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Abstract

Introduced in 2008 by Khovanov and Lauda, and independently by Rouquier, the

quiver Hecke algebras are a family of infinite dimensional graded algebras which cat-

egorify the negative part of the quantum group associated to a graph. In finite types

these algebras are known to have nice homological properties, in particular they are

affine quasi-hereditary. In this thesis we utilise the affine quasi-hereditary struc-

ture to create finite dimensional quotients which preserve some of the homological

structure of the original algebra.
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Introduction

Introduced in 2008 by Khovanov and Lauda [KL09], and separately Rouquier [Rou],

the quiver Hecke algebras, or KLR algebras, are a family of graded algebras which

categorify the negative part of the quantum group associated to a graph Γ. That is,

for the KLR algebra Rn(Γ) associated to Γ, there are canonical isomorphisms

(U−q (g))∗ ∼=
⊕
n≥0

K0(Rn(Γ) -gr.modfd),

and, equivalently,

U−q (g) ∼=
⊕
n≥0

K0(Rn(Γ) -p.mod),

where K0(Rn(Γ) -gr.modfd) is the Grothendieck group of finite dimensional graded

Rn(Γ)-modules, K0 (Rn(Γ) -p.mod) is the Grothendieck group of graded projective

Rn(Γ)-modules, and g is the Kac-Moody algebra associated to Γ. We have Uq(g)

acting on the Grothendieck group as induction and restriction functors. Khovanov

and Lauda also introduced certain cyclotomic finite dimensional graded quotients

of the quiver Hecke algebra. Brundan and Kleshchev established an isomorphism

between blocks of the cyclotomic Hecke algebra and blocks of the cyclotomic quiver

Hecke algebra, which allowed them to introduce a grading on the cyclotomic Hecke

algebra.

The affine cellularity of quiver Hecke algebras in finite type A was discovered by

Kleshchev, Loubert and Miemietz [KLM13] and was later generalised by the first

two authors to all finite types [KL15]. Establishing affine cellularity reproved finite

global dimension for quiver Hecke algebras in finite type, a result that had already

been shown by Kato [Kat]. An explicit value for the dimension was computed by

McNamara [McN13].

In this thesis we construct an ideal J of the quiver Hecke algebra Rα and show

that quotienting by this ideal produces a finite dimensional algebra which preserves

much of the original algebra’s homological structure. Our work concentrates on

quiver Hecke algebras in type A as it uses foundations laid down in [KLM13]. Chap-

ters 1 and 2 introduce the main players, bringing together definitions and theorems
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from the literature and establishing some technical results which are crucial to the

construction of this ideal. In Chapter 3 we define the ideal J of the quiver Hecke

algebra Rα, and define the quotient algebra RJα := Rα/J . We then provide some

background on stratified algebras in Chapter 4 and establish a line of attack to

prove that RJα is properly stratified. Chapter 5 studies the homological structure of

RJα , and highlights the similarities with Rα, in particular we have a quotient which

preserves proper standard modules. We establish that RJα is cellular and properly

stratified. We then look at the case where every simple root has multiplicity at most

one in the root α indexing the block Rα of Rn(Γ). Here we provide a proof to a theo-

rem of Brundan and Kleshchev, and use that to establish a special case in which the

standard modules and proper standard modules of RJα coincide, in particular this

mean that RJα is a quasi-hereditary quotient of the quiver Hecke algebra. Finally,

Chapter 6 provides some worked examples and in particular highlights the example

of α = 2α1 + α2, for which one is unable to take a quasi-hereditary quotient of Rα

while still preserving the proper standard modules.
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Chapter 1

Background and definitions

We fix, once and for all, a field k. Unless otherwise specified modules will be assumed

to be left modules, when we need to distinguish that M is a left, resp. right, modules

over an algebra A we write AM , resp. MA.

1.1 Quiver Hecke algebras

We begin with some Lie theoretic information, and fix notation that will be used

throughout this report. We introduce the main objects here as well as some pre-

liminary results. The content on graded algebras is taken from [HM10] and [Kle15],

the rest of the chapter, unless otherwise indicated, can be found in [KLM13] and

[Bru13].

Lie theoretic notation For a Dynkin quiver of type A∞ with set of vertices

I = Z we have the corresponding Cartan matrix with entries

ai,j =


2 if i = j,

0 if |i− j| > 1,

−1 if i = j ± 1

,

for i, j ∈ I. We also have a set of simple roots {αi | i ∈ I} and the Cartan matrix

defines a bilinear form such that αi ·αj = ai,j on the positive part of the root lattice

Q+ := ⊕i∈IN0αi. The set of positive roots is given by

Φ+ := {α(m,n) := αm + αm+1 + · · ·+ αn | m,n ∈ I,m ≤ n}.

For α =
∑

i∈I ciαi ∈ Q+, we denote the height of α by |α| =
∑

i∈I ci.

The symmetric group Sd, generated by simple transpositions s1, . . . , sd−1, acts
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on the set Id by place permutation. The orbits under this action are the sets

〈I〉α := {i = (i1, . . . , id) ∈ Id | αi1 + · · ·+ αid = α}

for each α ∈ Q+ with |α| = d. We define a partial ordering ≤ based on the

lexicographic order on 〈I〉α which is determined by the natural order on I = Z, by

which we mean (i1, · · · , id) < (i′1, · · · , i′d) if and only if there is an integer k, with

1 ≤ k ≤ d, such that ij = i′j for j < k and ik < i′k.

To a positive root β = α(m,n), we associate the word

iβ := (m,m+ 1, . . . , n) ∈ 〈I〉β.

We define a total order on Φ+ by β ≤ γ if and only if iβ ≤ iγ , for β, γ ∈ Φ+.

Graded algebras An I-graded k-module is a k-module M with a decomposition

M = ⊕i∈IMi, where I is some indexing set with a binary operation +. Elements

m ∈Mi are called homogeneous of degree i. When we omit the grading set and just

say graded module, etc, we shall mean Z-graded.

A graded k-algebra is a unital associative k-algebra A = ⊕i∈ZAi which is a graded

k-module such that AiAj ⊆ Ai+j for all i, j ∈ Z. An A-module M is called a graded

(left) A-module if it is a graded k-module such that AiMj ⊆ Mi+j for all i, j ∈ Z.

Graded submodules, graded right modules are all defined analogously. For a graded

vector space V = ⊕i∈ZVi we say V is locally finite if each graded component Vi is

finite, and we say it is bounded below if Vi = 0 for all i << 0. We define the graded

dimension dimq V :=
∑

i∈Z(dimVi)q
i, where q is a formal variable. We also use q

for the degree shift functor, so qV has (qV )i := Vi−1. We call a graded vector space

Laurentian if it is both locally finite and bounded below, in this case its graded

dimension dimq V is a formal Laurent series.

The KLR algebra Let α ∈ Q+ be of height d and let k be a commutative unital

ring. Then the quiver Hecke algebra (of finite type A) (also called the Khovanov-

Lauda-Rouquier (KLR) algebra) Rα = Rα(k) is the associative, unital k-algebra

generated by

{e(i) | i ∈ 〈I〉α} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1}
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subject to the following relations

e(i)e(j) = δi,je(i);
∑

i∈〈I〉α

e(i) = 1;

yre(i) = e(i)yr; ψre(i) = e(sr · i)ψr; yrys = ysyr;

ψrys = ysψr if s 6= r, r + 1;

ψrψs = ψsψr if |r − s| > 1;

ψryr+1e(i) = (yrψr + δir,ir+1)e(i); yr+1ψre(i) = (ψryr + δir,ir+1)e(i);

ψ2
re(i) =


0 if ir = ir+1,

e(i) if |ir − ir+1| > 1,

(yr+1 − yr)e(i) if ir = ir+1 − 1,

(yr − yr+1)e(i) if ir = ir+1 + 1;

ψrψr+1ψre(i) =


(ψr+1ψrψr+1 + 1)e(i) if ir+2 = ir = ir+1 − 1,

(ψr+1ψrψr+1 − 1)e(i) if ir+2 = ir = ir+1 + 1,

ψr+1ψrψr+1e(i) otherwise.

The algebra Rα possesses a unique Z-grading such that all e(i) are of degree

0, all yr are of degree 2, and deg(ψre(i)) = −air,ir+1 , where air,ir+1 is an entry in

the Cartan matrix. For any reduced decomposition w = si1si2 · · · sir ∈ Sd, define

ψw := ψi1ψi2 · · ·ψir .

Remark 1.1. Our ψw does depend on the choice of reduced expression for w,

however, one deduces from the last relation that given two reduced expressions ẇ,

ẅ of w, ψẇ and ψẅ differ only by a sum of ψv for l(v) < l(w). Henceforth we fix a

reduced expression for every w ∈ Sd.

Example 1.2. Let us consider the root α = α1 + α2 + α3, then Rα has generators

{e(123), e(132), e(213), e(231), e(312), e(321), y1, y2, y3, ψ1, ψ2}
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and we associate to Rα the following quiver.

e(321)
ψ2

��ψ1vv

y1 && y3
ww

y2

��

e(231)

ψ1
66

ψ2

��

y1

77
y3

ff

y2

��
e(312)

ψ2

^^

ψ1

��

y1

��

y2
ff

y3

77

e(213)

ψ2

KK

ψ1

��

y1 &&

y2

DD

y3
ww

e(132)

ψ2vv

ψ1

KK

y1
ww

y2

QQ

y3 &&

e(123)
ψ1

^^ ψ2
66

y1
88

y3

gg

y2

VV

Relations give us, for example,

ψ2
2e(312) = (y3 − y2)e(312); ψ2

1e(312) = e(312);

ψ2y3e(123) = y2ψ2e(123); ψ1ψ2ψ1e(321) = ψ2ψ1ψ2e(321).

Example 1.3. If we consider the quiver Hecke algebra associated to the root

α = α1 + α1 + α2, then we have the generating set

{e(112), e(121), e(211), y1, y2, y3, ψ1, ψ2}

and we associate to Rα the following quiver.

e(121)

ψ1vv

ψ2

��

y1 && y3
ww

y2

��

e(211)

ψ2

HH

ψ1
66

y1

��

y2
88

y3

gg e(112)
ψ2

^^

ψ1

HH

y1

��

y2
ff

y3

77

Relations give us, for example,

ψ2
1e(112) = 0; ψ1y2e(112) = (y1ψ1 + 1)e(112);

ψ1ψ2ψ1e(121) = (ψ2ψ1ψ2 + 1)e(121).

A theorem of Khovanov and Lauda provides a nice basis for this algebra.
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Theorem 1.4. [KL09, Theorem 2.5] For an arbitrary field F, the elements

{ψwyr11 · · · y
rd
d e(i) | w ∈ Sd, r1, . . . , rd ∈ Z≥0, i ∈ 〈I〉α}

form an F-basis for Rα(F).

The quiver Hecke algebra can also be defined with diagrammatic notation, as

introduced in [KL09]. For i = (i1, . . . , id) ∈ 〈I〉α, we write

e(i) =

i1 i2 id

, ψre(i) =

i1 ir−1ir ir+1 id

, yse(i) =

i1 is−1 is is+1 id

where 1 ≤ r < d and 1 ≤ s ≤ d. Multiplication of elements is concatenation of

diagrams with matching labels, read from top to bottom and zero if the labels do

not match.

The centre of Rα Let i ∈ 〈I〉α be such that Si := StabSd(i) is a standard

parabolic subgroup of Sd. It is easy to see that this is equivalent to all equal entries

in i appearing consecutively. Let us denote by Si the set of shortest length left

coset representatives of Si in Sd. Then for j = 1, . . . , d we define

zj :=
∑
w∈Si

yw(j)e(w(i)), (1.1)

and we let Si act on k[z1, . . . , zd] by permuting the generators. For example, let

α = 2α1 + α2, and i = (112) then

z1 = y1e(112) + y1e(121) + y2e(211), (1.2)

z2 = y2e(112) + y3e(121) + y3e(211), (1.3)

z3 = y3e(112) + y2e(121) + y1e(211). (1.4)

Theorem 1.5 ([Bru13, Theorem 2.7]). The centre of the algebra Rα is given by

Z(Rα) = k[z1, . . . , zd]
Si .

Root partitions and blocks Let α ∈ Q+ with |α| = d. A root partition of α is

a way to write α as an ordered sum of positive roots

α = p1β1 + · · ·+ pnβn
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so that β1 > · · · > βn and p1, . . . , pn > 0. We denote such a root partition π

as π = βp1
1 . . . βpnn . Let Π(α) denote the set of root partitions of α. Within a

root partition we call each βi a π-block of weight βi. Each root partition π has an

associated idempotent e(iπ) ∈ Rα with the word βπ given by the concatenation of

iβk for 1 ≤ k ≤ n
iπ := iβ1 . . . iβ1 . . . iβn . . . iβn ∈ 〈I〉α

where each iβk appears pk times. Define the total order on Π(α) by π ≥ σ if and

only if iπ ≥ iσ for π, σ ∈ Π(α).

Lemma 1.6. Let ≤ denote the lexicographic order on 〈I〉α. Assume that i ≤ iπ for

all π ∈ Π(α), then i = iπ if and only if π = α1 + · · ·+ αn.

Proof. Let π = α1 + · · · + αn then iπ ≤ i for all i ∈ 〈I〉α, so i = iπ. Conversely,

assume that π 6= α1 + · · · + αn. Then either α contains repeated simple roots or

there exists a σ < π ∈ Π(α) with σ = α1 + · · · + αn in the latter case, i 6= iπ.

Without loss of generality let α = α1 + · · ·+ 2αi + · · ·+ αn. Then

π = (αi + · · ·+ αn)(α1 + · · ·+ αi) ≤ σ

for all σ ∈ Π(α), but i = 1 · · · ii · · ·n <lex iπ ≤ iσ for all σ ∈ Π(α). So the lowest

root in Π(α) is αi

Example 1.7. For π = (α3)4(α2 + α3)2(α2)3(α1 + α2) we have

e(iπ) = e(3333232322212)

and there are four (α3) blocks, two (α2 + α3) blocks, three (α2) blocks and one

(α1 + α2) block.

To any π we associate the Young subgroup

Sπ
∼= Sp1

|β1| × · · · ×Spn
|βn| ≤ Sd,

and denote by Sπ the set of shortest left coset representatives for Sπ in Sd.

Lemma 1.8. If w ∈ Sπ then w(iπ) ≤ iπ.

Proof. This follows directly from the definition of Sπ := Sd/Sπ.

Example 1.9. Take the root partition π = (α1 + α2)(α1). Then we label the

generators of S3 as s1 and s2, where the subscript tells us that they act on

i = (121) by swapping the ith and (i+ 1)st positions, we get Sπ = 〈e, s1〉 ∼= S2 and

Sπ = 〈e, s2, s1s2〉.
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1.2 Affine nil-Hecke algebras

A basic introduction to (affine) nil-Hecke algebras is detailed by Rouquier [Rou12].

In the case that α = aαn, a ∈ N, then Rα is isomorphic to the ath affine nil-

Hecke algebra, NHa, where NHa, is defined to be the associative unital (Z-)algebra

generated by {y1, . . . , ya, ψ1, . . . , ψa−1} subject to the relations

ψ2
r = 0;

ψrψs = ψsψr if |r − s| > 1;

ψrψr+1ψr = ψr+1ψrψr+1;

ψrys = ysψr if s 6= r, r + 1;

ψryr+1 = yrψr + 1;

yr+1ψr = ψryr + 1.

Again we define ψw := ψi1 · · ·ψik for a reduced decomposition of w = si1 · · · sik ∈ Sa,

and the relations above show that ψw does not depend on the choice of reduced

decomposition. It is noticed in [KL09, Section 2.2] that the element

ψw0y2y
2
3 · · · ya−1

a (1.5)

is an idempotent in NHa, where w0 denotes the longest element in Sa.

Schubert polynomials Schubert polynomials have been a powerful tool in both

algebra and geometry. The set of Schubert polynomials forms a basis for the polyno-

mial ring when viewed as a module over the ring of symmetric polynomials [Rou12,

Theorem 2.11], and their connections to geometry are covered in [Ful99, Chapter

10]. Here we define a variant of the Schubert polynomial.

Given the polynomial ring Z[X1, . . . , Xm], define the divided difference operator,

∂i by

∂i(P ) :=
P − si(P )

Xi+1 −Xi
, 1 ≤ i ≤ m− 1, P ∈ Z[X1, . . . , Xm],

where we use si(P ) to denote the result of interchanging Xi with Xi+1 in P . The

divided difference operator was first introduced by Bernstein, Gel’fand, and Gel’fand

[BGG73] and Demazure [Dem74]. Given w ∈ Sm, write w = si1si2 · · · sir a reduced

expression. We define the reverse Schubert polynomial associated to w to be

fw := ∂ir ◦ · · · ◦ ∂i2 ◦ ∂i1(X2X
2
3 · · ·Xm−1

m ).

Note that the total set of reverse Schubert polynomials {fw | w ∈ Sm} coincides

with the total set of Schubert polynomials as defined in [Ful99, p.171]. Moreover,
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the reverse Schubert polynomial associated to w in variables X1, . . . , Xm is the same

as the Schubert polynomial associated to w0w in variables Xm, . . . , X1, where w0 is

the longest reduced word in Sm. Henceforth we shall drop ”reverse” when talking

about these polynomials.

Example 1.10. In general for Sn it follows from the definition that fw0 = 1 and

fid = y2y
2
3 · · · yn−1

n . Now, let Sn = S3 and consider polynomials in k[y1, y2, y3]. If

w = s1s2 then

∂1∂2(y2y
2
3) = ∂1

(
y2y

2
3 − y2y

2
2

y3 − y2

)
= ∂1(y2y3)

=
y2y3 − y1y3

y2 − y1

= y3

These polynomials appear naturally in the study of the affine nil-Hecke alge-

bra since it is well known that NHa is isomorphic to the ring of endomorphisms of

Z[y1, . . . , ya] generated by the endomorphisms of multiplication and divided differ-

ence operators, see for instance [KL09], [Rou12].

Lemma 1.11. [KL09, Section 2.2] [KLM13, Section 4.2] Let w ∈ Sn be a reduced

expression. Then in the affine nil-Hecke algebra of rank a,

ψwy2y
2
3 · · · ya−1

a ψw0 = fwψw0 ,

where fw denotes the corresponding Schubert polynomial in variables y1, . . . , ya.

Henceforth, let us use the notation

ψa := ψw0 ∈ NHa;

ya := y2y
2
3 · · · ya−1

a ∈ NHa

so that ψaya is the idempotent (1.5). The following lemma is a well known property

of NHa.

Lemma 1.12. We have ψayaψa = ψa.

Proof. This follows as a consequence of Lemma 1.11, since

ψayaψa = fw0ψa = 1 · ψa.
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Theorem 1.13. [Rou12] The affine nil-Hecke algebra NHa has a basis given by

{ψwyr11 · · · y
ra
a | w ∈ Sa, ri ≥ 0 ∀i = 1, . . . , a}.

Moreover, the action of NHa on k[y1, . . . , ya] induces a graded algebra isomorphism

NHa
∼= Endk[y1,...,ya]Sa (k[y1, . . . , ya]).

1.3 Motivation

Having introduced the quiver Hecke algebras and shown some of their first proper-

ties we now provide some motivating reasons behind their study. This chiefly falls

into two sections, the famous categorification theorems which link the representation

theory of Rα to half the quantized enveloping algebra associated to the Kac-Moody

algebra g, and then the well studied cyclotomic quotients which have provided im-

portant advances in the representation theory of the symmetric group and related

Hecke algebras. All of the information in this section can be found in the survey

papers of Brundan [Bru13] and Kleshchev [Kle10], however we will highlight the

origins of the main results.

For a loop free quiver with vertex set I we denote by mi,j the number of directed

edges i→ j for i, j ∈ I. The corresponding Cartan matrix C = (ci,j)i,j∈I is defined

from ci,i = 2, ci,j = −mi,j −mj,i for i 6= j. To C there is an associated Kac-Moody

algebra g. We fix a choice of root datum for g. This gives a weight lattice P which

is a finitely generated abelian group equipped with a symmetric bilinear from

P × P → Q;

(λ, µ) 7→ λ · µ,

containing simple roots (αi)i∈I and fundamental weights (Λi)i∈I such that, for i, j ∈
I, αi · αj = ci,j and αi · Λi = δi,j . The root lattice is Q := ⊕i∈IZαi ⊂ P and the

positive part is Q+ := ⊕i∈INαi.

Categorification The categorification theorems focus on the categories

R -mod = ⊕α∈Q+Rα -mod, R -p.mod = ⊕α∈Q+Rα -p.mod,

of finite dimensional R-modules and finitely generated projective R-modules, respec-

tively.

Let g be a semi-simple Lie algebra over some field F. The universal envelop-

ing algebra of g is the associative unital algebra U(g) over F and a Lie algebra
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homomorphism

i : g→ U(g)

satisfying the universal property that for every arbitrary associative unital alge-

bra A over F and a Lie algebra homomorphism j : g → A, there exists a unique

homomorphism of associative algebras φ : U(g)→ A making the diagram commute.

g
i //

j ��

U(g)

φ}}
A

Note that any associative algebra can be endowed with a Lie algebra structure using

the commutator bracket [x, y] = xy− yx. The universal enveloping algebra of g can

be constructed explicitly as

U(g) := T (g)/〈x⊗ y − y ⊗ x− [x, y] | x, y ∈ g〉,

where T (g) is the tensor algebra of g, i.e, T (g) := ⊕i≥0g
⊗i. There exists a defor-

mation of this algebra known as the quantized universal enveloping algebra Uq(g)

where q ∈ k×, which decomposes into positive and negative parts, denoted U−q (g)

and U+
q (g), and a zero part U0

q (g). It is often useful to utilise the existence of an

algebra isomorphism between the algebra known as Lusztig’s algebra f and U−q (g).

Indeed, it is known that f is a Q+-graded algebra so that f = ⊕α∈Q+fα, and one

can endow f with the structure of a twisted bialgebra. To avoid going beyond the

scope of this brief motivational section we direct the reader to [Bru13] and [Kle10]

for a detailed description of Lusztig’s algebra.

The Grothendieck groups of the categories mentioned before can also be given

twisted bialgebra structures in the following way. We have functors of induction and

restriction between quiver Hecke algebras, for β, γ ∈ Q+, there is natural embedding

Rβ ⊗Rγ ↪→ Rβ+γ

where the tensor product acts as horizontal concatenation of diagrams. Denote

the image of 1β ⊗ 1γ ∈ Rβ ⊗ Rγ by 1β,γ ∈ Rβ+γ . Then for U ∈ Rβ+γ -mod and

V ∈ Rβ ⊗Rγ -mod we define functors

Resβ+γ
β,γ : Rβ+γ -mod→ Rβ ⊗Rγ -mod

Indβ+γ
β,γ : Rβ ⊗Rγ -mod→ Rβ+γ -mod
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by setting

Resβ+γ
β,γ U = 1β,γU Indβ+γ

β,γ V := Rβ+γ1β,γ ⊗Rβ⊗Rγ V.

Summing over all β, γ ∈ Q+ gives functors Ind and Res, which act as multiplication

and comultiplication (resp.) on the Grothendeick groups of the categories R -mod

and R -p.mod, and endows them with the structure of a Z[q, q−1]-bialgebra. This

result follows from the existence of an isomorphism between K0(R -p.mod) and a

well known subalgebra Z[q,q−1]f of f , known as Lusztig’s Z[q, q−1]-form. This is the

first of the so-called categorification theorems.

Theorem 1.14. [KL09, Theorem 1.1] There is a canonical twisted bialgebra iso-

morphisms

Z[q,q−1]f → K0(R -p.mod).

Under this isomorphism Z[q,q−1]fα corresponds to K0(Rα -p.mod) for any

α ∈ Q+, multiplication in Z[q,q−1]f corresponds to induction in K0(R -p.mod),

and comultiplication in Z[q,q−1]f corresponds to restriction in K0(R -p.mod). The

twisted multiplication on K0(R -mod)⊗K0(R -mod) is defined by

(a⊗ b)(c⊗ d) = q−β·γac⊗ bd

for a ∈ K0(Rα -mod), b ∈ K0(Rβ -mod), c ∈ K0(Rγ -mod), and d ∈ K0(Rδ -mod).

For F with characteristic 0, the isomorphism also identifies a particularly nice

basis, Lusztig’s canonical basis, for f with the basis of the Grothendieck group

K0(R -p.mod) consisting of isomorphism classes of projective indecomposable mod-

ules.

Theorem 1.15. [Rou12, Corollary 5.8][VV11, Theorem 4.5] Assume F has char-

acteristic 0. For every α ∈ Q+, the isomorphism

fα → K0(Rα -p.mod)

maps Lusztig’s canonical basis for fα to the basis of K0(Rα -p.mod) consisting of

isomorphism classes of indecomposable projective graded Rα-modules.

The above theorems describe what is meant in the vernacular of the subject

when one says R categorifies U−q (g), and the indecomposable projectives categorify

Lusztig’s canonical basis.

Cyclotomic quotients The introduction of quiver Hecke algebras also allowed

key developments in the representation theory of the symmetric group. To under-

stand this one must introduce a special quotient of the quiver Hecke algebra in type

18



A. Recall that there is a bilinear form

(·, ·) : P ×Q→ Z

such that (Λi, αj) = δij , using this define, for a chosen Λ ∈ P , the ideal

IΛ :=
〈
y

(Λ,αi1 )
1 e(i) | i ∈ 〈I〉α

〉
.

The quotient algebra RΛ
α := Rα/I

Λ is called the cyclotomic quiver Hecke algebra.

Proposition 1.16. The elements yse(i) ∈ RΛ
α are nilpotent for all 1 ≤ s ≤ n.

Moreover, the algebra RΛ
α is finite dimensional.

Notice that once the nilpotence of the ys
′s is established the claim about finite

dimensionality follows from Theorem 1.4.

For a fixed field F and q ∈ F× the affine Hecke algebra of type A,

Haff
d = Haff

d (F, q), is the F-algebra generated by

T1, · · · , Td−1, X
±1
1 , · · · , X±1

d ,

subject to the relations

X±1
r X±1

s = X±1
s X±1

r ; XrX
−1
r = 1;

T 2
r = (q − 1)Tr + q; TrXrTr = qXr+1; TrTr+1Tr = Tr+1TrTr+1;

TrXs = XsTr if s 6= r, r + 1;

TrTs = TsTr if |r − s| > 1;

There is a degenerate form Haff
n (F, 1) for when q = 1, but we do not list the relations

here. For a fixed Λ ∈ P , the cyclotomic Hecke algebra also known as the Ariki-Koike

algebra is given by

HΛ
n := Hn/

〈∏
i∈I

(X1 − qi)(Λ,αi)

〉
.

These cyclotomic quotients give us the Hecke algebras Hd
∼= HΛi

d and thus we

recover the symmetric group from these by setting q = 1, ie, FSd
∼= HΛi

d (F, 1). By

constructing an explicit basis, Brundan and Kleshchev established an isomorphism

between blocks of HΛ
d and the algebras RΛ

α . This revealed a previously unknown

grading on HΛ
d , and thus on FSd.
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Chapter 2

Cellular and affine cellular

algebras

In this chapter we introduce the class of cellular algebras, these are finite dimen-

sional algebras with particularly nice representation theory. We then introduce the

more recent infinite dimensional analogue, the affine cellular algebras. We consider

examples of both, and explain in detail the affine cellular structure of the quiver

Hecke algebra of finite type A.

2.1 Definitions and examples

Cellular algebras Cellular algebras were introduced by Graham and

Lehrer [GL66] as a class of algebras that have bases with nice multiplicative

properties, inspired by those of the Kazhdan-Lusztig basis for Hecke algebras.

Later Koenig and Xi [KX99] gave an abstract definition in terms of the existence

of a particular ideal chain, called a cell chain. From this cell chain we are able to

determine many aspects of the representation theory of these algebras, for instance,

we get a complete classification of irreducible modules as well as a criterion for

when the algebra is semi-simple.

Let A be an R algebra where R is a commutative Noetherian integral do-

main. Assume there is an involution τ on A, that is an automorphism such that

τ(ab) = τ(b)τ(a) for all a, b ∈ A. A two sided ideal J in A is called a cell ideal if

and only if τ(J) = J and there is a left ideal ∆ ⊂ J such that ∆ is finitely generated

and free over R and there is an isomorphism of A-A-bimodule α : J ∼= ∆ ⊗R τ(∆)
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making the following commute

J

τ

��

α // ∆⊗R τ(∆)

x⊗y 7→τ(y)⊗τ(x)

��
J

α // ∆⊗R τ(∆).

Then an algebra A (with involution τ) is called cellular if and only if there is an

R-module decomposition A = J ′1 ⊕ · · · ⊕ J ′n with τ(J ′j) = J ′j for all j = 1, . . . , n and

such that Jj := ⊕jl=1J
′
l gives a chain of two sided ideals

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jn = A

called a cell chain, such that for each j = 1, · · · , n the quotient Jj/Jj−1 is a cell ideal

of A/Jj−1. The ∆’s are called standard modules as they coincide with the standard

modules arising in the stratified algebras discussed in Chapter 4. Representatives

for isomorphism classes of the irreducible modules of A can be taken as the heads

of the standard modules.

Example 2.1. 1. The algebra Mn×n(k) is cellular with involution τ(A) = AT

and has cell chain of length 1. In this case

∆ =


∗
∗
...

∗


and τ(∆) = ∆T . It is clear that ∆⊗ τ(∆) ∼= Mn×n(k).

2. The algebra k[x]/(xn) is cellular with involution τ = id. The cell chain is given

by

0 = (xn) ⊆ (xn−1) ⊆ · · · ⊆ (x) ⊆ (1) = k[x]/(xn).

3. Let A be the path algebra of the quiver e1

α ))
e2

α ))

β

ii e3

β

ii modulo the ideal

(α2, β2, αβe2 − βαe2). The Loewy structure of the left regular representation

of A is given by

1

2

1

⊕

2

1 3

2

⊕
3

2

3

.

The algebra A is cellular with respect to the involution τ defined by τ(ei) = ei,
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τ(α) = β, τ(β) = α. It has a cell chain given by

A(αe2β)A ⊆ Ae3A ⊆ A(e2 + e3)A ⊆ A.

Affine cellular algebras We define affine cellularity in the context of Koenig and

Xi [KX12]. An affine commutative algebra is a commutative k-algebra which is a

quotient of a polynomial ring k[x1, · · ·xn] in finitely many variables. Let A be a

unitary k-algebra with a k-anti-involution τ . A two-sided ideal J in A is called an

affine cell ideal if the following conditions are satisfied:

1. the ideal J is fixed by τ , i.e., τ(J) = J ;

2. there exists a free k-module V of finite rank and an affine commutative k-

algebra B with identity and with a k-involution σ such that ∆ := V ⊗k B
can be given the structure of an A-B-bimodule, where the right B-module

structure is induced by that of the regular right B-module BB;

3. there is an A-A-bimodule isomorphism α : J → ∆⊗B ∆′, where ∆′ := B⊗k V
is a B-A-bimodule with the left B-module structure induced by BB and with

the right A-module structure via τ , that is,

(b⊗ v)a := s(τ(a)(v ⊗ b)),

for a ∈ A, b ∈ B, v ∈ V , and s : V ⊗k B → B ⊗k V , v ⊗ b 7→ b⊗ v, such that

the following diagram is commutative:

J

τ

��

α // ∆⊗B ∆′

v1⊗b1⊗Bb2⊗v2 7→v2⊗σ(b2)⊗Bσ(b1)⊗v1

��
J

α // ∆⊗B ∆′.

The algebra A (with involution τ) is called affine cellular if there is a k-module

decomposition A = J ′1 ⊕ J ′2 ⊕ · · · ⊕ J ′n (for some n) with τ(J ′j) = J ′j for each j and

such that setting Jj = ⊕jl=1J
′
l gives a chain of two-sided ideals of A:

0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A

(each of them fixed by τ) and for each j = 1, . . . , n the quotient Jj/Jj−1 is an affine

cell ideal of A/Jj−1 (with respect to the involution induced by τ on the quotient).

We call this chain a cell chain for the affine cellular algebra A. The module ∆ is

called a cell module for the affine cell ideal J .

Example 2.2. 1. The algebras Mn×n(k[x]) are affine cellular with respect to the

involution τ(A) = AT with cell chains of length 1.
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2. Moreover, the same is true of matrices over any affine algebra, in particular in

light of the isomorphism

Endk[y1,...,ya]Sa (k[y1, · · · , ya]) ∼= Ma!×a!(k[y1, . . . , ya])

and Theorem 1.13, the affine nil-Hecke algebra is affine cellular.

3. If A := kQ/I ⊗k k[x] where Q : 1
α
((
2

β

hh and I = 〈αβ〉 then A is an affine

cellular algebra with respect to the involution τ⊗k id where τ fixes idempotents

and exchanges α and β. A has cell chain given by

0 ⊆ Ae2A⊗k k[x] ⊆ A⊗k k[x].

4. More generally, if A is a cellular algebra and H is an affine algebra then A⊗kH
is an affine cellular algebra with respect to the involution i ⊗ id and has cell

chain

0 ⊆ Jn ⊗k H ⊆ Jn−1 ⊗k H ⊆ · · · ⊆ J1 ⊗k H = A⊗k H

induced from the cell chain 0 ⊆ Jn ⊆ · · · ⊆ J1 = A of A.

2.2 Affine cellularity of Rαthe quiver Hecke algebra

The affine cellularity of quiver Hecke algebras in type A was established by

Kleshchev, Loubert and Miemietz [KLM13]. To describe the affine cellular struc-

ture the authors make use of special elements yπ and ψπ in Rα, which correspond

to a root partition π ∈ Π(α), and are defined in the following way.

Elements yπ and ψπ We fix a root α ∈ Q+ of height d, and let α1, . . . , αb ∈ Q+

with α1 + · · ·+ αb = α. There is a natural embedding

ια1,...,αb : Rα1 ⊗ · · · ⊗Rαb ↪→ Rα

whose image Rα1,...,αb is the parabolic subalgebra in Rα. Let us define ψα ∈ R2α to

be the element

ψα := (ψd · · ·ψ2d−1) · · · (ψ2 · · ·ψd+1)(ψ1 · · ·ψd). (2.1)
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In explanation, ψα is the permutation of two α-blocks, as illustrated below.

d d

d d

Let p ∈ N then define

ψα,r := ι(r−1)α,2α,(p−r−1)α(1⊗ ψα ⊗ 1) ∈ Rpα (1 ≤ r < p),

which is the element that permutes the rth and (r+ 1)th α-blocks. Furthermore, for

w ∈ Sp and a reduced decomposition w = si1 · · · sim define

ψα,w := ψα,i1 · · ·ψα,im ∈ Rpα.

Let us define

yα,s := ι(s−1)α,α,(p−s)α(1⊗ yd ⊗ 1) ∈ Rpα (1 ≤ s ≤ p).

In words, yα,s is a dot on the last strand of the sth block of size d.

We further define

yα,p := yα,2y
2
α,3 · · · yp−1

α,p ∈ Rpα,

and denote the polynomial algebra and the symmetric polynomial algebra in these

variables by

Pα,p = Z[yα,1, . . . , yα,p] and Λα,p = P
Sp
α,p.

Now, let π = βp1
1 · · ·β

pn
n ∈ Π(α) be a root partition of α. For 1 ≤ k ≤ n, and

x ∈ Rpkβk put

ιk(x) = ιp1β1+···+pk−1βk−1,pkβk,pk+1βk+1+···+pnβn(1⊗ x⊗ 1) ∈ Rα.

For all 1 ≤ k ≤ n, w ∈ Spk , 1 ≤ r ≤ pk and 1 ≤ s ≤ pk define the elements of Rα

ψk,w := ιk(ψβk,w), ψk,r := ιk(ψβk,r), yk,s := ιk(yβk,s).
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In other words, ψk,r is the permutation of the r, r+ 1 βk-blocks and yk,s is a dot on

final strand on sth βk-block. We define

yπ := ι1(yβ1,p1
) · · · ιn(yβn,pn),

ψπ := ι1(ψβ1,w1
0
) · · · ιn(ψβn,wn0 ),

where wk0 is the longest element of Spk , for k = 1, . . . , n. Also, let

Λπ := ιp1β1,...,pnβn(Λβ1,p1 ⊗ · · · ⊗ Λβn,pn) ∼= Λp1 ⊗ · · · ⊗ Λpn , (2.2)

Pπ := ιp1β1,...,pnβn(Pβ1,p1 ⊗ · · · ⊗ Pβn,pn). (2.3)

Let us consider some examples, as the elements yπ and ψπ are clearer when

illustrated.

Example 2.3. 1. When α = αai , ie, Rα = NHa, then yπ = ya, ψπ = ψa and

Λπ = k[y1, . . . , ya]
Sa .

2. For α = 3α1 + 3α2, let π = (α1 + α2)3. Then yπ = y4y
2
6 and

ψπ = ψ2ψ4ψ3ψ2ψ1ψ2ψ5ψ4ψ5ψ3ψ4ψ2.

3. For α = 2α1 + α2, let π = α2(α1)2, then yπ = y3 and ψπ = ψ2, whereas for

π = (α1 + α2)α1 we have yπ = e(iπ) = ψπ.

4. Let α = 2α1 + 2α2 + 2α3, and π = (α1 + α2 + α3)2. Then yπ = y6y
2
9 and

ψπ = ψ3ψ2ψ4ψ2ψ4ψ6ψ4ψ2ψ3.

Notice that we can split the element ψπ into three distinct parts, namely,

ψπ = ψππ̄ψπ̄ψπ̄π, where ψπ̄ consists of the part of ψπ that contains only (i, i)-

crossings of the same colour. Then ψππ̄ contains only (i, j)-crossings of different

colours, and ψπ̄π is the reversal of ψππ̄.

Example 2.4. For example, consider the root partition π = (α1 + α2)3. Then ψπ

can be written using diagrammatics as follows.

ψπ

ψπ̄π

ψπ̄

ψππ̄
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We now prove a generalised version of Lemma 1.12.

Lemma 2.5. For π ∈ Π(α) and ψπ, yπ ∈ Rα we have

ψπyπψπe(iπ) = ψπe(iπ).

Proof. It suffices to prove this for a partition consisting of one block type since

ψπ, yπ ∈ Rp1β1 ⊗ · · · ⊗Rpnβn ⊂ Rα.

So, let π = (α1 + · · ·+ αm)a. Then

ψπyπψπe(iπ) = ψππ̄ψπ̄ψπ̄πyπψππ̄ψπ̄ψπ̄πe(iπ)

= ψππ̄ψπ̄ψπ̄π

a−1∏
k=1

yk(k+1)mψππ̄ψπ̄ψπ̄πe(iπ)

= ψππ̄ψπ̄ψπ̄πψππ̄

a−1∏
k=1

yka(m−1)+k+1ψπ̄ψπ̄πe(iπ).

Let us rename the polynomial part yπ̄e(i) :=
∏a−1
k=1 y

k
a(m−1)+k+1. Direct computation

shows that ψπ̄πψππ̄e(i) = pe(i), where p is a polynomial within a product of nil-

Hecke algebras;

NH(1)
a ⊗ · · · ⊗NH(m)

a ,

and deg(ψππ̄) =
∑m−1

a=1 (m − 1)(a − k). We can write p = p1 + · · · + pr, where each

pj is a monomial and pj = p
(1)
j · · · p

(m)
j with p

(i)
j ∈ NH

(i)
a . With the same convention

of notation, write ψπ̄ = ψ
(1)
a · · ·ψ(m)

a . Note that yπ̄ ∈ NH
(m)
a , this gives

ψπ̄pyπ̄ψπ̄ =
∑
j

ψ
(1)
a p

(1)
j ψ

(1)
a · · ·ψ(m)

a p
(m)
j yπ̄ψ

(m)
a .

Let us denote by p := pyπ̄, and carry this notation down so that pj := pjyπ̄ giving

bp
(i)
j := p

(i)
j and p

(m)
j := p

(m)
j yπ̄. Suppose ψπ̄pjψπ̄ 6= 0 for some 1 ≤ j ≤ r, then we

claim that deg(p
(i)
j ) = a(a − 1) for each 1 ≤ i ≤ m. If deg(p

(i)
j ) < a(a − 1) then

deg(ψ
(i)
a p

(i)
j ψ

(i)
a ) < deg(ψ

(i)
a ) = −a(a − 1) which contradicts ψ

(i)
a being the element

of least degree in NH
(i)
a . So deg(p

(i)
j ) ≥ a(a−1), but if deg(p

(i)
j ) > a(a−1) for some

i, then since

deg(p) = 2 · deg(ψππ̄) + deg(yπ̄) = a(a− 1) + 2
m−1∑
k=1

(m− 1)(a− k) = a(a− 1)m,

we would require deg(p
(i′)
j ) < a(a − 1) for some other i′, which we already know

cannot occur. So deg(p
(i)
j ) = a(a− 1) for each 1 ≤ i ≤ m. Since deg(yπ̄) = a(a− 1),
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we must have p
(m)
j = 1, so we can refine the polynomial pj = p

(1)
j · · · p

(m−1)
j .

We now claim that pj =
∏m−1
i=1 p

(i)
j =

∏m−1
i=1 y

(i)
a . The monomial p

(i)
j has a

variables, y1+xi , . . . , ya+xi , where xi = a(i− 1). Let us define

degn(p
(i)
j ) := deg(p

(i)
j (yn+xi)),

for 1 ≤ n ≤ a. So degn(p
(i)
j ) is the degree of the nth variable of p

(i)
j , and is bounded

above by twice the number of strands of (i + 1)-colour that the n-strand crosses.

Therefore, degn(p
(i)
j ) ≤ n− 1. So if ψπ̄pjψπ 6= 0 then pj =

∏m−1
i=1 y

(i)
a .

There is precisely one summand pj with with this property. To show that this

summand exists and is unique consider each (i, i + 1)-crossing squared in ψπ̄πψππ̄,

this produces a factor (ys− yt) in p for some s and t, where ys corresponds to a dot

on the (i− 1)-strand and yt to a dot on the i-strand. When we multiply these out,

picking the corresponding yt term in each factor will produce
∏m−1
i=1 y

(i)
a . It is easy

to see that any other summand of p will not satisfy the above restrictions on degree.

So

ψπyπψπe(iπ) = ψππ̄ψπ̄

m−1∏
i=1

y(i)
a yπ̄ψπ̄ψπ̄πe(iπ).

Notice that yπ̄ = y
(m)
a , now by Lemma 1.12 we get

ψππ̄ψπ̄

m∏
i=1

y(i)
a ψπ̄ψπ̄πe(iπ) = ψππ̄ψπ̄ψπ̄πe(iπ) = ψπe(iπ),

as required.

Example 2.6. Let p
(k)
j = y3

1+xy
2
2+xy

7
3+x. Then deg1(p

(k)
j ) = 3, deg2(p

(k)
j ) = 2 and

deg3(p
(k)
j ) = 7.

In particular, the previous lemma shows that ψπyπe(iπ) are idempotents in Rα.

This property is used when constructing an affine cellular basis for Rα.

Affine cell structure The authors of [KLM13] define

I ′π = k− span{ψwyπΛπψπyπe(iπ)ψτv | w, v ∈ Sπ},

Iπ =
∑
σ≥π

I ′σ,

I>π =
∑
σ>π

I ′σ,

and conclude that the Iπ form a cell chain for Rα, thus establishing affine cellularity

for the quiver Hecke algebra.
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Theorem 2.7. [KLM13, Main Theorem] The algebra Rα is graded affine cellular

with cell chain given by the ideals {Iπ | π ∈ Π(α)}. Moreover, setting R̄α := Rα/I>π

for a fixed π ∈ Π(α), and eπ := ψπyπe(iπ) we have:

1. the map Λπ → ēπR̄αēπ, b 7→ b̄ȳπψ̄π ē(iπ) is an isomorphism of graded algebras;

2. R̄αē(iπ)ψ̄πȳπ is a free right ēπR̄αēπ-module with basis given by

{ψ̄wȳπψ̄π ē(iπ)ȳπ | w ∈ Sπ};

3. ȳπψ̄π ē(iπ)R̄α is a free left ēπR̄αēπ-module with basis given by

{ψ̄π ē(iπ)ȳπψ̄
τ
v | v ∈ Sπ};

4. multiplication provides an isomorphism

R̄αē(iπ)ψ̄πȳπ ⊗ēπR̄αēπ ȳπψ̄π ē(iπ)R̄α → R̄αψ̄π ē(iπ)ȳπR̄α;

5. R̄αψ̄π ē(iπ)ȳπR̄α = Iπ/I>π.

In future examples it will become convenient to adopt the following notation.

When referring to α = 2α1 + α2 and π = (α1 + α2)α1 then we will often write

Iπ = I121, and similarly for Λπ and other such notation.

This gives rise to a basis for Rα which we call the affine cellular basis due to

its combinatorial similarities with the bases of [GL66] for finite dimensional cellular

algebras.

Corollary 2.8. The algebra Rα has a basis given by

{ψwyπΛπψπyπe(iπ)ψτv | π ∈ Π(α);w, v ∈ Sπ}.

This work has since been generalised by Kleshchev and Loubert [KL15] to all

finite types. Note that the affine cellular basis is not always the easiest basis to work

with, as the next example illustrates.

Example 2.9. Let α = 2α1 +α2 then Λ121 = k[y2, y3], so how is e(121)y1 expressed
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as a linear combination of basis elements?

e(121)y1 = (y1 − y2)e(121) + y2e(121)

= −ψ1e(211)ψ1 + y2e(121)

= −ψ1(ψ2y3 − y2ψ2)e(211)ψ1 + y2e(121)

= ψ1y2ψ2y3ψ2e(211)y3ψ2ψ1 − ψ1ψ2y3ψ2e(211)y3ψ1 + y2e(121)

= ψ1ψ2y3ψ2(y2 + y3)e(211)y3ψ2ψ1 − ψ1y3ψ2e(211)y3ψ2ψ1

− ψ1ψ2y3ψ2e(211)y3ψ1 + y2e(121).

This example is also illustrative of the property that yre(iπ) ≡ yse(iπ) mod I>π

when yr and ys are in the same π−block, see [KLM13, Corollary 5.10].
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Chapter 3

An ideal of Rαthe quiver Hecke

algebra

The affine cell chain structure of Rα described in the previous chapter can be thought

of as follows

πmax

π1

where each layer is a different affine cell ideal. The purpose of this chapter is to

establish an ideal J such that the quotient Rα/J is a truncation of the affine cell

ideals to give a finite dimensional algebra.

πmax

π1

In order to construct J we must first generalise Lemma 1.11 so that for any w ∈ Sπ

such that e(iπ)ψwe(iπ) 6= 0 we may rewrite ψwyπψπe(iπ) as fwψπe(iπ) where fw is

a Schubert polynomial associated to w, this is done is Section 3.1. In Section 3.2 we

construct J , in doing so we make use of the fact that multiplying an element of the

affine cell basis by any element of Rα either increases the degree of the polynomial
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from Λπ at the centre of the basis element or yields a linear combination of basis

elements from cells lower than the original (note that it is also an option that both

of these eventualities occur). Crucially, the degree of the polynomial at the centre

of our basis element is not decreased. Therefore, we can define an ideal by choosing

basis elements from each cell ideal with central polynomial of sufficiently high degree

to ensures that multiplication by elements of Rα yields linear combinations of basis

elements above that degree in each cell ideal. It is worth noting that while we could

define an ideal in the same way but containing all polynomials in Λπ, the finite

dimensional algebra obtained when Rα is quotiented by this ideal does not posses

the homological properties Rα that we wish to preserve. A worked example of this

is contained in Section 6.3. We start Section 3.2 by establishing a bound on the

central polynomial and then go on to formally prove the properties of J that we

describe here.

3.1 The group WπW

Let β be a positive root of height h. Define the element wβ ∈ S2h to be

wβ := (sh . . . s2h−1) . . . (s2 . . . sh+1)(s1 . . . sh). In other words, wβ permutes two

β-blocks, and is the permutation in the symmetric group which yields ψβ = ψwβ in

(2.1).

There is a natural embedding

ι(r−1)h,2h,(p−r−1)h : S(r−1)h ×S2h ×S(p−r−1)h ↪→ Sph

We define

wβ,r := ι(r−1)h,2h,(p−r−1)h(1⊗ wβ ⊗ 1) (1 ≤ r < p).

So wβ,r is the element of the symmetric group that permutes the rth and (r + 1)st

β-blocks. Now consider the root partition π = βp1
1 · · ·β

pn
n . For 1 ≤ k ≤ n and

x ∈ Spk|βk|, we define the embedding

ιk : Sp1|β1|+···+pk−1|βk−1| ×Spk|βk| ×Spk+1|βk+1|+···+pn|βn| ↪→ Sd,

as

ιk(x) := ιp1|β1|+···+pk−1|βk−1|,pk|βk|,pk+1|βk+1|+···+pn|βn|(1⊗ x⊗ 1).

Define, wβk,r := ιk(wβ,r) for all 1 ≤ k ≤ n and 1 ≤ r < pk.

We now define the group Wπ using the notation defined above,

Wπ = 〈wβk,r | k = 1, . . . , n; r = 1, . . . , pk − 1〉.
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In explanation, Wπ is the group generated by permutations that swap π-blocks of

weight βk. The next collection of lemmas builds towards an alternative description

of Wπ.

Lemma 3.1. If e(iπ)ψwe(iπ) ∈
∑

σ≤π I
′
σ ⊆ Rα then w ∈Wπ.

Proof. Assume that w /∈Wπ, so ψw will ”mix up” the blocks of π. Suppose we have

a root β = αt+ · · ·+αt+k in the root partition π occupying the positions i, . . . , i+k.

Additionally, suppose i ≤ j < j′ ≤ i + k such that w(j) > w(j′), without loss of

generality we need only consider j′ = j + 1. Then w = w′sj and,

ψwe(iπ) = ψw′ψsje(iπ) + ψve(iπ)

for v such that l(ψv) < l(ψw). Clearly ψw′ψsje(iπ) = ψw′e(sjiπ)ψsj and sjiπ > iπ,

which contradicts e(iπ)ψwe(iπ) ∈
∑

σ≤π I
′
σ.

Lemma 3.2. [Mat99, Corollary 1.4] Suppose that w ∈ Sn and that si is a simple

transposition in Sn. Then

l(wsi) =

{
l(w) + 1; if w(i) < w(i+ 1),

l(w)− 1; if w(i) > w(i+ 1).

Lemma 3.3. If w(i) < w(i+ 1) for i < i+ 1 in the same π-block then w ∈ Sπ.

Proof. Let us consider wsi for some transposition si ∈ Sn. Since w(i) < w(i + 1),

l(wsi) = l(w) + 1. Both w and wsi are in the same Sπ-coset, but l(w) < l(wsi) for

all si ∈ Sπ. Therefore, l(w) is minimal, and w ∈ Sπ.

Lemma 3.4. Diagrammatically a reduced expression is a diagram in which no two

strands cross twice.

Proof. Without loss of generality assume Sn is acting on (1 · · ·n) from the left.

We proceed by induction on l(w). If l(w) = 0 then we are done, so assume the

claim is true for l(w) = k. Now let w̃ = wsi, by Lemma 3.2 either l(w̃) = k + 1

or l(w̃) = k − 1. If it is the latter, then our expression of w̃ is not reduced, and

w(i + 1) < w(i), which means we have had a crossing of the i and i + 1 strands,

therefore adding si corresponds to a diagram in which the two strands cross twice.

So, if l(w̃) = k + 1, then our expression is still reduced, and since w(i) < w(i + 1),

diagrammatically, we have not already had a crossing of the i and i+ 1 strands, and

any other crossing of two strands only occurs once.

Lemma 3.5. For a root partition π ∈ Π(α) we have

Wπ = Sπ ∩ {w ∈ Sn | e(iπ)ψwe(iπ) 6= 0}.
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Proof. Let π = βp1
1 · · ·β

pn
n . We start with the (⊆) inclusion. It follows from the

definition of Wπ that Wπ ⊂ {w ∈ Sn | e(iπ)ψwe(iπ) 6= 0}. To see that Wπ ⊂ Sπ

take w ∈ Wπ. Again by definition w(i) < w(j) if i, j are in the same block, this

implies w ∈ Sπ.

Now for the (⊇) inclusion. Take the element

w ∈ Sπ ∩ {w ∈ Sn | e(iπ)ψwe(iπ) 6= 0}

and first consider the π-blocks of weight βn. Without loss of generality, assume

βn = α1 + · · · + αm. Pick the rightmost strand of colour 1, say this appears in the

ith1 position, then w(i1) ≤ i1. We claim that w(i1) is also in a π-block of weight

βn. If w(i1) = i1 then the claim is satisfied. Assume w(i1) < i1 then if w(i1) is not

in a π-block of weight βn then it is in one of higher weight. Assume that w(i1) is

not in a π-block of weight βn, but is in a π-block of weight βn−1. Since βn−1 > βn

in the ordering on Π(α), βn−1 contains a strand of higher colour, without loss of

generality say m+ 1. Let w(i1) be in the rightmost βn−1 block. Label the position

of the last appearing strand of colour m + 1 by jm+1, then w(jm+1) ≤ jm+1 since

e(iπ)ψwe(iπ) 6= 0.

Assume that w(jm+1) = jm+1. By considering the braid diagram in the sym-

metric group, we see that for there to be a bijection between the top and bottom of

the diagram we must have a strand of colour 1 going into the π-blocks of weight βn

from some π-block of weight βs > βn. This contradicts Lemma 1.8 as, using [GP00,

Lemma 2.1.4], we can now find w′ ∈ Sπ such that w = w̄w′ and w′(iπ) > iπ as

illustrated below.

w(i1) j′m+1 i′1 i′m

k1 km+s j1 jm+1 i1 im

j1 jm+1

=

w(i1) j′m+1 i′1 i′m

k1 km+s j1 jm+1 i1 im

j1 jm+1

So we consider w(jm+1) < jm+1. Again, for a bijection of the diagram we need

a strand of colour 1 from the left of jm+1 going to the π-blocks of weight βn. If

w(jm+1) is in a π-block of weight βn−1 then we get the same situation as above so

let w(jm+1) fall in some π-block of weight βs. Now, assuming w(km+s) = km+s we
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reach a similar contradiction as illustrated below.

w(jm+1) k1 km+s w(i1) j′m+1 i′1 i′m

k′m+sk′ k1 km+s j1 jm+1 i1 im

If w(km+s) < km+s then recursive repetition of the argument means we run out of

places to send a strand. So w(i1) is not in a π-block of weight βn−1. Instead, if

we assume w(i1) is in a π-block of weight βt < βn−1 then we reapply the previous

arguments to that block and again get a contradiction. Inductively, we get that

w(i1) must be in a π-block of weight βn.

The same argument above can be applied to the next rightmost strand of colour

1 and so on giving us that all strands of colour 1 in block βn have their image, under

w, in a π-block of weight βn. Thus, all strands of a block βn have their images under

w in a βn block. Applying the above arguments recursively to βn−1 through β1 gives

us that w ∈ Sp1|β1| × · · · ×Spn|βn|.

We now reduce our attention to πn = pn(α1 + · · · + αm) = pnβn. For i < i′ in

βn we have w(i) < w(i′). So, consider neighbouring strands of colours i and i+ 1 in

pnβn and choose the q such that w(i+qm) is maximal among all strands of colour i.

Then w(i+qm) = i+(pn−1)m and w(i+qm)+1 ≤ w(i+1+qm), since we are in the

maximal block there is only one option and w(i+ 1 + qm) = i+ 1 + (pn− 1)m. Now

proceed with downward induction on the images of i+ qm under w where q varies.

To help keep track we introduce some quantifier κ, so that for q with w(i+ qm) > κ

assume w(i + 1 + qm) = w(i + qm) + 1. We now need to show the hypothesis for

q such that w(i + qm) = κ. We know that w(i + 1 + qm) ≤ w(i + qm) + 1, but by

the inductive hypothesis the strictly greater options are already accounted for, so

w(i+1+qm) = w(i+qm)+1. We have shown that for i, i+1 in βn, w(i+1) = w(i)+1.

Repeating this argument for each piβi gives us w(i+ 1) = w(i) + 1 for all i, i+ 1 in

the same π-block. Thus, w ∈Wπ.

We have one final lemma on reduced expressions in Wπ before we generalize

Lemma 1.11. When thinking about the proof of the lemma below, one should keep
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in mind a picture of the following sort.

Lemma 3.6. If w̃ = sr1 · · · srn is a reduced expression, then w := wβ,r1 · · ·wβ,rn
is a reduced expression. We then define ψw := ψwβ,r1 · · ·ψwβ,rn , moreover,

l(w) =
∑n

i=1 l(wβ,ri).

Proof. We begin by induction on the length of w̃. For l(w̃) = 0 the hypothesis is

clear, so assume it is also true for l(w̃) = n − 1. Now for w̃ of length n we induct

on the height of the root β. If |β| = 1, then w̃ = w and therefore is a reduced

expression. Now assume that the claim is true for |β| = m − 1, without loss of

generality β = α1 + . . . + αm−1. Then for |β| = m, assume w is not a reduced

expression. So, the mth strand in some copy must cross the same strand twice by

Lemma 3.4. But since w ∈ Wπ, we have no crossings within the root β by Lemma

3.5. Therefore, there must also be double crossings in each of the other strands, for

instance the 1st strand. This contradicts w̃ being a reduced expression. So w must

be a reduced expression.

Recall the polynomial ring Pπ from (2.3), this is the polynomial ring in variables

corresponding to the ends of roots. The polynomial ring Λπ is a subset of Pπ.

Example 3.7. Let π = (α1 + α2 + α3)(α1 + α2)2. Then Pπ = k[y3, y5, y7].

Proposition 3.8. Let π ∈ Π(α) be a root partition for α. Then

{e(iπ)ψwyπψπe(iπ) | w ∈ Sπ} = {fwψπe(iπ) | w ∈Wπ} ⊆ Rα,

where fw is the Schubert polynomial with variables in Pπ associated to w ∈ Wπ.

Moreover, this is a term-wise equality.

Proof. Lemma 3.5 allows us to reduce our attention to the case of one repeated

root, ie π = βn. We prove this by induction on the length of ψw. For l(w) = 0 the
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equality is clear, so assume it is also true for l(w′) = l−1 and let w = wβ,r1w
′. Using

Lemma 3.6 we write ψw = ψwβ,r1 · · ·ψwβ,rn , then wβ,r2 · · ·wβ,rn = ψw′ for w′ ∈ Wπ.

By length, we know the claim holds for ψw′ , so

ψwyπψπe(iπ) = ψwβ,r1ψw′yπψπe(iπ),

= ψwβ,r1fw′ψπe(iπ),

= ψwβ,r1ψππ̄fw′ψπ̄ψπ̄πe(iπ).

Our claim now reduces to showing that, for w = wβ,r1 ,

ψwψππ̄fw′ψπ̄ψπ̄πe(iπ) = ψππ̄fwψπ̄ψπ̄πe(iπ).

Using the same convention as Example 2.4 we write ψw = ψww̄ψw̄ψw̄w, then

ψwψππ̄fw′ψπ̄ψπ̄πe(iπ) = ψww̄ψw̄ψw̄wψππ̄fw′ψπ̄ψππ̄e(iπ).

Notice that ψππ̄ can be written in two ways. We can either collect all the 1s,

then all the 2s and so on. Or, we can order two adjacent blocks, then order a third

adjacent block into that and so on. (The two options are illustrated in Example

3.9.)

Choosing the second option, and first ordering the r1 and (r1 + 1) π-blocks of

weight β then ψππ̄ ends with the expression ψww̄, ie ψππ̄ = ψww̄ψrest where ψrest is

just the remaining part of ψππ̄. So,

ψww̄ψw̄ψw̄wψww̄ψrestfw′ψπ̄ψπ̄π = ψww̄ψw̄pψrestfw′ψπ̄ψπ̄πe(iπ),

= ψww̄ψw̄ψrestp̄fw′ψπ̄ψπ̄πe(iπ).

We now claim that it is possible to ”braid” ψw̄ through ψrest to give ψrestψw̄.

This follows from the fact that ψw̄ contains only (i, i)-crossings and ψrest contains

only (i, j)-crossings. Thus eliminating any non-trivial braid relations as ψw̄ passes

through. It is also worth noting that for each (i, i)-crossing, if one of these i’s crosses

a j, then this implies that the other i will also cross that j-strand. See the following

picture in the case of π = 3(α1 +α2 +α3), the ψww̄ is at the top of the braid diagram

with ψw̄ in the section below followed by ψrest.
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1 2 3 1 2 3 1 2 3

ψww̄

ψw̄

ψrest

So we have

ψw̄wψw̄ψrestp̄fw′ψπ̄ψπ̄π = ψww̄ψrestψw̄p̄fw′ψπ̄ψπ̄πe(iπ).

Part of the equation between ψrest and ψπ̄π takes place in the product of nil-Hecke

algebras, if we write that part explicitly we get

ψww̄ψrest

m−1∏
i=0

ψr1+ia

m−2∏
i=0

(y(r1+1)+ia − yr1+ia)fw′
m−1∏
i=0

a−1∏
j=1

a−j∏
k=1

ψk+iaψπ̄πe(iπ).

When we expand the polynomial product we get a series of summands, all bar one of

which equate to zero. The non-zero summand is the one which results from choosing

the y corresponding to a dot on the (r + 1)st strand of each nil-Hecke algebra, so

m−2∏
i=0

(y(r1+1)+ia − yr1+ia) =

m−2∏
i=0

(y(r1+1)+ia).

If we focus on just the part in the nil-Hecke algebras NH
(1)
a ⊗ · · · ⊗NH

(m)
a we get

m−1∏
i=1

ψ(i)
r1 y

(i)
r1+1

a−1∏
j=1

a−j∏
k=1

ψ
(i)
k

 · ψ(m)
r1 fw′

(m)
a−1∏
j=1

a−j∏
k=1

ψ
(m)
k .

Since ψ
(i)
a =

∏a−1
j=1

∏a−j
k=1 ψ

(i)
k and we can chose a reduced expression for a starting

with r1, we obtain

m−1∏
i=1

a−1∏
j=1

a−j∏
k=1

ψ
(i)
k

 · ψ(m)
r1 fw′

(m)
a−1∏
j=1

a−j∏
k=1

ψ
(m)
k .

When we consider our Schubert polynomial fw, we have

deg(fid) = deg(yπ) = 2 · a(a− 1).

The length of w0, the longest possible reduced word, is a(a− 1)/2, and fw0 = 1. So
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each time we increase the length of ψw by 1, whilst still being a reduced expression,

we reduce the degree of fw by 2. This corresponds to losing a yi from the polynomial

expression of fw. There is precisely one yi for each transposition in the reduced

expression of w0, taking this into account we get

m−1∏
i=1

a−1∏
j=1

a−j∏
k=1

ψ
(i)
k

 · fw(m)
a−1∏
j=1

a−j∏
k=1

ψ
(m)
k = fwψπ̄,

with deg(fw) = deg(fw′)− 2. Having simplified the part in the nil-Hecke algebra we

can return to our full picture where we have

ψww̄ψrestψw̄p̄fw′ψπ̄ψπ̄πe(iπ) = ψww̄ψrestfwψπ̄ψπ̄πe(iπ).

We can now move fw back through to the front, and rewrite ψππ̄ = ψww̄ψrest to get

fwψππ̄ψπ̄ψπ̄πe(iπ) = fwψπe(iπ).

Hence, {e(iπ)ψwyπψπe(iπ) | w ∈ Sπ} = {fwψπe(iπ) | w ∈Wπ}.

Example 3.9. We illustrate the two ways that ψππ̄ can be written for

π = (α1 + α2 + α3)3. Here we first collect all the 1s, then all the 2s and that

gives us all the 3s together.
1 2 3 1 2 3 1 2 3

Here we order the first two blocks, then order the third block into that.

1 2 3 1 2 3 1 2 3

Corollary 3.10. If e(iπ)ψwe(iπ) then deg(ψw) < 0, unless w = id, for w ∈Wπ.

Proof. We know deg(e(iπ)ψwyπe(iπ)) = deg(fw) < deg(yπ) unless w = id. So

deg(ψw) < 0 unless w = id.
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3.2 The ideal J J

We now set about constructing an ideal J , with which we intend to define a quotient

of the quiver Hecke algebra with nice homological properties. To do this we need

to introduce a function that takes a root partition and gives us out a number. This

number is then used as a bound on the degree of a polynomial in the definition of

our ideal J .

Proposition 3.11. For α ∈ Q+ with | α |= n and ν ≥ σ > π ∈ Π(α) there exists a

function,

d : Π(α)→ N;

π 7→ dπ,

iteratively constructed on

dπ = max
ν,σ,π
{dν + deg(yν)− deg(yσ)− yπ + 4n(n− 1)}

such that for reduced expressions w′, v′ ∈ Sσ, v ∈ Sπ and polynomial p ∈ Λπ with

deg(p) ≥ dπ, we have,

ψw′yσe(iσ)ψσyσψ
τ
v′yπe(iπ)ψπyπpψ

τ
v =

∑
ν≥σ;

ũ,ṽ∈Sν ;
q∈Bν

cν,p,ũ,ṽψũyνe(iν)ψνyνqψ
τ
ṽ , (3.1)

for all ν where Bν is a basis for Λν and if cν,q,ũ,ṽ 6= 0 then deg(q) ≥ dν .

Proof. We prove this by downward induction on root partitions. For πmax ∈ Π(α)

we set dπ = 1. Assume there exists a dσ for all σ > π ∈ Π(α). Now take the element

ψw′yσe(iσ)ψσyσψ
τ
v′yπe(iπ)ψπyπpψ

τ
v ∈ I≥σ,

then by [KLM13, Theorem 5.6] we can rewrite this as∑
ν≥σ;

ũ,ṽ∈Sν ;
q∈Bν

αν,p,ũ,ṽψũyνe(iν)ψνyνqψ
τ
ṽ .

We proceed by arguing that if we choose p with a sufficiently high degree then

αν,p,ũ,ṽ 6= 0 will imply deg(q) ≥ dν . If we compare degrees on either side of the

equality (3.11) we have

deg(ψw′e(iσ)) + deg(yσ) + deg(e(iσ)ψτv′e(iπ)) + deg(yπ) + deg(p) + deg(ψτve(iπ))

= deg(ψũe(iν)) + deg(yν) + deg(q) + deg(e(iν)ψτṽ ),
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bearing in mind that we need deg(q) ≥ dν we want

deg(ψw′e(iσ)) + deg(yσ) + deg(e(iσ)ψτv′e(iπ)) + deg(yπ) + deg(p)

+ deg(ψτve(iπ))− deg(ψũe(iν))− deg(yν)− deg(e(iν)ψτṽ ) ≥ dν .

So we require

deg(p) ≥ dν + deg(ψũe(iν)) + deg(yν) + deg(e(iν)ψτṽ )− deg(ψw′e(iσ))

− deg(yσ)− deg(e(iσ)ψτv′e(iπ))− deg(yπ)− deg(ψτve(iπ))

Since the longest word in Sn has length n(n − 1)/2 we determine an upper bound

on the degrees

deg(ψũe(iν)), deg(e(iν)ψτṽ ) ≤ n(n− 1)

2
.

Also,

deg(ψw′e(iσ)),deg(e(iσ)ψτv′e(iπ)), deg(ψτve(iπ)) ≥ −n(n− 1).

So take

deg(p) ≥ dν + n(n− 1) + deg(yπ)− deg(yσ)− deg(yπ) + 3n(n− 1)

≥ dν + deg(yν)− deg(yσ)− deg(yπ) + 4n(n− 1),

therefore we set dπ = maxν,σ,π{dν + deg(yν)− deg(yσ)− deg(yπ) + 4n(n− 1)}.

Throughout the remainder of this chapter we fix a d satisfying the conditions of

Proposition 3.11, and for a root partition π ∈ Π(α) we define

J ′π = k− span{ψwyπψπe(iπ)yπpψ
τ
v |w, v ∈ Sπ, p ∈ Λπ, deg(p) ≥ dπ},

Jπ =
∑
σ≥π
J ′π,

J>π =
∑
σ>π

J ′π.

Now define

J =
∑

π∈Π(α)

J ′π.

We are about to show that J is an ideal for Rα, but first we need a technical lemma

and a generalization of [Rou12, Theorem 2.11].

Lemma 3.12. [KLM13, Corollary 5.10] If yr and ys are in the same π-block, then

yre(iπ) ≡ yse(iπ) mod I>π.
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For an example of this in the case of α = 2α1 + α2 see Example 2.9 in which it

is shown that y1e(121) ≡ y2e(121) mod I211.

We need to use some classic results on Schubert polynomials, but adapted to our

particular setting.

Theorem 3.13. [Rou, Theorem 2.11] Schubert polynomials in y1, · · · , yd form a ba-

sis for the polynomial ring k[y1, · · · , yd] as a free module over the ring k[y1, · · · , yd]S

of symmetric polynomials.

Recall that Pπ is the polynomial ring in the same variables as Λπ but without

any symmetry. Let us consider the set of Schubert polynomials in Pπ with respect

to Wπ, by which we mean the subring of Pπ generated by Schubert polynomials in

Pβi,pi for each i = 1, · · · , n.

Corollary 3.14. Schubert polynomials in Pπ with respect to Wπ form a basis for

Pπ as a free module over Λπ.

Theorem 3.15. J is an ideal in Rα.

Proof. For a ∈ Rα we have

aψwyπψπe(iπ)yπpψ
τ
v = a′yπψπe(iπ)yπpψ

τ
v

for some a′ ∈ Rα. So setting b = yπψπe(iπ)yπpψ
τ
v it suffices to check that hb ∈ J

for all h ∈ Rα. Recalling the basis in Theorem 1.4 we shall take

h ∈ {ψuyr11 · · · y
rd
d e(i) | ri ≥ 0; u ∈ Sd; i ∈ 〈I〉α}.

We proceed by induction on π ∈ Π(α). Let π = πmax, then each βi in π has

|βi| = 1 so Pπ = k[y1, . . . , yd]. First consider h = yr11 · · · y
rd
d e(iπ) then using Corollary

3.14, we get

hyπe(iπ) =
∑
w∈Sd

fwpwe(iπ)

where fw is the Schubert polynomial associated to w and pw is a symmetric poly-

nomial. Therefore,

hb =
∑
w∈Sd

fwpwψπe(iπ)yπpψ
τ
v =

∑
w∈Sd

fwψπe(iπ)yπpp̄wψ
τ
v .

Notice that Sπmax = Sd so Proposition 3.8 gives

hb =
∑
w∈Wπ

ψwyπψπe(iπ)yπp
′ψτv ∈ J .
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Now, it remains to check h = ψuψw for u ∈ Sd. When ψw = 1, since Sd = Sπ we

have that hb is a basis element in Jπ. Now consider ψw 6= 1, Corollary 3.10 gives

deg(ψwe(iπ)) < 0 therefore

deg(ψue(iπ)ψwe(iπ)) < deg(ψue(iπ)).

Proceed by induction on the degree of ψue(iπ). For the base case let ψue(iπ) be of

minimal degree then ψuψwe(iπ) = 0 ∈ J . Now assume hb ∈ J for all ψue(iπ) of

degree less than m ∈ Z and consider u ∈ Sd with deg(ψue(iπ)) = m. Untwisting

double crossings give

ψue(iπ)ψwe(iπ) =
∑
ũ∈Sd

ψũqũe(iπ)

where qũ ∈ k[y1, . . . , yd] and deg(ψũ) ≤ deg(ψu). If deg(qũ) = 0 then

ψũqũyπψπe(iπ)yπpψ
τ
v = ψũyπψπe(iπ)yπpψ

τ
v

is a basis element of Jπ. If deg(qũ) > 0 then

qũyπψπe(iπ)yπpψ
τ
v =

∑
w′∈Wπ

fw′ψπe(iπ)yπpw′pψ
τ
v

=
∑

w′∈Wπ

ψw′yπψπe(iπ)yπp
′ψτv .

Now ψũψw′yπψπe(iπ)yπp
′ψτv as the same shape as ψuψwb but with

deg(ψũe(iπ)) < deg(ψue(iπ))

so is in J by induction.

The arguments are symmetric, as multiplication on the right works in the same

way, so Jπmax is a two-sided ideal.

Now, for an arbitrary π ∈ Π(α) assume that J>π is an ideal and use this to show

Jπ is an ideal. Using Lemma 3.12 we rewrite h = yr11 · · · y
rd
d e(iπ) as h̄e(iπ) + B for

h̄ ∈ Pπ and B ∈ I>π. Then hb = h̄b+Bb for B ∈ I>π. By Proposition 3.11 we can

rewrite B so that

Bb =
∑
aσ∈I′σ

aσb =
∑
aν∈J ′ν
ν≥σ>π

aν

thus Bb ∈ J>π. Now consider h ∈ Pπ, as before he(iπ) =
∑

w∈Wπ
fwpwe(iπ) and by
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Corollary 3.14

hb =
∑
w∈Wπ

fwpwb =
∑
w∈Wπ

ψwyπψπe(iπ)yπp
′ψτv ∈ J .

Now consider h = ψue(iπ)ψw for u ∈ Sd. If u /∈ Sπ then ψu factors over some

Iσ where σ > π in which case Proposition 3.11 puts this into J>π which is cov-

ered by the inductive assumption. It is therefore sufficient to consider u ∈ Sπ. If

ψw = 1 then ψub is a basis element for Jπ. If ψw 6= 1 then deg(ψwe(iπ)) < 0

and deg(ψuψwe(iπ)) < deg(ψu). Proceed by induction on the degree of ψue(iπ).

For ψue(iπ) of minimal degree for u ∈ Sπ then ψuψwe(iπ) = 0 ∈ J . Assume

ψuψwb ∈ J for all ψue(iπ) such that deg(ψue(iπ)) < m ∈ Z. Consider u ∈ Sπ such

that deg(ψue(iπ)) = m and we write

ψuψwe(iπ) =
∑
ũ∈Sπ

ψũqũe(iπ).

Since deg(ψuψwe(iπ)) < deg(ψue(iπ)) and deg(qũ) ≥ 0 we have deg(ψũ) ≤ deg(ψu).

Now consider

hb =
∑
ũ∈Sπ

ψũqũyπψπe(iπ)yπpψ
τ
v .

If deg(qũ) = 0 then hb is a basis element for Jπ. If deg(qũ) > 0 then using Corollary

3.14 we rewrite as qũyπe(iπ) =
∑

w′∈Sπ fw′pw′e(iπ) which together with Proposition

3.8 gives

qũyπψπe(iπ)yπpψ
τ
v =

∑
w′∈Sπ

ψw′yπψπe(iπ)yπpw′pψ
τ
v .

Now ψũψw′yπψπe(iπ)yπp
′ψτv has the same shape as ψuψwb but with

deg(ψũe(iπ)) < deg(ψue(iπ))

so by induction hb ∈ J and J is a two sided ideal.

3.3 An improvement on dπour bound d

When constructing the ideal J polynomials in Λπ are chosen to have degree greater

than some dπ, for each π ∈ Π(α). The bound on dπ is far from optimal, and is

currently given by

dπ ≥ dν + deg(yν)− deg(yσ)− deg(yπ) + 4n(n− 1).
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The 4n(n − 1) aspect is obtained by crudely taking the following upper bounds on

the degrees of ψw type elements where w is a coset representative of some parabolic

subgroup of Sn, hence its length is bound by the length of the longest element of

Sn which is n(n− 1)/2. Each ψi has a degree 0, 1, or −2 so

deg(e(iσ)ψτv′e(iπ)) ≥ −n(n− 1)

deg(ψw′e(iσ)) ≥ −n(n− 1)

deg(ψτve(iπ)) ≥ −n(n− 1)

deg(ψūe(iν)) ≤ n(n− 1)/2

deg(e(iν)ψτv̄ ) ≤ n(n− 1)/2

where π < σ ≤ ν ∈ Π(α), ū, v̄ ∈ Sν , w′, v′ ∈ Sσ and v ∈ Sπ. Recall

that α =
∑

i∈I ciαi, where αi are simple roots and for all w ∈ Sσ such that

e(i)ψwe(iσ) 6= 0, we have i ≤lex e(iσ).

Lemma 3.16. Let α =
∑

i ciαi and let dπ be the positive integer defined in Propo-

sition 3.11. It is sufficient to take

dπ ≥ dν + deg(yν)− deg(yσ)− deg(yπ) + 2
∑
i

cici+1 + 3
∑
i

ci(ci − 1).

Proof. The bounds above can be greatly reduced by observing that, at the lower

end, the most negative degree for ψwe(iπ) occurs when π is maximal among Π(α),

and when ψw is the longest permutation of like-coloured strands. The longest word

on strands of colour i has length ci(ci − 1)/2, and the quiver Hecke algebra element

corresponding to that has degree −ci(ci − 1) so∑
i

ci(1− ci) ≤ deg(ψwe(iπ))

which is clearly greater that −n(n − 1). At the upper end, the greatest degree for

ψwe(iπ) again occurs when e(iπ) is maximal, as this allows us to have longer words.

The element ψj is of positive degree whenever ij = ij+1 + 1, for each collection of

strands of neighbouring index there can be only cjcj+1 crossings that are not subject

to relations. So deg(ψwe(iσ)) ≤
∑

i cici+1. We can also place an upper bound on

the degree of the element yπ. This is again of maximal degree when π is maximal.

It is

deg(yπ) ≤
∑
ci 6=0

(ci − 1)!.

Hence we get our bound.
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Chapter 4

Stratified algebras

Quasi-hereditary algebras are a class of finite dimensional algebras introduced by

Cline, Parshall and Scott [CPS88] that have particularly nice representation theory.

They arise naturally in Lie theory and also overlap with the class of cellular algebras.

There are several natural generalizations of quasi-hereditary algebras, these include

the so-called standardly stratified algebras introduced in [CPS96], and the so-called

properly stratified algebras introduced in [Dla00] which form a proper subclass of

the class of standardly stratified algebras.

Definitions Let A be a finite dimensional k-algebra, and let Λ be an indexing

set for isomorphism classes of simple A-modules L(λ), λ ∈ Λ. Let us denote by

P (λ) and I(λ) the projective cover and injective hull, respectively, of the simple

module L(λ). For a subclass C of objects from A -mod we define F(C) to be the

full subcategory of A -mod consisting of all modules M having a filtration whose

subquotients are isomorphic to modules from C, ie, a chain of submodules

0 ⊆Mn ⊆ · · · ⊆M1 ⊆M

such that Mi/Mi+1 ∈ C. Define add(M) to be the full subcategory of A -mod

consisting of modules N isomorphic to a direct summand of Mk for some k ≥ 0. For

A-modules M and N we define the trace TrM (N) of M in N as the sum of images

of all A-homomorphisms from M to N .

Fix a partial pre-order ≤, by which we mean ≤ is reflexive and transitive, on Λ.

For λ, µ ∈ Λ we write λ < µ if λ ≤ µ and µ � λ; and λ ∼ µ if λ ≤ µ and µ ≤ λ. For

λ ∈ Λ define P>λ = ⊕µ>λP (µ) and I>λ = ⊕µ>λI(µ). For each λ ∈ Λ we define

• the standard module ∆(λ) to be the maximal quotient of P (λ) such that

[∆(λ) : L(µ)] = 0 for µ > λ,

• the proper standard module ∆̄(λ) to be the maximal quotient of ∆(λ) satisfying
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[∆̄(λ) : L(λ)] = 1,

• the costandard module ∇(λ) to be the maximal submodule of I(λ) such that

[∇(λ) : L(µ)] = 0 for all µ > λ,

• the proper costandard module ∇̄(λ) to be the maximal submodule of ∇(λ)

satisfying [∇(λ) : L(λ)] = 1.

These definitions yield the following equations

∆(λ) = P (λ)/TrP>λ(P (λ)), (4.1)

∆̄(λ) = P (λ)/TrP≥λ(rad(P (λ))), (4.2)

∇(λ) =
⋂

f :I(λ)→I>λ
Ker f, (4.3)

and ∇̄(λ) is the pre-image under the canonical epimorphism I(λ)→ I(λ)/ soc(I(λ))

of

∇̄(λ) =
⋂

f :I(λ)/ soc(I(λ))→I≥λ
Ker f. (4.4)

We now define three types of stratified algebra. We follow the definitions in

[FM06] and will refer back to this as the FM definition. The pair (A,≤) is called a

standardly stratified algebra if

(SS1) the kernel of the canonical epimorphism P (λ) � ∆(λ) has a filtration whose

subquotients are isomorphic to ∆(µ) with µ > λ.

(SS2) the kernel of the canonical epimorphism ∆(λ) � L(λ) has a filtration whose

subquotients are isomorphic to L(µ) with µ ≤ λ.

If ≤ is a partial (or equivalently, linear) order and the above conditions are satisfied

then we call (A,≤) a strongly standardly stratified algebra or, for brevity an SSS-

algebra. The next class of algebras form a proper subclass of the class of standardly

stratified algebras. We say that (A,≤) is a properly stratified algebra if it satisfies

(SS1), (SS2) and the following condition:

(PS1) for each λ ∈ Λ the module ∆(λ) has a filtration with subquotients isomorphic

to ∆̄(λ).

An SSS-algebra is properly stratified if and only if Aop is an SSS-algebra. In particu-

lar, an algebra A is properly stratified if and only if Aop is also properly stratified, see

[Fri06]. Finally, assume that ≤ is a partial order, then (A,≤) is a quasi-hereditary

algebra if it satisfies (SS1), (SS2) and the following condition
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(QH) for each λ ∈ Λ we have

∆(λ) = ∆̄(λ).

Example 4.1. 1. Consider the path algebra A1 = kQ1/I1 of the quiver

Q1 : e1

α ))
e2

β

ii

modulo the ideal I1 = 〈αβ〉. The left regular module of A has Loewy structure

1

2

1

⊕
2

1
.

Hence A1 is quasi-hereditary with ∆(2) = P (2) = ∆̄(2) and ∆(1) = L(1) =

∆̄(1).

2. Consider the path algebra A2 = kQ2/I2 of the quiver

Q2 : e1x
%% α ))

e2

β

ii

modulo the ideal I2 = 〈αβ, xβ, x2〉. The left regular module of A2 has Loewy

structure
1

1 2

2 1

1

⊕
2

1

Hence A2 is properly stratified with ∆(2) = P (2) = ∆̄(2) and

∆(1) =
1

1
, ∆̄(1) = L(1),

since ∆(1) 6= ∆̄(1) the algebra A2 is not quasi-hereditary.

3. Consider the path algebra A3 = kQ3/I3 of the quiver

Q3 : e1

α ))
e2

β

ii x
yy

modulo the ideal I3 = 〈αβ, βx, x2〉. The left regular module of A3 has Loewy
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structure
1

2

1 2

⊕
2

1 2

Hence A3 is standardly stratified with ∆(2) = P (2), ∆(1) = L(1) = ∆̄(1) and

∆̄(2) =
2

1
.

The algebra A3 is not properly stratified as ∆(2) does not possess a filtration

by ∆̄(2).

4. A whole class of examples of properly stratified algebras can be obtained from

quasi-hereditary algebras in the following way. If A is quasi-hereditary then

the algebra obtained from the tensor product A⊗kk[x1, · · · , xn]/(xt11 , · · · , xtnn )

is properly stratified.

4.1 The category F(∆)F(D) and tilting

If A is a stratified algebra then F(∆) denotes the category F(C) where

C = {∆(λ) | λ ∈ Λ}, in a similar way define F(∆̄), F(∇), F(∇̄). We also

define C≤λ the subclass of C consisting of modules in C with index less or equal to

λ ∈ Λ (equivalently define C≥λ, C<λ and C>λ), using this notation we can define

the respective categories F(∆≤λ), F(∆≥λ), F(∆<λ) and F(∆>λ). We define tilting

modules to be the objects in the category F(∆) ∩ F(∇̄). For λ ∈ Λ there exists a

unique (up to isomorphism) indecomposable tilting module T (λ) with the property

that its standard filtration starts with ∆(λ) when reading from the bottom. It is

shown in [AHLU00b, Theorem 2.1 & Proposition 2.3] that there exists a multiplicity

free tilting module T = ⊕λ∈ΛT (λ) such that F(∆) ∩ F(∇̄) = add(T ). We call this

T the characteristic tilting module. Dually, the objects of F(∆̄) ∩ F(∇) are called

the cotilting modules, and for λ ∈ Λ we denote by C(λ) the cotilting module whose

costandard filtration ends with ∇(λ). Define the characteristic cotilting module

C = ⊕λ∈ΛC(λ), we have F(∆̄) ∩ F(∇) = add(C). For more details on tilting theory

we refer the reader to [HHK07] and for the particular case of standardly stratified

algebras [AHLU00b].

The following theorem is well known see [DR92, Lemma 1.5] and [Rin91, Theo-

rem 2].

Theorem 4.2. The category F(∆) is
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1. closed under kernels of epimorphisms;

2. closed under extensions;

3. closed under direct summands of direct sums.

4.2 A strategy for proving standardly stratified

We remind the reader that we are referring to the previous definition of standardly

stratified as the FM definition. We now take inspiration from an earlier definition

of standardly stratified which we refer to as the ADL definition [ADL98]. Let A be

a basic connected finite dimensional k-algebra and AA = ⊕ni=1P
op(i) = ⊕ni=1eiA.

Denote by e = (e1, · · · , en) the complete sequence of its indecomposable orthogonal

idempotents and set εi =
∑n

j=i ej . For (A, e) we define right standard and proper

standard A-modules by

∆A(i) = eiA/ei radAεi+1A, 1 ≤ i ≤ n, and,

∆̄A(i) = eiA/ei radAεiA, 1 ≤ i ≤ n,

respectively. Then, according to the ADL definition, the algebra (A, e) is standardly

stratified if each factor AεiA/Aεi+1A of the trace filtration of AA belongs to F(∆̄A).

This is equivalent to (see [Dla96] or [Lak00]) each factor of the trace filtration of AA

belonging to F(∆).

We now give an alternative characterisation of standardly stratified which does

not require the algebra A to be basic, but does require the existence of a set of

idempotents with properties inspired by the properties of {e(iπ) | π ∈ Π(α)} ⊂ Rα.

Theorem 4.3. Let A be an algebra with idempotents e1, . . . , en such that

(a) A(e1 + · · ·+ en)A = A;

(b) and each idempotent ei has a decomposition ei = fi + f ′i where;

(i) f1, . . . , fn are indecomposable pairwise orthogonal idempotents with

A(f1 + · · ·+ fn)A = A;

(ii) and f ′i ∈ Aεi+1A where εi =
∑n

j=i ej.

Then A(AεiA/Aεi+1A) ∈ F(∆) if and only if A is (strongly) standardly stratified.

Before proving this theorem we need a few other results. Note that if an algebra

is standardly stratified in the sense of the FM definition then for each class of

projective module there exists a primitive idempotent eλ such that Aeλ ∼= P (λ).
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Lemma 4.4. Let A be a standardly stratified k-algebra (in the sense of the FM

definition) and let en be the highest idempotent in the associated order, then there

is an isomorphism

φ : Aen ⊗enAen enA→ AenA

where a⊗ b 7→ ab.

Proof. Since A is standardly stratified we have a filtration of AenAei by ∆(n) and

since ∆(n) is projective we choose, for each i = 1, · · · , n, a decomposition of AenAei

into s direct summands isomorphic to Aen so

AenAei ∼= Ae⊕sn .

Let enbjei be a generator for the jth summand, for 1 ≤ j ≤ s. We now claim that

enAei is free as a left enAen-module with basis

{bj = enbjei | j = 1, . . . , s}.

Let x ∈ enAei then x = 1 · x ∈ AenAei and can be written uniquely as a sum∑
j

ajenbjei, aj ∈ A;

and since enx = x we have enaj = aj . So aj ∈ enAen and the claim holds. Returning

to the map φ, since multiplication is surjective

φ : Aen ⊗enAen enA� AenA.

It follows from enAei being a free left enAen-module of rank s that for each fixed

1 ≤ i ≤ n we have Aen ⊗enAen enAei ∼= Ae⊕sn (where s depends on i). On the other

hand we have AenAei isomorphic to Ae⊕sn from the start. So the map

Aen ⊗enAen enAei � AenAei

is an isomorphism and hence φ is an isomorphism.

The following is an example of why the lemma above only applies to the idem-

potent that is highest in the associated order.

Example 4.5. Let A be the path algebra of the quiver

e1
γ // e2

α

ff

β

xx
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modulo the ideal (γβ, αγα), we set Λ = {1 < 2}. This 11 dimensional algebra is

standardly stratified and Ae2A ∼= Ae2 ⊗e2Ae2 e2A but

Ae1A = {e1, α, β, γ, γα, αγ, βγ, γαγ, βγα, βγαγ}

Ae1 ⊗e1Ae1 e1A =


e1 ⊗ e1, e1 ⊗ α, e1 ⊗ β, γ ⊗ e1,

γ ⊗ α, γ ⊗ β, βγ ⊗ e1, αγ ⊗ e1,

βγ ⊗ α, γαγ ⊗ e1, βγαγ ⊗ e1


which are clearly not isomorphic since the dimensions are not equal.

Before we continue we will need the following well known lemma which can be

found in [Wei95, Exercise 1.3.3].

Lemma 4.6 (The Five Lemma). In any commutative diagram

A′ //

a∼=
��

B′ //

b∼=
��

C ′ //

c
��

D′ //

d∼=
��

E′

e∼=
��

A // B // C // D // E

with exact rows in any abelian category, if a, b, d, and e are isomorphism, the c is

also an isomorphism. More precisely, this lemma comes in two halves. If b and d

are monomorphisms and a is an epimorphism then c is a monomorphism. If b and

d are epimorphisms and e is a mononomorphism then c is an epimorphism.

Next we show that certain subcategories of F(∆) satisfy the conditions 1− 3 of

Theorem 4.2.

Proposition 4.7. The categories F(∆≥i) and F(∆≤i) also satisfy

1. closed under kernels of epimorphisms;

2. closed under extensions;

3. closed under direct summands of direct sums.

Proof. Let B := εiAεi. Define a functor

εi· : A -mod→ B -mod

M 7→ εiM.

It follows from the definition that

∆(j) 7→

{
∆B(j) if j ≥ i

0 otherwise.
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So εi· restricts to a functor ε̄i· : F(∆≥i)→ F(∆B). We claim that the above functor

is mutually inverse to

Aεi ⊗εiAεi − : F(∆B)→ F(∆≥i),

and provides an isomorphism of categories

F(∆≥i) ∼= F(∆B).

In one direction the composition is clearly isomorphic to the identity

εi · ◦Aεi ⊗εiAεi − ∼= IdεiAεi

hence restricts to IdF(∆B). So, now consider Aεi ⊗εiAεi − ◦ εi. Under this functor

M ∈ F(∆≥i) maps to Aεi ⊗εiAεi εiM . If M = ∆(j) with j ≥ i then

∆(j) = Aej/Aεj+1Aej 7→ εiAej/εiAεj+1Aej 7→ AεiAej/AεiAεj+1Aej = ∆(j).

The final equality holds since we claim that AεiAej = Aej . In one direction (⊆) the

inclusion is clear, and for the other (⊇) notice that 1 · εi · 1 · ej = ej , thus equality

follows. Now we apply induction and need to show the claim for M filtered by ∆(j).

Let

N ↪→M � ∆(j)

be a short exact sequence. Then we have the commutative diagram

N �
� //

∼=

M // // ∆(j)

∼=

N �
� // AεiM // //

OO

∆(j).

The Five Lemma 4.6 gives us an isomorphism taking Aεi ⊗εiAεi εiM 7→M , hence

Aεi ⊗εiAεi − ◦ εi· ∼= IdF(∆≥i) .

Now, the two categories are equivalent. Since, F(∆B) satisfied the properties of

Theorem 4.2 we may deduce that F(∆≥i) also satisfied these properties.

First notice that F(∆≤i) is a full subcategory of F(∆). We know that

[∆(i) : L(j)] = 0 if j > i. So for M ∈ F(∆≤i) we have [M : L(j)] = 0 for j > i. If

we have the epimorphism f : M � N where both M,N ∈ F(∆≤i), then we know

that ker f ∈ F(∆), but since neither M nor N contain simples with index greater

than i we may deduce that neither does ker f , so ker f ∈ F(∆≤i). Similarly, if
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M,N ∈ F(∆≤i) fit into the short exact sequence

M ↪→ X � N,

X ∈ A -mod, then X ∈ F(∆) and [X : L(j)] = 0 for j > i so X ∈ F(∆≤i). Closure

under direct summands is clear.

Let us return to proving Theorem 4.3.

Proof. The task is to prove (under the conditions given in the theorem) that

AεiA/Aεi+1A is in F(∆) if and only if A(
∑

j>i fj)Afi is in F(∆≥i+1) for all

i = 1, · · · , n. Notice that A(
∑

j>i fj)Afi = Aεi+1Afi. For the forward direction we

proceed by downward induction on i. For i = n, Aεn+1A = 0, so by assumption

AenA ∈ F(∆). We prove that AenA ∈ F(∆≥n), from which it then follows that

AenAfn−1 ∈ F(∆≥n) since F(∆≥n) is closed under direct summands by Proposition

4.7. Indeed, there exists a k > 0 such that top(AenA) = L(n)⊕k, and hence we have

the surjection

φ : AenA� ∆(n)⊕k.

Since ∆(n) is projective we have AenA = ∆(n)⊕k ⊕ kerφ. However, top(kerφ)

is made up of some copies of L(n), and thus we must have kerφ = 0. Hence

AenA ∈ F(∆≥n).

Now inductively assume that Aεi+1A ∈ F(∆≥i+1), then AεiA/Aεi+1A is a sum

of ∆(i) by the base step for the algebra A/Aεi+1A. We construct the short exact

sequence

Aεi+1A ↪→ AεiA� AεiA/Aεi+1A,

and observe that Aεi+1A ∈ F(∆≥i+1) ⊂ F(∆≥i) and AεiA/Aεi+1A ∈ F(∆≥i), since

F(∆≥i) is closed under extensions AεiA ∈ F(∆≥i). Now, consider Aεi+1A, we can

write this as

Aεi+1A =
n⊕
j=1

Aεi+1Afj .

Now Aεi+1Afi appears as a direct summand of Aεi+1A, and F(∆) is closed under

direct summands, so Aεi+1Afi ∈ F(∆≥i+1).

For the converse, assume that the kernel of P (i) � ∆(i) has a filtration with

subquotients ∆(j), for j > i. The lowest cell is given by

AεnA = AenA = AfnA

which gives us AenA ∼= Ae⊕ln
∼= ∆(n)⊕l, where l is the rank of enA as a left enAen-

module by Lemma 4.4, and hence AenA ∈ F(∆). We proceed by downward induc-
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tion on the index of cells, so assume that all factors down to

Aεi+1A/Aεi+2A ∈ F(∆).

Then considering AεiA/Aεi+1A, we rewrite this as

AεiA/Aεi+1A = (AeiA+Aεi+1A)/Aεi+1A = (AfiA+Aεi+1A)/Aεi+1A,

and then apply the second isomorphism theorem

(AfiA+Aεi+1A)/Aεi+1
∼= AfiA/(AfiA ∩Aεi+1A).

Now, if we view AfiA/AfiA∩Aεi+1A as an ideal of A/Aεi+1A then fi is the highest

indexed idempotent. Since A is standardly stratified

AeiA/(AeiA ∩Aεi+1A) ∼= (A/Aεi+1A)e⊕mii = ∆(i)⊕mi .

where mi is the rank of ei(A/Aεi+1A) as a left ei(A/AAεi+1A)ei-module. So

Aεi+1A/AεiA ∈ F(∆).

4.3 Properties of stratified algebras

These stratifications have reasonably nice homological properties which have been

studied by [Rin91], [AHLU00b], [FM06]. If one knows an algebra is quasi-hereditary

then one knows that it has finite global dimension, unfortunately this does not carry

over to properly or standardly stratified algebras, which can have infinite global

dimension.

Theorem 4.8. [AHLU00b, Theorem 2.4] Let (A,≤) be a standardly stratified alge-

bra. Then A is quasi-hereditary if and only if gl.dim(A) <∞.

For properly stratified algebras another invariant is well understood, namely the

finitistic dimension. The (projectively defined) finitistic dimension of an algebra A

is the number

fin.dim(A) := sup{p.dim(M)|M ∈ A -mod, p. dim(M) <∞}.

This homological property is the subject of a still open conjecture since 1960.

Conjecture 4.9. Let A be a finite dimensional algebra, then fin. dim(A) <∞.

The conjecture has been shown to hold for many classes of algebras, and for

more information on its history we refer the reader to [ZH95]. For our purposes we
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need only note that the conjecture has been shown to hold for the class of stratified

algebras [AHLU00a, Theorem 2.1]. Obtaining optimum bounds on the finitistic

dimension of standardly and properly stratified algebras is studied in [AHLU00a],

[MO04], [Maz04]. Another property, originally studied for quasi-hereditary algebras

by Ringel, is the endomorphism ring of the characteristic tilting module. For an

SSS-algebra (A,≤) the Ringel Dual R of A is defined to be

R := EndA(T ).

For quasi-hereditary algebras the Ringel dual is a well behaved object.

Theorem 4.10. [Rin91] If (A,≤) be a quasi-hereditary algebra, then the Ringel dual

R of A is quasi-hereditary with respect to the opposite order on the poset. Moreover,

the Ringel dual of R is Morita equivalent to A.

However, the Ringel dual of a properly stratified algebra need not be properly

stratified. Indeed, we will see examples in Chapter 6 that illustrate this fact.

The class of cellular algebras, described in Chapter 2, overlaps with the class of

stratified algebras. The following result illustrates part of that overlap.

Proposition 4.11. [KX99] Let A be a cellular algebra with involution τ then the

following are equivalent:

• A is quasi-hereditary

• A has finite global dimension

• there is a cell chain of A whose length equals the number of isomorphism classes

of simple A-modules.

4.4 Affine stratified algebras

The stratified notions in this chapter have been extended to infinite dimensional al-

gebras by Kleshchev [Kle15]. A graded algebra whose graded dimension is a Laurent

series is called a Laurentian algebra. Kleshchev shows that Laurentian algebras are

graded semiperfect (i.e. every finitely generated graded module has a graded projec-

tive cover) have finite dimensional irreducible modules, and have only finitely many

irreducible modules up to isomorphism and degree shift. Let R be a left Noetherian

Laurentian algebra with simple indexing set Π. For every π ∈ Π we have an inde-

composable projective P (π). A two sided ideal J ⊆ R is called affine stratifying if

it satisfies:

(ASI1) HomR(J,R/J) = 0;
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(ASI2) As a left module J ∼= ⊕π∈Υmπ(q)P (π) for some graded multiplicities

mπ(q) and some subset Υ ⊆ Π such that for PΥ := ⊕π∈ΥP (π) we have

BΥ := Endr(PΥ)op is an affine algebra.

An affine stratifying ideal is called affine standardly stratifying if

(ASS1) it is finitely generated as a right BΥ−module.

An affine standardly stratifying ideal is called affine properly stratifying if

(APS1) it is flat as a right BΥ−module.

An affine stratifying ideal is called an affine hereditary ideal if it is affine properly

stratifying with |Υ| = 1. The algebra R is called affine stratifying (resp. affine

standardly stratifying, affine properly stratifying, affine quasihereditary) if there

exists a finite chain of ideals

(0) = Jn ⊂ · · · ⊂ J1 ⊂ J0 = R

with Ji/Ji+1 an affine stratifying (resp. affine standardly stratifying, affine properly

stratifying, affine hereditary) ideal in R/Ji+1 for all 0 ≤ i < n. Such a chain

of ideals is called an affine stratifying (resp. affine standardly stratifying, affine

properly stratifying, affine hereditary) chain.

Lemma 4.12. [Kle15] If J is an ideal in R such that RJ is projective, then the

following are equivalent

1 (ASI1) HomR(J,R/J) = 0;

2 J2 = J ;

3 J = ReR for an idempotent e ∈ R.

Example 4.13. If (A,≤) is a quasi-hereditary k-algebra with indexing set Π and

A is a polynomial k-algebra then H := A⊗k A is affine quasi-hereditary. Since A is

quasi-hereditary it comes with a set of idempotents {ei}i∈Π that give rise to a chain

of hereditary ideals AεiA where εi =
∑

j≥i ej . The ideals Ji := H(εi ⊗k 1A)H are

affine properly stratifying in H, and |Υ| = 1.

Example 4.14. [KLM13, KL15] The quiver Hecke algebras (of finite type) are affine

quasi-hereditary.
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Chapter 5

Homological structure of RJα our

quotient

In this chapter we describe a cellular structure for RJα induced from the affine cellular

structure of RJα , from this we are able to obtain a parametrisation of cell modules,

standard modules and simple modules. We then give a way to obtain the standard

and proper standard modules of RJα from the standard and proper standard modules

of Rα. We use this to prove that RJα is properly stratified.

5.1 Cellular structure

Before describing the cellular structure of RJα we prove the following useful result

from homological algebra.

Lemma 5.1. For R-modules A, B, C and D and R-module morphisms e, f , g and

h, the following diagram

A
e //

f
��

B

g

��
C

h
// D

1. is a pushout if and only if there is an isomorphism on the cokernels of e and

h and an epimorphism on the kernels of e and h.

2. is a pullback if and only if there is an isomorphism on the kernels of e and h

and a monomorphism on the cokernels of e and h.
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Proof. 1. (⇒) If the following diagram is a pushout

A
e //

f
��

B

g

��
C

h
// D

and q1 : B → Q1 is the cokernel of e, then there is a unique map s1 : D → Q1

such that, s1g = q1 and s1 is an epimorphism. The existence follows from

q1e = 0, since we can consider the zero map from C → Q1, and we get s1 and

its uniqueness from the universal property of pushouts.

A
e //

f
��

B

g

�� q1

�� ��

C
h
//

0 ++

D

s1   
Q1

Now, let q2 : D → Q2 be the cokernel of h : C → D and u : Q1 → Q2 be the

morphism induced from g.

A
e //

f

��

B

g

��

q1 // // Q1

u

��
C

h
// D

s1

>>

q2
// // Q2

We get also us1 : D → Q2 and the following diagram commutes

A
e //

f
��

B

g

��

uq1

  
C

h
// D us1

// // Q2

since us1 = q2 we get that u is an epimorphism. Now we get a map ū : Q2 → Q1

since s1h = 0 and so factors over Q2. The diagram

Q1

C
h
// D

s1

>> >>

q2
// // Q2

ū

OO

commutes so s1 = ūq2 = ūus1, since s1 is an epimorphism we get ūu = idQ1 .

We also have uūq2 = us1 = q2 and q2 is an epimorphism so uū = idQ2 .
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Therefore, Q1
∼= Q2.

Let K1 be the kernel of e and K2 the kernel of h. If y ∈ K2 ⊂ C, then h(y) = 0,

but

D ∼= B ⊕ C/〈(e(x), 0)− (0, f(x)) | x ∈ A〉.

So h(y) = (0, y) = 0, we can write this as h(y) = (0, y)− (0, 0), so y = f(x) for

some x ∈ A, and e(x) = 0. So x ∈ K1, and k : K1 → K2 is an epimorphism.

(⇐) Assume we have the following diagram

K1
� � //

����

A
e //

f

��

B

g

��

// // Q1∼=

K2
� � // C

h
// D // // Q2

If X is the pushout of e and f then the first half of the proof gives Q̃ ∼= Q1 and

there exists a unique v : X → D and induced maps ε, η making everything

commute

K1

k̃

�� ��

� � //

k
����

A
e //

f

��

B

��

g

��

// // Q1∼=

K2
� � // C

h
// D // // Q2

K̃ �
� //

ε

OO

C
ξ
// X

v

OO

// // Q̃

η

OO
∼=

[[

We clearly get that η is an isomorphism, and εk̃ = k. Since k is an epimorphism

we get that ε is an epimorphism. The relevant half of the Five Lemma 4.6

implies that v is a monomorphism. Let x ∈ D, and label u : Q1 ↔ Q2 then

there is a y ∈ B such that q2(x) = uq1(y) = q2(g(y)). We get that

x− g(y) ∈ ker q2 = Im g,

so x = g(y) + h(z) for some z ∈ C. So h⊕ g is onto. Now, label ζ : B → X so

h = vξ and g = vζ, giving h⊕ g = v(ξ ⊕ ζ). Hence v is an epimorphism, and

therefore an isomorphism.

The result on pullbacks is proved dually.

Recall the definition of the polynomial ring Λπ from (2.2), and the cell ideals

Iπ =
∑

σ≥π I
′
σ where

I ′π = k- span{ψwyπΛπψπyπe(iπ)ψτv | w, v ∈ Sπ}.
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Now let us define

Aπ = Λπ/〈p ∈ Λπ | deg(p) ≥ dπ〉; (5.1)

I ′π := k− span{ψwyπψπe(iπ)pyπψ
τ
v + J | w, v ∈ Sπ, π ∈ Π, p ∈ B(Aπ)} ⊂ RJα ;

(5.2)

Iπ =
∑
σ≥π
I ′σ; I>π =

∑
σ>π

I ′σ.

Proposition 5.2. Iπ is the image of Iπ in RJα . Moreover, Iπ is the two sided ideal∑
σ≥π R

J
α e(iσ)RJα .

Proof. Both Iπ and J are ideals of Rα and thus embed into Rα under the inclusions

ι1 and ι2, respectively. If we take the pullback, that is

X := {(a, b) ∈ Iπ × J | ι1(a) = ι2(b)}

then since Iπ,J ∈ Rα -mod we have ([Rot09, Example 5.2]) that

X = Iπ ∩ J

adding cokernels we get

Iπ ∩ J� _

��

� � // Iπ� _

��

// // Iπ/(Iπ ∩ J )

f
��

J �
� // Rα // // RJα

Here the map f is a monomorphism since pullbacks induce monomorphisms on

cokernels by Lemma 5.1. So, we can choose a vector space splitting of RJα such

that Iπ is the image of Iπ in the quotient. Since the quotient map is an algebra

homomorphism and Iπ =
∑

σ≥π Rαe(iσ)Rα we get Iπ =
∑

σ≥π R
J
α e(iπ)RJα .

Theorem 5.3. The algebra RJα is a cellular k-algebra with respect to the involution

τ .

Proof. We obtain a chain of ideals {Iπ | π ∈ Π(α)} in RJα from the affine cell chain

{Iπ | π ∈ Π(α)} of Rα. To simplify notation let us set dπ = r, we take a chain of

ideals in Aπ, filtered by degree

0 = Mr ⊂Mr−1 ⊂ · · · ⊂M1 ⊂M0 = Aπ (5.3)

where Mi = 〈p ∈ Aπ | deg(p) ≥ i〉, denote subquotients Mi := Mi/Mi+1. Recall

that B(M) denotes a basis for M , we now define

I ′π,i := 〈ψwyπψπe(iπ)pyπψ
τ
v | w, v ∈ Sπ, π ∈ Π(α), p ∈ B(Mi)〉,
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and thus define a refinement of the ideal chain {Iπ | π ∈ Π(α)} to a chain of ideals

given by

Iπ,i :=
∑
σ>π

Iσ +
∑
j≥i
I ′π,j .

We choose a total order on B(Aπ) that refines the partial order on degrees using

this we refine (5.3) to the Jordon-Hölder series

0 = Mr,mr ⊂Mr,mr−1 ⊂ · · · ⊂Mr,1 ⊂Mr−1,mr−1 ⊂ · · · ⊂M1,1 ⊂M0 = Aπ, (5.4)

where Mi,k denotes the submodule generated by elements of degree i less than k

in the total order and elements of degree greater than i. Let Mi,k denote the

subquotient Mi,k/Mi,k+1 and Mi,mi denote Mi,mi/Mi+1,1. Let us define

I ′π,i,k := 〈ψwyπψπe(iπ)pyπψ
τ
v | w, v ∈ Sπ, π ∈ Π(α), p ∈ B(Mi,k)},

and refine the ideal chain {Iπ,i | π ∈ Π} to a chain

Iπ,i,k :=
∑
σ>π

Iσ +
∑
j>i

Iπ,j +
∑
l≥k
I ′π,i,l.

Let us further define

I>(π,i,k) =


∑

σ>π I ′σ if k = mi and i+ 1 = r;∑
σ>π I ′σ +

∑
j>i I ′π,j if k = mi;∑

σ>π I ′σ +
∑

j>i I ′π,j +
∑

l>k I ′π,i,l otherwise.

Note that the bases of the I ′π,i,k partition the basis of I ′π, hence⊕
i,k

I ′π,i,k = I ′π,

and thus ⊕π,i,kI ′π,i,k = RJα . We now claim that Iπ,i,k/I>(π,i,k) is a cell ideal in

RJα /I>(π,i,k). Let us write Īπ,i,k := Iπ,i,k/I>(π,i,k) and R̄Jα := RJα /Iπ,i,k. By

construction Īπ,i,k is a two sided ideal in R̄Jα . It follows directly from the basis and

[KLM13, Lemma 5.5] that τ(Īπ,i,k) = Īπ,i,k.
We define a left ideal ∆ ⊂ Īπ,i,k with k-basis

{ψ̄wȳπψ̄π b̄i,kē(iπ) | π ∈ Π(α), w ∈ Sπ, bi,k ∈ B(Mi,k)}.

Clearly ∆ is finitely generated and free over k. We also have a k-basis for τ(∆) given

by

{ē(iπ)b̄i,kψ̄πȳπψ̄
τ
v | π ∈ Π(α), v ∈ Sπ, bi,k ∈ B(Mi,k)}.
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The map

α : ∆⊗ τ(∆)→ Īπ,i,k
ψ̄wȳπψ̄πȳπ b̄i,kē(iπ)⊗k ē(iπ)b̄i,kȳπψ̄πȳπψ̄

τ
w 7→ ψ̄wȳπψ̄π b̄i,kē(iπ)ȳπψ̄

τ
w

defines a R̄Jα -R̄Jα -bimodule isomorphism Iπ,i,k/I>(π,i,k)
∼= ∆⊗k τ(∆) which satisfies

Īπ,i,k
α //

τ

��

∆⊗k τ(∆)

x⊗y 7→τ(y)⊗τ(x)

��
Īπ,i,k

α // ∆⊗k τ(∆)

so Īπ,i,k is a cell ideal as claimed.

5.2 Projective, standard and proper standard modules

In this section we prove that RJα := Rα/J is a properly stratified algebra.

First we describe the projective, standard and proper standard modules for RJα .

We shall keep notation clear by saying ∆(λ) is a standard module over the algebra

Rα, similarly for P (λ), whereas ∆J (λ) and PJ (λ) are standard and projective

(resp.) modules in RJα -mod.

Lemma 5.4. For λ ∈ Π(α), the modules PJ (λ) := RJα ⊗RαP (λ) are indecomposable

projective modules for RJα .

Proof. Since P (λ) is a projective module for Rα, there is an idempotent eλ such

that P (λ) = Rαeλ. Now,

PJ (λ) = RJα ⊗Rα P (λ) = RJα ⊗Rα Rαeλ = RJα ēλ.

Thus PJ (λ) is a projective module for RJα . The indecomposability follows from the

fact that ēλ lifts to eλ and [Lam99, 21.22].

Before classifying the standard modules we include a well known result from

homological algebra [Wei95, Snake Lemma 1.3.2]

Lemma 5.5 (The Snake Lemma). Consider a commutative diagram of R-modules

of the form

A′ //

a
��

B′
g //

b
��

C ′ //

c
��

0

0 // A
f // B // C
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If the rows are exact, there is an exact sequence

ker(a)→ ker(b)→ ker(c)→ coker(a)→ coker(b)→ coker(c)

with ∂ : ker(c)→ coker(a) defined by the formula

∂(x) = f−1bg−1(x), x ∈ ker(c).

Proposition 5.6. The modules RJα ⊗Rα ∆(λ) form a set of standard modules for

RJα .

Proof. Let ∆J (λ) be the standard module obtained from PJ (λ) in RJα . By defini-

tion, these modules fit into the short exact sequence

TrPJ>λ
(PJ (λ)) �

� // PJ (λ) // // ∆J (λ).

Since the functor RJα ⊗Rα − is right exact we also have a surjection from PJ (λ)

onto RJα ⊗Rα ∆(λ), let the kernel of this surjection be K so that there is the short

exact sequence

K �
� // PJ (λ) // // RJα ⊗Rα ∆(λ).

The module ∆J (λ) is the largest quotient of PJ (λ) with
[
∆J (λ) : LJ (µ)

]
= 0 for

µ > λ. So there is a surjection f : ∆J (λ) → RJα ⊗Rα ∆(λ). Combining these facts

we get the following diagram

TrPJ>λ
(PJ (λ)) �

� //
� _

g

��

PJ (λ) // // ∆J (λ)

f
����

K �
� // PJ (λ) // // RJα ⊗Rα ∆(λ).

Applying the Snake Lemma 5.5 gives the diagram

0 //

��

0 //

��

ker(f)� _

��
TrPJ>λ

(PJ (λ)) �
� //

� _

g

��

PJ (λ) // // ∆J (λ)

f
����

K �
� //

����

PJ (λ)

��

// // RJα ⊗Rα ∆(λ)

��
coker(g) // 0 // 0.

from which we get that g is a monomorphism and ker f ∼= coker g. Importantly,
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since ker f ⊂ ∆J (λ) it too must have composition factors L(µ) with µ ≤ λ and so

must coker g. In Rα we have the short exact sequence

TrP>λ(P (λ)) �
� // P (λ) // // ∆(λ),

and if we apply RJα ⊗Rα − we can induce the long exact sequence

· · · // Tor(RJα ,∆(λ))

ss
RJα ⊗Rα TrP>λ(P (λ))

h // PJ (λ) // // RJα ⊗Rα ∆(λ).

The map h factors through K. Since everything in TrP>λ(P (λ)) is the sum of some

images of maps from P>λ, we have P>λ � TrP>λ(P (λ)) and so

RJα ⊗Rα P>λ = PJ>λ � RJα ⊗Rα TrP>λ(P (λ)).

Therefore, top(RJα ⊗TrP>λ(P (λ))) ∈ add({L(µ) | µ > λ}). The long exact sequence

above gives us RJα ⊗Rα TrP>λ(P (λ)) � K. This implies that

top(K) ∈ F({L(µ) | µ > λ}).

We know, however, that coker g ∼= ker f ∈ add({L(µ) | µ ≤ λ}), so since K sur-

jects onto coker g, we must have coker g = 0. Thus we deduce that f and g are

isomorphisms.

Let us first include a characterisation of proper standard modules for affine quasi-

hereditary algebras.

Proposition 5.7. [Kle15, Proposition 5.6] If A is affine quasi-hereditary with simple

indexing set Π. Then

∆̄(π) ∼= ∆(π)/∆(π)Nπ,

where Nπ is the Jacobson radical of the affine algebra Bπ, π ∈ Π and the notation

∆(π)Nπ means
∑

f∈Nπ Im f ⊆ ∆(π).

Proposition 5.8. The proper standard modules in RJα are of the form RJα ⊗Rα ∆̄(λ),

where ∆̄(λ) is a proper standard module for Rα. Moreover, if

j : RJα -mod→ Rα -mod

is the inclusion functor, j(∆̄J (λ)) ∼= ∆̄(λ).

Proof. Let us assume that ∆̄J (λ) is the proper standard module coming from PJ (λ)

64



in RJα . In a similar way to the proof above we get the diagram

ker f� _

��
TrP≥λ(radP (λ))� _

��

� � // PJ (λ) // // ∆̄J (λ)

����
K

����

� � // PJ (λ) // // RJα ⊗Rα ∆̄(λ)

coker g .

By the snake lemma ker f ∼= coker g, and since ker f is strictly contained in ∆̄J (λ)

it has composition factors L(µ) with µ < λ. We induce the long exact sequence

· · · // Tor(RJα , ∆̄(λ))

ss
RJα ⊗Rα TrP≥λ(radP (λ))

h // PJ (λ) // // RJα ⊗Rα ∆̄(λ).

Again, the map h must factor through K. We have that PJ≥λ surjects onto

RJα ⊗ TrP≥λ(radP (λ)),

so

topRJα ⊗ TrP≥λ(radP (λ)) ∈ add({L(µ) | µ ≥ λ}).

SinceRJα⊗TrP≥λ(radP (λ)) surjects ontoK we get that topK ∈ add({L(µ) | µ ≤ λ}),
but coker g ∼= ker f ∈ F({L(µ) | µ < λ}), so coker g = 0 and K ∼= TrP≥λ(radP (λ)).

For the moreover statement, we have a chain of isomorphisms

∆̄(λ) ∼= ∆(λ)/∆(λ) rad Λλ ∼= ∆J (λ)/∆J (λ) radAλ ∼= ∆̄J (λ)

recalling the definitions of Λπ and Aπ from (2.2) and (5.1) respectively, the middle

isomorphism follows from writing down bases for either side as given in [KL15,

Lemma 3.10].

Theorem 5.9. The functor RJα ⊗Rα − : Rα -mod→ RJα -mod is exact on F(∆).

Proof. Let A := RJα and R := Rα. Also, for a k-module M let M∗ denote the vector

space dual of M achieved by applying the functor Homk(−, k), then

A⊗RM ∼= Homk(A⊗RM,k)∗.
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Utilising the tensor-hom adjunction

Homk(A⊗RM,k)∗ ∼= HomR(M,Homk(A,k))∗

and then HomR(M,Homk(A,k))∗ ∼= HomR(M,A∗)∗ by definition.

Since A is filtered by proper standard modules, and we have a simple preserving

duality it follows that A∗ is filtered by proper costandard modules. From [AHLU00b,

Theorem 1.6]

F(∆) = {X | Ext1
A(X,F(∇̄)) = 0}

hence Hom(−, A∗) is exact on F(∆). Since ∗ is exact we get that A ⊗R − is exact

on F(∆).

RJα is properly stratified

In this section we show that RJα satisfies the conditions of Theorem 4.3, i.e. that RJα

has a full set of idempotents each of which decompose as ei = fi+f
′
i where the set of

fi form a full set of pairwise orthogonal idempotents and the f ′i ∈ A(
∑

j≥i+1 ej)A,

and hence that RJα is standardly stratified.

Lemma 5.10. The idempotents eπ := ψπyπe(iπ) ∈ Rα satisfy∑
σ≥π

RαeσRα =
∑
σ≥π

Rαe(iσ)Rα.

Proof. The inclusion
∑

σ≥π RαeσRα ⊆
∑

σ≥π Rαe(iσ)Rα is clear. For equality, recall

that Iπ =
∑

σ≥π Rαe(iσ)Rα and has a basis given by elements of the form

ψwyσe(iσ)ψσbyσψ
τ
v = ψwyσeσbψ

τ
v

with σ ≥ π ∈ Π(α), w, v ∈ Sσ and b ∈ Λσ. In particular, for a ν > π, we have

e(iν) =
∑
σ≥π

aν,σψwyσψσe(iσ)bσyσψ
τ
v =

∑
σ≥π

aν,σψwyσeσbσψ
τ
v .

Therefore, e(iν) ∈ Iπ ⊆
∑

σ≥π RαeσRα and the claim follows.

Proposition 5.11. The algebra RJα is standardly stratified.

Proof. Firstly, we claim that the idempotents {eπ := yπψπe(iπ) | π ∈ Π(α)} in

Rα satisfy the conditions (a) and (b) in Theorem 4.3. Namely, by [KLM13, Main

Theorem] we have ∑
π∈Π(α)

RαeπRα = Rα
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and since ēπR̄α ∼= ∆(π) we get that ēπ is primitive. Let eπ = επ,1 +επ,2 + · · ·+επ,r be

a decomposition into primitive idempotents, then (επ,1 + · · ·+επ,r)+I>π is primitive.

Without loss of generality επ,1 /∈ I>π, and eπ + I>π = επ,1 + I>π. This gives

R̄αēπR̄α = Iπ/I>π = R̄αε̄π,1R̄α

so
∑

π∈Π(α)Rαεπ,1Rα = Rα. Now, eπ +J is non-zero in RJα and we have a chain of

ideals given by

{Iπ | π ∈ Π(α)}.

We have seen that the ideal Iπ ∼=
∑

σ≥π R
J
α e(iσ)RJα . Now as a left RJα -module

Iπ/I>π ∼= ∆J (π)⊗k Vπ.

So Iπ/I>π ∈ F(∆J ) and hence we obtain the result.

Proposition 5.12. For all π ∈ Π(α), ∆J (π) ∈ F(∆̄J ).

Proof. We have ∆J (π) ∼= Vπ⊗kAπ as vector spaces. We obtain a filtration of ∆J (π)

by taking

Vπ ⊗Mn ⊆ Vπ ⊗Mn−1 ⊆ · · · ⊆ Vπ ⊗Aπ,

each subquotient is isomorphic, as a RJα module, to ∆̄J (π).

Corollary 5.13. The algebra RJα is properly stratified.

5.3 Finitistic dimension

We now provide a bound for the finitistic dimension of RJα . First note that the

standard module in Rα with largest projective dimension is the standard module

corresponding to the root lowest in the order.

Lemma 5.14. [BKM14, Corollary 4.11] For α ∈ Q+ of height n and

π = p1β1 + · · ·+ pnβn ∈ Π(α),

the projective dimension of ∆(π) satisfies p. dim ∆(π) ≤ n− l where l =
∑n

i=1 pi.

Recall the definition of the characteristic tilting module T from Section 4.1.

Theorem 5.15. [Maz04] Let A be a properly stratified algebra with a simple pre-

serving duality, then we have the following bound on fin. dim(A):

fin.dim(A) ≤ 2 · p.dim(T ).
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The following lemma is well known in homological algebra [Wei95, Horseshoe

Lemma 2.2.8].

Lemma 5.16 (Horseshoe Lemma). Suppose given a commutative diagram

0

��
· · ·P ′2 // P ′1

// P ′0
ε′ // A′

iA
��

// 0

A

πA
��

· · ·P ′′2 // P ′′1
// P ′′0

ε′′ // A′′

��

// 0

0

where the column is exact and the rows are projective resolutions. Set Pn = P ′n⊕P ′′n .

Then the Pn form a projective resolution P of A, and the right-hand column lifts to

an exact sequence of complexes

0 // P ′
i // P

π // P ′′ // 0,

where in : P ′n → Pn and πn : Pn → P ′′n are the natural inclusion and projection

respectively.

Proposition 5.17. Let |α| = d, and π1 ∈ Π(α) be such that π1 ≤ π for all π ∈ Π(α)

and let T be the characteristic tilting module for RJα . We have the following bound

on its projective dimension:

p.dim(T ) ≤ p.dim(∆(1)) = d− l.

Proof. The module T fits into a short exact sequence

0→ K → T → ∆(π1)→ 0.

The result follows from the Horseshoe Lemma 5.16 and Lemma 5.14.

Corollary 5.18. We get the following bound on the finitistic dimension of RJα ,

fin.dim(RJα ) ≤ 2(d− l).
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5.4 The multiplicity one case

Throughout this section let the underlying quiver of Rα be a Dynkin diagram An

and let α = α1 + · · ·+αn be the highest root. By multiplicity one we mean that the

root αi appears only once for each 1 ≤ i ≤ n. In this case, it is worth noting that

the relations of the quiver Hecke algebra reduce to the following.

ψrys = ysψr if s 6= r, r + 1; (5.5)

ψrψs = ψsψr if |r − s| > 1; (5.6)

ψryr+1e(i) = (yrψr)e(i); yr+1ψre(i) = (ψryr)e(i); (5.7)

ψ2
re(i) =


e(i) if |ir − ir+1| > 1,

(yr+1 − yr)e(i) if ir = ir+1 − 1,

(yr − yr+1)e(i) if ir = ir+1 + 1;

(5.8)

ψrψr+1ψre(i) = ψr+1ψrψr+1e(i). (5.9)

In this chapter we show that when α is the highest root, the module category of

the quiver Hecke algebra is equivalent to that of the tensor products of path algebras

of a particular quiver and a polynomial ring. More generally, this notion is known

as Morita Equivalence.

Morita equivalence Morita equivalence is an important tool in the study of rings

and algebras. A full introduction to Morita theory can be found in Chapter 7 of

Lam [Lam99]. We say that a ring T is Morita equivalent to a ring S if there exists a

category equivalence between their categories of modules T -mod and S -mod. The

following theorem is useful when it comes to showing Morita equivalence.

Theorem 5.19. [Lam99, Theorem 17.25] The ring T is Morita equivalent to S if

and only if T ∼= EndS(P ), where P is a projective generator in S -mod.

For the left S-module P to be a projective generator in S mod , we require that

P is a finitely generated projective module, and TrS(P ) =S S.

5.4.1 A theorem of Brundan and Kleshchev

First, a comment on root partitions.

Lemma 5.20. If α = α1 + · · ·+ αn then there are 2n−1 root partitions of α, deter-

mined by

Π(n) := {(a1, a2, . . . , an−1)|ai ∈ {1, 2}}

Proof. The set of root partitions Π(α) is in bijection with Π(n). The bijection is

given by

Θ : Π(α)←→ Π(n),
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π ↔ (a1, . . . , an−1)

such that

ai =

{
1 if αi appears before αi+1,

2 if αi appears after αi+1.

Example 5.21. Let n = 3 so that α = α1 +α2 +α3, then the bijection Θ : Π(α)↔
Π(n) in the previous lemma is:

α1 + α2 + α3 ↔ (1, 1)

(α2 + α3)α1 ↔ (2, 1)

α3(α1 + α2) ↔ (1, 2)

(α3)(α2)(α1) ↔ (2, 2)

Now, let A be the path algebra of the following quiver,

e1

τ ))
e2

τ
ii

It was noticed by Brundan and Kleshchev that when α is of multiplicity one Rα is

Morita equivalent to tensor products of this path algebra with a polynomial ring.

There is no published proof of their theorem so we include one here.

Theorem 5.22. [Bru13, Theorem 3.13] Suppose the graph underlying the quiver is

a Dynkin diagram An and that α = α1 + · · · + αn is the highest root. Then, Rα is

graded Morita equivalent to A⊗(n−1) ⊗ k[x], which is of global dimension n.

Proof. Let π1, . . . , πr ∈ Π(α), and let P1, . . . , Pr be the left ideals generated by

the idempotents e(iπ1), . . . , e(iπr), respectively. Let B be a basis for k[y1, . . . , yn],

we can compute the endomorphism algebra of the minimal projective generator

P̃ = P1 ⊕ · · · ⊕ Pr, which consists of matrices


e(iπ1)be(iπ1) · · · e(iπ1)ψwbe(iπr)
...

. . .
...

e(iπr)ψwbe(iπ1) · · · e(iπr)be(iπr)


∣∣∣∣∣∣∣∣
b ∈ B,

w ∈ Sn,

a min. length red. expr.


Let us define a map

φ : A⊗(n−1) ⊗ k[x]→ EndRα(P̃ )
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ejn−1 ⊗ · · · ⊗ ej1 ⊗ 1 7→ Θ−1 ((jn−1, . . . , j1))

1⊗ · · · ⊗ 1⊗ x 7→ z

ejn−1 ⊗ · · · ⊗ ejk′ τejk ⊗ · · · ⊗ ej1 ⊗ 1 7→ e(iσ)ψwe(iπ)

where z ∈ Z(Rα) is the element z = z1 :=
∑

w∈Si yw(1)e(w(i)) from (1.1), π and σ

are neighbouring root partitions with respect to the partial ordering on Π(α) and

π = Θ−1(jn−1 · · · jk · · · j1), σ = Θ−1(jn−1 · · · jk′ · · · j1), and w is the unique element

in Sn such that w(iπ) = (iσ).

We claim that the map φ is surjective, and since ψw is unique we are only

required to show that yje(iπ) is in the image of φ. For this we use the following

algorithm. Associated to yj we have a number ij , which is the number occupying

the jth position in iπ. Write yje(iπ) = (yj − yk + yk)e(iπ) where ik = ij −1, we then

write yk in a similar fashion and continue recursively until we have

yje(iπ) = (yj − yk + yk − · · · − yl + yl)e(iπ),

where il = 1. Then yle(iπ) is one of summands of z. Then

(yj − yk)e(iπ) = (ψ2
w1

+ · · ·+ ψ2
wr+1

)e(iπ),

therefore

yje(iπ) = (ψ2
w1

+ · · ·+ ψ2
wr+1

+ yk)e(iπ) = φ(ψ2
w1

+ · · ·+ ψ2
wr+1

e(iπ)) + φ(yke(iπ)),

and each ψwk is one of the φ(· · · ⊗ τ ⊗ · · · ).
For injectivity we introduce a dimension formula for the algebra A⊗n ⊗ k[x],

dimqA⊗(n−1) ⊗ k[x] =
2n−1

(1− q)n−1(1− q2)
.

We verify this by noticing dimqA = 2/(1− q), since we have a choice of τe1 or τe2,

each of which are in degree one. There are therefore, two options for each power

of τ , giving the degree determining polynomial 2 + 2q + 2q2 + 2q3 + · · · , which is

the Laurent expansion of 2/(1− q). For k[x], each x has degree 2, so the dimension

formula for the polynomial ring is 1 + q2 + q4 + · · · which is the Laurent expansion

of 1/(1−q2). Bringing this information together gives the dimension formula above.

We now claim that the dimension formula for EndRα(P̃ ) is

dimq EndRα(P̃ ) =
2n−1

(1− q)n−1(1− q2)
= dimqA⊗(n−1) ⊗ k[x].
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To see this, first notice that there are 2n−1 root partitions in Π(α). Therefore, we

have 2n−1 elements in degree zero. Each y1, . . . , yn is in degree 2, so we count their

contribution to the degree with 1/(1 − q2)n. We then need to account for the ψw.

The map φ is a degree preserving map, clearly idempotents and polynomial elements

have their degree preserved by φ. If we consider the unique w ∈ Sn that takes the

partition π to π′, then, deg(e(iπ′)ψwe(iπ)) is equal to the number of (i, i + 1) such

that i appears before i + 1 in one of e(iπ) or e(iπ′), and then i appears after i + 1

in the other. This equates to the number of positions in which the representatives

(a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ Π(n) of π, π′ ∈ Π(α) (resp.) differ. Therefore, the

degree of ψw is equal to the number of τ that appear in A⊗(n−1). Since φ is degree

preserving, we have a bijection between{
e(iπj )ψwe(iπi) ∈ EndRα(P̃ )

∣∣∣ 1 ≤ i, j ≤ n− 1
}

l{
γ ∈ A⊗(n−1)

∣∣∣ γ = γn−1 ⊗ · · · ⊗ γ1, deg(γi) ≤ 1, ∀ 1 ≤ i ≤ n− 1
}
,

and each of these sets has cardinality 2n−1. Let us denote by A⊗(n−1)
loc≤1 the vector

space spanned by 〈γn−1⊗· · ·⊗γ1|deg(γi) ≤ 1〉. Then dimqA⊗(n−1)
loc≤1 = 2n−1(1+q)n−1.

Therefore, ∑
π,π′

qdeg(e(iπ)ψwe(iπ′ )) = dimqA⊗(n−1)
loc≤1 = 2n−1(1 + q)n−1

and

dimq EndRα(P̃ ) =

∑
π,π′

qdeg(e(iπ)ψwe(iπ′ ))

 1

(1− q2)n

= 2n−1 (1 + q)n−1

(1− q2)n

=
2n−1

(1− q)n−1(1− q2)
= dimqA⊗(n−1) ⊗ k[x].

Since the dimensions in each graded part match up, and are finite, surjectivity

gives us injectivity. Therefore, φ is an isomorphism, and A⊗(n−1) ⊗ k[x] is Morita

equivalent to Rα for highest root α = α1 + · · ·+ αn.

Proposition 5.23. There exists a quotient of the algebra A⊗(n−1) ⊗ k[x] that is

quasi-hereditary.

Proof. Let I = 〈x, τ2
i e2〉, then A⊗(n−1) ⊗ k[x]/I is isomorphic to a tensor product
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of algebras A = kA/〈τ2e2〉. This algebra is quasi-hereditary with standard modules

∆1 = Ae2, ∆2 = Ae1/Ae2.

Corollary 5.24. There is a quotient of the algebra Rα that is quasi-hereditary.

This question corresponds with taking dπ = 1 for all π.
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Chapter 6

Worked examples

6.1 Multiplicity free - α =
∑n

i=1 αi

Here we consider some worked examples in the case where there are no repeated

root.

Example 6.1. Let α = α1 + α2. Let π1 = α1 + α2 and π2 = α2α1, the set of root

partitions Π(α) = {π1, π2} is ordered such that π1 < π2.

Jπ1 = k〈ψwe(12)pψτv | w, v ∈ Sπ1 , p ∈ B(k[y2]),deg(p) ≥ 1〉

Jπ2 = k〈ψwe(21)pψτv | w, v ∈ Sπ2 , p ∈ B(k[y1, y2]), deg(p) ≥ 1〉

The quotient Rα/J is a five dimensional algebra with basis

{e(12), e(21), ψ1e(12), ψ1e(21), y1e(12)}

note that y2
1e(12) = 0 ∈ RJα since y2

1 = ψ2
1e(12) = ψ1(y1 − y2)e(21)ψ1 = 0. The

left regular representation of the algebra decomposes into the sum of left projective

modules as follows

RJα
RJα =

1

2

1

⊕
2

1

Where 1 and 2 denote the simple modules indexed by π1 and π2 respectively. This is

clearly quasi-hereditary with standard modules ∆(π1) = L(π1) and ∆(π2) = P (π2).

The costandard modules are ∇(π1) = L(π1), ∇(π2) = I(π2). The tilting modules

are T (π1) = L(π1) and T (π2) = P (π1).
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We have the following linear tilting coresolutions of ∆(π1) and ∆(π2);

0 // ∆(π1) // L(π1) // 0 // 0,

0 // ∆(π2) // P (π1) // L(π1) // 0,

and the following linear tilting resolutions of ∇(π1) and ∇(π2);

0 // 0 // L(π1) // ∇(π1) // 0,

0 // L(π1) // P (π1) // ∇(π2) // 0.

The generalised tilting module

T = ⊕πi∈Π(α)T (πi) = T (π1)⊕ T (π2) = L(π1)⊕ P (π1)

The Ringel dual is EndR(T ) ∼= Rα/J , hence Ringel self-dual. Let L(π1) = A

and P (π1) = B, then HomR(A⊕B,A⊕B) = R′R
′
R′ , we have

R′eA = HomR(A⊕B,A) ∼= P (π2)

R′eB = HomR(A⊕B,B) ∼= P (π1).

Example 6.2. Let α = α1 + α2 + α3. Label the root partitions in the following

way π1 := α1 + α2 + α3, π2 := (α2 + α3)α1, π3 := α3(α1 + α2), π4 := α3α2α1, the

ordering is π1 ≤ π2 ≤ π4 and π1 ≤ π3 ≤ π4.

Jπ1 = k〈ψwe(123)pψτv | w, v ∈ Sπ1 , p ∈ B(k[y3]), deg(p) ≥ 1〉

Jπ2 = k〈ψwe(231)pψτv | w, v ∈ Sπ2 , p ∈ B(k[y2, y3]),deg(p) ≥ 1〉

Jπ3 = k〈ψwe(312)pψτv | w, v ∈ Sπ3 , p ∈ B(k[y1, y3]),deg(p) ≥ 1〉

Jπ4 = k〈ψwe(321)pψτv | w, v ∈ Sπ4 , p ∈ B(k[y1, y2, y3]),deg(p) ≥ 1〉

The quotient Rα/J is a 25-dimensional algebra which, by Section 5.4.1, is Morita

equivalent to the path algebra of

e1 ⊗ e1 τ⊗1
--

1⊗τ
��

e2 ⊗ e1mm

1⊗τ
��

e1 ⊗ e2

CC

τ⊗1
--
e2 ⊗ e2mm

CC

modulo the relation τ2e2 = 0. The left regular representation decomposes into a

direct sum of left projective modules in the following way
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1

2 3

1 4 1

3 2

1

⊕

2

1 4

3 2

1

⊕

3

4 1

3 2

1

⊕

4

3 2

1

The quasi-hereditary structure has standard modules ∆(π1) = L(π1), ∆(π4) =

P (π4), and

∆(π2) =
2

1
∆(π3) =

3

1

The costandard modules are ∇(π1) = L(π1), ∇(π4) = I(π4), and

∇(π2) =
1

2
∇(π3) :

1

3
.

The characteristic tilting module is given by

T = 1 ⊕
1

2

1

⊕
1

3

1

⊕

4

3 2

1

.

6.2 Affine nil-Hecke algebra

In this section we look at the opposite extreme, that where we have only one repeated

simple root.

Let α = 2α1, then the affine cellular basis for NH2 is given by{
ψwy2e(11)ψ1B(k[y1, y2]S)y2ψ

τ
v | w, v ∈ S2

}
.

Now, let e = ψ1y2.

We know from [Bru13, Theorem 2.3] that for ea := x2x
2
3 · · ·xn−1

n τw0 we have

Pa := q
1
2
a(a−1) NHa ea ∼= q−

1
2
a(a−1)k[y1, · · · , ya] and from [KLM13, Theorem 4.3]

that Pa is free as a Λa module with basis {ψwy2y3 · · ·ψw0 | w ∈ Sa}. But Pa is only

free as a NHa-module if NHa is local, which it is not. As an ea NHa ea-module, for

a = 2, we have

Pa = 〈y2ψ1e(11)y2bψ1 | b ∈ B(k[y1, y2]S)〉.
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For

J := 〈ψwy2e(11)ψ1py2ψ
τ
v | w, v ∈ S2, p ∈ B(k[y1, y2]S), deg(p) ≥ 1〉,

the algebra (eNH2 e)
J is one dimensional as

ψ1y
2
2e(11)ψ1y2ψ1y2 = ψ1y2e(11)(y1 + y2)ψ1y2 = 0 (6.1)

ψ1y2ψ1y2e(11)ψ1y2ψ1y2 = ψ1y2e(11)ψ1y2 (6.2)

ψ1y
2
2e(11)ψ1y2ψ

2
1y2 = 0 (6.3)

ψ1y2ψ1y2e(11)ψ1y2ψ
2
1y2 = 0 (6.4)

and NHJ2 is semi-simple.

6.3 α = 2α1 + α2112

We devote this section to the example of α = 2α1+α2. We relabel the root partitions

of α as 1 = (α1 + α2)α1 and 2 = α2α
2
1. This is the smallest case in which we have

a repeated simple root, but are not isomorphic to a nil-Hecke algebra. Whilst our

bound on dπ would give a much larger quotient, this example is sufficiently small to

determine that we are able to take a quotient ideal given by the sum of

J121 := k〈ψwe(121)pψτv | w, v ∈ Sπ, p ∈ B(k[y2, y3]), deg(p) ≥ 2〉

J211 := k〈ψwy3ψ2e(211)py3ψ
τ
v | w, v ∈ Sπ, p ∈ B(k[y1]⊗ k[y2, y3]S), deg(p) ≥ 1〉.

Let us recall why we cannot just kill all positive degree polynomials in the higher

cell.

Remark 6.3. Consider h = ψ1ψ2e(121)y3 ∈ J121, then

hψ1 = ψ1ψ2ψ1y3e(211)

= ψ2ψ1ψ2y3e(211)

= ψ2ψ1ψ2y3e(211)ψ2y3 ∈ J211.

Note that in this instance the algebra Rα is not basic. The idempotents e(i)

decompose into primitive orthogonal idempotents in the following way:

e(112) = (ψ1y2 − y1ψ1)e(112) (6.5)

e(121) = (ψ1ψ2ψ1 − ψ2ψ1ψ2)e(121) (6.6)

e(211) = (ψ2y3 − y2ψ2)e(211). (6.7)
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Lemma 6.4. The idempotent f = ψ2y3e(211)− ψ2ψ1ψ2e(121) is a full idempotent

in Rα.

Proof. The inclusion RαfRα ⊆ Rα is clear. For the other direction notice that

(ψ1e(211) + ψ2ψ1ψ2e(121))f(e(211)ψ2ψ1) = e(121) (6.8)

(e(211))f(e(211)− ψ2y2e(211)) = e(211). (6.9)

By [KLM13, Lemma 5.13], if a two sided ideal J contains all idempotents e(iπ) such

that π ∈ Π(α) then J = Rα. Hence RαfRα = Rα and f is a full idempotent.

We now compute the basic algebra fRJα f = fRαf/J associated to RJα .

Proposition 6.5. The algebra fRJα f is a seven dimensional properly stratified al-

gebra isomorphic to the path algebra kQ/I where Q is

E1

Y2

DD

Y1

�� Ψ1 **
E2

Ψ2

jj

and I = 〈Y 2
1 , YiYj , YiΨj ,ΨjYi,Ψ1Ψ2,Ψ2Ψ1 − Y 2

2 〉.

Proof. For all basis elements x of Rα we compute fxf + J , the only surviving

elements are:

kQ/I fxf fxf + J degree

E1 fe(121)f −ψ2ψ1ψ2e(121) 0

E2 fψ2y3ψ2e(211)y3f ψ2y3e(211) 0

Ψ1 fψ2y3ψ2e(211)y3ψ1f ψ2y3ψ2e(211)y3ψ1 1

Y1 fy2e(121)f −ψ2ψ1ψ2e(121)y2 2

Y2 fy3e(121)f −ψ2ψ1ψ2e(121)(y1 + y3 − y2) 2

Ψ2 fψ1y3ψ2e(211)y3f ψ1y3ψ2e(211)y3 3

Ψ2Ψ1 = Y 2
2 fψ1y3ψ2e(211)y3ψ1f ψ1y3ψ2e(211)y3ψ1 4

When lifted to Rα the elements above corresponding to E1, E2, Y1, Y2 are not written

in terms of the affine cellular basis, but can be written as:

E1 = e(121)− ψ1ψ2y3e(211)ψ2y3ψ2ψ1

E2 = ψ2y3e(211)ψ2y3

Y1 = −e(121)y2 + J

Y2 = ψ1y3e(211)ψ2y3ψ2ψ1 + ψ1ψ2y3e(211)ψ2y3ψ1 − e(121)y3 + J
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We show that Y1 is annihilated by all non-idempotent elements and Y2 is annihilated

by all elements except itself.

Ψ1Y1 = −ψ2y3ψ2e(211)y3y
2
1ψ2ψ1 + ψ2y3ψ2y3e(211)y1ψ1 = 0 + J

Ψ1Y2 = −ψ2y3ψ2e(211)y1(y2 + y3 − y1)y3ψ2ψ1 + ψ2y3ψ2y3e(211)(y3 + y2 − y1)ψ1

= 0 + J

Y1Y2 = ψ1ψ2y3(y1(y2 + y3)− y2
1)ψ2y3ψ2ψ1 − e(121(y3y3) + ψ1ψ2y3ψ2y2y3ψ1

+ ψ1y3ψ2y3y1ψ2ψ1 = 0 + J

Y2Y1 = Y1Y2 = 0 + J

Y 2
1 = ψ1ψ2y3ψ2e(211)y2

1y3ψ2ψ1 − e(121)y2
2 = 0 + J

Y1Ψ2 = ψ1y3ψ2e(211)y1y3 − ψ1ψ2y3ψ2e(211)y2
1y3 = 0 + J

Y2Ψ2 = ψ1y3ψ2e(211)(y2 + y3 − y1)y3 − ψ1ψ2y3ψ2e(211)y1(ψ2 + ψ3 − ψ1)y3 = 0 + J

Y 2
2 = ψ1y3ψ2y3ψ1 + J .

Hence the left regular representation of fRJα f decomposes into a sum of indecom-

posable projectives with Loewy structure

P (1)

1

Y2Y1 Ψ1

2

11

Y2

Ψ2

1

⊕

P (2)

2

Ψ2

1

Clearly the quotient above is not the most optimal properly stratified quotient of

Rα as we could also quotient by y2 to remove the element Y1. The standard modules

are ∆(2) = P (2) and ∆(1) has Leowy structure

1

1 1

The proper standard modules are ∆̄(1) = L(1) and ∆̄(2) = ∆(2) = P (2). The socle
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filtrations of the injectives are

I(1)

1

1 12

1

I(2)

2

1

The costandard module ∇(1) has Loewy structure

1 1

1

and ∇̄(1) = L(1), ∇(2) = I(2) = ∇̄(2).

From which we get tilting modules T (1) = ∆(1) and T (2) = P (1), so the char-

acteristic tilting module is T = ∆(1)⊕ P (1).

We define modules S(λ) := TrT>λ(T (λ)) and N(λ) := T (λ)/S(λ) that fit into

the following short exact sequence

0 // S(λ) // T (λ) // N(λ) // 0

For this example we get S(1) = 0 and S(2) = L(1) ⊕ L(1) ⊕ L(1) and thus

N(1) = T (1) = ∆(1) and N(2) = I(2).

Since S(2) /∈ F(N)we use [FM06, Theorem 3] to deduce that the Ringel dual is

not properly stratified.

We now compute the projective dimension of T = ⊕λT (λ). Notice that T fits

into the split exact sequence, to which we’ve added projective resolutions.

0 0

0 // P (2)

OO

// T // ∆(1) //

OO

0

P (2)

OO

P (1)

OO

0

OO

P (2)

OO

0

OO
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Applying [Wei95, Horseshoe Lemma 2.2.8] we deduce that

p.dim(T ) ≤ p. dim(∆(1)) = 1.
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