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Abstract

Coastal seas represent one of the most valuable and vulnerable habitats on Earth. Un-
derstanding biological productivity in these dynamic regions is vital to understanding
how they may influence and be affected by climate change. A key metric to this end
is net community production (NCP), the net effect of autotrophy and hetrotrophy, how-5

ever accurate estimation of NCP has proved to be a difficult task. Presented here is a
thorough exploration and sensitivity analysis of an oxygen mass-balance based NCP
estimation technique applied to the Warp Anchorage monitoring station which is a per-
manently well mixed shallow area within the Thames river plume. We have developed
an open source software package for calculating NCP estimates and air-sea gas flux.10

Our study site is identified as a region of net heteotrophy with strong seasonal variabil-
ity. The annual cumulative net community oxygen production is calculated as (−5±2.5)
molm−2 a−1. Short term daily variability in oxygen is demonstrated to make accurate
individual daily estimates challenging. The effects of bubble induced supersaturation is
shown to have a large influence on cumulative annual estimates, and is the source of15

much uncertainty.

1 Introduction

Marine areas play a fundamental role in the cycling of carbon (Keeling and Shertz,
1992). Photo-autotrophic marine organisms fix CO2 from the atmosphere into organic
matter. This organic matter is exported from surface waters by the biological and solu-20

bility carbon pumps (Stanley et al., 2010).
Understanding the mechanisms driving these processes is vital for predicting how

marine waters will respond to and influence climate change (Guo et al., 2012; Palevsky
et al., 2013). Coastal regions in particular have high value to society but are also vul-
nerable to anthropogenic activities (Jickells, 1998). These regions, which are typically25

more dynamic than the open ocean and with extensive natural variability, remain a chal-
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lenge for numerical models (Polton et al., 2013). The accurate detection and prediction
of long-term trends, and any response in coastal ecosystems to changing environ-
mental conditions require the accurate capture of this variability (Blauw et al., 2012).
Effective ecosystem based management of these vital regions requires adequate mon-
itoring, which drives the high demand for good quality, cost-effective observations of5

environmental status indicators (Platt and Sathyendranath, 2008)
The balance between dissolved inorganic carbon (DIC) fixation (i.e. autotrophy) and

production of DIC through heterotrophy over a specified period is known as net com-
munity production (NCP; Williams, 1993). Net autotrophic systems occur when gross
primary production is greater than respiration and net heterotrophic systems occur10

when respiration is greater than primary production (Ostle et al., 2014). NCP makes no
distinction between imported DIC and locally respired carbon.

NCP is a key metric for quantifying the cycling of biological carbon (Stanley et al.,
2010). Although interpretation of results is challenging and controversial (Williams
et al., 2013; Duarte et al., 2013), the direct measurement of CO2 in the ocean is diffi-15

cult (Riser and Johnson, 2008). However, as O2 and C are linked by a stoichiometric
ratio (Anderson and Sarmiento, 1994) using in situ measurements of O2 can offer sev-
eral advantages over measuring CO2 directly: Dissolved O2 is chemically neutral while
CO2 reacts with water to form carbonic acid which further reacts with other compounds
such as carbonates. This buffering makes directly observing changes in CO2 difficult.20

By comparison O2 can be measured accurately and at high resolution over long periods
with relative ease (Wikner et al., 2013).

Estimating net community production rates in the ocean is notoriously difficult
(Williams et al., 2013; Duarte et al., 2013). This is due in part because the net state is
finely balanced between large opposing fluxes and measurements have large uncer-25

tainties (Ducklow and Doney, 2013). Approaches have broadly fallen into 3 categories;
in-vitro incubation experiments, ocean colour remote sensing products and in situ geo-
chemical mass balance methods. Mouriño-Carballido and Anderson (2009) noted that
with in-vitro incubation experiments the captured biota may not exhibit the same be-
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haviour as they would in situ. Furthermore bottle samples may be spatially disparate
from the source of production, for instance where deep chlorophyll maxima form, and
thus not capture the organisms of interest Weston (2005). Karl et al. (2003) suggested
that short intensive bursts of photosynthesis driven by short duration changes in light
climate are regularly missed with traditional sampling techniques. Kaiser et al. (2005)5

also concluded that bottle incubations are not suitable to correctly represent the net
metabolic balance over larger temporal and spatial scales.

Ocean colour satellite sensing systems are not capable of measuring NCP and are
limited to primary productivity estimates. These methods are further hampered by both
insufficient spatial and temporal resolution or obscuring cloud cover (Thomas et al.,10

2002). Satellites only observe surface waters, they are thus unable to observe the
deep chlorophyll maximum, which can contribute up to 60 % of the primary production
(Fernand et al., 2013). Furthermore where acceptable imagery is available there is a re-
quirement for more in situ estimates to validate satellite based productivity algorithms,
especially for high productivity hotspots (Emerson, 2014; Palevsky et al., 2013). These15

may in time be converted to NCP using empirical relationships (Reuer et al., 2007).
Given that production is episodic rather than continuous (Emerson et al., 2008) and

the sites of increased production are patchy in nature (Alkire et al., 2012), high temporal
resolution in situ sampling is needed (Blauw et al., 2012)

Oxygen mass-balance techniques utilise measured changes in oxygen saturation20

and attempt to quantify the biological contribution to those changes in saturation.
The approach to teasing apart the physical and biological drivers to these saturation
changes can be subdivided into two groups; those which use a biologically inert ana-
log to oxygen, typically argon (Kaiser et al., 2005), and those which utilise gas solu-
bility/transfer parametrisations to estimate air-sea exchange. The dual measurement25

of oxygen and an inert analog tracer allows determination of solubility changes with
fewer uncertainties than using gas solubility parametrisations, however the equipment
required for this is not yet in widespread use.

15614

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/15611/2015/bgd-12-15611-2015-print.pdf
http://www.biogeosciences-discuss.net/12/15611/2015/bgd-12-15611-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 15611–15654, 2015

Shelf sea NCP
uncertainty

T. Hull et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The gas transfer parameterisation approach can be applied to historic datasets and
given that the concentration of dissolved oxygen is the most widely measured property
of seawater after temperature and salinity (McNeil and D’Asaro, 2014), oxygen-based
methods offer many opportunities to reveal new insights into data collected for other
purposes.5

To date the majority of oxygen-based NCP estimates have focused on oceanic wa-
ters (Alkire et al., 2012). Emerson (2014) noted that coastal NCP values can be three
times greater than open ocean values, however, there are too few measurements to
be confident in geographical variability. Palevsky et al. (2013) also found during their
Gulf of Alaska O2/Ar survey that the transitional coastal zone contributed 58 % of10

the total NCP whilst representing only 20 % of the total area surveyed. The nature
of the metabolic balance is particularly important in river-dominated margins, where
high carbon and nutrient inputs stimulate primary production and microbial respiration
with large seasonal variations (Guo et al., 2012).

The Cefas (Centre for Environment, Fisheries and Aquaculture Science) SmartBuoy15

network consists of autonomous data collection moorings placed at key locations in
the UK shelf seas (Mills et al., 2005; Greenwood et al., 2010). The long term high
temporal resolution multi-parameter datasets produced by the program provide unique
opportunities for observing biogeochemical processes in temperate coastal and shelf
seas (Neukermans et al., 2012; Blauw et al., 2012; Foden et al., 2010).20

In this paper we present new estimates of NCP from a long term SmartBuoy mooring
situated in the southern North Sea. We explore the uncertainty in these estimates, and
their sensitivity to uncertain input parameters. Lastly we make our algorithms available
as open source tools for readers to perform their own NCP calculations.
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2 Methods

2.1 Study Site

The SmartBuoy sensor package consists of a Cefas ESM2 datalogger coupled with
Falmouth Scientific OEM conductivity and temperature sensors (Falmouth Scientific,
USA), an Aanderaa 3835 series Optode (Aanderaa Data Instruments, Norway), a5

chlorophyll fluorometer (Seapoint Inc. USA), and a quantum photosynthetically active
radiation meter (PAR; LiCor Inc. USA). The ESM2 includes a 3 axis roll and pitch sensor
with a internal pressure sensor (PDR1828 – Druck Inc). The data-logger was config-
ured to sample for a 10 min burst every half hour. Salinity, temperature, chlorophyll and
PAR are sampled at 1 Hz during the measurement period, oxygen at 0.2 Hz.10

The Warp Anchorage SmartBuoy site, shown in Fig. 1 is located on a shallow bank
in the mouth of the River Thames. The site is highly turbid with significant riverine
inputs and experiences a 15 day Spring-neap cycle with 12 h 25 min semidiurnal tides.
CTD profiles taken over the last 15 years [Cefas Data] have always shown the Warp to
be vertically well mixed. The main characteristics of the study site are summarised in15

Table 1.

2.2 Data processing

SmartBuoy data undergo rigorous automated and manual quality assurance pro-
cesses. Automated processes apply a quality flag to data which fall outside realistic
value bounds. Manual processes assess the instrument performance and apply flags20

where the data quality is compromised, e.g. due to biofouling or sensor damage. The
CT sensor salinity data are corrected using in situ bottle samples analysed using a
Guildline Portsal 8410A (Guildline, Canada) standardised with IAPSO standard sea-
water.

Water depth was calculated using a global tidal model forced with European shelf25

area constituents (TPX08-atlas). Tidal waves have been shown to arrive almost si-
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multaneously at both Sheerness and the Warp SmartBuoy (Blauw et al., 2012) thus
model output was validated against the nearby Sheerness tide gauge (UK National
Tide Gauge Network) and demonstrated good agreement visually. Windspeed and
sea level air pressure were taken from ECMWF MACC reanalysis with a 0.125◦ grid.
ECMWF data were found to compare well with in situ ship borne anemometers used5

during mooring servicing (see Fig. A1). Details of the ECMWF and tidal model valida-
tions and their bearing on the sensitivity analysis are discussed later.

Continuity of the 10 year Warp oxygen data set is hampered primarily by biofouling
of the instrumentation. To avoid extrapolation or interpolation of the data, only periods
of complete data were used in the analysis. Two contrasting periods were selected, a10

spring–summer period of 150 days from January to June 2008 and a autumn–winter
period of 95 days from September to December of the same year. The 10 min half
hourly burst data from the buoy and the tidal model output was combined with the 6
hourly ECMWF data. These burst means were further smoothed to 25 h averages to
remove any structural biases in the data caused by the tidal cycle (Blauw et al., 2012).15

2.3 Optodes

Aanderaa instruments model 3830 and 3835 optodes (Aanderaa, Norway) have been
fitted to the Cefas SmartBuoys since 2005. Optodes drift due to foil photobleaching in
a predictable way (Tengberg et al., 2006), that is well described by a decaying expo-
nential with a decay constant of approximately 2 years (McNeil and D’Asaro, 2014). All20

optodes used were fitted with the opaque black silicon protective coating. Thus drift is
significantly reduced after a burning-in period and the temperature correction is unaf-
fected (D’Asaro and McNeil, 2013). Sensor drift was corrected for with frequent discrete
samples measured with volumetric Winkler titrations (Hansen, 1999). Titrations were
performed using a automatic photometric end-point detection system (Wiliams and25

Jenkinson, 1982). The classical Winkler method if executed with care by a skilled oper-
ator offers very low uncertainty (Helm et al., 2009), typically better than 0.2 % (Emerson
and Stump, 2010; Ostle et al., 2014). It is however a demanding task that is affected by
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numerous uncertainty sources, such as contamination of the sample and reagents by
atmospheric oxygen and iodine volatilization. Photometric endpoint detection is further
affected in highly turbid waters which can limit the number of successful samples.

2.4 Model Implementation

NCP is calculated here using a modified version of the 0-dimensional oxygen mass5

balance (box) model of Emerson (1987) and Emerson et al. (2008). This describes the
oxygen mass balance in the mixed layer assuming no vertical or horizontal advection
and no turbulent diffusion across any mixed layer boundary.

This method assumes that other oxygen consuming processes in the water column
such as nitrification, methanotrophy and photoxidation are negligible relative to respi-10

ration (Reuer et al., 2007), this assertion is discussed in more detail later. Specifically,
this model (Eq. 1) can be used to predict the concentration of oxygen at a subsequent
point in time given measured physical parameters. Any deviation from the predicted
value is assumed to be from biological activity, with a positive value corresponding to
net production. All of these terms introduced below and their estimated uncertainties15

are summarised in Table 2

h
dC
dt

= E +G + J (1)

where h is the mixed layer depth, C is the oxygen concentration in the mixed layer, E
is entrainment of oxygen though changes in the mixed layer depth Eq. (2), G is the gas
exchange though diffusive and bubble processes Eq. (3), and J is the net community20

production.

E =
dh
dt

(Cb −C) (2)
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where Cb is the oxygen concentration below the mixed layer.

G = kw

(
(1+B)

Pslp

Patm
C∗ −C

)
(3)

where kw is the parametrisation of Wanninkhof (2014) Eq. (4). C∗ is the concentration of
oxygen in equilibrium with the one atmosphere as per García and Gordon (1992) using
the Benson and Krause (1984) data, B is supersaturation caused by bubble processes5

Eq. (5), Pslp is sea level pressure, Patm is standard atmospheric pressure (101325 Pa).

kw = 0.251 U2

(
ScO2

660

)−0.5

(4)

where U is the wind speed at 10 m, ScO2
is the dimensionless Schmidt number for

oxygen. 660 is the typically quoted Schmidt number for CO2 at 20 ◦C in salt water
(S =35). Note the result of Eq. (4) is converted from cmh−1 to ms−1 for use in Eq. (3).10

The square root of the squared mean was used for wind speed to fit with the
quadratic kw parametrisation used. Wanninkhof et al. (2009) argues that comprehen-
sive surface forcing models provide little to no improvement over simple wind speed
algorithms, and although simple parametrisations cannot capture all the processes
that control gas transfer, they appear to capture most.15

The injection of bubbles into the mixed layer through wave action can supersaturate
the surface waters even if net gas exchange is zero (Liang et al., 2013). Here we utilise
a modern kw parametrisation with an explicit bubble equilibrium fractional supersatu-
ration parametrisation B, which enables the influence of the two elements on the NCP
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estimate to be quantified independently. For B the bubble supersaturation parametri-
sation of Woolf and Thorpe (1991) is used:

B = 0.01 ·
(
U
Ui

)2

(5)

where Ui is the wind speed at which the equilibrium supersaturation is 1 %. For oxygen
Woolf and Thorpe (1991) report this value to be 9 ms−1.5

Liang et al. (2013) argues that bubble supersaturation effects at a given tempera-
ture differ significantly among parametrizations, and their comparison between Stanley
et al. (2009), Woolf and Thorpe (1991) and their own parametrization demonstrates
differences in the order of 50 % for argon. The Woolf and Thorpe (1991) parametrisa-
tion does not account for any temperature or solubility dependence and is derived from10

calculated bubbled fields; implementation is however straightforward and the large rel-
ative uncertainties in the bubble term will be accounted for in the sensitivity analysis
outlined below.

We solve Eq. (1) for NCP (J) using the analytical solution shown in Eq. (6), providing
mean values for each variable except oxygen concentration and assuming a constant15

rate of NCP over the time step. The numerical scheme used in this paper was imple-
mented using R, the open-source language and environment for statistical computing
(R Foundation for Statistical Computing, www.r-project.org). The analytical solution,
along with kw and B parametrisations are included in the “airsea” package (Hull and
Johnson, 2015). The scheme was validated in silico using numerical estimation; air-20

sea fluxes were simulated every half second forced with a known value of NCP, the
resultant change in oxygen concentration was provided to our model and the calcu-

15620

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/15611/2015/bgd-12-15611-2015-print.pdf
http://www.biogeosciences-discuss.net/12/15611/2015/bgd-12-15611-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
www.r-project.org


BGD
12, 15611–15654, 2015

Shelf sea NCP
uncertainty

T. Hull et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

lated value of NCP compared to the known forced value. This was repeated over a
range of input scenarios.

J = rh
(
C1 −C0

1−e−rt
+C0

)
− F h (6)

where C0 is the oxygen concentration at the initial time-step (t =0), and C1 is the
concentration at t. For this paper t thus corresponds to 25 h.5

r =
kw

h
+

1
h

dh
dt

(7)

F =
kw

h
C∗(1+B)

Pslp

Patm
+

1
h

dh
dt
Cb (8)

It should be noted that for this study the entrainment (dh
dt ) term is neglected as the Warp

is a perpetually fully-mixed site, as such the entrainment term of Eqs. (7) and (8) are
set to 0.10

2.5 Sensitivity analysis methods

Accurately assessing the sensitivity of a model output to uncertain input variables has
many uses. Primarily it is to determine the precision of the model output, and the
sources of output uncertainty, knowledge of which informs future research in targeting
the main sources of uncertainty if robustness is to be increased (Saltelli et al., 2000).15

Local sensitivity analysis methods, such as the so called one-at-a-time techniques,
are limited to providing information only in a very specific location of the parameter
space. These methods rely on the selection of an applicable baseline, and varying a
single input parameter, which ignores the effects of covariant parameter uncertainty
(Saltelli et al., 2000).20
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Global methods such as Latin Hypercube sampling with partial rank correlation co-
efficients (LHS/PRCC) and the extended Fourier Amplitude Sensitivity Test (eFAST)
are capable of assessing multiple locations across the entire parameter space, thus
covariant parameter uncertainty is captured.

LHS/PRCC and eFAST have proven to be two of the most efficient and reliable meth-5

ods in each of their classes, sampling-based and variance decomposition-based re-
spectively (Marino et al., 2008). These two popular methods have differing strengths
and weaknesses and measure different properties of the model which together can
provide a complete uncertainty analysis. LHS/PRCC is a robust technique for non-
linear but monotonic relationships assuming little to no correlation exists between in-10

puts (Sanchez and Blower, 1997). LHS is an improved method of Monte-Carlo which
generates more efficient estimates of the desired parameters with far fewer simulation
runs. PRCCs are a ranked measure of monotonicity after removing the linear effects
of all but one of the variables, A simple one-at-a-time analysis reveals that the vari-
ables do indeed demonstrate the monotonic relationships required for effective PRCC.15

eFAST provides first and total order Sobol’ indices which indicate the variance of the
conditional expectation of the output for a given variable (Saltelli et al., 2000).

LHS is performed by assigning a error probability density function (PDF) to each of
the parameters. Each PDF is split into n equiprobable divisions and each area ran-
domly sampled once without replacement. This Table of input variables is then used to20

calculate NCP, with a new hypercube being generated for each time step. A column-
wise pair-wise algorithm is then used to generate an optimally designed hypercube,
where the mean distance between each point and all other points in the hypercube
is maximised (Stocki, 2005). We utilise the “improved” LHS implementation within the
“lhs” R package (Carnell, 2012) together with the PRCC routine from “epiR” (Nunes25

et al., 2014) The eFAST scheme is provided by the “sensitivity” package (Pujol et al.,
2014).

While there is no a priori exact rule for determining sensible sample size for these
methods, minimum values are known to be n = k +1 for LHS/PRCC and n =65 for
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eFAST (Saltelli et al., 2000), where k is the number of parameters. Here we took the
usual approach of systematically increasing sample size and checking if the sensitivity
index is consistent at least for the main effects, thus demonstrating there is no advan-
tage to increasing sample size as the conclusions remain the same.

LHS/PRCC and eFAST analyses were run 500 times for each 25 h step of the time5

series and the results aggregated. For cumulative calculations kw, B and C∗ and the
bias element of each measurement parameter was applied globally for the entire time
series, that is to say, a single hypercube (n = 500) is used to set the bias and scaling
factors for multiple runs over the entire time series, while the stochastic uncertainties
are applied at each time step independently.10

2.6 Uncertainty distributions

Critical to the value of any sensitivity or uncertainty analysis is the selection of adequate
probability distribution functions for each input parameter (Marino et al., 2008). Table 2
summarises the probability distribution functions used for each of the NCP model input
parameters.15

Oxygen error was determined though replicate anchor station Winkler samples taken
close to the mooring during maintenance surveys, combined with an estimate of Win-
kler method error and water bath tests of optode precision. We estimate the residual
error in oxygen determination of the corrected optode, combined with the accuracy of
the Winkler samples, to be within ±0.52 mmolm−3.20

The calculation of kw is conservatively assumed to be accurate to ±15 % (Wan-
ninkhof, 2014), The root-mean-square error from regressions between ECMWF and
ship anemometer, shown in Fig. A1, is used to give an estimated wind speed error. For
salinity we use the RMS error between the corrected CT, as detailed above, and the
bottle samples (0.1). Water bath calibrations have confirmed the SmartBuoy tempera-25

ture sensors to be accurate to within ±0.1 ◦C. García and Gordon (1992) provides an
uncertainty estimate for the measurement of their oxygen solubility parameterisation of
0.3 %. We have selected a 50 % uniform uncertainty distribution for B, the equilibrium
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bubble supersaturation term, based on the assessment of parametrisations by Liang
et al. (2013).

At the Warp, given the assertion it is always fully mixed, the uncertainty in h is re-
duced to an estimate for the inaccuracies in the tidal model.

Regressions between the predicted height from the model and the Sheerness tide5

gauge results in a RMS error of approximately 0.4 %. These estimates of parameter
measurement uncertainty were combined, using the square root of the sum of squares,
with the standard error of each mean observed value. The uniform bias was found
to be relatively small compared to the observed standard errors and thus the overall
parameter error is considered to be normally distributed.10

Uncertainty distributions for kw, B and C∗ were applied by multiplying the parame-
terised output by a scaling factor sampled from a uncertainty probability distribution.
This renders the uncertainty in the parametrisation independent of the input parame-
ters, i.e. kw uncertainty is independent of u uncertainty.

3 Results15

3.1 NCP

The 25 h mean chlorophyll time-series for Warp is shown in Fig. 2a showing the low
levels of chlorophyll in Winter, before a marked phytoplankton bloom in late spring. This
bloom is known from prior studies to be triggered by improved light climate though in-
creased solar radiation and reduced turbidity (Blauw et al., 2012; Weston et al., 2008).20

The oxygen saturation anomaly (Fig. 2b), the oxygen concentration minus the solubil-
ity (C∗), demonstrates mostly under-saturated near equilibrium conditions before the
bloom, with a large degree of supersaturation during the bloom. Figure 2b illustrates
how the effects the B term on increasing the equilibrium saturation concentration, and
thus reducing the apparent saturation anomaly. Figure 2c shows the ECMWF wind25

speed data for our study period demonstrating a high degree of variability between
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days and within our 25 h mean. Figure 3a shows the calculated NCP for the Spring
2008 study period at the Warp.

All NCP values are given as oxygen equivalents unless otherwise stated. It is char-
acterised by small mostly negative fluxes for the first 3 months. This is followed by a
marked phytoplankton bloom (Fig. 2a) and resulting positive net community production5

lasting approximately 3 weeks. Large negative NCP is seen following the bloom indicat-
ing enhanced community respiration. The observed NCP signal is in good agreement
with chlorophyll fluorescence (Fig. 2a).

The maximum rate of net community oxygen production was calculated as
(485±129) mmolm−2d−1 with 2σ confidence and precedes maximum observed chloro-10

phyll by three days. The mean rate during non-productive period (January to April) is
estimated as (−30±9.5) mmolm−2d−1.

The maximum rate of O2 influx from the atmosphere was (161±47) mmolm−2d−1

measured on 1 February 2008, which was concomitant with 14 ms−1 winds (Fig. 2c)
and a −2.5 mmolm−3 oxygen anomaly. The maximal rate of oxygen out-gassing was15

observed 1 May 2008 of (380±102) mmolm−2d−1 after the initial peak of the phyto-
plankton bloom.

Mean gas residence time for oxygen was calculated to be 5 days. Calculating the
seasonal net balance (Fig. 3c) at the end of the spring study period (January to June),
the cumulative NCP is estimated as (0.5±1.0) molm−2 at 2(σ) confidence. The net bal-20

ance for the winter period (Fig. 4) between 26 September to 30 December is calculated
as (−3.4±1.1) molm−2.

We estimate the cumulative NCP for the missing four month period of 2010 (July
to October) using the mean rate for this period across other years of the 10 year
Warp dataset, a subset of which is shown in Fig. A3. We calculate the mean value25

(−18.2±2.3) mmolm−2d−1 giving a cumulative estimate for this period of (−2.2±0.4)
molm−2. There are no significant net autotrophic periods observed between June and
September in any other year.
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We thus determine that the Warp site is net hetrotrophic with an annual oxygen NCP
of (-5±2.5) molm−2a−1.

3.2 Sensitivity

Figure 5a shows total order Sobol’ indices for the same period computed with eFAST.
Here “total” is given to mean the factors main effects on the NCP estimate, combined5

with all the interacting terms involving that factor as per Saltelli et al. (2000). The Sobol’
indices are normalised to the total variance giving an indication of the fractional con-
tribution to the variance for each factor. Note that unlike first order indices, the sum of
the total indices can exceed one, In Fig. 5a and 6 we have normalised the total order
indices to one to aid visualisation.10

The squared PRCC values from spring 2008 are shown in Fig. 5b. These values are
ranked measures, normalised to one, of the degree of monotonicity of each variable on
NCP (Sanchez and Blower, 1997). Using squared values makes for easier comparison
with the eFAST indices as PRCC can be both negative and positive. The relationship
between each of the variables and NCP is monotonic for the parameter ranges gener-15

ated for each time-step and thus each PRCC calculation. However, in aggregate over
the dataset some of the variables can demonstrate positive or negative relationship
with NCP.

Both techniques indicate the determination of the change in oxygen concentration
(∆C) has the largest influence on overall uncertainty, with both the highest PRCC rank-20

ing and Sobol’ total order indices. The eFAST analysis indicates that ∆C typically ac-
counts for 53 % of the overall uncertainty. Wind speed u is the second largest contrib-
utor, typically comprising 26 % of the uncertainty budget. The bubble supersaturation
parametrisation B accounts for 9 %. The gas transfer velocity parametrisation (kw) and
the initial oxygen concentration accuracy (C0) are shown to have similar contributions25

of 6 %. The García and Gordon (1992) oxygen saturation parametrisation contributes
4 %. Similar results from both sensitivity analyses indicates the model is well charac-
terised by these methods.
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The large confidence limits shown for u, kw and B in Fig. 5 illustrates the large vari-
ability in PRCC ranking and Sobol’ indices over the period studied. This indicates how
the relative importance of these factors varies greatly over the data set. The timings for
this variability is illustrated in Fig. 6. Here we observe periods (early January and most
of March) where ∆C uncertainty is of minimal importance and wind speed uncertainty5

dominates. The uncertainty in NCP during the onset of the bloom (Mid April to mid
May) is almost completely dictated by uncertainty in ∆C.

LHS/PRCC is not suitable for assessing the effects of measurement and parameter-
isation bias on the cumulative NCP estimate. Uncertainty in some of the parameters,
principally u kw, do not demonstrate monotonic relationships with the output measure.10

That is to say, uncertainty in u can lead to both increased or decreased cumulative
NCP. Thus we present only eFAST indices for cumulative uncertainty in Fig. 7. B is
shown to have the largest contribution, accounting for 40 % of the uncertainty in NCP
alone, with a further 7 % from interactions with primarily with u.

4 Discussion15

4.1 NCP

As the water column at the Warp is fully mixed, processes occurring at or in the sea
bed are incorporated into the mixed layer mass balance and thus the NCP estimate.
This includes non respiration oxygen-consuming processes such as nitrification and the
oxidation of reduced material other than ammonia and nitrite. A previous study at the20

Warp using incubated sediment cores provides estimated rates of sedimentary oxygen
uptake of 55 in July, and 26 mmolm−2d−1 in April (Trimmer et al., 2000). Braeckman
et al. (2014) observed maximal mean rates of nitrification reaching 6 mmolm−2d−1 and
similar for mineralization in muddy coastal North Sea sediment. This combined with
sediment respiration equated to a sediment community oxygen consumption of 15 for25
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Febuary and 20 mmolm−2d−1 for April. This indicates that a large fraction (50 %) of the
observed negative NCP at Warp could be due to sedimentary processes.

While its use in improving our knowledge of carbon cycling is well known, NCP also
represents a potential next-generation indicator of ecosystem health. The short dura-
tion of the bloom and the large impact a two week period has on the annual budget5

could indicate that annual estimates, while vital for carbon cycling studies, are a less
useful indicator for ecosystem health. A carefully resolved bloom period NCP may be
more useful.

4.2 NCP as carbon equivalents

The commonly used “Redfield” stoichiometric ratio for O : C of 1.45 (Anderson and10

Sarmiento, 1994; Hedges et al., 2002) was applied to our positive oxygen NCP esti-
mates for easier comparisons with other studies.

Literature values for NCP estimates from regions similar to the Warp are scarce.
Tijssen and Eijgenraam (1982) calculated net community oxygen production in the
southern bight of the North Sea using shipboard 4 hourly winkler samples. They per-15

formed two surveys of 2–3 days in March and April 1980 with 24 h net community
oxygen production estimates of 26 and 304 mmolm−2 d−1 respectively.

The rates of net production seen at Warp, when expressed in units of carbon are
of comparable magnitude to other estimates, With a maximal carbon NCP rate of
(346±92) mmolm−2 d−1. Guo et al. (2012) report similar magnitudes of peak NCP20

from other studies in large river plume regions.
Bozec et al. (2006) reported an annual carbon NCP estimate for the entire Thames

plume region of 3 molm−2 a−1. Their study integrated their four seasonal survey tracks
into ICES regions, of which the Thames plume is one. Our annual carbon NCP estimate
of (−3.6±1.8) molm−2 a−1, represents a much smaller area, measured at considerably25

higher temporal resolution, for a much longer duration.
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4.3 Measurement and model uncertainty

Prior oxygen NCP studies have neglected to include the production of oxygen within the
time step, that is to say they assume an instantaneous production of NCP at the end of
their time step when the measured oxygen concentration and abiotically predicted con-
centration are compared. This results in the underestimation of the magnitude of NCP.5

For example, oxygen produced at the start of the time step will out-gas quicker due
to the increased air-sea concentration gradient, when the degree of supersaturation is
later measured at the end of the time step the true magnitude of the supersaturation
will be masked.

The effect of neglecting the within-time-step NCP is negligible when conditions are10

near equilibrium saturation. However, during the bloom, neglecting the within-time-step
NCP would result in a 45 mmolm−2 d−1 (9 %) underestimation of peak oxygen NCP.

The results from both LHS/PRCC and eFAST techniques support the conclusion that
the bulk of the uncertainty in the NCP calculation is dependent on the determination of
changing oxygen in the mixed layer. This is in keeping with the observations of Emerson15

et al. (2008) uncertainty analysis of their O2/N2 method where 54 % of the uncertainty
was due to oxygen determination.

It should be noted that the error bounds for ∆C, unlike the other measured param-
eters are derived solely from the standard error of the difference between the oxygen
concentration at each time time step. This standard error represents both the variability20

within each 25 h mean and the precision of the optode. The mean and median value
for ∆C standard error were 1.1 and 0.6 mmolm−3. Greater variability is seen during
the bloom with values up to 7.0 mmolm−3. During calibration in a thermostatic bath the
optodes used typically demonstrated a precision of±0.3mmolm−3. This is within the
specification from the manufacturer of±0.4 mmolm−3 and in agreement with the find-25

ings of Wikner et al. (2013). Thus it would appear that the largest source of uncertainty
constrained here is the large degree of variability captured within the 25 h mean rather
than the instrument. The range of values observed within any 25 h period differed by up
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to 91.2 mmolm−3 during the bloom. During the non-productive period the observations
within each 25 h period varied by on average 9.2 mmolm−3. This variability is shown
with the small subsection of the raw oxygen time-series presented in Fig. A4. The vari-
ability seen here represents both tidal movement of water past the buoy, together with
diel cycling of production.5

Thus we believe improvements in identifying homogeneous water masses over the
tidal cycle, rather than integrating it entirely, is the best approach to reducing uncer-
tainty with this scheme.

Shipboard transect studies (typically utilising O2/Ar methods in open ocean environ-
ments) observe any disequilibrium oxygen in relation to the gas residence time, that is,10

they assume constant NCP in the period leading up to the measurement (Kaiser and
Gist, 2006). It would thus appear that single shipboard transects will struggle to fully
capture the tidal induced variability found in areas such as the Warp.

For the investigation of cumulative uncertanty we concider only the bias in each pa-
rameter. The bubbles supersaturation term (B), while small in regards to PRCC and15

eFAST values for an individual estimate (Fig. 5), has a large effect on the cumula-
tive mass balance (Fig. 7). We calculate a pseudo-cumulative spring period NCP of
(2.3±0.9) molO2 m−2 resulting from neglecting B, four times our true estimate. This
relatively large effect is due to the biased nature of the supersaturation term, which
serves to only increase the oxygen concentration in the mixed layer.20

Optodes tend to drift towards underestimating oxygen concentrations (Wikner et al.,
2013) which will typically result in underestimates of NCP. We re-ran our analysis
simulating a 1 mmolm−3 per month negative linear drift, which provides a pseudo-
cumulative oxygen NCP estimate for the Spring period of (−0.5±0.8) mmolm−2, dou-
ble our corrected value. This reinforces the requirement for well calibrated, drift cor-25

rected measurements.
Future studies are likely to benefit from newer Optode designs than those used here.

Together with the improved multi-point calibration equation (Stern-Volmer) of McNeil
and D’Asaro (2014), these can offer greater accuracy and precision. The in-air cal-
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ibration procedures outlined by Bushinsky and Emerson (2013) can reportedly offer
frequent in situ calibrations of ±0.1 %. The in-air measurements could also be used to
calculate the concentration gradient between the mixed layer waters and the air, which
eliminates the requirement for a C∗ parametrisation

Emerson et al. (2008) noted that at Hawaii Ocean Time-Series site small daily fluctu-5

ations in the measured oxygen concentration caused large fluxes, but these were both
positive and negative and had little impact on the cumulative NCP. Fluctuations around
zero are seen in the Warp. These do not tend to cancel out and combine to form a
significant negative NCP flux. Emerson (2014) observed the standard deviation of the
individual mean annual values is up to ±50 % which reflects both real inter annual10

variability and measurement/model error. This study has produced NCP estimates for
the spring period of up to almost 100 % due primarily to the large uncertainty centred
around the bloom. Our winter period estimate demonstrates a degree of uncertainty
similar to that of Emerson (2014) albeit with a net heterotrophic system.

4.4 Advection and sampling uncertainty15

Previous studies in open ocean environments have ignored horizontal advection
(Emerson et al., 2008; Nicholson et al., 2008). Air-sea gas exchange is typically consid-
ered to be sufficiently rapid that horizontal gradients are too small to drive a significant
flux (Alkire et al., 2014). Semi-diurnal tidal systems such as at the Warp demonstrate
horizontal displacement of water masses with a periodicity of 12 h 25 min, with maxima20

in current speeds every 6 h 12 min which drive significant horizontal variability (Blauw
et al., 2012).

The box model presented here relies on the assumption that the instruments are
measuring the same body of water twice, i.e. the comparison of two consecutive 25 h
averages represent the same mass of water evolved over time.25

If we assume that conditions along the path length are homogeneous on 25 h time
scales, in effect the NCP estimates presented here can be thought of as integrating
over a length scale proportional to the residual flow. Historic in situ acoustic Doppler
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current profiler data gathered over 3 months at the Warp (See Appendix A) shows a
residual mean current flow estimated at 1.9–2.2 cms−1, bearing 120◦. This equates to
a observational window of approximately 2 km for t = 25 h.

However while our 25 h averages most likely capture the tidal and diel dependent
variability, further uncertainty is introduced by submesocale variability such as phyto-5

plankton patches and eddies. Residual currents will affect the NCP estimates by the
addition and loss of water which is outside of our observational window. (Alkire et al.,
2014) calculated the advective flux during their glider study. They observed daily mean
flow of up to 2 cms−2 which with their measured horizontal gradient produced the mean
removal of (18±10) mmolm−2d−1 oxygen though horizontal advection.10

Given Tijssen and Eijgenraam (1982) observed horizontal oxygen gradients of up to
3 mmolm−3 over a few hundred meters, determining to what extent our assumption of
homogeneity holds over 25 h is the logical next step to ensuring a robust NCP estimate.

4.5 Other sources of uncertainty

There are several other known contributors to NCP uncertainty which are outside the15

scope of this study. Kitidis et al. (2014) argues that all O2 based methods underesti-
mate NCP due to photochemical processes, and they report that their modelled photo-
chemical oxygen demand was shown to occasionally exceed respiration, with demand
ranging between 3 and 16 mmolm−3d−1. Oxygen photolysis was found to correlate with
CDOM absorbance at 300 nm. While significant concentrations of CDOM can be found20

at the Warp (Foden et al., 2008), the effects are likely mitigated by the typically high tur-
bidity, and the associated rapid light attenuation, and shallow (frequently < 6 m) photic
depth.

Tijssen and Eijgenraam (1982) observed in the northern end of the southern bight
of the North Sea in April, vertical oxygen gradients of up to 0.15 mmolm−3. These can25

form throughout the day during the phytoplankton bloom. The gradient was reversed
during the night, indicating the redistribution of oxygen by vertical mixing over a 24 h
period.
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Takagaki and Komori (2007) found the maximum enhancement to CO2 gas transfer
by rainfall is similar in magnitude to that of high wind speeds. This enhancement is
thought mainly to be though increased turbulence and surface area at the air-water
interface and as such it is likely to be most significant where heavy rain is coincident
with light winds (Beale et al., 2013).5

Frew (1997) found that surfactants may be responsible for coastal waters having sig-
nificantly lower transfer velocities than oligotrophic areas. However Nightingale et al.
(2000) found no measurable change in kw during a 30 fold increase in Chlorophyll
during an algal bloom. We, like Wanninkhof et al. (2009) consider that practically sur-
factants are always in effect and are thus incorporated into empirically derived kw10

parametrisations.
Similarly while sea spray may also enhance gas transfer, we believe this to also

already be accounted for in the parametrisation. Further uncertainties relating to the
parametrisation of kw are likely of little concern without first reducing other, more sig-
nificant sources.15

5 Conclusions

Our work identifies the Warp SmartBuoy site as an annually net heterotrophic loca-
tion with strong seasonal variability and autotrophy during the growth phase of the
bloom. This assertion holds despite significant uncertainties associated with the NCP
estimate. We have demonstrated that the largest source of uncertainty in our NCP esti-20

mates comes not from the selection of gas exchange parametrisation, or the quality of
remote sensed and modelled parameters, but from the measurement of the changing
oxygen concentration. For cumulative annual estimates, the strongly biasing uncer-
tainty of bubble induced supersaturation is the dominant source of uncertainty. Reduc-
ing the uncertainty in this term is vital to improving long term NCP estimates. Further25

work should focus on understanding the nature of the short term variability associated
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with changing oxygen concentration to enable better NCP estimates in dynamic areas
such as the Warp.

Appendix A

A1 Wind speed validation

Shipborne anemometers data was adjusted to 10 m height using the scheme of Liu5

et al. (2010). We make the assumption that the surface current is assumed to be small
compared to wind speed and the atmosphere is nearly neutral. Thus the Us and ψ
terms are not used giving the form shown in Eq. (A1). where CD is the drag coefficient
formulation of Large and Pond (1981) with the high wind speed saturation modification
of Sullivan et al. (2012) shown in Eq. (A2).10

Uz
U10

= 1+2.5

√
CD ln(

z
10m

) (A1)

CD =


0.0012 ⇐⇒ U10 ≤ 11ms−1

(0.49+0.0065U10)×10−3 ⇐⇒ 11ms−1 < U10 < 20ms−1

0.0018 ⇐⇒ U10 ≥ 20ms−1
(A2)

A2 Current meter data

Acoustic Doppler current profilers were deployed at the Warp SmartBuoy site between
November 2001 and April 2002. Three deployments were made using 1 MHz Nortek15

AWACs fitted to a Cefas designed seabed lander. A small subset of the processed data
is presented in Fig. A2.
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Table 1. Study site characteristics for wWinter (November–February) and sSummer (June–
September), based on multi-year seasonal means.

Warp Anchorage

Position (WGS84) 51.31◦ N, 1.02◦ E
Monitoring Period 2001–present
Mean water depth (m) 15
Tidal range (m) 4.3
Tidal period semidiurnal
Salinity (PSS-78) 33.8w–34.3s

Turbidity (FTU)* 29w–10s

Temperature (◦C) 7.6w–17.5s

∗ FTU=Formazin Tubidity units, ISO 7027.
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Table 2. Parameters and their uncertainty distributions used for LHS/PRCC and eFAST at the
Warp.

Parameter Description PDF Range Unit

C0 Oxygen concentration at t = 0 normal 0.52 + SE mmolm−3

∆C Change in oxygen concentration normal SE mmolm−3

S Salinity normal 0.1 + SE dimensionless
T Temperature normal 0.1 + SE ◦C
h Mixed layer depth normal 0.4 % + SE m
u wind speed normal 1.2∗ + SE ms−1

Pslp Sea level air pressure normal 0.1 % + SE Pa
C∗ Oxygen solubility uniform 0.3 % mmolm−3

kw Gas transfer velocity uniform 15 % ms−1

B Equilibrium bubble saturation coefficient uniform 50 % dimensionless

SE= the standard error of the mean.
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Figure 1. Map of Warp Anchorage study site.
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Figure 2. Spring 2008 Warp Anchorage time series. (a) Chlorophyll fluorometry. (b) Oxygen
saturation anomaly (oxygen concentration minus the solubility). Orange and blue lines repre-
sent oxygen saturation anomaly with and without bubble supersaturation effects respectively.
(c) ECMWF MACC reanalysis 10 m wind speed. For (b) and (c) thin lines represent 2σ confi-
dence bounds.
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Figure 3. Spring 2008 Warp Anchorage time series. (a) Net community production (J), neg-
ative values correspond to net respiration. (b) Oxygen air-sea gas exchange (G), negative
values correspond to movement into the sea. For (a) and (b) thin lines represent 2σ confidence
bounds. (c) Cumulative net community production, mean value shown in blue, each run shown
in grey, 2σ confidence bounds in red.
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Figure 4. Warp 2008 Winter cumulative NCP. Mean value shown in blue. Red lines indicate
95 % confidence limits. Black lines correspond to each simulation run.
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Figure 5. Warp sensitivity analysis indices. (a) eFAST total order Sobol’ indices (fractional
uncertainty contributions). (b) PRCC squared indices (ranked uncertainty contributions). Box
plot upper and lower hinges correspond to first and third quartiles, whiskers extend to 1.5x of
the inter-quartile range, outliers marked with dots. See Table 2 for variable definitions.
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NCP, indicating relative contributions from parameter bias uncertainty to cumulative NCP un-
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Figure A1. Validation of ECMWF MACC reanalysis 10 m wind speed vs height corrected ship-
borne anemometer wind speed.
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Figure A2. Acoustic Doppler current profiler data from the Warp SmartBuoy site showing the
tidally dominated current regime. Top panel vectors for east, bottom panel north.
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Figure A3. Warp June to October NCP estimates from other years demonstrating no significant
periods of net production.
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Figure A4. Raw (30 min) Warp SmartBuoy time series showing significant variability in oxygen
anomaly (red) and salinity (blue) within each tidal cycle. Here the oxygen anomaly neglects the
supersaturating effects of bubbles.
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