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This article describes the progress in the development of the atomic force microscope as an imaging tool
and a force transducer, with particular reference to applications in food science. Use as an imaging tool
has matured and emphasis is placed on the novel insights gained from the use of the technique to study
food macromolecules and food colloids, and the subsequent applications of this new knowledge in food
science. Use as a force transducer is still emerging and greater emphasis is given on the methodology and
analysis. Where available, applications of force measurements between molecules or between larger
colloidal particles are discussed, where they have led to new insights or solved problems related to food
science. The future prospects of the technique in imaging or through force measurements are discussed.
© 2017 Biotechnology and Biological Sciences Research Council. Published by Elsevier Ltd. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

This review is dedicated to Prof. G. O Phillips on the occasion of
his 90th birthday. During his extensive research career there has
been substantial progress in the understanding of food structure,
partly due to the development and application of new experi-
mental methods. Prof Phillips has contributed greatly to the
dissemination, development, and application of this knowledge
through his own research group, the origination and editorship of
the Food Hydrocolloids journal, and the initiation and running of
the highly successful Gums and Stabilisers & International Food
Colloids meetings. In celebration of this contribution this article
reviews developments in the use of one of these new techniques,
namely atomic force microscopy (AFM), both as a microscope and
as a force transducer. This is a technique we have been intimately
involved with over this period. Since its inception in the 1980s AFM
has led to considerable insights into a range of food structures. The
reviewwill focus on uses in food science and on new developments
and, in particular, highlight the increasing use of AFM as a force
transducer, which is likely to open up new areas of understanding
in the near future.
.P. Gunning).
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2. Atomic force microscopy e a microscopic tool

An atomic force microscope (AFM) scans a tiny and extremely
sharp tip that is mounted on the end of a flexible cantilever over the
surface of samplese it is similar to the action of a stylus on a record
player, but in terms of microscopy effectively a nano-profilometer.
Unlike all other forms of microscopy it has no lenses and does
not image the sample by ‘viewing’, rather it does so by ‘feeling’ the
surface of the sample (Morris, Kirby, & Gunning, 2009).

2.1. Imaging food molecules and structures: early days

The development of atomic force microscopy (AFM) as a tool for
imaging biological systems offered considerable promise for im-
aging at molecular, or sub-molecular level, in a liquid environment
(Morris et al., 2009). Realisation of these challenges principally
involved the development of an understanding of image contrast in
AFM, and development of imaging procedures, which eliminated,
or at least minimised, the damage to the sample by the imaging
probe. Considerable advances in instrumentation have aided the
identification and elimination of artifacts, and there have been
major advances in the software produced to run the microscopes
and process the images. The AFM offers comparable resolution to
that of the transmission electron microscope with the advantage of
imaging under natural conditions. This has been achieved for
molecules and macromolecular complexes through devising
methods for immobilising samples on suitable substrates without
by Elsevier Ltd. This is an open access article under the CC BY license (http://
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destroying or deforming their native structures (Morris et al.,
2009). For larger more complex biological systems the challenge
is to image the surface, or surfaces of sections of these more
complex structures. Through these developments AFM is now
becoming used widely to solve problems for biological samples
rather than just obtaining good images. Despite widespread use the
technique is still not entirely routine and, like other microscopic
methods, will always require skill and expertise in modifying
sample preparation and imaging methods for particular samples
(Morris et al., 2009).
2.1.1. Imaging molecules and complexes: new understanding
AFM has provided new information onmolecular size and shape

under more natural conditions. For helix-forming polysaccharides,
which function as gelling and thickening agents, it has not only
been possible to characterise the molecules but to investigate their
functional role. Gellan gum is a model system for investigating
polysaccharide gelation, and through the imaging of the molecules,
gel pre-cursers and the surface of intact hydrated gels it has been
possible to visualise the molecular networks formed in the gels and
infer the mode of association (Gunning, Kirby, Ridout, Brownsey, &
Morris, 1996). Microgel formation observed in preparations of the
thickening agent xanthan gum, provide a basis for understanding
the weak gel properties of this material (Morris et al., 2009).
Continual progress in instrumentation has, and is still allowing
enhanced resolution of molecular structure: in the case of xanthan
this has allowed the identification of the arrangement of individual
chains in annealed xanthan helices (Fig. 1), providing direct visual
evidence for a double, rather than single helical structure (Moffat,
Morris, Al-Assaf, & Gunning, 2016).

Microscopic techniques such as AFM allow the characterisation
of heterogeneity at the molecular level. An example is the obser-
vation of branching in semi-flexible molecules such as arabinoga-
lactans (Adams, Kroon, Williamson, & Morris, 2003). An analysis of
AFM images of the binding of inactivated enzymes to arabinoga-
lactans has been used to confirm the random distribution of
branches, plus enzymatic creation of non-random distribution of
blocks of unsubstituted backbone following enzymatic removal of
arabinose branches (Adams, Kroon, Williamson, Gilbert, & Morris,
2004). In the case of pectin extracts AFM revealed (Fig. 2a) irreg-
ular branching of the polygalacturonic backbone (Round, Rigby,
MacDougall, Ring, & Morris, 2001), which led to a new proposed
model for the internal structure of plant cell walls (Vinchen et al.,
Fig. 1. High resolution AFM images of xanthan double helices. The loops at the ends and alo
For details see Moffat et al. (2016).
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2003). The enhanced characterisation of pectin extracts has been
employed in studies of transgenic strawberry mutants to study the
role of ripening enzymes, and has revealed novel structures, pre-
viously not seen in cell wall extracts (Pose, Kirby, Mercado, Morris,
& Quesada, 2012). AFM showed (Fig. 2b) the nature of pectin e

protein complexes (Kirby, MacDougall, & Morris, 2006; Morris,
MacDougall, & Kirby, 2008), suggested to be responsible for the
emulsifying action of sugar beet pectin.

AFM images revealed for the first time irregular low level
branching Fig. 2c) of the starch polysaccharide amylose (Gunning
et al., 2003). Furthermore, studies of complexes of amylose with
mutants of the starch degrading enzyme glucoamylase, revealed
how the starch-binding domain (SBD) of the enzyme can bind to
amylose helices (Fig. 3). As shown in the AFM image SBDs formed
ring-shaped complexes with single amylose chains. Quantification
of the chain lengths in the images enabled interpretation of how
the rings were formed. Despite the fact that amylose is a poly-
disperse polymer the distribution of the perimeter length of the
rings were half that of the distribution of the contour lengths of the
linear chains in all of the images which suggested the amylose
chain bound to both binding sites of the SBD. It was known that the
binding sites on the SBD are oriented at 90� relative to each other
(Sorimachi et al., 1996) and this combination of factors suggested
that the SBDs act as substrates for an expanded double helix. This
identified the fact that the SBD can recognise, bind and distort the
amylose double helix on starch crystal surfaces. This led to a sug-
gested mechanism for the selective degradation of crystalline
starch by glucoamylase (Morris et al., 2005).
2.1.2. Imaging molecular assembles: new understanding
The internal structure of more complex biological structures can

be investigated by imaging flat cut surfaces or sections of the
samples: examples include the study of plant cell walls or starch
granule structure (Morris et al., 2009).

In order to investigate the internal structure of starch it was
found necessary to embed isolated starch granules in non-
penetrating resins, in order to avoid artifacts induced by pene-
trating resins (Ridout, Gunning, Wilson, Parker, & Morris, 2002),
and to cut sections or produce polished flat blocks for imaging
(Morris, Ridout,& Parker, 2005; Ridout, Parker, Hedley, Bogracheva,
&Morris, 2004). The contrast in the images was shown to be due to
different levels of adsorption of water into amorphous and crys-
talline regions within the granule (Morris, Ridout, et al., 2005;
ng the molecule provide evidence for intra- and intermolecular double helix formation.
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Fig. 2. AFM images showing (a) branching of the pectin backbone arrowed, (b) a pectin-protein complex from sugar beet pectin and (c) branching of an amylose molecule. For
details see for example Pose et al. (2012); Kirby et al. (2006); Morris et al. (2008) and Gunning et al. (2003).

Fig. 3. Top left panel, AFM image of SBD e amylose interactions. Schematic diagrams, mechanism proposed for the role of the binding domain in the ability of glucoamylase to
degrade crystalline starch (see Morris, Gunning, et al. (2005) and Morris, Ridout, et al. (2005) for further details).
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Ridout et al., 2002; 2004). The subsequent local changes in
compressibility and height allowed the distribution of crystalline
regions (blocklets) within the granule to be mapped. The images
suggested that thewidely acceptedmodel of starch, as consisting of
alternating crystalline and amorphous rings (growth rings), is over
simplistic. The granules were found to consist of blockets (packets
of microcrystals arising from the branches of amylopectin struc-
tures) arranged radially in an amorphous background. The growth
ring structures arise from radial variations in the crystalline/
amorphous structure. The imaging methodology was extended to
examine the microstructure of self-embedded starch granules in
mature seeds (Liu et al., 2013; Parker, Kirby, & Morris, 2008). The
methods developed for imaging starch within seeds allowed the
use of AFM, and other microscopic techniques, to be used to define
the changes in ultrastructure of starch within starch mutants
Please cite this article in press as: Gunning, A. P., & Morris, V. J., Gett
Hydrocolloids (2017), http://dx.doi.org/10.1016/j.foodhyd.2017.05.017
deficient in specific biosynthetic enzymes, induced as a result of the
growth of the seeds (Liu et al., 2013). The important finding was
that specific mutations (loss of branching enzyme activity) lead to
heterogeneity of ultrastructure, both within and between starch
granules in the seeds. The recognition of, and the need to charac-
terise this heterogeneity, is important for understanding the
functional properties of high-amylose starches.

The structure and changes in structure of air-water or oil-water
interfaces is of crucial importance for understanding the texture,
stability and digestion of food foams or emulsions. The use of AFM
has led to important new insights into the behaviour of interfaces
(Morris & Gunning, 2008).

AFM proved particularly useful for studying protein networks at
interfaces, which were shown to form elastic interfacial networks
(Morris & Gunning, 2008). The interfacial structures were sampled
ing the feel of food structure with atomic force microscopy, Food
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using Langmuir-Blodgett techniques and deposited onto flat sub-
strates, such as mica, for imaging (Fig. 4). The earliest experiments
were made on air-water interfaces, which were easier to study.
AFM images showed that the protein networks were not close-
packed structures but were irregular arrays containing holes or
defects: a structure consistent with partial unfolding and associa-
tion yielding an elastic network (Gunning, Wilde et al., 1996).
Proteins that form elastic networks at interfaces provide long-term
stability for foams and emulsions. Despite this it is possible to
destabilise protein-stabilised foams or emulsions using surfactants:
AFM imaging discovered the novel mechanism of action (Mackie,
Gunning, Wilde, & Morris, 1999; 2000), which was termed the
orogenic displacement mechanism illustrated by the schematic
diagrams beneath the AFM images (Fig. 4).

Because the proteins are linked into a network it is not possible
for the surfactant to displace individual proteins. Rather the sur-
factant targets the Achilles’ heel of the network e the holes or
defects. Increasing surfactant adsorption at the interface leads to
growth of surfactant domains (the dark regions in Fig. 4), which
compress and eventually break the protein network (the bright
regions). Because the AFM monitors the height of the protein
Fig. 4. Orogenic displacement of b-lactoglobulin from an air-water interface by the surfacta
eventually break the protein network, allowing release of protein into the bulk phase (See
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network, it proved possible to show that the volume of protein
(area x height) remained constant until the network broke,
releasing protein. Usually the surfactant is removed prior to im-
aging the remaining protein network. However, if the surfactant is
present it is possible to image the protein displacement as a func-
tion of time (Gunning, Mackie, Wilde, &Morris, 1999). Such images
show stretching of the protein network leading to breakage and
recoil, confirming the elastic character of the network.

The orogenic mechanism proved to be generic, applying to air-
water, oil-water interfaces, all surfactants and all proteins stud-
ied, which act as foam or emulsion stabilisers (Morris & Gunning,
2008). A measure of the stability of the interface is the surface
pressure required to break the protein network. This depends on
the protein structure, the nature of the interface and, for oil-water
interfaces, the nature of the oil phase, all of which determine the
level of unfolding and interaction of the proteins on adsorption
(Morris & Gunning, 2008; Maldonado-Valderrama, Gunning,
Wilde, & Morris, 2010, Maldonado-Valderrama, Miller, Fainerman,
Wilde & Morris, 2010). The mechanism also applies to mixed pro-
tein networks for which the proteins which, individually form the
weakest networks, are preferentially displaced leaving the
nt Tween 20. The images show the growth of surfactant domains, which compress and
Mackie et al. (1999), for further details). Full size of each image is labelled.

ting the feel of food structure with atomic force microscopy, Food
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remaining stronger protein network to determine ultimate failure
of the network (Mackie, Gunning, Ridout, Wilde, & Morris, 2001;
Morris & Gunning, 2008). This proved to be important in under-
standing the behaviour of commercial foam and emulsion stabil-
isers such as whey protein and sodium caseinate (Woodward et al.,
2004; Woodward, Gunning, Mackie, Wilde & Morris, 2009;
Woodward, Gunning, Wilde, Chu, & Morris, 2009). In the case of
whey protein the main protein component is b-lactoglobulin,
which dominates the behaviour at the interface (Woodward et al.,
2004). Sodium caseinate is a commercial stabiliser whose prin-
cipal components are a- and b- casein, neither of which are
themselves, good stabilisers, plus a minor component k-casein.
AFM studies of the individual displacement of a-, b- and k-caseins
showed that the minor component k-caseinwas capable of forming
a strong network, which failed at a similar surface pressure to that
of sodium caseinate: in this case the preferential displacement of
the ‘weaker’ proteins (a- and b- casein) effectively concentrated the
‘stronger’ protein, k-casein, allowing it to form a network which
determined the failure of the sodium caseinate network
(Woodward, Gunning & Mackie et al., 2009).

The data described above is based on imaging protein networks
transferred to solid substrates. Combined AFM and Brewster Angle
Microscopy (BAM) confirmed that the larger surfactant domains
observed by AFM, prior to collapse of the protein network, were
seen directly at the liquid interface by BAM (Mackie, Gunning,
Ridout, Wilde, & Patino, 2001). Studies on liquid lamellae, as
models foams, have revealed the presence of highly mobile sur-
factant and immobile protein phases during displacement (Wilde,
Mackie, Husband, Gunning, & Morris, 2004). For emulsion drop-
lets it is possible to monitor the change in droplet deformability
corresponding to weakening and rupture of the protein network
during surfactant displacement (Gunning, Mackie, Wilde,&Morris,
2004) or, as shown in Fig. 5, make direct measurement of surface
protein concentration with respect to the change in surface charge
accompanying surfactant adsorption.
Fig. 5. Orogenic displacement of b-lactoglobulin from a tetradecane oil droplet with Tween
release of protein following rupture of the protein network. The uptake of surfactant is sho
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An understanding of protein-surfactant interactions at in-
terfaces provides a basis for improving, rationally the stability of
the interface, and hence the lifetime of the product. However, the
methodology can be extended to investigate the changes in inter-
facial structure during digestion. Experimental studies on the effect
of digestion conditions on interfacial structures were initially made
on model air-water systems, and then extended to oil-water in-
terfaces as more realistic models of food emulsions.

If a droplet from a processed food emulsion with an intact
protein network survives transit through the stomach then bile
salts will attempt to displace the protein. The level of displacement
is important since the bile salts act as sites for the localisation of
lipase-colipase complexes and their surface concentration will
determine the rate of lipolysis. AFM studies under in vitro duo-
denum conditions show that displacement occurs via an orogenic
mechanism (Maldonado-Valderrama et al., 2008). Thus if the total
area occupied by bile salts could be controlled by the strength of the
protein network, or if the protein network could be strengthened to
reduce the surface concentration, then this offers a route to
reducing the rate of fat/lipid hydrolysis, and hence potentially
induce physiological benefits such as reduced or moderated fat
intake and satiety. In vitro studies have shown that this approach
was feasible (Woodward, Gunning & Wilde et al., 2009). To assess
this approach it is necessary to define the effects of gastric condi-
tions on interfacial protein networks to establish how such struc-
tures are affected by passage through the stomach.

Effects of gastric conditions on interfacial protein networks
were studied for air-water interfaces and then extended to more
realistic oil-water systems. At air-water interfaces AFM together
with surface tension and interfacial rheology measurements were
used to assess the effect of gastric conditions on pre-formed
interfacial b-lactoglobulin networks. Individual changes in condi-
tions (acid pH, ionic strength, body temperature) generated small
changes in structure but, unexpectedly combined effects of pH and
temperature weakened the networks which, never-the-less, still
20. The protein concentration, monitored with an OPA assay shows the catastrophic
wn by the decreasing surface charge on adsorption of the neutral surfactant.

ing the feel of food structure with atomic force microscopy, Food
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remained intact. For oil-water interfaces the effects of gastric media
on pre-formed b-lactoglobulin layers adsorbed at two different oils
(tetradecane and olive oil)-water interfaces showed the importance
of the nature of the oil phase on network stability and that protein
unfolding, induced by the oil phase, may offset certain aspects of
the weakening of the networks induced under gastric conditions
(Maldonado-Valderrama, Miller et al., 2010, Maldonado-
Valderrama et al., 2009).

Pepsin was used to investigate exposure of interfaces to prote-
olysis in the stomach. Understanding protein unfolding on
adsorption and under gastric conditions proved important. At air-
water interfaces the action of pepsin under gastric conditions on
pre-formed b-lactoglobulin networks led to partial hydrolysis of all
surface-adsorbed proteins: however, proteolysis did not disrupt the
protein network which remained intact and capable of resisting
surfactant displacement. Surfactants may be present under gastric
conditions and, since orogenic displacement causes enhanced
exposure of protein structure to the aqueous media, their effects on
proteolysis were studied. Modification of the surface conformation
of the proteins during ‘orogenic’ displacement led to an unexpected
synergism, which enhanced proteolysis. However, importantly,
strengthening of protein networks to inhibit surfactant domain
growth should thus not only restrict bile salt adsorption, but also
inhibit proteolysis in the stomach. Such observations are important
new generic features of digestion, which can be manipulated for
rational design of food structures to promote health.

Studies at air-water interfaces were extended to oil-water in-
terfaces and emulsions. The generic features were retained at the oil-
water interfaces and the nature of the oil phase is of importance.
Studies at interfaces were extended to study effects of gastric diges-
tion on protein-stabilised oil-water emulsions: linking basic studies
to realistic models. Interestingly, digestibility profiles of interfacial
proteins depended on the nature of the oil phase. The type of oil af-
fects the surface conformation of the protein affecting proteolysis in
the stomach. Proteomic analysis of the peptides generated during the
digestion process provide new information on proteolysis by pepsin
under gastric conditions, as well as novel information about the
interfacial properties and conformation of b-lactoglobulin adsorbed
at different oil-water interfaces (Maldonado-Valderrama, Wilde,
Mulholland, & Morris, 2012; Woodward, Gunning, Maldonado-
Valderrama, Wilde, & Morris, 2010).

In general polysaccharides are poor emulsifiers. However,
certain protein-polysaccharide complexes, such as gum Arabic and
sugar beet pectin, show emulsifying properties, attributable to the
protein component. In the case of sugar beet pectin AFM studies
provided insights into the role of the protein. AFM images (Fig. 2b)
of sugar beet pectin extracts showed that about 60% of the pectin
molecules were present as pectin-protein complexes (Kirby et al.,
2006). In emulsions the protein component was proposed to
adsorb at the oil-water interface with the polysaccharide compo-
nent extending into the aqueous phase surrounding the oil drop-
lets. It was suggested that the polysaccharide layer extended into
the water phase causing steric repulsion between droplets and
inhibiting coalescence (Leroux, Langendorff, Schick, Vaishnav, &
Mazoyer, 2003).

In order to test this model for emulsification AFM was used to
image the structures formed at interfaces (Fig. 6), and then force
spectroscopy was used to study the effects of these interfacial
structures on the interactions between oil droplets in an aqueous
medium (Gromer, Kirby, Gunning, & Morris, 2009; 2010). Initially
studies were made of the structures formed at air-water interfaces,
which are easier to image, and then extended to view structures
formed at oil-water interfaces. The AFM studies were supported by
measurements of interfacial tension and rheology. Cleavage of the
complexes resulted in the formation of elastic protein interfacial
Please cite this article in press as: Gunning, A. P., & Morris, V. J., Get
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networks as evidenced by their orogenic displacement with Tween
20. At air-water interfaces the complexes formed protein network
containing holes (defects) and protected and strengthened by ‘rod-
like’ pectin chains. Similar structures were formed at oil (tetrade-
cane)-water interfaces. The complexes formed protein networks
containing holes (defects) and protected and strengthened by ‘rod-
like’ pectin chains. As the bulk concentration of the SBP extract
increased, the size of the defects in the network decreased and the
surface became rougher with increasing extension of the pectin
chains away from the interface (Gromer et al., 2009). The effect of
these interfacial structures on droplet-droplet interactions was
probed by force spectroscopy (Gromer, Penfold, Gunning, Kirby, &
Morris, 2010) as discussed in section 3.1.2.

3. Atomic force microscopy e a force transducer

3.1. Force measurements: early days

A useful aspect of AFM compared to every other form of mi-
croscopy is that in addition to imaging it can measure force. The
force measurement by AFM is actually a form of spectroscopy,
whichmeans it gathers several factors; force magnitudes, distances
and timescales which enables many forms of investigation. Factors
such as the mechanical modulus of the sample can be determined
through indentation of the AFM tips onto samples (Calabri, Pugno,
Menozzi,& Valeri, 2008) and, in addition, adhesion between the tip
and sample can be quantified by recording the motion of the AFM
tip and cantilever upon retraction from the sample surface.
Retraction applications include fundamental elastic properties of
synthetic polymers (Giannotti & Vancso, 2007), the effects of pri-
mary and secondary structure on the mechanical properties of
proteins (Ng, Randles, & Clarke, 2007), double and single stranded
nucleic acids (Strunz, Oroszlan, Sch€afer, & Güntherodt, 1999), and
polysaccharides (Marszalek, Oberhauser, Pang, & Fernandes, 1998;
2001). The stretching of semi-flexible polymers is described by two
statistical models, the Kratky-Porod worm-like chain model (WLC)
(Flory, 1998; Kratky & Porod, 1949) and the freely-jointed chain
(FJC) (Beuche, 1962; Smith, Cui, & Bustamante, 1996) model. These
models are equivalent but use different concepts to describe stiff
chains. The WLC model introduces the concept of a persistence
length lP. The most commonly applied formula describes the
extension, z, of a worm-like chain with contour length Lc and
persistence length, lP, in response to a stretching force, F, as;

FðzÞ ¼ kBT
lP

"
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Lc

��2

þ z
Lc
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KB, is Boltzmann’s constant and T, absolute temperature
(Bustamante, Marko, Siggia, & Smith, 1994; Marko & Siggia, 1995).

In the FJC model stiffness is described by effectively replacing
the monomer lengths by Kuhn statistical segment lengths, lK con-
nected by flexible linkages, in order to account for the increased
volume. For semi-flexible polymers the Kuhn length is twice the
persistence length. The FJC model is particularly suited for
describing polymers lacking secondary structure but showing
restricted rotation of the monomeric units about the inter-
monomer linkages. The general form is given in this equation
below:

ZðFÞ ¼ LC

�
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To extend this model to the higher force ranges more commonly
employed in force spectroscopy experiments of ordered stiffer
polymers such as DNA, a modification was developed which
ting the feel of food structure with atomic force microscopy, Food



Fig. 6. Showing interfacial structures formed by sugar beet pectin. Full size of each image is labelled. Cleavage of the complexes showed that the protein alone forms elastic
networks (see displacement with Tween 20). Pectin in the sugar beet pectin complexes (SBP) chains protect and strengthen the protein network, and the extension of the
polysaccharide layer into the bulk phase increased with the bulk SBP concentration. (For details see Gromer et al., 2009).
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imbues the segments with a finite elasticity so that the chain is
treated as a series of springs (Smith et al., 1996):

ZðFÞ ¼ LC

�
coth

�
FlK
KBT

�
� KBT

FlK

��
1þ F

KSlK

�

lk is Kuhn length and, KS an elasticity parameter.
Another aspect of retraction force measurement is exploration

of ligand-receptor interactions by functionalising the AFM tips
(covalent attachment of specific molecules). Tip functionalisation
protocol includes use of a heterobifunctional spacer molecule,
esterified polyethylene glycol (PEG) (Hinterdorfer, Baumgartner,
Gruber, Schilcher, & Schindler, 1996; 2002). It has reactive cova-
lent esters at each end, which enables the ligand molecules to be
attached to the AFM tip in amanner like that of a baited hook on the
end of a fishing line. It is a better method than attachment of ligand
molecules directly to the surface of the AFM tip as the PEG spacer
allows them to be rotationally mobile so they can ‘dock’ success-
fully with their target receptor. Force - distance cycles are carried
out by using the functionalised AFM tip to fish for the comple-
mentary ligand or receptor on a sample surface and measuring the
magnitude and frequency of adhesive interactions seen upon
retraction of the tip. Once tip-sample binding has been established
in a repeatable manner, the specificity of the interaction can be
unequivocally established by adding the complementary partner
for the active species, or a suitable inhibitor, as a free molecule into
the solution. AFM force spectroscopy of ligand-receptor in-
teractions has been mathematically modelled (Evans & Ritchie,
2007; Strunz, Oroszlan, Schumakovitch, Güntherodt & Hegner,
2000) to enable higher precision of the molecular interaction to
be gathered rather than through use of the traditional techniques
such asmicroarrays. In addition to quantification of ligand-receptor
binding strength the models calculate the off-rate constant of
dissociation, and the number and length of energy barriers.

Forceedistance curves have been successfully modelled in a
recent ground-breaking study that demonstrated that deformable
colloids such as oil droplets and air bubbles are particularly
Please cite this article in press as: Gunning, A. P., & Morris, V. J., Gett
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susceptible to studies by AFM because they adapt their shapes in
response to the changing forces caused by the non-adsorbed spe-
cies (which can also include surfactant micelles) in the closing gap
(Tabor, Chan, Grieser, & Dagastine, 2011). This opens up the po-
tential for tailoring colloidal interactions within complex systems
in a properly knowledge-based way for the first time.
3.1.1. Force measurements on molecular complexes
The potential bioactivity of polysaccharides has been recognized

for many years, particularly in the area of dietary fibre and the
beneficial effects this material has on gut health (Bingham et al.,
2003). Recent research has shown that certain polysaccharides
can exhibit anti-cancer properties (Nangia-Makker, Conklin, Hogan,
& Raz, 2002; Olano-Martin, Rimbach, Gibson, & Rastall, 2003) but
there is a need to establish molecular mechanisms. To investigate
the reported anticancer properties of modified pectin, the inter-
action between defined fragments of pectin molecules and the
important tumour signalling molecule Galectin-3 [Gal-3] were
measured by force spectroscopy (Gunning, Bongaerts, & Morris,
2009). Gal-3 is a galactose binding lectin, and the suggested hy-
pothesis for the anti-cancer action of pectin is that components of
chemically- or enzymatically-modified pectin extracts binds to and
inhibits the biological activity of the Gal-3 (Kidd, 1996) by pre-
venting its association with natural receptors (Sundblad, Croci, &
Rabinovich, 2011). The force spectroscopy data obtained showed
specific binding between pectin fragments containing available
linear galactan chains and the carbohydrate binding domain of Gal-
3. Further studies confirmed specific binding of galactobiose to Gal-
3 (Gunning, Pin,&Morris, 2013) and characterised the nature of the
binding. These studies used commercially available samples and
their structures were checked by nmr spectroscopy: The galactan
regions in the pectin samples that bound specifically to Gal-3 were
found to be pure b(1e4) linked galactans in this study.

One of the main molecules which protects the gastrointestinal
tract is mucin; a glycoprotein composed of a polypeptide backbone
with a very large number of glycan sidechains. The mucin molec-
ular mass is generally composed of >50% and often 70e80%
ing the feel of food structure with atomic force microscopy, Food
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carbohydrate. Mucin is a highly heterogeneous polymer in terms of
its glycan sidechains (Robbe, Capon, Coddeville,&Michalski, 2004).
The sidechains are multiply branched and named as antennae,
giving the mucin a bottle-brush appearance. The significant aspect
of the carbohydrate presence in mucin is that sugars can encode
dramaticallymore bio-information, due to their significantly higher
variation in structural arrangement compared to the other bio-
encoding molecules such as DNA and proteins (Davis, 2000, pp.
134e138). Sugar molecules have available a wider variety of link-
ages than DNA bases and amino acids, and in addition the spatial
orientation of their hydroxyl groups can vary and also have offer
numerous substitution sites. The effect that the structural variation
of carbohydrates has on biomolecular interactions involving sig-
nalling is termed the ‘glycocode’. AFM force spectroscopy can be
used to characterise mucin at molecular resolution (Gunning, Kirby
& Fuell et al., 2013). The AFM tips are functionalised with the
specific carbohydrate binding proteins, lectins (Iskratsch, Braun,
Paschinger, & Wilson, 2009), that interact with the sugar compo-
nents of the mucin antennae (Fig. 7a). The force spectroscopy data
obtained (Fig. 7b) can be mathematically modelled to characterise
the distribution of the specific carbohydrate species and reveal
differences in the highly complex structures of mucins (Fig. 7c).
Fitting the adhesion event distances from the range of the specific
binding lectins allows quantitative comparison of the different
glycan epitopes present within a given mucin, which reveals detail
of the structural composition of the antennae (Fig. 7d).

Despite the inherent heterogeneity of the glycan substitution on
mucins, the fact that this technique was able to discriminate mu-
cins from different regions of the gut and track changes induced by
enzymatic attack holds much promise. AFM can, not only begin to
read the glycocode on mucin, but also investigate which external
factors (dietary components such as pre-biotics and pro-biotics)
may re-write it.
3.1.2. Force measurements on molecular assemblies
A new technique for direct examination of colloidal interactions

was provided by AFM (Butt, 1994; Ducker & Senden, 1992). This
form of microscopy can measure forces at levels from single mo-
lecular interactions up to deformation of very soft and very hard
materials (Calabri et al., 2008), which has made a significant impact
in physics, chemistry and biology. The important aspect of this, in
terms of food material science, is that all three of these science
areas are encountered.

Fig. 8 illustrates how droplet interactions are measured by force
spectroscopy. The droplets are attached to the end of the AFM
cantilever by pressing the tip into an oil droplet sitting on the glass
slide in water and then pulled away from the surface of the slide.
Fig. 8D shows the focused image of the droplet on the glass slide.
The fortunate factor is that the spraying deposition process of oil
droplets onto glass slides (Gunning et al., 2004) created many
Fig. 7. AFMmeasurement of the glycan distribution on mucin. (a) Schematic diagram of the
of the measured glycan distributions in two different mucin phenotypes. (d) Schematic dia
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equally sized droplets, which enabled proper alignment of match-
ing pairs for the force measurements to be carried out. The initial
stages of measuring colloidal interactions with AFMwas carried out
with solid particles attached to the cantilevers pressed against large
bubbles (a few hundred microns) attached to the substrate (Ducker
& Senden, 1992; Butt 1994) but the later studies revealed the sig-
nificant differences in colloidal interactions between pairs of
deformable particles such as oil droplets (Dagastine, Stevens, Chan,
& Greiser, 2004; Gunning et al., 2004) and air bubbles which were
attached to the cantilevers as well as the substrate (Tabor, Grieser,
Dagastine,& Chan, 2012; Vakarelski et al., 2008). In addition to high
deformability the interfacial films can also be mobile in liquid and
gas colloids, which can vary the local interaction region.

Oil droplets can be emulsified by two different compounds;
surfactants and proteins. As illustrated in Fig. 9 the stabilisation
methods of each are different. Surfactants create a fluidic mobile
homogeneous interface with lower interfacial tension. Proteins
create an elastic rigid interface with heterogeneous distribution of
charge and hydrophobicity. These major differences provided an
incentive for investigating how they may alter the force in-
teractions between oil droplets using AFM. As droplets approach
each other the flow of the liquid across the surface of the droplets
can vary depending upon the mechanical nature of the interfacial
region as shown by the length of the arrows (Fig. 9). Previous
interfacial AFM studies demonstrated the details of how interfacial
protein films can be displaced by surfactants (Mackie et al., 1999;
2000) and this prompted force spectroscopy measurements on a
pair of oil droplets stabilised with an interfacial protein film which
was then displaced by surfactant (Gunning et al., 2004). An inter-
esting discovery was that the deformability of the oil droplets when
coated with protein showed unexpected behaviour. The internal
pressure (P) within the droplet should follow Laplace’s law:

DP ¼ 2g
r

(1)

where g is the surface tension and r the droplet radius. Thus
adsorption of protein should lower the surface tension, lowering
the internal pressure making the droplets more deformable.

The measurement of deformability of soft materials by AFM is
quantified by the variation of the deflection of the cantilever as the
sample is pressed against a rigid surface. The deformation of a soft
samplewill reduce the deflection of the cantilever compared to that
seen for the cantilever alone. Fig. 10 (top panel) shows an example
of the reduction in cantilever deflection reflecting the level of
deformation of the material. Curve 1 is for the AFM tip alone
pressed against a glass slide, both of which are totally rigid hence
the gradient value is 1.0 as the cantilever moves precisely the same
distance as the z piezo extension of the scanner, which is pushing
them together. When a tetradecane droplet was added to the end of
the cantilever and pressed against the glass the deflection gradient
technique. (b) Three examples of force spectra data. (c) Mathematically modelled fitting
gram of antennae composition.
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Fig. 8. (A) Oil droplet capture scheme (B, C) optical images of attached droplets on the AFM cantilevers, and (D) on the glass slide.
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dropped to 0.5 as the droplet is deformable and the cantilever only
moves 50% of the distance of the piezo scanner. When the tip-
attached droplet was then pressed against a sessile droplet on the
slide the gradient fell even lower, to 0.25. It shows that the gradient
value reflects mechanical properties of the deformable materials
(i.e. the droplets act like addition of springs to the cantilever). The
yellow line in Fig. 10 (bottom panel) shows changes in the
measured gradient of the gradient as a pair of droplets were pushed
together. Initially the uncoated tetradecane droplet was studied.
Then an amphiphilic protein, b-lactoglobulin (blg), was added to
the bulk water phase and left to self-assemble into an interfacial
protein film on the droplets. The plot of the cantilever deflection
gradient versus time shows that the measured gradient increased
despite the reduction in interfacial tension (white line), which
should lower the droplet internal pressure. Then 2 mM of non-ionic
surfactant Tween-20 (T20) was added to the water phase to
displace the interfacial protein from the droplets to allowing direct
comparison of the droplets interaction once coated with surfactant.
The cantilever gradient value dropped with time as the surfactant
displaced the protein. In order to interpret the surprising variation
in droplet deformability an independent measure of interfacial
tension (white line) and elastic modulus (red line) was carried out
Fig. 9. Characterisation of surfactant and protein emulsified droplets.

Fig. 10. (Top panel) Plots of cantilever deflection versus distance: (1) no oil droplet (2)
one oil droplet (3) two oil droplets. (Bottom panel) Evidence that droplet deformability
doesn’t simply follow interfacial tension trend (white line) but matches the elastic
moduli (red line). For details see Gunning et al. (2004).
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by Pendant drop analysis of a tetradecane droplets in water for the
same concentrations and timescales of the addition of blg and then
T20. This showed that the dominant factor in the deformability of
the protein-coated droplets was the increasing elastic moduli of the
interfacial protein film, not the reduction of interfacial tension. This
ing the feel of food structure with atomic force microscopy, Food



Fig. 12. Thin film hydrodynamic drainage relaxation data double exponential fitted to
quantify the variation between protein and surfactant emulsified droplet interactions
(for details see Gunning et al., 2013b).
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provided confirmation that protein emulsified droplets become
more rigid due to their interfacial ‘coats’ unlike the behaviour of
surfactant emulsified droplets, which become more deformable.

As droplets collide the nature of the interface will determine the
flow of liquid from between the converging droplets. Force spec-
troscopy can be used to monitor differences in the hydrodynamic
flow of the thin liquid film (TLF) that becomes forced out as the
droplets are pushed together as illustrated in Fig. 11 (Gunning Kirby
& Wilde et al., 2013).

Force spectroscopy of droplet-droplet interactions were ob-
tained by positioning the cantilever-droplet assembly directly over
another droplet of approximately equal size, which was bound to
the glass slide. Each measurement consisted of a force versus dis-
tance cycle in which the droplets (initially separated) were first
pushed together, and then pulled apart. Relaxation processes were
captured by imposing a fixed dwell time following the approach
part of the force versus distance cycle, once the cantilever deflec-
tion had reached a predetermined value of loading force, termed
‘trigger force’. During the dwell period the feedback loop of the
AFM holds the z stage of the piezoelectric scanner in position (using
a second feedback loop to eliminate any piezoelectric creep) and
deflection of the cantilever is monitored with time.

The experiments provided direct measurement of the drainage
of the thin liquid film. The data in Fig. 12 reveals the significant
difference between protein-coated and surfactant-coated droplets.
The fact that the interfacial protein film is immobile did dramati-
cally reduce the hydrodynamic flow, which creates a significant
change in the droplet interactions (Fig. 13).
Fig. 11. Schematic of the hydrodynamic flow of the thin liquid film (dark blue) of the
bulk phase (light blue) that is squeezed out as the droplets (yellow) are pushed
together. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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The hydrophilic component of the protein in the aqueous phase
can slow the flow of thewatermolecules as the droplets are pushed
together but more data in the study revealed that the flow rate
slows further as they become closer (Gunning Kirby & Wilde et al.,
2013). Two factors affected this behaviour: (i) having a higher
loading force setpoint (trigger) and (ii) increasing the ionic strength
of the aqueous bulk phase with screening counterions which
lowered the Debye length. Hence the thin liquid film became
thinner as the droplets were pushed together even at lower forces.
Although droplet separation could not be measured easily in these
experiments, one can manipulate the ionic strength of the contin-
uous phase in order to exert control over the thickness of the
aqueous films that form between approaching droplets. If the
experiment is carried out in pure water, the screening of the elec-
trostatic charges present on the droplets will be very low, and the
Debye layers associated with each droplet will overlap at relatively
large separation distances, causing repulsion at large separations.
Due to their deformability the distance of closest approach for
droplet surfaces is controlled by the magnitude of the repulsive
disjoining pressure (Carnie, Chan, Lewis, Manica, & Dagastine,
2005). Once the disjoining pressure reaches the strength of their
deformability the droplets will begin to form a flattened face, as
shown in Fig. 11, that grows radially as they approach each another
(i.e. the aqueous film between the droplets will not thin any further
in response to squeezing). If salt (NaCl) is added to the bulk phase,
the Debye layers are compressed, allowing the droplet surfaces to
get closer together before they feel any electrostatic repulsion,
leading tomuch thinner aqueous films between the droplets. Fig.14
shows relaxation curves obtained for a pair of b-lactoglobulin-
coated droplets in pure water, and the data obtained for the same
droplets following the addition of salt to the liquid cell. At low ionic
strength (water) the relaxation is relatively fast, and the data re-
sembles the trend seen in the data for surfactant-coated droplets.
Following the addition of salt the relaxation becomes markedly
slower and larger in magnitude.

The force spectroscopy measurements can be used to extend
studies of droplet-droplet interaction for systems where the
interfacial structure is well defined. An example is the case of
droplets stabilised with sugar beet pectin (SBP) extracts (Gromer
et al., 2010). Sugar beet pectin acts as an emulsifier (Leroux et al.,
2003; Williams et al., 2005; Funami et al., 2007). AFM imaging
showed the presence of protein-polysaccharide complexes (tad-
poles) in sugar beet pectin extracts (Kirby et al., 2006; 2008). Im-
aging of the interfacial films formed by sugar beet pectin extracts
(Gromer et al., 2009) revealed an elastic protein network screened
by the attached polysaccharide. At low bulk phase concentrations
the adsorbed SBP interfacial layer was relatively flat (Fig. 6). Force
ting the feel of food structure with atomic force microscopy, Food



Fig. 13. Schematic diagram of thin liquid film flow rates in protein (left) and surfactant (right) emulsified droplets.

Fig. 14. Effect of electrostatic screening on the separation between approaching droplets. Inset: the complimentary force distance curves.
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spectroscopy revealed depletion interactions between the droplets
in the presence of non-adsorbed SBP in the bulk phase (Fig. 15).
Depletion is caused by the osmotic pressure exerted when non-
adsorbing polymers are squeezed out of the thin aqueous film
that exists between two close-packed colloidal particles (Asakura&
Oosawa, 1954). This was confirmed by two methods: (i) replacing
the bulk aqueous phase with pure water, which removed the
oscillatory sections in the force curves (right panels, Fig. 15b). (ii)
measuring interactions between oil droplets in an aqueous bulk
phase that had a non-absorbable polyelectrolyte polymer, poly-
styrene sulphonate (PSS), which also showed the same oscillatory
effects on the force curves and elimination of the effect when the
bulk polymer was removed (Fig. 15 c,d).

Higher concentrations of each of the polymers in the bulk phase
(0.5%) caused hysteresis between the approach and retract phases
(Fig. 16). This revealed that there is a strong liquid structural cor-
relation occurring within the liquid film separating the droplets. At
this higher polymer concentration jump-in features always
appeared on the approach part of the force curves and also the
subsequent adhesive peak upon droplet separation in the retract
curves.
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Further confirmation that it was due to the structural correlation
of the liquid film separating the droplets was provided by varying
the polymer concentrations and also the velocity of the droplets
being pushed together and pulled apart (Fig. 17). The depletion
effects between droplets were explored further using the non-
adsorbing polyelectrolyte polymer, polystyrene sulphonate (PSS).
This enabled measurements at higher polymer concentrations
without masking depletion effects of the steric repulsion seen in
SBP. The relatively lowmolecular weight and random coil nature of
PSS means that it does not affect the viscosity of the continuous
phase as much as occurs for the pectin. The jump-in features and an
adhesive peaks upon droplet separation in the retract curves
revealed two interesting effects. The position of the jump-in moves
progressively up the approach curve with increasing approach
speed whilst at the same time the magnitude of the adhesion peak
reduces.

As the PSS concentration was increased further the effects
became more pronounced (Fig. 17b) and the jump-in moves all the
way onto the retract portion of the data. This may appear counter-
intuitive but is completely unique to deformable colloid in-
teractions. As they are pushed together the deformation stores
ing the feel of food structure with atomic force microscopy, Food



Fig. 15. Effect of polymers on oil droplet interactions. (a,c). The forceedistance curves
were acquired in the presence of the polymer solution (a and c) and after rinsing the
bulk aqueous phase with pure water (b and d). The shape of the forceedistance curve
obtained in polymer solution is compatible with a depletion interaction. In these
spectra, the approach and retract curves are superposed. In (a), the mean adhesion is:
142 pN 14, based on 19 curves (RMS noise: 70 pN), and in (c), the mean adhesion is:
134 pN 18, based on 15 curves (RMS noise: 78 pN). For both SBP and PSS the interaction
observed in polymer solution disappeared when the bulk aqueous phase was rinsed
with pure water and the resulting spectra (lines) are similar to those for uncoated oil
drops in water (open circles). For the sake of clarity, (b) and (d) only show the approach
curves: in this case the approach and retract curves are completely superimposed.
Copy of Fig. 3 from Gromer et al., 2010.

Fig. 17. Droplet interaction data in presence of (a) 2% polystyrene sulphonate (b) 3%
polystyrene sulphonate. Note an arbitrary distance offset has been added to separate
the data sets.
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elastic energy. As the piezo scanner moves into retract phase the
force on the cantilever drops, hence the curve turns through 180�

but the thin aqueous liquid film trapped at the point of contact
between the droplets will continue to be squeezed, and therefore
thin-out for some time even as they are pulled apart, explaining
how jump-in events can occur even during the retraction part of
the force-distance curve. This unique effect on deformable particles
has been confirmed by theoretical modelling (Gromer et al., 2010).
Examination of the data reveals that there is a correlation between
the position of the jump-in and the magnitude of the adhesion
when the droplets are finally pulled apart. Fig. 18 shows a plot of
the force data against time, which makes the correlation more
obvious.

The longer the time duration following jump-in, the larger is the
subsequent pull-off required to separate the droplets. The inter-
pretation of these effects is that they result from the formation of a
region devoid of polymers in the thin liquid film between the drops
(an analogue of this effect is the formation of so-called ‘black films’
between the lamellae of draining soap films). Neutron scattering
studies have provided experimental evidence that such ‘black films’
can also occur between adhesive emulsion droplets (Poulin, Nallet,
Cabane, & Bibette, 1996). Fig. 19 summarises the different steps of
the process. As the droplets are forced together in the polymer
solution (position 1) the liquid film between them is thinned (po-
sition 2) leaving less room for the polymer molecules, which
Fig. 16. Effect of higher concentrations of the polymers on oil droplet interactions.
Grey e approach, black e retract.
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require a finite volume of solvent to remain hydrated. At a certain
point polymermolecules are forced out of the closing gap creating a
very thin region between the droplets (position 3). At this point the
droplet surfaces spontaneously jump closer together causing the
jump-in events seen in the force curves. Once created this thin
region quickly expands with time (position 4) pushing out polymer
solute as it does so. This expansion of the very thin region can
continue even whilst the drops are being pulled apart since, for a
while at least, the region is still being subjected to a squeezing force
by the deformed droplets. The work required to separate the
droplets now becomes dominated by the area of this very thin film
because the hydrodynamic suction created by this capillary-like
film is very large. This explains the correlation between the
jump-in point and themagnitude of the final pull-off adhesion seen
in the force data: A slower approach speed allows the polymer to
escape from the closing gap between the droplets earlier in the
cycle, and subsequent expansion of this depleted region is given
more time to proceed, resulting in a greater force being required to
finally separate the droplets.

The final examination of the effect of SBP emulsified droplets
was the potential for partial coalescence as the pectin chains can
link together in certain conditions forming coagulated strings of the
droplets which can have a significant effect on the physical prop-
erties of such emulsions. Normally the extension of the pectin
chains into the bulk aqueous phase will lead to a steric repulsion
between droplets as proposed by (Leroux et al., 2003). Manipu-
lating the experimental bulk conditions promoted inter-chain as-
sociation of the pectin (Fig. 20). In the presence of calcium ions,
events characteristic of single molecule polymer stretching are
observed in the retraction data at points beyond droplet separation
(upper panel). Such bridging studies showed evidence for both
single and multiple polymer stretching events following droplet
separation (lower panel).

Finally, another significant set of AFM colloidal studies have
been carried out at the University of Melbourne. In addition to the
AFM force measurements they have created mathematical models
of most of the aspects; deformability effects (Carnie et al., 2005),
ting the feel of food structure with atomic force microscopy, Food



Fig. 18. Chronology of droplet interaction data in presence of 3% polystyrene
sulphonate.

Fig. 19. Interpretation of the hysteresis effect observed in the interaction between oil
droplets inside a polymer solution [1]. When the droplet surfaces are far apart they
don’t interact [2]. As the droplet surfaces come sufficiently close together, they start to
deform; polymers remain in the thin liquid film between them [3]. As the polymers
diffuse away from a region of the film, a ‘snap in’ effect occurs which corresponds to
the formation of a black spot, i.e. the local lamella thickness has reached the dimension
of common black films [4]. The black spot expands with time and it keeps expanding
even as the droplets are pulled apart, until a ‘snap out’ is observed which corresponds
to the droplets being suddenly disconnected [5]. After the droplets have been sepa-
rated, the droplet surfaces recover their initial shape.

Fig. 20. Association of pectin chains upon retraction of SBP coated droplets. (Top
panel) in 4 mM CaCl2 (bottom panel) de-esterified SBP.
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velocity effects (Webber et al., 2008), ionic strength effects
(Clasohme et al., 2007), viscosity effects (Dagastine et al., 2010),
polymer depletion effects (Browne, Tabor, Grieser, & Dagastine,
2015b, 2015a) and characterisation of the profiles of thin liquid
films between oil droplets and air bubbles (Vakarelski et al., 2010)
and lamellae in foams.
4. Conclusions

The use AFM as a microscopic tool is now used widely to tackle
problems in food and biological science. A key advantage is the
ability to observe structure and structural heterogeneity at the
molecular level, under ‘near natural’ conditions. Although widely
used, the method is still not routine, and methodologies need to be
modified or developed to suit particular biological samples. Use has
led to new understanding of complex food systems with resultant
applications. The use of the AFM as a force transducer is emerging
as a new tool in food science, which can assist and expand the role
as a microscope. For example whereas interactions between larger
molecules such as proteins and polysaccharides can be visualised,
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force measurements are needed to identify and characterise bind-
ing of smaller molecules such as in oligosaccharide-protein in-
teractions, which could not be seen directly by AFM. Similarly the
ability to probe interactions between large objects, such as air
bubbles or oil droplets offers the possibility to extend the imaging
and understanding of interfaces into investigating their effect on
the pair-pair interactions responsible for foam or emulsion stability.
In addition, given an understanding of the changes in interfacial
structure during complex processes such as digestion it ought to be
possible to determine their effect on the stability and breakdown of
food structures on consumption. Thus the combined use of the
techniques offers routes to the design of novel food structures to
tackle problems in health, dietary choice and nutrition.
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