
Accepted Manuscript

Clinical benefit of drugs targeting mitochondrial function as an adjunct to reperfusion in ST-segment elevation myocardial infarction: A meta-analysis of randomized clinical trials

Gianluca Campo, Rita Pavasini, Giampaolo Morciano, A. Michael Lincoff, C. Michael Gibson, Masafumi Kitakaze, Jacob Lonborg, Amrita Ahluwalia, Hideki Ishii, Michael Frenneaux, Michel Ovize, Marcello Galvani, Dan Atar, Borja Ibanez, Giampaolo Cerisano, Simone Biscaglia, Brandon J. Neil, Masanori Asakura, Thomas Engstrom, Daniel A. Jones, Dana Dawson, Roberto Ferrari, Paolo Pinton, Filippo Ottani

PII:	S0167-5273(17)31985-X
DOI:	doi:10.1016/j.ijcard.2017.06.040
Reference:	IJCA 25132
To appear in:	International Journal of Cardiology
Received date:	27 March 2017
Revised date:	14 May 2017
Accepted date:	9 June 2017

Please cite this article as: Campo Gianluca, Pavasini Rita, Morciano Giampaolo, Lincoff A. Michael, Gibson C. Michael, Kitakaze Masafumi, Lonborg Jacob, Ahluwalia Amrita, Ishii Hideki, Frenneaux Michael, Ovize Michel, Galvani Marcello, Atar Dan, Ibanez Borja, Cerisano Giampaolo, Biscaglia Simone, Neil Brandon J., Asakura Masanori, Engstrom Thomas, Jones Daniel A., Dawson Dana, Ferrari Roberto, Pinton Paolo, Ottani Filippo, Clinical benefit of drugs targeting mitochondrial function as an adjunct to reperfusion in ST-segment elevation myocardial infarction: A meta-analysis of randomized clinical trials, *International Journal of Cardiology* (2017), doi:10.1016/j.jigard.2017.06.040

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Clinical Benefit of Drugs Targeting Mitochondrial Function as an Adjunct to Reperfusion in ST-segment Elevation Myocardial Infarction: a Meta-Analysis of Randomized Clinical Trials.

Gianluca Campo, MD¹, Rita Pavasini, MD¹, Giampaolo Morciano, PhD², A. Michael Lincoff, MD³, C. Michael Gibson, MD⁴, Masafumi Kitakaze, MD⁵, Jacob Lonborg, MD PhD⁶, Amrita Ahluwalia, PhD⁷, Hideki Ishii, MD⁸, Michael Frenneaux, MD⁹, Michel Ovize, MD¹⁰, Marcello Galvani, MD¹¹, Dan Atar, MD¹², Borja Ibanez, MD PhD¹³, Giampaolo Cerisano, MD¹⁴, Simone Biscaglia, MD¹, Brandon J Neil, PhD⁴, Masanori Asakura, MD⁵, Thomas Engstrom, MD⁶, Daniel A Jones, MRCP⁷, Dana Dawson, MD¹⁵, Roberto Ferrari, MD PhD^{1,16}, Paolo Pinton, PhD², Filippo Ottani, MD¹¹

1: Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona (FE), Italy.

2: Department of Morphology, Surgery and Experimental Medicine. Section of Pathology,

Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.

3: Cleveland Clinic Coordinating Center for Clinical Research (C5Research), Cleveland, OH, USA.

4: PERFUSE Study Group, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

5: Cardiovascular Division of Medicine, National Cardiovascular Centre, Suita, Osaka, Japan

6: Department of Cardiology, Rigshospitalet, Copenhagen, Denmark.

7: Centre of Clinical Pharmacology, Barts NIHR Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Barts & The London Medical School, Queen Mary University, London, UK.

8: Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.

9: Norwich Medical School, University of East Anglia, Norwich, UK.

10: Clinical Investigation Center of Lyon, Lyon, France.

11: Unità Operativa di Cardiologia, Ospedale GB Morgagni, Forlì, Italy.

12: Department of Cardiology B, Oslo University Hospital Ullevall, and Faculty of

Medicine, University of Oslo, Oslo, Norway.

13: Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid,

Spain and Instituto de Investigación-Fundación Jiménez Díaz Hospital, Madrid, Spain.

14: Division of Cardiology, University of Florence, Careggi Hospital, Florence, Italy.

15: School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK

16: Maria Cecilia Hospital, GVM Care & Research, E.S.: Health Science Foundation,

Cotignola, Italy

<u>Brief Title</u>: Drugs targeting mitochondria and reperfusion injury <u>Abstract: 232; Word count</u>: 2738. <u>References:</u> 938.

Address for correspondence:

Gianluca Campo, MD,

Cardiovascular Institute,

Azienda Ospedaliera Universitaria S. Anna,

Via Aldo Moro 8, 44124 Cona, Ferrara (Italy).

Phone: +39(0)532237079.

Fax: +39(0)532241885

Email: cmpglc@unife.it

KEYWORDS

Mitochondrial function, ST-segment elevation myocardial infarction, primary percutaneous coronary intervention, mortality, reperfusion injury.

A CER MAN

ABSTRACT

Aims: To perform a systematic review and meta-analysis of randomized clinical trials (RCT) comparing the effectiveness of drugs targeting mitochondrial function vs. placebo in patients with ST-segment elevation myocardial infarction (STEMI) undergoing mechanical coronary reperfusion. Methods: Inclusion criteria: RCTs enrolling STEMI patients treated with primary percutaneous coronary intervention (PCI) and comparing drugs targeting mitochondrial function vs. placebo. Odds ratios (OR) were computed from individual studies and pooled with random-effect metanalysis.

Results: Fifteen studies were identified involving 5680 patients. When compared with placebo, drugs targeting mitochondrial component/pathway were not associated with significant reduction of cardiovascular and all-cause mortality (OR 0.9, 95%CI 0.7-1.17 and OR 0.92, 95%CI 0.69-1.23, respectively). However, these agents significantly reduced hospital admission for heart failure (HF) (OR 0.64; 95%CI 0.45-0.92) and increased left ventricular ejection fraction (LVEF) (OR 1.44; 95% CI 1.15-1.82). After analysis for subgroups according to the mechanism of action, drugs with direct/selective action did not reduce any outcome. Conversely, those with indirect/unspecific action showed a significant effect on cardiovascular mortality (0.65, 95%CI 0.46-0.92), all-cause mortality (OR 0.69, 95%CI 0.52-0.92), hospital readmission for HF (OR 0.41, 95%CI 0.28-0.6) and LVEF (OR 1.49, 95%CI 1.09-2.05).

Conclusions: Administration of drugs targeting mitochondrial function in STEMI patients undergoing primary PCI appear to have no effect on mortality, but may reduce hospital readmission for HF. The drugs with a broad-spectrum mechanism of action seem to be more effective in reducing adverse events.

INTRODUCTION

Despite timely and complete reperfusion by primary percutaneous coronary intervention (PCI), mortality and morbidity are still high in patients with large ST-segment elevation myocardial infarction (STEMI) [1]. Data from animal models suggested that the process of restoring coronary blood flow itself paradoxically induces myocardial injury and contributes to final infarct size (IS) [2-4]. This phenomenon is called "reperfusion injury" (RI) and it is thought to mitigate the full benefit of reperfusion [2-4]. Although several aspects remain obscure and definitive evidence in humans is lacking, experimental studies have established that altered mitochondrial function is strongly involved in the RI genesis [4-5]. As such, several randomized clinical trials (RCT) assessed the effectiveness of novel agents capable of targeting mitochondrial function with the aim to reduce IS and improve outcome [4-19]. These studies have reported conflicting results using surrogate markers and none was individually adequately powered for hard endpoints [6-19]. Systematic reviews employing meta-analytic techniques provide quantitative and objective means to pool and assess available clinical evidence, emphasizing internal validity and homogeneity, while affording increased statistical power for hypothesis testing. Thus, the aim of this study was to perform a systematic review and meta-analysis of RCTs comparing drugs targeting mitochondrial function vs. placebo in patients undergoing primary PCI for STEMI.

METHODS

We developed a systematic review and meta-analysis following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) amendment to the Quality of Reporting of Metaanalyses (QUOROM) statement [20-23]. The protocol for this study was previously published on an international prospective register for systematic reviews (PROSPERO) with the number: CRD42016033085.

Search strategy

Two expert cardiologists (RP, SB) independently and systematically searched (MESH strategy) MEDLINE, Cochrane Library, Google Scholar and Biomed Central for RCTs comparing drugs against the RI vs. placebo in patients with STEMI. The terms searched were: (reperfusion injury) AND ((PCI) OR (percutaneous coronary intervention) OR (ST elevation myocardial infarction) OR (STEMI) OR (myocardial infarction)). Details of the search strategy are reported in the appendix online. The research was carried out in December 2015.

Selection criteria

Shortlisted studies were retrieved as full articles and appraised independently by two unblinded reviewers (GC, FO), with divergences resolved after consensus, according to the following inclusion criteria: i) English language; ii) enrollment of STEMI patients; iii) reperfusion strategy by primary PCI; iv) randomized treatment allocation; v) comparison of agent/drug against RI vs. placebo/gold standard treatment; vi) at least 50 patients. Exclusion criteria were: i) duplicate reports failing to report additional or extended clinical outcomes, ii) lack of outcome data beyond hospitalization; iii) equivocal or non-random treatment allocation. Finally, selected studies were analysed by two independent reviewers (PP, GM) to establish if the experimental drug did or did

not have a mechanism of action targeting mitochondrial function (detailed description in the supplemental appendix). They checked the following items for each drug/agent: pharmacological targets, location or not of the targets in mitochondria, activation or not of mitochondrial pathways, selectivity and exclusivity in the action against mitochondria. This adjudication was performed according to a recent overview [5] and after revision of all available information regarding the agent/drug. The studies were classified into three groups: i) direct/selective mechanism of action targeting a mitochondrial component/pathway; ii) indirect/unspecific mechanism of action targeting mitochondrial component/pathway; and iii) mechanism of action not targeting mitochondria. The present study focused its attention on the first two groups.

Data abstraction, endpoints, contact with authors

The reviewers (RP, SB, GC, FO) independently abstracted data. In the case of incomplete or unclear data, authors were contacted obtaining missing information. In addition, for the studies of Jones et al. and Lonborg et al., a longer follow-up was available (36 vs. 12 months and 12 vs. 1 months, respectively) and it was included in our analysis [16-17]. The primary endpoint of the analysis was the incidence of cardiovascular death. Secondary endpoints were: all-cause death, hospital readmission for heart failure (HF) and left ventricular ejection fraction (LVEF). We performed a pre-hoc stratification of studies according to mechanism of action (direct/selective vs. indirect/unspecific). Additional analyses were performed after stratification of studies according to the following criteria: i) administration of cyclosporine, ii) administration of nicorandil, iii) follow-up length <12 vs. \geq 12 months iv) indirect/unspecific drugs after exclusion of the study of Pizarro et al. [15].

Internal validity and quality appraisal

Two unblinded reviewers (RP, SB) evaluated the quality of included studies using prespecified electronic forms that were piloted over the first 3 cases. No studies were excluded on the basis of this analysis. The same authors independently verified the eventual exclusion of some studies analyzing references from all the papers. Modifying the MOOSE item list in order to take into account the specific features of included studies, we separately abstracted and appraised study design, setting and data sources. Hence, following the Cochrane Collaboration approach we evaluated for each RCT the risk of analytical, selection, adjudication, detection, and attrition bias (expressed as low, moderate, or high risk of bias, as well as incomplete reporting leading to inability to ascertain the underlying risk of bias).

Data analysis and synthesis

Continuous variables were reported as mean (\pm SD) or median [interquartile range]. Categorical variables were expressed as number and percentage. The endpoints were expressed as an odds ratio (OR). Point estimates and standard errors were calculated and combined by the generic inverse variance method [24], computing risk estimates with 95% confidence intervals according to logarithmic transformation of the hazard measures. Considering the high likelihood of between-study variance, we used a random effect model. Statistical heterogeneity was assessed using the Cochran's Q test. This statistic was complemented with the I² statistic, which quantifies the proportion of total variation across studies that is due to heterogeneity rather than chance. A value of I² of 0 to 25 % represents insignificant heterogeneity, 26 to 50 % low heterogeneity, 51 to 75 % moderate heterogeneity, and >75 % high heterogeneity [25]. To test the difference between subgroup analyses the Chi² test has been used. Finally, random effect meta-regression analysis was performed to assess the effect of several potential confounding factors (sex, anterior MI, glycoprotein IIb/IIa inhibitor, baseline TIMI flow 0-1, smoking, dyslipidemia, prior

MI, stent implantation, thrombus-aspiration, diabetes, hypertension) on results. Publication bias was appraised by graphical valuation of funnel plots and through Begg and Mazumdar rank correlation, Egger's regression intercept, and Duval and Tweedie trim and fill [26]. Prometa (Internovi, Cesena, Itay) and RevMan 5 (The Cochrane Collaboration, The Nordic Cochrane Centre, Copenhagen, Denmark) software were used for statistical analyses.

A CER MAN

RESULTS

Search results and study selection

The database search yielded 948 citations (Figure 1). Shortlisted citations were retrieved and checked at the title/abstract level excluding 889 papers (Figure 1). Complete articles for the remaining 45 studies were checked for compliance to inclusion/exclusion criteria (Figure 1). Finally, we identified 25 eligible trials meeting our inclusion/exclusion criteria of which 10 were excluded because the experimental drug was not targeting mitochondria. A total of 15 studies were included in qualitative and quantitative meta-analysis (Table 1, Figure 1). Overall, 8 (53%) studies were double blind [7, 9-12, 16-18], 4 (27%) single blind [6, 13, 15] and 3 (20%) open label [8, 14,19]. Of note, reviewers largely debated about classification of the study by Lincoff et al. and inclusion of the study by Pizarro et al. [9,15] (see online supplemental for more details). Finally, they decided to classify the first as direct/selective mechanism of action and to include the second, but as indirect/unspecific mechanism of action.

Baseline characteristics

Overall, 5864 patients were randomized and 5680 (97%) patients were included in the final analysis (Table 1). Six studies randomized 1774 subjects to treatment with an experimental drug with direct/selective mechanism of action against mitochondrial component/pathways (Table 1). Three studies used cyclosporine, whereas in 3 studies other drugs were administered (delcasertib, MTP-131, TRO40303). Conversely, 9 studies randomized 1329 patients to an experimental drug with an indirect/unspecific mechanism of action against mitochondrial component/pathways (metoprolol, atrial natriuretic peptide, nicorandil, exenatide, doxycycline, nitrite). The mean age of the population was 61 ± 1 years old (Table 1). Anterior MI was present in 3802 (66%) patients. Baseline TIMI

flow grade was 0-1 in 4693 (82%) patients. The use of glycoprotein IIb/IIIa inhibitors and thromboaspiration was relatively common (37% and 35% of patients, respectively).

Cardiovascular mortality

Overall, the pooled effect estimate analysis showed a non-significant reduction in cardiovascular mortality (OR 0.9, 95%CI 0.7-1.17, p=0.4, I^2 =10%) in patients randomly allocated to receive drugs targeting mitochondrial function (Figure 2). Interestingly, after stratification of studies according to the mechanism of action, we found that indirect/unspecific drugs had a significant effect (OR 0.65, 95%CI 0.46-0.92, p=0.02, I^2 =0%), whereas the direct/selective ones did not (OR 1.18, 95%CI 0.86-1.61, p=0.3, I^2 =3%) (Figure 2). The difference between the two subgroups reached statistical significance (p=0.01) (Figure 2).

All-cause mortality

All-cause mortality was not affected by the treatment (OR 0.92, 95%CI 0.69-1.23, p=0.58, $I^2=37$ %) (Figure 2). Limiting the analysis to indirect/unspecific drugs, we observed a statistically significant reduction of all-cause mortality (OR 0.69, 95%CI 0.52-0.92, p=0.01, $I^2=0$ %) (Figure 2).

Hospital readmission for heart failure

Hospital readmissions for HF were significantly reduced (OR 0.64; 95%CI 0.45-0.92, p=0.01, I^2 =59%) in patients randomly allocated to receive drugs targeting mitochondrial component/pathways (Figure 3). The overall effect was principally driven by studies of drugs with indirect/unspecific mechanism of action (OR 0.41; 95%CI 0.28-

0.60; p<0.00001, I^2 =17% vs. OR 1.03, 95%CI 0.77-1.37, p=0.85, I^2 =15%, Chi² test for the difference p=0.0002).

Left ventricular ejection fraction

The administration of drugs targeting mitochondrial function demonstrated an increase in LVEF as compared to placebo (OR 1.44; 95% CI 1.15-1.82; p=0.002, I^2 =80%) (Figure 3). This effect was due to studies randomizing to indirect/unspecific drugs (OR 1.49, 95% CI 1.09-2.05, p=0.01) as compared to the others (OR 1.40, 95% CI 0.96-2.05, p=0.08), although the difference between the two subgroups did not reach statistical significance (p=0.8) (Figure 3).

Additional analyses

Additional analyses are detailed in the online appendix. Briefly, the administration of cyclosporine or nicorandil vs. placebo did not affect study outcomes (see Figure 1 and 2 in Ref [27]). A reduction in hospital readmission for HF was more evident in studies with follow-up length ≥12 months (see Figure 4, 5 and 6 in Ref [27]). Excluding the study by Pizarro et al. (metoprolol) [15], we did not observe significant differences in our results (see Figure 3 in Ref [27]). Finally, random effects meta-regression disclosed no significant interaction between confounding factors and the administration of drugs targeting mitochondrial function and outcomes (Supplemental Table 3). Especially, baseline TIMI flow >1, thromboaspiration and glycoprotein IIbIIIa inhibitor did not affect the relationship between experimental drug and outcome.

Publication bias

There was no evidence of publication bias (supplemental online).

DISCUSSION.

In the last decades, we observed a significant and progressive mortality reduction in STEMI patients receiving coronary reperfusion by primary PCI [1]. Nevertheless, mortality after STEMI is still not negligible and the number of patients developing HF is increasing [1-3,28]. As such, new treatments are clearly on demand to further reduce IS and preserve LVEF, thereby improving clinical outcome. A field of cardiovascular research pursuing this ambitious aim is termed "cardioprotection", based on the hotly debated concept of lethal RI and on the application of strategies and/or drugs able to reduce it [2-5]. Although it is still debated by some authors, mitochondrial function is considered the crucial mediator of RI [4-5]. Consequently, it is not surprising that several RCTs with drugs targeting mitochondrial function have been conducted in the recent past [6-19]. The major characteristics of these studies can be summarized as follows: i) selection of agents against mitochondrial component/pathways; ii) positive results of the agent in preclinical investigations; iii) inclusion of selected series of STEMI patients being "proof-of concept" investigations; iv) surrogate markers of left ventricle (LV) salvage or LV function or IS as primary endpoint; v) absence of persuasive results to demonstrate the effectiveness of the experimental treatment. In addition, all of these trials were underpowered for hard clinical endpoints. The reasons for this failure are multiple and not the aim of our study [28]. Surely, discrepancies in the dose of the experimental drug, of the timing of its administration and of the patient's selection (e.g. location of MI, spontaneous coronary reperfusion, time between symptom's onset and reperfusion) played a crucial role in these mixed or neutral results [29].

The purpose of the present meta-analysis was to collect data from each RCT to assess the presence of benefit on hard endpoints deriving from the administration of experimental drug against mitochondrial component/pathways. The strengths of our work are the selection of agents, the adjudication of the mechanism of action by experts in the field of mitochondrial function, the collection of original data from authors, the largest sample size for a study in this topic and the low

degree of heterogeneity (expressed as I^2 %) in the majority of the analyses. Overall, we did not demonstrate a significant reduction in either cardiovascular or all-cause mortality. The administration of experimental drugs targeting mitochondrial function in STEMI patients did not affect mortality. This neutral effect was observed despite the significant improvement in LVEF and the reduction in HF hospital readmissions. We may speculate that the benefit in terms of LVEF preservation and HF reduction is too small to translate into a mortality advantage or that the study population and/or the number of deaths are not adequate to observe a significant difference. In addition, we have a follow-up length >12 months only in 7 studies and the short follow-up could be limited the benefit in terms of mortality due to HF hospital readmission reduction.

The major novelty of our work is the focus on drugs targeting mitochondrial function. This is the first attempt to classify drugs according the mechanism of action against mitochondria and to investigate their effectiveness. The pathophysiological rationale derives from previous and recent studies suggesting that most critical subcellular signalling of lethal RI are located in mitochondria components and/or pathways [4-5]. Interestingly, we did not observe any benefit from the administration of drugs with a mechanism of action direct and selective for mitochondrial targets. Conversely, drugs with a broad-spectrum mechanism of action reduced all clinical endpoints, including cardiovascular and all-cause mortality. Furthermore, the findings were also confirmed after the exclusion of the study by Pizarro et al. where patients were randomized to metoprolol vs. placebo (questionable effect against mitochondrial targets) [15]. These findings could be interpreted as indirect evidence against RI. We may infer that RI is not important or that it is not a major determinant of prognosis in humans. Nicorandil, exenatide, metoprolol, nitrite, doxycycline and atrial natriuretic peptide have multiple physiological effects which could have improved LVEF or reduced mortality and HF, independently from any effect on RI [12-19]. Alternatively, the results of this study could be viewed as proof against mitochondrial involvement in RI. Nevertheless, we may hypothesize that the targets of drugs with presumed direct/selective mechanisms of action against mitochondria were in fact not directed primarily at key factors in the RI genesis, as recent evidence

suggest for cyclosporine and TRO40303 [4,30-31]. Finally, our findings should be also interpreted in context with the results from mechanical strategies of cardioprotection (post and remote conditioning) [32]. We cannot exclude that components and pathways involved in myocardial necrosis during myocardial ischemia and reperfusion are multiple. Accordingly, a broad-spectrum approach (e.g. the recently proposed "combination reperfusion therapy") could be more effective as compared to a single-target approach [5]. Besides such intriguing speculations, further studies are clearly warranted either in pre-clinical and clinical setting [29-34].

Study limitations

Our results suffer from those limitations which are inherent to all meta-analytic techniques including particularly heterogeneity in patient populations, different study drug regimens, and variable endpoint definitions across studies. This mainly applies to the different criteria employed to assess IS. Due to variable definitions and methods (cardiac magnetic resonance, troponin T or I or creatine kinase release) across studies, we are not able to give a comprehensive estimate of effect on IS. In addition, despite the inclusion of 15 studies, our final study population (5680 STEMI patients) remains underpowered to draw final conclusions on mortality. Consequently, subgroup analyses should be considered hypothesis-generating and require further confirmations. Finally, since non-fatal endpoints were included in the analysis, competing risk should be accounted for in the analysis, but data to calculate them were not available.

Conclusions

Administration of drugs targeting mitochondrial function in STEMI patients undergoing primary PCI appear to have no effect on mortality, but may reduce hospital readmission for HF. The drugs with a broad-spectrum mechanism of action seem to be more effective in reducing adverse events.

REFERENCES

- 1. ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2014;35:2541-2619.
- 2. Fröhlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ. Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J. 2013;34:1714-1722.
- Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007;357:1121– 1135.
- Morciano G, Giorgi C, Bonora M, et al. Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J Mol Cell Cardiol. 2015;78:142-153.
- 5. Bulluck H, Yellon DM, Hausenloy DJ. Reducing myocardial infarct size: challenges and future opportunities. Heart. 2016;102:341-8.
- Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473-81.
- Cung TT, Morel O, Cayla G, et al. Cyclosporine before PCI in Patients with Acute Myocardial Infarction. N Engl J Med. 2015;373:1021-31.
- Ottani F, Latini R, Staszewsky L, et al.; CYCLE Investigators. Cyclosporine A in Reperfused Myocardial Infarction: The Multicenter, Controlled, Open-Label CYCLE Trial. J Am Coll Cardiol. 2016;67:365-74.
- 9. Lincoff AM, Roe M, Aylward P, et al; PROTECTION AMI Investigators. Inhibition of delta-protein kinase C by delcasertib as an adjunct to primary percutaneous coronary intervention for acute anterior ST-segment elevation myocardial infarction: results of the PROTECTION AMI Randomized Controlled Trial. Eur Heart J. 2014;35:2516-23.
- Atar D, Arheden H, Berdeaux A, et al. Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur Heart J. 2015;36:112-9.

- 11. Gibson CM, Giugliano RP, Kloner RA, et al. EMBRACE STEMI study: a Phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J. 2015 Nov 19. [Epub ahead of print].
- Ishii H, Ichimiya S, Kanashiro M, et al. Impact of a single intravenous administration of nicorandil before reperfusion in patients with ST-segment-elevation myocardial infarction. Circulation. 2005;112:1284-8.
- 13. Kitakaze M, Asakura M, Kim J, et al. J-WIND investigators. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet. 2007;370:1483-93.
- 14. Lee HC, An SG, Choi JH, et al. Effect of intra-coronary nicorandil administration prior to reperfusion in acute ST segment elevation myocardial infarction. Circ J. 2008;72:1425-9.
- 15. Pizarro G, Fernández-Friera L, Fuster V, et al. Long-term benefit of early pre-reperfusion metoprolol administration in patients with acute myocardial infarction: results from the METOCARD-CNIC trial (Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction). J Am Coll Cardiol. 2014;63:2356-62.
- 16. Jones DA, Pellaton C, Velmurugan S, et al. Randomized phase 2 trial of intracoronary nitrite during acute myocardial infarction. Circ Res. 2015;116:437-47.
- 17. Lønborg J, Vejlstrup N, Kelbæk H, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33:1491-9.
- Siddiqi N, Neil C, Bruce M, et al.; NIAMI investigators. Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI). Eur Heart J. 2014;35:1255-62.
- 19. Cerisano G, Buonamici P, Valenti R, et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur Heart J. 2014;35:184-91.

- 20. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF. Improving the quality of reports of meta-analyses of randomized controlled trials: the QUOROM statement. Lancet 1999;354:1896-900.
- 21. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-Analysis of Observational Studies in Epidemiology (MOOSE) group, JAMA 2000;283:2008-12.
- 22. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0, The Cochrane Collaboration, 2009, http://handbook.cochrane.org. (2011, accessed 28 December 2015).
- 23. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700.
- 24. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trial 1986;7:177– 188.
- 25. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in metaanalyses. BMJ 2003;327:557–560.
- 26. Cooper H, Hedges VL, Valentine JC. Handbook of Research Synthesis and Meta-Analysis. Second Edition. 2009.
- 27. Campo G, Pavasini R, Morciano G et al. The role of cyclosporine, nicorandil, metoprolol and follow-up length on reperfusion related outcomes in ST elevation myocardial infarction treated with percutaneous coronary intervention. Data in Brief [submitted].
- 28. Campo G, Saia F, Guastaroba P, et al. Prognostic impact of hospital readmissions after primary percutaneous coronary intervention. Arch Intern Med. 2011;171:1948-9.
- 29. Hausenloy DJ, Garcia-Dorado D, Erik Bøtker H, et. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res. 2017 Mar 17. doi:

10.1093/cvr/cvx049

- 30. Halestrap AP, Richardson AP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol. 2015;78:129-141.
- 31. Campo G, Morciano G, Pavasini R, et al. Fo ATP synthase C subunit serum levels in patients with ST-segment Elevation Myocardial Infarction: Preliminary findings. Int J Cardiol. 2016;221:993-7.
- 32. Le Page S, Bejan-Angoulvant T, Angoulvant D, Prunier F. Remote ischemic conditioning and cardioprotection: a systematic review and meta-analysis of randomized clinical trials. Basic Res Cardiol. 2015;110:11-9.
- 33. Hausenloy DJ, Erik Botker H, Condorelli G, et al. Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 2013;98:7–27.
- 34. Lecour S, Bøtker HE, Condorelli G, et al. ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc Res. 2014;104:399-411.

ACKNOWLEDGMENTS

Conflict of interest: Lincoff receives research support from Kai Pharmaceuticals; Gibson receives research support from Stealth pharmaceuticals; other authors do not declare conflict of interest.

Funding: none.

A CERTING

FIGURE LEGENDS

Figure 1. Flow diagram of the systematic literature search indicating the inclusion

and exclusion process.

STEMI: ST-segment elevation myocardial infarction.

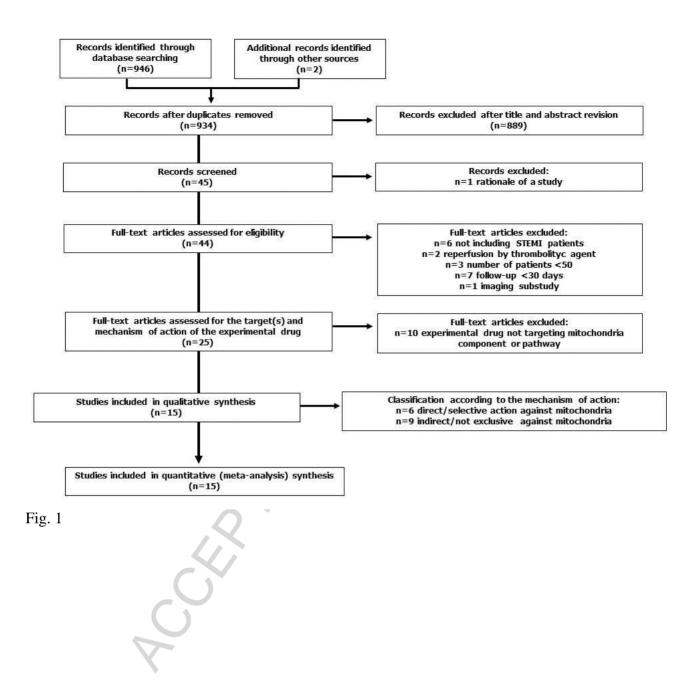
Figure 2. Forest plots on cardiovascular mortality and all-cause mortality

SF: safety population. ANT: anterior cohort. INF: inferior cohort. ANP: atrial natriuretic

peptide. NIC: nicorandil. CV: cardiovascular.

Figure 3: Forest plots on hospital readmissions for heart failure and left ventricle ejection fraction.

SF: safety population. ANT: anterior cohort. INF: inferior cohort. ANP: atrial natriuretic peptide. NIC: nicorandil. HF: heart failure. LVEF: left ventricle ejection fraction.


Table 1. Main characteristics of the randomized clinical trials

	Direct/se	lective mech	anism of acti	on against	mitochondr	rial component	t/pathway	Indirect/unspecific mechanism of action against mitochondrial component/pathway								
Study	Piot	Cung	Ottani	Lincoff ANT	Lincoff INF	Atar	Gibson	Ishii	Lee	Kitakaze NIC	Kitakaze ANP	Pizarro	Longborg	Jones	Siddiqi	Cerisano
Pts randomized	58	970	410	1010	166	167	297	368	73	613	603	270	387	82	280	110
Pts included in the analysis	58	969	410	997	159	165	297	368	73	545	569	270	330	80	280	110
Experimental drug	CYC	CYC	CYC	DEL	DEL	TRO40303	MTP131	NIC	NIC	NIC	ANP	metoprolol	exenatide	nitrite	nitrite	doxycycline
Pts receiving experimental drug	30	474	207	748	80	85	150	185	37	276	277	139	174	40	146	55
Only anterior MI	Ν	Y	Ν	Y	Ν	Ν	Y	N	N	Ν	Ν	Y	Ν	Ν	Ν	Ν
Max symptoms- PCI time (h)	12	12	6	6	6	6	4	24	12	12	12	6	12	6	12	12
Prior MI exclusion criteria	Ν	Ν	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y
Follow-up (months)	3	12	6	3	3	1	6	27±15	1	30±13	32±12	24*	12	36	6	6
LVEF (method)	TTE	TTE	TTE	TTE	NA	CMR	CMR	LVG	NA	LVG	LVG	CMR	CMR	CMR	CMR	TTE
LVEF timing (months)	3	12	6	3	NA	1		6	NA	6	6	6	3	6	6	6
Age (vears)	58±2	60±12	63±13	60±8	61±8	62±12	60±11	58±2	63±10	58±12	62±10	63±10	58±11	63±11	57±12	63±13
Male n. (%)	46 (79)	795 (82)	327 (80)	729 (72)	126 (76)	136 (83)	224 (75)	298 (81)	61 (73)	466 (76)	454 (75)	233 (86)	263 (80)	67 (84)	177 (77)	76 (69)
Diabetes n. (%)	8 (14)	123 (13)	58 (14)	146 (14)	25 (15)	12 (7)	35 (14)	119 (32)	23 (31)	186 (30)	167 (28)	55 (20)	27 (8)	6 (8)	33 (14)	23 (21)
Anterior MI n. (%)	24 (41)	969 (99)	203 (49)	997 (99)	0 (0)	62 (38)	282 (98)	174 (47)	40 (55)	269 (44)	206 (34)	222 (82)	137 (42)	21 (26)	87 (38)	101 (92)
Symptom-balloon time (minutes)	302±28	270±180	180±60	180±72	180±72	170±72	180±60	282±180	360±180	210±150	240±180	120±60	180±110	189±72	220±128	224±202
Thromboaspiration n. (%)	0 (0)	736 (76)	275 (67)	NA	NA	NA	138 (48)	128 (35)	0 (0)	0 (0)	0 (0)	208 (77)	185 (56)	64 (80)	127 (45)	69 (63)
GPI IIbIIIa n. (%)	21 (36)	366 (38)	182 (44)	474 (47)	80 (48)	66 (40)	159 (54)	0 (0)	10 (14)	0 (0)	0 (0)	191 (71)	270 (81)	80 (100)	115 (41)	101 (92)
TIMI pre 0-1 n. (%)	58 (100)	864 (89)	410 (100)	547 (54)	111 (68)	163 (100)	147 (52)	311 (84)	48 (66)	613 (100)	603 (100)	205 (76)	220 (67)	70 (87)	226 (81)	77 (70)

Pts: patients. MI: myocardial infarction. PCI: percutaneous coronary intervention. LVEF: left ventricle ejection fraction. TTE: transthoracic echocardiography. ANT: anterior cohort. INF: inferior cohort. CMR: cardiac magnetic resonance. LVG: left ventricle angiography. ANP: atrial natriuretic peptide. NIC: nicorandil. NA: data not available/not assessed. Y: yes. N: not.

*: median follow-up. GPI: glycoprotein inhibitor. TIMI: thrombolysis in myocardial infarction. CYC: cyclosporine. DEL: delcaserbib.

.n myocardial ima.

CARDIOVASCULAR DEATH

	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Random, 95% CI	Odds Ratio IV, Random, 95% Cl
1.3.1 Direct/selective					
Atar et al.	1.09		2.1%	2.97 [0.53, 16.69]	
Cung et al.	0.05		23.7%	1.05 [0.70, 1.59]	
Gibson et al. SP	0.69	0.52	5.7%	1.99 [0.72, 5.52]	
Lincoff et al. ANT	-0.26	0.34	11.9%	0.77 [0.40, 1.50]	
Lincoff et al. INF	-0.04	0.71	3.2%	0.96 [0.24, 3.86]	
Ottani et al.	0.82	0.45	7.4%	2.27 [0.94, 5.48]	
Piot et al.	-0.07	1.41	0.8%	0.93 [0.06, 14.78]	
Subtotal (95% CI)			54.7%	1.18 [0.86, 1.61]	•
Heterogeneity: Tau ² = 0 Test for overall effect: 2			6 (P = 0.	$(40); 1^2 = 3\%$	Ē.
		.,			
1.3.2 Indirect/unspeci					
Cerisano et al.	-1.14		2.2%	0.32 [0.06, 1.76]	
Ishii et al.	-0.54		9.9%	0.58 [0.28, 1.23]	
Jones et al.	-1.08		1.1%	0.34 [0.03, 3.78]	
Kitakatze et al. ANP	-0.35		3.7%	0.70 [0.19, 2.57]	
Kitakatze et al. NIC	-0.51		8.7%	0.60 [0.27, 1.34]	
Lee et al.	-0.03		0.8%	0.97 [0.06, 15.69]	
Lonborg et al.	-0.03		12.4%	0.97 [0.51, 1.85]	
Pizarro et al.	-0.58		5.5%	0.56 [0.20, 1.58]	
Siddigi et al.	-2.04	1.28	1.0%	0.13 [0.01, 1.60]	
Subtotal (95% CI)			45.3%	0.65 [0.46, 0.92]	•
Heterogeneity: Tau ² = 0 Test for overall effect: 2			8 (P = 0.	83); i ² = 0%	
Texal (DEA) CD			100.0%	0.90 [0.70, 1.17]	-
					· · ·
Total (95% CI)					
Heterogeneity: Tau ² = 0			= 15 (P =	0.33); l' = 10%	0.01 0.1 1 10 100
Heterogeneity: Tau ² = 0 Test for overall effect: 2	= 0.78 (P = 0.4	4)			
Heterogeneity: Tau ² = 0	= 0.78 (P = 0.4	4)			0.01 0.1 1 10 100 Reduced CV mortality Increased CV mortality
Heterogeneity: Tau ² = 0 Test for overall effect: 2	= 0.78 (P = 0.4	4) 0, df	= 1 OP =		
Heterogeneity: Tau ² = 0 Test for overall effect: 2	= 0.78 (P = 0.4	4) 0, df	= 1 OP =	0.01), 1 ² = 83.9% AUSE DEATH	Reduced CV mortality Increased CV mortality
Heterogeneity: Tau ² = 0 Test for overall effect: 2 Test for subgroup diffe	2 = 0.78 (P = 0.4 rences: Chi ² = 6.2	4) 10. df	- 1 0P -	0.01), 1 ² = 83.9% AUSE DEATH Odds Ratio	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = 0 Test for overall effect: 2 Test for subgroup differ Study or Subgroup	= 0.78 (P = 0.4	4) 10. df	- 1 0P -	0.01), 1 ² = 83.9% AUSE DEATH	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = 0 Test for overall effect: 2 Test for subgroup differ Study or Subgroup 1.3.1 Direct/selective	2 = 0.78 (P = 0.4 rences: Chi ² = 6.2	4) :0. df SE	ALL-C	0.01), 1 ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = 0 Test for overall effect: 2 Test for subgroup differ Study or Subgroup 1.3.1 Direct/selective Atar et al.	t = 0.78 (P = 0.4 rences: Chi ² = 6.2 log[Odds Ratio] 1.09	4) (0, df 5E 0.88	= 1 0P = ALL-C/ Weight 2.1%	0.01), 1 ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 2.97 (0.53, 16.69)	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = 0 Test for overall effect: 2 Test for subgroup differ Study or Subgroup 1.3.1 Direct/selective Atar et al.	t = 0.78 (P = 0.4 rences: Ch ² = 6.2 log[Odds Ratio] 1.09 0.05	4) (0, df 5E 0.88 0.21	= 1 (P = ALL-C/ Weight 2.1% 23.7%	0.01), 1 ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 2.97 [0.53, 16.69] 1.05 [0.70, 1.59]	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = 0 Test for overall effect: 2 Test for subgroup differ Study or Subgroup 1.3.1 Direct/selective Atar et al. Cung et al. Gibson et al. SP	t = 0.78 (P = 0.4 rences: Ch ² = 6.2 log[Odds Ratio] 0.05 0.65	4) (0, df 5E 0.88 0.21 0.52	= 1 (P = ALL-C/ Weight 2.1% 23.7% 5.7%	0.01), 1 ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.99 [0.72, 5.52]	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subgroup differ 5tudy or Subgroup 1.3.1 Direct/selective Atar et al. Gibson et al. SP Lincoff et al. ANT	t = 0.78 (P = 0.4 rences: Chi ² = 6.2 log[Odds Ratio] 1.09 0.05 0.69 -0.26	4) 0. df 5E 0.88 0.21 0.52 0.34	= 1 (P = ALL-C/ Weight 2.1% 23.7% 5.7% 11.9%	0.01), 1 ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 2.97 [0.53, 16.69] 1.05 (0.70, 1.59] 1.99 [0.72, 5.52] 0.77 [0.40, 1.50]	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for overall effect 2 Test for subgroup differ 1.3.1 Direct/selective Atar et al. Cung et al. Cung et al. ANT Lincoff et al. ANT Lincoff et al. INT	t = 0.78 (P = 0.4 rences: Chi ² = 6.2 log[Odds Ratio] 1.09 0.05 0.69 -0.26 -0.04	4) 50, df 5E 0.88 0.21 0.52 0.34 0.71	= 1 (P =) ALL-C/ Weight 23.7% 5.7% 11.9% 3.2%	0.01), 1 ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.99 [0.72, 5.52] 0.77 [0.40, 1.50] 0.96 [0.24, 3.86]	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for overall effect: 2 Test for subgroup differ 5tudy or Subgroup 1.3.1 Direct/selective Atar et al. Gibson et al. SP Lincoff et al. NF Uncoff et al. NF Ottani et al.	t = 0.78 (P = 0.4 rences: Chi ² = 6.2 log[Odds Ratio] 0.05 0.69 -0.26 -0.04 0.82	4) 50, df 5E 0.88 0.21 0.52 0.34 0.71 0.45	= 1 (P =) ALL-C/ Weight 23.7% 5.7% 11.9% 3.2% 7.4%	0.01), 1 ² = 83.9% AUSE DEATH Odds Ratio IV, Randown, 93% CI 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.99 [0.72, 5.22] 0.77 [0.60, 1.50] 0.96 [0.24, 3.86] 2.27 [0.94, 5.48]	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for svbgroup List for svbgroup List Direct/selective Atar et al. Cung et al. Cibson et al. SP Lincoff et al. ANT Lincoff et al. INF Ottani et al.	t = 0.78 (P = 0.4 rences: Chi ² = 6.2 log[Odds Ratio] 1.09 0.05 0.69 -0.26 -0.04	4) 50, df 5E 0.88 0.21 0.52 0.34 0.71 0.45	= 1 (P =) ALL-C/ Weight 2.1% 5.7% 11.9% 3.2% 7.4% 0.8%	0.01), 1 ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 2.97 (0.53, 16.69) 1.05 (0.70, 1.59) 1.99 (0.72, 5.52) 0.77 (0.40, 1.50) 0.66 (0.24, 3.86) 2.27 (0.94, 5.48) 0.93 (0.06, 14.78)	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = c Test for overall effect 2 Test for subgroup differ Study or Subgroup 1.3.1 Direct/selective Atar et al. Curg et al. Direct et al. ANT Lincoff et al. NH Ottani et al. Pice et al. Subtotal (95% Ct)	t = 0.78 (P = 0.4 rences: Chi ² = 6.2 log[Odds Ratio] 0.05 0.69 -0.26 -0.04 -0.82 -0.07	4) 0, df 5E 0.88 0.21 0.52 0.34 0.71 0.45 1.41	= 1 0P = ALL-C/ Weight 2.1% 23.7% 5.7% 5.7% 3.2% 7.4% 54.7%	0.01), I ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 1.05 (0.70, 1.59) 1.09 (0.72, 5.52) 0.77 (0.40, 1.50) 0.66 (0.24, 3.86) 0.39 (0.06, 14.78) 1.18 (0.66, 1.61)	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for svbgroup List for svbgroup List Direct/selective Atar et al. Cung et al. Cibson et al. SP Lincoff et al. ANT Lincoff et al. INF Ottani et al.	t = 0.78 (P = 0.4 rences: Chi ² = 6.2 log[Odds Ratio] 0.05 0.69 -0.26 -0.04 -0.82 -0.07	4) 0, df 5E 0.88 0.21 0.52 0.34 0.71 0.45 1.41	= 1 0P = ALL-C/ Weight 2.1% 23.7% 5.7% 5.7% 3.2% 7.4% 54.7%	0.01), I ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 1.05 (0.70, 1.59) 1.09 (0.72, 5.52) 0.77 (0.40, 1.50) 0.66 (0.24, 3.86) 0.39 (0.06, 14.78) 1.18 (0.66, 1.61)	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = c Test for overall effect 2 Test for subgroup differ Study or Subgroup 1.3.1 Direct/selective Atar et al. Curg et al. Direct et al. ANT Lincoff et al. NH Ottani et al. Pice et al. Subtotal (95% Ct)	z = 0.78 (P = 0.4 rences: Chi ² = 6.2 log[Odds Ratio] 1.09 0.05 0.69 -0.26 -0.04 0.82 -0.07 0.01; Chi ² = 6.21	4) 0. df 5E 0.88 0.21 0.52 0.34 0.71 0.45 1.41 , df =	= 1 0P = ALL-C/ Weight 2.1% 23.7% 5.7% 5.7% 3.2% 7.4% 54.7%	0.01), I ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 1.05 (0.70, 1.59) 1.09 (0.72, 5.52) 0.77 (0.40, 1.50) 0.66 (0.24, 3.86) 0.39 (0.06, 14.78) 1.18 (0.66, 1.61)	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for overall effect 2 Test for subgroup differ 1.3.1 Direct/selective Aar et al. Cung et al. Citison et al. SP Lincoff et al. ANT Lincoff et al. NT Uncoff et al. INT Ottarie et al. Subtotal (95% CI) Heterogeneity: Tau ² = (Test for overall effect 2 1.3.2 indirect/unspeci	 - 0.78 (P = 0.4; rences: Ch² = 6.2 log[Odds Ratio] 1.09 0.05 0.05 0.05 0.04 0.82 -0.07 0.01; Ch² = 6.21 - 1.04 (P = 0.3) fic 	4) 50, df 0,88 0,21 0,52 0,34 0,71 1,41 , df = 0)	= 1 (P = ALL-C/ 2.1% 23.7% 54.7% 54.7% 6 (P = 0.	0.01), i ² = 83.9% AUSE DEATH 0 dds Ratio 17, Random, 95% C1 1.05 (0.70, 1.59) 1.05 (0.70, 1.59) 1.05 (0.70, 1.59) 1.05 (0.74, 1.50) 0.06 (0.24, 3.86) 0.27 (0.94, 5.48) 1.18 (0.64, 1.61) 1.18	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau? = (Test for subgroup 1.3.1 Direct/selective Atar et al. Cung et al. Cung et al. Subtotal (95% CI) Heterogeneity: Tau? = (Test for overall effect 2 1.3.2 indirect/unspeci Cerisano et al.	 - 0.78 (P = 0.4; rences: Ch² = 6.2 log(Odds Ratio) 1.09 0.05 0.05 0.05 0.02 -0.02 -0.02 -0.02 -0.01: Ch² = 6.21 1.04 (P = 0.3) fic 	4) 0, df 5E 0.88 0.21 0.52 0.34 0.71 0.45 1.41 , df = 0) 0.87	= 1 (P = ALL-C/ weight 2.1% 23.7% 5.7% 11.9% 7.4% 0.8% 54.7% 6 (P = 0. 2.2%	0.01), i ² = 83.9% AUSE DEATH 0dds Ratio 17, Random, 95% CI 2.97 (0.53, 16.69) 1.05 (0.70, 1.59) 1.09 (0.72, 5.52) 0.77 (0.40, 1.50) 0.95 (0.24, 3.80) 0.95 (0.24, 3.80) 0.93 (0.06, 1.478) 1.18 (0.86, 1.61) 1.40); i ² = 3%	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for overall effect 2 Test for overall effect 2 Test for subgroup differ 1.3.1 Direct/selective Atar et al. Cung et al. Gibson et al. SP Lincoff et al. ANT Lincoff et al. NT Ottarie et al. Subtotal (95% CI) Heterogeneity: Tau ² = (Test for overall effect 2 1.3.2 Indirect/unspeci Cerisano et al. Ishii et al.	 - 0.78 (P = 0.4, rences: Ch² = 6.2 log[Odds Ratio] 1.09 0.05 0.69 -0.26 -0.07 0.01; Ch² = 6.21 -1.04 (P = 0.3) fic 	4) 50. df 5E 0.88 0.21 0.52 0.34 1.41 . df = 0) 0.87 0.38	= 1 (P = ALL-C/ weight 23.7% 5.7% 11.9% 3.2% 7.4% 6.(P = 0. 2.2% 9.9%	0.01), i ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.05 [0.70, 1.59] 1.05 [0.74, 1.50] 0.76 [0.44, 3.86] 0.37 [0.44, 5.48] 1.18 [0.66, 1.61] 1.18 [0.66, 1.61] 0.58 [0.28, 1.23]	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for subgroup 1.3.1 Direct/selective Atar et al. Cung et al. Cung et al. Cung et al. Subtotal (95% CI) Heterogeneity: Tau ² = (Test for overall effect: 2 1.3.2 indirect/unspeci Cerisano et al. Ishii et al. Jones et al.	 - 0.78 (P = 0.4, rences: Ch² = 6.2 log(Odds Ratio) 1.09 0.05 0.69 -0.26 -0.04 0.82 -0.07 0.11; Ch² = 6.21 t = 1.04 (P = 0.3) fic -1.14 -0.54 -1.08 	4) 0, df 0, 88 0, 21 0, 24 0, 21 0, 24 0, 21 0, 24 0, 21 0, 24 0, 24	= 1 (P = ALL-C/ weight 2.1% 2.7% 5.7% 1.9% 5.7% 1.1% 6 (P = 0. 2.2% 9.9% 1.1%	0.01), i ² = 83.9% AUSE DEATH Odds Ratio 17, Random, 95% C1 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.99 [0.72, 5.52] 0.77 [0.40, 1.50] 0.66 [0.24, 3.86] 0.78 [0.40, 1.50] 0.76 [0.4, 5.48] 0.31 [0.66, 1.61] 40]; i ² = 3%	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for overall effect 2 Test for overall effect 2 Test for subgroup differ 1.3.1 Direct/selective Atar et al. Cung et al. Gibson et al. SP Lincoff et al. ANT Lincoff et al. ANT Uncoff et al. INF Ottani et al. Poet et al. Meterogeneity: Tau ² = (Test for overall effect 2 J.3.2 indirect/unspeci Cerisano et al. Jones et al. Stitakatze et al. ANP	 - 0.78 (P = 0.4, rences: Ch² = 6.2 log[Odds Ratio] 1.09 0.05 0.69 -0.26 -0.07 0.01; Ch² = 6.21; -1.04 (P = 0.3); fic -1.54 -0.54 -0.85 -0.85 	4) 50. df 58 0.88 0.21 0.52 0.71 0.45 1.41 . df = 0) 0.87 0.38 0.28 0.21 0.71 0.45 1.41	= 1 (P = ALL-C/ weight 2.1% 2.3% 5.7% 1.9% 7.4% 0.8% 5.4.7% 6 (P = 0. 2.2% 9.9% 1.1% 3.7%	0.01), i ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.05 [0.70, 1.59] 1.05 [0.74, 1.50] 0.76 [0.44, 3.86] 0.37 [0.44, 5.48] 1.18 [0.66, 1.61] 1.18 [0.66, 1.61] 1.18 [0.66, 1.61] 0.58 [0.28, 1.23] 0.34 [0.03, 3.78] 0.72 [0.49, 2.57] 0.78 [0.40, 2.57] 0.78	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for subgroup 1.3.1 Direct/selective Atar et al. Curg et al. Curg et al. Curg et al. Subtotal (95% CI) Heterogeneity: Tau ² = (Test for overall effect: 2 1.3.2 indirect/unspeci Cerisano et al. Ishil et al. Jones et al. Kitakatze et al. ANP Kitakatze et al. ANP	= 0.78 (P = 0.4 rences: Ch ² = 6.2 log(Odds Ratio) 1.09 0.05 0.69 -0.26 -0.04 0.82 -0.07 2 = 1.04 (P = 0.3) ffc -1.14 -0.51	4) 50, df 58 0.88 0.21 0.71 0.71 0.71 0.71 0.71 0.71 0.73 1.41 . df = 0 0 0 0.87 0.38 1.23 0.64 1.23 0.64 1.23 0.64 1.23 0.64 1.23 0.64 1.23 0.64 1.23 0.64 1.23 0.64 1.23 0.64 1.23 0.64 1.23 0.54 0.55 0.55 0.75	<pre>ueight weight 2.1% 2.1% 2.7% 1.9% 5.7% 1.9% 5.4.7% 6 (P = 0. 2.2% 9.1% 3.7% 8.7%</pre>	0.01), I ² = 83.9% AUSE DEATH 0.6d/s Ratio 17, Random, 95% C1 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.09 [0.72, 5.52] 0.77 [0.40, 1.50] 0.76 [0.40, 1.50] 0.76 [0.40, 4.548] 0.31 [0.06, 1.61] 40]; I ² = 3% 0.32 [0.06, 1.76] 0.58 [0.28, 1.23] 0.34 [0.03, 3.78] 0.70 [0.19, 2.57] 0.60 [0.27, 1.34]	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for overall effect 2 Test for overall effect 2 Test for subgroup differ 1.3.1 Direct/selective Atar et al. Cung et al. Gibson et al. SP Lincoff et al. ANT Lincoff et al. ANT Uncoff et al. INF Ottani et al. Poet et al. Meterogeneity: Tau ² = (Test for overall effect 2 J.3.2 indirect/unspeci Cerisano et al. Jones et al. Stitakatze et al. ANP	$ \begin{array}{c} = 0.78 \ (P=0.4,\\ rences: \ Ch^2=6.2\\ \hline log(Odds \ Ratio)\\ 1.09\\ 0.05\\ 0.05\\ 0.05\\ 0.069\\ -0.26\\ -0.07\\ 0.01; \ Ch^2=6.21\\ = 1.04 \ (P=0.3)\\ \text{fic}\\ -1.14\\ -1.08\\ -0.85\\ -0.07\\ -0.08\\ -0.08\\ -0.03\\$	4) 50, df 58 0.88 0.21 0.52 0.32 0.45 1.41 .df = 0) 0.87 0.38 0.66 0.41 1.42	= 1 (P = ALL-C/ weight 2.1% 2.1% 2.3% 5.7% 1.9% 5.7% 1.9% 5.47% 6 (P = 0. 2.2% 9.9% 1.1% 3.7% 8.7% 0.8%	0.01), i ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.05 [0.70, 1.59] 1.05 [0.74, 1.50] 0.76 [0.44, 3.86] 0.37 [0.44, 5.48] 1.18 [0.66, 1.61] 1.18 [0.66, 1.61] 1.18 [0.66, 1.61] 0.58 [0.28, 1.23] 0.34 [0.03, 3.78] 0.72 [0.49, 2.57] 0.78 [0.40, 2.57] 0.78	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for subgroup 1.3.1 Direct/selective Atar et al. Curg et al. Curg et al. Curg et al. Subtotal (95% CI) Heterogeneity: Tau ² = (Test for overall effect: 2 1.3.2 indirect/unspeci Cerisano et al. Ishil et al. Jones et al. Kitakatze et al. ANP Kitakatze et al. ANP	= 0.78 (P = 0.4 rences: Ch ² = 6.2 log(Odds Ratio) 1.09 0.05 0.69 -0.26 -0.04 0.82 -0.07 2 = 1.04 (P = 0.3) ffc -1.14 -0.51	4) 50, df 58 0.88 0.21 0.52 0.32 0.45 1.41 .df = 0) 0.87 0.38 0.66 0.41 1.42	<pre>ueight weight 2.1% 2.1% 2.7% 1.9% 5.7% 1.9% 5.4.7% 6 (P = 0. 2.2% 9.1% 3.7% 8.7%</pre>	0.01), I ² = 83.9% AUSE DEATH Odds Ratio 17, Random, 95% C1 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.99 [0.72, 5.52] 0.77 [0.40, 1.50] 0.76 [0.24, 3.86] 0.32 [0.06, 14.78] 1.18 [0.06, 1.61] 40]; I ² = 3% 0.32 [0.06, 1.76] 0.58 [0.28, 1.23] 0.34 [0.03, 3.78] 0.70 [0.19, 2.57] 0.60 [0.27, 1.34] 0.97 [0.05, 15.69] 0.97 [0.05, 15.68] 0.97 [0.05, 11, 185]	Reduced CV mortality Increased CV mortality Odds Ratio
Heteropeneity: Tau ² = (Test for overall effect 2 Test for overall effect 2 Test for subgroup differ 1.3.1 Direct/selective Atar et al. Cung et al. Gibson et al. SP Lincoff et al. ANT Lincoff et al. ANT Lincoff et al. INF Ottani et al. Pode et al. Subtroal OSSC CD Heterogeneity: Tau ² = (Test for overall effect 2 1.3.2 indirect/unspeci Cerisano et al. Jones et al. Kitakatze et al. ANP Kitakatze et al. NIC Lee et al.	$ \begin{array}{c} = 0.78 \ (P=0.4,\\ rences: \ Ch^2=6.2\\ \hline log(Odds \ Ratio)\\ 1.09\\ 0.05\\ 0.05\\ 0.05\\ 0.069\\ -0.26\\ -0.07\\ 0.01; \ Ch^2=6.21\\ = 1.04 \ (P=0.3)\\ \text{fic}\\ -1.14\\ -1.08\\ -0.85\\ -0.07\\ -0.08\\ -0.08\\ -0.03\\$	4) 0, df 5E 0,88 0,21 0,21 0,22 0,34 0,71 0,45 1,41 0,45 1,41 0,45 1,41 0,45 1,43 0,66 0,44 1,23 0,64 0,52 0,34 0,52 0,52 0,52 0,54 0,55 0,5	= 1 (P = ALL-C/ weight 2.1% 2.1% 2.3% 5.7% 1.9% 5.7% 1.9% 5.47% 6 (P = 0. 2.2% 9.9% 1.1% 3.7% 8.7% 0.8%	0.01), I ² = 83.9% AUSE DEATH Odds Ratio IV, Random, 95% CI 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.05 [0.70, 1.59] 1.07 [0.40, 1.50] 0.76 [0.44, 3.86] 0.37 [0.44, 5.48] 1.18 [0.06, 1.61] 1.18 [0.06, 1.61] 1.18 [0.06, 1.61] 0.58 [0.28, 1.23] 0.54 [0.03, 3.78] 0.72 [0.46, 1.56] 0.97 [0.66, 15.69] 0.97 [0.66,	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogenetiv: Tau ² = c Test for overall effect: 2 Test for overall effect: 2 Test for subgroup differ 1.3.1 Direct/selective Atar et al. Curg et al. Curg et al. Filter et al. Subtoal (95% CI) Heterogenetiv: Tau ² = c Test for overall effect: 2 1.3.2 Indirect/unspeci Certisano et al. Nonestal. Kitakatze et al. NP Kitakatze et al. NP Kitakatze et al. NP Kitakatze et al. ND Looborg et al.	= 0.78 (P = 0.4, rences: Ch ² = 6.2 1.09[Odds Ratio] 0.05 0.05 0.05 0.05 0.02 = 0.04 0.02 = 0.04 0 = 0.3 ffc −1.14 −0.54 −0.51 −0.51 −0.03	4) 0, df 5E 0.88 0.21 0.52 0.71 0.45 1.41 0.71 0.45 1.41 1.42 0.38 0.641 1.42 0.38 0.641 0.53 0.53	= 1 (P = ALL-C/ weight 2.1% 23.7% 54.7% 54.7% 54.7% 6 (P = 0. 2.2% 9.9% 1.1% 3.7% 8.7% 8.7% 0.8% 12.4% 0.8%	0.01), I ² = 83.9% AUSE DEATH Odds Ratio 17, Random, 95% C1 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.99 [0.72, 5.52] 0.77 [0.40, 1.50] 0.76 [0.24, 3.86] 0.32 [0.06, 14.78] 1.18 [0.06, 1.61] 40]; I ² = 3% 0.32 [0.06, 1.76] 0.58 [0.28, 1.23] 0.34 [0.03, 3.78] 0.70 [0.19, 2.57] 0.60 [0.27, 1.34] 0.97 [0.05, 15.69] 0.97 [0.05, 15.68] 0.97 [0.05, 11, 185]	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau? = c Test for overall effect: 2 Test for overall effect: 2 Test for subgroup differ 1.3.1 Direct/selective Atar et al. Cung et al. Clipson et al. SP Lincoff et al. ANT Untari et al. Pioe et al. Notari et al. Pioe et al. Subtotal (05% CI) Heterogeneity: Tau? = c Test for overall effect: 2 1.3.2 indirect/unspeci Cerisano et al. Jones et al. Sitakatze et al. ANP Kitakatze et al. NIC Lonborg et al. Pizarro et al. Sitakatze et al.	= 0.78 (P = 0.4 rences: Ch ² = 6.2 log(Odds Ratio) 1.09 -0.05 0.05 -0.04 0.82 -0.07 0.01; Ch ² = 6.21 ffc -1.14 -0.54 -0.82 -0.07 0.01; Ch ² = 6.21 .007 -0.67 -0.68 -0.7 -0.7 -0.82 -0.82 -0.7 -0.7 -0.83 -0.82 -0.83 -0.83 -0.82 -0.83 -0.82 -0.85 -0.82 -0.85 -0.82 -0.82 -0.85 -0.85 -0.82 -0.82 -0.85 -0.82 -0.82 -0.82 -0.85 -0.82 -0.82 -0.82 -0.82 -0.82 -0.82 -0.85 -0.82	4) 0, df 5E 0,88 0,21 0,52 0,34 0,75 0,34 0,75 0,41 1,41 0,45 0,41 1,42 0,38 1,23 0,64 1,42 0,35 0,44 1,42 0,35 0,44 0,45 0,45 0,45 0,5	= 1 (P = ALL-C/ Weight 2.1% 2.3% 5.7% 5.7% 7.4% 0.8% 5.4.7% 6 (P = 0. 2.2% 9.9% 1.1% 3.7% 8.8% 0.8% 8.7% 0.8% 8.1% 0.8% 1.1% 3.7% 5.5%	0.01), i ² = 83.9% AUSE DEATH 0dds Ratio IV, Random, 95% CI 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.99 [0.72, 5.20] 0.96 [0.24, 3.80] 2.27 [0.94, 5.48] 1.18 [0.86, 14.78] 1.18 [0.86, 14.61] 400; i ² = 3% 0.32 [0.06, 1.76] 0.58 [0.28, 1.36] 0.44 (0.03, 3.78] 0.46 (0.13, 2.53] 0.97 [0.06, 15.69] 0.97 [0.05, 15.69] 0.95 [0.46, 0.92]	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = c Heterogeneity: Tau ² = c Test for overall effect: 2 Test for subgroup differ Study or Subgroup 1.3.1 Direct/selective Atar et al. Cung et al. Cisson et al. SH Cisson et al. NH Cung et al. Pior et al. No et al. Subtotal (95% CI) Heterogeneity: Tau ² = c 1.3.2 Indirect/unspeci Cerisano et al. Jones et al. Citakatze et al. ANP Kitakatze et al. ANP Kitakatze et al. Picare et al. Subtotal (95% CI) Heterogeneity: Tau ² = c	= 0.78 (P = 0.4 rences: Ch ² = 6.2 log(Odds Ratio) 1.09 -0.05 0.05 -0.04 0.82 -0.07 0.01; Ch ² = 6.21 ffc -1.14 -0.54 -0.82 -0.07 0.01; Ch ² = 6.21 .007 -0.67 -0.68 -0.7 -0.7 -0.82 -0.82 -0.7 -0.7 -0.83 -0.82 -0.83 -0.83 -0.82 -0.83 -0.82 -0.85 -0.82 -0.85 -0.82 -0.82 -0.85 -0.85 -0.82 -0.82 -0.85 -0.82 -0.82 -0.82 -0.85 -0.82 -0.82 -0.82 -0.82 -0.82 -0.82 -0.85 -0.82	4) 0, df 5E 0,88 0,21 0,52 0,34 0,75 0,34 0,75 0,41 1,41 0,41 1,42 0,38 1,23 0,66 0,41 1,42 0,38 0,41 1,23 0,64 1,23 0,64 1,23 0,64 1,23 0,52 0,45 0,45 0,52 0,52 0,55 0,5	= 1 (P = ALL-C/ Weight 2.1% 2.3% 5.7% 5.7% 7.4% 0.8% 5.4.7% 6 (P = 0. 2.2% 9.9% 1.1% 3.7% 8.8% 0.8% 8.7% 0.8% 8.1% 0.8% 1.1% 3.7% 5.5%	0.01), i ² = 83.9% AUSE DEATH 0dds Ratio IV, Random, 95% CI 2.97 [0.53, 16.69] 1.05 [0.70, 1.59] 1.99 [0.72, 5.20] 0.96 [0.24, 3.80] 2.27 [0.94, 5.48] 1.18 [0.86, 14.78] 1.18 [0.86, 14.61] 400; i ² = 3% 0.32 [0.06, 1.76] 0.58 [0.28, 1.36] 0.44 (0.03, 3.78] 0.46 (0.13, 2.53] 0.97 [0.06, 15.69] 0.97 [0.05, 15.69] 0.95 [0.46, 0.92]	Reduced CV mortality Increased CV mortality Odds Ratio
Heterogeneity: Tau ² = (Test for overall effect 2 Test for overall effect 2 Test for subgroup differ 1.3.1 Direct/selective Atar et al. Cung et al. Gibson et al. SP Lincoff et al. ANT Lincoff et al. ANT Uncoff et al. NF Ottani et al. Subtotal (95% CI) Heterogeneity: Tau ² = (Test for overall effect 2 1.3.2 Indirect/unspeci Cerisano et al. Ishil et al. Jones et al. Nico et al. Subtotal (95% CI) Heterogeneity: Tau ² = (Test for overall effect 2 Subtotal (95% CI)	$ \begin{array}{c} = 0.78 \ (P=0.4,\\ = 0.78 \ (P=0.4,\\ = 0.78 \ (P=0.4,\\ = 0.00 \ (P=0.4,\\ = 0.00 \ (P=0.4,\\ = 0.00 \ (P=0.3,\\ = 0.00 \ (P=0.3,\ = 0.$	4) 0, df 5E 0,88 0,21 0,52 0,34 0,52 0,34 1,41 1,41 0,45 1,41 0,45 0,33 1,28 0,66 0,41 0,52 0,34 1,42 0,33 0,52 0,34 0,45 0,45 0,52 0,5	= 1 (P = - ALL-C/ weight 2.1% 2.1% 2.5% 5.7% 11.9% 0.8% 5.4.7% 6 (P = 0. 2.2% 9.9% 1.1% 3.7% 8.7% 0.8% 5.4.7% 8.7% 1.1% 3.7% 8.7% 1.1% 8.7% 0.8% 8.7% 1.1% 8.7% 0.8% 8.7% 1.1% 8.7% 0.8% 8.7% 1.1% 8.7% 0.8% 8.7% 1.1% 1.1% 8.7% 0.8% 8.7% 1.1% 1.1% 8.7% 1.1% 1.1% 8.7% 8.7% 1.1% 1.1% 8.7% 1.1% 8.7% 1.1% 1.1% 8.7% 1.1% 1.1% 8.7% 1.1% 8.7% 1.1% 8.7% 1.1% 8.7% 1.1% 8.7% 1.1% 8.7% 1.1% 8.7% 8.7% 1.1% 8.7% 1.1% 8.7% 8.7% 1.1% 8.7% 8.7% 8.7% 1.1% 8.7% 8.7% 1.1% 8.7% 8.7% 1.1% 8.7% 8.7% 1.1% 8.7%	0.01), l ² = 83.9% AUSE DEATH 0 dids Ratio 17, Random, 95% C1 2.97 (0.53, 16.69) 1.05 (0.70, 1.59) 1.99 (0.72, 5.52) 0.77 (0.40, 1.50) 0.77 (0.40, 1.50) 0.77 (0.40, 1.50) 0.91 (0.06, 1.50) 1.18 (0.86, 1.61) 1.18 (0.86, 1.61) 1.38 (0.26, 1.76) 0.58 (0.28, 1.23) 0.31 (0.06, 1.76) 0.58 (0.28, 1.23) 0.34 (0.03, 3.78) 0.79 (0.46, 15.63) 0.57 (0.51, 1.83) 0.57 (0.51, 1.83) 0.57 (0.51, 1.83) 0.51 (0.01, 1.63) 0.55 (0.46, 0.92) 83); l ² = 0%	Reduced CV mortality Odds Ratio IV, Random, 95% C1
Heterogeneity: Tau ² = c Test for overall effect 2 Test for overall effect 2 Test for subgroup differ 1.3.1 Direct/selective Atar et al. Cung et al. Gibson et al. SP Lincoff et al. ANT Lincoff et al. ANT Lincoff et al. NT Ottarie et al. Subtoal (95% CI) Heterogeneity: Tau ² = c Test for overall effect 2 1.3.2 Indirect/unspeci Cerisano et al. Jones et al. Kitakatze et al. ANP Kitakatze et al. ANP Kitakatze et al. Donborg et al. Devotal (95% CI) Heterogeneity: Tau ² = c Test for overall effect 2	 - 0.78 (P = 0.4; rences: Ch² = 6.2 log(Odds Ratio) 1.09 0.05 0.69 -0.26 -0.04 0.82 -0.07 0.01: Ch² = 6.21 -0.47 -0.54 -1.14 -0.54 -0.54 -0.51 -0.53 -0.58 -2.04 0.05 -0.58 -2.04 0.05 -2.41 (P = 0.0 0.03: Ch² = 4.29 2.41 (P = 0.0 0.03: Ch² = 16.7 	4) 0, df 5E 0.88 0.21 0.52 0.32 0.52 0.34 1.41 0.45 1.41 0.45 1.41 1.42 0.53 0.46 1.28 0.41 1.28 0.41 1.28 0.41 1.28 0.41 1.28 0.41 1.28 0.41 0.52 0.51 0.52 0.51 0.52 0.51 0.52 0.51 0.52 0.51 0.52 0.55 0.5	= 1 (P = - ALL-C/ weight 2.1% 2.1% 2.5% 5.7% 11.9% 0.8% 5.4.7% 6 (P = 0. 2.2% 9.9% 1.1% 3.7% 8.7% 0.8% 5.4.7% 8.7% 1.1% 3.7% 8.7% 1.1% 8.7% 0.8% 8.7% 1.1% 8.7% 0.8% 8.7% 1.1% 8.7% 0.8% 8.7% 1.1% 8.7% 0.8% 8.7% 1.1% 1.1% 8.7% 0.8% 8.7% 1.1% 1.1% 8.7% 1.1% 1.1% 8.7% 8.7% 1.1% 1.1% 8.7% 1.1% 8.7% 1.1% 1.1% 8.7% 1.1% 1.1% 8.7% 1.1% 8.7% 1.1% 8.7% 1.1% 8.7% 1.1% 8.7% 1.1% 8.7% 1.1% 8.7% 8.7% 1.1% 8.7% 1.1% 8.7% 8.7% 1.1% 8.7% 8.7% 8.7% 1.1% 8.7% 8.7% 1.1% 8.7% 8.7% 1.1% 8.7% 8.7% 1.1% 8.7%	0.01), l ² = 83.9% AUSE DEATH 0 dids Ratio 17, Random, 95% C1 2.97 (0.53, 16.69) 1.05 (0.70, 1.59) 1.99 (0.72, 5.52) 0.77 (0.40, 1.50) 0.77 (0.40, 1.50) 0.77 (0.40, 1.50) 0.91 (0.06, 1.50) 1.18 (0.86, 1.61) 1.18 (0.86, 1.61) 1.38 (0.26, 1.76) 0.58 (0.28, 1.23) 0.31 (0.06, 1.76) 0.58 (0.28, 1.23) 0.34 (0.03, 3.78) 0.79 (0.46, 15.63) 0.57 (0.51, 1.83) 0.57 (0.51, 1.83) 0.57 (0.51, 1.83) 0.51 (0.01, 1.63) 0.55 (0.46, 0.92) 83); l ² = 0%	Reduced CV mortality Increased CV mortality Odds Ratio

Fig. 2

K K K

HOSPITAL READMISSIONS FOR HF

Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Random, 95% CI	Odds Ratio IV, Random, 95% Cl
1.1.1 Direct/selective		36	mengint	re, random, 555 ci	14, Nandolin, 55% Ci
Atar et al.	-	0.88	3.3%	3.00 [0.54, 16.86]	
Cung et al.	0.3	0.2	12.0%	1.35 [0.91, 2.00]	
Gibson et al. SP	0.39	0.66	5.0%	1.48 [0.41, 5.38]	
Lincoff et al. ANT	=0.21	0.25	11.1%	0.81 [0.50, 1.32]	
Lincoff et al. INF	-0.21	1	2.7%	0.99 [0.14, 7.03]	
Ottani et al.		0.23	11.5%	0.88 [0.56, 1.38]	
Piot et al.	-1.24		3.2%	0.29 [0.05, 1.66]	
Subtotal (95% CI)	-1.64	0.89	48.9%	1.03 [0.77, 1.37]	•
Heterogeneity: Tau ² =	0.02: Chi ² = 7.04	. df =	6 (P = 0.	32 ; $l^2 = 15\%$	Ť
Test for overall effect:				2 6 2 1 1 - 1 8 2 7 F	
1.1.2 Indirect/unspect	cific				
Cerisano et al.	-0.6	0.48	7.1%	0.55 [0.21, 1.41]	
ishii et al.	-1.31	0.37	8,9%	0.27 [0.13, 0.56]	
lones et al.	-1.66	1.19	2.0%	0.19 [0.02, 1.96]	
Kitakatze et al. ANP	-1.83	0.6	5.6%	0.16 [0.05, 0.52]	
Kitakatze et al. NIC	-0.03	0.58	5.8%	0.97 [0.31, 3.02]	
Lonborg et al.	-0.58	0.31	10.0%	0.56 [0.30, 1.03]	
Pizarro et al.	-1.2	0.51	6.7%	0.30 [0.11, 0.82]	
Siddigi et al.	-0.48	0.66	5.0%	0.62 [0.17, 2.26]	
Subtotal (95% CI)			51.1%	0.41 [0.28, 0.60]	•
Heterogeneity: Tau ² =	0.05; Chi ² = 8.47	. df =	7 (P = 0.	$29); l^2 = 17\%$	-
Test for overall effect:	Z = 4.56 (P < 0.0)	0001)			
Total (95% CI)			100.0%	0.64 [0.45, 0.92]	•
Heterogeneity: Tau ² =	0.24: Chi ² = 34.3	2. df -	- 14 (P =	0.002 : $l^2 = 5.9%$	has at the second
Test for overall effect:				010083,1 = 3310	0.01 0.1 1 10 10
Test for subgroup diff			f = 1 (P =	0.00021 , $l^2 = 92.9%$	less HF hospitalization more HF hospitalizatio
Test for subgroup diff	erences: Chi ² = 14	.10, d	f = 1 (P =	0.0002), 1' = 92.9%	

LVEF

Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Random, 95% CI	Odds Ratio IV, Random, 95% CI				
1.4.1 Direct/selectiv									
Atar et al.	-0.14	0.28	6.3%	0.87 [0.50, 1.50]	-				
Cung et al.	0.02		8.9%	1.02 [0.81, 1.29]	+				
Gibson et al. SP	0.23	0.21	7.5%	1.26 [0.83, 1.90]					
Lincoff et al. ANT	0.65	0.13	8.8%	1.92 [1.48, 2.47]	-				
Ottani et al.	0	0.18	8.0%	1.00 [0.70, 1.42]	+				
Piot et al. Subtotal (95% CI)	2.15	0.52	3.4%	8.58 [3.10, 23.79]					
				1.40 [0.96, 2.05]					
Heterogeneity: Tau ² =			= 5 (P < 0	$(0.0001); I^2 = 84\%$					
Test for overall effect:	Z = 1.74 (P = 0.0	8)							
1.4.2 Indirect/unspe	cific								
Cerisano et al.	1.65	0.36	5.1%	5.21 [2.57, 10.54]					
Ishii et al.	0.6	0.19	7.8%	1.82 [1.26, 2.64]					
Jones et al.	0.6	0.41	4.5%	1.82 [0.82, 4.07]					
Kitakatze et al. ANP	0.43		8.5%	1.54 [1.15, 2.06]					
Kitakatze et al. NIC	-0.15		8.5%	0.86 [0.64, 1.15]	-				
Lonborg et al.	0	0.18	8.0%	1.00 [0.70, 1.42]	+				
Pizarro et al.	0.61		7.3%	1.84 [1.20, 2.83]					
Siddiqi et al. Subtotal (95% CI)	0	0.21	7.5%	1.00 [0.66, 1.51] 1.49 [1.09, 2.05]	T•				
Heterogeneity: Tau ² = 0.15; Chi ² = 33.59, df = 7 ($P < 0.0001$); $I^2 = 79\%$									
Test for overall effect:									
Total (95% CI)			100.0%	1.44 [1.15, 1.82]	•				
Heterogeneity: Tau ² =	0.14; Chi ² = 64.0	1. df =	= 13 (P <	0.00001); I ² = 80%	0.01 0.1 1 10 100				
Test for overall effect:					reduced LVEF increased LVEF				
Test for subgroup diff	erences: Chi ² = 0.0	6. df	= 1 (P = 1)	0.80 , $l^2 = 0\%$	resources even increased even				

Fig. 3

R C C C C