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Abstract 

To effectively improve the power density and rate capability of layered double hydroxide (LDH) 

based supercapacitors, a hybrid supercapacitor (HSC) comprising of hierarchical ultrathin NiAl-

LDH nanosheet arrays on carbon nanotube paper (CNP-LDH) is developed with porous 

graphene nanosheets as the negative electrode for the first time. SEM image shows that 

hierarchical NiAl LDH nanosheet arrays are assembled by numerous ultrathin nanosheets with 

thickness of a few to tens of nanometers.  Remarkably, with an operating voltage of 1.6 V, the 
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HSC possesses a high energy density of 50.0 Wh kg
-1 

at an average power density of 467 W kg
-1

. 

Even at a fast discharging time of 3.9 s, a high energy density (23.3 Wh kg
-1

) could also be 

retained at a power density of 21.5 kW kg
-1

. Moreover, the HSC exhibits cycling stability with a 

retention rate of 78% after 5000-cycle charge-discharge test at 5 A g
-1

. The results inspire us to 

propose our high-performance CNP-LDH as a promising electrode for energy storage 

applications. 

 

Keywords: Layered double hydroxide; Hybrid supercapacitor; Carbon nanotube paper; Porous 

graphene; Power density 

 

 

1. Introduction 

Supercapacitors (SCs), also called as electrochemical capacitors, have been well known for 

one promising energy storage device due to the high power density, fast charge/discharge 

capability, long lifespan, and low maintenance cost [1-4]. With these encouraging features, SCs 

has been adopted widely in many fields where high power density and long cycling stability are 

highly desirable [5, 6]. However, compared with rechargeable batteries, the energy density of 

commercial SCs is still too low (usually < 10 Wh kg
-1

) to come into practical applications [7]. 

Therefore, the development of advanced SCs with high energy density while retaining their high 

power density and long cycle-life is urgently sought [8, 9]. Recently, a hybrid supercapacitor 

(HSC), which is commonly composed of a battery-type electrode and a capacitive electrode, 

has been extensively investigated [10, 11]. In this case, a wider operating voltage can be 

achieved, which leads to a higher energy density [12, 13]. 
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Among the various battery-type electrode materials, brucite-like layered double hydroxide 

(LDH) with the general formula of [M
II

1-xM
III

x(OH)2]
x+

[A
n-

]x/n⋅mH2O have received intensive 

interest because of the high redox reaction activity, relatively low cost, and environmentally 

friendly features [14-16]. It has been reported that the electrical double-layer and Faradaic 

reactions can be simultaneously achieved in the abundant slabs or electrochemical active sites of 

the LDH structure. Therefore, LDH is regarded as promising electrode material in high 

performance energy storage applications [17, 18]. However, LDH suffers from its intrinsic low 

electrical conductivity and highly packed morphology, resulting in low rate performance and 

poor cycle life in supercapacitors [14, 15]. To overcome this drawback, an effective approach is 

to design a binder-free electrode incorporating LDH with a conductive substrates such as 

conductive textile fibers [19], titanium plate [20], stainless steel [21] as well as nickel foam (NF) 

[22, 23]. In such binder-free electrode approach, the traditional manufacture process of the 

slurry-derived electrode is neglected. In addition, binder-free electrode not only can effectively 

increase the active surface of the electroactive materials by eliminating the use of organic binder, 

but also facilitate faster ion and electron transport. We have demonstrated that NiAl-LDH 

nanosheet arrays directly grown on NF to improve the electrochemical performance for energy 

storage applications [12]. However, the obtained electrodes based on macro-porous metallic 

current collectors are usually inflexible [24]. As a result, creating an integrated electroactive 

flexible architecture with well-defined nanostructured possessing efficient charge and mass 

transportation is timely and important [25, 26].  

On the other hand, among the carbonaceous materials, graphene nanosheet (GNS) has 

recently gained a substantial amount of attention owing to its good electrical conductivity, high 

theoretical specific surface area (SSA; 2630 m
2 

g
−1

 per single layer), and excellent chemical 
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stability and mechanical flexibility [27-29]. However, GNS tends to aggregate and restack 

together due to the van der Waals interaction among graphene layers, resulting in severe 

decrease of the electrochemically active surface area and the access of electrolyte ions to the 

surface of graphene sheets. Consequently, capacitive performance is diminished drastically, 

particularly the rate capability and cycling stability. 

Indeed, there are many papers reporting deposition of active materials on flexible substrates 

for supercapacitor [30, 31]. Specifically, Gao et al. developed a cotton-textile-enabled 

asymmetric supercapacitor in which flower-like CoAl-LDH nanoarrays were grown on activated 

cotton textiles using a conventional hydrothermal method [32]. However, in this manuscript, we 

developed a facile process to fabricate a flexible binder-free electrode, in which hierarchical 

ultrathin NiAl-LDH nanosheet arrays were directly grown on conductive carbon nanotube paper 

(CNP) by a liquid phase deposition (LPD) method for the first time, making the CNP-LDH 

electrode flexible enough to be repeatedly crumpled. In addition, the highly open hierarchical 

character of NiAl-LDH can effectively facilitate the rapid ion/electron transports, which results 

in excellent electrochemical performance. The obtained CNP-LDH electrode possesses a high 

specific capacity of up to 1023.8 C g
-1

 at a low current density of 2 A g
-1

 and 704.2 C g
-1 

even at 

high current density of 50 A g
-1

, exhibiting an excellent rate performance. Using our proposed 

CNP-LDH as the positive electrode, an advanced HSC device can be fabricated in which porous 

graphene nanosheets (p-GN) serve as negative electrode material. Powdery p-GN with efficient 

electron and ion transport pathways as well as high SSA is synthesized via a facial hydrothermal 

approach. Notably, p-GN electrode delivers a specific capacitance of 209.7 F g
-1

 at 1 A g
-1

 and 

retains 182.3 F g
-1

 at 10 A g
-1

 with good cycling stability. Remarkably, the assembled HSC 

(CNP-LDH//p-GN) exhibits a high energy density of 50 Wh kg
-1

 at a power density of 467 W kg
-
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1
, and maintains an energy density of 23.3 Wh kg

-1
 at a power density of 21.5 kW kg

-1
 within a 

short discharging process of about 3.9 seconds. And it also represents a cycling stability with 78% 

specific capacity retained over 5000 continuous charge-discharge process at a current density of 

5 A g
-1

.  

 

2. Experimental Section 

2.1 Materials preparation 

Synthesis of CNP-LDH composite: CNP was cleaned with deionized water and dried. 

The CNP-LDH was synthesized via a LPD method. Typically, a solution was firstly 

formed by mixing [NiFx]
(x-2)-

 solution [14] with 10 mL H3BO3 (0.5 M), 2.5 mL 

Al(NO3)3·9H2O (0.05 M), and 2.5 mL H2O, and then sealed in a 50-mL autoclave with a 

piece of cleaned CNP (1 cm × 2 cm, 1.4 mg) to keep at 120 
o
C for 10 h. After cooled 

down naturally, the CNP substrate covered with NiAl-LDH was taken out from the 

autoclave, rinsed with water carefully, and dried overnight. The mass loading of NiAl-

LDH on CNP substrate was approximately 1.0 mg which was determined by subtracting 

the weight before deposition from the weight after deposition.  

Preparation of porous graphene nanosheets (p-GN): GO was synthesized using a 

modified Hummers method [15]. P-GN was prepared via a method of hydrothermal 

treatment. Typically, 120 mg GO was well dispersed in water by ultra-sonication to 

obtain homogeneous GO dispersion with a concentration of 2 mg mL
-1

. Then, 6 mL H2O2 

(3 vol.%) was added and stirred for 30 min. After adding 400 µL NH3·H2O (28 vol.%) 

with stirring for 30 min, the mixed dispersion was transferred to a 100-mL autoclave and 

maintained at 180 °C for 6 h. Finally, the p-GN powder was obtained by centrifuging, 

washing, and drying the resulting precipitate overnight.  
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2.2 Material characterizations  

The phase of the samples was characterized by X-ray diffraction (XRD, Bruker D8 

Advance X-ray) using Cu Kα radiation (λ = 0.15406 nm) at 40 kV and 30 mA. The 

morphology and structures of the samples were investigated by LEO-1550 scanning 

electron microscopy (SEM) and JEM-2100F transmission electron microscope (TEM). A 

Micromeritics ASAP 2020 analyzer was used to characterize the specific surface areas  

(Brunauer-Emmett-Teller (BET) method) and pore structures (Barrett-Joyner-Halenda 

(BJH) method) of electrode materials. For CNP-LDH electrode, the LDH powder sample 

was scratched from the substrate by mild sonication. 

2.3 Electrochemical measurement  

Preparation of working electrodes: CNP-LDH composite was used as working electrode 

directly. For p-GN sample, the working electrode was prepared by coating the powder on 

NF. Typically, p-GN powder, acetylene black and polytetrafluorene-ethylene (PTFE) 

binder were mixed together with a weight ratio of 80: 10: 10 to obtain a homogeneous 

paste. The adding of acetylene black was to make up the loss conductivity caused by the 

introduction of binder (PTFE). After coating the aforementioned paste on a clean NF, the 

electrode was dried at 60 °C for 12 h before pressing under pressure of 20 MPa. 

Electrochemical measurement: each electrode was first carried out in a three-electrode 

system using a ZIVE SP2 electrochemical working station for cyclic voltammetry (CV) 

and galvanostatic charge-discharge (GCD) measurements with 6 M KOH as the 

electrolyte. A platinum foil (1 cm × 1 cm) and an Hg/HgO electrode were used as the 

counter and reference electrodes, respectively.  
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An HSC was assembled using the obtained CNP-LDH composite and p-GN on NF as 

the positive electrode and negative electrode in a 6 M KOH electrolyte solution, 

respectively. CV and GCD measurements were conducted in the potential range of 0 ~ 

1.6 V at different scan rates and current densities, respectively. 

 

3. Results and Discussion 

3.1 Positive electrode materials (CNP-LDH) 

CNP-LDH electrode material was fabricated by a facile LPD method [12]. In the presence of 

water and H3BO3, [Ni(OH)x]
(x-2)-

 was gradually grown due to the hydrolysis of the fresh Ni 

parent solution ([NiFx]
(x-2)-

) and will react with Al
3+ 

to form NiAl-LDH nanosheets. The 

generation process of CNP-LDH and corresponding architectures were illuminated in Fig. 1a. 

The light-weight CNP substrate is beneficial for the growth of NiAl-LDH nanosheets and could 

serve directly as a flexible electrode for supercapacitors because of the high electrical 

conductivity of CNP. NiAl-LDH powders scraped from CNP-LDH composite was characterized 

by XRD analysis, as illustrated in Fig. 1b. It can be observed that all of the diffraction peaks are 

well correspond to those in the standard card (JCPDS card no: 15-0087), indicating a typical 

hydrotalcite-like structure [12]. 

The structures and morphologies of CNP and CNP-LDH were investigated by SEM. The 

SEM of image Fig. 2a showed that CNP is made up of a great amount of carbon nanotubes. 

Because of this, the CNP is high electrically conductive which is good for the growth of NiAl-

LDH nanosheets active material for SC. From Fig. 2b, it can be observed that uniform NiAl-

LDH nanosheets were grown on CNP substrate in the whole scene, which differed from the 3D 

flower-like morphology when macrosized nickel foam was used as the substrate [12]. The 

formation mechanism was proposed as follows: at the early stage of the reaction, the LDH 
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nanoplatelet nucleated and grew on individual CNT surface [33, 34]; CNTs were covered by 

vertically aligned LDH nanoflake arrays along with the reaction; as the reaction time was 

prolonged, the lateral growth of LDH were blocked by adjacent CNTs and the longitudinal 

growth was favorable; as a result, uniform NiAl-LDH nanosheet arrays were grown on CNP 

substrate. Specially, as is clear from the magnified SEM images (Fig. 2c, 2d and 2e), the as-

deposited corrugated NiAl-LDH nanosheets are intertwined with each other to form a 

hierarchical 3-dimensional network. It is believed that such a distinct arrangement of the NiAl-

LDH nanosheets can provide a high accessibility for electrolyte ions to the interior voids [35], 

which is benefit for the electrochemical properties. And the thin NiAl-LDH layers with a 

thickness of sheets ranging from a few to tens of nanometers (Fig. 2e) make more active sites 

expose to electrolyte ions, leading to a higher specific capacity. More detailed morphology 

evolution was also investigated by TEM, which showed the flake-like texture of interconnected 

NiAl-LDH nanosheets (Fig. 2f).  

The interconnected NiAl-LDH nanosheets deposited on CNP surface formed a nanoporous 

structure, which was confirmed by the BET measurements in Fig. 3. As illustrated in Fig. 3a, the 

nitrogen adsorption-desorption isotherm of NiAl-LDH reveals a H2 type hysteresis loop, 

indicating the existence of a great number of pores with different sizes. From the pore size 

distribution plot in Fig. 3b, it can be observed that the maximum pore diameters center at the 

range of the mesopores (2.6 nm, 4.1 nm and 47.4 nm), which is consistent with the results of the 

adsorption-desorption isotherm. In addition, the sample exhibits macropores with pore sizes up 

to 145 nm which provide facile transport channels for electrolyte ions (OH
-
) [36]. The SSA and 

pore volume calculated by the BJH method are 40.6 m
2
 g

-1
 and 0.19 cm

3
 g

-1
, respectively. The 
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active material with such a porous structure is favorable for the transport of electrolyte ions to 

their interior surface and therefore improving the electrochemical performance [14]. 

CV and GCD measurements were characterized to study the electrochemical properties of the 

prepared CNP-LDH electrode. As presented in Fig. 4a, the CV measurement was performed at 

scan rates of 5-100 mV s
-1

 in the potential range of 0 to 0.6 V (vs. Hg/HgO). Two well-defined 

waves can be clearly observed at ~0.5 V and ~0.3 V (vs. Hg/HgO) for each curve,  indicating the 

typical behavior of battery-type electrodes [12], which are distinct from those of a true 

pseudocapacitive material exhibiting rectangular-like shapes. The peaks are ascribed to the redox 

reaction of Ni(II)/Ni(III) based on Equation 1:[12] 

��(��)� +��
 ↔ ����� +��� + �
 … (1) 

When the scan rate increases, there are no significant changes in the shape of CV curves 

despite the movement of the redox peak positions to positive and negative direction, indicating 

the quasi-reversible feature of the redox couples. This means that the interfacial redox reactions 

are rapid enough under the given scan rates [19]. In addition, as plotted in the inset of Fig. 4a, the 

peak current of CNP-LDH depends on the square root of scan rates (ʋ
1/2

) linearly, confirming 

that the Faradaic redox reaction (Equation 1) is a quasi-reversible and diffusion control of the 

electrode process [12, 14]. Another attractive feature of the CNP-LDH electrode is its excellent 

mechanical flexibility. As shown in Fig. 4b, after crumpling into a ball, the CNP-LDH electrode 

can keep the original appearance and shows similar CV curve to the original profile. Fig. 4c 

exhibited the GCD measurement of CNP-LDH electrode at various current densities. The 

charge-discharge characteristics of all curves also display battery-like behavior and excellent 

electrochemical reversibility, consistent with the results of CV curves. The inset of Fig. 4c 

presented the Coulombic efficiency of the electrode as a function of current densities. The 
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Coulombic efficiency η, a measure of competence of charge transfer in an electrochemical 

reaction, were found to be 99.6%, 90.9%, 94.9%, 96.7%, 97.6%, 98.2% and 98.5%, respectively. 

These results suggest higher feasibility of the redox process even at higher current density 

conditions. The specific capacity (C) can be obtained from the discharge curves using the 

following Equation (2): 

 =
�×∆�

�
 … (2) 

where C is specific capacity (C g
-1

), I is the discharge current (A), ∆t is the discharge time (s) 

and m is the mass of active material (LDH) in the electrode (g), respectively. The relationship of 

calculated C value to the current density was depicted in Fig. 4d. At a low current density of 2 A 

g
-1

, the C value of CNP-LDH can reach up to 1023.8 C g
-1

. When the current load increases to 50 

A g
-1

, the C value remains as high as 704.2 C g
-1 

(68.8% of that measured at 2 A g
-1

). Indeed, the 

loading of NiAl-LDH should affect the electrical conductivity of carbon nanotube paper. In our 

previous paper [14], we investigated the effect of NiAl-LDH powder on another current collector 

such as nickel foam. The intrinsically poor conducting nature of LDH materials is the main cause 

of their poor performance at high current densities. Furthermore, the calculated capacity values 

and rate retention in this work are better than those previously reported binder-free electrodes, 

such as carbon textile-NiCo2S4 [24], LDH nanoplates/carbonate hydroxide on graphite paper [37] 

and ZnCo2O4/rGO/NiO on NF [38]. This high specific capacity and good rate performance can 

be ascribed to the efficient transport pathway for electrolyte ions, large active surface of NiAl-

LDH and high electrical conductivity of electrode [24]. To further examine the long time 

stability of the electrode, a charge-discharge cycling test was first executed at 20 A g
-1

 for 5000 

cycles (Fig. 4e). The specific capacity decreases from 724.8 C g
-1

 to 624.4 C g
-1

 (with a capacity 

retention rate of 86%) after 5000 continuous cycles. Even tested for another 5000 cycles at 50 A 
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g
-1

, CNP-LDH electrode still holds a high capacitance of 591.2 C g
-1

 and about 80% of the 

capacity can be maintained. This intriguing observation on good cycling stability at high current 

densities is attributed to the structural stability of CNP-LDH electrode during the cycling tests. 

As confirmed from the SEM image (Fig. 4f), the original hierarchical 3D network pattern of 

CNP-LDH could be basically maintained after the cycling tests. In addition, the electrochemical 

impedance spectroscopy measurement of CNP-LDH electrode before and after cycling test was 

performed (inset of Fig. 4f). All spectra consist of a depressed semicircle in the high-frequency 

region and an oblique straight line in the low-frequency region. After the cycling test, the 

diameter of the semicircle for CNP-LDH was enlarged a little, suggesting the increase of charge 

transfer resistance and the lower interfacial contact between the NiAl-LDH nanosheets and CNP 

substrate during the continuous charging/discharging process [39]. The above electrochemical 

results directly reveal the advantages of our prepared CNP-LDH electrode such as high specific 

capacity, excellent rate performance and cycling stability which could make it as positive 

electrode in HSC. 

 

3.2 Negative electrode materials (p-GN) 

Among the various carbonaceous materials, graphene is of particular technological interest for 

negative electrode material in supercapacitor because of its merit of high intrinsic electrical 

conductivity, excellent chemical stability and high specific surface area [12]. Here, we prepared 

p-GN powders by a facile hydrothermal treatment of GO with simultaneous etching of pores (Fig. 

5a) and then coated them with conductive agent and binder on NF to fabricate an electrode. As 

seen from Fig. 5b, the surface of GO is rough and a number of crumples could be observed. 

During the hydrothermal process at high temperature (180 
o
C), GO sheets are reduced to 
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graphene nanosheets. And meanwhile, the defective sites of GO could be partially etched due to 

the presence of H2O2 [40], which results in the formation of carbon vacancies and pores (Fig. 5c). 

From the XRD patterns (Fig. 5d), an intense peak, the (002) reflection, can be observed at 9.1° 

for GO, demonstrating the existence of surface oxygen-containing groups [14]. After 

hydrothermal treatment, the peak at 9.1° of GO disappears and a broad peak of p-GN material is 

observed at approximately 25.2°. The porous nature was demonstrated by nitrogen adsorption-

desorption measurement (Fig. 5e). The isotherm of p-GN can be classified type IV, indicating 

the presence of mesopores. The SSA and pore volume of p-GN are 499.7 m
2
 g

-1
 and 0.31 cm

3
 g

-1
, 

respectively. The majority of pores are narrowly distributed from 2 to 3 nm and the average pore 

size is 2.7 nm.  

With such a distinct porous structure, p-GN is an ideal negative electrode material for use in 

HSC [12]. The supercapacitive behavior of p-GN electrode was first studied in a three-electrode 

electrochemical cell. As depicted in Fig. 6a, the CV profiles of p-GN electrode showed nearly 

rectangular shape under the scan rates of 5-100 mV s
-1 

in the potential range of -1 to 0 V (vs. 

Hg/HgO), indicating an ideal capacitive behavior and fast charging/discharging kinetics [39]. 

From the GCD profiles of p-GN electrode under different current densities (Fig. 6b), it can be 

observed that all of the curves are ideal symmetric with no overt IR drops, illuminating the low 

resistance and high reversibility. The specific capacitance (C’) of p-GN electrode can be 

calculated from the discharge curves following the Equation (3): 

� =
�×∆�

�×∆�
 … (3) 

where C’ is the specific capacitance (F g
-1

), I is the discharge current (A), ∆t is the discharge 

time (s) and m is the mass of p-GN powder in the electrode (g), respectively. Notably, the C’ 

values of the electrode can reach to 209.7 F g
-1

 at a current density of 1 A g
-1

 and 182.3 F g
-1

 at 
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10 A g
-1

 with a good retention rate of 87% (Fig. 6c). Cycling stability of p-GN electrode was 

carried out by repeating 5000 charging-discharging tests at a current density of 10 A g
-1

, as 

exhibited in Fig. 6d. The C’ value still keeps at 184.2 F g
-1 

after 5000 cycles, suggesting superb 

electrochemical stability. The results are comparable to those reported graphene materials for 

SCs [41], confirming the fitness of the p-GN as the negative material in HSC.  

 

3.3 Hybrid supercapacitor (CNP-LDH//p-GN) 

Considering the high capacity ability of CNP-LDH electrode (0 V ~ 0.6 V) and the rapid ionic 

transport feature of the p-GN material (-1 V ~ 0 V), an HSC was mounted using these two 

materials as the positive and negative electrodes (Scheme 1, denoted as CNP-LDH//p-GN), 

respectively. According to the electrochemical tests of the positive and negative electrodes in 

three-electrode systems, it is expected that the fabricated HSC can afford a device with a 

potential window of 1.6 V (Fig. 7a).  

To fulfill this purpose, the charges stored in the positive and negative electrodes should be 

balanced according to the relationship: Q+ = Q-. And the charges stored by each electrode can be 

obtained by the Equation (4) and (5): 

�� =  ×�� … (4) 

�
 = � ×�
 × ∆� … (5) 

where C is the specific capacity of positive electrode (CNP-LDH), C’ is the specific capacitance 

of negative electrode (p-GN), ∆V is the potential range of negative electrode during charge-

discharge process, m+ and m- are the mass loading of active material in positive (LDH) and 

negative (p-GN) electrode, respectively. As a result, the mass ratio between p-GN and CNP-

LDH of 5.04 is selected in the HSC. 
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Fig. 7b presented the CV curves of the CNP-LDH//p-GN HSC device at scan rates up to 100 

mV s
-1 

in a potential range of between 0-1.6 V. Obviously, all the CV profiles differ from the 

desirable rectangular and display two distinct scope, that is, a narrow quasi-rectangular shape in 

the 0-0.7 V range and a broad redox peak in the 0.7-1.4 V region, which was widely recognized 

as one unique characteristic of HSC containing both the behavior of capacitive electrode (p-GN) 

and battery-like electrode (CNP-LDH). And the shapes shows little change when the scan rate 

increases to 100 mV s
-1

, implying the fast charge-discharge property for power device. As 

observed from the GCD curves performed at various current densities in Fig. 7c, the symmetric 

charge-discharge curves imply good coulombic efficiency and superb electrochemical 

reversibility of our device.  

The specific capacity at different current densities calculated from the discharge curves (using 

Equation 2) was plotted in Fig. 7d. A high specific capacity of 192.5 C g
-1

 is reached based on 

the total mass of active materials on the two electrodes at a current density of 0.5 A g
-1

, and the 

specific capacity of HSC still remains at 78 C g
-1

 at a high current density of 20 A g
-1

. In addition, 

the cycling durability of the HSC device was further performed by repeating the GCD test at a 

current density of 5 A g
-1

 for 5000 cycles, as exhibited in Fig. 7e. The device displays a 

gradually declining behavior during the first 2000 cycles and then the specific capacity almost 

remains unchanged in the subsequent 3000-cycle test (with a specific capacity retention of 78%), 

which is comparable to reported HSCs in the literature such as Ni(OH)2-MnO2//RGO (76% after 

3000 cycles) [42], NH4NiPO4·H2O@PPy-NF//AC (71.6% after 5000 cycles) [43] and 

PPy@MoO3//AC (83% after 600 cycles) [44]. 
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In order to evaluate the practical performance of our fabricated HSC, two key parameters 

(energy density and power density) must be investigated. Typically, they can be calculated from 

the following equations (6, 7):  

� =
�

�.�
∙
�  �!�

"
 … (6) 

# = 3600�/( … (7) 

where E is the energy density (Wh kg
-1

), I is the discharge current (A), M is the total active mass 

of both electrodes (g), ʃVdt is the galvanostatic discharge current area (V·s), P is the power 

density (W kg
-1

) and t is the discharge time (s). The Ragone plot describing the relationship 

between these two parameters of the CNP-LDH//p-GN HSC device was depicted in Fig. 7f. At a 

long current drain time of 385 s (current density: 0.5 A g
-1

), the highest energy density can be 

calculated to be 50 Wh kg
-1

 at a power density of 467 W kg
-1

. At a short discharge time of 6.2 s 

(current density: 14 A g
-1

), the energy density can still remain 26.3 Wh kg
-1

 at the average power 

density of 15.3 kW kg
-1

. Even at a current drain time as short as 3.9 s (current density: 20 A g
-1

), 

the energy density can also reach 23.3 Wh kg
-1 

at a power density of 21.5 kW kg
-1

, which is more 

superior than the power target of the Partnership of a New Generation of Vehicle (PNGV, 15 kW 

kg
-1

) [45, 46], confirming the possibility of our prepared CNP-LDH//p-GN HSC as a power 

supply component in hybrid vehicle systems. In addition, the results represent that the as-

obtained HSC possesses higher energy density than the reported devices such as AC//TiO2 [47], 

NiCo2O4/Ni(OH)2//RGO [48], AC//Li4-xMxTi5-yNyO12 [49], CoNi2S4-NF//AC [50], 

NiCo2O4@MnO2//AC [51], AC//H2Ti12-xNbxO25 [52] and NiCo2O4@CoxNi1-x(OH)2//CMK-3 

[53]. 

Our fabricated CNP-LDH//p-GN HSC device can own its superior electrochemical 

performance to several respects: 1) As a current collector and substrate for directly deposition of 
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NiAl-LDH nanosheets, flexible CNP with high conductivity and excellent mechanical 

performance can make CNP-LDH electrode maintain mechanical integrality and high electrical 

conductivity. 2) Well-dispersed hierarchical porous NiAl-LDH nanosheets deposited on the 

surface of CNP can facilitate electrolyte ions transport to the interior surface during the rapid 

charge-discharge process, ensuring the effective utilization of NiAl-LDH. 3) The high SSA and 

nanopores of p-GN can greatly increase the ions accessible surface for improved energy storage 

and speed up the transport of the electrolyte ions for enhanced rate capability. The superb 

electrochemical performance of CNP-LDH//p-GN HSC device lays the foundation for its 

practical applications in electrochemical energy storage. 

 

4. Conclusion 

A flexible binder-free CNP-LDH electrode is prepared using a facile LPD method. Such highly 

open structure and hierarchical feature endows the electrode with superior electrochemical 

properties. With large ion-accessible surface area as well as efficient electron and ion transport 

pathways, the obtained p-GN electrode delivers high specific capacitance and good cycling 

stability. The fabricated HSC exhibits a cycling stability with 78% specific capacity retained 

after 5000 cycles at 5 A g
-1

 and achieves a high energy density of 50 Wh kg
-1

 at a power density 

of 467 W kg
-1

, contributing to the high capacity and excellent rate performance of CNP-LDH 

and p-GN, as well as the synergistic effects of the two electrodes. Remarkably, the device 

maintains an energy density of 23.3 Wh kg
-1

 at a power density of 21.5 kW kg
-1

 within a short 

discharging process of about 3.9 seconds. Our prepared CNP-LDH electrode is expected to have 

special status for SC in high-performance energy storage applications. 
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Captions of Figures 

Fig. 1 (a) Schematic illustration of the synthesis of flexible CNP-LDH material. (b) XRD pattern 

of NiAl-LDH scraped from CNP-LDH material by mild sonication. 

Fig. 2 Typical SEM images of (a) CNP and (b-e) CNP-LDH, and (f) TEM image of NiAl-LDH 

scraped from CNP-LDH by mild sonication. 

Fig. 3 (a) The nitrogen adsorption-desorption isotherm loop and (b) the pore size distribution 

data of NiAl-LDH scraped from CNP-LDH by mild sonication. 

Fig. 4 (a) CV curves of CNP-LDH electrode at various scan rates (inset: relationship of peak 

current with scan rate). (b) Comparison of CV curves of CNP-LDH electrode and after 

crumpling into a ball (scan rate: 5 mV s
-1

). (c) GCD curves of CNP-LDH electrode at different 

current densities (inset: Coulombic efficiency of CNP-LDH electrode at different current 

densities). (d) Correlation between the specific capacity values and current density of CNP-LDH 

electrode. (e) Cycling performance of the electrode at current densities of 20 A g
-1

 and 50 A g
-1 

for 5000 cycles, respectively. (f) SEM image of CNP-LDH electrode after the cycling stability 

test (inset: electrochemical impedance spectra of CNP-LDH before and after cycling test). 

Fig. 5 (a) Schematic illustration of the synthesis of p-GN material. Typical TEM and SEM 

images of (b) GO and (c) p-GN. (d) XRD pattern of GO and p-GN. (e) The nitrogen sorption 

isotherm loop and the pore size distribution data of p-GN. 

Fig. 6 (a) CV curves of p-GN electrode at various scan rates. (b) Charge-discharge curves of p-

GN electrode at different current densities. (c) Specific capacitance of p-GN electrode at 

different current densities. (d) Cycling stability of p-GN electrodes at 10 A g
-1

 for 5000 cycles. 

Scheme 1 The HSC made of CNP-LDH (positive electrode) // p-GN (negative electrode). 

Fig. 7 (a) CV curves of CNP-LDH and p-GN in a three-electrode system at a scan rate of 10 mV 

s
-1

. (b) CV curves of CNP-LDH//p-GN HSC device at different scan rates. (c) GCD curves and 

(d) specific capacity of HSC device at different current densities. (e) Cycling performance of 

HSC device at 5 A g
-1

 for 5000 cycles. (f) Ragone plot of energy and power density of HSC 

device at various charge-discharge rates. 

  



  

22 

 

        

Fig. 1 (a) Schematic illustration of the synthesis of flexible CNP-LDH material. (b) XRD pattern 

of NiAl-LDH scraped from CNP-LDH material by mild sonication. 
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Fig. 2 Typical SEM images of (a) CNP and (b-e) CNP-LDH, and (f) TEM image of NiAl-LDH 

scraped from CNP-LDH by mild sonication. 
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Fig. 3 (a) The nitrogen adsorption-desorption isotherm loop and (b) the pore size distribution 

data of NiAl-LDH scraped from CNP-LDH by mild sonication. 

  



  

25 

 

         

       

       

Fig. 4 (a) CV curves of CNP-LDH electrode at various scan rates (inset: relationship of peak 

current with scan rate). (b) Comparison of CV curves of CNP-LDH electrode and after 

crumpling into a ball (scan rate: 5 mV s
-1

). (c) GCD curves of CNP-LDH electrode at different 

current densities (inset: Coulombic efficiency of CNP-LDH electrode at different current 

densities). (d) Correlation between the specific capacity values and current density of CNP-LDH 

electrode. (e) Cycling performance of the electrode at current densities of 20 A g
-1

 and 50 A g
-1 

for 5000 cycles, respectively. (f) SEM image of CNP-LDH electrode after the cycling stability 

test (inset: electrochemical impedance spectra of CNP-LDH before and after cycling test). 
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Fig. 5 (a) Schematic illustration of the synthesis of p-GN material. Typical TEM and SEM 

images of (b) GO and (c) p-GN. (d) XRD pattern of GO and p-GN. (e) The nitrogen sorption 

isotherm loop and the pore size distribution data of p-GN. 
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Fig. 6 (a) CV curves of p-GN electrode at various scan rates. (b) Charge-discharge curves of p-

GN electrode at different current densities. (c) Specific capacitance of p-GN electrode at 

different current densities. (d) Cycling stability of p-GN electrodes at 10 A g
-1

 for 5000 cycles. 
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Scheme 1 The HSC made of CNP-LDH (positive electrode) // p-GN (negative electrode). 
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Fig. 7 (a) CV curves of CNP-LDH and p-GN in a three-electrode system at a scan rate of 10 mV 

s
-1

. (b) CV curves of CNP-LDH//p-GN HSC device at different scan rates. (c) GCD curves and 

(d) specific capacity of HSC device at different current densities. (e) Cycling performance of 

HSC device at 5 A g
-1

 for 5000 cycles. (f) Ragone plot of energy and power density of HSC 

device at various charge-discharge rates. 
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> Layered double hydroxide is grown on carbon nanotube paper as positive electrode. 

> Porous graphene nanosheets with high performance are used as negative electrode.  

> The hybrid supercapacitor shows high energy density and superior power density. 
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