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Abstract

Introduced in 2008 by Khovanov and Lauda, and independently by Rouquier, the
quiver Hecke algebras are a family of infinite dimensional graded algebras which cat-
egorify the negative part of the quantum group associated to a graph. In finite types
these algebras are known to have nice homological properties, in particular they are
affine quasi-hereditary. In this thesis we utilise the affine quasi-hereditary struc-
ture to create finite dimensional quotients which preserve some of the homological

structure of the original algebra.
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Introduction

Introduced in 2008 by Khovanov and Lauda [KL09], and separately Rouquier [Rou],
the quiver Hecke algebras, or KLR algebras, are a family of graded algebras which
categorify the negative part of the quantum group associated to a graph I'. That is,

for the KLR algebra R, (I") associated to I', there are canonical isomorphisms

(U, (9)" = €D Ko(Ra(T')-gr. mod™),

n>0

and, equivalently,
Uy (8) = €D Ko(Ra(T) -p- mod),
n>0

where Ko(R,(I')-gr. mod®) is the Grothendieck group of finite dimensional graded
R, (I")-modules, K¢ (R, (T")-p. mod) is the Grothendieck group of graded projective
R, (I')-modules, and g is the Kac-Moody algebra associated to I'.. We have U,(g)
acting on the Grothendieck group as induction and restriction functors. Khovanov
and Lauda also introduced certain cyclotomic finite dimensional graded quotients
of the quiver Hecke algebra. Brundan and Kleshchev established an isomorphism
between blocks of the cyclotomic Hecke algebra and blocks of the cyclotomic quiver
Hecke algebra, which allowed them to introduce a grading on the cyclotomic Hecke
algebra.

The affine cellularity of quiver Hecke algebras in finite type A was discovered by
Kleshchev, Loubert and Miemietz [KLM13] and was later generalised by the first
two authors to all finite types [KL15]. Establishing affine cellularity reproved finite
global dimension for quiver Hecke algebras in finite type, a result that had already
been shown by Kato [Kat]. An explicit value for the dimension was computed by
McNamara [McN13].

In this thesis we construct an ideal J of the quiver Hecke algebra R, and show
that quotienting by this ideal produces a finite dimensional algebra which preserves
much of the original algebra’s homological structure. Our work concentrates on
quiver Hecke algebras in type A as it uses foundations laid down in [KLM13]. Chap-

ters 1 and 2 introduce the main players, bringing together definitions and theorems



from the literature and establishing some technical results which are crucial to the
construction of this ideal. In Chapter 3 we define the ideal J of the quiver Hecke
algebra R,, and define the quotient algebra RY := R,/J. We then provide some
background on stratified algebras in Chapter 4 and establish a line of attack to
prove that Rg is properly stratified. Chapter 5 studies the homological structure of
R;Z , and highlights the similarities with R, in particular we have a quotient which
preserves proper standard modules. We establish that RY is cellular and properly
stratified. We then look at the case where every simple root has multiplicity at most
one in the root « indexing the block R, of R, (I'). Here we provide a proof to a theo-
rem of Brundan and Kleshchev, and use that to establish a special case in which the
standard modules and proper standard modules of RY coincide, in particular this
mean that Rg is a quasi-hereditary quotient of the quiver Hecke algebra. Finally,
Chapter 6 provides some worked examples and in particular highlights the example
of @ = 2a1 + ao, for which one is unable to take a quasi-hereditary quotient of R,

while still preserving the proper standard modules.



Chapter 1

Background and definitions

We fix, once and for all, a field k. Unless otherwise specified modules will be assumed
to be left modules, when we need to distinguish that M is a left, resp. right, modules

over an algebra A we write 4 M, resp. My.

1.1 Quiver Hecke algebras

We begin with some Lie theoretic information, and fix notation that will be used
throughout this report. We introduce the main objects here as well as some pre-
liminary results. The content on graded algebras is taken from [HM10] and [Klel5],
the rest of the chapter, unless otherwise indicated, can be found in [KLM13] and
[Brul3].

Lie theoretic notation For a Dynkin quiver of type A, with set of vertices

I = 7Z we have the corresponding Cartan matrix with entries

2 ifi=j,
ai; =1 0 ifli—j|>1,,
1 ifi=j+1

for i,j € I. We also have a set of simple roots {«; | ¢ € I'} and the Cartan matrix
defines a bilinear form such that «; - a;; = a; ; on the positive part of the root lattice

Q4 = PB;erNpa;. The set of positive roots is given by
Oy = {a(m,n) =am+ame1 +--+an |mnel,mn}.

For a =) ,c;cia; € Q4, we denote the height of o by |af =3 . c;.

The symmetric group &4, generated by simple transpositions si,...,s4-1, acts



on the set I by place permutation. The orbits under this action are the sets
(Do :={i=(i1,...,ia) € I | s, + -+ + oy, = a}

for each a € Q4 with |a| = d. We define a partial ordering < based on the
lexicographic order on (I}, which is determined by the natural order on I = Z, by
which we mean (i1,--- ,iq) < (i},---,1,) if and only if there is an integer k, with
1<k<d, Suchthatij:i;- for j < k and 5, < 7.

To a positive root 8 = a(m,n), we associate the word
ig:=(m,m+1,...,n) € (I)s.
We define a total order on @ by 8 < v if and only if ig < ¢, for 8,7 € ®,.

Graded algebras An [-graded k-module is a k-module M with a decomposition
M = @®;c1M;, where 1 is some indexing set with a binary operation +. Elements
m € M; are called homogeneous of degree i. When we omit the grading set and just
say graded module, etc, we shall mean Z-graded.

A graded k-algebra is a unital associative k-algebra A = @;c7A; which is a graded
k-module such that A;A; C A;y; for all ¢, j € Z. An A-module M is called a graded
(left) A-module if it is a graded k-module such that A;M; C M;; for all 4,5 € Z.
Graded submodules, graded right modules are all defined analogously. For a graded
vector space V = ®;czV; we say V is locally finite if each graded component V; is
finite, and we say it is bounded below if V; = 0 for all ¢ << 0. We define the graded
dimension dimg V := ., (dim Vi)q', where q is a formal variable. We also use ¢
for the degree shift functor, so gV has (¢V'); := V;—1. We call a graded vector space
Laurentian if it is both locally finite and bounded below, in this case its graded

dimension dim, V' is a formal Laurent series.

The KLR algebra Let a € Q4 be of height d and let k be a commutative unital
ring. Then the quiver Hecke algebra (of finite type A) (also called the Khovanov-
Lauda-Rouquier (KLR) algebra) R, = Rs(k) is the associative, unital k-algebra
generated by

{e(@) |1 € (NatU{yr,. - yat U{tb, ... a1}



subject to the following relations

e(t)e(F) = d; ze(s); > oe(i) =1

i€(I)a
yre(@) = e(@)yr;  tre(d) = e(sp - 0)Urs Yrys = Ysyr;
Urys = ysor  ifsFErr+ 15
Vrps = Ystpr if |1 —s| > 1;

Uryry16(2) = (yrthr + 5ir7ir+1)e(i); Yrr19re(t) = (Yryr + 6ir,ir+1)e(i)3

0 if 4, = ipy1,
pre(iy = { W Bl e >
(Yr+1 —yr)e(d) ifip =dpp1 — 1,
(yr — yr—l—l)e(i) if iy = 4py1+ 15
(Vre1rthrr + De(d)  if dpgo = dp = dpp1 — 1,
Yrihri1ypre(s) = (Vr1rry1 — 1e(d)  if drgo = dr = ip41 + 1,

Yrp1rPri1e(t) otherwise.

The algebra R, possesses a unique Z-grading such that all e(z) are of degree

0, all y, are of degree 2, and deg(vre(?)) = —aj, ,,,, where a;, ; ., is an entry in

the Cartan matrix. For any reduced decomposition w = s;, si, - -

sz)w = whwiz o %‘T»

-84, € Gy, define

Remark 1.1. Our 3, does depend on the choice of reduced expression for w,

however, one deduces from the last relation that given two reduced expressions w,

W of w, Py and 1y differ only by a sum of v, for I(v) < l(w). Henceforth we fix a

reduced expression for every w € &g .

Example 1.2. Let us consider the root a = a; + as + a3, then R, has generators

{e(123),e(132),e(213),e(231),e(312), e(321), y1, Y2, Y3, 1, V2 }

10



and we associate to R, the following quiver.

Y2
Y1 m Y3
C\?3(321)/2
Y2 w/17/ \&* Y1
(231) " " v (31/22
e e
ne oy ys & Dy,
P2 P2 Y1 U1
Y1 Y3 Y3 Y1
<:(213)/2 C:(132)/2
AN A
Y2 b1 o Y2
e(123)
Y1 < u\j Y3
Y2

Relations give us, for example,

P3e(312) = (y3 — y2)e(312);  Yie(312) = e(312);
Yoyze(123) = y2tp2e(123);  Y1v21P1e(321) = athrapae(321).

Example 1.3. If we consider the quiver Hecke algebra associated to the root

a = aj + a1 + ao, then we have the generating set

{6(112>7 6(121), 6(211)7 Y1,Y2,Ys3, wla ¢2}

and we associate to R, the following quiver.

I G
C:(121)/2

w5y, W,

Relations give us, for example,

PPe(112) = 0;  Pryae(112) = (yrop1 + 1)e(112);
VY1povpre(121) = (arhraha + 1)e(121).

A theorem of Khovanov and Lauda provides a nice basis for this algebra.

11



Theorem 1.4. [KL09, Theorem 2.5] For an arbitrary field F, the elements

{wwyll---ygde(i) | wGGd,Tl,...,TdGZZQ,’iE<I>a}

form an F-basis for Ry (F).

The quiver Hecke algebra can also be defined with diagrammatic notation, as
introduced in [KL09]. For 2 = (i1,...,iq) € (I)q, we write

i1 io iq i1 Cp—1dptrt1 iq i1 Gs—1igts+1 iq

where 1 < r < dand 1 < s < d. Multiplication of elements is concatenation of
diagrams with matching labels, read from top to bottom and zero if the labels do

not match.

The centre of R, Let i € (I), be such that &; := Stabg,(¢) is a standard
parabolic subgroup of G4. It is easy to see that this is equivalent to all equal entries
in i appearing consecutively. Let us denote by &% the set of shortest length left

coset representatives of G; in &4. Then for j =1,...,d we define

= 3 ugelw(@)), (L1)

weG?
and we let &; act on k[z1,..., 24| by permuting the generators. For example, let
a = 2a; + ag, and ¢ = (112) then
z1 = y1e(112) + y1e(121) 4 yoe(211), (1.2)
zo = y2e(112) + y3e(121) 4 yze(211), (1.3)
z3 = y3e(112) 4+ y2e(121) + y1e(211). (1.4)

Theorem 1.5 ([Brul3, Theorem 2.7]). The centre of the algebra R, is given by
Z(Ra) = K[z1,. .., 24

Root partitions and blocks Let a € Q4 with |a| = d. A root partition of « is

a way to write a as an ordered sum of positive roots

a=p1B1+- - +p0Bn

12



so that 8y > --- > B, and p1,...,pn > 0. We denote such a root partition m
as m = pB'... 00", Let II(«) denote the set of root partitions of «. Within a
root partition we call each §; a w-block of weight 5;. Each root partition 7 has an
associated idempotent e(i;) € R, with the word 3, given by the concatenation of
ig, for 1 <k <n

Ty 2:i51...i51...i5n...’iﬁn S <I>a

where each i, appears pj times. Define the total order on II(«) by m > o if and
only if ¢, > i, for m,0 € II(«).

Lemma 1.6. Let < denote the lexicographic order on (I)y. Assume that i < i, for
all m € (), then ¢ =i, if and only if T = a1 + -+ + ap.

Proof. Let m = a1 + -+ + «, then i, < ¢ for all ¢ € (I),, so © = 4. Conversely,
assume that m # a1 + -+ 4+ a,. Then either o contains repeated simple roots or
there exists a 0 < m € II(a) with 0 = a3 + -+ + ay, in the latter case, ¢ # i,.
Without loss of generality let o = a1 + -+ - + 2a; + - - - + a. Then

T=(ai+ - Fap)(ar+--+a;) <o

for all o € II(a), but @ = 1---4i- -1 <pep ¥ < i, for all o € II(a). So the lowest

root in II(«a) is oy O

Example 1.7. For 7 = (a3)*(a2 + a3)?(az2)?(a1 + as) we have
e(in) = e(3333232322212)

and there are four (ag) blocks, two (ag + a3) blocks, three (ag) blocks and one
(a1 + ag) block.

To any 7 we associate the Young subgroup

~ &P1 Pn
Gr = Gg, X X Gy

< G,

and denote by & the set of shortest left coset representatives for &, in Gy.
Lemma 1.8. If w € &™ then w(iy) < ir.

Proof. This follows directly from the definition of 6™ := §,;/6,. O

Example 1.9. Take the root partition m = (aq + a2)(a1). Then we label the
generators of G5 as s; and ss, where the subscript tells us that they act on
i = (121) by swapping the i*" and (i 4+ 1)** positions, we get &, = (e, s1) = &y and
S™ = (e, s9, 5152).

13



1.2 Affine nil-Hecke algebras

A basic introduction to (affine) nil-Hecke algebras is detailed by Rouquier [Roul2].
In the case that & = aay,, a € N, then R, is isomorphic to the @' affine nil-
Hecke algebra, NH,, where NH,, is defined to be the associative unital (Z-)algebra
generated by {y1,...,Ya, ¥1,...,%a—1} subject to the relations

Uy = 0;
Yrips = Psthyif [r— s[> 1
Urpri1thy = Yro1thrhryn;
Yrys = ystor i sFrr+ 1
UrYr41 = Yrthr + 1
Yr19r = Yryr + 1.

Again we define v, := 1y, - - - 1;, for areduced decomposition of w = s;, - - - 55, € S,
and the relations above show that v, does not depend on the choice of reduced

decomposition. It is noticed in [KL09, Section 2.2] that the element

Uuoy2y3 - ya ! (1.5)

is an idempotent in NH,, where wgy denotes the longest element in &,,.

Schubert polynomials Schubert polynomials have been a powerful tool in both
algebra and geometry. The set of Schubert polynomials forms a basis for the polyno-
mial ring when viewed as a module over the ring of symmetric polynomials [Roul2,
Theorem 2.11], and their connections to geometry are covered in [Ful99, Chapter
10]. Here we define a variant of the Schubert polynomial.

Given the polynomial ring Z[ X7, ..., X,,,], define the divided difference operator,
0; by

0i(P) :== m, 1<i<m-—1, PeZ[Xy,...,Xn],

where we use s;(P) to denote the result of interchanging X; with X;;1 in P. The
divided difference operator was first introduced by Bernstein, Gel’fand, and Gel’fand
[BGG73| and Demazure [Dem74]. Given w € &,,, write w = s;, 8;, - - - s;, a reduced

expression. We define the reverse Schubert polynomial associated to w to be
fu: =0, 0008 00, (X2 X5 X7).

Note that the total set of reverse Schubert polynomials {f,, | w € &,,,} coincides
with the total set of Schubert polynomials as defined in [Ful99, p.171]. Moreover,

14



the reverse Schubert polynomial associated to w in variables X7, ..., X, is the same
as the Schubert polynomial associated to wow in variables X,,, ..., X1, where wy is
the longest reduced word in &,,. Henceforth we shall drop "reverse” when talking

about these polynomials.

Example 1.10. In general for &,, it follows from the definition that f,,, = 1 and
fiad = ygyg -yl Now, let &, = &3 and consider polynomials in k[yi,y2,y3]. If
w = 8189 then

9 9
0o (y2y3) = O <y2y3 y2y2>

Ys — Y2
= 01(y2y3)
_ Y2Ys — 1Ys
Y2 — Y1
=y3

These polynomials appear naturally in the study of the affine nil-Hecke alge-
bra since it is well known that NH, is isomorphic to the ring of endomorphisms of
Zlyi,...,ya) generated by the endomorphisms of multiplication and divided differ-

ence operators, see for instance [KL09], [Roul2].

Lemma 1.11. [KL09, Section 2.2] [KLM13, Section 4.2] Let w € &,, be a reduced

expression. Then in the affine nil-Hecke algebra of rank a,

%yzy% e 'ygildjwo = fwwwm

where f,, denotes the corresponding Schubert polynomial in variables yi, ..., yq-

Henceforth, let us use the notation

Va = Yy, € NHyg;
Ya = yoy3 Yot € NH,

so that ¥qyqe is the idempotent (1.5). The following lemma is a well known property
of NH,.

Lemma 1.12. We have Yqyqta = Vq.

Proof. This follows as a consequence of Lemma 1.11, since

Q;Z)ayaq/)a = fw0¢a =1 ¢a-

15



Theorem 1.13. [Roul2] The affine nil-Hecke algebra NH, has a basis given by
{Vwyy* - yp |w e Sq,ry >0Vi=1,...,a}.
Moreover, the action of NH, on klyi,...,ys] induces a graded algebra isomorphism

NHa = End]k[yhm’ya]@a (k[?/l, s )ya])'

1.3 Motivation

Having introduced the quiver Hecke algebras and shown some of their first proper-
ties we now provide some motivating reasons behind their study. This chiefly falls
into two sections, the famous categorification theorems which link the representation
theory of R, to half the quantized enveloping algebra associated to the Kac-Moody
algebra g, and then the well studied cyclotomic quotients which have provided im-
portant advances in the representation theory of the symmetric group and related
Hecke algebras. All of the information in this section can be found in the survey
papers of Brundan [Brul3] and Kleshchev [Klel0], however we will highlight the
origins of the main results.

For a loop free quiver with vertex set I we denote by m, ; the number of directed
edges i — j for 4,j € I. The corresponding Cartan matrix C' = (c¢; ;) jer is defined
from ¢;; = 2, ¢;; = —m;j —mj; for i # j. To C there is an associated Kac-Moody
algebra g. We fix a choice of root datum for g. This gives a weight lattice P which

is a finitely generated abelian group equipped with a symmetric bilinear from

PxP — Q
(A p) = A-p,

containing simple roots («a;);e; and fundamental weights (A;);cr such that, for i, j €
I, aj-a; = ¢ j and a; - Aj = 9; 5. The root lattice is ) := ®jerZa; C P and the
positive part is Q4+ := ®;erNe;.

Categorification The categorification theorems focus on the categories

R-mod = ®qcq, Ry -mod, R-p.mod = @®4¢q, Ry -p. mod,
of finite dimensional R-modules and finitely generated projective R-modules, respec-
tively.

Let g be a semi-simple Lie algebra over some field F. The wuniversal envelop-

ing algebra of g is the associative unital algebra U(g) over F and a Lie algebra

16



homomorphism

i:g—U(g)

satisfying the universal property that for every arbitrary associative unital alge-
bra A over F and a Lie algebra homomorphism j : g — A, there exists a unique

homomorphism of associative algebras ¢ : U(g) — A making the diagram commute.

‘ Ul(g)
N

Note that any associative algebra can be endowed with a Lie algebra structure using

g

the commutator bracket [z,y] = xy — yx. The universal enveloping algebra of g can

be constructed explicitly as

Ug) :=T(g)/(z®y—y@z—[z,y]|z,y €g),

where T'(g) is the tensor algebra of g, i.e, T(g) := @®;>08%". There exists a defor-
mation of this algebra known as the quantized universal enveloping algebra U,(g)
where g € k™, which decomposes into positive and negative parts, denoted U, (9)
and U (g), and a zero part U(? (g). It is often useful to utilise the existence of an
algebra isomorphism between the algebra known as Lusztig’s algebra f and U, (g).
Indeed, it is known that f is a Q,-graded algebra so that f = ©.cq, f, and one
can endow f with the structure of a twisted bialgebra. To avoid going beyond the
scope of this brief motivational section we direct the reader to [Brul3] and [Klel0]
for a detailed description of Lusztig’s algebra.

The Grothendieck groups of the categories mentioned before can also be given
twisted bialgebra structures in the following way. We have functors of induction and

restriction between quiver Hecke algebras, for 8,y € Q4+, there is natural embedding
Rg @ Ry = Rpiy

where the tensor product acts as horizontal concatenation of diagrams. Denote
the image of 13 ® 1, € Rg ® Ry by 15, € Rg4y. Then for U € Rg,--mod and
V € Rg ® Ry-mod we define functors

Resgtv : Rg1y-mod — Rg ® R,-mod

Indg’—:7 : Rg ® R-mod — Rg,~-mod

17



by setting
Resgjy U=13,U Indg;7 V= Rpi~1 4 ®rger, V.

Summing over all 8,y € Q+ gives functors Ind and Res, which act as multiplication
and comultiplication (resp.) on the Grothendeick groups of the categories R-mod
and R-p.mod, and endows them with the structure of a Z[q, ¢~!]-bialgebra. This
result follows from the existence of an isomorphism between Ky(R-p.mod) and a
well known subalgebra 7, ,~1)f of f, known as Lusztig’s Z[q, ¢~ ']-form. This is the

first of the so-called categorification theorems.

Theorem 1.14. [KL09, Theorem 1.1] There is a canonical twisted bialgebra iso-
morphisms
zlg.q-1)f — Ko(R-p.mod).

Under this isomorphism z; f, corresponds to Ky(R,-p.mod) for any

q,97 1]

a € @1, multiplication in 5 f corresponds to induction in Ky(R-p.mod),

lg.q71]
and comultiplication in 7, ,~11f corresponds to restriction in Ko(R-p.mod). The

twisted multiplication on Ko(R-mod) ® Ky(R-mod) is defined by
(a@b)(c®d) =q Tac® bd

for a € Ko(Rn-mod), b € Ko(Rg-mod), ¢ € Ko(Ry-mod), and d € Ky(Rs-mod).
For F with characteristic 0, the isomorphism also identifies a particularly nice
basis, Lusztig’s canonical basis, for f with the basis of the Grothendieck group
Ky(R-p.mod) consisting of isomorphism classes of projective indecomposable mod-

ules.
Theorem 1.15. [Roul2, Corollary 5.8/[VV11, Theorem 4.5] Assume F has char-
acteristic 0. For every o € Q4., the isomorphism

fy — Ko(Ro-p. mod)
maps Lusztig’s canonical basis for £, to the basis of Ko(Rq-p.-mod) consisting of
isomorphism classes of indecomposable projective graded R,-modules.

The above theorems describe what is meant in the vernacular of the subject
when one says R categorifies U, (g), and the indecomposable projectives categorify

Lusztig’s canonical basis.

Cyclotomic quotients The introduction of quiver Hecke algebras also allowed
key developments in the representation theory of the symmetric group. To under-

stand this one must introduce a special quotient of the quiver Hecke algebra in type

18



A. Recall that there is a bilinear form
(,):PxQ—1Z
such that (A;, a;) = d;5, using this define, for a chosen A € P, the ideal
1A = <y§A’ai1)e(i) KXS <I>a> :

The quotient algebra R2 := R, /I" is called the cyclotomic quiver Hecke algebra.

Proposition 1.16. The elements yse(i) € RY are nilpotent for all 1 < s < n.

Moreover, the algebra R is finite dimensional.

Notice that once the nilpotence of the y,'s is established the claim about finite
dimensionality follows from Theorem 1.4.

For a fixed field F and ¢ € [F* the affine Hecke algebra of type A,
H 2{{ =H jﬂ(]F, q), is the F-algebra generated by

+1 +1
Tlv"' 7Td—17X1 P 7Xd )

subject to the relations

XPXH = XHXF XX =1
TrQ = (q - 1)T7" +q; T, X, T = qXrq1; LT T =T T Ty 1
T, X = X, T, if s£r,r+41;
T.T, =TT, if |[r—s| > 1;

There is a degenerate form H(F, 1) for when ¢ = 1, but we do not list the relations
here. For a fixed A € P, the cyclotomic Hecke algebra also known as the Ariki-Koike
algebra is given by
Hy = Hy/ <H(X1 - qi)(A’ai)> :
i€l

These cyclotomic quotients give us the Hecke algebras H; = Hé\i and thus we
recover the symmetric group from these by setting ¢ = 1, ie, F&43 = H C/l\i (F,1). By
constructing an explicit basis, Brundan and Kleshchev established an isomorphism
between blocks of H é\ and the algebras RQ. This revealed a previously unknown

grading on H?, and thus on F&,.
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Chapter 2

Cellular and affine cellular

algebras

In this chapter we introduce the class of cellular algebras, these are finite dimen-
sional algebras with particularly nice representation theory. We then introduce the
more recent infinite dimensional analogue, the affine cellular algebras. We consider
examples of both, and explain in detail the affine cellular structure of the quiver

Hecke algebra of finite type A.

2.1 Definitions and examples

Cellular algebras Cellular algebras were introduced by Graham and
Lehrer [GL66] as a class of algebras that have bases with nice multiplicative
properties, inspired by those of the Kazhdan-Lusztig basis for Hecke algebras.
Later Koenig and Xi [KX99] gave an abstract definition in terms of the existence
of a particular ideal chain, called a cell chain. From this cell chain we are able to
determine many aspects of the representation theory of these algebras, for instance,
we get a complete classification of irreducible modules as well as a criterion for
when the algebra is semi-simple.

Let A be an R algebra where R is a commutative Noetherian integral do-
main. Assume there is an involution 7 on A, that is an automorphism such that
7(ab) = 7(b)7(a) for all a,b € A. A two sided ideal J in A is called a cell ideal if
and only if 7(J) = J and there is a left ideal A C J such that A is finitely generated
and free over R and there is an isomorphism of A-A-bimodule v : J = A ®p 7(A)
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making the following commute

J "= A®gr7(A)
Tl J{r@y»—)'r(y)@'r(x)
J—2>A® rT(A).
Then an algebra A (with involution 7) is called cellular if and only if there is an

R-module decomposition A = J{ @ --- @ J; with 7(J}) = J} for all j =1,...,n and
such that J; := EB{:IJ; gives a chain of two sided ideals

0O=JCchcCc---CcJ,=4A

called a cell chain, such that for each j = 1,--- ,n the quotient J;/J;_1 is a cell ideal
of A/Jj_1. The A’s are called standard modules as they coincide with the standard
modules arising in the stratified algebras discussed in Chapter 4. Representatives
for isomorphism classes of the irreducible modules of A can be taken as the heads

of the standard modules.

Example 2.1. 1. The algebra M, », (k) is cellular with involution 7(A) = AT

and has cell chain of length 1. In this case

and 7(A) = AT It is clear that A ® 7(A) = M, (k).

2. The algebra k[z]|/(z™) is cellular with involution 7 = id. The cell chain is given

by
0=(z") C (a"7) - C (z) C (1) = kla]/(a").
3. Let A be the path algebra of the quiver e; C €2 ;_: es modulo the ideal
B B

(a?, B2, aBey — Baes). The Loewy structure of the left regular representation

of A is given by
2
1 / \ 3
2 @1 3 D 2.
1 N /3
2

The algebra A is cellular with respect to the involution 7 defined by 7(e;) = e;,
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7(a) = B, 7(8) = . It has a cell chain given by
AaeyB)A C AesA C A(ex +e3)A C A.

Affine cellular algebras We define affine cellularity in the context of Koenig and
Xi [KX12]. An affine commutative algebra is a commutative k-algebra which is a
quotient of a polynomial ring k[zy,---x,] in finitely many variables. Let A be a
unitary k-algebra with a k-anti-involution 7. A two-sided ideal J in A is called an

affine cell ideal if the following conditions are satisfied:
1. the ideal J is fixed by 7, i.e., 7(J) = J;

2. there exists a free k-module V' of finite rank and an affine commutative k-
algebra B with identity and with a k-involution ¢ such that A := V @, B
can be given the structure of an A-B-bimodule, where the right B-module

structure is induced by that of the regular right B-module Bp;

3. there is an A-A-bimodule isomorphism o : J — A®pg A’, where A’ := B®y V
is a B-A-bimodule with the left B-module structure induced by B and with

the right A-module structure via 7, that is,
(b®@wv)a := s(t(a)(v@Db)),

foraec A, beB,veV,ands: VB —>B®V,v®br— b®wv, such that

the following diagram is commutative:

J—>AwgA
Tl iUl®b1®Bb2®U2’—>U2®U(b2)®B0’(b1)®'U1

JL>A®BA,.

The algebra A (with involution 7) is called affine cellular if there is a k-module
decomposition A = J; © Jy ® --- @ J,, (for some n) with 7(J}) = J} for each j and
such that setting J; = @g:r]l, gives a chain of two-sided ideals of A:

0O=JycJichcCc---CJ,=A4A

(each of them fixed by 7) and for each j =1,...,n the quotient J;/J;_1 is an affine
cell ideal of A/J;_1 (with respect to the involution induced by 7 on the quotient).
We call this chain a cell chain for the affine cellular algebra A. The module A is
called a cell module for the affine cell ideal J.

Example 2.2. 1. The algebras M, (k[z]) are affine cellular with respect to the
involution 7(A) = AT with cell chains of length 1.
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2. Moreover, the same is true of matrices over any affine algebra, in particular in

light of the isomorphism

Endk[yl,.“,ya]ea (k[yla T 7ya]) = Marxa! (k[ylv s ,ya])

and Theorem 1.13, the affine nil-Hecke algebra is affine cellular.

(6%

3. If A :=kQ/T @ k[z] where Q: 1 =2 and Z = (af) then A is an affine
B

cellular algebra with respect to the involution 7®jyid where 7 fixes idempotents

and exchanges a and 8. A has cell chain given by

0 C Aes A @k k[z] C A @ k[z].

4. More generally, if A is a cellular algebra and H is an affine algebra then A®y H
is an affine cellular algebra with respect to the involution ¢ ® id and has cell
chain

0C T, @k HC Jp 1@ HC---CJiexkH=A®xH

induced from the cell chain 0 C J,, C--- C J; = A of A.

2.2 Affine cellularity of R,the quiver Hecke algebra

The affine cellularity of quiver Hecke algebras in type A was established by
Kleshchev, Loubert and Miemietz [KLM13]. To describe the affine cellular struc-
ture the authors make use of special elements y, and ¢, in R,, which correspond

to a root partition 7 € II(a), and are defined in the following way.

Elements 1y, and ), We fix a root a € Q of height d, and let a!,..., o’ € O,

with a! 4+ --- + o’ = a. There is a natural embedding
bal . ab 't Ryi® - ®@Rup — Ry

whose image R,1 _,» is the parabolic subalgebra in R,. Let us define ¢, € Raq to

be the element

VYo = (Y- ag—1) -~ (2 Yagp1) (W1 - Ya). (2.1)
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In explanation, v, is the permutation of two a-blocks, as illustrated below.

Let p € N then define

wa,r = L(r—l)a,2a,(p—r—l)a(1 ® Yo ® 1) € RPCY (1 <r< p)?

which is the element that permutes the r** and (r + 1) a-blocks. Furthermore, for

w € 6, and a reduced decomposition w = s;, - - - s;,, define

waw::¢ai1"'¢aim € Rya.
b b b p

Let us define

Ya,s = L(s—l)a,a,(p—s)a(l ® Ya @ 1) € Rpa (1 <s< p)'

In words, ya,s is a dot on the last strand of the st" block of size d.
We further define

o 2 —1
Yo,p ‘= Ya,2Ya,3 " " ° yﬁ,p € Rpaa

and denote the polynomial algebra and the symmetric polynomial algebra in these
variables by
S
Pop=ZYa;s---»Yap) and Aqp = Pap.

Now, let 7 = g .- gh" € II(a) be a root partition of a. For 1 < k < n, and
x € Ry, g, put

k
L (x) = [’p151+"'+Pk71/3k71’Pkﬁk:pk+15k+1+'”+pn6n(1 QT 1) € Ra.

Forall1<k<n,we6,,1<r<p;and 1l <s < p; define the elements of R,

¢k,w = Lk(wﬁk,w)7 1/%,7« = Lk(wﬂk,r)7 Yk,s = Lk(yﬂk,s)'
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In other words, 1, , is the permutation of the r, r +1 Si-blocks and y;, s is a dot on
final strand on s B-block. We define

Yr 1= Ll(yﬁl,pl) T Ln(yﬂmpn)7

Y 1= Ll(wﬁhw%) o Ln(wﬁn’wg)’

where wlg is the longest element of &, , for k =1,...,n. Also, let
A o= tpi 81 puBn (Bt @ @ N, p,) E Ay @@ Ay, (2.2)
P7T = LPlBlym:pnﬁn (Pﬁ1,p1 Q& Pﬁnvpn)’ (23)

Let us consider some examples, as the elements ¥y, and v, are clearer when
illustrated.

Example 2.3. 1. When a = «of, ie, R, = NH,, then y; = yq, ¥r = g and
A7T = k[ylv s )ya]Ga'

2. For a = 3a; + 3ag, let 7 = (a1 + a2)3. Then y, = yay2 and
Yr = Yohyp3ihorh1hothsPathsih3batha.

3. For a = 201 + ag, let m = as(a1)?, then y, = y3 and v, = 13, whereas for

7= (a1 + az)a; we have yr = e(i;) = Y.

4. Let o = 23 + 202 + 203, and 7= (a1 + ag + a3)®. Then y, = yeyi and
Vre = Y3120a1P2patpepataths.

Notice that we can split the element 1, into three distinct parts, namely,
Vr = Yrzzzr, where 1z consists of the part of 1, that contains only (i,3)-
crossings of the same colour. Then .z contains only (i,7)-crossings of different

colours, and vz, is the reversal of ¥, x.

Example 2.4. For example, consider the root partition 7 = (a1 + ). Then ¥,

can be written using diagrammatics as follows.

Ve
> ww?r
@Z)W < > "pﬁ
> w‘ﬁ'ﬂ'

\
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We now prove a generalised version of Lemma 1.12.

Lemma 2.5. For w € II(«) and ¥r,yr € Ro we have
Yryntpre(in) = Yre(ix).
Proof. 1t suffices to prove this for a partition consisting of one block type since
Yr, Yr € Rpip, ® - @ Ry, 3, C Ry

So, let m = (a1 + -+ - + ay)®. Then

1/J7ry7r1/17r€(’i7r) = %fﬂbﬁ"tﬁfrnyn%ﬁ%%n@(iw)
a—1
= wwﬁ¢ﬁwﬁw H yfk+1)mwwﬁwﬁwﬁﬁe(iw)
k=1

a—1
= YrrPrarPrr H ys(m_1)+k+1wﬁ¢7’m€(iﬂ')'
k=1

Let us rename the polynomial part yze(¢) := HZ;% ys(m—1)+k+1' Direct computation
shows that Yz,1rze(i) = pe(i), where p is a polynomial within a product of nil-
Hecke algebras;

NHY @ --- @ NH™,

and deg(¢rz) = 371 (m — 1)(a — k). We can write p = p; + - - - + p,., where each

a=1

pj is a monomial and p; = pg-l) x -pg.m) with pji) € NH((li). With the same convention

of notation, write ¥z = ((11) e @Z)E,m). Note that yz € NHELm), this gives

Vapyatr = > & pM 0l -l pl el
j

Let us denote by p := pyz, and carry this notation down so that p; := p;yz giving
bpy) = g-i) and pg-m) = p§m)yﬁ. Suppose ¥zp;¢z # 0 for some 1 < j <r, then we
claim that deg(p(-i)) =a(a—1) foreach 1 <i¢ < m. If deg(p(-i)) < a(a — 1) then
deg(wg)pji)ng)) < deg(zp,(f)) = —a(a — 1) which contradicts ne being the element

of least degree in NHY. So deg(pgi)) > a(a—1), but if deg(pg-i)) > a(a —1) for some

1, then since

m—1
deg(p) = 2 - deg(vrz) + deg(yz) = ala— 1) +2 > (m — 1)(a — k) = a(a — 1)m,
k=1

we would require deg(p(i/)) < a(a — 1) for some other ¢/, which we already know

J

cannot occur. So deg(pg.l)) =a(a—1) for each 1 <7 < m. Since deg(yz) = a(a —1),
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(m) 1. ,m=1)

we must have p; ' =1, so we can refine the polynomial p; = P,
We now claim that p; = H;’;_llp(.l) = H:l_ll y((f). The monomial py) has a
variables, Yi4z,, - -, Yata;, Where z; = a(i — 1). Let us define

deg,,(p)) := deg ()" (Ynta,)).

for 1 <n <a. So deg, (pg.i)) is the degree of the n'* variable of pgi)

above by twice the number of strands of (i + 1)-colour that the n-strand crosses.
Therefore, degn(pg.z)) <n—1. So if Yzp;1x # 0 then p; = H?:ll yff).
There is precisely one summand p; with with this property. To show that this

, and is bounded

summand exists and is unique consider each (4,7 + 1)-crossing squared in ¥z¥rz,
this produces a factor (ys — y¢) in p for some s and ¢, where y, corresponds to a dot
on the (i — 1)-strand and y; to a dot on the i-strand. When we multiply these out,
picking the corresponding y; term in each factor will produce H?:ll y,(f ) Tt is easy
to see that any other summand of p will not satisfy the above restrictions on degree.

So
m—1
wwyﬂwwe(iﬂ) = wﬂﬁ'wﬁ H yé’i)yﬁwﬁ'wﬁﬂe(iw)-

i=1
Notice that yz = y((lm), now by Lemma 1.12 we get

1/}71'7?1;[)7? Hy((],i)wﬁ'd)ﬁﬂe(iﬁ) = ¢7T7’r1/}ﬂ'1/}7’r7r6(i7r) = ¢ﬂ€(iw)a
=1

as required. O

Example 2.6. Let pg-k) =y} Y3, 295, Then degl(pg-k)) =3, degQ(pg-k)) =2 and

k
deg;;(pg. h=1.
In particular, the previous lemma shows that ¢ ,y-e(ir) are idempotents in R,.
This property is used when constructing an affine cellular basis for R,,.
Affine cell structure The authors of [KLM13] define

Il =k — span{¢yyr ArVryre(in )0l | w,v € &7},

I7r = ZL/ﬂ

o>T
I>7r = Z Ié—»
o>T
and conclude that the I; form a cell chain for R, thus establishing affine cellularity

for the quiver Hecke algebra.
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Theorem 2.7. [KLM13, Main Theorem] The algebra Ry is graded affine cellular
with cell chain given by the ideals {I; | m € II(a)}. Moreover, setting Ry := Ry /Isx
for a fired m € II(ax), and er := Pryre(ix) we have:

1. the map Ay — € Ry, b bjntpne(iy) is an isomorphism of graded algebras;

2. Roe(iz)Unir 15 a free right € Raex-module with basis given by
{Ywlntne(in)yn | w € 67;
3. Yrbre(in) Ry is a free left &xRo€r-module with basis given by
{¢re(in)gnty | v € ™)

4. multiplication provides an isomorphism

Reé(in)Vrijr Oer Raen Yrnthre(in) Ro — Rotpre(in)irRa;

5. Roﬂ@ré(iw)@rRa - I?T/I>7r-

In future examples it will become convenient to adopt the following notation.
When referring to a = 2a1 + ag and m = (aq + az)ay then we will often write

L. = 121, and similarly for A; and other such notation.

This gives rise to a basis for R, which we call the affine cellular basis due to
its combinatorial similarities with the bases of [GL66] for finite dimensional cellular

algebras.

Corollary 2.8. The algebra R, has a basis given by

{wyr Axtbryme(in )] | m € H(a);w,v € &™}.

This work has since been generalised by Kleshchev and Loubert [KL15] to all
finite types. Note that the affine cellular basis is not always the easiest basis to work

with, as the next example illustrates.

Example 2.9. Let o = 2a; + ag then A1a1 = k[ya, y3], so how is e(121)y; expressed
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as a linear combination of basis elements?

e(121)y1 = (y1 — y2)e(121) 4 yae(121)
= —1e(211)¢1 + y2e(121)
= —th1(Y2ys — y2tp2)e(211) 91 + yoe(121)
= 1y22y3thee(211)ysihathr — P1ibaysibae(211)ysehr + yoe(121)
= h1baysiha(ya + y3)e(211)yshathr — Yrysioe(211)yzibath
— 1haysipae(211)ysi1 + yoe(121).

This example is also illustrative of the property that y,e(ir) = yse(ir) mod Is,
when y, and ys are in the same m—block, see [KLM13, Corollary 5.10].
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Chapter 3

An ideal of R,the quiver Hecke
algebra

The affine cell chain structure of R, described in the previous chapter can be thought

of as follows

m

where each layer is a different affine cell ideal. The purpose of this chapter is to
establish an ideal [J such that the quotient R,/J is a truncation of the affine cell

ideals to give a finite dimensional algebra.

In order to construct J we must first generalise Lemma 1.11 so that for any w € G7
such that e(ir)we(iy) # 0 we may rewrite Yy yrthre(isz) as futre(iz) where f, is
a Schubert polynomial associated to w, this is done is Section 3.1. In Section 3.2 we
construct 7, in doing so we make use of the fact that multiplying an element of the

affine cell basis by any element of R, either increases the degree of the polynomial
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from A, at the centre of the basis element or yields a linear combination of basis
elements from cells lower than the original (note that it is also an option that both
of these eventualities occur). Crucially, the degree of the polynomial at the centre
of our basis element is not decreased. Therefore, we can define an ideal by choosing
basis elements from each cell ideal with central polynomial of sufficiently high degree
to ensures that multiplication by elements of R, yields linear combinations of basis
elements above that degree in each cell ideal. It is worth noting that while we could
define an ideal in the same way but containing all polynomials in A, the finite
dimensional algebra obtained when R, is quotiented by this ideal does not posses
the homological properties R, that we wish to preserve. A worked example of this
is contained in Section 6.3. We start Section 3.2 by establishing a bound on the
central polynomial and then go on to formally prove the properties of 7 that we

describe here.

3.1 The group W, W

Let 8 be a positive root of height h. Define the element wg € Gy to be
wg = (Sp...S2n—-1) ---(S2...8h+1)(51...5p). In other words, wg permutes two
p-blocks, and is the permutation in the symmetric group which yields g = 9y, in
(2.1).

There is a natural embedding

Lr—1)h2h,(p—r—1h - Sr—1)p X G2n X Sy = Spi
We define
W,y = L(rfl)h,Zh,(pfrfl)h(l ® wg @ 1) (1<r<p).

So wg,, is the element of the symmetric group that permutes the r** and (r 4 1)*
B-blocks. Now consider the root partition 7 = 1" ---gh". For 1 < k < n and

r €6 we define the embedding

Pr|Bk|>

k.
L 6?1\B1\+"~+Pk71\5k71\ X 6pk|:8k| X 6Pk+1\ﬂk+1\+-"+pn\ﬁn\ — &g,

as
k —
L) 5= Uy Ba i 1B | ok el i1 B [+l Bl (1 @ T @ 1)

Define, wg, , := Lk(wg’r) foralll <k <mnand1l<r<p.
We now define the group W, using the notation defined above,

Wre=(wg,, | k=1,...,n;r=1,...,pp —1).
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In explanation, W is the group generated by permutations that swap m-blocks of
weight Bx. The next collection of lemmas builds towards an alternative description
of Wi.

Lemma 3.1. If e(ix)Ywe(ix) € Y, Iz C Ro then w € Wi

Proof. Assume that w ¢ Wy, so 1, will "mix up” the blocks of 7. Suppose we have
aroot f = ay+---+ a4k in the root partition m occupying the positions i, ..., i+ k.
Additionally, suppose i < j < j' < i+ k such that w(j) > w(j’), without loss of

generality we need only consider j/ = j + 1. Then w = w's; and,
Yuwelin) = Yurhs;e(ix) + Yype(ix)

for v such that I(vy) < (). Clearly Vs e(in) = Yure(sjin)is; and sjix > i,
which contradicts e(iz)Ywe(ix) € Y cr Lo O

Lemma 3.2. [Mat99, Corollary 1.4] Suppose that w € &,, and that s; is a simple

transposition in &,. Then

lwsi) l(w)+1; ifw() <w(i+1),
' I(w) —1; if w(i) > w(i+1).

Lemma 3.3. If w(i) < w(i+ 1) fori < i+ 1 in the same w-block then w € &7.

Proof. Let us consider ws; for some transposition s; € &,,. Since w(i) < w(i + 1),
l(ws;) = l(w) + 1. Both w and ws; are in the same & -coset, but {(w) < I(ws;) for

all s; € &™. Therefore, I(w) is minimal, and w € &™. O

Lemma 3.4. Diagrammatically a reduced expression is a diagram in which no two

strands cross twice.

Proof. Without loss of generality assume &,, is acting on (1---n) from the left.
We proceed by induction on [(w). If [(w) = 0 then we are done, so assume the
claim is true for I[(w) = k. Now let w = ws;, by Lemma 3.2 either [(w) = k + 1
or l[(w) = k — 1. If it is the latter, then our expression of w is not reduced, and
w(i + 1) < w(i), which means we have had a crossing of the ¢ and ¢ + 1 strands,
therefore adding s; corresponds to a diagram in which the two strands cross twice.
So, if [(w) = k + 1, then our expression is still reduced, and since w(i) < w(i + 1),
diagrammatically, we have not already had a crossing of the ¢ and 7+ 1 strands, and

any other crossing of two strands only occurs once. O

Lemma 3.5. For a root partition m € II(a)) we have
We=6"N{w € &, | e(ir)Pwe(iz) # 0}.
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Proof. Let # = ¥ ---gh». We start with the (C) inclusion. It follows from the
definition of Wy that W, C {w € &,, | e(ix)¢we(iy) # 0}. To see that W, C &7
take w € Wr. Again by definition w(i) < w(j) if 7,5 are in the same block, this
implies w € G™.

Now for the (D) inclusion. Take the element
w e 6™ N{w € &, | e(ir)ype(ir) # 0}

and first consider the m-blocks of weight £,. Without loss of generality, assume
Bn = a1 + -+ + auy. Pick the rightmost strand of colour 1, say this appears in the
ith position, then w(i;) < i;. We claim that w(i1) is also in a m-block of weight
Brn. If w(iy) =41 then the claim is satisfied. Assume w(iy) < ¢; then if w(i1) is not
in a m-block of weight 3, then it is in one of higher weight. Assume that w(iy) is
not in a w-block of weight (,, but is in a m-block of weight £,,_1. Since 8,_1 > B,
in the ordering on II(«), f,—1 contains a strand of higher colour, without loss of
generality say m + 1. Let w(i1) be in the rightmost 3,,—; block. Label the position
of the last appearing strand of colour m + 1 by jm+1, then w(jm41) < jm41 since
e(ix)Ywe(ir) # 0.

Assume that w(jm+1) = jm+1. By considering the braid diagram in the sym-
metric group, we see that for there to be a bijection between the top and bottom of
the diagram we must have a strand of colour 1 going into the m-blocks of weight 3,
from some 7-block of weight 85 > ,. This contradicts Lemma 1.8 as, using [GP00,
Lemma 2.1.4], we can now find w’ € &7 such that w = ww’ and w'(iz) > i, as

illustrated below.

im

w(iy) Jma1  J1 Jm+1 i) i w(i1) Jmar It Jm+1 i) i

So we consider w(jm+1) < Jm+1. Again, for a bijection of the diagram we need
a strand of colour 1 from the left of j,,+1 going to the m-blocks of weight 3,. If
W(Jjm+1) is in a m-block of weight /3,1 then we get the same situation as above so

let w(jm+1) fall in some m-block of weight Bs. Now, assuming w(kp+s) = kmys we
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reach a similar contradiction as illustrated below.

w(Jm+1) k1 km4s  w(i1) i1 il il

If w(kmts) < km+s then recursive repetition of the argument means we run out of
places to send a strand. So w(i1) is not in a w-block of weight ,_;1. Instead, if
we assume w(i1) is in a w-block of weight 8; < (,—1 then we reapply the previous
arguments to that block and again get a contradiction. Inductively, we get that
w(i1) must be in a m-block of weight 5,,.

The same argument above can be applied to the next rightmost strand of colour
1 and so on giving us that all strands of colour 1 in block 3, have their image, under
w, in a m-block of weight 5,,. Thus, all strands of a block [3,, have their images under
w in a B3, block. Applying the above arguments recursively to £,,_1 through 5, gives
us that w € &, |5, ra|Bn

We now reduce our attention to m, = pp(a1 + -+ + @) = ppfp. For i < i in

|><-"><6

B, we have w(i) < w(i'). So, consider neighbouring strands of colours ¢ and ¢+ 1 in
PnBn and choose the ¢ such that w(i 4 ¢m) is maximal among all strands of colour 3.
Then w(i+gm) = i+ (p, —1)m and w(i+gm)+1 < w(i+1+4gm), since we are in the
maximal block there is only one option and w(i+1+¢m) =i+ 1+ (p, — 1)m. Now
proceed with downward induction on the images of ¢ + gm under w where ¢ varies.
To help keep track we introduce some quantifier x, so that for ¢ with w(i +qm) > &
assume w(i + 1 + gm) = w(i + gm) + 1. We now need to show the hypothesis for
q such that w(i + gm) = k. We know that w(i + 1 + gm) < w(i + ¢gm) + 1, but by
the inductive hypothesis the strictly greater options are already accounted for, so
w(i+14gm) = w(i+gm)+1. We have shown that for i,i+1 in 5, w(i+1) = w(i)+1.
Repeating this argument for each p;3; gives us w(i+ 1) = w(i) + 1 for all 4,7+ 1 in
the same mw-block. Thus, w € W. O

We have one final lemma on reduced expressions in W, before we generalize

Lemma 1.11. When thinking about the proof of the lemma below, one should keep
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in mind a picture of the following sort.

Lemma 3.6. If W = s, ---5,, is a reduced expression, then w := wgy,, - Wz,

is a reduced expression. We then define v, = ¢w,8,r1 g, , moreover,
Ww) =3 05 Hwa,r,)-

Proof. We begin by induction on the length of @w. For [(w) = 0 the hypothesis is
clear, so assume it is also true for [(w) = n — 1. Now for @ of length n we induct
on the height of the root 5. If |5| = 1, then @ = w and therefore is a reduced
expression. Now assume that the claim is true for |f| = m — 1, without loss of
generality 5 = a1 + ...+ a;—1. Then for |3| = m, assume w is not a reduced
expression. So, the m!* strand in some copy must cross the same strand twice by
Lemma 3.4. But since w € W, we have no crossings within the root S by Lemma
3.5. Therefore, there must also be double crossings in each of the other strands, for
instance the 1% strand. This contradicts @ being a reduced expression. So w must

be a reduced expression. ]

Recall the polynomial ring Py from (2.3), this is the polynomial ring in variables

corresponding to the ends of roots. The polynomial ring A is a subset of P.
Example 3.7. Let 7 = (a1 + a2 + a3)(a1 + az)?. Then P, = k[ys, ys, y7]-

Proposition 3.8. Let m € II(«) be a root partition for a. Then

{e(in)bwyntpre(in) | w € 67} = { futhre(ix) | w € Wi} C Ra,

where fy, is the Schubert polynomial with variables in Py associated to w € Wi.

Moreover, this is a term-wise equality.

Proof. Lemma 3.5 allows us to reduce our attention to the case of one repeated

root, ie m = 8. We prove this by induction on the length of 1,,. For I(w) = 0 the
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equality is clear, so assume it is also true for I(w') = {—1 and let w = wg,, w’. Using
Lemma 3.6 we write Yw = tu,, + Yuy, » then wg,, -+ wgy, = Py for w' € Wi.
By length, we know the claim holds for 1,,, so

¢wyﬂ¢ﬂe(iW) = ¢w5,rl ¢w’y7rw7re(i7r)7
= ¢w5,r1 fuwhe(iz),
= ¢w5,,«1 ¢ﬂﬁﬁ¢ﬁ'¢ﬁﬂ'e(iﬂ')~

Our claim now reduces to showing that, for w = wg ., ,

d}w wﬂﬁﬁ¢ﬁ¢ﬁﬂ € (7'7r) = d}ﬂﬁfiwwﬁ'qbﬁ'ﬂ € (7'7r) .

Using the same convention as Example 2.4 we write ¥, = Ywaz¥aWVaw, then

¢w¢nﬁﬁ¢ﬁ¢ﬁne(iw) = YwoVo¥ow @Ziﬁﬁwﬁiﬁwﬁ@(iw) .

Notice that ¥,z can be written in two ways. We can either collect all the 1s,
then all the 2s and so on. Or, we can order two adjacent blocks, then order a third
adjacent block into that and so on. (The two options are illustrated in Example
3.9.)

Choosing the second option, and first ordering the r; and (r; + 1) m-blocks of
weight 5 then v,z ends with the expression ¥z, i€ Yrz = VwgPrest Where Yrpest is

just the remaining part of ¢,z. So,

www¢w¢ww¢w@wrestﬁ¢ﬁwﬁﬂ = Uwawwp?l}restE@bﬂbﬁwe(in)»
= wwu’)d}u’)wrestpﬁqﬁﬁ'wﬁﬂe(iﬂ)-

We now claim that it is possible to ”braid” 14 through et to give Vrest¥m-
This follows from the fact that ¢y contains only (i,7)-crossings and et contains
only (i, 7)-crossings. Thus eliminating any non-trivial braid relations as 15 passes
through. It is also worth noting that for each (4, 7)-crossing, if one of these i’s crosses
a j, then this implies that the other ¢ will also cross that j-strand. See the following
picture in the case of m = 3(a1 + s+ a3), the ¥, is at the top of the braid diagram
with 15 in the section below followed by rest.
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Ywo

X X1 -

Yrest

Py

So we have
wu’)wwﬂ}wrestﬁﬁwﬁwﬁw = ¢ww¢rest%pﬁw7’r¢ﬁﬂe(iﬂ')-

Part of the equation between trest and ¥z, takes place in the product of nil-Hecke

algebras, if we write that part explicitly we get

m—1 m—2 7m71 a—1la—j
wwwwrest H ¢r1+m H (y(r1+1)+ia - yr1+ia)fw’ H H H ¢k+iaw7_r7re(7:7r)‘
i=0 i=0 i=0 j=1k=1

When we expand the polynomial product we get a series of summands, all bar one of
which equate to zero. The non-zero summand is the one which results from choosing

the y corresponding to a dot on the (r + 1) strand of each nil-Hecke algebra, so

m—2 m—2
H (y(rl—i-l)—l—ia - y7"1+w H Y(ri+1) —Ha
=0 1=0

If we focus on just the part in the nil-Hecke algebras NH,(ll) Q- ® NHELm) we get

m—1 a—1la—j a la—j
H Tzl)yq(flJrl H H wk ’ £1 H H djk
i=1 j=1k=1 j=1k=1

Since 1/1,(12' ) = H?;ll HZ;]I 1#,(;') and we can chose a reduced expression for a starting

with r1, we obtain

m—1 fa—1a—j ) —(m) a—la—j
TTTT % | -0 7™ T IT vt
i=1 \j=1k=1 j=1k=1

When we consider our Schubert polynomial f,,, we have

deg(fia) = deg(yr) =2-a(a —1).

The length of wg, the longest possible reduced word, is a(a —1)/2, and fy,, = 1. So

37



each time we increase the length of v, by 1, whilst still being a reduced expression,
we reduce the degree of f,, by 2. This corresponds to losing a y; from the polynomial
expression of f,. There is precisely one y; for each transposition in the reduced
expression of wy, taking this into account we get
m—1 fa—1a—j a—1a—j
T8 ) 7 TI T = Faten,

i=1 \j=1k=1 j=1k=1

with deg(f,) = deg(fu) — 2. Having simplified the part in the nil-Hecke algebra we

can return to our full picture where we have

¢ww¢rest%ﬁﬁ¢ﬁ¢ﬁﬂ'e(iﬂ') = wwﬂ) wrestﬁwﬁwﬁwe(iﬂ) .

We can now move f,, back through to the front, and rewrite ¥rz = YwaUrest t0 get
fw¢ﬂ7’r¢7’r¢ﬁ'ﬂ'e(iﬂ) = fwd}ﬂe(iﬂ-)-

Hence, {e(iz)YwyrtVre(iz) | w € 6™} = { futhre(iz) | w € Wr}.
0

Example 3.9. We illustrate the two ways that 1,z can be written for
7= (a1 +as+ az)®. Here we first collect all the 1s, then all the 2s and that
gives us all the 3s together.

123123123

Here we order the first two blocks, then order the third block into that.

123123123

Corollary 3.10. If e(ix)¢we(ix) then deg(iy) < 0, unless w = id, for w € Wr.

Proof. We know deg(e(ir)wyre(ir)) = deg(fuw) < deg(yr) unless w = id. So
deg(y) < 0 unless w = id. O
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3.2 The ideal 7J

We now set about constructing an ideal J, with which we intend to define a quotient
of the quiver Hecke algebra with nice homological properties. To do this we need
to introduce a function that takes a root partition and gives us out a number. This
number is then used as a bound on the degree of a polynomial in the definition of
our ideal 7.

Proposition 3.11. For a € Q4+ with |« |=n and v > o > 7 € Il(«) there exists a

function,

iteratively constructed on

dr = max{d, + deg(y,) — deg(y,) — yr + 4n(n — 1)}

v,0,T

such that for reduced expressions w', v' € &7, v € &™ and polynomial p € A, with

deg(p) > dr, we have,

ww’yae(ia)wayaw;yﬂ'e(iﬂ')djwywpw;— = E Cu,p,ﬁ,ﬁ@bﬁyue(iu)wl/yqug7 (31)
>0;
a,%é%”;
q€BL

for all v where B, is a basis for A, and if ¢, qu5 # 0 then deg(q) > d,.

Proof. We prove this by downward induction on root partitions. For 7,4, € ()

we set dr = 1. Assume there exists a d,, for all 0 > 7 € II(«). Now take the element

djw’yoe(ia)wayaw;’ yﬂe(iﬂ)¢ﬂyﬂp¢g € IZaa

then by [KLM13, Theorem 5.6] we can rewrite this as

> cwpastatve(d,) gy,
v>0;
1,0EGY;
q€By

We proceed by arguing that if we choose p with a sufficiently high degree then
aypas 7 0 will imply deg(q) > d,. If we compare degrees on either side of the
equality (3.11) we have

deg(Yure(is)) + deg(yo) + deg(e(iq) vy e(ir)) + deg(yr) + deg(p) + deg(¥ye(ix))
= deg(vae(iy)) + deg(yy) + deg(q) + deg(e(2,)7),
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bearing in mind that we need deg(q) > d, we want

deg(¢ure(ic)) + deg(yo) + deg(e(2s) vy e(in)) + deg(yx) + deg(p)
+ deg (v, e(in)) — deg(vae(iy)) — deg(y,) — deg(e(iy,)vf) > d.

So we require

deg(p) > dy + deg(ue(iy)) + deg(yy) + deg(e(d,)¢5) — deg(Pure(is))
— deg(y,) — deg(e(io)ye(in)) — deg(yr) — deg(yye(in))

Since the longest word in &,, has length n(n — 1)/2 we determine an upper bound

on the degrees
n(n —1)

deg(%@(iu)), deg(e(iu)wg) < 9

Also,
deg(vure(iq)), degle(io) vy e(in)), deg(vje(in)) = —n(n — 1).

So take

deg(p) > dy +n(n — 1) + deg(yx) — deg(yo) — deg(yr) + 3n(n — 1)
> dy + deg(y,) — deg(yo) — deg(yx) + 4n(n — 1),

therefore we set d; = max,  r{d, + deg(y,) — deg(y,) — deg(yr) + 4n(n —1)}. O

Throughout the remainder of this chapter we fix a d satisfying the conditions of

Proposition 3.11, and for a root partition 7 € II(«) we define
T =k — span{uyrre(in)y=pylw,v € 6™, p € Ar, deg(p) > dr},

Te=Y_ T,

o>T
Ton=>_ T}
o>
Now define
J= > J
mell(a)

We are about to show that 7 is an ideal for R,,, but first we need a technical lemma

and a generalization of [Roul2, Theorem 2.11].

Lemma 3.12. [KLM13, Corollary 5.10] If y, and ys are in the same w-block, then
yre(iw) = yse(iﬂ) mod Isr.
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For an example of this in the case of o = 2a7 4+ a9 see Example 2.9 in which it
is shown that y1e(121) = y2e(121) mod Io1;.
We need to use some classic results on Schubert polynomials, but adapted to our

particular setting.

Theorem 3.13. [Rou, Theorem 2.11] Schubert polynomials in yi,--- ,yq form a ba-
sis for the polynomial ring K[y1,- - - ,y4] as a free module over the ring k[y1, - - -, yq]®

of symmetric polynomials.

Recall that Py is the polynomial ring in the same variables as A; but without
any symmetry. Let us consider the set of Schubert polynomials in P, with respect
to Wy, by which we mean the subring of P, generated by Schubert polynomials in

Pg,,, for each i =1,--- ,n.

Corollary 3.14. Schubert polynomials in Py with respect to W, form a basis for

Py as a free module over A.
Theorem 3.15. 7 is an ideal in R, .

Proof. For a € R, we have

apwYntre (iﬂ)yﬂpw;— = a/yﬂ¢we(iﬂ)ywp¢;

for some a’ € R,. So setting b = ypire(iz)y-p1] it suffices to check that hb € J
for all h € R,. Recalling the basis in Theorem 1.4 we shall take

he{uy*---ye(@) | ri>0; ue &g i€ (I)a}.

We proceed by induction on 7 € II(a). Let m = mpax, then each §; in 7 has
|Bi] = 1s0 Pr =k[yi,...,yq]. First consider h = y{* - - -y e(ir) then using Corollary
3.14, we get

hyﬂe(iﬂ) = Z prwe('iw)

weBy

where f,, is the Schubert polynomial associated to w and p,, is a symmetric poly-

nomial. Therefore,

hb =" fupuwtnelic)ypthy = Y futhre(in)yxpPutly.

weG, weGy

Notice that &™ax = G, so Proposition 3.8 gives

ho = Z 1/)wy7r'¢7re(i7r)y7rp/¢; €J.

’LUEWﬂ'
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Now, it remains to check h = ¥y, for u € &4. When 9, = 1, since &5 = &™ we
have that hb is a basis element in 7. Now consider v, # 1, Corollary 3.10 gives
deg(¢we(tr)) < 0 therefore

deg(Yue(iz)hwe(ir)) < deg(Pue(ir)).

Proceed by induction on the degree of ¥,e(i,). For the base case let 1,e(i,) be of
minimal degree then 1, e(iz) = 0 € J. Now assume hb € J for all ¢,e(iy) of
degree less than m € Z and consider u € &, with deg(¢,e(ir)) = m. Untwisting

double crossings give

wue(iw)wwe(iw) = Z w&q&e(iﬂ')

ueSy

where gz € k[y1,...,yq4] and deg(vy) < deg(vhy,). If deg(ga) = 0 then

VaqayrPne(in)ynpy = Yayzre(in)yrpiby

is a basis element of 7. If deg(qz) > 0 then

Qaynd}w@(in)ywp%: Z fw'%e(iw)ynpw/p%

w' EWn
= Z ww’ yﬂwwe(iﬂ)ywp/w; .

w' EWxr

Now gty Yntbre(ir)y-p'1b7 as the same shape as 1, ¢,,b but with

deg(Yae(ir)) < deg(vue(ix))

so is in J by induction.

The arguments are symmetric, as multiplication on the right works in the same
way, S0 Jr,.. 15 a two-sided ideal.

Now, for an arbitrary = € II(«) assume that J~  is an ideal and use this to show
Jr is an ideal. Using Lemma 3.12 we rewrite h = yi* - - -y le(ix) as he(ir) + B for
h € P, and B € I.,. Then hb = hb + Bb for B € I~,. By Proposition 3.11 we can

rewrite B so that
Bb = Z asb = Z ay

as€Il av€J)
v>o>T

thus Bb € J~r. Now consider h € Py, as before he(i,) = ZwGWW fuwpwe(iz) and by

42



Corollary 3.14

ho=> " fupwb= Y Yuymime(iz)y-p'd] € J.

weEW weWr

Now consider h = ye(ir)hy, for u € S4. If u ¢ &7 then 1), factors over some
I, where 0 > 7 in which case Proposition 3.11 puts this into J~, which is cov-
ered by the inductive assumption. It is therefore sufficient to consider v € &™. If
1y = 1 then 9,b is a basis element for 7. If ¢, # 1 then deg(¢e(iz)) < 0
and deg(¢yye(iz)) < deg(ey). Proceed by induction on the degree of ¥y,e(ir).
For v¢ye(iy) of minimal degree for u € &™ then ¥, Yyue(iz) = 0 € J. Assume
Yuthyb € J for all ¢Yye(ir) such that deg(¢ye(iy)) < m € Z. Consider u € &™ such
that deg(vye(iz)) = m and we write

wuwwe(iw) = Z 1/Jaqa6(i7r)-

ueB™

Since deg(ytwe(ir)) < deg(wye(iz)) and deg(ga) > 0 we have deg(1y) < deg(vy,).
Now consider

hb = Z ¢ﬁ%yn¢ne(’iw)%p¢g'

ue6™
If deg(qz) = 0 then hb is a basis element for 7. If deg(gz) > 0 then using Corollary
3.14 we rewrite as qayre(ix) = Y, rcan fu Puwe(ix) which together with Proposition
3.8 gives
Gy bre (i) yxpy = Y burYatore(in) Yapurpily.

w' eG™

Now gty Ynthre(ir)y-p'1b7 has the same shape as ¥,1,b but with

deg(vae(ir)) < deg(vue(ix))

so by induction hb € J and J is a two sided ideal.

3.3 An improvement on d,our bound d

When constructing the ideal J polynomials in A, are chosen to have degree greater
than some d, for each m € II(«). The bound on d, is far from optimal, and is

currently given by

dr > d, + deg(y,) — deg(yo) — deg(y=) + 4n(n —1).
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The 4n(n — 1) aspect is obtained by crudely taking the following upper bounds on
the degrees of 1, type elements where w is a coset representative of some parabolic
subgroup of &,,, hence its length is bound by the length of the longest element of
GS,, which is n(n — 1)/2. Each 1; has a degree 0, 1, or —2 so

v
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where 7 < ¢ < v € I(a), 4,0 € &Y, w',v/ € &% and v € &™. Recall
that « = Zie[ c;o;, where «; are simple roots and for all w € &2 such that
e(2)Yye(iy) # 0, we have ¢ <jc, e(iy).

Lemma 3.16. Let o = ), cio; and let d be the positive integer defined in Propo-
sition 3.11. It is sufficient to take

dr > d, + deg(y,) — deg(y,) — deg(yx) + 2 Z ciciv1 + 3 Z ci(e; —1).

Proof. The bounds above can be greatly reduced by observing that, at the lower
end, the most negative degree for ¢,,e(i,) occurs when 7 is maximal among II(«),
and when 1, is the longest permutation of like-coloured strands. The longest word
on strands of colour i has length ¢;(¢; — 1)/2, and the quiver Hecke algebra element

corresponding to that has degree —c;(c; — 1) so

Z ci(l —¢;) < deg(Ywe(ir))
i
which is clearly greater that —n(n — 1). At the upper end, the greatest degree for
we(ir) again occurs when e(i,) is maximal, as this allows us to have longer words.
The element v; is of positive degree whenever i; = 441 + 1, for each collection of
strands of neighbouring index there can be only c;c; 41 crossings that are not subject
to relations. So deg(¢we(is)) < >, cicit1. We can also place an upper bound on
the degree of the element y,. This is again of maximal degree when 7 is maximal.
It is
deg(yr) < > (e; — 1)L,
¢i£0

Hence we get our bound. O
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Chapter 4

Stratified algebras

Quasi-hereditary algebras are a class of finite dimensional algebras introduced by
Cline, Parshall and Scott [CPS88] that have particularly nice representation theory.
They arise naturally in Lie theory and also overlap with the class of cellular algebras.
There are several natural generalizations of quasi-hereditary algebras, these include
the so-called standardly stratified algebras introduced in [CPS96], and the so-called
properly stratified algebras introduced in [Dla00] which form a proper subclass of
the class of standardly stratified algebras.

Definitions Let A be a finite dimensional k-algebra, and let A be an indexing
set for isomorphism classes of simple A-modules L(\), A € A. Let us denote by
P(X) and I(A) the projective cover and injective hull, respectively, of the simple
module L(A). For a subclass C of objects from A-mod we define F(C) to be the
full subcategory of A-mod consisting of all modules M having a filtration whose

subquotients are isomorphic to modules from C, ie, a chain of submodules
0OCM,C---CM CM

such that M;/M; 1 € C. Define add(M) to be the full subcategory of A-mod
consisting of modules N isomorphic to a direct summand of M* for some k > 0. For
A-modules M and N we define the trace Trp;(N) of M in N as the sum of images
of all A-homomorphisms from M to N.

Fix a partial pre-order <, by which we mean < is reflexive and transitive, on A.
For \, € A we write A < pif A < pand p £ A and A ~ pif A < pand p < X. For
A € A define P>* = @, P(u) and I>* = @51 (p1). For each A € A we define

e the standard module A(X) to be the maximal quotient of P(A) such that
[A(N) : L(p)] = 0 for p > A,

e the proper standard module A(\) to be the maximal quotient of A(\) satisfying
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e the costandard module V(\) to be the maximal submodule of I(\) such that
[V(N) : L(p)] =0 for all > A,

e the proper costandard module V(X) to be the maximal submodule of V())
satisfying [V(A) : L(\)] = 1.

These definitions yield the following equations

AN) = P(A)/Trp=a(P(N)), (4.1)

A(A) = P(N)/Trp=a(rad(P(N))), (4.2)

V() = (| Kerf, (4.3)
FrI(N)—=I>A

and V() is the pre-image under the canonical epimorphism I(\) — I())/soc(I()\))
of

v\ = N Ker f. (4.4)

FI(N)/soc(I(N\))—I=>

We now define three types of stratified algebra. We follow the definitions in
[FMO06] and will refer back to this as the FM definition. The pair (A4, <) is called a
standardly stratified algebra if

(SS1) the kernel of the canonical epimorphism P(A) = A(\) has a filtration whose
subquotients are isomorphic to A(u) with p > A.

(SS2) the kernel of the canonical epimorphism A(A) — L(A) has a filtration whose
subquotients are isomorphic to L(p) with p < A.

If < is a partial (or equivalently, linear) order and the above conditions are satisfied
then we call (4, <) a strongly standardly stratified algebra or, for brevity an SSS-
algebra. The next class of algebras form a proper subclass of the class of standardly
stratified algebras. We say that (A, <) is a properly stratified algebra if it satisfies
(SS1), (SS2) and the following condition:

(PS1) for each A € A the module A(A) has a filtration with subquotients isomorphic
to A(N).

An SSS-algebra is properly stratified if and only if A°? is an SSS-algebra. In particu-
lar, an algebra A is properly stratified if and only if A°? is also properly stratified, see
[Fri06]. Finally, assume that < is a partial order, then (A, <) is a quasi-hereditary
algebra if it satisfies (SS1), (SS2) and the following condition

46



(QH) for each A € A we have
AN) = A(N).

Example 4.1. 1. Consider the path algebra A; = kQ;/I; of the quiver

[e%
— =\

Qirer__ e

B

modulo the ideal I} = (). The left regular module of A has Loewy structure

Hence A; is quasi-hereditary with A(2) = P(2) = A(2) and A(1) = L(1) =
A(1).

2. Consider the path algebra As = kQs/I5 of the quiver
Qo:z( e €2

modulo the ideal Is = (a3, 23, z2). The left regular module of A5 has Loewy
structure
1
/ \ 9
2 @ |

1

B — ) —
-

since A(1) # A(1) the algebra Ay is not quasi-hereditary.

3. Consider the path algebra As = kQs/I3 of the quiver

modulo the ideal I3 = (a3, Bz, z2). The left regular module of A3 has Loewy
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structure
1

| >
N N

Hence Ajz is standardly stratified with A(2) = P(2), A(1) = L(1) = A(1) and

The algebra As is not properly stratified as A(2) does not possess a filtration
by A(2).

4. A whole class of examples of properly stratified algebras can be obtained from
quasi-hereditary algebras in the following way. If A is quasi-hereditary then
the algebra obtained from the tensor product A@yk[z1,--- ,x,]/ (2, -, 2lr)

rrn

is properly stratified.

4.1 The category F(A)F(D) and tilting

If A is a stratified algebra then F(A) denotes the category F(C) where
C={A\) | A€ A}, in a similar way define F(A), F(V), F(V). We also
define C<) the subclass of C consisting of modules in C with index less or equal to
A € A (equivalently define C>y, C<) and Cs)), using this notation we can define
the respective categories F(A<y), F(Asy), F(Acy) and F(As)). We define tilting
modules to be the objects in the category F(A) N F(V). For A\ € A there exists a
unique (up to isomorphism) indecomposable tilting module 7'(\) with the property
that its standard filtration starts with A(\) when reading from the bottom. It is
shown in [AHLUOQOb, Theorem 2.1 & Proposition 2.3] that there exists a multiplicity

free tilting module T' = @xeaT'(A) such that F(A) N F(V) = add(T"). We call this
T the characteristic tilting module. Dually, the objects of F(A) N F(V) are called
the cotilting modules, and for A € A we denote by C'()) the cotilting module whose
costandard filtration ends with V(X). Define the characteristic cotilting module
C = ®reaC (M), we have F(A) N F(V) = add(C). For more details on tilting theory
we refer the reader to [HHKO7] and for the particular case of standardly stratified
algebras [AHLUOOD).

The following theorem is well known see [DR92, Lemma 1.5] and [Rin91, Theo-

rem 2].

Theorem 4.2. The category F(A) is
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1. closed under kernels of epimorphisms;
2. closed under extensions;

3. closed under direct summands of direct sums.

4.2 A strategy for proving standardly stratified

We remind the reader that we are referring to the previous definition of standardly
stratified as the FM definition. We now take inspiration from an earlier definition
of standardly stratified which we refer to as the ADL definition [ADL9S8]. Let A be
a basic connected finite dimensional k-algebra and A4 = @] | P°P(i) = @' e;A.
Denote by e = (e, -, e,) the complete sequence of its indecomposable orthogonal
idempotents and set ¢; = Z;L:Z e;. For (A, e) we define right standard and proper
standard A-modules by

A(i) = e;A/e;jrad Aei11 A, 1 < i <n, and,
A7) = e;A/e;rad A A, 1 <i < n,
respectively. Then, according to the ADL definition, the algebra (A, e) is standardly
stratified if each factor Ae; A/Ae; 1A of the trace filtration of A4 belongs to F(A4).
This is equivalent to (see [D1a96] or [Lak00]) each factor of the trace filtration of 4A
belonging to F(A).
We now give an alternative characterisation of standardly stratified which does

not require the algebra A to be basic, but does require the existence of a set of

idempotents with properties inspired by the properties of {e(ir) | 7 € II(a)} C R,.
Theorem 4.3. Let A be an algebra with idempotents ey, ..., e, such that

(a) Aler + -+ en)A=A;

(b) and each idempotent e; has a decomposition e; = f; + f! where;

(i) fi,..., fn are indecomposable pairwise orthogonal idempotents with
Alfi+ -+ fo)A= 4

(1) and f] € Aeit1 A where g, =377 €;.
Then 4(Ag;AJ/Aei1A) € F(A) if and only if A is (strongly) standardly stratified.
Before proving this theorem we need a few other results. Note that if an algebra
is standardly stratified in the sense of the FM definition then for each class of

projective module there exists a primitive idempotent ey such that Aey = P(\).
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Lemma 4.4. Let A be a standardly stratified k-algebra (in the sense of the FM
definition) and let e, be the highest idempotent in the associated order, then there
s an isomorphism

¢ Aep, Re, Ae,, €nA — Aen A
where a @ b — ab.

Proof. Since A is standardly stratified we have a filtration of Ae, Ae; by A(n) and
since A(n) is projective we choose, for each ¢ = 1,--- ,n, a decomposition of Ae, Ae;

into s direct summands isomorphic to Ae, so
~J EBS
AenAe; = Ae)’.

Let e, bje; be a generator for the 4 summand, for 1 < j < s. We now claim that

enAe; is free as a left e, Ae,-module with basis
{bj = enbjei ‘ j = 1,...,8}.

Let z € e, Ae; then x = 1 - € Ae, Ae; and can be written uniquely as a sum
Zajenbjei, aj € A;
J

and since e,z = x we have e,a; = a;. So a; € e, Ae, and the claim holds. Returning

to the map ¢, since multiplication is surjective
@ Aey Re,, Ae,, EnA — AepA.

It follows from e, Ae; being a free left e, Ae,-module of rank s that for each fixed
1 < i <n we have Ae, R¢, ac, enAe; = Aed® (where s depends on i). On the other

hand we have Ae, Ae; isomorphic to Ael* from the start. So the map
Aey, Re,, Ae,, enAe; - AepAe;

is an isomorphism and hence ¢ is an isomorphism. O

The following is an example of why the lemma above only applies to the idem-

potent that is highest in the associated order.
Example 4.5. Let A be the path algebra of the quiver

B
TR

€] ——> €9

«
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modulo the ideal (73, aya), we set A = {1 < 2}. This 11 dimensional algebra is
standardly stratified and Aes A = Aes ®e,4¢, €24 but

AerA = {e1,q,B,7,7a, v, B, yay, Bya, Byay}
e1®e1, e1®a, e1® f, 7 ®e1,
Ae1 ®e¢; Ae, 1A = 7R a, v ® B, By®Rer, ayRer,
By ®a, yay®er, Byay®er

which are clearly not isomorphic since the dimensions are not equal.

Before we continue we will need the following well known lemma which can be
found in [Wei95, Exercise 1.3.3].

Lemma 4.6 (The Five Lemma). In any commutative diagram

A B’ c’ D’ o4
Eia %lb ic %ld ’E\Le
A B C D E

with exact rows in any abelian category, if a, b, d, and e are isomorphism, the c is
also an isomorphism. More precisely, this lemma comes in two halves. If b and d
are monomorphisms and a is an epimorphism then c is a monomorphism. If b and

d are epimorphisms and e is a mononomorphism then c is an epimorphism.

Next we show that certain subcategories of F(A) satisfy the conditions 1 — 3 of
Theorem 4.2.

Proposition 4.7. The categories F(A>;) and F(A<;) also satisfy

1. closed under kernels of epimorphisms;

2. closed under extensions;

3. closed under direct summands of direct sums.
Proof. Let B :=¢;Ag;. Define a functor

€i-: A-mod — B-mod
M — g; M.

It follows from the definition that

AB(G)  ifj >

0 otherwise.

A(j) = {
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So &;- restricts to a functor &;- : F(As;) — F(AP). We claim that the above functor

is mutually inverse to
Ag; ®c,ae; — : F(AP) = F(Ax),
and provides an isomorphism of categories
F(As;) = F(AB).
In one direction the composition is clearly isomorphic to the identity
€i - 0Ag; ®c ne; — = Idg, ac,

hence restricts to Idf( AB)- So, now consider Ae; ®, 4-; — 0 €;. Under this functor
M € F(As;) maps to Ag; @, 4¢, M. If M = A(j) with j > ¢ then

A(]) = AEj/A€j+1A€j — EiAej/EiA€j+1A6j — AEiAej/AsiAajHAej = A(])

The final equality holds since we claim that Ae;Ae; = Ae;. In one direction (C) the
inclusion is clear, and for the other (D) notice that 1-¢; - 1-e; = e;, thus equality
follows. Now we apply induction and need to show the claim for M filtered by A(j).
Let

be a short exact sequence. Then we have the commutative diagram

N M A(j)
'S
N—— Ag; M — A(j).

The Five Lemma 4.6 gives us an isomorphism taking Ae; ®¢, ¢, €iM +— M, hence
A€7; ®EiA8i —og; = Id}—(AZz) .

Now, the two categories are equivalent. Since, F(AP) satisfied the properties of
Theorem 4.2 we may deduce that F(A>;) also satisfied these properties.

First notice that F(A<;) is a full subcategory of F(A). We know that
[A(7) : L(j)] = 0if j > 4. So for M € F(A<;) we have [M : L(j)] =0 for j > . If
we have the epimorphism f : M — N where both M, N € F(A<;), then we know
that ker f € F(A), but since neither M nor N contain simples with index greater
than ¢ we may deduce that neither does ker f, so ker f € F(A<;). Similarly, if
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M, N € F(A<;) fit into the short exact sequence
M— X - N,

X € A-mod, then X € F(A) and [X : L(j)] =0 for j >iso X € F(A<;). Closure

under direct summands is clear. O
Let us return to proving Theorem 4.3.

Proof. The task is to prove (under the conditions given in the theorem) that
AeiAfAei1 A is in F(A) if and only if A(D,.; fi)Afi is in F(Axi4q) for all
i =1,---,n. Notice that A(} ., fj)Afi = Aei11Af;. For the forward direction we
proceed by downward induction on i. For i = n, Ae,11A = 0, so by assumption
Ae,A € F(A). We prove that Ae, A € F(Asy,), from which it then follows that
Ae,Afn—1 € F(Asy) since F(Asy,) is closed under direct summands by Proposition
4.7. Indeed, there exists a k > 0 such that top(Ae,A) = L(n)®*, and hence we have
the surjection
¢ : Aen A — A(n)PF,

Since A(n) is projective we have Ae,A = A(n)®* @ ker ¢. However, top(ker @)
is made up of some copies of L(n), and thus we must have ker¢p = 0. Hence
Ae, A € F(Asy).

Now inductively assume that Ae; 11 A € F(A>iy1), then Ag;A/Agi11A s a sum
of A(i) by the base step for the algebra A/Ae;11A. We construct the short exact
sequence

A€i+1A — AEzA — AEiA/AEZ'+1A,

and observe that Ae; 1A € F(Asiy1) C F(As;) and Ag;A/Asi1 A € F(As;), since
F(As;) is closed under extensions Ag; A € F(A>;). Now, consider Ae;41 A, we can
write this as .
Agi1 A= @ Agi1Af;.
j=1
Now Ae;11Af; appears as a direct summand of Ag;;1A, and F(A) is closed under
direct summands, so Ag;11Afi € F(Asiy1).
For the converse, assume that the kernel of P(i) — A(é) has a filtration with

subquotients A(j), for j > i. The lowest cell is given by
Ae, A = Ae, A= Af, A

which gives us Ae, A = Ae! = A(n)®!) where [ is the rank of e, A as a left e, Ae,-

module by Lemma 4.4, and hence Ae, A € F(A). We proceed by downward induc-
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tion on the index of cells, so assume that all factors down to
Agit1A/AciroA € F(A).
Then considering Ae; A/Ae;11 A, we rewrite this as
AejAJAci1 A = (Ae; A+ Agip1A)/Acip1 A= (AfiA+ Aei1A)/Asii A,
and then apply the second isomorphism theorem
(AfiA+ Aegip1A)JAcip = AfA/(AfiAN Agip1 A).

Now, if we view Af; A/AfiANAe;11A as an ideal of A/Ae; 1A then f; is the highest
indexed idempotent. Since A is standardly stratified

AeZA/(AelA N A€i+1A) = (A/AEH_lA)egBmZ = A(Z)Eeml

where m; is the rank of e;(A/Aeg;11A) as a left e;(A/AAeg;11A)e;-module.  So
A€i+1A/A€Z‘A S f(A)
O

4.3 Properties of stratified algebras

These stratifications have reasonably nice homological properties which have been
studied by [Rin91], [AHLUOOb], [FMO06]. If one knows an algebra is quasi-hereditary
then one knows that it has finite global dimension, unfortunately this does not carry
over to properly or standardly stratified algebras, which can have infinite global

dimension.

Theorem 4.8. [AHLUO0b, Theorem 2.4] Let (A, <) be a standardly stratified alge-
bra. Then A is quasi-hereditary if and only if gl. dim(A) < co.

For properly stratified algebras another invariant is well understood, namely the
finitistic dimension. The (projectively defined) finitistic dimension of an algebra A

is the number
fin. dim(A) := sup{p. dim(M)|M € A-mod,p.dim(M) < co}.

This homological property is the subject of a still open conjecture since 1960.
Conjecture 4.9. Let A be a finite dimensional algebra, then fin. dim(A) < oo.
The conjecture has been shown to hold for many classes of algebras, and for

more information on its history we refer the reader to [ZH95]. For our purposes we
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need only note that the conjecture has been shown to hold for the class of stratified
algebras [AHLUOOa, Theorem 2.1]. Obtaining optimum bounds on the finitistic
dimension of standardly and properly stratified algebras is studied in [AHLUOOa],
[MOO04], [Maz04]. Another property, originally studied for quasi-hereditary algebras
by Ringel, is the endomorphism ring of the characteristic tilting module. For an
5SS S-algebra (A, <) the Ringel Dual R of A is defined to be

R := End (7).

For quasi-hereditary algebras the Ringel dual is a well behaved object.

Theorem 4.10. [Rin91] If (A, <) be a quasi-hereditary algebra, then the Ringel dual
R of A is quasi-hereditary with respect to the opposite order on the poset. Moreover,
the Ringel dual of R is Morita equivalent to A.

However, the Ringel dual of a properly stratified algebra need not be properly
stratified. Indeed, we will see examples in Chapter 6 that illustrate this fact.
The class of cellular algebras, described in Chapter 2, overlaps with the class of

stratified algebras. The following result illustrates part of that overlap.

Proposition 4.11. [KX99] Let A be a cellular algebra with involution T then the

following are equivalent:
o A is quasi-hereditary
e A has finite global dimension

e there is a cell chain of A whose length equals the number of isomorphism classes

of simple A-modules.

4.4 Affine stratified algebras

The stratified notions in this chapter have been extended to infinite dimensional al-
gebras by Kleshchev [Klel5]. A graded algebra whose graded dimension is a Laurent
series is called a Laurentian algebra. Kleshchev shows that Laurentian algebras are
graded semiperfect (i.e. every finitely generated graded module has a graded projec-
tive cover) have finite dimensional irreducible modules, and have only finitely many
irreducible modules up to isomorphism and degree shift. Let R be a left Noetherian
Laurentian algebra with simple indexing set II. For every m € II we have an inde-
composable projective P(m). A two sided ideal J C R is called affine stratifying if

it satisfies:

(ASI1) Hompg(J,R/J) = 0;
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(ASI2) As a left module J = @reymy(q)P(m) for some graded multiplicities
mx(q) and some subset Y C II such that for Py := @ ey P(m) we have
By := End,(Py)°P is an affine algebra.

An affine stratifying ideal is called affine standardly stratifying if
(ASS1) it is finitely generated as a right By —module.

An affine standardly stratifying ideal is called affine properly stratifying if
(APS1) it is flat as a right By—module.

An affine stratifying ideal is called an affine hereditary ideal if it is affine properly
stratifying with |Y| = 1. The algebra R is called affine stratifying (resp. affine
standardly stratifying, affine properly stratifying, affine quasihereditary) if there

exists a finite chain of ideals
0)=J,Cc---crCcJp=R

with J;/J; 41 an affine stratifying (resp. affine standardly stratifying, affine properly
stratifying, affine hereditary) ideal in R/J;41 for all 0 < ¢ < n. Such a chain
of ideals is called an affine stratifying (resp. affine standardly stratifying, affine
properly stratifying, affine hereditary) chain.

Lemma 4.12. [Klel5] If J is an ideal in R such that rJ is projective, then the
following are equivalent
1 (ASI1) Hompg(J,R/J) = 0;
2 J*=J;
3 J = ReR for an idempotent e € R.
Example 4.13. If (A4, <) is a quasi-hereditary k-algebra with indexing set IT and
A is a polynomial k-algebra then H := A ® A is affine quasi-hereditary. Since A is
quasi-hereditary it comes with a set of idempotents {e; };cr1 that give rise to a chain

of hereditary ideals Ae; A where g; = iji ej. The ideals J; := H(e; ®k 14)H are
affine properly stratifying in H, and |Y| = 1.

Example 4.14. [KLM13, KL15] The quiver Hecke algebras (of finite type) are affine

quasi-hereditary.
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Chapter 5

Homological structure of R our

quotient

In this chapter we describe a cellular structure for R induced from the affine cellular
structure of Rg , from this we are able to obtain a parametrisation of cell modules,
standard modules and simple modules. We then give a way to obtain the standard
and proper standard modules of RJ from the standard and proper standard modules

of R,. We use this to prove that RY is properly stratified.

5.1 Cellular structure

Before describing the cellular structure of RY we prove the following useful result

from homological algebra.

Lemma 5.1. For R-modules A, B, C' and D and R-module morphisms e, f, g and
h, the following diagram

A—"+B

f 9

1. is a pushout if and only if there is an isomorphism on the cokernels of e and
h and an epimorphism on the kernels of e and h.

2. is a pullback if and only if there is an isomorphism on the kernels of e and h

and a monomorphism on the cokernels of e and h.
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Proof. 1. (=) If the following diagram is a pushout

A—2>B
f g

and g1 : B — 1 is the cokernel of e, then there is a unique map s1 : D — Q1
such that, s1g = ¢1 and s1 is an epimorphism. The existence follows from
qie = 0, since we can consider the zero map from C — @Q1, and we get s; and

its uniqueness from the universal property of pushouts.

A—"=B

|

~
Q

Now, let g2 : D — )2 be the cokernel of h: C'— D and u : Q1 — Q)2 be the

morphism induced from g.

A e B q1 Ql
7

f g/ p /51 u

C — D — Q2

We get also us; : D — @2 and the following diagram commutes

A—°>B

uqi

f

VA

C—D—=Q

since us; = g9 we get that v is an epimorphism. Now we get amap @ : Q2 — Q1

since s1h = 0 and so factors over (2. The diagram

Q1

i

C—>h D —— Q2

commutes S0 §1 = Ugz = Uus1, since s1 is an epimorphism we get tu = idg, .

We also have wiugz = usy = g2 and ¢o is an epimorphism so uti = idg,.
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Therefore, Q1 = Q2.

Let K be the kernel of e and K the kernel of h. If y € Ko C C, then h(y) =0,
but
D=B®C/{(e(x),0) = (0, f(z)) | z € A).

So h(y) = (0,y) = 0, we can write this as h(y) = (0,y) —(0,0), so y = f(x) for
some z € A, and e(x) =0. So z € K1, and k : K1 — K> is an epimorphism.

(<) Assume we have the following diagram

K >A—°-B O

Lok

Kye—>C——=D Qs

If X is the pushout of e and f then the first half of the proof gives Q = @Q; and
there exists a unique v : X — D and induced maps ¢, n making everything

commute

K¢ A—=

b

~ | JK,C
Bl Ko Ch

;

K¢ C

@
&

g

— I sy
\_/
4

v

=
O

3

We clearly get that n is an isomorphism, and ¢k = k. Since k is an epimorphism
we get that € is an epimorphism. The relevant half of the Five Lemma 4.6
implies that v is a monomorphism. Let z € D, and label u : Q1 < Q2 then
there is a y € B such that ¢a(z) = uqi(y) = ¢2(g9(y)). We get that

r—g(y) €kergz =Img,

so x = g(y) + h(z) for some z € C. So h @ g is onto. Now, label ( : B — X so
h = v€ and g = v(, giving h & g = v(€ & ¢). Hence v is an epimorphism, and

therefore an isomorphism.

The result on pullbacks is proved dually.
O

Recall the definition of the polynomial ring A, from (2.2), and the cell ideals
I =3 >, 1, where

Il = k- span{vuyr Antryme(in )] | w,v € &7}
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Now let us define
Ar = A /(p € Ar | deg(p) > dr); (5.1)

T/ =k — span{wYrtre(in)py=ts + T | w,v € 8™, 7 € I, p € B(A,)} C RY;

(5.2)
Ie=)Y I Isx=)» 1,

o>T o>T

Proposition 5.2. I is the image of I, in RY. Moreover, I, is the two sided ideal
20271' Rge(iU)Rg'

Proof. Both I, and J are ideals of R,, and thus embed into R, under the inclusions
t1 and 9, respectively. If we take the pullback, that is

X ={(a,b) € I x J | t1(a) = 1a(b)}
then since I, J € R,-mod we have ([Rot09, Example 5.2]) that
X=I.NnJ

adding cokernels we get

LNJe—s I —I1./(I, NJ)

|1

JC R, RJ

Here the map f is a monomorphism since pullbacks induce monomorphisms on
cokernels by Lemma 5.1. So, we can choose a vector space splitting of R such
that Z, is the image of I, in the quotient. Since the quotient map is an algebra
homomorphism and I, = Y o Rae(is)Ro we get Z, = > o R e(ir)RY. O

o> o>T

Theorem 5.3. The algebra RY is a cellular k-algebra with respect to the involution

T.

Proof. We obtain a chain of ideals {Z, | 7 € II(a)} in RY from the affine cell chain
{I; | # € II(«)} of R,. To simplify notation let us set dr = r, we take a chain of
ideals in Ay, filtered by degree

0=M,CM,_1C---CM CMy=A; (5.3)

where M; = (p € A, | deg(p) > i), denote subquotients M; := M;/M;11. Recall
that B(M) denotes a basis for M, we now define

Iy i = (YwYrre(in)py=by | w0 € 6™, 1 € Il(a),p € B(M,)),
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and thus define a refinement of the ideal chain {Z | 7 € II(«)} to a chain of ideals

given by
Tei=Y I, + Y I},

o>m j>i

We choose a total order on B(A,) that refines the partial order on degrees using
this we refine (5.3) to the Jordon-Holder series

0= Mr,m,« C Mr,m,«—l c---C Mr,l C Mr—l,mr,1 c---C Ml,l - MO = A7r; (54>

where M; ;. denotes the submodule generated by elements of degree ¢ less than k
in the total order and elements of degree greater than i. Let M;; denote the
subquotient M; i /M; k41 and M; ,, denote M; ,,, /M;ii11. Let us define

I7/r,z7k (YwYnre(in)py=y | w,v € 8™, 7 € (a),p € %(Ml,k‘)}a

and refine the ideal chain {Z.; | 7 € II} to a chain

7rzk: ZI +Z +Zz7lr,i,l‘

o> j>1 1>k
Let us further define
ZO’>7rIC/f ifk=m;andi+1=r;
I>(7T7i7k) = ZO‘>7T o Z]>z 7r_] if k= my;

Zo‘>7r o + Z]>z 5 + Zl>k 7,1 otherwise.

Note that the bases of the I’ ik partition the basis of Z!, hence
@ ik

and thus ®W7iykl.;r,i,k = R7. We now claim that Trik/Ts(r,ik) is a cell ideal in
RT /T (rin)- Let us write Zpip = Zrin/To(mik) and RJ := R /T.;r. By
construction Zr,i,k: is a two sided ideal in Rg . It follows directly from the basis and
[KLM13, Lemma 5.5] that 7(Zy; %) = Zr i -

We define a left ideal A C Zr’,;’k with k-basis

{wTrthrbige(iz) | ™ € H(a),w € ™, by € B(M,; )}

Clearly A is finitely generated and free over k. We also have a k-basis for 7(A) given
by
{€(ir)bi kVrGrth] | 7 € (), v € ™, bt € B(M )}
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The map

a: AT(A) — fm,k
dngw";ﬂ@rgi,ké(iw) Rk é('iw)l_)i,kgw'&ﬂgw'&; = &wywdngi,ké(iw)gwdjg

defines a RJ-RY-bimodule isomorphism Zr; /L (r i k) = A @k 7(A) which satisfies

fm,k — 2 AR T(A)
iT ix@y»ﬁ’r(y)@’r(a})

Trik —> A 7(A)

SO fm-,k is a cell ideal as claimed. ]

5.2 Projective, standard and proper standard modules

In this section we prove that RY := R, /J is a properly stratified algebra.

First we describe the projective, standard and proper standard modules for Rg .
We shall keep notation clear by saying A()) is a standard module over the algebra
R,, similarly for P()\), whereas A7()\) and P7()\) are standard and projective

(resp.) modules in RY -mod.

Lemma 5.4. For \ € II(a), the modules P7()\) := R ®@g,, P(\) are indecomposable

projective modules for Raj .

Proof. Since P()) is a projective module for R, there is an idempotent ey such
that P(\) = Ryey. Now,

PI(\) = R7 ®r. P(\) = R7 ®r, Raex = R é,.

Thus P7()) is a projective module for R . The indecomposability follows from the
fact that ey lifts to ey and [Lam99, 21.22]. O

Before classifying the standard modules we include a well known result from

homological algebra [Wei95, Snake Lemma 1.3.2]

Lemma 5.5 (The Snake Lemma). Consider a commutative diagram of R-modules
of the form
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If the rows are exact, there is an exact sequence
ker(a) — ker(b) — ker(c) — coker(a) — coker(b) — coker(c)
with O : ker(c) — coker(a) defined by the formula
o(z) = f g (z), =€ ker(c).
Proposition 5.6. The modules RY ®@pr, A()\) form a set of standard modules for
RI.

Proof. Let A7()\) be the standard module obtained from P (\) in RY. By defini-

tion, these modules fit into the short exact sequence

Trpa (P ()= P7 () —= A7 (\),

Since the functor RY ®pz, — is right exact we also have a surjection from P ()
onto R ®@p. A()), let the kernel of this surjection be K so that there is the short

exact sequence
K P7(\) — RJ ®@pr, A(N).

The module A7 ()) is the largest quotient of P7(\) with [AT(X) : L7 (u)] = 0 for
p > A. So there is a surjection f: AT (\) — RY ®r, A()\). Combining these facts

we get the following diagram

AT(N)

4

- Rg ®Ra A()\)

>
gf

Trps (PT(N)——P7(N)
K—— =PI ()

Applying the Snake Lemma 5.5 gives the diagram

0 I ker(f)
Trpg (P7(A) = P7(N) AT(N)
K s PI(\) —= RJ ®@pr, A(N)
coker(g) l/) 0.

from which we get that g is a monomorphism and ker f = coker g. Importantly,
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since ker f € A7 ()) it too must have composition factors L(u) with u < A and so

must coker g. In R, we have the short exact sequence
Trp,, (P(A)——P(A) —= A(N),

and if we apply Rg ®pR, — we can induce the long exact sequence

R7 ®p, Trp, (P(\)) > PT(\) —= RJ @p, A(N).

Tor(RJ, A(N))

The map h factors through K. Since everything in Trp_, (P())) is the sum of some

images of maps from P, ), we have P5) — Trp_, (P(\)) and so
R @, P>y =P, — R @g, Trp, (P(V)-

Therefore, top(RJ ® Trp,, (P(A))) € add({L(k) | # > A}). The long exact sequence
above gives us R ®g, Trp_, (P(\)) - K. This implies that

top(K) € F({L(u) | > A}).

We know, however, that cokerg = ker f € add({L(p) | p < A}), so since K sur-
jects onto coker g, we must have cokerg = 0. Thus we deduce that f and g are

isomorphisms. ]

Let us first include a characterisation of proper standard modules for affine quasi-

hereditary algebras.

Proposition 5.7. [Kle15, Proposition 5.6] If A is affine quasi-hereditary with simple
indexing set I1. Then
A(r) = A(m) /A7) Nr,

where N is the Jacobson radical of the affine algebra B, m € 11 and the notation
A(m)Nr means Y ey Im f C A().

Proposition 5.8. The proper standard modules in RY are of the form RY @r, A(N),

where A(N) is a proper standard module for R,. Moreover, if
j:RJ-mod — R,-mod
is the inclusion functor, (A7 ()\)) = A(N).

Proof. Let us assume that A7 ()) is the proper standard module coming from P7 ()
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in Rg . In a similar way to the proof above we get the diagram

ker f
Trpoa (rad P(A))— P ()) AT (N)
|
K > PI(\)—= RJ ®i A(N)
|
coker g

By the snake lemma ker f 2 coker g, and since ker f is strictly contained in A7 ())

it has composition factors L(p) with p < A. We induce the long exact sequence

RJ @p,, Trp,, (rad P(\)) > P7(\) —= R @p, A(N).

Tor(RI, A(N))

Again, the map h must factor through K. We have that P>‘7 \ surjects onto
R ® Trp, , (rad P(N)),

top RY ® Trp,, (rad P(X)) € add({L(p) | p > A}).

Since Rg@)TrpZA (rad P(X)) surjects onto K we get that top K € add({L(u) | p < A}),
but coker g = ker f € F({L(u) | £ < A}), so cokerg =0 and K = Trp,, (rad P())).

For the moreover statement, we have a chain of isomorphisms
AN =2 AN /AN rad Ay =2 AT (N /AT (M) rad Ay = AT (N)

recalling the definitions of Ay and A, from (2.2) and (5.1) respectively, the middle
isomorphism follows from writing down bases for either side as given in [KL15,
Lemma 3.10]. O

Theorem 5.9. The functor R ®p., — : Ry -mod — R -mod is ezact on F(A).

Proof. Let A:= RJ and R := R,. Also, for a k-module M let M* denote the vector
space dual of M achieved by applying the functor Homy(—, k), then

A®pr M = Homg (A ®@r M,k)*.
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Utilising the tensor-hom adjunction
Homy (A ®@r M, k)* = Homp(M, Homy (A, k))*

and then Homp(M, Homy(A,k))* = Hompg(M, A*)* by definition.

Since A is filtered by proper standard modules, and we have a simple preserving
duality it follows that A* is filtered by proper costandard modules. From [AHLUOOb,
Theorem 1.6]

F(A) = {X | Ext} (X, F(V)) = 0}

hence Hom(—, A*) is exact on F(A). Since * is exact we get that A ®p — is exact
on F(A). O

RY is properly stratified

In this section we show that R satisfies the conditions of Theorem 4.3, i.e. that RY
has a full set of idempotents each of which decompose as e; = f;+ f! where the set of
fi form a full set of pairwise orthogonal idempotents and the f; € A3 ;5,11 €j)A,
and hence that RY is standardly stratified.

Lemma 5.10. The idempotents ez := {ryre(iz) € Ry satisfy

> RaeoRa =Y Raelis)Ra.

o>T o>T

Proof. The inclusion Zgzﬂ RoesR, C Zazw Rue(i,) Ry is clear. For equality, recall

that I, = > R.e(i,) R, and has a basis given by elements of the form

o>
wwyae(ia)wabyawg = wwyaea bw;

with o > 7 € II(«), w,v € &7 and b € A,. In particular, for a v > 7, we have

6(’iy) = Z au,awwyowoe(ia)bayowg = Z au,awwyaeabawz-

o>T o>

Therefore, e(i,) € I, C ZO’ZW Ryes R, and the claim follows. O
Proposition 5.11. The algebra RY is standardly stratified.

Proof. Firstly, we claim that the idempotents {e; := yz¢re(iz) | 7 € II(a)} in
R, satisfy the conditions (a) and (b) in Theorem 4.3. Namely, by [KLM13, Main

Theorem] we have

Z RuoerRo = Ry,
mell(a)
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and since e, R, = A(m) we get that e, is primitive. Let ex = €x1+€x 2+ -+ €, be
a decomposition into primitive idempotents, then (éx1+---+¢€x )+ s is primitive.

Without loss of generality €r1 ¢ Isx, and ez + Isx = €1 + Isr. This gives
RaéwRa = 7r/I>7r = Raar,lRa

SO Znen(a) Ryex 1Ry = Ro. Now, e; + J is non-zero in Rg and we have a chain of
ideals given by
{Zr | m e () }.

We have seen that the ideal Z, = . RJe(i,)R7. Now as a left RY-module

o>T

Tn/Tor = A (1) @y Vi

So Z /I € F(A7) and hence we obtain the result. O
Proposition 5.12. For all © € II(a), AY (1) € F(AY).

Proof. We have A7 () = V, ®y A, as vector spaces. We obtain a filtration of A7 ()
by taking
V7r®Mn - V7r®Mn—1 C--- gVTI'®A7T7

each subquotient is isomorphic, as a Rg module, to AT (m). ]

Corollary 5.13. The algebra Rg 1s properly stratified.

5.3 Finitistic dimension

We now provide a bound for the finitistic dimension of RZ. First note that the
standard module in R, with largest projective dimension is the standard module

corresponding to the root lowest in the order.
Lemma 5.14. [BKM1/, Corollary 4.11] For a € Q* of height n and
T =p1f1+ -+ pafhn € 1(),
the projective dimension of A(r) satisfies p.dim A(n) <n —1 where l =" | p;.
Recall the definition of the characteristic tilting module 7" from Section 4.1.

Theorem 5.15. [Maz04] Let A be a properly stratified algebra with a simple pre-

serving duality, then we have the following bound on fin. dim(A):

fin.dim(A) < 2 - p.dim(7).
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The following lemma is well known in homological algebra [Wei95, Horseshoe
Lemma 2.2.8].

Lemma 5.16 (Horseshoe Lemma). Suppose given a commutative diagram

0
P P Pl - A 0
iA
A
TA
R £y (R )
0

where the column is exact and the rows are projective resolutions. Set P, = P, ® P).
Then the P, form a projective resolution P of A, and the right-hand column lifts to

an exact sequence of complexes

0 p—t.p_T. pr 0,

where i, : PI — P, and 7, : P, — P! are the natural inclusion and projection

respectively.

Proposition 5.17. Let |a| = d, and m; € II(«) be such that m; < m for all m € II(«)
and let T be the characteristic tilting module for RY. We have the following bound

on its projective dimension:
p.dim(7) < p.dim(A(1)) =d — L.
Proof. The module T fits into a short exact sequence
0—-K—T— A(mr) — 0.

The result follows from the Horseshoe Lemma 5.16 and Lemma 5.14. O]

Corollary 5.18. We get the following bound on the finitistic dimension of RY

fin. dim(R7) < 2(d — 1).
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5.4 The multiplicity one case

Throughout this section let the underlying quiver of R, be a Dynkin diagram A,
and let « = a1 + - - - 4+, be the highest root. By multiplicity one we mean that the
root «; appears only once for each 1 < i < n. In this case, it is worth noting that

the relations of the quiver Hecke algebra reduce to the following.

Urys = ysr i sFErr+1; (5.5)

Urths =Yty i r—s| > 15 (5.6)

Uryrr1e(8) = (Yribr)e();  yri1tbre(d) = (Yryr)e(d); (5.7)
e(4) if iy — dpp1] > 1,

Vre(d) =S (Yr1 —yp)e(d) if iy =dpyr — 1, (5.8)
(Yr — yry1)e(s) if iy =dpg1 + 13

Vrrp1re(t) = Yrp1¥rry1e(2). (5.9)

In this chapter we show that when « is the highest root, the module category of
the quiver Hecke algebra is equivalent to that of the tensor products of path algebras
of a particular quiver and a polynomial ring. More generally, this notion is known

as Morita Equivalence.

Morita equivalence Morita equivalence is an important tool in the study of rings
and algebras. A full introduction to Morita theory can be found in Chapter 7 of
Lam [Lam99]. We say that a ring 7" is Morita equivalent to a ring S if there exists a
category equivalence between their categories of modules T-mod and S-mod. The

following theorem is useful when it comes to showing Morita equivalence.

Theorem 5.19. [Lam99, Theorem 17.25] The ring T is Morita equivalent to S if
and only if T = Endg(P), where P is a projective generator in S-mod.

For the left S-module P to be a projective generatorin S mod , we require that

P is a finitely generated projective module, and Trg(P) =g S.

5.4.1 A theorem of Brundan and Kleshchev

First, a comment on root partitions.

Lemma 5.20. If & = o + - - - + o, then there are 2"~ root partitions of «, deter-

mined by
II(n) :={(a1,a2,...,an-1)]a; € {1,2}}
Proof. The set of root partitions II(«) is in bijection with II(n). The bijection is
given by
O : II(«a) +— II(n),
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(a1, ,an-1)

such that

_J 1 if a; appears before 1,
! 2 if a; appears after a;y1.

O]

Example 5.21. Let n = 3 so that a = a1 + a3 + a3, then the bijection © : II(«) <>

II(n) in the previous lemma is:

a1 +ax+az < (1,1)
(g +az)a; < (2,1)
ag(a; +a2) < (1,2)
(as)(a2)(o1) < (2,2)

It was noticed by Brundan and Kleshchev that when « is of multiplicity one R, is
Morita equivalent to tensor products of this path algebra with a polynomial ring.

There is no published proof of their theorem so we include one here.

Theorem 5.22. [Brul3, Theorem 3.13] Suppose the graph underlying the quiver is
a Dynkin diagram A, and that o = aq + - - - + «, is the highest root. Then, R, is
graded Morita equivalent to A2 @ k[z], which is of global dimension n.

Proof. Let my,...,m € (), and let Pp,..., P, be the left ideals generated by
the idempotents e(ér,),...,e(ir,.), respectively. Let B be a basis for k[yi, ..., yn],
we can compute the endomorphism algebra of the minimal projective generator

P=P &-- @ P,, which consists of matrices

e(ir Jbe(ir,) - e(in)Pube(ir,) be ‘B,
: . : we &,
e(ir, ) Yuwbe(in,) - e(ix, )be(in,) a min. length red. expr.

Let us define a map
¢ : APV @ k[z] — Endg, (P)
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€jn_1 ®"'®ej1 ®1l — @_1 ((jn—l,---,jl))
1 ®1Rxr — =z
Cjp Q- R e, Te; Q- Qej @1 e(io)Pwe(ir)

where 2z € Z(R,) is the element z = 21 := ), csi Yw)e(w(2)) from (1.1), 7 and o
are neighbouring root partitions with respect to the partial ordering on II(«) and
T=0" 1 Jr-g1), 0 = O (jp_1-+jr ---J1), and w is the unique element
in &, such that w(i;) = (is).

We claim that the map ¢ is surjective, and since v, is unique we are only
required to show that y;e(ir) is in the image of ¢. For this we use the following
algorithm. Associated to y; we have a number 4;, which is the number occupying
the j" position in 4. Write y;je(ix) = (y; — yk + yr)e(ix) where iy = i; — 1, we then

write y in a similar fashion and continue recursively until we have

yie(ir) = (Yj — Yk +yp — - — y + y)e(in),

where i, = 1. Then y;e(i;) is one of summands of z. Then

(yj — yr)elin) = (o, + -+ + 05, )e(in),

therefore

yje(’lw) == (w?‘]l +---+ ¢12UT+1 + @/k)e(%r) = ¢(w12ul + wi,«_‘_le(iﬂ)) + Qs(yke(zﬂ'))?
and each 1)y, is one of the ¢(--- @ T7®---).
For injectivity we introduce a dimension formula for the algebra A®" @ k|z],

2n—1
(1—g Y (1-g%)

dim, A" @ k[z] =

We verify this by noticing dim, A = 2/(1 — ), since we have a choice of 7e; or Tey,
each of which are in degree one. There are therefore, two options for each power
of T, giving the degree determining polynomial 2 4 2q + 2¢ + 2¢® + - - -, which is
the Laurent expansion of 2/(1 — ¢). For k[z], each = has degree 2, so the dimension
formula for the polynomial ring is 1 + ¢ + ¢* + - -+ which is the Laurent expansion
of 1/(1—¢?). Bringing this information together gives the dimension formula above.

We now claim that the dimension formula for Endg, (P) is

2n—1
(1-g)"11-q?

dim, Endg, (P) = = dim, A%V @ K[z].
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To see this, first notice that there are 2"~! root partitions in II(c). Therefore, we
have 2"~ ! elements in degree zero. Each yi,...,y, is in degree 2, so we count their
contribution to the degree with 1/(1 — ¢?)". We then need to account for the 1),,.
The map ¢ is a degree preserving map, clearly idempotents and polynomial elements
have their degree preserved by ¢. If we consider the unique w € &,, that takes the
partition 7 to 7', then, deg(e(i,/)1we(ir)) is equal to the number of (7,7 4+ 1) such
that i appears before i + 1 in one of e(é;) or e(é,/), and then i appears after i + 1
in the other. This equates to the number of positions in which the representatives
(a1,az2,...,a,),(b1,ba,...,b,) € II(n) of m, 7" € II(«) (resp.) differ. Therefore, the

n—l)‘

degree of 1y, is equal to the number of 7 that appear in A®( Since ¢ is degree

preserving, we have a bijection between
{e(im)%e(im) € Endp, (P)|1<i,j<n— 1}

7
{7€A®(”_1)”y=%_1®---®”y1, deg(vi) <1, VlSiSn—l},

and each of these sets has cardinality 2"~!. Let us denote by Arlz?;((;;l) the vector

space spanned by (y,—1®---®71|deg(y;) < 1). Then dim, Afig;l) = 2" (14q)" L.

Therefore,

3 glesletinuelin) = dimg AP = 2771(1 4 )

and

. D, eg(e(t e(tr 1

dim, Endg, (P) = qu g(e(in)we(iy)) o

(1+q)" !

(1—-¢*)n

= 271:1 = = dimy A%V @ k[z].
(1—q)" 11 —-4q?

Since the dimensions in each graded part match up, and are finite, surjectivity

— 2n—1

gives us injectivity. Therefore, ¢ is an isomorphism, and A®("~1 @ k[z] is Morita

equivalent to R, for highest root @« = a1 + - -+ + a,. O

Proposition 5.23. There exists a quotient of the algebra AP~ @ Kk[z] that is

quasi-hereditary.

Proof. Let T = (x,7?es), then A®("~1) @ k[z]/Z is isomorphic to a tensor product
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of algebras A = kA/(72e3). This algebra is quasi-hereditary with standard modules
Al :Aeg, AQ :Ael/Aeg. ]

Corollary 5.24. There is a quotient of the algebra R, that is quasi-hereditary.

This question corresponds with taking d, = 1 for all 7.
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Chapter 6

Worked examples

6.1 Multiplicity free - a =>"" | «;

Here we consider some worked examples in the case where there are no repeated

root.

Example 6.1. Let a = a1 + . Let m1 = a1 + ag and my = asaq, the set of root

partitions II(«) = {m, m2} is ordered such that m; < 7.

TIm = k(Yuwe(12)pYy | w,v € 6™, p € B(k[ys]), deg(p) > 1)
Try = k<¢we(21)p¢; ’ w,v € &™,p e %(k[yl,yg]),deg(p) > 1)

The quotient R,/J is a five dimensional algebra with basis

{6(12)7 6(21)7 ¢1€(12)7 %6(21)7 y16(12>}

note that y?e(12) = 0 € RY since y? = ¥?e(12) = ¢1(y1 — y2)e(21)yp; = 0. The
left regular representation of the algebra decomposes into the sum of left projective

modules as follows

2
R;{Rg: ® 1

N

Where 1 and 2 denote the simple modules indexed by m; and 7o respectively. This is
clearly quasi-hereditary with standard modules A(m) = L(71) and A(me) = P(m2).
The costandard modules are V(m) = L(m1), V(m2) = I(m2). The tilting modules
are T'(my) = L(m ) and T'(m2) = P(m1).
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We have the following linear tilting coresolutions of A(7y) and A(ms);

0 —— A(m) —— L(m) 0 0,

0 —— A(mg) —— P(m) — L(m) ——=0,

and the following linear tilting resolutions of V(m) and V(m2);

0 0 L(m) ——V(m)—0,

0 —— L(m) —— P(m) — V(m2) —0.

The generalised tilting module
T = &rena)T(mi) = T(m) & T(mz) = L(m) & P(m)

The Ringel dual is Endg(T") = R,/J, hence Ringel self-dual. Let L(m) = A
and P(m) = B, then Homgr(A ® B,A® B) = gp/R'ps/, we have

R/eA = HOHlR(A ) B,A) = P(7T2)
RIEB = Hompr(A ® B, B) = P(m).

Example 6.2. Let @« = a1 + as + a3. Label the root partitions in the following
way m = o1 + Qg + g, T = (Oéz + Oé3)041, T3 1= Ckg(Oq + 0(2), T4 = azasaq, the

ordering is m; < m9 < w4 and m < w3 < 7y,

Tr1 = k(Ywe(123)py], | w,v € 8™, p € B(k[ys]), deg(p) > 1)

Ty = k(Pwe(231)py | w,v € 6™, p € B(k[y2,y3]), deg(p) > 1)
Ty = k(Pwe(312)pYy | w,v € &™,p € B(k[y1,ys]), deg(p) > 1)
Try = k(Yuwe(320)pyYy | w,v € ™, p € B(k[y1, y2, y3]), deg(p) > 1)

The quotient R,/J is a 25-dimensional algebra which, by Section 5.4.1, is Morita
equivalent to the path algebra of

NP E—
e1 ®ep T®1 €2 Qe

()

—_— >
e1 X e T®1 €2 X es

2

modulo the relation 7°es = 0. The left regular representation decomposes into a

direct sum of left projective modules in the following way
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N

/\/\1/\ O N;
1@\/\@/\/@

NN NN S N7

N/ : 1 1

The quasi-hereditary structure has standard modules A(wy) = L(my), A(my) =
P(ry4), and

A(ma) = ) A(ms) =

The costandard modules are V(71) = L(m), V(m4) = I(m4), and
1 1
v = \Y :
(m) =, (ms):

The characteristic tilting module is given by

1 1 / \

T'=1® 2 & 3 @ 3

11\/

6.2 Affine nil-Hecke algebra

In this section we look at the opposite extreme, that where we have only one repeated
simple root.

Let a = 2av1, then the affine cellular basis for NHjy is given by

{Wuyoe(11) B (ly1, 1] )yov] | w,v € &2 )

Now, let e = ¥1yo.

We know from [Brul3, Theorem 2.3] that for e, := x9z%-- 27 17,, we have

P, = q%a(‘l_l) NH, e, = q_%a(a_l)k[yl,--- ,Ya) and from [KLM13, Theorem 4.3]
that P, is free as a A, module with basis {1, y2ys - - - ¥, | w € S,}. But P, is only
free as a NH,-module if NH, is local, which it is not. As an e, NH, e,-module, for

a = 2, we have
Py = (yatbre(11)yabipy | b € B(k[y1,2]°)).
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For

J = (Yuyoe(11)Y1py2t)] | w,v € Ga,p € B(K[y1, y2]°), deg(p) > 1),

the algebra (eNHze)Y is one dimensional as

Pryse(1)r1yathrye = Yi1yae(11) (y1 + y2)t1y2 = 0 (6
V1yath1yae(11)Y1y2th1y2 = Pryee(11)Y1ya (6.
Y1yze(1)yryaitys =0 (6

Pryathryze(11)h1yatiys = 0 (6

and NHQ7 is semi-simple.

6.3 oa=2a;+ all2

We devote this section to the example of & = 2ai1 +g. We relabel the root partitions
of vas 1 = (a1 + az)ag and 2 = aga%. This is the smallest case in which we have
a repeated simple root, but are not isomorphic to a nil-Hecke algebra. Whilst our
bound on d,; would give a much larger quotient, this example is sufficiently small to

determine that we are able to take a quotient ideal given by the sum of
Jh21 = k(Ywe(121)pY] | w,v € &7, p € B(klyz, ys]), deg(p) > 2)

To11 = k(Uuysihee(211)pysyl | w,v € &7, p € B(kly1] @ K[y, y3]), deg(p) > 1).

Let us recall why we cannot just kill all positive degree polynomials in the higher

cell.

Remark 6.3. Consider h = Y112e(121)ys € J121, then

hapy = P1otPryze(211)
= Poth1)oyse(211)
= Yoh19ayze(211)oys € Jo11.

Note that in this instance the algebra R, is not basic. The idempotents e(%)

decompose into primitive orthogonal idempotents in the following way:

e(112) = (P1y2 — y1¢1)e(112) (6.5)
e(121) = (Y1p2th1 — oyhrah2)e(121) (6.6)
e(211) = (Yays — yarp2)e(211). (6.7)
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Lemma 6.4. The idempotent f = 1oyse(211) — hoth11poe(121) is a full idempotent

mn R,.

Proof. The inclusion R, fR, C R, is clear. For the other direction notice that

(1e(211) + Parprpae(121)) f(e(211)3hapr) = e(121) (6.8)
(e(211) f(e(211) — thagpe(211)) = e(211). (6.9)

By [KLM13, Lemma 5.13], if a two sided ideal J contains all idempotents e(¢,) such
that = € II(«) then J = R,. Hence R, fRy = R, and f is a full idempotent. O

We now compute the basic algebra fRY f = fR,f/J associated to RY.

Proposition 6.5. The algebra fRY f is a seven dimensional properly stratified al-
gebra isomorphic to the path algebra kQ/I where Q is

Y1

W v

—

ks Ey

~

[y
Yo

and I = <Y12, Y;Y}, }/i\I/j, \IJjYVZ', \111\112, \112\111 — Y22>.

Proof. For all basis elements z of R, we compute fxf + J, the only surviving

elements are:

kQ/I fxf fzf+J degree
Ey fe(121)f —aP1pae(121) 0
Ey Jibayzibae(211)ys f Poyze(211) 0
Uy Jbayzibae(211)yzep1 f Paysiae(211)ysih 1
Yy fyee(121) f —otp1th2e(121)yo 2
Yo fyse(121) f —tho1tp2e(121)(y1 + y3 — y2) 2
Wy f1ysee(211)ys f Yrysipae(211)ys 3
WUy = Y3 | foorysihee(211)ysihr f Prysipze(211)ysi 4

When lifted to R, the elements above corresponding to E1, Fo, Y7, Y2 are not written

in terms of the affine cellular basis, but can be written as:

By = e(121) — Prhayse(211)Yaysipath

Ey = toysze(211)yays

Y1 = —e(12)y2 +J

Yo = 1yse(211)Yoysthoths + Y1¢hayse(211)thoysr — e(121)ys + J
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We show that Y7 is annihilated by all non-idempotent elements and Y5 is annihilated

by all elements except itself.

V1Y) = —thoysthae(211)ysyeharht + Poysioyse(211)y1hy = 04+ F
U1Ys = —thoysee(211)y1 (Y2 + y3 — y1)y3tav1 + Y2y3toyse(211)(ys + y2 — y1)¥1
—0+J
V1Ys = 1tboys (yi(y2 + y3) — yi)¥aystbatn — e(121(ysys) + Y1aysthoyaysibn
+ Y1yshaysyrver = 0+ J
oY1 ="Y,=0+J
VY = 1ibaysipae(211)yTyshorhs — e(121)y5 = 0+ J
YWy = rysihoe(211)y1ys — Y1taysvoe(211)yfys = 0+ J
Yoo = ¥1ysiae(211)(y2 + y3 — y1)ys — Y1thoysbee(211)y1 (Y2 + 3 — Y1)y =0+ J
Y5 = Prysioysihr + J.

Hence the left regular representation of fRY f decomposes into a sum of indecom-

posable projectives with Loewy structure

P(1)

1
Y; /‘1’1 2
2
1 W3

Y- 2
1@ Wy

P(2)

Y2

O]

Clearly the quotient above is not the most optimal properly stratified quotient of
R, as we could also quotient by s to remove the element Y;. The standard modules
are A(2) = P(2) and A(1) has Leowy structure

1/1\1

The proper standard modules are A(1) = L(1) and A(2) = A(2) = P(2). The socle
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filtrations of the injectives are

I(1) 1(2)

1
1 2 1 2
1 1

The costandard module V(1) has Loewy structure

1\1/1

and V(1) = L(1), V(2) = I(2) = V(2).

From which we get tilting modules 7'(1) = A(1) and T'(2) = P(1), so the char-
acteristic tilting module is 7= A(1) @ P(1).

We define modules S(A) := Trp=a(T'(A\)) and N(A) := T'(A\)/S(A) that fit into

the following short exact sequence

For this example we get S(1) = 0 and S(2) = L(1) & L(1) & L(1) and thus
N(1)=T(1)=A(1) and N(2) = I(2).

Since S(2) ¢ F(N)we use [FMO06, Theorem 3] to deduce that the Ringel dual is
not properly stratified.

We now compute the projective dimension of 7' = @,\T'(\). Notice that T fits

into the split exact sequence, to which we’ve added projective resolutions.

P(2) P(1)
0 P(2)
0
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Applying [Wei95, Horseshoe Lemma 2.2.8] we deduce that

p.dim(7) < p.dim(A(1)) = 1.
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