.4 10% 90% 

9 0.4 10% 90% 

9.1 0.4 99% 1% 

12.6 0.4 99% 1% 

  

Four mass transitions (347.1 u  116.1 u; 347.1 u  145.1 u; 347.1 u  171.1 u and 347.1 

u  303.1 u) were used to identify the presence of ODAP. These mass transitions were the 

main fragmentations observed by the Xevo TQ-S automatic calibration protocol, as 

described in the previous chapter 3.2.9. The transition 347.1 u  171.1 u which represents 

the singly charged AccQ-Tag-derivatised molecule fragmenting to release the derivatisation 

group is the most prevalent transition. Both β-L-ODAP and α-ODAP are characterised by the 

same mass transitions, but the differences in structure cause the two derivatised 

compounds to elute at different retention times on the HPLC column, allowing them to be 

distinguished.  
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4.3 Results and discussion 

4.3.1 Quality of extracted RNA 

The RNA extracted from grass pea tissues using the Qiagen Total RNA kit (Thermo Fischer 

Scientific, Waltham, Massachusetts, USA) was tested using the Qubit dsDNA High 

Sensitivity and RNA High Sensitivity assays and the 2100 Bioanalyzer instrument (Life 

technologies, Carlsbad, California, USA) as detailed in section 4.2.2. RNA concentrations 

and quality are shown in Table 16. One sample from each seedling shoot tip, seedling root 

tip, whole root and flower tissues was selected for sequencing. All leaf, early pod and late 

pod samples failed the quality control criteria.  

Table 16. Concentration and quality of RNA samples. * samples selected for sequencing, 
** this sample was initially rejected, but selected for sequencing after review of the quality 
control results 

Sample ID 
RNA 
conc. 

(ng/ul) 

DNA 
conc. 

(ng/ul) 

total RNA 
(ng) 

RNA 
quality 
score 

Pass/Fail 

Shoot 1 * 1259.3 70.487 50372 10 Pass 

Shoot 2 1205.3 69.295 48212 10 Pass 

Shoot 3 810.68 66.25 32427.2 10 Pass 

Radicle 1 455.58 56.252 18223.2 10 Fail 

Radicle 2 664.21 58.575 26568.4 10 Pass 

Radicle 3 * 708.75 59.465 28350 10 Pass 

Leaves 1 ** 49.839 6.7391 1993.56 8.3 Fail 

Leaves 2 7.8587 0.73252 314.348 NA Fail 

Leaves 3 0.7261 0.53912 29.044 5.6 Fail 

Roots 1 173.95 61.559 6958 9.4 Fail 

Roots 2 182.15 70.336 7286 9.6 Fail 

Roots 3 * 186.81 71.629 7472.4 9.4 Pass 

Flowers 1 * 1652.6 70.99 66104 10 Pass 

Flowers 2 1434.9 72.355 57396 10 Pass 

Flowers 3 1552.9 73.086 62116 10 Pass 

Early Pod 1 18.085 0.51213 723.4 7.5 Fail 

Early Pod 2 1.0065 0.79548 40.26 6.5 Fail 

Early Pod 3 22.157 0.92816 886.28 7.2 Fail 
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Late pod 1 18.995 1.3285 759.8 1.7 Fail 

Late pod 2 22.616 1.8884 904.64 2.4 Fail 

Late pod 3 14.087 0.97089 563.48 NA Fail 

 

To replace the failed samples I extracted additional samples of leaves, early pods and late 

pods using the Qiagen RNA extraction kit. The pod samples showed very low 

concentrations of nucleic acids after DNase clean-up when measured using a Nanodrop 

1000 instrument (not shown). Hence, only the leaf samples were analysed by the RNA 

quality control pipeline.  

 

Table 17. Concentration and quality of leaf RNA samples prepared to replace failed samples, 
neither sample fulfilled the selection criteria 

Sample ID 
RNA 
conc. 

(ng/µl) 

DNA 
conc. 

(ng/µl) 

total RNA 
(ng) 

RNA 
quality 
score 

Pass/Fail 

Leaves 4 231.36 4.8598 9254.4 6.6 Fail 

Leaves 5 278.83 6.3381 11153 5.2 Fail 

 

Neither sample passed the quality control criteria. However, despite narrowly failing the 

initial quality control step, the original leaf 1 sample (see Table 16) was judged to be of 

sufficient quality for sequencing. To replace the failed pod samples, I used the Spectrum 

Plant total RNA kit (Sigma-Aldrich, St Louis, Missouri, USA) to extract RNA from these 

tissues. These extractions produced RNA of sufficient quality for sequencing as shown in 

Table 18. 

Table 18. Concentration and quality of early pod and late pod RNA samples prepared using 
the Spectrum RNA kit to replace failed samples. * samples selected for sequencing 

Sample ID 
RNA 
conc. 

(ng/µl) 

DNA 
conc. 

(ng/µl) 

total RNA 
(ng) 

RNA 
quality 
score 

Pass/Fail 

Early pod 5 * 266.69 59.15 13335 7.6 Pass 

Late pod 4 * 255.41 46.50 12771 8 Pass 
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4.3.2 Summary of sequencing results 

RNA samples were reverse transcribed into cDNA as described in section 4.2.2. The cDNA 

samples were sequenced using Illumina paired-end sequencing. Raw results of the 

sequencing are shown in Table 19. Seedling shoot tip, root and flower samples were run as 

part of three pooled sequencing lanes, while seedling root tip and leaf samples were run as 

part of two.  

Table 19. Summary of results of the Illumina sequencing of cDNA derived from seven grass 
pea tissue samples. 

Tissue 
Number of 

reads 

Read 1 
mean Q30 

to base 

Read 2 
mean Q30 

to base 

Mean insert 
size less 
adaptors 

Seedling 
shoot tip 

60,668,950 94 94 

277 63,109,728 94 89 

47,452,003 126 124 

Seedling 
root tip 

63,059,659 99 99 
287 

65,837,884 94 99 

Leaf 
40,388,718 94 94 

262 
42,133,522 94 94 

Root 

25,140,966 94 99 

228 26,096,845 94 94 

42,615,758 126 126 

Flower 

16,462,704 99 99 

209 17,266,885 94 99 

45,928,837 126 126 

Early pod 48,709,681 126 126 223 

Late pod 44,779,290 126 126 231 

Total 649,651,430 106 106 246 

 

 

4.3.3 Transcriptome assembly 

The combined data obtained from each tissue were used for de novo assembly. Summary 

results of the assembly, ORF-prediction and automatic annotation are shown in Table 20. 

Tissue-specific transcriptomes and a non-redundant transcriptome based on all tissues 

were uploaded to a server that allowed sequence retrieval and BLAST-searches. Predicted 

proteomes based on the ORF-prediction were also uploaded as tissue-specific and non-

redundant databases.  
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Table 20. Summary of results of the Trinity de novo assembly of RNAseq reads. The transcriptome of each tissue 
was assembled separately. Depth of coverage is given as average fold coverage of each assembly counting only 
aligned reads. 

tissue 
Assem-

bled 
contigs 

Longest 
contig 

Mean 
contig 
length 

N50 
Total Bases in 

contigs 
Depth of 
coverage  

Coding 
regions 

Annotated 
regions 

Seedling 
shoot tip 

369,248 15,584 602 1,439 222,323,426 72.3 118,622 74,163 

Seedling 
root tip 

312,081 15,618 653 1,458 203,973,440 60.4 115,098 60,790 

Leaf 285,517 14,605 697 1,508 199,227,892 39.0 122,139 66,804 

Root 347,994 15,587 637 1,380 221,941,192 39.3 127,484 67,882 

Flower 329,169 13,599 588 1,313 193,834,760 36.4 114,207 70,945 

Early pod 247,171 15,583 698 1,432 172,617,501 27.0 108,868 69,160 

Late pod 238,446 15,579 710 1,440 169,512,820 25.2 107,490 68,461 

 

These databases allowed me to search for grass pea transcripts and predicted proteins by 

homology and retrieve sequence data based on automatic annotations. I used these tools 

to identify candidates for genes coding for enzymes involved in the biosynthesis of β-L-

ODAP. 

4.3.4 Identification of a candidate gene encoding an oxalyl-CoA synthetase in grass pea 

Performing protein BLAST searches (blastp) (Altschul et al., 1997) using both amino acid 

sequences of the Arabidopsis and the Medicago AAE3 enzymes against the non-redundant 

predicted protein database from grass pea resulted in a single significant hit, 

Early_pod_2_m.95177. This predicted protein shares 75% amino acid identity with AtAAE3 

and 88% identity with MtAAE3 (alignment shown in Figure 61).  
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Figure 61. Alignment of amino acid sequences of oxalyl-CoA sythetases from Arabidopsis thaliana and 
Medicago truncatula and their closest homolog in grass pea. Residues are coloured according to RasMol 
colour scheme. Alignment produced and plotted using CLCbio Main Workbench 6.5 
(https://www.qiagenbioinformatics.com/) 
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Due to the high degree of conservation of this pathway across eukaryote species and the 

close homology between the predicted protein from grass pea and the known oxalyl-CoA 

synthetases from Arabidopsis and Medicago, this is a promising candidate for the oxalyl-

CoA synthetase in grass pea (Malathi et al., 1970). The corresponding transcript is 

expressed across all the tissues that I measured, with expression being highest in the 

flowers, early and late pods and lowest in leaves (see Figure 62). 

 

Figure 62. Transcript abundance of the putative Lathyrus sativus oxalyl-CoA synthetase by tissue, based on read-
counting using the RSEM algorithm 

If the identity of this gene as the oxalyl-CoA synthetase in grass pea can be confirmed 

experimentally, this would be a major step towards understanding the genetic basis of β-L-

ODAP production. 

4.3.5 Identification of transcripts encoding putative BAHD-acyltransferases 

I extracted the sequences of BAHD acyltransferases from the non-redundant set of 

predicted proteins of grass pea by searching the automatic annotation results produced by 

the AnnotF algorithm for general terms such as "bahd acyltransferase dcr-like", or specific 

terms such as "vinorine synthase" or "hydroxycinnamoyl transferase". However as each 

contig was only annotated with one homology search result, rather than a tree of search 

results containing generic as well as more specific terms, I could not be sure of capturing all 

the contigs that had been annotated as BAHD acyltransferases without a complete list of 

possible specific search terms that would fall within this category. I therefore decided to 
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instead search the Interpro domain annotations for domains that are common to BAHD 

acyltransferases (see Figure 63). To this end, I retrieved all entries annotated as containing 

the chloramphenicol acetyltransferase-like domain (IPR023213) and manually curated this 

list to remove entries with homology to enzymes outside of the BAHD-AT superfamily. 

Genes of unknown homology were retained. 

There are two conserved motifs common to BAHD-ATs. The first is the catalytically active 

HXXXD motif (typically followed by a glycine) which occurs near the middle of the amino 

acid sequence. The second is the less conserved DFGWG motif near the C-terminus of most 

BAHD acyltransferases. The function of this motif is unclear as it is not physically located 

near the catalytically active site in BAHD-ATs with known crystal structures, but it seems to 

have an important function in maintaining the structure of the enzyme (Ma et al., 2005).  

 

Figure 63. Generic domain architecture commonly found in BAHD-acyltransferases. Two domains, 
each with structural similarity to chloramphenicol acetyltransferase, are connected by a ~13 
amino acid loop (Ma et al., 2005). The HXXXD and DFGWG domains are highly conserved 

 

Retrieving all the predicted proteins annotated as containing the CAT-like domain 

(IPR023213) from the non-redundant database of predicted proteins from all seven tissues 

produced a list of 130 entries. Of these predicted proteins, many were not long enough to 

constitute functional BAHD acyltransferases, which are reported to have an average length 

of 445 amino acids and molecular masses ranging from 48 to 55 KDa (D'Auria, 2006). These 

short transcripts may be produced by truncated pseudogenes that have lost their function, 

or might be artefacts of the transcript assembly or the ORF prediction algorithms, such as 

spurious ORFs that are found nested within real ORFs. As these ORFs may have originated 

from incomplete transcripts, I would not have been able to design PCR primers to clone the 

complete coding regions of these genes. Yu et al. reported an artificially C-terminally 

HXXXD-motif DFGWG-motif 

N-terminus C-terminus 

connecting loop 

chloramphenicol acetyltransferase-like 
domains (IPR023213) 

transferase domain 
(IPR003480) 



166 Chapter 4 – Identification of candidate genes encoding metabolic enzymes in the β-L-ODAP biosynthetic pathway 

 

 
 

truncated transcript of a BAHD-AT that still encoded an enzyme (362 amino acids) with 

catalytic activity, although with a changed pH-optimum (Yu et al., 2008), but no naturally 

occurring truncated but functional BAHD-ATs have been described. I therefore decided to 

filter the predicted protein results by length, using a minimum cutoff of 400 amino acids, 

which reduced the list of entries to 77. This was done to reduce the complexity of the 

following analysis, but it is possible that true BAHD-ATs that may be relevant gene 

candidates were excluded in this process. The excluded predicted proteins may be revisited 

later to test additional candidate genes, if their complete coding sequences can be 

identified. I manually curated this list by removing entries that contained the CAT-like 

domain, but were not BAHD acyltransferases based on their homology to other enzymes, 

reducing the list down to 70 putative BAHD acyltransferases. 

I constructed a phylogenetic tree of the putative grass pea BAHD acyltransferases using the 

EBI Multiple Sequence Comparison by Log-Expectation (MUSCLE) tool. This alignment is 

based on the amino acid sequences of the predicted proteins. This phylogenetic tree is 

displayed in Figure 64. 
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Figure 64. Phylogenetic relationship of putative BAHD-acyltransferases in grass pea based on alignment of amino 
acid sequences of predicted proteins. Gene models shown in green do not share HXXXDG domains with any close 
homolog in closely related species. Gene models shown in red contain disrupted HXXXDG domains and may be 
non-functional. The cluster highlighted in yellow was selected for biochemical testing for ODAP-synthase activity. 
Plotted using FigTree version 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) 
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4.3.6 Identification of ODAP-synthase candidates among the putative BAHD 
acyltransferases  

Using the transcriptome data I applied the four characteristics described in section 4.1.2 to 

identify promising candidates for the ODAP synthase in grass pea: 

(i) The gene either does not have a close homologue in related species that do not 

produce ODAP, or differs in the amino acid sequence of the metabolically active 

HXXXD-domain 

(ii) The gene is part of a cluster of closely related genes in grass pea 

(iii) The gene has homology to known enzymes that catalyse N-acylation reactions 

(iv) The gene’s pattern of expression across tissues and developmental stages of the 

grass pea plant is correlated with the pattern of toxin distribution 

To find the closest homologs of the putative grass pea BAHD-ATs, I searched predicted 

proteome databases of three related legume species, Pisum sativum, the closest relative 

for which an extensive sequence dataset exists and the two model legume species Lotus 

japonicus and Medicago truncatula using the blastp algorithm (Altschul et al., 1997). The 

datasets used were the Pea RNA-Seq gene atlas hosted by the Institut National de la 

Recherche Agronomique (INRA) Dijon (Alves-Carvalho et al., 2015), the L. japonicus gene 

atlas hosted by the Noble Foundation (Verdier et al., 2013) and the M. truncatula 

transcriptome data hosted in the National Center for Biotechnology Information (NCBI) 

BLAST server, respectively. In addition, I performed searches including data from all species 

available on the NCBI server, excluding the three species already mentioned. In most cases, 

the closest homolog found in this search was from chickpea (Cicer arietinum). 

Most of the putative grass pea BAHD-acyltransferases shared close homology with genes in 

these related species. Based on this homology, some of these putative BAHD-ATs could be 

ascribed likely functions. Two putative BAHD-ATs (the highly similar Root_3_m.113522 and 

Radicle_3_m.75099) did not contain a complete HXXXD-domain, but were missing one of 

the variable amino acids from the site. A mutation of this kind could be expected to disrupt 

the active site and lead to a non-functional enzyme. However, Sun et al. have recently 

described the Anthocyanin Acyltransferase-Like gene, which appears to have moved into 

the stem holoparasite Cuscuta australis via horizontal gene transfer from one of its legume 

hosts. Both in C. australis and in several legume species, the enzyme appears to have only a 

HXXD-type domain, while retaining enzymatic activity (Sun et al., 2016b).  

Three highly similar putative BAHD-ATs (Root_3_m.74421, Radicle_3_m.61191 and 

Early_pod_2_m.100092) did not contain a histidine residue at the positions where the 
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HXXXD domain would be expected. Instead, these sequences contained an arginine residue 

at this position. While the histidine residue is generally considered necessary for functional 

BAHD-ATs, as it is catalytically active (Tuominen et al., 2011; Banks et al., 2011), there has 

been one case described of a BAHD-AT in which the histidine residue is replaced with a 

serine and is still catalytically active (Walker et al., 2002). Homologs of the three predicted 

proteins in Pisum sativum, Medicago truncatula, Lotus japonicus and Cicer arietinum all 

contained identical or similar RXXXDG sites. This degree of conservation raises the 

possibility that these genes still retain a function despite the lack of the histidine residue. 

A total of 21 putative grass pea BAHD-ATs contained HXXXD-domains that were different 

from the HXXXD-domains in the majority of close homologs of these gene models in Pisum 

sativum, Medicago truncatula, Lotus japonicus and Cicer arietinum (shown in green in 

Figure 64). Most of these were spread across the radiation of BAHD-acyltransferases in 

grass pea and did not cluster. Due to the biochemical versatility of BAHD-acyltransferases it 

is unclear whether these genes represent novel biochemical functions or whether they 

share the same function of their homologs in other species. However, one group of these 

predicted proteins with HXXXD-domains unique to grass pea stood out (highlighted in 

yellow in Figure 64). In the following, these gene models are referred to using shorthand 

IDs, as shown in Table 21.  

Table 21. Identity of gene models, associated transcripts and shorthand IDs for the members of the candidate 
clade of BAHD-acyltransferases highlighted in Figure 64. 

Representative transcript Gene model ID 

Shoot 1: c66479_g1_i2 Shoot_1_m.69767 BAHD 1 

Flower 1: c76929_g1_i1 Flower_1_m.81855 BAHD 2 

Early pod 2: c97996_g1_i1 Early_pod_2_m.99813 BAHD 3 

Leaf 1 rep 2: c56878_g2_i1 Leaf_1_rep_2_m.77806 BAHD 4 

Radicle 3: c58095_g1_i1 Radicle_3_m.76038 BAHD 5 

Radicle 3: c54094_g1_i1 Radicle_3_56696 BAHD 6 

Late pod 1: c15913_g1_i1 Late_pod_1_m.7957 BAHD 7 

Root 3: c89105_g1_i1 Root_3_m.113511 BAHD 8 

Early pod 2: c51463_g1_i2 Early_pod_2_m.70389 BAHD 9 

Early pod 2: c51463_g1_i1 Early_pod_2_m.70388 BAHD 10 

Root 3: c87597_g4_i3 Root_3_m.101418 BAHD 11 
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Of the 11 predicted proteins in this cluster, only one (BAHD 4) shares its HXXXD-domain 

with the predicted proteins of two of the other legume species (see Table 22). BAHD 1 and 

BAHD 3 each share HXXXD domains with their homologs in one related species (P. sativum 

and L. japonicus, respectively) but in both cases, the overall homology with is poor (<50% 

amino acid identity). BAHD 2 shares its HXXXD domain with its very similar (83% amino acid 

identity) P. sativum homolog. This radiation of genes with active sites different from their 

homologs in related species might suggest the evolution of a new biochemical function. 

The local alignment of the amino acid sequences of the eleven gene models surrounding 

the HXXXD-site is shown in Figure 65. 

 

Figure 65. Local alignment of predicted peptide sequences of putative grass pea BAHD-acyltransferases from the 
ODAP synthase candidate clade. The environment of the catalytic HXXXD site is shown. The conserved domain is 
highlighted by a dashed red box. 
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As part of the transcriptome assembly pipeline, all predicted gene models in the 

transcriptome have been assigned automatic annotations based on sequence homology 

with proteins of known function, where possible. The entire candidate clade was annotated 

as “anthranilate N-hydroxycinnamoyl benzoyltransferase” (anthranilate N-HCBT), a gene 

first identified in Dianthus caryophyllus (Yang et al., 1997). The reaction catalysed by this 

enzyme bears noteworthy similarity to the proposed β-L-ODAP-forming reaction (Malathi 

et al., 1970), as both involve the acylation of a β-amino group of an amino acid as shown in 

Figure 66.    

 

Figure 66. Simplified reaction schemes for the reactions catalysed by A) anthranilate N-hydroxycinnamoyl 
benzoyltransferase and B) the putative β-L-ODAP synthase. The similarity of the substrates and products 
surrounding the reaction centre is highlighted. 

The similarity of these reactions suggests that only slight changes in the shape of the 

enzyme binding pocket might be necessary to change the substrate specificity to use the 

substrates of the β-L-ODAP-forming reaction. This circumstantial evidence strengthens the 

hypothesis that members of the candidate clade of BAHD-acyltransferases might be active 

as ODAP-synthases in grass pea. I therefore proceeded to test a subset of these genes 

biochemically by heterologous expression of their coding sequences in Nicotiana 

benthamiana. 

4.3.7 Amplification of putative BAHD-acyltransferases from grass pea cDNA 

The genes in the described clade of putative BAHD-acyltransferases represent the most 

promising candidates for enzymes with ODAP-synthase activity in grass pea. To optimise 

the annealing temperature for the amplification of candidate gene cDNA sequences from 

the reverse transcribed grass pea cDNA samples, I ran PCRs using two primer pairs (for 

BAHD3 and BAHD10/11, respectively, see section 4.2.8) using five different annealing 

temperatures ranging from 51.3°C to 59.3°C. I obtained amplified fragments of the 
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predicted size at all temperatures (data not shown). The melting temperatures of these 

regions are likely to be important only during the very first cycle of amplification, as in all 

following cycles the entire length of the oligo including the cloning sites are able to anneal 

to the amplified template, resulting in much higher melting temperatures. I therefore 

decided to use 52 °C as the annealing temperature for all amplifications. 

I ran PCRs using the primer pairs described in section 4.2.8. The 5’ and 3’ ends of the 

BAHD10 and BAHD11 cDNA sequences and their 3’UTRs are identical, making it impossible 

to separate them at the amplification stage. As templates, I used cDNA derived from late 

pod tissues (BAHD3) or seedling shoot tips (BAHD8, BAHD9 and BAHD10/11) as these were 

the tissues showing the highest transcript abundances for these genes according to the 

read counting done using the RSEM algorithm (see section 4.2.9). The products of these 

PCRs were loaded on an electrophoresis gel (shown in Figure 67). 

 

Figure 67. Electrophoresis gel showing PCR products of the members of the ODAP-synthase candidate clade. 
PCRs were run using gene-specific primers (see Table 10) and reverse transcribed cDNA from different grass pea 
tissues (see Table 11). Two reactions using different cDNA samples derived from shoot tip material were run for 
the pair of candidates 10 and 11 with identical primers. The gel is a 1 % w/v agarose TBE gel containing 0.01% 
v/v ethidium bromide. The leftmost and rightmost lanes contain DNA size markers, two of which are labelled. 

Amplicons of the expected size (~1300 bp) were present for all candidate genes except 

BAHD4 and BAHD5. Time constraints forced me to priotitise and select the most likely 

candidates for the transient expression experiment. Out of the eleven predicted proteins in 

the clade, I thus selected five for testing experimentally for ODAP-synthase activity, based 

on their transcript abundance patterns shown in Table 23. 
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Table 23. Transcript abundance of members of the BAHD-AT candidate clade across tissues in transcripts per 
million. Measured using the RSEM algorithm. * transcript counts for BAHD 9 and BAHD 10 were binned together 
as the two gene models are isoform transcripts of the same gene. 

 seedling 
shoot 
tip 

seedling 
root tip 

Leaf root flower early 
pod 

late 
pod 

BAHD 1 3.13 5.02 0.40 0.12 0.18 0.57 1.98 

BAHD 2 64.94 31.19 4.52 0.23 4.29 0.27 0.63 

BAHD 3 647.07 551.13 527.10 681.35 609.75 696.87 857.53 

BAHD 4 0.01 0.00 4.28 0.09 0.12 0.65 3.18 

BAHD 5 2.44 2.81 1.28 1.83 1.67 2.25 1.55 

BAHD 6 0.34 34.73 0.03 51.82 0.06 0.02 0.02 

BAHD 7 0.00 0.00 1.21 0.14 4.82 9.40 60.10 

BAHD 8 19.38 4.57 14.31 3.35 11.91 21.17 16.46 

BAHD 9/ 
BAHD 10 * 

76.07 10.73 46.08 3.02 29.18 60.27 39.23 

BAHD 11 13.97 5.42 8.66 3.58 7.50 12.15 7.41 

 

I chose BAHD 3 (Early_pod_2_m.99813) because of its high level of transcript abundance 

throughout all tissues of the plant, which far exceeded the abundance of any other 

transcript in the clade. I also chose BAHD 8, BAHD 9, BAHD 10 and BAHD 11 

(Root_3_m.113511, Early_pod_2_m.70389, Early_pod_2_m.70388 and Root_3_m.101418 

respectively) because the transcript abundance patterns of these genes most closely 

resembled the distribution of β-L-ODAP across the plant. It is possible that β-L-ODAP 

synthesis is catalysed by more than one enzyme and that these enzymes differ in their 

expression patterns across the plant. For example, one gene may be highly expressed in the 

developing pods of the plant and be responsible for the majority of ODAP produced there, 

while another might be highly expressed in young shoots and leaves. This would imply that 

a loss-of-function mutant in either of these genes would result in reduced toxin levels in 

only some tissues. However, among the three low-toxin mutants and the Indian low-toxin 

variety for which I measured ODAP levels using mass spectrometry (described in section 

3.2.9), none showed differentially altered toxin levels compared to the high-ODAP parent. 

In all four low-toxin lines, the toxin levels were proportionately reduced in all tissues. All 

the low-toxin mutant lines that I selected from the mutant screen based on the ODAP 

levels in their seedling shoot tips and leaves, also produced low-ODAP seeds. This could 

imply that these mutations are in regulatory genes that affect β-L-ODAP synthesis across 

the plant, but some activity persists even if the regulatory gene is lost. Alternatively, they 

could represent partial loss-of-function mutations in genes encoding regulatory or 

metabolic enzymes. As has been observed in other mutant screens, most mutations caused 
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by EMS-mutagenesis only cause reduction in the activity of the gene product, rather than a 

complete loss-of-function (Takos et al., 2010). A third possibility is that the genes coding for 

metabolic enzymes involved in β-L-ODAP synthesis are redundant, and despite complete 

loss-of-function of the major gene, one or more other genes that code for enzymes that 

can catalyse the same reaction, albeit at a lower rate, persist. 

The amplified cDNA of the selected candidate genes was purified by PEG precipitation. As 

shown by the electrophoresis gel depicted in Figure 68, PEG purification did not result in 

the complete removal of short (<500 bp) DNA fragments. For this reason, I further purified 

the PEG precipitated PCR products by running the remaining product on a separate 1% w/v 

agarose gel and performing gel extraction. No photograph was taken of this gel to avoid 

DNA degradation by UV-damage. 

 

 

Figure 68. Electrophoresis gel showing the results of PEG precipitation of PCR products of  
ODAP synthase candidates. Even after PEG precipitation, short fragments persisted in the  
samples. The gel is a 1 % w/v agarose TBE gel containing 0.01% v/v ethidium bromide. The 
 leftmost and rightmost lanes contain DNA size markers, three of which are labelled. 
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The purified candidate gene cDNA was cloned into donor vector pDONR207 using the 

Gateway® BP-cloning reaction (as described in section 4.2.11). I transformed the resulting 

entry clones into E. coli DH5α cells and grew up colonies overnight. I picked two colonies (A 

and B) of each BAHD3, BAHD8, BAHD9 and the BP reaction control and twelve colonies of 

BAHD10/11 (A-L) and performed colony PCRs using attL primers. I ran the products of these 

reactions on an electrophoresis gel (shown in Figure 69).  

 

Figure 69. Electrophoresis gel showing products of colony PCRs of entry clones of the ODAP synthase candidates. 
PCRs were run using two E. coli colonies of transformants of BAHD3, BAHD8 and BAHD9, as well as the control 
for the BP reaction (pEXP7-tet, the tetracylce resistance gene and its promoter). PCRs were run using twelve 
colonies from BAHD10/11. The gel is a 1 % w/v agarose TBE gel containing 0.01 % v/v ethidium bromide. The 
leftmost, tenth and rightmost lanes contain DNA size markers, three of which are labelled. 
 
 

At least one of the colony PCR for BAHD3, BAHD8, the BP reaction control and BAHD10/11 

produced amplicons of the expected size, but the two colony PCRs for BAHD9 did not. I 

therefore picked four additional colonies of BAHD9 (C-F), as well as one BAHD8 (C) and four 

BAHD10/11 colonies (M-P) from the same transformation plates and performed colony 

PCRs (see Figure 70). Two of the BAHD9 colonies, the BAHD8 colony and the four 

BAHD10/11 colonies produced amplicons of the expected size (~1.3 kbp). 
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Figure 70. Electrophoresis gel showing products of colony PCRs of entry clones of the 
ODAP synthase candidates, run to replace failed colony PCRs shown in Figure 69. The 
gel is a 1 % w/v agarose TBE gel containing 0.01% v/v ethidium bromide. The  leftmost 
and rightmost lanes contain DNA size markers, three of which are labelled. 
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To confirm the identity of the candidate coding sequences, I amplified and sequenced the 

inserts of the entry clones (discussed below). Based on the electrophoresis and sequencing 

results, I chose colonies 3A, 3B, 8A, 9D, 10/11B and 10/11J and inoculated liquid cultures to 

amplify these entry clones overnight. I performed plasmid minipreps to extract the 

amplified entry clones and used the extracted plasmids to perform the Gateway® LR-

reaction as described in section 4.2.11. Transformants were spread on plates and incubated 

overnight. I picked colonies to perform colony PCRs, the products of which are shown in 

Figure 71. Colonies BAHD 3 AA, BAHD 3 BA, BAHD 8 AA, BAHD 9 DA and BAHD 10/11 JB 

produced amplicons of the expected size (~1.3 kb). I used these colonies to inoculate liquid 

cultures to amplify the expression clones. 

 

Figure 71. Electrophoresis gel showing the products of colony PCRs of E. coli colonies transformed with pEAQ-HT 
expression clones of the ODAP synthase candidate genes. PCRs were run using attB-primers. The leftmost and 
rightmost lanes contain DNA size markers, three of which are labelled. 
 

To confirm the identity of the candidate coding sequences, I purified the products of the 

colony-PCRs and prepared them for sequencing. By aligning the sequences of entry clones 

and expression clones with the transcript sequences obtained from the transcriptome, I 

was able to check whether the correct coding sequence had been amplified and whether 

any errors had been introduced during the amplification. The sequence of the inserts in 

both entry and expression clones generated using the primer pair for BAHD 3 turned out to 

be identical to the expected transcript (Early_pod_2_c97996_g1_i1) in the transcriptome. 

The clones generated using both the primer pairs for BAHD 8 and BAHD 9 carried very 

similar inserts. Both of these matched most closely to the BAHD 9 transcript 

(Early_pod_2_c51463_g1_i2), but each carried several differences (BAHD 8: 40 single 

nucleotide polymorphisms, one deletion and one insertion each of six nucleotides, BAHD 9 

clone 42 nucleotide polymorphisms, and one insertion of 6 nucleotides) compared to the 
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coding sequence of the BAHD 9 transcript. The sequences of the two clones also differed 

from each other in 13 nucleotides. No other sequence in the transcriptome aligned better 

to the coding sequences of the two clones than the BAHD 9 transcript. None of these 

differences introduced stop codons or shifts in the reading frame, but many resulted in 

amino acid changes (BAHD 8 clone: 23 amino acids substituted, 2 inserted, 2 deleted; BAHD 

9 clone: 23 amino acids substituted, 2 inserted). In both clones, the coding sequences of 

the expression clones were identical to the coding sequences of the entry clones, but 

differed from the sequence found in the transcriptome. There are several possibilities for 

how these differences might have arisen.  

(i) Errors may have occurred during the reverse transcription of RNA and PCR 

amplification of these candidate genes from cDNA. However, 29 of the 

mismatches with the BAHD 9 sequence and one of the 6bp insertion/deletions 

are shared between the two clones, which were obtained using different 

primer pairs. It is highly unlikely that so many amplification errors would occur 

in parallel in two separate PCR reactions. 

(ii) The transcript sequence may contain errors due to low sequence coverage, 

meaning the cloned sequences might provide a more accurate reflection of the 

true sequence found in the plant.  

(iii) Highly similar transcripts produced by paralogs of the same gene may have 

given rise to assembly errors during the construction of the transcriptome, 

meaning sequences of non-identical transcripts have been combined. In this 

case, either or both of the cloned sequences may be true coding sequences. 

(iv) The same variety (LSWT11) was used for both transcriptome sequencing and 

cloning from cDNA, but genetic differences may have been present between 

the plants used for each application. The cDNA of BAHD3 was obtained from 

the same late pod RNA sample as used for the sequencing, but the cDNAs of 

BAHD8, BAHD9 and BAHD10/11 were obtained from a different young shoot 

tip RNA sample than the one used for transcriptome sequencing, because the 

original sample had become too degraded for successful cDNA amplification. 

If at least some of the observed mismatches with the expected sequence were due to 

amplification errors, the structure and/or function of the encoded enzyme may be 

disrupted. However, none of these differences concerned the HXXXD domain or led to the 

truncation or frame-shift of the peptide sequence. This makes it impossible to tell from 

sequence data alone whether the function of the enzyme would be affected by these 

changes. I therefore decided to carry on with the experiment without excluding the BAHD 8 

and BAHD 9 clones, but with the caveat that these may not represent the transcript found 

in grass pea. Hence a negative result for the catalytic activity of the enzymes encoded by 

these clones may not be conclusive. 
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The transcripts for BAHD 10 and BAHD 11 contained identical sequences at the beginning 

and end of their coding sequences and in the untranslated regions immediately upstream 

and downstream from it. This made it impossible to differentiate between the two coding 

sequences by the use of gene-specific primers. For this reason I used only one primer pair, 

aiming to amplify both coding sequences. After generating entry clones I then proceeded to 

sequence the inserts of plasmids from 15 individual E.coli colonies. As each bacterial colony 

was likely to derive from a single transformation event, I hoped that this way I would be 

able to capture at least one clone containing each of the two coding sequences. Sequences 

derived from 13 of these colonies aligned to transcripts in the transcriptome, while two 

produced poor quality sequences that did not align. All 13 of the alignable sequences 

aligned to the coding sequence of BAHD 10. All of these sequences contained the six codon 

exchanges that I intentionally introduced through my primer design to access a better gene 

specific primer region. All sequences also contained a 6 bp in-frame deletion compared to 

the BAHD 10 transcript, at the same sequence position (97-102) as the 6 bp 

insertion/deletion polymorphism between the cloned BAHD 8 and BAHD 9 sequences and 

the BAHD 9 transcript (see predicted protein structures in Appendix 3.7). I selected the 

colony that gave rise to the sample with the highest sequencing quality for further 

experiments. Apart from the intentional codon exchange and the 6bp deletion, the cloned 

BAHD 10 coding sequence was identical to the sequence obtained from the transcriptome. 

In summary, the cloned BAHD 3 coding sequence proved to be identical to the 

transcriptome sequence. The cloned coding sequences for BAHD 8 and BAHD 9 were both 

most similar to the BAHD 9 transcript and contained many mismatches implying 

amplification errors and/or chimeras generated in the sequencing or assembly of the 

transcriptome. The cloned BAHD 10 coding sequence was identical to the expected 

sequence with the exception of a 6bp deletion near the 5’-end of the coding sequence. 

None of the clones contained the coding sequence of BAHD 11. Due to time constraints I 

decided to proceed with these four expression clones rather than designing alternative 

primer pairs to try to ascertain whether the source of the mismatches lies with the 

amplification and cloning or with the transcriptome sequencing.  

I transformed Agrobacterium tumefaciens GV3101 cells with the expression clones or the 

pEAQ-HT-GFP plasmid, using electroporation as described in section 4.2.12. Colonies of 

transformants were used to inoculate liquid cultures to grow up bacteria for 

agroinfiltration. To confirm that the cultures contain the expression clones I ran colony-

PCRs, the products of which are shown in Figure 72. All reactions using the candidate gene 
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expression clones produced amplicons of the expected size (~1.3 kb). The cultures carrying 

the pEAQ-HT-GFP did not produce any amplicons. This was expected, because the plasmid 

does not contain attB sites, which were used as primer regions. Based on these results, I 

selected the cultures BAHD 3 BAA, BAHD 8 AAA, BAHD 9 DAA and BAHD 10 JBA for 

agroinfiltration. 

 

Figure 72. Electrophoresis gel showing the products of colony PCRs prepared from A. tumefaciens liquid cultures 
carrying the ODAP-synthase candidate expression clones. PCRs were run using attB-primers. The pEAQ-HT-GFP 
plasmid, which was used as a control, does not contain attB sites and was included here as a negative control. 
The  leftmost and rightmost lanes contain DNA size markers, three of which are labelled. 

4.3.8 Transient expression of ODAP-synthase candidates in N. benthamiana 

I infiltrated N. benthamiana leaves with Agrobacterium tumefaciens suspensions carrying 

the expression clones of candidate BAHD-ATs, as described in section 4.2.13. Three days 

after the agroinfiltration, small lesions were visible in some of the infiltrated leaves 

(including the mock infiltrations), due to pressure damage at the injection site and 

‘ballooning’ of tissue, as shown in Figure 73.  
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Figure 73. N. benthamiana leaf showing lesions three days after agroinfiltration. In some cases, the infiltration 
caused internal tissue rupture in mock infiltrations, agroinfiltrations and injections with metabolite solutions, 
resulting in 'ballooning'. No other tissue damage was observed. 

 

Some additional damage was caused by the second round of infiltration, injecting either 

metabolite solution or water (negative control). Apart from these lesions, all infiltrated 

leaves remained viable up to the point of harvest. In the leaves infiltrated with the pEAQ-

HT-GFP vector, green fluorescence was visible in some mesophyll cells five days after 

agroinfiltration, showing that the infiltration resulted in expression in the plant tissue. 

The four putative grass pea BAHD-acyltransferases that I transiently expressed in N. 

benthamiana were subject to three separate metabolite treatments. Three days after the 

agroinfiltration, leaves were infiltrated with solutions of either L-DAP by itself or both L-

DAP and oxalic acid. The β-L-ODAP-forming reaction has been reported to require L-DAP 

and oxalyl-CoA as substrates (Malathi et al., 1970). Since oxalyl-CoA was unavailable 

commercially, I decided to rely on the endogenous breakdown pathway for oxalic acid via 

oxalyl-CoA, which exists in other dicots (Foster et al., 2012; 2016). As a negative control, I 

infiltrated leaves with sterile water only.  

I extracted free amino acids from these leaf samples, derivatised the extracts and analysed 

these samples using LCMS as described in section 4.2.14.  Figure 74 A shows the retention 

time of a derivatised β-L-ODAP standard sample. A peak at the same position was apparent 

in the chromatograms of both samples from leaves infiltrated with the BAHD 3 expression 

Pressure damage 
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vector and L-DAP and both samples from leaves infiltrated with the same expression vector 

and L-DAP as well as oxalic acid (see Figure 74 C and E). This peak was absent in all other 

samples. In both standard and BAHD 3 samples, the peak was present for all four mass 

transitions that were measured, confirming that the peak does indeed represent β-L-ODAP. 

The transition 347.1  171.1 had the highest intensity, as I had observed before (see 

section 3.2.9). 

No β-L-ODAP was present in leaves that had been mock infiltrated or agroinfiltrated with 

the GFP-vector (see Figure 74 B, D, F, H). No β-L-ODAP was present in leaves that had been 

mock-infiltrated or infiltrated with any of the candidate genes, but were not supplied with 

L-DAP (shown in Figure 74 G for BAHD3). 

Substantial amounts of β-L-ODAP were produced in tissue expressing BAHD 3 in the 

presence of L-DAP as shown in Figure 74 C and E. This represented the first time that β-L-

ODAP had been produced through heterologous gene expression and gave strong evidence 

that BAHD3 encodes an ODAP-synthase in grass pea. The high abundance of the transcript 

associated with BAHD3 in all the sequenced RNA samples indicates it is the most important 

ODAP-synthase in grass pea. 

The other three expression clones did not result in the production of β-L-ODAP. As noted 

before, it is possible that amplification errors during the assembly of the BAHD 8 and BAHD 

9 clones have rendered the encoded enzymes non-functional so further testing will be 

necessary to confirm that these genes do not code for ODAP-synthases in grass pea. The 

sequence of the BAHD 10 clone, however, corresponded well to the coding sequence in the 

transcriptome, except for one 6bp insertion/deletion (see Chapter 1App. 3.7 ). Despite its 

transcript abundance pattern that strongly resembled the distribution of β-L-ODAP across 

the grass pea plant, BAHD 10 does not appear to code for an ODAP-synthase, based on the 

transient expression experiment.  

β-L-ODAP-production was also observed when both L-DAP and oxalic acid were added to 

the tissue. The additional presence of oxalic acid did not seem to increase β-L-ODAP 

production (compare Figure 74 E and C) and in fact I observed by far the highest β-L-ODAP 

content in a sample supplied with L-DAP alone (Figure 74 C), though a replicate of this 

treatment (BAHD3 x L-DAP) produced a peak of similar intensity to both replicates of the 

BAHD 3 expression with addition of L-DAP and oxalic acid treatment (not shown). This 

could indicate that sufficient oxalyl-CoA is present in N. benthamiana leaf tissue naturally 

or that exogenous oxalic acid is not effectively broken down via oxalyl-CoA.    
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Figure 74. Chromatograms for the mass transition 347.1  171.1 showing the presence of β-ODAP in 
N.benthamiana samples transiently expressing the BAHD3 coding sequence, with addition of L-DAP (C) or L-DAP 
and oxalic acid (E). No β-ODAP was observed in negative controls (B,D,F,G,H) or in samples expressing other
ODAP synthase candidates (not shown). In each case, 5 mg of freeze-dried leaf tissue were used (B-H). Intensities 
in A and C are shown at different scales than the other panels due to the high intensity of the peaks in A and C. 
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In the chromatogram of the N. benthamiana sample with the highest concentration of β-L-

ODAP (Figure 74C) a second peak with a retention time of 2.72 minutes was observed. This 

peak was not present in the derivatised β-L-ODAP standard or in any of the derivatised N. 

benthamiana extracts. This second peak exhibited the same four mass transitions as the β-

L-ODAP standard peak. This peak may represent an isomer of the derivatised β-L-ODAP, 

most likely derivatised α-ODAP. α-ODAP is reported to be present in grass pea, where it 

represents in the order of 5 % w/w of total ODAP (Roy and Rao, 1968). The two isomers are 

able to interconvert non-enzymatically (Abegaz et al., 1993; De Bruyn et al., 1994) and this 

process is accelerated in high or low pH environments. It is possible that the enzyme, itself, 

produces a small amount of α-ODAP due to imperfect substrate specificity or that the α-

ODAP is subsequently formed through non-enzymatic conversion from β-L-ODAP.  
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4.4 Summary 

The multi-tissue transcriptome of grass pea that was developed as part of this project 

represents a crucial step forward in researching this orphan crop. This new genetic 

resource will support the development of genetic markers to allow marker-assisted 

breeding of new grass pea varieties and comparative genomics to investigate the crop’s 

remarkable tolerance to drought, flooding and some biotic stress factors. In addition it can 

be used to identify candidate genes based on biochemical knowledge and sequence 

homology. The power of this approach is underlined by the identification of a transcript 

coding for an enzyme with β-L-ODAP-forming activity from grass pea. By screening the 

transcriptome for genes encoding enzymes involved in related biochemical reactions, 

analysing their expression based on transcript abundance across the plant and comparing 

the sequences of grass pea transcripts to related species, I was able to identify transcript 

candidates for this enzyme, one of which I was able to confirm as a β-L-ODAP synthase 

through heterologous expression. This is the first enzyme in the β-L-ODAP biosynthetic 

pathway to be identified and sequenced. This discovery will allow us to greatly expand our 

knowledge of β-L-ODAP synthesis in grass pea and opens up a direct route to developing 

toxin-free genotypes of grass pea by screening for mutants in this gene and any homologs 

with β-L-ODAP-synthase activity or disrupting them through the use of genome editing.  
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Chapter 5 – General discussion 

The objective of this study was to identify genotypes of grass pea with reduced levels of β-

L-ODAP in their tissues and to understand better the biosynthesis of this neurotoxin. For 

this purpose I measured ODAP concentrations in seeds of collections of grass pea 

accessions, screened an EMS-mutagenised population to identify low-ODAP mutants and 

used transcriptome data to select candidates for the gene encoding ODAP-synthase, of 

which one was confirmed through heterologous expression. 

5.1 Variation in β-L-ODAP levels among grass pea 

germplasm 

For the analysis of germplasm presented in this thesis, I selected grass pea accessions from 

countries cultivating the crop around the world and screened a population of grass pea 

landraces from Ethiopia. The range of ODAP concentrations I observed was similar to 

previous germplasm studies that found seed β-L-ODAP concentrations to vary between 

0.15 % and 0.75 % w/w. Low β-L-ODAP is commonly defined as being below 0.1 % w/w (Tay 

et al., 2000; Sharma et al., 2000; Campbell, 1997; Sarwar et al., 1995; Deshpande and 

Campbell, 1992). Most of these studies only investigated the variation in β-L-ODAP levels in 

grass pea accessions from individual countries. To allow better screening of the available 

genetic diversity of grass pea for β-L-ODAP levels as well as other traits, it is necessary to 

establish a core collection that includes a limited number (in the order of hundreds) of 

accessions representing the widest possible sample of the genetic diversity of Lathyrus 

sativus (Vaz Patto and Rubiales, 2014). I attempted to achieve a more widely spread 

genetic diversity by selecting accessions based on diverse geographic origins, but this 

approach could be improved by selecting lines based on genetic markers. Such a genetic 

screening could build on recent work by Wang et al. (2015), but would require a larger set 

of accessions to be screened to establish a core collection of global grass pea diversity, 

since theirs only included 266 Lathyrus sativus accessions, with few of them sampled from 

South Asia.  

The plate-based assay I developed represents a significant improvement on the previously 

described spectrophotometric method for assaying large numbers of samples. My screen 

measuring ODAP in seeds of international grass pea accessions showed wide variation in 
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seed ODAP concentrations, ranging from 0.14 % to 0.76 % w/w of dry weight (not including 

the low-ODAP variety LS8246 with an ODAP concentration of 0.04 % w/w), but did not 

reveal any geographical patterns. The strength of this analysis is limited by the relatively 

low number of accessions screened (140 accessions, of which 52 were split into sub-

accessions), possible issues of contamination and the fact that both landraces and cultivars 

were included. The analysis of Ethiopian landraces similarly did not reveal any correlation 

between ODAP concentration and geographical or altitudinal origin of the collection site.  

All accessions that showed low (< 0.1 % w/w) seed ODAP concentrations were known low-

ODAP accessions from Australian, Canadian and Indian breeding programmes. One 

accession among the population of Ethiopian landraces that had not been screened 

previously showed intermediate seed ODAP concentration (~0.14 % w/w), but no new low-

ODAP accessions were discovered in any of the three germplasm collections. Several low-

ODAP grass pea varieties have been developed by selection from landraces in the past 

(Campbell and Briggs, 1987; Dixit et al., 2016), but many of these low-ODAP varieties do 

not show genetic complementation when crossed, indicating that their low-ODAP 

phenotypes are due to alleles in the same gene or genes (Campbell, 1997). Attempts have 

been made to widen the gene-pool by crossing Lathyrus sativus with other Lathyrus 

species, some of which do not produce β-L-ODAP. Lathyrus sativus does not readily 

hybridise with other species in the genus (Kumar et al., 2011b), but crosses with Lathyrus 

pseudocicera have given rise to viable plants. Crosses with Lathyrus cicera could be 

recovered through the use of embryo-rescue. However, in neither case did the offspring of 

these crosses segregate for β-L-ODAP content (Addis and Narayan, 2000). The rarity of low-

ODAP accessions and the difficulty of doing inter-species crosses imply that it may not be 

possible to decrease β-L-ODAP levels in grass pea further using existing germplasm alone.  

 

5.2 Comparison of low-ODAP induced mutant lines and 

released low-ODAP varieties  

By further adapting the plate-based spectrophotometric assay for the screening of large 

numbers of samples, I developed a high-throughput assay that I used to screen an EMS-

mutagenised population of grass pea for low-ODAP mutants, as described in Chapter 3. 

Three of the low-ODAP mutant lines I identified in the EMS-mutant screen showed lower 
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seed β-L-ODAP concentrations than the popular Indian low-ODAP variety Mahateora as 

measured using the spectrophotometric assay and/or the LCMS-method using the heavy-

isotope labelled internal standard. The levels of β-L-ODAP in these mutant lines compare 

favourably with low-ODAP grass pea varieties that have been released to date, such as 

LS8246, Prateek, Mahateora, Ratan and Wasie  (Siddique et al., 2006; Kumar et al., 2011a; 

Campbell and Briggs, 1987), but comparison across multiple environments, specifically 

drought stress and zinc deficient soils, will be necessary to ascertain whether the low ODAP 

levels in these mutants are stable (Polignano et al., 2009). The mutant alleles contained in 

these lines will make a useful contribution to breeding programmes for new low-ODAP 

varieties, especially if low-ODAP traits caused by separate genes can be combined. This 

approach of accumulation of low-ODAP alleles may be helpful in reducing the risk of β-L-

ODAP-production increasing to dangerous levels under intense environmental stress (Fikre 

et al., 2008).  

During the second and third passes of the mutant screen and during the subsequent 

confirmation stages, I excluded several M2 families that showed intermediate ODAP 

concentrations. Some of these may have been false positives in the screen that do not 

contain lower ODAP concentrations than the wild type, but others may contain mutants 

with intermediate ODAP concentrations. These could represent mutations in redundant 

genes that contribute a minor part of the enzymatic activity at one step of ODAP 

biosynthesis, regulatory genes that are not essential for ODAP synthesis or reduced-activity 

mutations in major genes. Any of these would be useful additions to the set of low-ODAP 

mutants I included in my complementation analysis; the former set of mutations may 

represent additional complementation groups, while the latter may add to the allelic series 

in the complementation groups I observed. To re-test these M2 families, new seeds from 

the original M2 seed packets would have to be sown and assayed to identify new mutant 

plants, and confirmed by assaying the ODAP concentration in seeds they produce. In this 

way, it may be possible to identify several more low-ODAP mutant lines without having to 

conduct another mutant screen. 

 

5.3 Crossing low-ODAP genotypes 

To analyse gene complementation among the low-ODAP mutants, I performed a total of 

671 crosses between different low-ODAP mutants, of which 250 produced seeds. The 
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preliminary results of these crosses revealed between two and five complementation 

groups among the mutant lines indicating that mutations in at least this many genes may 

cause the low-ODAP phenotype. Some or all of these may encode enzymes that catalyse 

steps in the biosynthesis of β-L-ODAP or regulatory gene products. These mutants will 

provide a useful resource for investigating the production of β-L-ODAP as well as the steps 

of its biosynthesis and could be used to further reduce β-L-ODAP contents by developing 

double mutants. Among the crosses between low-ODAP genotypes (i.e. low-ODAP mutants 

and Mahateora) and comparatively high-ODAP genotypes (i.e. LSWT11 and Nirmal), I 

observed a maternal effect concerning the β-L-ODAP levels in seeds and young seedlings. 

Maternal effects on the β-L-ODAP concentrations in seeds (such as depositional 

phenomena or cytoplasmic inheritance) had been suggested as possibilities in previous 

reports (Campbell, 1997; Quader et al., 1987; Tiwari and Campbell, 1996), but have not 

been further elucidated. When re-testing plants at a later developmental stage, the 

maternal effect disappeared, suggesting that it was due to accumulation of β-L-ODAP in the 

seed by the maternal parent, rather than cytoplasmic inheritance. Because of the maternal 

effect affecting β-L-ODAP levels in seeds and seedlings and the problem of high background 

readings when testing leaf tissues as described in section 3.3.11, I have not yet been able to 

assign all complementation groups with certainty. To confirm these data the ODAP in F2 

seeds produced by these F1 plants must be measured. These results will confirm or refine 

the complementation analysis I made based on leaf samples. Depending on these results 

further crosses between the low-ODAP mutant lines may need to be performed to assign 

all mutant lines and the low-ODAP variety Mahateora to complementation groups with 

greater confidence. 

The F2 seeds collected from the F1 plants have resulted from self-fertilisation. The 

seedlings that germinate from these seeds can be expected to segregate for the mutant 

alleles inherited from the homozygous mutant lines. F2 plants that have originated from 

crosses of mutants in different complementation groups will be assayed for β-L-ODAP to 

test if the levels of the toxin can be further reduced in homozygous double mutants.  

Once the complementation groups of the 14 mutant lines that I have crossed are 

confirmed, representatives from each complementation group can be crossed with newly 

identified low-ODAP mutants from previously excluded M2 families to expand the allelic 

series of the complementation groups and potentially identify mutants that fall into 

additional complementation groups. The same could be done for existing medium- and 

low-ODAP varieties. Several of these (LS8246, Ratan and Prateek) derive from the same 
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low-ODAP germplasm as Mahateora, i.e. the medium-ODAP variety Pusa-24. These are 

likely to fall into the same complementation group as Mahateora. Therefore crosses with 

low-ODAP varieties derived from different germplasm, such as Ceora from Australia 

(Siddique et al., 2006) or Wasie from Ethiopia (Kumar et al., 2011a), would be more 

informative. 

5.4 A potential oxalyl-CoA synthetase revealed by the 

grass pea transcriptomes 

I extracted RNA from seven samples of LSWT11 tissue covering various developmental 

stages and organs (as described in Chapter 4). These RNA samples were sequenced to 

generate transcriptomes by de novo assembly. One of the transcripts identified from these 

transcriptomes shared close sequence homology with genes encoding oxalyl-CoA 

synthetases in Arabidopsis thaliana, and Medicago truncatula (Foster et al., 2012; 2016). 

The enzyme encoded by this transcript is currently being investigated through 

heterologous expression in E. coli (personal communication, Anne Edwards, JIC). The 

formation of oxalyl-CoA represents the penultimate reaction step in the biosynthesis of β-L-

ODAP. If this enzyme can be proven to have oxalyl-CoA synthetase activity, it would be very 

likely that it is involved in the β-L-ODAP-biosynthesis pathway in grass pea and may be the 

same enzyme as the oxalyl-CoA synthetase that was partially purified by Malathi et al. 

(Malathi et al., 1968; 1970). Experiments to test the biochemical function of this enzyme in 

vitro and by heterologous expression are currently being conducted. Once confirmed, it will 

be necessary to knock down its activity in grass pea (using RNAi or Virus Induced Gene 

Silencing) to see if this affects oxalate breakdown and β-L-ODAP content in seeds and other 

tissues. 

If there is no parallel pathway for the synthesis of oxalyl-CoA in grass pea, knocking out the 

gene encoding this enzyme and any of its isoforms may even yield plants unable to 

synthesise β-L-ODAP. However, this might prove to be only of limited usefulness for the 

development of new, safe varieties, because the plant’s ability to break down oxalic acid 

effectively would also be impaired. Both increased susceptibility to Sclerotinia sclerotiorum 

and greatly reduced germination rates have been observed in Arabidopsis acyl-activating 

enzyme 3 (Ataee3) T-DNA insertion lines (Foster et al., 2012). Equally, Medicago truncatula 

Mtaae3 RNAi knock-down lines showed increased susceptibility to S. sclerotiorum and 

increased calcium oxalate crystal formation. Seed germination was not compromised in 
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these lines, which Foster et al. argued may be due to the knock-down of Mtaae3 being 

incomplete (Foster et al., 2016). Grass pea plants that were entirely unable to break down 

oxalic acid in this way might suffer from greatly increased susceptibility to necrotrophic 

pathogens that secrete oxalic acid and potentially exhibit defects in seed development as 

seen in Arabidopsis aee3-mutants (Foster et al., 2012). In addition, increased levels of 

oxalate would be highly unwelcome in a crop variety, as oxalate is liable to lock up calcium 

and other metal ions in nutritionally inaccessible crystals. Oxalate may also lead to the 

development of stones in the urinary tract of mammals (Noonan and Savage, 1999), 

making high-oxalate grass pea varieties potentially unsuitable as food or feed crops. For 

these reasons, grass pea genotypes lacking the oxalyl-CoA synthetase may not be a useful 

breeding goal in themselves. 

Nevertheless, these disadvantages might be mitigated by introducing a novel catabolic 

pathway for oxalic acid into a grass pea genotype in which oxalyl-CoA synthetase activity 

has been knocked out. Recently, Kumar et al. succeeded in expressing the oxalate 

decarboxylase enzyme isolated from the Enoki mushroom (Flammulina velutipes) in a high 

toxin (~0.7 % w/w) grass pea genotype, through Agrobacterium-mediated stable 

transformation (Kumar et al., 2016). This resulted in 75 % reduction in seed oxalic acid 

levels and 73 % reduction in seed β-L-ODAP levels, improved tolerance to S. sclerotiorum 

and increased bioavailability of calcium, magnesium, iron, zinc and manganese (Kumar et 

al., 2016). The transgenic lines the authors produced would not be classed as ‘low-toxin’ 

varieties, as they still contained between 0.2 % and 0.35 % w/w β-L-ODAP in their seeds, 

but this remains an important proof of principle, as it shows that oxalate can be diverted 

into a different breakdown pathway, reducing β-L-ODAP production. 

Another pathway for oxalate breakdown via oxidation has been described in monocots. 

Oxalate oxidase activity appears to be rare in dicots (Membre et al., 1997; Rietz et al., 

2012), but has been recently observed in azalea (Rhododendron mucronatum G. Don) 

(Sakamoto et al., 2015). Transgenic expression of the oxalate oxidase enzyme from barley 

(Hordeum vulgare) in peanut (Arachis hypogea) resulted in increased tolerance to 

externally applied oxalic acid and reduced susceptibility to the pathogen Sclerotinia minor 

(Livingstone et al., 2005). A transgenic grass pea line expressing either the fungal oxalate 

decarboxylase or the monocot oxalate oxidase in the background of an oxalyl-CoA-

synthetase knockout might be unable to produce β-L-ODAP, while still managing to 

maintain appropriate levels of oxalate. With either transgene, some fine-tuning may be 

needed to achieve levels of oxalate in the plant that retain its useful functions in terms of 
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defence against herbivory and ion tolerance, without compromising the nutritional quality 

of the crop. 

A drawback of this strategy, however, is that any variety produced this way would be 

classed as a genetically modified organism (GMO). Despite the potential of GM-

technologies for the improvement of crops for low-income countries, and generally positive 

effects for economic growth benefitting the poor where they have been introduced (Thirtle 

et al., 2003; Krishna and Qaim, 2008; Carpenter, 2010), serious concerns exist among some 

consumers, farmers and non-governmental organisations that have resulted in legal 

restrictions on the cultivation of such crops (Singh et al., 2006; Purchase, 2005). In the 

current regulatory climate regarding transgenic crops, this would cause delays and increase 

the costs associated with the introduction of new low/zero-ODAP varieties in target 

countries (Bett et al., 2010), and may have unforeseen negative effects on perception by 

the public (Purchase, 2005). An example of this issue is the slow introduction of ‘Golden 

Rice’. This publicly-funded research project aimed to develop rice varieties that accumulate 

provitamin A in the endosperm in order to counter vitamin A deficiency in low- and middle-

income countries. Because the desired trait was not present within the rice genepool, the 

researchers used a transgenic approach and succeeded in developing genotypes with 

greatly increased provitamin A content. However, the release of these varieties has been 

delayed by at least 16 years due to complex regulatory hurdles facing the introduction of 

GMOs (Potrykus, 2010; Wesseler and Zilberman, 2016). While transgenic approaches may 

be an interesting route of investigation to enhance our understanding of oxalate 

metabolism and β-L-ODAP synthesis, bringing GMO grass pea varieties to the field would 

likely be far more expensive and time-consuming than non-GM varieties due to these legal 

regulations.   

5.5 Investigating the grass pea ODAP-synthase 

To identify candidate genes for the final step of β-L-ODAP-synthesis I extracted RNA and 

sequenced transcriptomes from several grass pea tissues. The biochemistry of the synthesis 

reaction, in which a CoA-derivative acylates an amino group (Malathi et al., 1970; Ghosh et 

al., 2015), pointed to a BAHD-acyltransferase as the catalyst (Bontpart et al., 2015; D'Auria, 

2006). By comparing grass pea BAHD-ATs to sequences of related legume species, I was 

able to identify predicted proteins with potentially novel functions (see section 4.3.6). 

Using homology-based annotation and transcript abundance data, I decided on a subset of 
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grass pea BAHD-ATs which I investigated biochemically. I cloned these genes and expressed 

them heterologously in Nicotiana benthamiana. I decided to supply L-DAP as an 

intermediate, because it had previously been shown to act as a substrate to a β-L-ODAP 

forming reaction in vitro (Malathi et al., 1970; Ghosh et al., 2015). This experiment 

confirmed one grass pea transcript as encoding an enzyme that is capable of synthesising 

the formation of β-L-ODAP in Nicotiana benthamiana leaves. Because of the high 

abundance of this transcript across grass pea tissues it is likely that this transcript encodes 

the main β-L-ODAP synthase in grass pea and may be the same enzyme as the one partially 

purified previously (Malathi et al., 1970; Ghosh et al., 2015). Small amounts of α-ODAP 

were produced as by-products of this reaction, although it cannot be ruled out that it may 

have been generated through later isomerisation in vivo or during the extraction 

procedure.  

The activity of this enzyme needs to be characterised in in vitro experiments. This could be 

achieved by extraction of the enzyme from grass pea tissue (Malathi et al., 1970; Ghosh et 

al., 2015), or by extraction from N. benthamiana or a bacterial culture expressing the 

cloned gene. To produce purified enzyme, it may be helpful to add an N-terminal or C-

terminal amino acid tag to the enzyme sequence to facilitate selection. N-terminal His-tags 

(Berger et al., 2006; D'Auria et al., 2007b; Luo et al., 2009; Kosma et al., 2012) have been 

successfully used to isolate functional BAHD-ATs, but it should be noted that some enzymes 

of this family appear to have greatly reduced activity when tagged with N-terminal or C-

terminal epitopes (D'Auria et al., 2002).  

To further characterise the grass pea ODAP-synthase it will be necessary to identify the 

genomic sequence, which encodes the enzyme. This will hopefully be achieved by 

interrogating the grass pea draft genome that is currently being assembled by JIC in 

collaboration with the Earlham Institute using Illumina whole genome shotgun sequencing 

(WGS), following the Discovar pipeline (Weisenfeld et al., 2014). The scaffold assembly will 

be refined by optical mapping using the Irys system (BioNano Genomics, San Diego, 

California, USA) (Shelton et al., 2015). This genome is based on the variety LS007. The 

genome sequences of the model legumes Medicago truncatula and Lotus japonicus are 

being used to assemble the genome scaffolds. Once it becomes available, the Pisum 

sativum genome, which is currently being prepared for publication by the international 

consortium for Pea Genome Sequencing (personal communication from Judith Burstin, 

INRA, Dijon, France) will be used to improve the grass pea assembly. Pisum sativum is 
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closely related to grass pea and has a genome of comparable size (Greilhuber and Ebert, 

1994), which may be particularly useful in the assembly of highly repetitive regions. 

Alternatively, the gene sequence could be identified by using inverse PCR to amplify the 

genomic region surrounding the cDNA and sequence it (Ochman et al., 1988). Knowledge of 

the gene sequence surrounding the β-L-ODAP synthase will allow genetic markers to be 

identified that can be used to enable marker-assisted breeding of zero-/low-ODAP 

genotypes. This could help to accelerate future breeding efforts, but still relies on zero-

/low-ODAP genotypes being identified or generated through other means, such as TILLING 

or genome editing.  

TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetics method to find 

mutations in known genes of interest. The technique relies on a repository of genomic DNA 

extracted from a mutant population, which can be interrogated for mutations. When the 

technique was first developed (McCallum et al., 2000; Colbert et al., 2001; Perry et al., 

2003), this was achieved by allowing single strands of the mutant DNA, amplified from the 

region of interest, to anneal to single strands of DNA amplified from the reference 

genotype that was used for mutagenesis. This results in mismatches, typically involving a 

single base pair, at the loci of mutations. The heteroduplex DNA is then digested by an 

endonuclease that only targets single stranded DNA. This enzyme causes DNA to be 

fragmented where a mismatch is present, while duplex DNA without any mismatches is not 

digested. By separating the fragments resulting from each mutant according to their 

molecular weight, individuals in which this digestion has taken place, i.e. where a mutation 

in the target region exists, can be identified. More recently, advances in DNA-sequencing 

technology have enabled TILLING-by-sequencing (Tsai et al., 2011), which relies on 

sequencing of the amplicons of target genes from a population of mutants and comparison 

of the obtained sequencing with a reference sequence. TILLING-by-sequencing has 

advantages compared to TILLING by physical or enzymatic means, because in addition to 

identifying plants with mutations in the target gene, it also immediately reveals the exact 

sequence change caused by the mutation event and its effect on the amino acid sequence 

of the relevant gene product. TILLING could be used to rapidly screen a mutant population 

for mutations in the β-L-ODAP synthase gene, which I have identified, potentially revealing 

additional low-/zero-ODAP mutants. To this end, a TILLING population of grass pea based 

on the variety LS007 is currently being generated by the company BenchBio, Valvada, 

Gujarat, India, because the original mutant population used for the forward mutant screen 

(Chapter 3) did not have a sufficient mutation density to be suitable for TILLING. 
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An alternative approach to generating mutants in a target gene would be genome editing. 

This term refers to a number of techniques that change specific regions in a target DNA 

sequence, typically by targeting endonuclease activity to a pre-determined DNA-sequence. 

This has been achieved using meganucleases (Epinat et al., 2003), zinc-finger-nucleases 

(Bibikova et al., 2003; Miller et al., 2007) and transcription-activator-like-effector nucleases 

(TALENs) (Christian et al., 2010). The most recent technique uses sequence targeting by 

engineered bacterial clustered, regularly interspersed, short palindromic sequences 

(CRISPR) coupled with DNA cleavage by the Cas9 endonuclease (Hwang et al., 2013; Belhaj 

et al., 2013). The primary advantage of the CRISPR/Cas system compared to previous 

methods of genome editing is that the sequence targeting can be achieved by a synthesised 

guide RNA, rather than an engineered protein. This allows accurate targeting of any DNA 

sequence in a genome. The blunt-ended double-stranded break induced by the 

endonuclease can be used as the insertion point for a double-stranded DNA sequence 

(such as a transgene) with 5’ and 3’ ends homologous to the sequences adjacent to the 

double-stranded break. If no insertion sequence is supplied, the error-prone nature of DNA 

repair by non-homologous end joining may result in insertion/deletion mutations. These 

could cause disruption of genes, especially if they result in a reading frame shift. By 

targeting a conserved region in the genomic sequence of the ODAP-synthase, the 

CRISPR/Cas system could be used to create an allelic series of different levels of activity, 

including complete knockouts, of the ODAP-synthase gene.  This would allow testing 

whether a complete knockout of this gene reduces β-L-ODAP production to zero and at the 

same time create alleles that enable the fine-tuning of β-L-ODAP production to study the 

physiological role of this compound in grass pea. 

To enable genome editing in grass pea, both as a research tool and as a means to 

accelerate crop improvement, a CRISPR/Cas platform for grass pea will be developed 

(personal communication, Abhimanyu Sarkar, JIC). This will require the establishment of a 

robust transformation method for grass pea to introduce the CRISPR/Cas cassette 

consisting of the Cas9 gene, a selectable marker and one or more guide RNAs. Methods for 

the transformation and in vitro regeneration of grass pea have been described, but show 

poor efficiency (Barik et al., 2005; Santha and Mehta, 2001). The recent publication that 

claimed successful transformation of grass pea with an oxalate decarboxylase gene (Kumar 

et al., 2016) does not state the genotype used and the described methodology was not 

successfully reproducible using LS007 (personal communication, Julia Russell, JIC). More 

efficient and reproducible methods for the transformation of grass pea and the 
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regeneration of plants will be necessary to allow the application of the CRISPR/Cas system 

in this species. This will allow targeted changes to be made in grass pea genes.  

Genome editing using the CRISPR/Cas system requires transformation of the host organism 

with the genes encoding the guide RNA and the Cas9 endonuclease, but these genes can be 

removed through crossing, resulting in an organism containing the targeted mutation or 

the inserted sequence, but no other foreign genetic material (Xie and Yang, 2013). This 

raises the question of how crops that have been edited using the CRISPR/Cas system or 

other genome editing techniques but do not carry transgenic DNA should be regulated 

(Kanchiswamy et al., 2015). Current regulatory frameworks consider both the end product 

(i.e. the crop variety) and the methods used to develop it, but the relative importance 

differs between legislations. Canada’s legislation on genetically engineered crops is focused 

on regulating the end product and would not consider a genome edited crop variety with 

no transgenic material as a transgenic crop (Smyth and McHughen, 2008). Regulation in the 

United States focuses primarily on the end product, but takes the processes into account 

(McHughen and Smyth, 2008). This stance has led to uncertainty about how non-transgenic 

genome edited crops are to be regulated (Wolt et al., 2016). In 2016, USDA issued the first 

decision not to regulate a CRISPR/Cas-edited crop variety under GM-regulation (Waltz, 

2016). A US federal mandatory GM-food labelling law passed in July 2016 excludes 

products of genome editing. The EU and Japan are yet to issue legal frameworks for the 

regulation of genome-edited crops (Ledford, 2016). This divergence in regulation of these 

novel technologies among highly developed nations has created uncertainty among 

regulatory authorities in low-income countries. Hence it is not clear yet how non-transgenic 

genome-edited crops will be regulated in these countries in the future.  

In jurisdictions that treat non-transgenic genome edited crop varieties the same as 

conventionally bred varieties, CRISPR/Cas edited zero-ODAP grass pea varieties could be 

introduced much more quickly and cheaply than in jurisdictions where such varieties would 

be classified as GMOs requiring extensive tests on their ecological and human health 

impacts. If the same trait could be achieved by TILLING, this issue would be avoided, 

because the TILLING process does not involve transgenic methods. In addition, the licencing 

costs of the CRISPR/Cas technology for agricultural applications may be prohibitive for use 

in grass pea, a crop of little commercial interest at present. Hence TILLING would currently 

be the method of choice for producing low-/zero-ODAP genotypes as breeding material for 

new varieties, while the CRISPR/Cas system would be primarily a research tool. If mutations 

at multiple loci are necessary to achieve a zero-ODAP genotype (e.g. if several BAHD-ATs in 
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the genome are capable of synthesising β-L-ODAP), this could be achieved by stacking 

mutations identified through TILLING, but using CRISPR/Cas with multiple guide RNAs to 

target each locus may be the faster approach. 

5.6 Is L-DAP an intermediate in the synthesis of β-L-

ODAP in grass pea? 

L-2,3-diaminopropionic acid is generally regarded as the final intermediate in the synthesis 

of β-L-ODAP. Evidence for this was provided by Malathi et al. (1967; 1968; 1970) who 

partially purified an enzyme from grass pea that catalyses the formation of beta-ODAP in 

the presence of L-DAP and oxalyl-CoA. The authors noted that no measurable levels L-DAP 

were found in grass pea tissues and concluded that this compound must be a short lived 

intermediate in the synthesis. Subsequent analyses have similarly failed to demonstrate the 

presence of L-DAP in any grass pea tissue. My own analysis by means of LCMS using an 

external standard did not show detectable levels of L-DAP in any analysed grass pea 

sample, despite a very high level of sensitivity, as described in Chapter 3. In addition, none 

of the mutants in the entire mutant screen showed accumulation of L-DAP to an extent 

where it could be distinguished from the background using the spectrophotometric 

method. Although this screen primarily aimed to identify variations in ODAP content, the 

spectrophotometric assay that I was using relies on a colour-forming reaction between L-

DAP, β-mercaptoethanol and o-phthalaldehyde. To measure β-L-ODAP content in a sample, 

the β-L-ODAP first has to be converted into L-DAP by alkaline hydrolysis. This posed a 

problem as mutants in which the last step of the synthesis was compromised might be 

accumulating L-DAP instead of β-L-ODAP, which cannot be distinguished after hydrolysis. 

To circumvent this issue, I tested each sample twice, using the hydrolysed and non-

hydrolysed extract respectively. The absorbance value produced by the non-hydrolysed 

extract provides a measure for the L-DAP content of the sample. However, in the entire 

mutant screen, I observed no individuals with measurable levels of L-DAP. None of the low-

ODAP mutants show measurable levels of L-DAP either. If this compound were an 

intermediate in the synthesis of β-L-ODAP, it would seem likely that some mutations might 

lead to it being over-accumulated.  

Only one study has described evidence for the enzymatic formation of L-DAP (Ikegami et 

al., 1999). The authors describe the extraction of an enzyme from grass pea that catalyses 

the formation of L-DAP from the earlier pathway intermediate β-isoxazolin-alanine (BIA). 
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However, the optimum reaction conditions they describe (37 °C at pH 9.0, followed by 

termination by acidification to pH 1.8) appear far from physiological and the authors do not 

report whether this reaction also occurred under physiological conditions. They note, 

however, that at under slightly more alkaline conditions (pH 10) BIA begins to 

spontaneously degrade to L-DAP even in the absence of enzyme. This raises doubt over 

whether this enzyme catalyses the reaction in planta. 

L-DAP itself is a stable compound and the kinetics of the β-L-ODAP-forming reaction 

described by Malathi et al. showed that not all L-DAP was converted into β-L-ODAP, even if 

oxalyl-CoA was supplied in excess (Malathi et al., 1970). This makes it unlikely that the in 

vivo reaction in grass pea would have its equilibrium so far in the direction of β-L-ODAP 

that no L-DAP would be detectable. To test whether another compound may be the 

substrate for β-L-ODAP production in grass pea, in vitro experiments using the grass pea 

ODAP-synthase to test alternative substrates as described earlier must be undertaken. 

BAHD-acyltransferases typically catalyse freely reversible reactions (Ma et al., 2005; Luo et 

al., 2009). The equilibrium generated between L-DAP and β-L-ODAP in vitro could give an 

indication on whether it was likely that L-DAP might be a short-lived intermediate that does 

not accumulate to detectable levels in vivo. The ODAP-synthase could also be supplied with 

other potential substrates, such as β-L-malonyl-diaminopropionic acid (β-L-MDAP), which is 

a hypothetical intermediate in the β-L-ODAP biosynthesis pathway (Yan et al., 2006). If 

ODAP-synthase is able to accept β-L-MDAP as a substrate, L-DAP may be bypassed entirely.  

5.7 The physiological role of β-L-ODAP 

The most important scientific question that can be addressed through the use of the low-

ODAP mutants developed in this project and potentially zero-ODAP genotypes that could 

be developed in the future concerns the physiological role of β-L-ODAP in grass pea. By 

comparing the performance of near-isogenic high- and low-/zero-ODAP genotypes under 

conditions of abiotic stress it will be possible to ascertain whether β-L-ODAP is involved in 

stress responses. This is particularly relevant for the environmental stress factors that grass 

pea shows high tolerance to, i.e. drought and flooding. Insect feeding studies, again 

involving near isogenic high- and low-/zero-ODAP genotypes, are necessary to determine 

whether β-L-ODAP acts as a toxin or feeding deterrent that effectively reduces insect 

feeding. For these experiments, it would be necessary to include both known insect 

herbivores of grass pea, such as pea aphids (Acyrtosiphon pisum) (Wale and Gedif), pod 
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borer (Etiala jhinkinella) (Pandey et al., 1995) or thrips (Caliothrips indicus) (Pandey et al., 

1995), as well as common insect pest species that are present in target areas for grass pea 

cultivation, but are not known pests of grass pea, because it is possible that these species 

are effectively deterred by the presence of β-L-ODAP. 

In addition to these experiments testing specific hypotheses under laboratory conditions, it 

will be vital to test new low-/zero-ODAP genotypes under agricultural conditions in the 

target countries, e.g. Ethiopia, India or Bangladesh. This may reveal unexpected effects of 

the loss of β-L-ODAP in agricultural settings. 

5.8 Platform development for the rapid domestication 

of grass pea 

As part of this project, several new resources for the improvement of grass pea have been 

developed or are currently in development. Once released for use by other researchers and 

breeders, these tools will allow modern scientific and breeding techniques to be applied to 

the study and crop improvement of grass pea.  

The transcriptomes of 8-day-old seedling shoot and root tips, leaves and roots of 5-week-

old plants and flowers, early pods and late pods from 2-month-old plants of the Indian 

grass pea variety LSWT11 have been sequenced for this project. This represents the first 

transcriptome dataset covering different developmental stages and tissues of grass pea. 

The sequence database is currently being held on servers at JIC for internal use, but will be 

made available to outside researchers through the publicly available sequence database 

held by NCBI and a sequence server operated by JIC. 

To expand on this transcriptome dataset, another transcriptome sequencing project is 

currently underway at JIC in collaboration with the Earlham Institute (EI), Norwich, UK and 

National Institute for Agricultural Botany (NIAB), Cambridge, UK, aimed at measuring the 

transcriptomic responses of grass pea to drought stress. The European grass pea variety 

LS007 and the Indian variety Mahateora are being used for this experiment, along with 

Pisum sativum cv. Cameor and Vicia faba cv. Hedin for comparison. RNA was extracted 

from roots and shoots of the plants. This dataset will help us to understand the genetic and 

physiological mechanisms that mediate the exceptional drought tolerance of grass pea. The 

identification of specific genes or overall regulatory patterns that confer this tolerance 
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could inform breeding approaches to improve the yield stability of other crops in the face 

of water stress.  

As described in section 5.5, a grass pea draft genome is now being assembled. This draft 

genome will allow the identification of candidate gene sequences by automatic annotation 

of known patterns and through comparative genomics. These could serve as target genes 

for reverse genetic approaches, e.g. using TILLING or genome editing. The draft genome 

can be improved by the incorporation of further grass pea sequencing data to achieve 

better scaffolding and sequence coverage. This could be combined with genetic maps that 

are currently being developed (Wang et al., 2015; Yang et al., 2014) to produce high-quality 

physical maps that allow gene identification by map-based cloning. 

As mentioned, a TILLING population based on the European variety LS007 is now being 

developed by the company BenchBio, Valvada, Gujarat, India. This population will serve as 

a tool for identifying mutant alleles in target genes. Hence, the platform could be used for 

the rapid improvement of grass pea by screening for mutant alleles in homologues of genes 

that have proved important in the breeding of other legumes. This could allow some of the 

genetic changes making up what has been called the ‘domestication syndrome’ (Weeden, 

2007) to be established in grass pea through directed, reverse genetics methods. As an 

example, double podding has been an important trait for improving grain yields in legume 

crops (Hole and Hardwick, 1976). This trait has been observed in some grass pea 

accessions, but is not present in most cultivars (Campbell, 1997). Recently, the gene 

associated with double podding in chickpea has been identified (Ali et al., 2016). If a 

homologue to this gene exists in grass pea, it would be a promising target for developing 

the double podding trait in grass pea varieties.  

The CRISPR/Cas platform that is now being developed could also be applied to develop 

agriculturally relevant traits other than low/zero-ODAP content. One possible application is 

the engineering of robust resistance to powdery mildew, caused by the fungus Erysiphe 

pisi. Powdery mildew is an agronomically significant disease affecting many crop species, 

including Lathyrus sativus (Vaz Patto et al., 2006). Broad-spectrum resistance has long been 

known in Pisum sativum (Heringa et al., 1969; Pavan et al., 2011) and a loss-of-function 

allele of the MLO1 gene that confers resistance has recently been identified in this species 

(Sun et al., 2016a). Homologues of this gene family have been described in several other 

legume species (Rispail and Rubiales, 2016). Finding the homologue of the PsMLO1 gene in 
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grass pea could provide a target for developing robust resistance to powdery mildew in 

grass pea by means of genome editing. 

 

5.9 Bringing low-/zero-ODAP grass peas into the field 

Before reliable low-ODAP or zero-ODAP grass pea varieties can be marketed as completely 

safe, it is crucial to prove that no risk of neurolathyrism remains when these varieties are 

used as food or feed. Because there still is no animal model that mirrors the symptoms of 

human neurolathyrism induced by consumption of grass pea, achieving this may be 

difficult. It would help the case for zero-ODAP grass peas if it could be shown that the acute 

neurotoxic effects that are observed in some animals after consumption of a diet heavily 

dependent on grass pea do not occur if zero-ODAP grass peas are used. However, the use 

of animal feeding studies raises ethical concerns, especially when using primate species, 

such as squirrel monkeys, which have previously been employed in β-L-ODAP feeding 

studies (Parker et al., 1979; Mehta et al., 1980, 1983). The improved understanding of the 

aetiology of neurolathyrism following more recent publications (Shinomol and Muralidhara, 

2007; Van Moorhem et al., 2011; Nunn et al., 2011; Meiner and Gotkine, 2016) may help to 

identify an appropriate animal model species, as well as trackable symptoms of the disease, 

to minimise the number of animals required and the animal suffering caused by this 

research. To ensure the safety of grass pea varieties, regular measurements of β-L-ODAP 

levels in field-grown grass pea material should be made by food safety authorities. 

If the problem of neurotoxicity can be resolved, the focus of the nutritional improvement 

of grass pea should shift to other characteristics, in particular antinutritional factors such as 

trypsin inhibitors and polyphenols and the seed protein amino acid profile, which is low in 

tryptophan, methionine and cysteine. In addition, L. sativus contains small amounts of 2-

cyanoethyl-isoxazolin-5-one, which is catabolised to β-amino-propionitrile (BAPN), the 

causative agent of osteo- and angiolathyrism. Although this disease is primarily associated 

with L. odoratus and several wild species of Lathyrus, it may also be a health concern for 

the consumption of L. sativus. None of these problems represent barriers to application as 

major as neurotoxicity, but they still limit the value of grass pea as a major component of 

animal feed or a staple food for human consumption. The genetic and genomic resources 

that are now being developed by JIC and collaborating institutions will surely help in 

addressing these issues.  
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If the potential of grass pea for food security in regions prone to drought and flooding is to 

be realised, improved varieties need to be brought into cultivation both in countries that 

currently cultivate grass pea and countries that do not. Countries that already cultivate 

grass pea as a significant crop, such as Ethiopia, India and Bangladesh (Malek and Gazipur, 

1999; Fikre et al., 2011; Bhowmick, 2013), may show greater interest in improved varieties 

because many farmers and consumers are already familiar with the crop. Grass pea is 

primarily cultivated by smallholder farmers who save seed from harvest to sowing or buy 

seed on the informal market (Campbell, 1997). This poses the risk of improved grass pea 

varieties hybridising with potentially unsafe landraces or even high-ODAP seed being 

intentionally mislabelled and sold as seed of improved varieties. Intentional mislabelling of 

non-improved seeds occurred when genetically modified Bt-cotton was first introduced in 

India; conventional cotton seed was sold in bags of the GM varieties by unscrupulous 

traders, leading to reports of the GM-crop failing (Stone, 2007; Sheridan, 2009). 

One way to reduce the risk of high-ODAP grass pea landraces being mistaken for improved 

grass pea varieties and to identify events of unwanted outcrossing would be to generate 

improved varieties that also carry easily distinguishable morphological traits that set them 

apart from high-ODAP landraces and other varieties. This approach was already taken in 

the development of the low-ODAP variety Mahateora, which was bred to have pink 

flowers, instead of the more common blue flowers (Kumar et al., 2011a). Other traits that 

could be investigated for this purpose would be pod anthocyanin production, seed colour 

or seed shape. What traits are used to set improved varieties apart may need to depend on 

what traits are common in grass pea genotypes already cultivated in a region and what will 

be acceptable to consumers, who may be averse to unfamiliar traits, especially regarding 

seed morphology.  

The high tolerance to environmental stress that grass pea exhibits makes it suitable to 

many areas where it is not currently cultivated or where its cultivation has ceased. In 

countries where grass pea has been used traditionally and is commonly associated with 

famine and disease, it may take time to overcome the image of grass pea as an undesirable 

food, even if improved varieties are advocated by government agencies or non-state actors 

such as non-governmental organisations or private companies. Areas where grass pea has 

never been introduced and areas where there has been historical cultivation of grass pea, 

but no living memory of neurolathyrism, may be good targets for the introduction of new 

toxin-free varieties, because the advantages of grass pea cultivation could be applied 

without having to overcome deeply held doubts over the safety of the crop. This may prove 
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easier to achieve by advocating grass pea as a green manure (i.e. a cover crop that is used 

to suppress weeds and regenerate the soil between plantings of other crops) or fodder 

crop, where consumer preference is less of a concern than for food crops. In addition, 

outcrossing with high-ODAP landraces would not be a concern in such areas. However, the 

fact that this is a new food unknown to most of the population may result in slow adoption 

of these varieties by food producers. 

In either case, attempts to introduce improved grass pea varieties need to take account of 

existing seed systems in target countries. Presently, approximately 80 % of seed planted in 

Sub-Saharan Africa originates from informal seed systems, e.g. by farmers swapping, gifting 

or selling non-certified seed produced on-farm as well as saving seed from harvest to 

sowing (Byerlee et al., 2007). Functioning formal seed systems relying on breeding and 

release of certified crop varieties that are multiplied and distributed by the government or 

private seed companies exist, but primarily focus on a small number of crop species, such 

as maize or cotton (Smale et al., 2013). However, the prediction that formal seed systems 

would come to supplant the informal seed sector in Sub-Saharan Africa, as it has in 

developed countries, has not yet been fulfilled (Louwaars and De Boef, 2012; Lohr et al., 

2015). Most pulse crops in Sub-Saharan Africa are primarily traded though the informal 

seed market (Almekinders et al., 1994). There is evidence that low-income farmers in Sub-

Saharan Africa (Uganda, Burundi, Rwanda and Democratic Republic of Congo) are willing to 

buy improved bean seed if it provides a clear economic benefit (David and Sperling, 1999). 

Grass pea, however, is primarily grown as a food security crop with limited market demand 

at present. This may make it difficult to build an economically sustainable formal seed 

system for grass pea relying solely on private breeding companies selling seeds of improved 

varieties. Instead, an approach integrating publicly funded breeding of locally suitable 

genotypes (including a participatory approach to ensure the varieties meet the needs of 

local farmers under realistic farming conditions) with already existing informal seed 

systems may be more successful (Louwaars and De Boef, 2012; Louwaars et al., 2013; Lohr 

et al., 2015). This would require collaboration between international researchers and 

national agricultural research systems (such as EIAR in Ethiopia), government agricultural 

extension systems as well as national and/or international NGOs and farmer’s collectives. 

This network of partners would be necessary to not only provide seeds (at no, or subsidised 

cost) to farmers, but also provide training on the benefits and limitations of these varieties, 

how to recognise improved varieties (using phenotypic markers, such as flower colour), and 

how to cultivate them successfully. In addition, this network could be utilised to allow 
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feedback of farmer’s experiences to inform future varietal development. Networks like this 

are already in place in West Bengal, India, where researchers and breeders are engaging 

local farmers to multiply seed of certified low-ODAP varieties on-farm and provide training 

on their use (personal communication, Raghunath Sadhukhan, BCKV). The participatory 

breeding approach may also focus on the multiple possible uses of grass pea as a grain 

legume and a leafy vegetable, as a fodder crop and as a cover crop (Hillocks and Maruthi, 

2012; Dixit et al., 2016) by developing cultivars specifically adapted to these different uses. 

In general, grass pea production appears to be following patterns in production of other 

pulse crops. Ethiopia has seen rising acreages under grass pea cultivation since 2000 

(Haimanot et al., 2005; Girma and Korbu, 2012). After declining between 1990 and 2009 

(Miah and Haque, 2013), acreage under cultivation with grass pea in Bangladesh has 

remained level between 2009 and 2014, remaining the second most widely cultivated pulse 

crop, shortly after lentil (Bangladesh Bureau of Statistics, 2016). In the state of West 

Bengal, India, grass pea cultivation has doubled (after stagnating at a low level for six years) 

between 2014 and 2016, following increased demand for pulses and government-funded 

programs to distribute improved varieties (personal communication, Raghunath 

Sadhukhan, BCKV). At present, these data are too ambiguous to support either a falling or 

rising trend in global grass pea acreage. 

In the longer term, the global demand for pulses is expected to increase as an effect of 

rising human and livestock populations and dietary changes. This increase is likely to be 

most pronounced in Southern Asia and Sub-Saharan Africa, due to the faster rate of 

population growth in these areas compared to global trends (Joshi and Rao, 2016). It has 

been projected that consumption of pulses in Sub-Saharan Africa will increase by 50 % 

between 2009 and 2030 (Clancey, 2009). New, locally adapted pulse varieties could 

contribute to alleviating the expected deficit in pulse production in South Asia and Sub-

Saharan Africa (Clancey, 2009), reducing the need for imports and improving local food 

security. In the context of the impacts of climate change increasing water stress in these 

areas (Dai, 2013), drought tolerant crops such as grass pea could be instrumental in 

meeting this challenge.  
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Appendix 

App. 1 Chapter 2 – Screening grass pea germplasm for 

low-ODAP genotypes 

App. 1.1 Standard concentrations used alongside spectrophotometric assays 
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App. 1.2 Standard curves used for calibration of spectrophotometric assays 

Standard curve used for comparing seed batches of Indian grass pea varieties 

 

App. Figure 1. Calibration curve of L-DAP.HCl standards used with the assay on individual seeds of Indian grass 
pea varieties. Standards were included with each plate of samples. Error bars denote standard error. The table 
below shows the statistics of the linear regression used to calculate sample ODAP concentrations. 

slope 3.454 ± 0.013 

intercept 0.042 ± 0.001 

R2 0.99986 

degrees of freedom 10 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.05 0.1 0.15 0.2 0.25

ab
so

rb
an

ce
 a

t 
4

2
0

 n
m

equivalent ODAP concentration in g/l



207  Appendix 

 

 
 

Standard curve used for the IPK germplasm population 

 

App. Figure 2. Calibration curve of L-DAP.HCl standards used with the IPK population. Standards were included 
with each plate of samples. Error bars denote standard error. The table below shows the statistics of the linear 
regression used to calculate sample ODAP concentrations. 

slope 3.659 ± 0.018 

intercept 0.050 ± 0.002 

R2 0.99976 

degrees of freedom 10 
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Standard curves used for the USDA population 

The assays of the USDA population were performed in three sets on consecutive days. L-

DAP standards were measured alongside each set of samples and separate standard curves 

were used to calculate seed ODAP concentrations. 

 

App. Figure 3. Calibration curve of L-DAP.HCl standards used with the first set of accessions (IDs 68-124) of the 
USDA population. Standards were included with each plate of samples. Error bars denote standard error of six 
replicates. The table below shows the statistics of the linear regression used to calculate sample ODAP 
concentrations. 

slope 3.659 ± 0.059 

intercept 0.032 ± 0.008 

R2 0.99926 

degrees of freedom 10 
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App. Figure 4. Calibration curve of L-DAP.HCl standards used with the second set of accessions (IDs 125-193) of 
the USDA population. Standards were included with each plate of samples. Error bars denote standard error of 
six replicates. The table below shows the statistics of the linear regression used to calculate sample ODAP 
concentrations. 

slope 3.510 ± 0.059 

intercept 0.060 ± 0.016 

R2 0.99709 

degrees of freedom 10 
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App. Figure 5. Calibration curve of L-DAP.HCl standards used with the third set of accessions (IDs 194-219) of the 
USDA population and the Indian grass pea varieties. Standards were included with each plate of samples. Error 
bars denote standard error of six replicates. The table below shows the statistics of the linear regression used to 
calculate sample ODAP concentrations. 

 

slope 3.916 ± 0.057 

intercept 0.037 ± 0.010 

R2 0.99910 

degrees of freedom 10 
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Standard curve used for the EIAR population 

 

App. Figure 6. Calibration curve of L-DAP.HCl standards used with the EIAR population. Standards were included 
with each plate of samples. Error bars denote standard error. The table below shows the statistics of the linear 
regression used to calculate sample ODAP concentrations. 

slope 11.296 ± 0.238 

intercept 0.090 ± 0.033 

R2 0.99735 

degrees of freedom 6 
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App. 1.3 Raw data of seed ODAP concentrations of grass pea accessions 

IPK population 

 
App. Table 4. Seed ODAP concentrations and countries of origin of the grass pea 
accessions obtained from the IPK collection, based on three technical replicate 
measurements of bulk seed samples. Empty cells denote incomplete passport data. 

IPK ID 
Seed ODAP 

concentration in % w/w 
Country of origin 

LAT 401 0.262 Turkey 

LAT 404 0.308 Turkey 

LAT 407 0.345 Greece 

LAT 411 0.400 Greece 

LAT 413 0.263 Greece 

LAT 416 0.368 Greece 

LAT 420 0.316  

LAT 422 0.351  

LAT 424 0.291  

LAT 430 0.259 Greece 

LAT 431 0.347 Greece 

LAT 432 0.286 Greece 

LAT 435 0.311 Ukraine 

LAT 436 0.245  

LAT 437 0.264  

LAT 446 0.333  

LAT 450 0.392 Iran 

LAT 451 0.285 Iran 

LAT 453 0.402 Tunisia 

LAT 455 0.366 Hungary 

LAT 463 0.321 Bulgaria 

LAT 466 0.297 Russia 

LAT 475 0.392 Slovakia 

LAT 476 0.350 Slovakia 

LAT 478 0.440 Czech Republic 

LAT 494 0.301 Hungary 

LAT 495 0.324 Slovakia 

LAT 4003 0.298 Slovakia 

LAT 4007 0.309 Spain 

LAT 4008 0.337 Ethiopia 

LAT 4010 0.277 Ethiopia 

LAT 4011 0.250 Hungary 
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LAT 4024 0.267 Italy 

LAT 4025 0.282 Italy 

LAT 4032 0.330 Italy 

LAT 4031 0.339 Italy 

LAT 4036 0.216 Italy 

LAT 4038 0.248 Italy 

LAT 4039 0.252 Peru 

LAT 4046 0.291 Italy 

LAT 4047 0.277 Italy 

LAT 4059 0.360 Slovakia 

LAT 4075 0.321 Italy 

LAT 4141 0.335 Italy 
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USDA population and Indian varieties 

 
App. Table 5. Seed ODAP concentrations and countries of origin of the grass pea accessions obtained from the 
USDA collection and Indian varieties from BCKV, based on three technical replicate measurements of bulk seed 
samples. Empty cells denote incomplete passport data. 

ID USDA ID 
Seed ODAP 

concentration in % 
w/w 

Country of origin Other names 

68 PI 337087/A 0.509 Brazil 616 

69 PI 337087/B 0.536 Brazil 616 

70 PI 345525/A 0.307 India Rewa-2 

71 PI 345525/B 0.567 India Rewa-2 

72 PI 358857 0.466 Turkey 979 

73 PI 358891 0.547 USA 48290 

74 PI 366129 0.337 USA China Pea 

75 PI 370600 0.446 
Former Serbia and 

Montenegro 
Lokalen 

76 PI 422528/A 0.289 Hungary L-04 

78 PI 422535/A 0.371 Turkey L-5 

79 PI 422535/B 0.384 Turkey L-5 

80 PI 422536/A 0.355 Italy L-7 

81 PI 422536/B 0.212 Italy L-7 

82 PI 422540/A 0.385 Italy L-13 

83 PI 422540/B 0.331 Italy L-13 

84 PI 422540/C 0.287 Italy L-13 

85 PI 422543 0.373 Hungary  

86 PI 429368 0.457 Iran 96 

87 PI 506418/A 0.040 Canada LS8246 

88 PI 506418/B 0.345 Canada LS8246 

89 PI 507931/A 0.353 Hungary 140021 

90 PI 507931/B 0.424 Hungary 140021 

91 PI 511770 0.435 Peru Alverge 

92 PI 513244 0.701 Pakistan Matri 

93 PI 577139 0.484 Bulgaria B92-103 

94 PI 577141 0.491 Nepal 2423 

95 PI 667238/A 0.621 Greece falra bean 

96 PI 667238/B 0.578 Greece falra bean 

97 PI 667239 0.659 Turkey WKT 61 

98 PI 667248 0.465 Bulgaria Stranja 

99 PI 667250/A 0.456 Albania AI143 

100 PI 667250/B 0.445 Albania AI143 

101 PI 667263 0.353 Georgia 9097 

102 PI 667254 0.579 Tajikistan ICG 137000 
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103 PI 667264/A 0.285 USA IFLS170 Sel 439 

104 PI 667264/B 0.447 USA IFLS170 Sel 439 

105 PI 667265/A 0.419 USA IFLS273 Sel 481 

106 PI 667265/B 0.452 USA IFLS273 Sel 481 

107 PI 667266/A 0.164 USA IFLS 385 Sel 504 

109 PI 667267 0.480 USA IFLS 404 Sel 508 

110 PI 667268/A 0.219 USA IFLS 420 Sel 516 

111 PI 667268/B 0.598 USA IFLS 420 Sel 516 

112 PI 667269/A 0.660 USA IFLS 432 Sel 519 

113 PI 667269/B 0.763 USA IFLS 432 Sel 519 

114 PI 667270/A 0.572 USA IFLS 433 Sel 520 

115 PI 667270/B 0.661 USA IFLS 433 Sel 520 

116 PI 667271 0.650 USA IFLS 450 Sel 522 

117 PI 667272 0.560 USA IFLS 462 Sel 527 

118 PI 667273/A 0.137 USA IFLS 394 Sel 528 

120 PI 667273/B 0.375 USA IFLS 394 Sel 528 

121 PI 667274/A 0.568 USA IFLS 486 Sel 531 

122 PI 667274/B 0.303 USA IFLS 486 Sel 531 

123 PI 667275/A 0.474 USA IFLS 223 Sel 553 

124 PI 667275/B 0.394 USA IFLS 223 Sel 553 

119 PI 667276/A 0.353 USA IFLS 225 Sel 554 

125 PI 667276/B 0.348 USA IFLS 225 Sel 554 

126 PI 667277 0.400 USA IFLS 340 Sel 563 

127 PI 667278/A 0.233 USA IFLS 347 Sel 587 

128 PI 667278/B 0.334 USA IFLS 347 Sel 587 

129 W6 9389 0.397 Pakistan Wild Pea # 2 

130 W6 25211/A 0.427 Tajikistan ICC 136912 

131 W6 25211/B 0.424 Tajikistan ICC 136912 

132 W6 28025 0.390 Tajikistan TJK 2006:281 

133 W6 39220/A 0.662 Bangladesh Jamalpur 

134 W6 39220/B 0.239 Bangladesh Jamalpur 

135 W6 39221 0.374 Ethiopia Debre Zeit 

136 W6 39222 0.244 Poland Derek 

137 W6 39225 0.226 Canada LS87124 

139 W6 39227 0.414 Bangladesh Mymensingh 

140 PI 163293 0.494 India Teora 

142 PI 165528/B 0.331 India Chateri 

143 PI 170469 0.138 Turkey Murdumuk 

144 PI 170470 0.324 Turkey Fasil 

145 PI 170477/A 0.378 Turkey  

146 PI 170477/B 0.455 Turkey  

148 PI 182780/B 0.461 Turkey  
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149 PI 194995 0.353 Ethiopia  

150 PI 206891/A 0.186 Turkey  

151 PI 206891/B 0.446 Turkey  

152 PI 206892/A 0.385 Turkey  

153 PI 206892/B 0.496 Turkey  

154 PI 209789/A 0.371 German Geissener Bunte Platterbse 

155 PI 209789/B 0.325 German Geissener Bunte Platterbse 

156 PI 218082 0.362 Pakistan  

157 PI 221463 0.421 Afghanistan Pateque 

158 PI 221465 0.397 Afghanistan Kalol; Pateque 

159 PI 221466 0.450 Afghanistan Kalol 

160 PI 221467 0.456 Afghanistan Kalol 

161 PI 223270 0.409 Afghanistan  

162 PI 239865 0.579 Iran  

163 PI 239866 0.358 Iran  

164 PI 239867 0.462 Iran  

165 PI 244756 0.373 Ethiopia  

166 PI 255368/A 0.373 
Former Serbia and 

Montenegro 
 

167 PI 255368/B 0.373 
Former Serbia and 

Montenegro 
 

168 PI 269921 0.467 Pakistan  

169 PI 283546/A 0.541 Egypt CPI 9512 

170 PI 283546/B 0.450 Egypt CPI 9512 

171 PI 283547/A 0.391 France CPI 9668 

172 PI 283547/B 0.401 France CPI 9668 

173 PI 283548/A 0.342 Cyprus Favetta 

174 PI 283548/B 0.302 Cyprus Favetta 

175 PI 283550/A 0.233 Former Soviet Union CPI 10724 

176 PI 283550/B 0.190 Former Soviet Union CPI 10724 

177 PI 283552/A 0.315 Former Soviet Union CPI 10726 

178 PI 283552/B 0.243 Former Soviet Union CPI 10726 

179 PI 283553/A 0.346 Italy CPI 10780 

180 PI 283553/B 0.378 Italy CPI 10780 

181 PI 283557/A 0.452 Former Soviet Union CPI 10786 

182 PI 283557/B 0.460 Former Soviet Union CPI 10786 

183 PI 283559/A 0.299 Portugal CPI 12411 

184 PI 283559/B 0.360 Portugal CPI 12411 

185 PI 283560/A 0.237 Morocco CPI 13977 

186 PI 283560/B 0.247 Morocco CPI 13977 

187 PI 283561/A 0.253 Greece CPI 14162 

188 PI 283561/B 0.184 Greece CPI 14162 

189 PI 283562/A 0.351 India CPI 14630 

190 PI 283562/B 0.316 India CPI 14630 

191 PI 283562/C 0.469 India CPI 14630 

192 PI 283563/A 0.209 Spain CPI 15232 



217  Appendix 

 

 
 

193 PI 283563/B 0.244 Spain CPI 15232 

194 PI 283564 0.318 Sudan CPI 15438 

195 PI 283565/A 0.349 Morocco CPI 15801 

196 PI 283565/B 0.293 Morocco CPI 15801 

197 PI 283566/A 0.450 Morocco CPI 15802 

198 PI 283566/B 0.291 Morocco CPI 15802 

199 PI 283569/A 0.333 Libya CPI 18401 

200 PI 283569/B 0.291 Libya CPI 18401 

201 PI 283570/A 0.305 Algeria Egypt 

202 PI 283570/B 0.307 Algeria Egypt 

203 PI 283570/C 0.352 Algeria Egypt 

204 PI 283588/A 0.285 Czechoslovakia CPI 22833 

205 PI 283588/B 0.265 Czechoslovakia CPI 22833 

206 PI 283597/A 0.296 Tunisia CPI 25091 

207 PI 283597/B 0.426 Tunisia CPI 25091 

208 PI 283598/A 0.422 Tunisia CPI 25092 

209 PI 283598/B 0.254 Tunisia CPI 25092 

210 PI 283599/A 0.220 Tunisia CPI 25093 

211 PI 283599/B 0.251 Tunisia CPI 25093 

213 PI 286531 0.335 India BN 13641-62 

214 PI 317438/A 0.412 Afghanistan 113 

215 PI 317438/B 0.440 Afghanistan 113 

216 PI 317441 0.631 Afghanistan Mashing 

217 PI 317442 0.449 Afghanistan 546 

218 PI 337007/A 0.398 Brazil 600 

219 PI 337007/B 0.560 Brazil 600 

P-24 
 

0.153 India  

Mahateora
 

0.039 India  

Nirmal 
 

0.167 India  

LS007 
 

0.292 UK  

LSWT11 
 

0.317 India  

Pea Pisum sativum 0.001 UK Cameor 
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EIAR population 

 

App. Table 6. Seed ODAP concentrations and geographic origins of accessions comprising the EIAR population, 
based on three technical replicate measurements of bulk seed samples. Empty cells denote incomplete passport 
data. 

Acc. 
Number 

Region Zone 
Woreda/ 
District 

Latitude Longitude Altitude 
Seed ODAP % 

w/w 

46104 Amhara South Wello Werebabu 
  

1930 0.315 

46107 Amhara North Gondar Gondar Zuria 12-37-00-N 37-10-00-E 1950 0.336 

46108 Amhara North Gondar Gondar Zuria 12-37-00-N 37-10-00-E 2000 0.443 

46109 Amhara North Gondar Gondar Zuria 
  

2000 0.389 

46110 Oromia West Wellega Nole Kaba 09-06-00-N 35-24-00-E 1600 0.284 

46111 Amhara South Wello Tehuledere 
   

0.316 

201508 Oromia East Shewa Ada'a Chukala 
   

0.332 

201509 Oromia East Shewa Ada'a Chukala 
   

0.278 

201510 Oromia East Shewa Ada'a Chukala 
   

0.385 

201511 Oromia East Shewa Ada'a Chukala 
   

0.308 

201512 Oromia East Shewa Ada'a Chukala 
   

0.286 

201513 Oromia East Shewa Ada'a Chukala 
   

0.296 

201514 Oromia East Shewa Ada'a Chukala 
   

0.381 

201515 Oromia East Shewa Ada'a Chukala 
   

0.398 

201516 Oromia East Shewa Ada'a Chukala 
   

0.310 

201517 Oromia East Shewa Ada'a Chukala 
   

0.338 

201518 Oromia East Shewa Ada'a Chukala 
   

0.342 

201519 Oromia East Shewa Ada'a Chukala 
   

0.324 

201520 Oromia East Shewa Ada'a Chukala 
   

0.332 

201521 Oromia East Shewa Ada'a Chukala 
   

0.409 

201522 Oromia East Shewa Ada'a Chukala 
   

0.329 

201523 Oromia East Shewa Ada'a Chukala 
   

0.342 

201524 Oromia East Shewa Ada'a Chukala 
   

0.344 

201525 Oromia East Shewa Ada'a Chukala 
   

0.348 

201526 Oromia East Shewa Ada'a Chukala 
   

0.392 

201527 Oromia East Shewa Ada'a Chukala 
   

0.365 

201528 Oromia East Shewa Ada'a Chukala 
   

0.372 

201529 Oromia East Shewa Ada'a Chukala 
   

0.338 

201530 Oromia East Shewa Ada'a Chukala 
   

0.358 

201531 Oromia East Shewa Ada'a Chukala 
   

0.307 

201532 Oromia East Shewa Ada'a Chukala 
   

0.319 

201533 Oromia East Shewa Ada'a Chukala 
   

0.314 

201534 Oromia East Shewa Ada'a Chukala 
   

0.404 

201535 Oromia East Shewa Ada'a Chukala 
   

0.502 
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201536 Oromia East Shewa Ada'a Chukala 
   

0.312 

201537 Oromia East Shewa Ada'a Chukala 
   

0.305 

201538 Oromia East Shewa Ada'a Chukala 
   

0.317 

201539 Oromia East Shewa Ada'a Chukala 
   

0.368 

201540 Oromia East Shewa Ada'a Chukala 
   

0.402 

201541 Oromia East Shewa Ada'a Chukala 
   

0.352 

201542 Oromia East Shewa Ada'a Chukala 
   

0.331 

201543 Oromia East Shewa Ada'a Chukala 
   

0.306 

201544 Oromia East Shewa Ada'a Chukala 
   

0.358 

201545 Oromia East Shewa Ada'a Chukala 
   

0.388 

201546 Oromia East Shewa Ada'a Chukala 
   

0.286 

201547 Oromia East Shewa Ada'a Chukala 
   

0.289 

201548 Oromia East Shewa Ada'a Chukala 
   

0.325 

201549 Oromia East Shewa Ada'a Chukala 
   

0.348 

201550 Oromia East Shewa Ada'a Chukala 
   

0.361 

201551 Oromia East Shewa Ada'a Chukala 
   

0.320 

201552 Oromia East Shewa Ada'a Chukala 
   

0.313 

201553 Oromia East Shewa Ada'a Chukala 
   

0.373 

201554 Oromia North Shewa Gerar Jarso 
   

0.324 

201555 Oromia North Shewa Gerar Jarso 
   

0.336 

201556 Oromia North Shewa Gerar Jarso 
   

0.269 

201557 Oromia North Shewa Gerar Jarso 
   

0.373 

201558 Oromia North Shewa Gerar Jarso 
   

0.367 

201559 Oromia North Shewa Gerar Jarso 
   

0.375 

201560 Oromia North Shewa Gerar Jarso 
   

0.311 

201561 Oromia North Shewa Gerar Jarso 
   

0.317 

201562 Oromia North Shewa Gerar Jarso 
   

0.318 

201563 Oromia North Shewa Gerar Jarso 
   

0.387 

201564 Oromia North Shewa Gerar Jarso 
   

0.321 

201565 Oromia North Shewa Gerar Jarso 
   

0.329 

201566 Oromia North Shewa Gerar Jarso 
   

0.363 

201567 Oromia North Shewa Gerar Jarso 
   

0.366 

201568 Oromia North Shewa Gerar Jarso 
   

0.343 

207565 Tigray Misrakawi Wukro 
   

0.362 

207566 Tigray Debubawi Hintalo Wajirat 
   

0.367 

207567 Tigray Mehakelegnaw Laelay Maychew 
   

0.421 

207991 Oromia Illubabor Bure 08-14-00-N 35-06-00-E 
 

0.291 

208449 Amhara West Gojjam Adet 11-35-00-N 37-17-00-E 
 

0.356 

208450 Amhara South Gondar Este 11-45-00-N 37-35-00-E 
 

0.332 

208451 Amhara South Gondar Fogera 11-50-00-N 37-35-00-E 
 

0.389 

208452 Amhara South Gondar Fogera 
   

0.451 

211511 Oromia West Wellega Nejo 09-34-00-N 35-22-00-E 1740 0.242 

212740 Amhara East Gojjam Shebel Berenta 38-23-00-N 10-30-00-E 2410 0.392 

212741 Amhara South Gondar Kemekem 37-42-00-N 12-06-00-E 2000 0.458 



220  Appendix 

 

 
 

212742 Amhara South Gondar Kemekem 37-43-00-N 12-00-00-E 1880 0.423 

213088 Amhara South Wello Were Ilu 
   

0.328 

213089 Amhara South Wello Were Ilu 
   

0.363 

213251 Tigray Misrakawi Wukro 
   

0.307 

213252 Tigray Mehakelegnaw Laelay Maychew 
   

0.302 

213253 Tigray Debubawi Endamehoni 
   

0.309 

214798 Amhara North Wello 
Dawuntna 

Delant    
0.312 

214799 Amhara North Wello 
Dawuntna 

Delant    
0.327 

214800 Amhara South Wello Debresina 
   

0.364 

214801 Amhara South Wello Kelala 
   

0.340 

214802 Amhara South Wello Sayint 
   

0.320 

214803 Amhara South Wello Kalu 
   

0.328 

215246 Amhara South Wello Tehuledere 11-23-00-N 39-38-00-E 1870 0.280 

215247 Amhara North Wello Guba Lafto 11-50-00-N 39-31-00-E 
 

0.405 

215313 Amhara East Gojjam Hulet Ej Enese 
   

0.350 

215705 Amhara South Wello Kalu 11-04-00-N 39-44-00-E 
 

0.294 

215706 Amhara South Wello Ambasel 11-18-00-N 39-42-00-E 1950 0.323 

219945 Tigray Mehakelegnaw Adwa 14-08-00-N 38-49-00-E 1870 0.446 

219946 Tigray Mehakelegnaw Laelay Maychew 14-07-00-N 38-35-00-E 2080 0.302 

219947 Tigray Mehakelegnaw Laelay Maychew 14-05-00-N 38-44-00-E 2120 0.369 

219948 Tigray Mehakelegnaw Laelay Maychew 14-06-00-N 38-48-00-E 2140 0.358 

219949 Tigray Mehakelegnaw Adwa 14-07-00-N 38-45-00-E 2150 0.432 

219950 Tigray Mehakelegnaw Adwa 14-10-00-N 38-56-00-E 2230 0.378 

219951 Tigray Mehakelegnaw Adwa 
   

0.376 

219952 Tigray Mehakelegnaw Naeder Adet 14-02-00-N 38-42-00-E 1700 0.365 

220117 Eritrea Maekel Galanefi 15-17-00-N 38-53-00-E 2320 0.378 

220118 Eritrea 
  

14-43-00-N 38-52-00-E 1980 0.447 

220119 Eritrea 
  

14-51-00-N 38-49-00-E 1920 0.425 

221717 Tigray Debubawi Enderta 
   

0.395 

221718 Tigray Debubawi Enderta 13-29-00-N 39-30-00-E 2150 0.425 

223219 Tigray Misrakawi Wukro 14-10-00-N 39-33-00-E 1930 0.326 

226001 Amhara South Wello Debresina 10-36-00-N 38-45-00-E 2400 0.404 

226002 Amhara South Wello Debresina 10-33-00-N 38-44-00-E 2420 0.352 

226003 Amhara South Wello Debresina 10-47-00-N 38-42-00-E 2485 0.306 

226004 Amhara South Wello Debresina 10-47-00-N 38-39-00-E 2450 0.437 

226005 Amhara South Wello Legambo 
   

0.356 

226006 Amhara South Wello Kelala 10-39-00-N 38-50-00-E 2500 0.336 

226007 Amhara South Wello Kelala 10-37-00-N 38-48-00-E 2450 0.339 

226008 Amhara South Wello Debresina 10-35-00-N 38-46-00-E 2400 0.350 

226009 Amhara South Wello Legambo 10-46-00-N 38-53-00-E 2610 0.334 

226010 Amhara South Wello Legambo 10-47-00-N 38-56-00-E 2640 0.320 

226011 Amhara South Gondar Este 11-03-00-N 38-09-00-E 2520 0.307 

226012 Amhara South Gondar Este 11-25-00-N 38-15-00-E 2500 0.322 

226013 Amhara South Gondar Este 11-33-00-N 38-02-00-E 2485 0.317 
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226014 Amhara South Gondar Este 11-27-00-N 37-59-00-E 2645 0.346 

226015 Amhara South Gondar Este 11-25-00-N 37-58-00-E 2380 0.342 

226016 Amhara South Gondar Este 11-24-00-N 37-56-00-E 2345 0.325 

226017 Amhara North Gondar Dembia 12-30-00-N 37-24-00-E 1905 0.456 

226018 Amhara North Gondar Gondar Zuria 12-31-00-N 37-20-00-E 1990 0.413 

226019 Amhara Bahir Dar Special Bahir Dar 11-32-00-N 37-26-00-E 1685 0.408 

227196 Amhara South Gondar Ebenat 
   

0.366 

227197 Amhara South Gondar Ebenat 
   

0.400 

228495 Amhara East Gojjam Awabel 
   

0.361 

228496 Amhara East Gojjam Hulet Ej Enese 
   

0.343 

228497 Amhara East Gojjam Hulet Ej Enese 
   

0.366 

228498 Amhara South Gondar Este 
   

0.349 

228719 Oromia West Shewa Dendi 
   

0.375 

229173 Amhara West Shewa 
Lay Betna Tach 

Bet    
0.357 

229174 Amhara West Shewa 
Lay Betna Tach 

Bet    
0.448 

229175 Amhara West Shewa 
Weremo 

Wajetuna Mid    
0.373 

230011 Oromia Arssi Sherka 07-35-00-N 39-32-00-E 2400 0.416 

230012 Oromia Bale Adaba 07-02-00-N 39-26-00-E 2450 0.309 

230013 Oromia Bale Nensebo 07-02-00-N 39-31-00-E 2570 0.380 

230014 Oromia Bale Ginir 07-08-00-N 40-41-00-E 1950 0.332 

231325 Oromia Arssi Merti 08-35-00-N 39-52-00-E 1740 0.363 

231326 Oromia Arssi Jeju 
   

0.334 

232281 
      

0.490 

232282 
      

0.448 

232283 
      

0.427 

232284 
      

0.369 

232285 
      

0.492 

233340 
      

0.342 

233341 
      

0.479 

233342 
      

0.395 

233657 
      

0.392 

233658 
      

0.417 

233659 
      

0.394 

233660 
      

0.475 

233661 
      

0.430 

233662 
      

0.428 

233798 
      

0.415 

233799 
      

0.450 

233800 
      

0.458 

233801 
      

0.404 

233802 
      

0.414 

233803 
      

0.459 

233804 
      

0.388 
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234035 Tigray Misrakawi Tselemti 14-08-00-N 38-51-00-E 2060 0.321 

234036 Tigray Mehakelegnaw Adwa 14-12-00-N 38-48-00-E 2100 0.329 

234037 Tigray Mehakelegnaw Laelay Maychew 14-09-00-N 38-46-00-E 2100 0.389 

234038 Tigray Misrakawi Ganta Afeshum 14-12-00-N 38-37-00-E 2150 0.378 

234039 Tigray Mehakelegnaw Adwa 14-11-00-N 38-47-00-E 2150 0.391 

234040 Tigray Mehakelegnaw Laelay Maychew 14-11-00-N 38-46-00-E 2120 0.284 

234041 Tigray Mehakelegnaw Naeder Adet 14-04-00-N 38-43-00-E 2120 0.412 

234042 Tigray Mehakelegnaw Naeder Adet 14-04-00-N 38-43-00-E 2100 0.357 

234043 Tigray Mehakelegnaw Naeder Adet 14-04-00-N 38-43-00-E 2100 0.284 

234044 Tigray Mehakelegnaw Naeder Adet 14-04-00-N 38-04-00-E 2100 0.358 

234045 Tigray Mehakelegnaw Laelay Maychew 14-04-00-N 38-46-00-E 2130 0.399 

234046 Tigray Mehakelegnaw Naeder Adet 13-54-00-N 37-44-00-E 2150 0.342 

235018 Amhara North Wello Guba Lafto 11-43-00-N 39-31-00-E 1900 0.341 

235123 Tigray Debubawi Hintalo Wajirat 12-58-00-N 39-34-00-E 1880 0.365 

235124 Tigray Debubawi Hintalo Wajirat 12-59-00-N 39-32-00-E 1990 0.282 

235125 Tigray Misrakawi Wukro 13-33-00-N 39-28-00-E 2180 0.441 

235126 Tigray Mehakelegnaw Degua Temben 13-38-00-N 39-14-00-E 2250 0.300 

235127 Tigray Misrakawi Wukro 13-38-00-N 39-15-00-E 1780 0.304 

235128 Tigray Debubawi Enderta 13-41-00-N 39-16-00-E 1820 0.431 

235129 Tigray Debubawi Enderta 13-09-00-N 39-16-00-E 1740 0.306 

235130 Tigray Debubawi Mekele 
   

0.387 

235131 Tigray Debubawi Hintalo Wajirat 13-25-00-N 39-23-00-E 2150 0.352 

236255 Amhara South Wello Kutaber 
   

0.343 

236256 Amhara South Wello Werebabu 
  

2100 0.423 

236543 Oromia East Shewa Akaki 
  

2001 0.390 

236544 Oromia East Shewa Ada'a Chukala 
  

1920 0.352 

236545 Oromia East Shewa Ada'a Chukala 
  

1890 0.313 

236546 Oromia East Shewa Ada'a Chukala 
  

1900 0.340 

236547 Oromia East Shewa Ada'a Chukala 
  

2060 0.384 

236548 Oromia East Shewa Ada'a Chukala 
  

2270 0.354 

236549 Oromia East Shewa Ada'a Chukala 
   

0.359 

236551 Oromia East Shewa Ada'a Chukala 
  

2400 0.408 

236552 Oromia East Shewa Ada'a Chukala 
  

2440 0.368 

236553 Oromia East Shewa Ada'a Chukala 
  

2660 0.347 

236554 Oromia North Shewa Berehna  Aleltu 
  

2480 0.364 

236555 Oromia North Shewa Berehna  Aleltu 
  

2500 0.315 

236557 Oromia East Shewa Ada'a Chukala 
  

1890 0.297 

236558 Oromia East Shewa Ada'a Chukala 
  

1890 0.438 

236559 Oromia East Shewa Ada'a Chukala 
  

1890 0.357 

236560 Oromia East Shewa Ada'a Chukala 
  

1910 0.345 

236561 Oromia East Shewa Ada'a Chukala 
  

1890 0.482 

236562 Oromia East Shewa Lome 
  

1980 0.350 

236563 Oromia East Shewa Lome 
  

2020 0.378 

236564 Oromia East Shewa Lome 
  

2110 0.396 
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236565 Oromia East Shewa Lome 
   

0.383 

236566 Oromia East Shewa Lome 
  

2160 0.318 

236567 Oromia East Shewa Lome 
  

2150 0.436 

236568 Amhara North Shewa 
Minjarna 
Shenkora   

2210 0.321 

236569 Amhara North Shewa 
Minjarna 
Shenkora   

2270 0.359 

236570 Amhara North Shewa 
Minjarna 
Shenkora   

2330 0.392 

236571 Oromia East Shewa Gimbichu 
  

2400 0.358 

236572 Oromia East Shewa Gimbichu 
  

2400 0.374 

236573 Amhara North Shewa 
Minjarna 
Shenkora   

2270 0.396 

236574 Amhara North Shewa 
Minjarna 
Shenkora   

2250 0.343 

236575 Amhara North Shewa 
Minjarna 
Shenkora   

2270 0.432 

236576 Amhara North Shewa 
Minjarna 
Shenkora   

2140 0.372 

236577 Oromia West Shewa Alem Gena 
  

2280 0.355 

236578 Oromia West Shewa Walisona Goro 
  

2080 0.358 

236579 Oromia West Shewa Alem Gena 
  

2050 0.406 

236580 Oromia West Shewa Alem Gena 
  

2050 0.402 

236581 Oromia West Shewa Elu 
  

2050 0.348 

236582 Oromia West Shewa Elu 
  

2050 0.344 

236583 Oromia West Shewa Elu 
  

2100 0.337 

236584 Oromia West Shewa Becho 
  

2140 0.326 

236585 Oromia West Shewa Becho 
  

2170 0.369 

236586 Oromia West Shewa Becho 
  

2230 0.294 

236587 Oromia West Shewa Becho 
  

2280 0.298 

236588 Oromia West Shewa Becho 
  

2320 0.420 

236589 Oromia West Shewa Walisona Goro 
  

2140 0.307 

236590 Oromia West Shewa Walisona Goro 
  

1900 0.439 

236591 Oromia West Shewa Ambo 
  

2220 0.363 

236592 Oromia West Shewa Ambo 
  

2140 0.342 

236593 Oromia West Shewa Ambo 
  

2320 0.287 

236594 Oromia West Shewa Dendi 
  

2410 0.371 

236595 Oromia West Shewa Dendi 
  

2400 0.342 

236596 Oromia West Shewa Dendi 
  

2280 0.372 

236597 Oromia West Shewa Dendi 
  

2280 0.367 

236598 Oromia West Shewa Dendi 
  

2240 0.366 

236599 Oromia West Shewa Dendi 
  

2190 0.318 

236600 Oromia West Shewa Dendi 
  

2107 0.350 

236624 Oromia West Shewa Ambo 
  

2240 0.365 

236625 Oromia North Shewa Berehna Aleltu 
  

2450 0.381 

236626 Oromia North Shewa Berehna Aleltu 
  

2450 0.373 

236627 Oromia North Shewa Berehna Aleltu 
  

2480 0.329 

236628 Oromia North Shewa Berehna Aleltu 
  

2580 0.398 
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236629 Amhara North Shewa 
Hageremaria-

mina Kese    
0.273 

236630 Oromia North Shewa Kembibit 
  

2810 0.355 

236631 Oromia West Shewa Meta Robi 
  

2850 0.302 

236632 Amhara North Shewa 
Siyadebrina 
Wayu Ens   

2630 0.366 

236633 Amhara North Shewa 
Siyadebrina 
Wayu Ens   

2670 0.307 

236634 Amhara North Shewa 
Siyadebrina 
Wayu Ens   

2630 0.320 

236635 Amhara North Shewa 
Siyadebrina 
Wayu Ens   

2600 0.325 

236636 Amhara North Shewa 
Siyadebrina 
Wayu Ens   

2620 0.333 

236637 Amhara North Shewa Moretna Jiru 
  

2640 0.295 

236638 Amhara North Shewa Moretna Jiru 
  

2650 0.306 

236639 Amhara North Shewa Moretna Jiru 
  

2640 0.353 

236640 Amhara North Shewa Moretna Jiru 
  

2640 0.375 

236641 Amhara North Shewa Moretna Jiru 
  

2630 0.316 

236642 Amhara North Shewa 
Siyadebrina 
Wayu Ens   

2650 0.359 

236643 Amhara North Shewa 
Siyadebrina 
Wayu Ens   

2660 0.413 

236644 Amhara North Shewa 
Siyadebrina 
Wayu Ens   

2620 0.455 

236645 Amhara North Shewa 
Siyadebrina 
Wayu Ens    

0.381 

236646 Amhara North Shewa 
Siyadebrina 
Wayu Ens   

2620 0.458 

236647 Amhara North Shewa 
Siyadebrina 
Wayu Ens   

2620 0.452 

236648 Amhara North Shewa 
Siyadebrina 
Wayu Ens   

2590 0.444 

236649 Oromia North Shewa Wuchalena Jido 
   

0.488 

236650 Oromia North Shewa Wuchalena Jido 
  

2660 0.504 

236651 Oromia North Shewa Wuchalena Jido 
  

2650 0.385 

236652 Oromia North Shewa 
Yaya Gulelena 

D/Liba   
2640 0.388 

236653 Oromia North Shewa 
Yaya Gulelena 

D/Liba   
2660 0.394 

236654 Oromia North Shewa 
Yaya Gulelena 

D/Liba   
2680 0.410 

236655 Oromia North Shewa Gerar Jarso 
  

2660 0.416 

236656 Oromia North Shewa Gerar Jarso 
  

2770 0.479 

236657 Oromia North Shewa Gerar Jarso 
  

2740 0.435 

236658 Oromia North Shewa Gerar Jarso 
  

2770 0.308 

236659 Oromia North Shewa Gerar Jarso 
  

2800 0.391 

236660 Oromia North Shewa Gerar Jarso 
  

2900 0.469 

236661 Oromia North Shewa Kuyu 
  

2580 0.465 

236662 Oromia North Shewa Kuyu 
  

2560 0.416 

236663 Oromia North Shewa Wara Jarso 
  

2560 0.367 

236664 Oromia North Shewa Wara Jarso 
  

2580 0.439 

236665 Oromia North Shewa Wara Jarso 
  

2520 0.404 
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236666 Amhara East Gojjam Dejen 
  

2460 0.383 

236667 Amhara East Gojjam Dejen 
  

2460 0.405 

236668 Amhara East Gojjam Dejen 
  

2450 0.452 

236669 Amhara East Gojjam Enemay 
  

2430 0.388 

236670 Amhara East Gojjam Enemay 
  

2420 0.388 

236671 Amhara East Gojjam Enemay 
  

2450 0.469 

236672 Amhara East Gojjam Enemay 
  

2440 0.502 

236673 Amhara East Gojjam Shebel Berenta 
  

2420 0.417 

236674 Amhara East Gojjam Shebel Berenta 
  

2400 0.403 

236675 Amhara East Gojjam Enemay 
  

2420 0.393 

236676 Amhara East Gojjam Enemay 
  

2480 0.421 

236677 Amhara East Gojjam Enemay 
  

2428 0.421 

236678 Amhara East Gojjam Enemay 
  

2540 0.378 

236679 Amhara East Gojjam Enemay 
  

2470 0.397 

236680 Amhara East Gojjam Enemay 
   

0.437 

236681 Amhara East Gojjam Enemay 
  

2500 0.487 

236682 Amhara East Gojjam Enarj Enawga 
   

0.419 

236683 Amhara East Gojjam Enarj Enawga 
  

2560 0.376 

236684 Amhara East Gojjam Enarj Enawga 
  

2580 0.416 

236685 Amhara East Gojjam 
Goncha Siso 

Enese   
2580 0.453 

236686 Amhara East Gojjam 
Goncha Siso 

Enese   
2650 0.423 

236687 Amhara East Gojjam Mota 
  

2490 0.400 

236688 Amhara East Gojjam Mota 
  

2500 0.409 

236689 Amhara East Gojjam Mota 
  

2440 0.378 

236690 Amhara East Gojjam Mota 
  

2420 0.431 

236691 Amhara East Gojjam Mota 
  

2430 0.373 

236692 Amhara East Gojjam Mota 
  

2240 0.396 

236693 Amhara West Gojjam Adet 
  

1770 0.485 

236694 Amhara West Gojjam Adet 
  

2320 0.296 

236695 Amhara West Gojjam Adet 
  

2320 0.458 

236696 Amhara West Gojjam Adet 
  

2260 0.358 

236697 Amhara West Gojjam Adet 
  

2260 0.358 

236698 Amhara Bahir Dar Special Bahir Dar 
  

2230 0.419 

236699 Amhara Bahir Dar Special Bahir Dar 
  

2160 0.400 

236700 Amhara Bahir Dar Special Bahir Dar 
  

1830 0.380 

236701 Amhara Bahir Dar Special Bahir Dar 
  

1800 0.607 

236702 Amhara South Gondar Dera 
  

1800 0.455 

236703 Amhara South Gondar Dera 
   

0.538 

236704 Amhara South Gondar Fogera 
  

1800 0.505 

236705 Amhara South Gondar Fogera 
  

1800 0.496 

236706 Amhara South Gondar Fogera 
  

1800 0.447 

236707 Amhara South Gondar Gondar Zuria 
  

1920 0.387 

236708 Amhara South Gondar Dabat 
  

2730 0.382 

236709 Amhara Bahir Dar Special Bahir Dar 
  

1840 0.327 
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236710 Amhara Bahir Dar Special Bahir Dar 
  

1880 0.392 

236711 Amhara Bahir Dar Special Bahir Dar 
  

1810 0.356 

236712 Amhara West Gojjam Jabi Tehnan 
  

1820 0.389 

236713 Amhara West Gojjam Jabi Tehnan 
  

1840 0.391 

236714 Amhara West Gojjam Bahir Dar Zuria 
  

1840 0.321 

236715 Amhara East Gojjam Debre Markos 
  

2300 0.370 

236716 Amhara East Gojjam Awabel 
  

2330 0.401 

236717 Amhara East Gojjam Awabel 
  

2410 0.439 

236718 Amhara East Gojjam Awabel 
  

2420 0.412 

236719 Amhara East Gojjam Dejen 
  

2680 0.325 

236720 Oromia North Shewa Wuchalena Jido 
  

2680 0.415 

236721 Oromia North Shewa Wuchalena Jido 
  

2660 0.347 

236722 Oromia North Shewa Wuchalena Jido 
  

2680 0.376 

236993 Amhara North Shewa 
Minjarna 
Shenkora 

08-50-00-N 39-20-00-E 1690 0.371 

236994 Oromia East Shewa Ada'a Chukala 08-50-00-N 39-00-00-E 1820 0.340 

237524 Tigray Mehakelegnaw Degua Temben 13-30-00-N 39-28-00-E 1770 0.331 

237525 Tigray Misrakawi Wukro 13-46-00-N 39-35-00-E 2500 0.369 

237526 Tigray Mehakelegnaw Laelay Maychew 14-10-00-N 38-45-00-E 2150 0.322 

237527 Tigray Mehakelegnaw Tahtay Maychew 14-10-00-N 38-45-00-E 2100 0.390 

237977 Oromia Bale Adaba 
  

2440 0.287 

238238 Tigray Debubawi Mekele 12-50-00-N 38-07-00-E 2000 0.310 

238239 Tigray Debubawi Mekele 13-30-00-N 40-30-00-E 2250 0.338 

238240 Tigray Mehakelegnaw Degua Temben 13-30-00-N 38-50-00-E 2560 0.381 

238242 Tigray Mehakelegnaw Naeder Adet 13-40-00-N 38-50-00-E 2050 0.316 

238243 Tigray Mehakelegnaw Laelay Maychew 13-40-00-N 38-50-00-E 2170 0.326 

238244 Tigray Mehakelegnaw Laelay Maychew 14-50-00-N 39-60-00-E 2050 0.323 

238245 Tigray Misrakawi Tahtay Koraro 16-60-00-S 38-50-00-E 1940 0.331 

238901 Oromia North Shewa Mulona Sululta 09-23-85-N 09-23-85-E 2630 0.288 

238902 Oromia North Shewa Mulona Sululta 09-27-08-N 38-52-02-E 2600 0.330 

238903 Oromia North Shewa 
Yaya Gulelena 

D/Liba 
09-36-07-N 38-51-07-E 2680 0.349 

238904 Oromia North Shewa Wuchalena Jido 09-39-44-N 38-49-20-E 2680 0.300 

238906 Oromia North Shewa Wara Jarso 09-53-22-N 38-21-77-E 2580 0.342 

238908 Amhara East Gojjam Dejen 09-57-28-N 38-18-26-E 2450 0.345 

238909 Amhara East Gojjam Dejen 10-13-80-N 38-07-79-E 2470 0.336 

238910 Amhara East Gojjam Enemay 10-21-29-N 38-08-96-E 2440 0.363 

238911 Amhara East Gojjam Enemay 
  

2440 0.296 

238914 Amhara East Gojjam Enarj Enawga 10-29-22-N 38-10-07-E 2520 0.311 

238915 Amhara East Gojjam Enarj Enawga 10-43-11-N 38-09-57-E 2600 0.346 

238917 Amhara East Gojjam Mota 10-44-35-N 38-09-37-E 2540 0.279 

238919 Amhara Bahir Dar Special Bahir Dar 11-34-05-N 19-48-00-E 1890 0.368 

238920 Amhara West Gojjam Merawi 11-24-69-N 37-09-54-E 2050 0.394 

238921 Amhara Bahir Dar Special Bahir Dar 11-35-39-N 37-26-26-E 1900 0.327 

238922 Amhara South Gondar Kemekem 11-51-03-N 37-38-69-E 1850 0.388 

238923 Amhara South Gondar Kemekem 11-56-78-N 37-42-69-E 1860 0.380 
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238925 Amhara South Gondar Kemekem 
  

1860 0.432 

238926 Amhara South Gondar Kemekem 12-11-35-N 37-40-42-E 1950 0.459 

238927 Amhara North Gondar Gondar Zuria 
  

2000 0.354 

238928 Amhara North Gondar Gondar Zuria 12-23-61-N 37-33-09-E 1990 0.357 

238929 Amhara North Gondar Gondar Zuria 
  

1960 0.429 

238930 Amhara North Gondar Gondar 12-46-30-N 37-37-55-E 2110 0.447 

238931 Amhara South Gondar Fogera 11-57-45-N 37-42-95-E 1920 0.355 

238932 Amhara South Gondar Fogera 11-56-82-N 37-45-07-E 1920 0.247 

238933 Amhara South Gondar Fogera 11-55-92-N 37-50-12-E 2040 0.331 

238934 Amhara South Gondar Fogera 11-55-40-N 37-51-46-E 2080 0.414 

238935 Amhara South Gondar Fogera 11-55-24-N 37-54-21-E 2130 0.392 

238936 Amhara Bahir Dar Special Bahir Dar 11-29-72-N 37-31-66-E 1750 0.333 

238937 Amhara Bahir Dar Special Bahir Dar 11-37-34-N 37-15-55-E 1940 0.403 

238938 Amhara Bahir Dar Special Bahir Dar 11-40-04-N 37-12-43-E 1900 0.396 

238939 Amhara West Gojjam Achefer 11-39-94-N 36-55-55-E 2070 0.375 

238940 Amhara West Gojjam Achefer 
  

2080 0.329 

238941 Amhara West Gojjam Achefer 11-43-36-N 36-58-27-E 2000 0.314 

238942 Amhara West Gojjam Achefer 11-44-33-N 36-59-06-E 2050 0.440 

238943 Amhara West Gojjam Achefer 11-51-88-N 37-01-06-E 1910 0.406 

238944 Amhara West Gojjam Achefer 11-50-00-E 36-59-97-E 2020 0.388 

238945 Amhara West Gojjam Achefer 11-47-62-N 36-59-59-E 2030 0.384 

238946 Amhara West Gojjam Dega Damot 10-44-66-N 37-19-68-E 1910 0.303 

238947 Amhara West Gojjam Dega Damot 10-38-55-N 37-23-58-E 1900 0.347 

238948 Amhara East Gojjam Guzamn 10-21-00-N 37-37-32-E 2340 0.369 

238949 Amhara East Gojjam Awabel 10-16-16-N 37-49-43-E 2370 0.378 

238950 Amhara East Gojjam Guzamn 10-14-31-N 37-57-18-E 2430 0.311 

238951 Amhara East Gojjam Awabel 10-30-40-N 37-59-19-E 2460 0.379 

238952 Amhara East Gojjam Awabel 10-94-40-N 35-03-72-E 2470 0.325 

238953 Oromia North Shewa Wara Jarso 
  

2550 0.304 

238954 Oromia North Shewa Kuyu 10-00-56-N 38-14-94-E 2550 0.345 

238956 Oromia East Shewa Akaki 08-49-98-N 38-50-25-E 2140 0.280 

238960 Oromia North Shewa Berehna Aleltu 
  

2450 0.320 

238961 Oromia North Shewa Berehna Aleltu 
  

2450 0.373 

238962 Oromia North Shewa Berehna Aleltu 09-06-13-N 38-58-61-E 2470 0.322 

238963 Oromia North Shewa Berehna Aleltu 
  

2550 0.318 

238965 Oromia North Shewa Berehna Aleltu 09-10-98-N 39-08-50-E 2620 0.341 

238966 Oromia North Shewa Berehna Aleltu 
  

2630 0.336 

238967 Oromia West Shewa Meta Robi 
  

2840 0.333 

240031 Australia 
     

0.327 

240032 Australia 
     

0.117 

240033 Australia 
     

0.092 

240034 Australia 
     

0.444 

240035 Australia 
     

0.035 

240036 Australia 
     

0.060 
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240037 Australia 
     

0.372 

240038 Australia 
     

0.061 

240039 Australia 
     

0.114 

240040 Australia 
     

0.040 

241143 Somali Jigjiga Jigjiga 09-30-18-N 42-37-12-E 1920 0.370 

242216 Amhara North Gondar Gondar Zuria 12-30-00-N 37-32-00-E 1975 0.388 

242217 Amhara North Wello Guba Lafto 11-50-00-N 39-35-00-E 1910 0.136 
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App. 1.4 Seed morphologies of seeds obtained from USDA 

App. Table 7. List of accessions obtained from the USDA collection with photographs of the seeds delivered in 
each packet.  

USDA ID Country of origin Other names 
Photograph of seeds obtained from USDA  
(showing separation into sub-accessions) 

PI 337087 Brazil 616 

 

PI 345525 India Rewa-2 

 

PI 358857 Turkey 979 

 

PI 358891 USA 48290 

 

PI 366129 USA China Pea 

 

PI 370600 
Former Serbia and 

Montenegro 
Lokalen 

 

PI 422528 Hungary L-04 

 

PI 422535 Turkey L-5 

 

PI 422536 Italy L-7 

 

PI 422540 Italy L-13 
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PI 422543 Hungary  

 

PI 429368 Iran 96 

 

PI 506418 Canada LS8246 

 

PI 507931 Hungary 140021 

 

PI 511770 Peru Alverge 

 

PI 513244 Pakistan Matri 

 

PI 577139 Bulgaria B92-103 

 

PI 577141 Nepal 2423 

 

PI 667238 Greece falra bean 

 

PI 667239 Turkey WKT 61 

 

PI 667248 Bulgaria Stranja 
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PI 667250 Albania AI143 

 

PI 667263 Georgia 9097 

 

PI 667254 Tajikistan ICG 137000 

 

PI 667264 USA IFLS170 Sel 439 

 

PI 667265 USA IFLS273 Sel 481 

 

PI 667266 USA IFLS 385 Sel 504 

 

PI 667267 USA IFLS 404 Sel 508 

 

PI 667268 USA IFLS 420 Sel 516 

 

PI 667269 USA IFLS 432 Sel 519 

 

PI 667270 USA IFLS 433 Sel 520 

 

PI 667271 USA IFLS 450 Sel 522 
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PI 667272 USA IFLS 462 Sel 527 

 

PI 667273 USA IFLS 394 Sel 528 

 

PI 667274 USA IFLS 486 Sel 531 

 

PI 667275 USA IFLS 223 Sel 553 

 

PI 667276 USA IFLS 225 Sel 554 

 

PI 667277 USA IFLS 340 Sel 563 

 

PI 667278 USA IFLS 347 Sel 587 

 

W6 9389 Pakistan Wild Pea # 2 

 

W6 25211 Tajikistan ICC 136912 

 

W6 28025 Tajikistan TJK 2006:281 

 

W6 39220 Bangladesh Jamalpur 
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W6 39221 Ethiopia Debre Zeit 

 

W6 39222 Poland Derek 

 

W6 39225 Canada LS87124 

 

W6 39227 Bangladesh Mymensingh 

 

PI 163293 India Teora 

 

PI 165528/B India Chateri 

 

PI 170469 Turkey Murdumuk 

 

PI 170470 Turkey Fasil 

 

PI 170477 Turkey  

 

PI 182780 Turkey  

 

PI 194995 Ethiopia  

 

PI 206891 Turkey  
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PI 206892 Turkey  

 

PI 209789 Germany 
Geissener Bunte 

Platterbse 

 

PI 218082 Pakistan  

 

PI 221463 Afghanistan Pateque 

 

PI 221465 Afghanistan Kalol; Pateque 

 

PI 221466 Afghanistan Kalol 

 

PI 221467 Afghanistan Kalol 

 

PI 223270 Afghanistan  

 

PI 239865 Iran  

 

PI 239866 Iran  

 

PI 239867 Iran  

 

PI 244756 Ethiopia  
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PI 255368 
Former Serbia and 

Montenegro 
 

 

PI 269921 Pakistan  

 

PI 283546 Egypt CPI 9512 

 

PI 283547 France CPI 9668 

 

PI 283548 Cyprus Favetta 

 

PI 283550 Former Soviet Union CPI 10724 

 

PI 283552 Former Soviet Union CPI 10726 

 

PI 283553 Italy CPI 10780 

 

PI 283557 Former Soviet Union CPI 10786 

 

PI 283559 Portugal CPI 12411 

 

PI 283560 Morocco CPI 13977 

 

PI 283561 Greece CPI 14162 

 

PI 283562 India CPI 14630 
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PI 283563 Spain CPI 15232 

 

PI 283564 Sudan CPI 15438 

 

PI 283565 Morocco CPI 15801 

 

PI 283566 Morocco CPI 15802 

 

PI 283569 Libya CPI 18401 

 

PI 283570 Algeria Egypt 

 

PI 283588 Czechoslovakia CPI 22833 

 

PI 283597 Tunisia CPI 25091 

 

PI 283598 Tunisia CPI 25092 

 

PI 283599 Tunisia CPI 25093 

 

PI 286531 India BN 13641-62 

 

PI 317438 Afghanistan 113 

 

PI 317441 Afghanistan Mashing 
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PI 317442 Afghanistan 546 

 

PI 337007 Brazil 600 

 
 

App. 1.5 Segregation in seed morphologies within sub-accessions 

A B 

App. Figure 7. Seeds produced by sub-accessions of PI 255368 from the USDA population A) The seed 
type of sub-accession A was reproduced in the next generation B) the seeds produced by sub-accession 
B segregated for seed morphology in a roughly 3:1 ratio 
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App. 2 Chapter 3 – Identification of low-ODAP grass peas 

from a mutagenised population 

App. 2.1 Example metadata file 

An example of the plate metadata files, which were saved in .txt format for each plate of 

collected samples is shown below. An html-form was used to generate these files. The files 

contain information about which columns from which growth tray were harvested into the 

plate, dates of sowing, harvesting and assaying, initials of the person performing these 

procedures and which samples were missing because the seed in the relevant position on 

the growth tray had not germinated. These metadata were used by the data handling script 

to match absorbance readings to mutant families and to exclude missing samples. 

plate ID  P13 
origin tray T6 2,3,4,5,6,7,8,9 
date sowed  28/04/14 
sowed by  KK 
date harvested 05/05/14 
harvested by KK 
 
family miss 1 2 3 4 5 6 7 8 9 10 11 12 
 1120 A              
 1119 B           1   
 1117 C              
 1116 D              
 1113 E    1       1   
 1112 F              
 1109 G  1          1  
 1105 H        1      
date assayed  
assayed by KK 
Notes  09/05/14 

 

App. 2.2 R-script for selection of low-ODAP and high-background samples during the 
mutant screen 

 

# helper function to extract plate IDs from the file names of metadata files 
extractIDs<-function(vector){ 
  return(paste(vector[4:(length(vector)-4)],collapse="")) 
} 
 
# helper function to make a vector of the columns on a tray that were  
# harvested to make one plate 
getTrayColumns<-function(cols){ 
  splitcols<-strsplit(as.character(cols),split=",") 
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  return(as.numeric(splitcols[[1]])) 
} 
 
# main function. The parameters give the thresholds according to which samples  
# will get selected for manual curation. Samples were marked as low-ODAP if their 
# estimated ODAP content was less than ODAPthresh times the median value of their  
# plate. Samples were marked as high-background if their non-hydrolysed reading  
# was higher than backthresh. The outputdata argument is primarily for debugging, 
# normally the data is saved directly into a .csv file that can be opened in other 
# applications 
 
ODAPscreen<-function(ODAPthresh=0.5,backthresh=0.09,outputdata=FALSE){ 
  setwd("U:/ODAP mutant screen/metadata") 
  metaFiles<-list.files(pattern="*.txt",full.names=TRUE) 
  splitnames<-strsplit(metaFiles,split="") 
  plateVec<-sort(as.numeric(sapply(X=splitnames,FUN=extractIDs))) 
   
  setwd("U:/ODAP mutant screen/plate reads") 
  nonhydFiles<-list.files(pattern="*N.txt",full.names=TRUE) 
  hydFiles<-list.files(pattern="*H.txt",full.names=TRUE) 
  Nplates<-length(metaFiles) 
  if(length(nonhydFiles)!=length(hydFiles)|length(nonhydFiles)!=Nplates) { 
    stop("Data error: numbers of files have to be equal. Found ", Nplates," metafiles, 
",length(hydFiles)," hydrated and ",length(nonhydFiles)," non-hydrated files") 
  } 
#data structure of data as they are being read in from the metadata and absorbance  
#reading files: 
  #plates[[i]][[1]]: plate ID 
  #plates[[i]][[1]]: tray(s) of origin 
  #plates[[i]][[2]][[1]]: origin tray 1 
  #plates[[i]][[2]][[2]]: columns from origin tray 1 
  #plates[[i]][[2]][[3]]: origin tray 2 (if applicable) 
  #plates[[i]][[2]][[4]]: columns from origin tray 2 (if applicable) 
  #plates[[i]][[2]][[5]]: origin tray 3 (if applicable) 
  #plates[[i]][[2]][[6]]: columns from origin tray 3 (if applicable) 
  #plates[[i]][[2]][[7]]: origin tray 4 (if applicable) 
  #plates[[i]][[2]][[8]]: columns from origin tray 4 (if applicable) 
  #plates[[i]][[3]]: dates and people 
  #plates[[i]][[3]][[1]]: sowing date 
  #plates[[i]][[3]][[2]]: sowed by 
  #plates[[i]][[3]][[3]]: harvesting date 
  #plates[[i]][[3]][[4]]: harvested by 
  #plates[[i]][[3]][[5]]: assay date 
  #plates[[i]][[3]][[6]]: assayed by 
  #plates[[i]][[4]]: M2 families 
  #plates[[i]][[5]]: missing samples matrix 
  #plates[[i]][[6]]: non-hydrolysed OPT-absorbance data matrix 
  #plates[[i]][[7]]: hydrolysed OPT-absorbance data matrix 
  #plates[[i]][[8]]: approximate ODAP levels in samples (no normalisation by weight) in % of 
dry weight matrix 
  #plates[[i]][[9]]: notes 
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  plates<-list() 
   
  allS<-data.frame( sampleID=numeric(0), 
Line=character(0), 
Tray=character(0), 
Traypos=character(0), 
Plate=character(0), 
Platepos=character(0), 
Missing=numeric(0), 
NonHyd=numeric(0), 
Hyd=numeric(0), 
ODAP=numeric(0), 
Keep=numeric(0), 
stringsAsFactors=FALSE) 
   
  for (i in plateVec){ 
    setwd("U:/ODAP mutant screen/metadata") 
    platemeta<-
read.csv(paste("./P",i,".txt",sep=""),header=FALSE,sep="\t",stringsAsFactors=FALSE, 
col.names=c(1:14)) 
    setwd("U:/ODAP mutant screen/plate reads") 
    nonPlate<-
read.csv(paste("./P",i,"N.txt",sep=""),sep="\t",header=FALSE,stringsAsFactors=FALSE) 
    hydPlate<-
read.csv(paste("./P",i,"H.txt",sep=""),sep="\t",header=FALSE,stringsAsFactors=FALSE) 
    setwd("U:/ODAP mutant screen") 
    plates[[i]]<-list() 
    plates[[i]][[1]]<-platemeta[1,2] 
    plates[[i]][[2]]<-list() 
    plates[[i]][[2]][[1]]<-platemeta[2,2] 
    plates[[i]][[2]][[2]]<-getTrayColumns(platemeta[2,3]) 
# second tray. This code is run more than once because some plates contain samples  
# from several growth trays, but never more than four 
    if (!(is.na(platemeta[2,4]))){ 
      plates[[i]][[2]][[3]]<-platemeta[2,4] 
      plates[[i]][[2]][[4]]<-getTrayColumns(platemeta[2,5])} 
    else {plates[[i]][[2]][[4]]<-numeric()} 
# third tray 
    if (!(is.na(platemeta[2,6]))){ 
      plates[[i]][[2]][[5]]<-platemeta[2,6] 
      plates[[i]][[2]][[6]]<-getTrayColumns(platemeta[2,7])} 
    else {plates[[i]][[2]][[6]]<-numeric()} 
# fourth tray 
    if (!(is.na(platemeta[2,8]))){ 
      plates[[i]][[2]][[7]]<-platemeta[2,8] 
      plates[[i]][[2]][[8]]<-getTrayColumns(platemeta[2,9])} 
    else {plates[[i]][[2]][[8]]<-numeric()} 
     
    plates[[i]][[3]]<-list() 
    plates[[i]][[3]][[1]]<-platemeta[3,2] 
    plates[[i]][[3]][[2]]<-platemeta[4,2]   
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    plates[[i]][[3]][[3]]<-platemeta[5,2]   
    plates[[i]][[3]][[4]]<-platemeta[6,2]   
    plates[[i]][[3]][[5]]<-platemeta[17,2]   
    plates[[i]][[3]][[6]]<-platemeta[18,2]  
    plates[[i]][[4]]<-platemeta[8:15,1] 
    plates[[i]][[5]]<-matrix( as.numeric(as.matrix(platemeta[8:15,3:14])), 
ncol=12,nrow=8,dimnames=list(LETTERS[1:8],c(1:12)))                          
    plates[[i]][[6]]<-matrix( as.numeric(as.matrix(nonPlate[4:11,3:14])), 
ncol=12,nrow=8,dimnames=list(LETTERS[1:8],c(1:12))) 
    plates[[i]][[7]]<-matrix( as.numeric(as.matrix(hydPlate[4:11,3:14])), 
ncol=12,nrow=8,dimnames=list(LETTERS[1:8],c(1:12))) 
    plates[[i]][[8]]<-(plates[[i]][[7]]-plates[[i]][[6]])*0.17613/0.68/3*100 
    plates[[i]][[9]]<-platemeta[2,19] 
     
#data are reformatted for processing 
    #data structure: 
    #allS[s,1]: sampleID (running number) 
    #allS[s,2]: Family (BenchBio family number) 
    #allS[s,3]: Tray (Tray ID, e.g. T3) 
    #allS[s,4]: Traypos (position on tray, letters are rows, numbers are columns, i.e. numbers 
count along long side of tray) 
    #allS[s,5]: Plate (Plate ID, e.g. P5) 
    #allS[s,6]: Platepos (position on plate, letters are rows, numbers are columns, as marked 
on plate) 
    #allS[s,7]: Missing (1 if no sample was collected from this position) 
    #allS[s,8]: NonHyd (raw absorbance reading of non-hydrated sample in OPT-assay) 
    #allS[s,9]: Hyd (raw absorbance reading of hydrated sample in OPT-assay) 
    #allS[s,10]: ODAP estimate (approximate dry weight ODAP level, assuming 3mg dry 
sample (not weighed)) 
    #allS[s,11]: Keep (1 if this plant should be kept) 
     
     
    allSlen<-(which(plateVec == i)-1)*96 
    for (s in 1:96){ 
      platecol<-((s-1)%/%8)+1 
      platerow<-s-(platecol-1)*8 
      platepos<-paste(LETTERS[platerow],platecol,sep="") 
      allS[s,1]<-allSlen+s 
      allS[s,2]<-plates[[i]][[4]][platerow] 
       
      if((9-platerow)<=length(plates[[i]][[2]][[2]])){ 
        traycol<-plates[[i]][[2]][[2]][length(plates[[i]][[2]][[2]])-(platerow-
length(plates[[i]][[2]][[4]])-length(plates[[i]][[2]][[6]])-length(plates[[i]][[2]][[8]]))+1] 
        allS[s,3]<-plates[[i]][[2]][[1]]} 
      else if((9-platerow)<=length(plates[[i]][[2]][[2]])+length(plates[[i]][[2]][[4]])){ 
        traycol<-plates[[i]][[2]][[4]][length(plates[[i]][[2]][[4]])-(platerow-
length(plates[[i]][[2]][[6]])-length(plates[[i]][[2]][[8]]))+1] 
        allS[s,3]<-plates[[i]][[2]][[3]]} 
      elseif((9platerow)<=length(plates[[i]][[2]][[2]]) 

+length(plates[[i]][[2]][[4]])+length(plates[[i]][[2]][[6]])){ 
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        traycol<-plates[[i]][[2]][[6]][length(plates[[i]][[2]][[6]])-(platerow-
length(plates[[i]][[2]][[8]]))+1] 
        allS[s,3]<-plates[[i]][[2]][[5]]} 
      else { 
        traycol<-plates[[i]][[2]][[8]][length(plates[[i]][[2]][[8]])-platerow+1] 
        allS[s,3]<-plates[[i]][[2]][[7]]} 
       
      traypos<-paste(LETTERS[platecol],traycol,sep="") 
      #  if(platepos %in% plates[[i]][[4]]){      # deprecated 
      #    traypos<-paste("M",traycol,sep="") 
      #  } 
      allS[s,4]<-traypos 
      allS[s,5]<-paste("P",i,sep="") 
      allS[s,6]<-platepos 
       
      if (!is.na(plates[[i]][[5]][s]))  {allS[s,7]<-1} 
      else    {allS[s,7]<-0} 
       
      allS[s,8]<-plates[[i]][[6]][s] 
      allS[s,9]<-plates[[i]][[7]][s] 
      allS[s,10]<-plates[[i]][[8]][s] 
       
      # selection of low-ODAP samples 
      if((plates[[i]][[8]][s]<=(ODAPthresh*median(plates[[i]][[8]])) & allS[s,7]==0)){ 
        allS[s,11]<-1} 
      else if(plates[[i]][[6]][s]>=(median(plates[[i]][[6]])+2*sd(plates[[i]][[6]])) & allS[s,7]==0){ 
        allS[s,11]<-2} 
      else {allS[s,11]<-0} 
    } 
    cat("done with plate",i,"!\n") 
    if(!(outputdata)){ 
      
write.table(allS,"screenResults.csv",col.names=FALSE,row.names=FALSE,na="",sep=",",app
end=TRUE,dec=".",qmethod="double") 
      allS<-data.frame(stringsAsFactors=FALSE)    
    } 
  } 
# data output into a .csv file 
  if(outputdata){ 
  write.csv(allS,"screenResults.csv",row.names=FALSE,na="") 
  return(allS)} 
} 
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App. 2.3 LCMS calibration for single seed measurements (using external β-L-ODAP 
standards)  

 

App. Figure 8. Calibration of LCMS using external β-L-ODAP standards for the measurement of single seed 
samples. A linear regression was calculated (see below) and used to calculate the ODAP concentrations of seed 
samples. All axes are logarithmic (base 2). 

 

slope 8.2348 *10-7 ± 8.8*10-10 

intercept 0.02639 ± 0.00335 
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App. 2.4 Calibration curves used to calculate β-L-ODAP concentrations of grass pea tissue 
samples measured by LCMS using the internal standard 

Batch 1 

Calibration curve -0.0207414 x2 + 5.49907 x - 0.00807413 

R2 0.999828 

Samples in this batch, 

unless otherwise 

indicated, all three 

replicate extractions were 

in this batch 

LSWT11 – leaf, flower, seed, root, early 

pod, late pod 

Mahateora – early pod, late pod, flower 

(reps 1,2) 

1264-2 – seedling shoot tip, seed, 

seedling root tip (reps 1,2) 

Pea – seed 

 

 

App. Figure 9. Calibration of LCMS using internal 13C β-L-ODAP standards for the measurement of β-L-ODAP 
concentrations in batch 1 of the grass pea tissue samples 
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Batch 2 

Calibration curve -0.0188358 x2 + 4.74805 x - 0.052804 

R2 0.999793 

Samples in this batch, 

unless otherwise 

indicated, all three 

replicate extractions were 

in this batch 

Mahateora – flower (rep 3), seed, 

seedling root tip, late pod, seedling shoot 

tip, leaf, root 

1264-2 –seedling root tip (rep 3), flower, 

early pod, late pod, leaf, root 

4884-2 – seedling root tip, seedling shoot 

tip, flower, seed, early pod, late pod, leaf, 

root 

4946-7 – flower, root, seedling root tip, 

seed, early pod, late pod, leaf 

Pea – seedling root tip 

 

 

App. Figure 10. Calibration of LCMS using internal 13C β-L-ODAP standards for the measurement of β-L-ODAP 
concentrations in batch 2 of the grass pea tissue samples 
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Batch 3 

Calibration curve -0.0232021 x2 + 5.26118 x - 0.00163096 

R2 0.999905 

Samples in this batch, 

unless otherwise 

indicated, all three 

replicate extractions were 

in this batch 

LSWT11 – seedling shoot tip, seedling 

root tip 

4946-7 – seedling shoot tip 

Pea – seedling shoot tip 

 

 

 

App. Figure 11. Calibration of LCMS using internal 13C β-L-ODAP standards for the measurement of β-L-ODAP 
concentrations in batch 3 of the grass pea tissue samples 
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App. 3 Chapter 4 – Identification of candidate genes 

encoding metabolic enzymes in the β-L-ODAP 

biosynthetic pathway 

App. 3.1 SortMeRNA command used for the processing of sequencing reads 

sortmerna/1.9/src/sortmerna-1.9/scripts/merge-paired-reads.sh 
trim_galore_out/*_R1_val_1.fq  
trim_galore_out/*_R2_val_2.fq  
merge_reads/LIB*_R1R2_trimmed_merged.fastq 
 
sortmerna/1.9/src/sortmerna-1.9/sortmerna -I 
merge_reads/LIB6*_R1R2_trimmed_merged.fastq -n 8 -db 
sortmerna/1.9/x86_64/sortmerna/rRNA_databases/rfam-5.8s-database-id98.fasta 
sortmerna/1.9/x86_64/sortmerna/rRNA_databases/rfam-5s-database-id98.fasta 
sortmerna/1.9/x86_64/sortmerna/rRNA_databases/silva-arc-16s-database-id95.fasta 
sortmerna/1.9/x86_64/sortmerna/rRNA_databases/silva-arc-23s-database-id98.fasta 
sortmerna/1.9/x86_64/sortmerna/rRNA_databases/silva-bac-16s-database-id85.fasta 
sortmerna/1.9/x86_64/sortmerna/rRNA_databases/silva-bac-23s-database-id98.fasta 
sortmerna/1.9/x86_64/sortmerna/rRNA_databases/silva-euk-18s-database-id95.fasta 
sortmerna/1.9/x86_64/sortmerna/rRNA_databases/silva-euk-28s-database-id98.fasta 

--accept  
sortmerna/LIB*_R1R2.trimmed.merged.fastq.nonrRNA--other 
sortmerna/LIB*_R1R2.trimmed.merged.fastq.rRNA --bydbs  

--log LIB6*.sortmerna.logfile --paired-out -r 0.25 -a 32 -v 

App. 3.2 Trim Galore command 

source python-2.7.1;trim_galore/0.3.3/x86_64/bin/trim_galore -q 20 --phred33 --
stringency 5 -length 60  

--paired --fastqc *_R1.fastq *_R2.fastq -o trim_galore_out 

App. 3.3 Trinity assembly commands 

trinityrnaseq-r2013_08_14/Trinity.pl --seqType fq --JM 30G --SS_lib_type RF --output 
denovo_trinity_all_LIB_R1_trimmed_nonrna --CPU 16 --min_kmer_cov 2  

--bflyHeapSpaceMax 30G --bflyCPU 4 –left 
trim_galore/sortmerna/unmerged_reads/all_LIB_R1_trimmed_nonrna.fastq--right 
trim_galore/sortmerna/unmerged_reads/all_LIB_R2_trimmed_nonrna.fastq 

App. 3.4 Commands used for open reading frame prediction and automatic annotation 

transdecoder/r20131117/x86_64/bin/TransDecoder-t     
 denovo_trinity_all_LIB_R1_trimmed_nonrna.fasta--MPI --CPU 10 
annotF --fasta longest_orfss.pep  
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App. 3.5 Alignment of grass pea BAHD acyltransferases selected as ODAP-synthase 
candidates 

 

App. Figure 12. Alignment of predicted amino acid sequences of candidates for the ODAP-synthase, selected 
based on the grass pea transcriptomes. Alignment produced using CLC Main Workbench 
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App. 3.6 Phylogenetic tree of candidate clade of BAHD-ATs including related species 

 

App. Figure 13. Phylogenetic tree showing the clade of BAHD-acyltransferases selected for further investigation. 
Nodes are coloured according to species: green - Lathyrus sativus; blue - Medicago truncatula; black - Lotus 
japonicus; red - Pisum sativum; Arabidopsis thaliana predicted proteins were included in the alignment, but none 
were grouped into this clade. Bootstrap values are shown at each branch. Grass pea proteins included in this 
phylogeny that are not shown in the phylogeny in section 4.3.5 were less than 400 amino acids long and had 
been excluded from the previous alignment. Candidate genes tested by heterologous expression are marked 
with arrows. 

BAHD 11 

BAHD 8 

BAHD 10 
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App. 3.7 Predicted change in protein structure caused by the deletion in the BAHD10 
clone 

 

  

App. Figure 14. Predicted tertiary structures of the predicted proteins of A) BAHD10 from the grass pea 
transcriptome and B) the cloned gene. The site of the two amino acid deletion is marked. The overall 
structure of the enzyme is not affected. Structure predictions calculated using Phyre2 
(www.sbg.bio.ic.ac.uk/phyre2/) 

Site of deletion 

A B 
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