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Abstract

Plants are the most abundant biomass on Earth. Understanding plant metabolism
represents a significant, fundamental challenge, requiring the incorporation of
many fields of study. However it also provides potentially significant leverage
with which to change the world in which we live.

The model organism Arabidopsis thaliana is probably the single best under-
stood plant system. The aim of this thesis is to use mathematical modelling
to investigate to what extent existing knowledge can describe broad, emergent
aspects of the behaviour of metabolism in this system, with particular respect
to the metabolism of sulfur, and other nutrients, and to gain insight into the
consequences of the structure of its metabolic network.

Constraint-based modelling approaches provide a framework for modelling large
reaction networks. Although they require various simplifications, and assump-
tions, they provide a route for the understanding of large metabolic networks,
which is not possible through other approaches.

Here, a genome scale model of Arabidopsis metabolism is developed to reflect
experimental data, and deployed in the study of nutrient stress, and nutrient
requirements. This model predicts changes in gene expression in response to
stress, and provides insight into the consequences of the metabolic structure
on nutrient use efficiency, metabolic flexibility, and the consequences of genetic
perturbation.
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Chapter 1

Introduction

In this chapter we first introduce, and motivate the study of plant metabolic
networks. We then describe the various analytical frameworks used to study
metabolism, at various scales, in order to justify our choice of constraint-based
modelling methods in the remainder of this work. Finally we discuss the cre-
ation of models for constraint-based modelling, and the strengths and weak-
nesses of constraint-based methods, with particular emphasis upon flux balance
analysis, and elementary flux modes, the methods predominantly used in this
thesis.

1.1 Why model plant metabolism?

Plants capture 121.7× 109 metric tons of carbon per year from the atmosphere
[15], from which they are estimated to produce > 200,000 compounds. They
therefore potentially have great scope for addressing issues of food, and fuel pro-
duction, as well as the for production of interesting bioactive molecules.

However, plants have not generally achieved an anthropocentrically optimal phe-
notype. Crops require extensive fertilisation, the production of which is energy
intensive [74], and potentially limited by diminishing resources [105], whilst else-
where, high, toxic concentrations of mineral elements can inhibit growth, and
lead to reduced yield [80]. Increasingly volatile environmental conditions, are
likely to lead to relatively rapid changes in the ideal phenotypes of cultivated
species, and a requirement for a widespread increase in resistance to biotic, and
abiotic stresses. Furthermore, although secondary metabolites account for more
than a third of all therapeutic compounds [150], they are generally produced
in very small quantities in the host organism, and can often be more cheaply
chemically synthesised.
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10 CHAPTER 1. INTRODUCTION

Some of these targets may be accessible by conventional breeding, however,
there is great interest in the engineering of plant metabolism. This is not without
challenges, and early attempts to modulate the production of metabolites in the
native organism often resulted in poor results, and/or off target effects [255, 26].
Technical challenges include the development of tools and methodologies for
working with non-model organisms, (although methods continue to improve
[23]), but also that metabolism in the native host is often tightly regulated so
as to counteract any simple modification.

Abstracting beyond these difficulties, the focus of the approaches used here is
determining which reaction steps should be modulated in order to bring about
the desired result, assuming that any desired intervention can be achieved. By
understanding metabolism, at the levels of the distribution of metabolic flux
within an organism, and the distribution of control of this flux among reactions,
a more rational approach to engineering can be achieved. The benefit of this
design paradigm over one based purely on biological intuition can be seen in
the growing number of successful microbial ‘cell-factory’ type studies (reviewed
[58]).

In plants, metabolic engineering is full of promise, but success continues to be
relatively rare [250]. This is generally attributed to their complexity in compar-
ison to microbes. This occurs at all levels from gene regulation to physiognomy,
but is normally discussed in an engineering context with particular reference to
compartmentalisation at various levels [1]. Compartmentalisation both of spe-
cialised tissues and organs, and subcellular compartments leads to a heterogene-
ity, and a spatial aspect to metabolism, which is largely ignored in microbiology.
There is significant experimental challenge to subcellular measurements, both of
flux, and metabolite concentration, but additionally, knowledge of transporter
steps, and enzyme localisation is generally poor relative to knowledge of enzyme
function, even leading to uncertainty at the level of a biochemical reaction map.
However, significant progress in both experimental [250, 1, 98], and analytical
(discussed below) methods have led to the suggestion that ‘rational’ metabolic
engineering is ready to begin to move beyond microbes, and into plants.

1.2 Overview of metabolic modelling approaches
at different scales

Efforts to understand metabolism through modelling can be broadly split into
two approaches: studies which use enzyme kinetics in order to derive flux control
coefficients (FCCs) directly, using enzyme kinetic data, and efforts to predict
the distribution of fluxes within the network, without considering kinetics. Pre-
dicted flux distributions can then be used to approximate control coefficients,
and other properties of the metabolic network. Here we briefly discuss a range
of modelling approaches at different scales, in order to contextualise, and justify
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the approaches that we have taken in the body of this work.

1.2.1 Small models & the distribution of control

FCCs express the degree of control that an enzyme exerts over flux through
some reaction of interest in the pathway (Figure 1.1). Ideally, FCCs can be
derived for the system of interest, as these identify the level of control that each
reaction has over the flux of interest, and therefore can be extremely useful for
suggesting optimal metabolic interventions.

The distribution of control coefficients among the reactions of a pathway can
be accessed through experiments in which an enzyme’s activity is perturbed,
and alterations to flux through the reaction of interest measured. However, the
need to generate several lines with quantitatively different activities for each
enzyme in the pathway to estimate its control coefficient, means that this is
an arduous task, and in practice is rarely accomplished [231]. Furthermore,
this approach is limited, as multiple controlling enzymes and non-linear dynam-
ics make extrapolating behaviour away from measured conditions, (i.e. under
different environments, and after genetic perturbation) difficult [184].
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Figure 1.1: Flux control coefficients. Plot of log of test enzyme activity against flux through
a reaction of interest to determine the control that the test enzyme exerts over flux through
the reaction of interest. Flux control is the sensitivity of the flux through the reaction
of interest in response to altered enzyme activity. Flux control can be experimentally
estimated, but only crudely, a more complete understanding can often be gained through
kinetic modelling.
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Although experimental investigations into control of flux through the pathway
are useful in qualitatively identifying important enzymes, kinetic models of the
pathway can potentially be used not only to calculate control coefficients at the
reference state more accurately than is possible experimentally (Figure 1.1), but
also to simulate altered conditions. The difficulty however lies in producing an
accurate model.

Kinetic modelling of metabolic pathways is well established (reviewed [39]), sys-
tems of ordinary non-linear, differential equations which specify the rate of reac-
tions as functions of metabolite concentrations can be solved numerically using
a range of freely available software [36]. This allows not only dissection of flux
control distribution [39, 40, 141], but also predictions about how environmental
perturbation changes control [141], and suggested engineering interventions to
modify levels of metabolites [40]. However, as implied by the name, kinetic mod-
els require an extremely detailed understanding of the enzyme kinetics of the
reactions in the studied pathway. This is the biggest hurdle to model building,
particularly given that isoenzymes in different tissues or compartments often
display different kinetics.

Strategies for determining parameter values can be broadly split into measure-
ment, and estimation approaches. For small models, it may be possible to
directly measure all kinetic parameters required [40]. However, the large exper-
imental effort required [213, 226, 228] makes this a comparatively rare example;
it is more common to search the literature to recover the majority of parame-
ters required [177]. However generally poor coverage, particularly for allosteric
regulation, means that it is accepted practice to use whichever parameters are
available, either from experiments under differing conditions, or from orthol-
ogous proteins [177]. The validity of transferring parameters in this way is
generally unclear [213], the exception being enzyme activity parameters, which
are acknowledged to vary so greatly with environment, that they should be
measured under the condition of interest [39].

Enzyme assay conditions used are typically far from the in vivo environment
seen by the enzyme. Initiatives to design more ‘in vivo like’ in vitro media,
are underway for several microorganisms [62, 69, 124], but to the best of our
knowledge, no such effort has been reported in plants, where the problem is
exacerbated by the presence of multiple subcellular compartments, each with a
unique environment.

The difficulty of obtaining experimentally measured kinetic parameters means
that in the vast majority of published models, at least some parameters are fitted
by minimising the difference between model predictions (e.g. of flux through the
path), and experimental measurements [226]. One common problem with this
approach is overfitting; assigning parameter values to fit the data more precisely
than is justified. This can be seen, as many models parameterised using this top
down approach lose predictive accuracy as conditions move away from those at
which the parameters were fitted [81].
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A minimal model of a subsystem should include everything that affects the inter-
nal variables of the model [39]. When considering broad issues, such as nutrient
requirements, a much larger metabolic network should be considered when mod-
elling nutrient assimilation than just the pathway itself. For example integration
of sulfur assimilation within the wider metabolic network is demonstrated by
the tight coordination of sulfur uptake with nitrogen and carbon availability
[113, 112, 149]. Cysteine links both nitrogen and carbon metabolism to sulfur
assimilation via O-acetyl-serine. O-acetyl-serine availability is a dominant fac-
tor in regulating the production of cysteine [19], and so its availability has to
be considered in models of cysteine synthesis. This link to wider metabolism,
and the ability to produce carbon-skeletons for nutrient integration has to be
acknowledged when considering nutrient uptake and assimilation.

Unfortunately, as model size increases, the problems of unknown parameters,
becomes extremely difficult to overcome, either by measurement, or estimation.
To generate a large kinetic model, simplifying assumptions about parameter val-
ues [204], and rate laws [2], are frequently made, but this often results in poor
model quality away from the fitted conditions [27] and so is of limited predictive
value. Some specialised kinetic modelling approaches reflect structural, parame-
ter, and rate law uncertainty in their predictions [53, 212, 222, 146]. These have
resulted in the useful production of large kinetic models, with approximately
200 metabolites and reactions [106], but do not scale well to bigger models. As
model size increases, parameter space expands enormously [251], resulting in
prohibitive computational requirements [127]. As such, kinetic modelling cur-
rently does not scale to the size that is likely to be required to study nutrient
uptake pathways.

1.2.2 Predicting flux vectors though constraint-based mod-
elling

In contrast to the kinetic modelling approaches described above, constraint-
based modelling provides a number of scalable, largely parameter free methods
for understanding flux through large metabolic networks [125, 22]. As such,
they are currently the methods which are best deployed to answer questions
which must consider broad areas of metabolism, such as nutrient stress re-
sponses.

The only information reliably available across large regions of metabolism is
often the structure of the reaction network itself, that is, which metabolites
can be converted into which others. The absence of kinetic data means that it
is impossible to apply a true metabolic control analysis to derive flux control
coefficients as described above. However, by analysing only the network struc-
ture it is possible to predict flux distribution among reactions in the metabolic
network. Furthermore, by analysis of the predicted flux distribution, and how
it varies in response to changes in the network structure, (for example due to
the removal of reactions), it is possible to approximate a control analysis of the
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Figure 1.2: Example of the network flux vector problem for a toy network. The network it-
self, the associated reactions equations, and the stoichiometric matrix, which describes the
metabolites consumed and produced by each reaction are shown. The aim of constraint-
based methods is to solve the reaction flux vector v for the constraints shown.

network, to simulate the effects of knocking out enzymes , and potentially to
gain useful insights for metabolic engineering.

Figure 1.2 indicates the problem formulation prior to the application of constraint-
based modelling methods. The ‘reaction network’ is a directed bi-partite graph,
consisting of the metabolites and reactions present within the system. An edge
between a metabolite and a reaction indicates that is is a substrate, or product
of the reaction (indicated by edge directionality). Reactions which are con-
sidered to operate in both directions are indicated by double headed arrows.
Although not exemplified in Figure 1.2, edges are weighted to reflect reaction
stoichiometry, however, generally no kinetic information is considered.

Internal metabolites are those entirely within the system, whereas external
metabolites are those which are considered to be exchanged with the surround-
ing environment. At steady state, there is no accumulation of internal metabo-
lites in the system. Therefore for each internal metabolite, flux through the
reactions which consume and produce it must be equal. This constraint is not
applied to external metabolites, which are considered to exist in great excess
in the surrounding environment. Reactions which transform metabolites within
the system are considered internal reactions, while reactions which transport
metabolites in and out of the considered system are here called ‘exchange re-
actions’. Due to thermodynamic considerations, some reactions are effectively
irreversible under physiological conditions, and must proceed in an appropri-
ate direction. Depending on the analytical method used, these reactions are
bounded so as to only carry flux in the positive direction (vi ≥ 0 ∀ i ∈
irreversible reactions), or reversible reactions may be split into forward and re-
verse components in the stoichiometric matrix, and all elements of v be greater
than or equal to 0.
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By assuming that the system exists at steady state, the problem can be ex-
pressed as

S · v = 0, (1.1)

where S is the stoichiometric matrix of the reaction network, which contains
information about which reactions produce and consume each metabolite, and
v is the flux vector, of the flux through each reaction in the network. As will
be discussed below, this problem statement allows the application of various
mathematical approaches to solving for v within a biological context. How-
ever, first we will discuss the creation of the reaction network graph in greater
detail.

1.3 Building constraint-based models

The quality of output of all constraint-based methods depends on the quality of
the reaction network, and how similar it is to the biological system. The con-
struction of a genome scale model is not a facile task, and particularly in plants
remains a laborious undertaking [182, 201, 218]. Briefly, allowed metabolic reac-
tions are recovered from an annotated genome. The stoichiometry of reactions
must then be checked, to ensure mass-balance, and as far as possible reactions
assigned to compartments, based on enzyme location information. A ‘biomass
equation’, representing the drain of some set of metabolites to produce biomass
is then added, as well as pseudo-reactions for growth associated energy require-
ments in the form of ATP and reducing agents. Thermodynamic constraints
for reaction reversibility must be added. Finally the predictions of the model
should be compared to experimental data, and the structure of the model up-
dated as required. This process is expected to take from weeks, to over a year
depending on organism complexity [218].

Some of the above steps can be automated [102, 49], accelerating the pro-
cess, to approximately 1 week for production of a draft model from genome
sequence [49], however many steps require extensive manual curation and valida-
tion against the literature. The quality of model predictions generally correlate
to the amount of manual curation carried out, as reflected in the relative qual-
ity of the labour intensive, manually constructed models of Arabidopsis thaliana
metabolism [5, 33] in comparison to other approaches.

As sequencing technology improves more and more species are routinely se-
quenced. This has enabled the creation of many genome scale databases of
reactions and pathways in different systems. The BioCyc database collection
(biocyc.org, [253]) hosts a continuously extended and updated collection of
databases from 7,615 species including a wide variety of plants. These databases
are divided into three tiers based on quality; tier 1 databases have each required
at least one person year of manual curation, whereas tier 2 & 3 contain com-
putationally predicted metabolic pathways based on genome sequencing, and

biocyc.org
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homology to enzymes in other species, tier 2 databases have additionally re-
ceived some manual curation. Although a diverse number of plant species are
included in these databases, Arabidopsis is the only plant species with a tier 1
database.

These databases provide a strong foundation for constraint-based models, but
they cannot be used directly, as generally they are incomplete, with no possible
steady state solution including flux through a reasonable biomass equation. De-
ciding which additional (relatively unevidenced), reactions to include to resolve
this remains a somewhat subjective, time consuming process.

Beyond modelling metabolism alone, there have been some initial approaches to
integrate constraint-based models as one level in a multi-scale model. This com-
monly takes the form of overlaying a metabolic model with boolean, or petri-net
models of regulatory, or signalling processes. These then modify reaction con-
straints within the metabolic model in response to their output [37, 114, 59].
The output of the constraint-based metabolic model can then be fed back into
the model of regulation, and the whole system iteratively updated. Similar
hierarchical modelling approaches can also be used to embed constraint-based
models of particular tissues within empirical, whole body scale kinetic models of
the organism [71], to provide particularly fine-grained mechanistic detail about
particular aspects of the broader model, or conversely to embed some kinetic
details to modify the flux boundary constraints in the constraint-based mode
[38]. In chapter 2, we use small embedded kinetic models to modify uptake flux
boundaries in response to sulfur starvation.

1.3.1 Difficulties associated with plants

As ever, plants prove to be trickier than microbes, for a number of reasons. Here
we discuss these difficulties as they apply to building constraint-based models
of metabolism.

1.3.1.1 Compartmentalisation

Spatial compartmentalisation of reactions is incorporated in the reaction net-
work by the duplication of reactions and metabolites for the different compart-
ments they are found in. Compartment information is normally appended to
the name of metabolites and reactions. A reaction in a given compartment is
only able to produce and consume metabolites located within the same com-
partment. Transport of metabolites between compartments is represented by
a reaction in the same way that enzymatic conversions are. For example, the
transport of metabolite A from compartment a to compartment b is represented
by

Aa
transport−−−−−−→ Ab,
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as compared to the conversion of metabolite A into metabolite B within com-
partment a, which is represented as

Aa
conversion−−−−−−−→ Ba.

Although compartmentalisation can be easily incorporated within the constraint-
based network, experimental uncertainty as to which enzymes and metabolites
are located in which compartments, and which metabolites can be transported
between compartments leads to errors in the model building, as it is not neces-
sarily clear which reactions have access to which metabolite pools. Duplication
of reactions across compartments also leads to larger models, which exacerbate
the computational difficulties of some analytical frameworks. Additionally, mul-
tiple occurrences of reactions can often act in a (partially) compensatory man-
ner, making it difficult to distinguish the flux through each compartmentalised
instance of the reaction.

Plant cells probably exhibit the greatest metabolic complexity of all living or-
ganisms due to their extreme level of subcellular compartmentalisation. Addi-
tionally, key metabolic pathways overarch multiple compartments. For example
the photorespiratory carbon oxidation pathway requires 12 transporter reactions
to link all involved compartments involved together for all relevant metabolites
[33].

Most published genome scale models of plant metabolism include compartmen-
talisation to some extent, but the quality and coverage of these assignations is
not always clear. Wide variation between models in which compartments re-
actions occur [169, 139, 145] suggests that the number of reactions which are
assigned to particular compartments, and in particular to the vacuole, is prob-
ably much lower than in reality [115]. This reflects the current difficulty of
experimentally determining sub-cellular reaction location.

1.3.1.2 Secondary metabolism

Primary metabolism is relatively well understood, however the generally poorer
understanding of the vast plant secondary metabolism, is reflected in the focus
of models published to date [5, 33, 169, 244]. The large number of unknown
metabolites was recently highlighted for sulfur metabolites in particular [68],
and the potentially missing reactions suggested by the proportion of genome
content with unknown function [196] could also adversely affect prediction qual-
ity.

Although large parts of plant metabolism can be expected to be missing, or
poorly incorporated in many models, this does not necessarily undermine the
predictions made. Predicted fluxes through central metabolism have been found
to be accurate in comparison to experimental data [33], and the quality of
predictions can therefore be expected to depend to some extent on the area of
metabolism being considered. A related difficulty is that 13C tracer experiments
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typically used for model validation can generally only be used to determine flux
through central metabolism, and it can be therefore be difficult to validate
model accuracy for secondary metabolism, and therefore to improve the quality
of these regions of the reaction network.

1.3.1.3 The biomass equation

The stoichiometry of the biomass equation is normally based on experimental
assessments of the composition of the organism of interest. However, these ex-
perimental methods are unable to identify all metabolites required for biomass
production, and, for example, relatively scarce cofactors are normally not in-
cluded. This also highlights the somewhat tricky and subjective distinction
between ‘biomass precursors’, which are somehow considered to be an ‘end prod-
uct’ of the plant metabolism, as compared to other metabolites, which merely
facilitate their production.

In plants, tissue and cellular composition varies widely, not only between be-
tween different tissues, but also under different environmental conditions (e.g.
[111]). Accurate tissue specific measurements under the conditions of inter-
est are therefore required, but difficult to achieve practically. Plants are also
known to lose a large proportion of photosynthate into the soil, which as far as
we are aware has not been considered in determining the biomass equation in
any study.

1.3.1.4 Tissue specific models

It seems increasingly unlikely that all known reactions catalysed by enzymes
encoded in the genome of an organism are utilised, either within a given tissue,
or cell type, or within a particular physiological environment. For example,
certain metabolic pathways are unique to particular tissues, e.g. the light and
dark photosynthesis reactions differ between green tissues under an autotrophic
lifestyle, and other tissues, but also within green tissues during the day and
night. It may be of interest to produce specific submodels, more closely reflecting
these particular circumstances.

All tissues within the plant contain the same genetic information, all the time,
and therefore could potentially produce the same enzyme expression patterns.
Two approaches can therefore be used to capture these tissue specific differences:
either by working out what the flux distribution is attempting to achieve in a
particular tissue, and assuming that gene expression regulation is such that this
is achieved [31] (the validity of this is discussed below), or by imposing additional
constraints as to which subset of reactions in the model are permitted to carry
flux in a tissue specific submodel [134].

Many methods exist for the integration of tissue specific experimental data to
constrain flux solutions, and make tissue specific submodels. Although often
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there is not complete information about where every reaction occurs, it is com-
mon to approximate this using tissue specific transcription, or protein expression
data [182, 145]. A large number of related approaches for incorporating these
data exist (recently reviewed [233]). These can be broadly split into two strate-
gies. In various ‘switch & valve’ approaches, different thresholding approaches
are used to constrain the extent to which reactions are permitted to carry flux,
based on the expression of their associated genes. Conversely, in optimisation
approaches, genes are classified as either desirable, or not, based on transcript
expression, or other experimental data. Solutions are either found which max-
imise the occurrence of desirable reactions, or which minimise the number of
undesirable reactions, without compromising the ability of desired reactions to
carry flux [188]. However, the application of these methods to the same models
and datasets often yield very different submodels [52], and it is not clear that
the quality of model predictions are improved by this use of experimental data
to provide additional constraints. Machado et al. [130], assessed the quality of
seven methods for integration of transcriptomic data to constrain the predicted
flux distribution, and found that none of them consistently outperformed sim-
ulations which completely ignored transcriptomic data.

Given the relative ease with which tissue specific models can be made, a natural
next step is to link various tissue models together. This can be easily achieved
simply by allowing reaction networks for the specific tissues to interact at par-
ticular metabolites [31, 44]. The difficulty lies in identifying the metabolites
which they should be permitted to exchange, which depending on the modelled
system can be difficult experimentally, and which can be expected to dramat-
ically affect model results. Unusually, many pioneering examples of this multi
tissue approach have been achieved in plants. Dal’Molin et al. [43] produced a
model of the interaction between the bundle-sheath, and mesophyll cells in C4

metabolism, Cheung et al. [31], modelled the interaction of autotrophic cells in
the day, and night through storage molecules, Bogart & Myers built a contraint
based model of a maize leaf [21], and recently, Dal’Molin et al. [44] investi-
gated the translocation costs associates with spatial separation of biosynthetic
activities in a multi-tissue model.

1.4 Methods for constraint-based modelling

Once a stoichiometric model of metabolism is created, constraint-based mod-
elling approaches assume that the system is at metabolic steady state, such
that no internal metabolites undergo net production or consumption, in or-
der to deduce information about the possible flux through each reaction in the
system.

The steady state assumption is expressed as S ·v = 0, where S is the stoichiomet-
ric matrix for the reaction network, and v is the flux vector to be determined.
Stoichiometric metabolic flux balance analysis is the simplest approach to de-
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ducing the flux vector. As illustrated in i-iii of Figure 1.3a, linear algebra can
be used to find a flux distribution which follows the steady state constraint
(ii). Additionally relatively easily measured uptake fluxes of metabolites into
the system can further constrain the flux solution (iii). A flux solution can
be iteratively obtained to best fit the data, by minimising the sum of squared
differences,

minimise
∑ (v − vm)2

σ2
v

,

between the predicted and experimental uptake flux data, weighted by uncer-
tainty in the experimental data.

This approach is not computationally or experimentally demanding. However,
the problem is generally underdetermined by the constraints of network stoi-
chiometry, and measured uptake fluxes, meaning that is insufficient to determine
all internal fluxes (as demonstrated in Figure 1.3aiii). To resolve this problem
the considered pathway can potentially be simplified through the removal of
reactions which are assumed to carry no, or little flux. However, the simplifica-
tion required generally is too drastic to allow consideration of the question of
interest.

Beyond system simplification, several different approaches can be taken to deal
with this problem: additional experimental data can be collected to further con-
strain the flux distribution (13C-metabolic flux analysis,13C-MFA), additional
modelling assumptions can be made (flux balance analysis, see FBA), or the
properties of the underdetermined space itself can be explored (elementary flux
mode (EFM) analysis).

1.4.1 13C-MFA

By incubation of cell suspensions with a labelled chemical, for example [1-13C]
glucose, 13C is taken up into the system, and generates a distinct accumulation
of isotopomers, depending on flux through the reactions of the system. The
concentration of isotopomers with distinct labelling patterns can be detected
experimentally by NMR, or MS approaches, and, (in conjunction with an un-
derstanding of the atomic rearrangements involved in each reaction), used as
additional constraints to the flux solution of the system.

An analytical solution to the flux distribution given isotopomer abundance data
is available only for the simplest systems, and an iterative process of flux solution
generation, and variation, is normally followed to determine flux solutions. This
is achieved by finding the solution which minimises the sum of squares error to
the experimental data such that

minimise
∑ (x− xm)2

σ2
x

+
∑ (v − vm)2

σ2
v
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(a) Toy example of flux balance analysis. A simple network consists of three reactions in
which the metabolite, A, is produced and consumed. All reactions are considered to be
unidirectional. i) The unconstrained flux distribution, all positive flux values are available,
for each reaction. ii) The steady state assumption restricts permissible flux space to the
plane v1 = v2 + v3, iii) if in addition, uptake flux, v1, is measured (and in this case found
to be 3.67mM/s), the possible flux distributions are restricted to the line 3.67 = v2 + v3.
iv) in the defining step of flux balance analysis, we assume that the metabolic network is
regulated so as best to perform some metabolic function. In this example we assume that
the objective function is to maximise flux through v3, giving the unique solution v1 = 3.67
mM/s, v2 = 0 mM/s, v3 = 3.67 mM/s.

(b) In most real world applications of flux balance analysis, the assumption of optimality
does not lead to a unique solution. In this fictitious example, the objective function (as
is commonly used), is maximisation of the yield of biomass, which leads to degenerate
optimal solutions, along the highlighted edge. Approaches to deal with this problem
include a secondary optimisation step, in which a second independent objective function is
imposed in order to further reduce the solution space, FVA, which returns the maximum,
and minimum flux through each reaction under the optimality criterion, or one of a variety
of approaches for sampling of the optimal (and occasionally slightly suboptimal) solution
space.

Figure 1.3: Flux balance analysis to reduce permissible flux space.
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where xm is the measured label, and vm are the measured uptake fluxes. 13C-
MFA allows the consideration of larger, and more complex metabolic networks,
than stoichiometric MFA alone, however it requires reasonable experimental ef-
fort, and can only consider metabolic systems proximal to the fed metabolite,
and therefore can only be used in the study of particular aspects of metabolism.

Conventional 13C-MFA assumes metabolic, and isotopomer steady state, such
that fluxes and isotopomer level are assumed constant over the experimental
period. Extensions to this framework exist which do not require these assump-
tions [122, 97], and which allow the method to be extended to consider for
example larger, or more complex metabolic systems through the use of multiple
metabolite labels in parallel [123], and more efficient computational procedures
[3].

Ultimately, MFA cannot be used to study large, genome scale networks. It re-
quires extensive experimental effort and expertise, and provides a descriptive,
rather than predictive approach to determining fluxes. It therefore cannot be
used to predict the effect of for example genetic, or environmental perturba-
tion. In this study, we focused on the other two approaches for dealing with an
underdetermined system.

1.4.2 FBA

FBA [230] is a powerful technique to estimate internal flux distributions. As
shown in Figure 1.3a, in addition to the steady states and thermodynamic con-
straints, FBA imposes some assumed objective function, usually in conjunction
with a measured substrate uptake flux, in order to further reduce the flux so-
lution space. This approach relies only on very limited experimental data, and
can be formulated as a linear programming problem. Efficient algorithms, and
sophisticated optimisation software for solving these kinds of problems means
that optimal solutions can be calculated extremely rapidly, and FBA can be
applied with impunity to the largest metabolic models.

FBA based methods are probably the most commonly used of the discussed
approaches, and have been used for understanding metabolic efficiency [30],
interpreting ’omics data [220, 202], predicting novel metabolic pathways [82],
and how flux distribution changes in response to genetic and environmental
changes [202, 197, 31]. However it is not without issues.

1.4.2.1 Degeneracy

Traditional FBA produces only a single point estimate for flux through the sys-
tem, although depending on the network structure, and objective function used
there are likely to be a number of degenerate optimal solutions (Figure 1.3b). It
is quite common to assume a secondary objective function, such as minimisation
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of total flux, or minimisation of discrepancy between predicted flux distribution,
and experimental data (typically transcriptomic) [186] in order to further reduce
the solution space, however this is not guaranteed to result in a single solution.
Although the degeneracy of predicted optimal distributions is often considered
undesirable [172], it is in fact likely to reflect biological reality: degenerate opti-
mal solutions are consistent with robustness, and a population of cells is unlikely
to be adequately described by a single flux distribution [174, 118].

In order to more accurately represent the degenerate optimal solution space,
after initial optimisation, flux variability analysis (FVA) [132, 205], applies this
optimality as an additional constraint, before a second level of optimisation, in
which flux through each reaction is sequentially maximised and minimised, in
order to estimate the boundaries of the solution space. Flux variability is proba-
bly currently the most widely used FBA based approach. Unfortunately, whilst
this method does define the hyperrectangle containing the optimal solution, it
does not allow relationships between reactions within the optimal space to be
determined. For example, in the simple network structure shown in Figure 1.4,
FVA would determine that flux through reactions B & C are between 0 and 10
a.u., but not that B + C = 10 a.u. In order to gain a more sophisticated descrip-
tion of the optimal solution space, Cheung et al. [32] applied random preference
weights to reactions in a secondary optimisation step in order to sample many
solutions from within the solution space, which were then analysed as a group.
Although this approach is well suited to the study of relatively small models, it
is not clear how generally practical it is for the analysis of large populations due
to the “curse of dimensionality” [79], and the huge number of samples that could
potentially be required to adequately sample the solution space. As discussed
below, elementary flux modes potentially offer a more thorough and concise
description of the optimal flux space.

10 a.u.

A

B

C

D
E1 E2I1 I2

Figure 1.4: Example demonstrating the shortcomings of FVA. E represents external
metabolites, and I, internal metabolites, which must be flux balanced at steady state.
Flux through reaction A has been determined to be 10 arbitrary units. Although FVA can
determine that the range of flux solutions for reactions B & C are both from 0 to 10 a.u.,
it cannot determine the relationship between them: that B + C = 10 a.u.

1.4.2.2 The objective function

The striking weakness of the FBA approach is the pleasing but unproven as-
sumption that metabolic networks have evolved so as to be regulated such that
the flux distribution fulfils an objective function.
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Even under this assumption, identifying what the objective may be is not trivial.
A number of objective functions have been considered in the literature, most
often tied either explicitly or implicitly to metabolic efficiency [30], although
other objectives have been proposed which either aim to simulate, and maximise
growth rate [252] or minimise conflict with ’omics data [14, 34]. In bacteria, the
quality of fluxes predicted assuming maximisation of biomass varies with envi-
ronment, growth phase, and species [192, 56], suggesting that the appropriate
objective function is specific to physiological condition.

It is, however, not clear that organisms do necessarily act to optimise a single
objective function [121]. Fischer & Stauer [57], demonstrated that a number of
genetic mutants in “regulators of not-yet activated adaptive responses” exhib-
ited improved biomass production relative to wild-type B. subtilis, and Ibarra
et al. [94], demonstrated that E. coli grown under constant environmental con-
ditions evolves towards a flux distribution consistent with maximum biomass
production. Both of these studies indicate that flux in the wild-type form of
these organisms is not distributed so as to maximise a single objective. Fur-
thermore, experimentally measured fluxes in bacteria often exist in apparently
suboptimal regions, which allow large variation in flux through individual reac-
tions [78, 179] without further compromising the single assumed objectives. The
extent to which apparent sub-optimal distributions arise through the averaging
of measured fluxes in a heterogeneous population, rather than ‘sub-optimality’
in a single cell is unclear. Nevertheless, it seems likely that in multicellular
organisms, in which cells are differentiated, the situation can be expected to be
more complex still.

It is currently unclear whether ‘suboptimal’ flux distributions exist on a pareto
optimality front, in which any alteration in flux distribution leads to decrease in
at least one of the objectives [187], or simply in some suboptimal space, through
incomplete, or otherwise noisy evolutionary processes. However, it has been ar-
gued that metabolism (in bacteria) exists on the tradeoff front between growth
rate, and robustness to environmental perturbation [109]. Over thousands of
generations of growth under constant, laboratory conditions, microorganisms
can be expected to have been selected towards achieving maximal growth rates.
It is interesting to speculate that this simplification of objectives might con-
tribute to the relatively strong performance of FBA on cultured microorganisms,
in comparison to, for example, plants.

FBA based methods are beginning to appear that address partially optimised
distributions, and multiple objectives [245], but these remain a major challenge
for the FBA framework. Given the sophistication and size of plant metabolic
networks, and numerous differentiated cell types, they are likely to be particu-
larly relevant to their study.

Pragmatically, although the use of an objective function is somewhat problem-
atic, an increasing number of studies have accurately predicted flux distributions
in plants cells using FBA (for example [33, 244, 83]). Additionally, in Arabidop-
sis, central carbon metabolism has been shown to be fairly insensitive to the
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objective function used [33]. However, it is likely that this robustness depends
both on the organism, and the particular area of metabolic interest, and different
areas of metabolism can potentially be expected to behave differently.

1.4.3 EFM analysis

Elementary modes are minimal sets of reactions that can operate at steady
state, with all reactions proceeding in thermodynamically feasible directions
[190]. These sets are minimal, in the sense that no subset of reactions in an
elementary mode is sufficient to carry flux at steady state. Figure 1.5 illustrates
the EFMs of a simple toy network.
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Figure 1.5: Elementary modes of an illustrative toy network. Each elementary mode is a
minimal steady state solution, in that the removal of any reaction prevents flux through
the whole of the mode. All possible steady state flux distributions in the complete network
can be expressed by the superimposition of combinations of EFM1, 2, & 3.

Elementary modes are the edges of the flux-cone shown in Figure 1.3b, which
pass through the origin. Therefore the span of elementary modes is all possi-
ble metabolic states, in that all possible steady state flux distributions can be
expressed as a weighted sum of the elementary flux modes. Elementary modes



26 CHAPTER 1. INTRODUCTION

therefore allow a (relatively) compact description of the infinite possible flux
states in the cell, and therefore its metabolic capabilities.

The advantage of elementary modes over the extremely similar ‘extreme-path-
ways’ concept [185], is that bi-directional reactions are decomposed into two
uni-directional reactions, and that therefore every flux mode can be decomposed
into EFMs without the need to consider potential ‘cancelation’ of flux through
a reaction in opposite directions.

1.4.3.1 Applications of elementary modes

Elementary modes have various applications associated with exploring the metabolic
capabilities of the organism. Examination of EFMs allows, for example, deter-
mination of all minimal media for the growth of microorganisms, and discovery
of alternative metabolic pathways [191, 167]. Yield space analysis [207], projects
elementary modes onto a 2-dimensional surface, and the metabolic capability
of the organism in these dimensions is encompassed by the convex hull of the
plotted points. This allows the relationship between two fluxes to be inspected
visually, typically the yield tradeoff between two products, for example a high
value metabolite, and biomass. In chapter 3, we essentially use yield space anal-
ysis to examine the relationships between various nutrient requirements imposed
by the constraints of the metabolic network.

Elementary modes can also be used to investigate, and understand transcrip-
tomic, or fluxomic data, and to help interpret what the flux is “for” [171]. A
number of methods have been proposed for decomposing a given experimentally
determined flux distribution, either directly [171], or as implied by transcrip-
tomic data [176, 95] into component elementary modes. Additionally, Stelling
et al. [211], found that the ‘control-effective flux’ (CEF), of a reaction towards a
given metabolic objective, could be calculated from EFMs, and correlated with
mRNA expression data. The CEF of a reaction was calculated as the average
flux through that reaction across modes, weighted by the efficiency of the EFM
(in the production of biomass). The CEF of a reaction is related to the ro-
bustness of the system to perturbation of that reaction. Interestingly Stelling
et al. [211] found that by calculating this metric across all elementary modes,
rather than just the ‘optimal’ ones, the strength of correlation between CEF
and mRNA expression increased, again suggesting the importance of consider-
ing sub-optimal metabolic modes in biological systems.

Metabolic robustness

This early interest in the use of EFMs for determining the robustness of a
metabolic network has been extended in several studies. Although robustness
is commonly defined as the insensitivity of a system to changes in external
(environmental), or internal (genetic) parameters, the way that it is calculated
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depends on the modelling framework being used, and topological, FBA, and
EFM based metrics have been developed [121]. constraint-based measures for
assessing robustness include the FBA based MOMA [197], and ROOM [200],
which assess the minimal metabolic perturbation enforced by reaction removal.
However, the results of both of these methods depend heavily on the assumed
objective function of the system [121].

The simplest EFM-based measure used to assess robustness is simply the num-
ber of EFMs through the system [173], however this is generally regarded as
inadequate. Wilhelm et al. [242], used a metric based on the average number of
feasible EFMs remaining after a reaction is knocked out, an idea extended by
Behre et al. [16], to consider multiple knockouts. However, the combinatorial
explosion in knockout sets with size limits the extrapolation of this approach,
as not all possible numbers of deletions can be considered by brute force. Fur-
thermore, it relies of the calculation of all EFMs in the network. This metric
has been shown to be mathematically equivalent to a more computationally
tractable approach based on minimal cut sets, calculable without the need for
all EFMs, [234, 65], allowing its approximate application to genome scale mod-
els. Another, similar approach is used by Min et al. [144], except that whereas
Wilhelm and Behre consider all reactions as equally likely to fail, Min et al.
weight the probability of knockout by reaction involvement across EFMs. This
demonstrated that although metabolic networks can generally be considered ro-
bust to random perturbation, they may be fragile towards non-random, targeted
intervention. This naturally leads to a consideration of EFMs for guidance of
metabolic engineering strategies.

Metabolic engineering

Elementary modes have been used for the rational design of bacterial strains
which overproduce particular metabolites of interest (reviewed [89]). Most ap-
proaches to EFM guided engineering centre around identifying desirable (effi-
cient) modes for the production of the metabolite of interest, followed by the
elimination of all inefficient modes [223, 224], by knocking out reactions in-
volved only in inefficient modes. Methods for determining constrained minimal
cut sets, the fewest interventions required to prevent inefficient modes, without
compromising desirable ones have been developed [76]. One problem with these
approaches is that although EFMs can identify the most efficient modes, the
absence of enzyme kinetics means that they can not identify the modes which
lead to the greatest overall production. The CASOP heuristic [77] tries to ac-
count for this by weighting reaction removal by EFM membership production
efficiency, but allowing the retention of less efficient modes as well.

These cut-set methods remove inefficient modes, but do not allow for the dis-
covery of the beneficial overexpression of reactions. FluxDesign [140] identifies
reaction candidates for overexpression based on positive correlation between re-
action flux, and flux to the product of interest across elementary modes. We
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use an extremely similar, correlation based approach, to identify reactions im-
portant in determining nutrient requirements in chapter 3.

Application of these approaches have led to greater understanding, and to vari-
ous positive interventions for the production of metabolites in bacteria, but have
not been widely applied to other organisms. Although EFMs allow a complete
understanding of the capabilities of a metabolic network, their number under-
goes a combinatorial explosion as the size of the considered network increases,
meaning that their use has largely been limited to only relatively small net-
works of tens, or hundreds of reactions. Most modern metabolic models consist
of thousands of reactions, particularly in eukaryotes, where compartmentali-
sation tends to lead to reaction duplication. Consequently, the application of
EFM analysis to plants has been generally limited to exploring the metabolic
capabilities and interactions of small subsets of paths [167, 18].

1.4.3.2 Calculation of elementary modes

We have discussed a number of applications of elementary modes, which offer the
best current framework for understanding the metabolic capabilities of a system,
but their application to date has been limited. This is because the number of
elementary modes undergoes a combinatorial explosion with network size [110],
leading to difficulties in their calculation for large scale networks, which can be
trivially analysed by FBA approaches. A number of distinct methods have been
developed for the calculation of elementary modes, but can be broadly divided
into double-description based methods, which calculate elementary modes from
the null-space of the stoichiometric matrix, and mixed-integer linear program-
ming (MILP) approaches, for their calculation based on the non-decomposability
criterion.

We will discuss both approaches in greater detail, however, the double-description
based methods, are generally much faster, (able to practically generate millions
of EFMs), but they do not iteratively calculate complete EFMs, and therefore
must be able to calculate all EFMs for the network. Consequently they can
generally only be applied to medium scale networks [235, 217, 100]. Conversely
MILP-based methods are relatively slow, but iteratively return true EFMs, and
so can be used to return subsets of the complete EFM set of the system, allowing
their application to models of arbitrary size.

Although not widely used, and so not discussed here, ‘conversion analysis’ is an
interesting approach which can similarly be used to either return EFM subsets
of interest, or for particular reaction sets of interest [227].
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Double-description approaches

The null-space of a matrix, S, is the set of all solutions, v, such that

S · v = 0.

When S is the stoichiometric matrix of a reaction network (see Figure 1.2 for
example of stoichiometric matrix and reaction network), the null-space is the
set of all reaction flux vectors which result in steady state. A basis of the
null-space can be easily, and rapidly calculated, such that the full null-space
can be expressed as linear combination of columns of the basis. This basis is
related to elementary modes, however it is not guaranteed to be biologically
interpretable, as it may include negative (flux) values through reactions which
can only operate in one (positive) direction. Double-description methods work
by converting the found basis to a basis with only positive fluxes.

For an illustrative example of the basic double-description based approach see
Figure 1.6. Essentially, working from the top of the calculated null-space basis,
for each row (reaction), these methods combine any column with a negative
element in the current row with all columns with a positive element, so as to
cancel the current row to zero. This leads to a combinatorial explosion in the size
of the working matrix, and the computational resources required. When the last
row is reached, the full set of elementary modes is given, such that each column
is an elementary mode. However, until the last row is reached, no column
is necessarily a true EFM. This approach, together with various refinements
to improve performance [61], has been implemented in widely used software
tools [235, 217] and recently has been efficiently implemented, leading to an
improvement in performance by several orders of magnitude, and is currently
the fastest approach for EFM calculation [229].

A ‘demand based network splitting approach’ [93] can be used to specify only
the enumeration of EFMs which either include, or don’t include a given reac-
tion. This approach, recursively applied, allows the parallelisation of calculation
of EFMs using double-description based methods. Using this strategy, in con-
junction with their improved software, van Klinken et al. [229] were able to
calculate all elementary modes for a model consisting of 318 reactions, and 335
metabolites. Whilst this is an impressive technical achievement, it also illus-
trates the current challenge of calculating the complete set of EFMs for large
genome scale models.

Beyond their simple calculation, the explosion in the number of EFMs also leads
to difficulty with their storage and analysis. In their enumeration of the EFMs
for the same model, Hunt et al. [93] report that EFM storage required ∼1TB
of storage, and that “most of the elapsed time involved reading, decompressing,
compressing, and writing the results”. These difficulties have led to an interest in
the calculation of particular subsets of EFMs rather than the full set. There are
some methods for subset calculation using double-description based methods
[131]. However, the majority of sampling approaches are based on a MILP
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Figure 1.6: Illustration of the double-description based method for EFM calculation. The
toy reaction network is reproduced from Figure 1.5. The stoichiometric matrix is converted
into the irreversible form, through the separation of reaction 3 (R3) into forward and reverse
components. The null-space of the irreversible stoichiometric matrix is calculated. The
double-description method begins considering rows from the top of the null-space (R1,
R2, ... , R6) until a row with a negative coefficient is encountered. Here R3f includes a
negative coefficient in N3. N3 is combined with all columns with a positive coefficient in
row R3f (here N1 + N3, N2 + N3), and is removed, (bottom middle). This combinatorial
approach potentially leads to a rapid increase in the number of putative modes which must
be considered. N1 is removed during the recompilation of reversible reaction, leaving the
three efms shown in Figure 1.5.
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approach due to the ease with which various additional constraints can be added
in this framework.

MILP based approaches

As far as we are aware, de Figueiredo et al. [47] provide the earliest example in
which the calculation of elementary modes is posed as an optimisation problem.
In their approach, a binary variable zi is assigned to each reaction, i, such that
zi = 1 if reaction i is active in the EFM, and zero otherwise. Each reaction is
also associated with a non-negative flux ti. They apply constraints

ti ≤Mzi ∀ i = 1, ..., R (1.2)

zi ≤ ti ∀ i = 1, ..., R (1.3)

to link ~z, and ~t, in order to ensure that no reaction can carry flux in an EFM
unless it is included in that EFM (Equation 1.2), and that it must carry flux if
it is included (Equation 1.3). R is the total number of reactions in the system.
ti can take any value less than M , where M is some large scalar value (typically
values of either 1,000 or 10,000 are used). Reversible reactions are decomposed,
and constrained such that a reaction cannot carry flux in both directions in a
single EFM, as

zα + zβ ≤ 1 (1.4)

where zα and zβ are the decomposed form of a single reversible reaction. They
imposes the steady state constraint

R∑
i=1

Sc,i · ti = 0 ∀ c ∈ I (1.5)

for all metabolites c in the internal set I. In order to avoid the trivial, zero-flux
solution, they specify that at least one reaction must carry flux

R∑
i=1

zi ≥ 1. (1.6)

Equation 1.2 to Equation 1.6 define the steady state flux problem for a metabolic
network S. To find EFMs, rather than all steady state solutions, they initially
calculate the shortest EFM, by solving

minimise

R∑
i=i

zi, (1.7)

which returns the steady state solution involving the fewest number of reactions.
This must be an EFM, as it cannot be decomposed into a smaller steady state
solution.
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Having now expressed the problem as one of optimisation, and found the shortest
EFM, de Figueiredo et al. [47] extended their method to find the K-shortest
EFMs by imposing additional constraints, preventing any returned solution from
containing any previously found EFM

R∑
i=1

zki zi ≤

(
R∑
i=1

zki

)
− 1 ∀ k = 1, ...,K − 1. (1.8)

Where zk is a previously found EFM. This ensures that each found solution
cannot be decomposed into smaller elementary modes, and therefore is itself a
minimal solution (an EFM).

Although the enumeration of specifically short EFMs is of dubious biological
relevance [47, 210, 66, 64], expressing the calculation of EFMs as an optimi-
sation problem has allowed a suite of developments, due to the easy addition
of constraints, and sequential output of EFMs, which allows subsets to be cal-
culated. For example constraints can be easily applied such that only EFMs
involving a particular reaction, p, are calculated [46, 162], simply by specifying
the additional constriant

zp = 1. (1.9)

More sophisticated constraints have been applied to calculate only EFMs which
are most likely to contribute to experimental flux, or transcriptomic data [162,
95, 176]. Further work in which metabolomic data, as well as thermodynamic
constraints have been imposed upon the optimality problem, have indicated
that between 50% and 90% of elementary modes are not thermodynamically
feasible, depending on the organism, and methodology used [66, 64], allowing a
reduction in the scope of the problem. However, given that organisms are likely
to change the EFMs utilised depending on environmental conditions, these ap-
proaches may undermine many of the applications of EFMs for understanding
the limits of the metabolic capacities of the organism . Where available,
boolean regulatory models of organisms can be used to impose reaction depen-
dence constraints. This has been shown to reduce the number of feasible EFMs
by 99% [99], without compromising the EFM representation of the capabilities
of the network under all conditions. However, it is possible that this approach is
overly prescriptive, given uncertainty in the regulatory models themselves, and
unfortunately such regulatory models are available for only a very few organ-
isms.

Interestingly, FBA-type optimality constraints can also be applied to this for-
mulation of the problem [104]. Although this shares the weakness of FBA, that
some objective for the metabolic flux distribution is assumed, this can result
in a more complete description of the optimal solution space than is possible
through FVA, which loses all reaction dependency information.

In addition to drawing subsets which may be enriched for biologically utilised
modes relative to the full set, it is also possible to attempt to calculate subsets
which are able to approximate the behaviour of the full set, and thus to by
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step the need for the enumeration of all modes. This has led to an interest
in trying to enumerate a subset of EFMs which are diversely spread across
the permissible steady state flux space. Kaleta et al. [100] used a genetic
algorithm, in which constraints as to which reactions were permitted to carry
flux, were imposed so as to preferentially calculate EFMs which were unlike
those previously calculated.

We also developed an extension of the constraint-based de Figueiredo method
[47] designed to give better coverage across the EFM space. This was imple-
mented through a constraint additional to those used by de Figueiredo et al.
[47], limiting the degree of similarity between a found EFM, and those previously
returned,

R∑
i=1

Zmi zi ≤ v (1.10)

in which v is the scaler number of reactions allowed in common with all previous
found solutions, and Zmi is the union of reactions in previously found EFMs,
such that

Zmi =

{
0, if

∑K
p=1 z

p
i = 0,

1, otherwise
(1.11)

where K is the number of EFMs previously found. By sequentially solving this
linear model for v = (0, ..., R), we find steady state solutions with as little reac-
tion overlap as possible with the previously found EFMs, therefore comprising
a diverse set of EFMs. This still guarantees that any returned solution must be
an EFM, as it cannot be decomposed into other EFMs; if a solution of overlap
v, were decomposable, then the smaller EFM must have overlap ≤ v, and length

strictly less that the current solution,
R∑
i=1

zi, and yet not have been previously

returned.

As is shown in Figure 1.7, this ‘most diverse’ approach did indeed lead to an
improvement in the quality of small subsets of EFMs, as assessed by correlation
between reaction participation in the subset, and the full set, calculated for a
small model of B. cenocepacia J2315 metabolism [54]. Interestingly, the ‘diverse’
approach still performs significantly less well than a truly random sampling
of the EFM population, presumably as a consequence of bias imposed by the
minimisation of the number of participating reactions for a given permitted
overlap (Equation 1.7), in order to guarantee that the returned solutions are
EFMs.

Unexpectedly, as is shown in Figure 1.8a, in the model used, there was a strong
correlation between the order in which EFMs were enumerated in the shortest
approach, and our diverse approach, a consequence of the fact that many short
EFMs also exhibit comparatively little overlap with previous solutions in com-
parison to long ones. This fact, in conjunction with the surprising increase in the
average time required to find an EFM under the diverse constraint set (as shown
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Figure 1.7: The ‘most diverse’ EFMs approach produces higher quality EFM subsets, than
the shortest EFMs approach. Correlation in the fraction of EFMs each reaction partic-
ipates in between the full set, and subsets generated by random sampling, the ‘diverse’
approach, and the shortest approach. The ‘diverse’ approach performs better than the
shortest method for relatively small subsets, as there is greater correlation between reac-
tion participation in the subset and full set, for subsets of less than approximately 260
EFMs. Both methods perform significantly less well than true random sampling from the
population of EFMs.
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in Figure 1.8b), meant that although our diverse approach performed compara-
tively well when EFM subsets of the same size are compared, it performs poorly
relative to the shortest approach [47] when permitted an equal time for EFM
calculation. Consequently, although this is an apparently obvious extension to
the MILP family of approaches, it turns out not to be a practical one, in its
most naive implementation.

While we were working to optimise this diverse approach, a dramatic improve-
ment in constraint-based methods for EFM calculation was published [163].
Rather than MILP, Pey et al. realised that elementary modes could be equiv-
alently calculated using a much faster, purely linear programming approach,
without the need for the integer z vector, whilst maintaining the benefits of the
MILP framework. Although still slower than double-description based meth-
ods, this allows the rapid enumeration of relatively large subsets of elementary
modes. In chapter 3 we use their TreeEFM tool to generate, to our knowl-
edge, the largest set of elementary modes ever used for an analysis of plant
metabolism.

1.5 Conclusion

In this chapter, we have introduced the concepts, and modelling frameworks
relevant to genome scale models of metabolism. We have seen that although
these approaches have been successfully applied, particularly in simple organ-
isms such as bacteria, their use in plants, particularly outside of central carbon
metabolism has been relatively rare. The aim of my PhD research has been to
apply these methods to a genome scale model of Arabidopsis thaliana in order
to gain insight into the mode and purpose of metabolic flux in this model or-
ganism, with particular regard to nutrient requirements. Here, we describe the
further curation of a previously published constraint-based model, and its ap-
plication to the study of sulfur starvation, and secondary metabolism. We then
use a large set of EFMs to study the organisation of reactions into metabolic
pathways, to investigate the relationship between internal metabolism, uptake
fluxes, and nutrient use efficiency.
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Figure 1.8: The ‘diverse’ approach performs poorly relative to the shortest per unit time.
A, In the evaluated model, the order in which EFMs are returned are significantly related
in the shortest, and ‘most diverse’ approaches. Vertical lines indicate points at which no
more EFMs with the given overlap could be calculated, and the reaction overlap permitted
was increased by 1. This is a consequence of shorter EFMs exhibiting less overlap with the
calculated set on average than longer EFMs. B, the ‘diverse’ method takes longer to find
each EFM than the shorter method. This is both because it tends to return longer EFMs,
which are relatively slow to calculate under both methods, but also because the additional
constraint results in all solutions being slower to find regardless of length.



Chapter 2

Model curation & flux
balance analysis

Genome scale models of organisms consist of networks of metabolic reactions,
often mapped to associated genes, and act as repositories of knowledge, similar
to databases, but also can be used under various mathematical conventions to
predict flux through internal reactions. A number of genome scale models of
Arabidopsis thaliana have been published, and used for the analysis of central
metabolism.

Here we further develop one of these published models, and use it to investigate
genes involved in secondary metabolism and the metabolic response to sulfur
starvation.

2.1 Previously published models

At the time that this work was carried out, several genome scale models of
Arabidopsis thaliana metabolism had already been published. In order to de-
termine which model to use for the study of sulfur starvation, we initially as-
sessed the quality of these models. As our interest was in the effects of nutrient
starvation, we focused particularly on the quality of the nutrient, and energy
import-export requirement predicted by the models to be essential for growth.
The oldest published model of Arabidopsis metabolism [169], focuses only on
central metabolism of heterotrophically growing cell suspension cultures. This
model was not considered to be compatible with our interests, due to its small
scope, and is therefore not further discussed.

The AraGEM model [42] was the first compartmentalised genome scale model
of Arabidopsis published. It consists of 1,748 metabolites and 1,567 reactions,

37
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and is focused on primary metabolism. We assessed a slight modification of
the AraGEM model which had previously been used to study glucosinolate
metabolism [17], and was therefore considered likely to more fully incorporate
sulfur reactions.

Using flux balance analysis, we saw no difference in the model prediction of the
maximum biomass flux which could be produced under a ‘full nutrient’ regime,
(in which import of Photon, Glucose, Maltose, and Sucrose were permitted),
and a ‘starvation’ regime (in which they were not). This is likely to be because
the AraGEM model is unable to synthesise all amino acids. and so is permitted
to import Alanine, Aspartate, Glutamine, and Glutamate, which it catabolises
under starvation conditions. As this model is not able to synthesise all biomass
precursors from inorganic nutrients we considered it unsuitable for use by us in
investigating plant nutrient requirements.

The Mintz-Oron model of Arabidopsis [145] was constructed using a novel, semi-
automated approach from the KEGG and AraCyc databases. It is the largest
of the models considered, and exhibits the most extensive gene-reaction map-
ping, and, (and as shown in Figure 2.1), compartmentalisation of reactions.
However, the Mintz-Oron model predicts non-zero flux through the biomass re-
action, even without access to any high energy substrates. This is equivalent
to predicting that the plant should be able to grow in darkness, without access
to any carbon source, and is caused by thermodynamic errors in permitted re-
action directionality. It was therefore considered unlikely to be suitable for the
study of nutritional requirements.

(a) AraGEM (b) Mintz-Oron (c) Cheung

Figure 2.1: The considered model reaction networks visualised using Cytoscape [199]. The
superior compartmentalisation of the Mintz-Oron model can be seen as the separate, highly
interconnected clusters of nodes.

The most recently published model at the time that this work was carried out
was the Cheung model [33]. This is based on the AraCyc database, and has un-
dergone extensive manual curation for reaction stoichiometry and reversibility.
Table 2.1a shows that the Cheung model appears to reasonably predict inor-
ganic nutrient requirements for growth, and correctly predict the capacity for
growth using a variety of carbon sources. It also predicts sensible gas exchanges
under autotrophic and heterotrophic metabolism, (Table 2.1b).
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The only incorrect assessed nutrient requirement is that the model does not
recognise that iron is essential for biomass production. Iron is not well incor-
porated into the model, as it is predominantly used as an enzyme cofactor, and
the production of enzymes are not explicitly included in the model. The few
reactions in the model which do include iron are either unable to carry flux, or
are members of futile cycles, which are unlikely to occur in reality.

Since the input:output requirement predictions of the Cheung model were found
to be markedly superior to other previously published models, we have used it
as the basis of the rest of the work described here. Since this work was carried
out, another Arabidopsis model has been published [5], however we have not
assessed the quality of this model directly.

Table 2.1: Required environmental exchanges in the Cheung 2013 model. Uncommonly
among published genome-scale models of Arabidopsis, the Cheung model correctly predicts
most nutrient requirements for the production of biomass, predicts the requirement of an
energy source, and is able to utilise a variety of energy substrates. It also correctly predicts
the net direction of gas exchange under autotrophy, and heterotrophy.

Energy Source biomass?
Glucose Yes
Sucrose Yes
Starch Yes

Sucrose Yes
Photon Yes

— No

Unavailable nutrient biomass?

NO−3 No
SO2−

4 No
PO3−

4 No
K+ No

Ca2+ No
Mg2+ No
Fe3+ Yes

(a) Energy and inorganic substrate re-
quirements for biomass production

Energy Source O2 CO2

Photon Export Import
Sucrose Import Export

(b) Gas exchange direction under au-
totrophy and heterotrophy.

2.2 Model validation and improvement

2.2.1 Gene knockout predictions

We have seen that the Cheung model makes simple, largely correct predictions
as to the environments under which the plant is expected to be able to grow or
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not. This is a common approach to validate the quality of bacterial models [55],
however, the flexible, heterotrophic metabolisms of bacteria allow a much more
rigorous assessment, due to the more varied environments in which bacteria can
and cannot grow. This crude analysis therefore does not guarantee that the
Cheung model is of high quality, and we wished to assess it in more detail, and
potentially to develop it further. We therefore used additional approaches to
assess the quality of the model.

A common approach to model validation, particularly in bacterial studies [51],
but also in of other organisms [116], is to assess the quality of the growth / no
growth model predictions in response to genetic perturbation, most commonly
in response to single gene knockouts. We therefore compared the predictions
of lethal single gene knockouts in the model to the database of Arabidopsis
knockouts published by Lloyd & Meinke [128].

This dataset consists of information on the effect of 2,400 gene knockouts on
growth. Of these we considered knockouts of the 270 genes annotated within
the dataset annotated as being associated with ‘metabolism’. This is because
other essential processes, such as ‘DNA and RNA synthesis’, and ‘chromosome
dynamics’ are beyond the scope of the model. Only 115 of these genes are be-
lieved to exist in a single copy in the Arabidopsis genome, based on the lack of
sequence similarity to other proteins (BLASTP, e-30 cutoff). Non-unique genes
were not considered, as there is no easy way to assess the contribution of the
different gene copies to the overall gene function. Conversely we can reasonably
assume that enzyme catalysed reactions cannot occur in the absence of single
copy genes. Of the 115 unique genes, 62 could be manually mapped to reac-
tion(s) included in the model. During this manual mapping, we also discarded
from consideration gene products which are thought to function as part of an
enzyme complex, but which are not essential for the (partial) functioning of this
complex.

In Figure 2.2 we show the performance of the model for predicting genes which
are experimentally essential, or inessential for growth. Knockouts were simu-
lated in silico by constraining flux through reaction(s) catalysed by the gene
product to 0, and assessing whether biomass could still be produced, such that
flux solutions exist with non-zero flux through the biomass equation.

The left-most bar shows that the original Cheung 2013 [33] model performs
perfectly in predicting the knock-out effect of genes, when simulating genes
which are experimentally non-lethal. That is to say, knocking out these genes
in silico also does not prevent biomass production. However, the right hand,
pink bar shows that the quality of the predictions of lethal mutations is not so
good, that is in silico, for about 75% of experimentally lethal genes, biomass can
still be produced, even when reaction(s) which should be essential for growth
are prevented.

Failing to correctly predict a lethal mutation is a consequence either of erroneous
metabolic flexibility, or of failing to recognise that the production of a particular



2.2. MODEL VALIDATION AND IMPROVEMENT 41

experimental mutant phenotype

lethalnon-lethal

co
rr

e
ct

 p
re

d
ic

ti
o
n
 

fr
e
q

u
e
n

cy
 (

%
)

100

50

0

model

Cheung 2013

Curated model

Figure 2.2: Accuracy of gene effect predicitons. 36 mapped genes knockouts were ex-
perimentally lethal, 26 genes were experimentally non-lethal. Model curation leads to
improvement in the accuracy of prediction of lethal gene knock-outs.

metabolite, is in fact, essential for growth. Consequently, many of these errors
were found to be corrected by addition of metabolites to the biomass reaction
(see Table 2.8, in Methods, for details of the original biomass equation, and the
metabolites added). The original biomass equation included in Cheung et al.
is derived from chemical analysis of freeze dried cells [169, 244, 33], and it is
therefore unsurprising that it did not include comparatively rare components.
This highlights an interesting grey area in determining which metabolites are
essential ‘products’ of metabolism, and which are just intermediates, produced
in order to be converted into some essential product.

We are not aware of any rigorous solution to this problem, and the metabolites
which were added to the biomass equation in order to improve gene lethality
predictions are somewhat subjective. Anecdotally, we noticed that the addition
of a metabolite to ‘fix’ an incorrect essential gene prediction often led to the
introduction of errors in the prediction on non-lethal interactions, and it is likely
that as bigger knockout datasets, and higher quality models become available,
an iterative procedure to generate a parsimonious biomass equation can be
adopted.

Although the metabolites added to the biomass equation must be producible by
the plants metabolism, we had no experimental data about the quantity which
is required for growth, and therefore added them at a nominal, small coefficient
(1e-6) to the biomass equation. We therefore do not expect these additions
to make much difference to internal flux distribution. What was informative
however was that a large fraction of these metabolites could not be produced
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by the original Cheung model. This is a consequence of missing reactions;
through manual curation, and after examination of the literature, we added 14
chemical reactions, and 2 inter-compartmental transporter reactions to allow
their production.

This process also highlighted the existence of some phenotypes which cannot
easily be addressed using a steady state constraint-based approach. For exam-
ple ‘UPP’ is an experimentally essential gene, which catalyses a reaction in the
in the Pyrimidine salvage pathway, however it was not predicted to be essential
in silico. In fact, the associated reaction did not carry any flux, even when un-
constrained in the optimal, maximum biomass flux solution found. It is not clear
that standard flux balance analysis will ever be able to identify salvage pathway
genes as being essential, because rather than having to salvage chemicals which
have previously been produced above the currently required level, the simulated
solution will simply produce only the required amount of the chemical, saving
the energy expended through recycling metabolites.

Even after further curation (blue bars in Figure 2.2), the apparent quality of
predictions for non-lethal mutants is markedly greater than the quality for es-
sential genes. However, this a consequence of many reactions not carrying flux
in the optimal solution instance found, and so not affecting biomass production
when they are constrained to carry zero flux. This is not in itself necessarily a
sign of the model being ‘incorrect’, as these reactions could exist so as to provide
metabolic flexibility either to genetic, or environmental perturbation [157], how-
ever many of these reactions cannot carry flux, even when the objective function
is to maximise flux through that reaction. This could potentially be a conse-
quence of the environmental constraints, but is more likely to be caused by an
incomplete reaction network. In the next section, we describe further curation
of the model to address the presence of these ‘blocked’ reactions.

2.2.2 Blocked reactions

It is well known that the ‘optimal’ flux distribution found by flux balance anal-
ysis often involves only a small fraction of the reactions included in the model.
This is predominantly ascribed to the need for metabolic networks to have
evolved so as to be robust to genetic and environmental perturbations, and so
to have a somewhat redundant set of reaction systems which are not necessar-
ily used in a particular, studied, environment, but which may carry flux under
other conditions [157].

Consistent with this, we found that in the flux solution returned with the objec-
tive of maximising flux through the biomass reaction, only 573 reactions of the
2,799 reactions in the model have non-zero flux. However, we also found that
only 445 of the reactions which don’t carry flux in the optimal solution can carry
flux, when maximisation of flux through them was designated as the objective
function, meaning that 1,781 of the 2,799 reactions in the model cannot carry
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flux at steady state. We also found that 1,874 of the 2,625 metabolites in the
model are only involved in these reactions which cannot carry flux. It is pos-
sible that with a different permitted set of external metabolites, these figures
may change somewhat, however, given that the used external set reflects the
nutrients commonly available to a plant, we consider it unlikely that this is the
main cause of this result. Instead the likely cause is the inability to produce
substrates for the blocked reactions, or to consume their products, itself caused
by an incomplete reaction network.

Not all blocked reactions are themselves problematic, most can be expected to
be up, or downstream of some ‘root’ problem reaction which cannot carry flux,
for example due to an unconsumed, non-exported product, and which then leads
to knock-on effects. To identify the root, ‘causal’ reactions, we visualised the
blocked reaction-metabolite sets as clusters, by grouping contiguous sections
of blocked reactions together. Blocked metabolite-reaction clusters are shown
in Figure 2.3. Reactions at the edge of a cluster are candidate ‘causes’ of the
blockage of the whole cluster, whereas reactions in the middle of a cluster are
likely blocked only as a consequence of reactions at the edge. This approach
reduced the number of problems which had to be examined from 1,781 blocked
reactions, to 539 blocked reaction clusters, and allowed us to focus manual
curation efforts on the likely roots of the problems. Through manual curation
of the blocked reactions, in order to allow them to carry flux, we added 174
reactions, removed 1 erroneous reaction, and added a further 32 metabolites to
the biomass equation (shown in Table 2.8 in Methods). This led to a reduction
from 539 blocked reaction clusters to 271.

2.2.3 Flux prediction comparison

Having spent a significant amount of time in improving the qualitative predic-
tions of the model, we wished to check the impact of the changes on quantitative
predictions. We assessed the differences between the original model published
by Cheung et al. [33], and the curated model, in predicting internal fluxes.
These were estimated by flux variability analysis (FVA)[132]. We compared
the FVA predictions of both models to experimental fluxes estimated through
metabolic flux analysis using tracer experiments, as is commonly done in the
literature. The Cheung model had previously been shown to exhibit a good
fit to these kinds of data [33], however, we wished to confirm that the changes
made had not compromised these predictions, and also compare the models to
a wider range of experimental datasets.

The non-growth associated ATP maintenance cost of a cell is essential for ac-
curate flux predictions. However it is difficult to directly measure, and is often
fitted to the measured uptake of energy providing substrates, and growth rate
[169, 82]. Here, inspired by this approach, we varied the ATP maintenance cost,
and, in Figure 2.4, plotted the correlation between FVA, and MFA estimated
flux across all measured reactions for each ATPase flux value. For each dataset
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(a) All blocked clusters.

(b) An enlarged example of a blocked cluster. Yel-
low boxes are metabolites, purple and green boxes are
reactions.

Figure 2.3: Visualising clusters of blocked reactions and metabolites allows manual curation
to focus on the causes of the blockage. From the Cheung model; clusters of reactions
which cannot carry flux, as flux variability analysis (FVA) [132] predicts that maximum and
minimum flux equals zero, and metabolites which are only involved in blocked reactions.
Directed edges indicate the metabolites produced and consumed in blocked reactions.
Although all shown nodes are blocked, the cause of the blockage is normally a reaction,
or metabolite on the edge of each cluster.
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(facet in Figure 2.4), we saw that the results for the Cheung and modified mod-
els are largely superimposed, indicating that, as expected, the modifications
made very little relative difference to the predictions of flux through central
metabolism in the original and modified models. It is encouraging that across
all datasets, the modified model either performed identically, or with slightly
improved correlation to the MFA data relative to the Cheung model, as is shown
by a greater maximal coefficient of determination for the modified model in each
facet. Another encouraging difference is that in the Cheung MFA data facet, the
best model performance (correlation), is achieved at slightly lower ATP main-
tenance flux in the modified model, as it was previously slightly overestimated
[33].

Interestingly, Figure 2.4 shows that the quality of flux predictions of both models
varies substantially between datasets. In five of the studied metabolic flux anal-
ysis datasets (Cheung 2013 [33], Masakapalli 2010 [139], Williams 2008 [243],
elevated and standard oxygen, Williams 2010 [244]), we see reasonable correla-
tion between the flux balance analysis and metabolic flux balance analysis re-
sults. All of these datasets were generated using heterotrophic Arabidopsis cell-
suspension cultures, and focus on flux through reactions in central metabolism.
In comparison, model predictions are less similar to datasets generated using
illuminated Arabidopsis rosettes (Szecowka 2013, [215]), or focused on reactions
involved in the production of cell wall precursors (Chen 2013, [29]).

The relatively low correlation between FBA and the MFA data generated by
Chen et al. [29] is likely to reflect the relative accuracy with which different
parts of metabolism are represented in the model. It suggests that reactions
not involved in central carbon metabolism are not as well represented as those
which are, and also that the requirements for cell wall precursors are not as well
reflected in the biomass equation as other components. The different experi-
mental focus of the Chen 2013 dataset [29] perhaps explains why the largest
improvement between the original, and modified models across datasets is seen
in it. The relatively small changes we have made to the biomass equation, and
reaction network are unlikely to affect the (comparatively large) fluxes through
central metabolism significantly in comparison to the (comparatively small)
fluxes in other parts of the network.

There is also relatively low correlation between FBA, and MFA in the Szecowka
dataset [215]. It is important to remember that the model is essentially of a sin-
gle cell. There are therefore discrepancies between the reaction structure of the
model and the metabolic conversions of a complete Arabidopsis rosette, for ex-
ample transportation between tissues is not explicitly incorporated in the model.
However, this discrepancy is also related to difficulties in the assumptions of the
flux balance analysis method. Although simple objective functions can be used
to generate reasonable estimates for flux in bacteria, and cell-suspension clus-
ters, as discussed in chapter 1, it is not clear that a simple linear optimisation
problem can be mapped onto the ‘true’ objective of more complex organisms.
Even bacterial fluxes appear to exist within some objective tradeoff space, and
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Figure 2.4: Flux predictions for reactions in central carbon metabolism using the curated
model are largely unchanged from the original Cheung model. The coefficient of deter-
mination (r2) between metabolic flux analysis flux, and flux balance analysis flux in the
Cheung 2013, and modified models we calculated over varied maintenance ATPase flux
constraints. Flux balance analysis values were taken as the mean of the upper and lower
reaction flux bounds found by FVA, as suggested in [205]. All fluxes were normalised by
uptake flux. There is some improvement in agreement between the the curated model and
the MFA estimated fluxes compared to the original model, but it is not clear that it is a
significant improvement, given experimental uncertainty, and particularly, the crudity of
the FVA approach. There is some variability in the optimal maintenance flux which fits the
data best between experiments, as indicated by the greatest coefficient of determination
being at different constrained ATPase flux values in the different facets. This is possibly a
consequence of different metabolic requirements under different experimental conditions.
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it is likely that more complex organisms with multiple cell types will be even
more complex, and in particular that different tissues may be best described
using different objectives. As such measured fluxes, averaged over the whole
organism, or even at the organ scale, are potentially difficult to recover using
flux balance analysis based methods.

In the particular case of the Szecowka dataset [215], mature rosettes are unlikely
to build much additional biomass, and instead predominantly produce interme-
diate metabolites for export to the rest of the plant. It is likely that altering
the biomass equation to better reflect the function of photosynthesising leaves
would improve the quality of the fit, although it is unlikely that it will be as
good as in the other datasets.

Figure 2.4 confirms that the quality of the flux predictions of the Arabidopsis
model has not been compromised by the modifications we have made in or-
der to improve other, (qualitative), predictions. We therefore now explore its
suitability, and the suitability of the FBA method for less introspective appli-
cations.

2.3 Genes which affect glucosinolates

2.3.1 Introduction

One use of genome scale models in bacteria is for the rational design of genetic
engineering strategies, in order to increase the production of metabolites of inter-
est [156]. In principle, the same approach can be used for the design of rational
genetic intervention strategies in plants. However, the majority of commercially
interesting metabolites are products of secondary metabolism, which in compar-
ison to primary metabolism is relatively poorly understood, and genome-scale
models of Arabidopsis have historically focused on central carbon metabolism
[41]. In order to assess the suitability of applying FBA, and the Arabidopsis
model to secondary metabolism, we investigated the quality of predictions of
the genes which affect the production of glucosinolates.

We focused on glucosinolates, due to 1.) their status as near ‘model’ secondary
metabolites [206], the biosynthesis of which is comparatively well understood.
This is indicated by the fact that a genome scale model has previously been
used for analysis of their production [17]. 2.) Glucosinolates integrate carbon,
nitrogen, and sulfur metabolism, and therefore their production is potentially
influenced by a large number of metabolically distant reactions, which could
be non-intuitive, but accessible through FBA analysis. 3.) Modification of
glucosinolate profiles is of interest due to their role in pest resistance [232], and
potential nutritional benefits [221].
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2.3.2 Comparison of FBA predictions to genes known, and
expected to affect glucosinolate production

Glucosinolates are produced from amino acids, and divided into three classes
according to their amino acid precursor. Aliphatic glucosinolates, are derived
from methionine, indolic glucosinolates are derived from tryptophan, and ben-
zenic glucosinolates are derived from phenylalanine or tyrosine. We first ensured
that the model was able to produce a wide variety of indolic, aliphatic, and ben-
zenic glucosinolates (see Table 2.14 in Appendix),

In order to initially assess the quality of glucosinolate related predictions derived
from FBA of the Arabidopsis model, and therefore validate this approach, we
compared model predictions regarding genes involved in glucosinolate produc-
tion, to genes which are known or expected to affect their production. Specifi-
cally, we compared those genes, which when knocked out in silico, are predicted
to alter the capacity for glucosinolate production, without significantly compro-
mising biomass production (see Methods), to experimentally identified genes
[28] which have been shown to affect glucosinolate profiles, and to genes which
are expected to affect glucosinolate production due to either biochemical, ge-
netic, or homology based evidence, or through expert expectation (these genes
are listed in Table 2.13 in Appendix, reproduced from [28]). This comparison
set consists of 16 genes which are known to affect glucosinolate metabolism, and
152 genes which are expected to.

Although it is expected that genes outside of this table also affect glucosinolate
metabolism, and it is ultimately these that we wish to identify, we considered
this set as a ‘gold standard’ to initially assess the quality of predictions being
made. This is similar to the approach taken by Chan et al. [28], who tuned
the threshold criteria used to identify candidate genes in their Genome Wide
Association Study (GWAS) to achieve the best performance in recovering the
members of this set.

The results of this analysis are shown in the top row of Table 2.2. This shows
that agreement between the predictions, and expected genes is quite high, specif-
ically, we see that both precision, and recall to the expected gene set is greater for
FBA derived predictions than was achieved by the GWAS approach [28].

The motivation for requiring that knockouts still be able to produce biomass,
is that many knockouts which prevent the production of glucosinolates are in
fact much more general, and prevent flux through much of the reaction network.
For example it is not clear that knocking out a reaction which prevents uptake
of the sole energy source available, thus preventing growth, is best considered
as a mutant which affects glucosinolate production. By including a biomass
requirement, we hoped to prevent the identification of these kinds of reactions,
which could be considered false positives. However, comparison of the top two
rows of Table 2.2 shows that not only is recall (the fraction of true positives
identified) greater without the biomass requirement, but so is precision (the
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Table 2.2: Flux balance analysis performs better at re-identifying expected glucosinolate
genes than GWAS. ‘Reaction KO’; reactions are individually prevented from carrying flux,
genes associated with reactions which affect glucosinolate production are reported. ‘Gene
KO’; all reactions associated with each gene are prevented from carrying flux. ‘& biomass’;
knock-out must still be capable of producing similar biomass flux to the ‘wt’ model. ‘no
biomass’; there is no requirement that the mutant must be able to produce biomass (see
Methods). ‘Correct predictions’; the size of the intersection between genes predicted by the
FBA approach, and the 168 genes expected to be involved, based on homology, biochemical
or genetic evidence, and biologically informed guesswork (listed in Table 2.13). Precision
is the number of correct predictions divided by total predictions. Recall is the number of
correct predictions divided by the number of expected genes. It can be seen that all FBA
approaches used have greater precision and recall than the GWAS experiment carried out
in [28].

‘correct’
predictions

number of
predictions

Precision
(%)

Recall
(%)

reaction KO, & biomass 29 220 13.18 17.26
reaction KO, no biomass 56 413 13.55 33.33
gene KO, & biomass 23 315 7.30 13.69
gene KO, no biomass 74 803 9.21 44.04
GWAS, 2007 12 1,056 1.13 7.14
GWAS, 2008 11 893 1.23 6.54

number of true positives divided by predicted positives).

This is partially a consequence of the comparison between the simulation of
total knockouts, to the expected gene set, which is based on the expectation of
altered function, rather than the total knockout of the gene. It is also partially
a consequence of the approach to mapping between reactions and genes; we
considered that each gene associated with a reaction was essential for its func-
tion which is not necessarily true. For example the model considers knockout of
each of the APS reductase isoenzymes to be lethal, although in reality they can
partially compensate for the loss of each other. Consequently the expected gene
table (Table 2.13), includes gene products as affecting the glucosinolate pheno-
type, which catalyse reactions which if knocked out completely would prevent
the formation of biomass. We could exclude predicted reactions for which the
gene:reaction mappings which are not 1:1 in the same way we previously did
when comparing to the lethal knockout database in subsection 2.2.1, however
this was found to severely compromise FBA recall, so as to offset any potential
benefit.

Upon manual examination of the reactions which were not correctly predicted,
we found that several false negative predictions, (i.e. genes which effect glu-
cosinolate production, but were not identified by flux balance analysis), were
caused by the existence of obvious parallel reactions in other subcellular com-
partments. To fix this error, rather than applying ‘reaction knockout’, we tried
applying a ‘gene knockout’, in which all reactions associated with a given gene
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product were simultaneously prevented from carrying flux. However although
this did address this problem, it introduced some others. It is not likely to be
true that each gene is essential for each reaction it is associated with, and so as
is shown in Table 2.2, we consistently end up with more false positive predic-
tions in the gene knockouts, as shown by the lower precision achieved. Although
recall was higher in ‘gene’ rather than ‘reaction’ knockout when biomass was
not also required, ‘Gene knockout, & biomass’ performs poorly, because genes
in the expected gene table (Table 2.13), prevent the formation of biomass when
knocked out, and so are not returned under these requirements.

Although it seems that dropping the biomass requirement does improve per-
formance, it is not clear that either of the reaction / gene approaches used
unequivocally performs best, instead they exhibit performance trade-offs. It
is also important to remember that we are only making a comparison to an
expected set, not the true set, and it is possible that this expected set itself
includes some false positives, as well as the presumed false negatives.

To examine whether the prediction inaccuracies could be improved through fur-
ther model curation, we looked in more detail at the identities of the expected
genes which FBA failed to predict. We saw that a large number of the genes
which are expected to affect the glucosinolate phenotype, were not identified
by the flux balance analysis due to not being included in the databases used to
map between gene identities and reactions (see Table 2.3). To find the cause for
this, we examined the identities of the genes. Table 2.4 shows the genes which
have previously been experimentally confirmed as involved, and which are fairly
representative of the full (expected) set. This indicates that the majority of
expected genes missing from the databases are beyond the scope of the reaction
network model. We are interested in mapping genes to catalysed metabolic re-
actions, and therefore the databases used do not include transcription factors,
and other genes associated with regulation. Regulatory processes are not incor-
porated into the model, and so could not be recovered by flux balance analysis,
even if the missing genes were in the databases. Only six genes are associated
with reactions which are not incorporated into the model.

Forty expected genes are included in the model, but not recovered by FBA using
the ‘gene KO, no biomass approach’ (gene identities are given in Table 2.16 in
Appendix). Of these, we see that 18 genes are associated with the breakdown
of glucosinolates or their precursors. FBA cannot easily recover genes which are
involved in metabolite breakdown or recycling, as typically these processes are
not used in the optimal predicted flux distribution.

In at least one case, an expected gene was not recovered because the particu-
lar glucosinolates it is involved in producing were not exportable in the model.
AOP2 is involved in the production of 2-propenyl-glucosinolate, and 3-butenyl-
glucosinolate, however these glucosinolates could not be produced from inor-
ganic substrates in the model, because it requires the production of an uncon-
sumed methane-sulfonate side product. Although this reaction can be included
in the reaction network structure of the model, it is so proximal to the pro-



2.3. GENES WHICH AFFECT GLUCOSINOLATES 51

Table 2.3: A large number of the expected genes were not recovered due to the absence of
gene:reaction mapping information. ‘Expected genes’ is the number genes which are ex-
pected to cause to a glucosinolate phenotype (see Table 2.13 in Appendix). The databases
used for mapping between genes and associated reactions were TAIR, and Biocyc, which
only include 120 of the 168 expected genes. Six genes which are associated with reactions
in these databases could not be mapped to the model due to reactions being absent from
the model.

number of unique genes
expected genes 168
of these, genes associated with reactions in
databases

120

of these, reactions in model 114

duction of these glucosinolates that it is unlikely to lead to widespread errors.
Consequently we conclude that modifications to the reaction network structure
itself are unlikely to result in significant performance improvements.

Aside from potential errors/incompleteness of the modelled reaction network,
it is possible that the other expected genes, which were not recovered by FBA
could be due to falsely included expected genes, but this seems relatively un-
likely. The expected genes are largely based on reasonable evidence, or very
obvious biological intuition, essentially through informal metabolic flux analy-
sis. For example many genes involved in methionine biosynthesis are expected,
presumably because they are expected to affect the production of methionine,
a glucosinolate precursor.

A more likely source of failure to recover expected genes is due the mapping
of genes to reactions. This could be due to the incorrect, or simply incomplete
mapping of genes to reactions. Although these genes are mapped to at least
one reaction in the model, there is no guarantee that this means that they are
correctly mapped, or that they are mapped to all of the reactions that they
should be, and particularly the reaction which actually causes the phenotype
effect. Additionally, as previously discussed, although the mapping between
genes and reactions is not necessarily 1:1, we employed an extremely simple
logic to relate them, in which all genes associated with a reaction were assumed
to be essential for its function. Although this is obviously a source of error, a
more sophisticated mapping approach requires extensive manual oversight, and
was not considered a good use of time, as this simplification can only cause
false positives, not false negatives when the production of biomass is not also
required.

We have seen that FBA approaches appear to perform relatively well in re-
covering genes which are expected to affect glucosinolate metabolism. This
agreement between FBA predicted, and biologically expected genes does some-
what validate the quality of the model. However, whilst this is encouraging, the
relatively high quality of flux balance analysis based predictions in comparison
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to GWAS is perhaps unsurprising. The genome scale model is partially built
through genetic studies as to which genes affect what phenotypes, and the reac-
tion network structure it incorporates is at least partially the underlying data
behind the biological intuition which identified many of the expected genes in
Table 2.13. The high agreement between these two approaches must be par-
tially considered a consequence of this somewhat incestuous methodology, and
does not necessarily reflect the (potentially unexpected) genes which are truly
important in controlling glucosinolate phenotypes.

Whilst the agreement with known and expected genes is encouraging, what is
more interesting is to see whether the model is able to make correct predic-
tions that are more obscure than those which are possible through intuition
alone. This non-obviousness could be caused by metabolic distance (many of
the expected genes are those which catalyse the steps immediately preceding
glucosinolate formation), or conceptually, for example it is trivial to expect
that sulfur assimilation genes might affect production of glucosinolates, the well
known sulfur containing metabolites. Although non-obvious predictions are
made (those FBA predictions which are not in Table 2.13 ), it does not au-
tomatically follow that these are of the same apparent quality as the obvious
predictions we have already discussed. In the next section we therefore compare
FBA predictions to GWAS, a somewhat unbiased method for identifying genes
involved in production of glucosinolate profiles.

2.3.3 Comparison of FBA to GWAS

In genome wide association studies (GWAS), natural variation in the genetics
of a population is used to assess the contribution of genetic loci to assessed
phenotypes. This is potentially a powerful tool for the investigation of genes
involved in a given phenotype, which is unbiased by previous knowledge. How-
ever, the underlying population structure, and linkage disequilibrium between
causative, and unrelated alleles can make it a potentially quite error prone pro-
cess [246].

We compared FBA predictions to the results of an unbiased GWAS into the loci
which affect glucosinolate production [28]. This was done primarily in order to
validate the FBA approach taken, by assessing whether non-obvious predictions
truly affected glucosinolate production, but also because both GWAS and FBA
methods are expected to be fairly error prone, with many false positive iden-
tifications. As GWAS and FBA are independent methods, relying on different
assumptions, we hoped that by using both methods in conjunction we could to
prioritise genes for further, targeted experiments, or at least generate hypothe-
ses as to the processes by which genes identified by GWAS affected glucosinolate
production.

Consistent with the idea that both methods result in large numbers of false
positives, Table 2.5 shows that there is relatively little agreement in the genes
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identified by GWAS, and FBA. However, there is some mutual consistency, as
across all FBA modelling approaches used, the number of genes predicted by
both methods is greater than the statistically expected overlap, which would be
expected by chance if FBA and GWAS made totally independent predictions.
This lack of complete independence is presumably because both methods are to
some extend independently identifying the true genes which affect glucosinolate
production, and somewhat validates both the FBA approach, and the particular
GWAS study used in this comparison.

Table 2.5: There is more agreement between GWAS and FBA approaches than expected by
chance. Statistically expected is the expected number of genes returned by both methods
assuming random, independent gene picking; calculated as

pgwas

agwas
· pfba

afba
· gboth where p is

the number of predicted genes, a is the number of genes considered in FBA (4,037), or
GWAS (31,505), and gboth is the number of genes in both the model, and GWAS study
(2,609), Biologically unexpected is the number of genes predicted by both the GWAS,
and FBA approaches which are not present in the biologically expected table (Table 2.13).
The overlap between predicted genes is greater than would be expected by chance if the
predictions were completely independent. This suggests that although the two methods are
independent from each other in how they work, they do contain some mutual information,
presumably because they both identify some true causal genes, validating both methods.
However, in each case, the number of biologically unexpected genes is similar to the
statistically expected overlap between the two methods. This suggests that the correct,
mutual identifications concern genes which are already intuitive, and that therefore FBA
modelling adds little information. The number of non-obvious predictions is similar to the
number that is expected by chance; it is therefore not clear whether or not the non-obvious
predictions made by both methods are actually more reliable than those predicted by only
one, or are a statistically inevitable consequence of the number of predictions made by two
independent error prone methods.

FBA approach
Genes

predicted
by FBA

Genes
predicted
by GWAS

Genes
predicted
by both

Statistically
expected

Biologically
unexpected

rxn KO and biomass 220 1646 15 7 7
rxn KO no biomass 413 1646 28 14 15

gene KO and biomass 315 1646 17 11 11
gene KO no biomass 803 1646 35 27 21

We saw that in this comparison, the simulated knockout of individual reactions,
rather than gene knockouts apparently leads to greater accuracy, as assessed by
the number of genes predicted by both FBA and GWAS, relative to the statis-
tically expected overlap in Table 2.5. However, the reaction based knockout
approach has a higher number of false negatives, as shown by the reduction in
the number of genes predicted by both FBA and GWAS. The reduced accuracy
of gene knockout approaches is presumably because of erroneous gene:reaction
mapping, and the overly robust assumption that a gene is essential for the func-
tion of all associated reactions, as previously discussed, leading to many more
genes being predicted to be involved in glucosinolate metabolism. We again
conclude that none of the described FBA approaches perform unequivocally



2.3. GENES WHICH AFFECT GLUCOSINOLATES 55

‘better’ than the others.

It appears that the majority of the genes which are mutually predicted by
GWAS and FBA approaches beyond the statistically expected number are due
to intuitive, biologically expected genes. This can be seen as the number of
biologically unexpected genes (the genes predicted by both FBA and GWAS,
but which are not in Table 2.13) is broadly similar to the statistically expected
number of mutually returned genes, based on the number of genes identified by
each approach.

This could be a consequence of the relative scarcity of true causal genes; for
example, in a conceptual scenario in which truly only 35 genes affect glucosi-
nolate prediction, the mutual use of GWAS and ‘gene KO no biomass’ FBA
approaches would have performed perfectly in eliminating the false positive
predictions made by either method alone, and the similarity of 21 biologically
unexpected genes to 27 statistically expected genes would be coincidental. How-
ever, this seems unlikely to be the case. Instead it is likely that the biologically
obvious predictions of the FBA modelling are of higher quality than the non-
obvious ones, to the extent that the non-obvious ones bear no more resemblance
to the GWAS study (and by implication therefore biological reality) than ran-
dom sampling. It is not clear therefore that the addition of FBA to a GWAS
study adds much more than biological intuition to the credibility of, or mech-
anistic explanation for any GWAS result, and it is certainly not clear that the
genes which are mutually predicted are any more likely to be correct than the
genes which were only identified by GWAS.

We investigated in further detail why there is so little agreement between the
FBA and GWAS approaches as to which genes are important, as depending
upon the underlying cause we may have been able to refine and improve our
approach.

We note that it is of course possible that GWAS is the inaccurate method, given
its relatively poor performance in recovering expected genes. However, this is
likely a consequence of its unbiased basis, which does not account for previous
knowledge of glucosinolate production. In comparison, as discussed previously,
FBA can be expected to perform relatively well in predicting expected genes,
as the model structure is designed so as to incorporate this kind of biological
knowledge, and relatively poorly in predicting genes which are non-obvious.
Furthermore, GWAS is a well established method for the identification of novel
trait loci. In comparison FBA, particularly in plants, has not been widely
applied to this kind of analysis.

The surprising lack of agreement is partly due to differences in genes covered by
the curated Arabidopsis model and the SNPs used for the GWAS. Of the 4,037
genes in the model, and 31,505 genes in the GWAS study, only 2,609 genes are
present in both. Consequently, of the 1,646 genes predicted to cause a glucosi-
nolate phenotype in the GWAS study, only 163 are included in the model at all.
It is also important to remember that although these genes are in the model,
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this does not mean that they are completely, or accurately included.

The difference in gene coverage goes some way to explaining the difference, but
there is still little agreement as to the important genes, even among the ones
which are included in both approaches. We speculate that this difference is
primarily because the different methods are primarily able to identify different
types of genes. FBA analysis can only identify enzymes, as regulatory genes
are not included in the model. Conversely, examination of the most common
gene ontology annotations among the genes identified by GWAS, (Table 2.6),
indicates that the types of genes returned by this approach are predominantly
regulators of enzymatic function rather than the enzymes themselves.

We hypothesise that this may be due to the insensitivity of the GWAS study
used. Any difference in regulator function is likely to be amplified through the
multiple enzymes they regulate, and therefore produce a larger phenotypic re-
sponse. Additionally, whilst FBA simulates the complete knockout of reactions
associated with each gene, the GWAS mapping population is unlikely to include
individuals with completely non-functional enzymes; instead it features individ-
uals with differently functional enzymes. Non-knockout mutations in enzymes
are likely to lead to relatively subtle phenotype changes, and it is not clear
that the phenotyping carried out in the GWAS study is sufficiently sensitive
to identify these loci. The enzymes which are identified by the GWAS study
tend to immediately proceed the production of the metabolite of interest, sug-
gesting that indeed, relatively subtle, metabolically distant enzymes cannot be
recovered. This is not to necessarily criticise the GWAS approach for failing to
identify these subtle effects; at some point an effect must be acknowledged to be
so subtle as to be effectively non-existent, and therefore perhaps uninteresting,
at least from an engineering viewpoint.

We have discussed differences in the relative strengths of FBA and GWAS for
identifying different types of genes. This explains why genes predicted by FBA
might not also be identified by GWAS, however it does not explain why those
genes identified by GWAS which are in the Arabidopsis model are not recov-
ered. This can partially be attributed to the large number of false positives
expected to be produced by linkage disequilibria in GWAS, but it must also
be acknowledged to potentially be due to errors in the model structure, and
the incomplete mapping of genes to reactions. Unfortunately it is not easy to
distinguish between these causes.

Although FBA is better at predicting already expected genes involved in glu-
cosinolate production than GWAS, it is not clear that it currently adds anything
to the process of the identification of novel factors which is not already available
through simple biological intuition. We initially hoped that FBA and GWAS
could be used in conjunction to prioritise selection of genes for further study,
however, we have seen that the different sensitivities of the approaches to differ-
ent types of genes makes this impractical, at least in the particular example we
have studied. Instead, in the future, as the quality of reaction network models
continue to improve, it may perhaps be more appropriate to consider the use of
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Table 2.6: The most common gene ontologies among the genes identified by GWAS as
causing a glucosinolate phenotype indicate that this approach predominantly identifies
regulators rather than enzymes. The most common associated location is the nucleus.
Kinase, and protein and DNA binding are all more common recovered functions than
catalytic activities. Regulation of transcription, and protein phosphorylation are among
the most common annotated processes. This helps to explain the lack of agreement
between GWAS and FBA approaches as the FBA model does not incorporate regulators.

(a) Location

Gene ontology counts
1 nucleus 853
2 chloroplast 384
3 cytoplasm 328
4 plasma membrane 316
5 mitochondrion 277
6 chloroplast stroma 268
7 chloroplast envelope 260
8 membrane 205
9 chloroplast thylakoid membrane 190
10 vacuolar membrane 126

(b) Function

Gene ontology counts
1 ATP binding 402
2 molecular function 369
3 protein kinase activity 214
4 protein serine/threonine kinase activity 196
5 protein binding 181
6 sequence-specific DNA binding transcription factor

activity
167

7 catalytic activity 137
8 zinc ion binding 118
9 nucleotide binding 115
10 transferase activity, transferring phosphorus-

containing groups
100

(c) Processes

Gene ontology counts
1 biological process 409
2 regulation of transcription, DNA-dependent 112
3 oxidation-reduction process 79
4 protein phosphorylation 75
5 metabolic process 71
6 embryo development ending in seed dormancy 49
7 response to salt stress 44
8 positive regulation of transcription, DNA-dependent 37
9 signal transduction 37
10 transmembrane transport 31
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both approaches in parallel primarily in order to have increased sensitivity over
all relevant types of genes, rather than for mutual validation.

2.4 Sulfur starvation comparison

2.4.1 Introduction

Sulfur is required for the growth of all organisms. In the environment, sulfur
is most commonly found oxidised in the form of sulfate (SO2−

4 ). Plants and
micro-organisms are able to take up sulfate, and reduce it, prior to incorpora-
tion in organic molecules. Sulfate uptake and assimilation are tightly regulated
according to plant demands for reduced sulfur (reviewed [216]).

As well as specialised, secondary metabolites, sulfur is required for the biosyn-
thesis of essential metabolites such as cysteine and methionine. These exemplify
the interconnectedness of sulfur metabolism with nitrogen and carbon. This
connectedness means that sulfur starvation results in widespread metabolic re-
sponses in numerous metabolic pathways throughout metabolism, for example
changes in nitrogen assimilation, photosynthesis, lipid breakdown, and auxin
and jasmonate production [151, 152, 135, 87]. Widespread affects meant that
the impact of sulfur stress is a potentially interesting target for FBA analysis
using a genome scale model, rather than a more focused kinetic model, due to
the large number of processes by which it could be affected.

Previous experimental studies have indicated that sulfur starvation results in
a broadly biphasic response; the response to relatively mild sulfur starvation
stress is very different to more severe stress (reviewed [80]).

Mild stress responses are generally specific to particular nutrients, for example
the induction of specific high affinity transport systems. In the case of sulfur
stress, the activity of high affinity sulfate uptake transporters (SULTR1;1 &
SULTR1;2) is induced [248], and synthesis of glucosinolates is reduced [88].
During this initial response phase, resupply of nutrients can restore normal
cellular functions and rescue the plant [80].

In contrast, severe nutrient stress leads to a more general emergency nutrient
deficiency response which is shared between several nutrients [80], and which is
characterised by an irreversible switch in the developmental program towards
senescence and maturation [240]. Resupply with nutrients does not reverse this
switch [80]. Nutrient depletion induced senescence is accompanied by reduced
protein synthesis rates [225], and decreased photosynthetic assimilation of car-
bon. Although severe nutrient stress exhibits many common responses between
nutrients, especially for the light reactions, Calvin-Benson cycle and photores-
piration, they are not identical. For example long term sulfur starvation, causes
the degradation of indole glucosinolates by nitrilase, in order to provide precur-
sors for auxin biosynthesis [117].
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We considered that this change in behaviour could be the consequence of switch-
ing between two distinct metabolic strategies, rather than a single increasingly
severe response. To investigate this behaviour, we therefore incorporated the
induction of sulfate transporters, and senescence into the model, as described
in Methods. This allowed the FBA model to induce additional sulfate uptake
transporter activity by paying a metabolic penalty cost related to the cost of
the synthesis of more transporter proteins. Senescence was modelled by the
creation of amino acids, with the constraint of reduced total flux through all
reactions in the system. This is intended to reflect the reduction in catalytic
enzyme activity, as in the FBA literature total flux through the system is often
equated to the total amount of catalytic enzymes required [32].

By incorporating these two strategies into the optimisation framework, we could
assess how the optimal behaviour for biomass production changed as sulfur stress
increased, and see how closely the experimentally observed behaviour corre-
sponded to the predicted optimal solution for the maximisation of biomass.

2.4.2 Nutrient response growth curve

We considered the behaviour of the induction, and senescence responses for
the optimal production of biomass as environmental sulfur concentration was
reduced (Figure 2.5, Figure 2.6). We manually explored the parameter space
of the model in order to find a parameter set in which both induction and
senescence were utilised in the induction and senescence models respectively,
and in which we see that both induction and senescence strategies were used
at some environmental sulfur concentration in the induction and senescence
model.

Figure 2.5 shows that as environmental sulfur decreases, the amount of biomass
producible decreases from an optimal level, of just over 0.8 arbitrary units, (at
which point glucose availability is limiting for growth), down to zero biomass
production at zero environmental sulfur for the induction, and base model, (in
which neither senescence nor induction are permitted), and a small, non-zero
value for the senescence, and induction and senescence models.

The growth curves for all four models approximate the classical saturation curve
shape expected from experiments in which growth is increasingly adversely af-
fected by increased nutrient stress. However, it is important to note that the
x-axis in Figure 2.5 corresponds to environmental, rather than internal sulfur
concentration curve, and that the saturation shape is purely a consequence of
the Michaelis-Menten kinetics applied to the uptake reaction. Conversely the
experimentally derived curve shape should also be seen when internal sulfur con-
centration is plotted on the x-axis. FBA is not well able to deal with metabolite
concentrations, but we note that biomass production linearly corresponds to
the sulfur uptake flux in the basal model, which we interpret such that biomass
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Figure 2.5: The effect of sulfur limitation on producible biomass in models of Arabidopsis
metabolism. All units are arbitrary. In the base model, uptake of sulfur is related to the
environmental concentration by Michaelis-Menten kinetics. In the induction model, the
model is able to increase uptake of environmental sulfur through the production of more
transporter. In the senescence model, import of amino acids is permitted, but permitible
total flux through all reactions in the model is concurrently reduced. In the induction and
senescence model, both strategies are available. This shows that the growth curves of all
models appear similar to the classical effect of nutrient deprivation on growth, that under
mild sulfur deprivation, induction of transporters is preferred over senescence, and that
optimal behaviour appears to be a switch between induction and senescence, rather than
their use in parallel at a given environmental sulfur concentration.
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Figure 2.6: The effect of sulfur stress on flux through sulfur uptake reactions in the
induction & senescence model. Basal transporter is flux through the un-inducible sulfate
uptake reaction present in all models, total S uptake is the summed flux through the basal
and inducible sulfate transported. The non-linear relationship between sulfur stress, and
additional requirement for nutrients and total flux is shown by the nature of the increase
in total S uptake flux at lower environmental sulfur concentrations above the level required
at sufficient sulfur levels; the increase in total sulfur uptake above the level required at
sufficient sulfur concentration is directly proportional to flux through the penalty reaction.
The switch between induction and senescence behaviour, (highlighted by arrow), can be
seen by the dramatic reduction in total S uptake at environmental sulfur concentration
approximately equal to 0.08.



62 CHAPTER 2. MODEL CURATION & FLUX BALANCE ANALYSIS

production could be predicted to be linearly related to internal sulfur concen-
tration.

Although sulfate is taken up from the environment, and stored in the vacuole, it
is exclusively reduced in the plastid, which it is transported into by SULTR3;1
[25]. In the presented model, concentration dependent kinetics were only incor-
porated into the (environmental) uptake transport step. Hence it is tempting
to speculate that the saturation curve seen experimentally, with reduced in-
ternal nutrient concentration, could be a consequence of analogous kinetics in
other transport or reaction steps reducing flux capacity as the concentration of
internal metabolic pools decrease.

Figure 2.5 shows that as suggested experimentally, transporter induction is the
optimal strategy under relatively small nutrient stress, in that by adopting this
approach, the greatest amount of biomass flux can be achieved. This is only
shown for one parameter set, however we were not able to find any model pa-
rameter set in which senescence was induced at relatively minor stress and
induction then took place at more severe stresses. This is a consequence of the
Michaelis-Menten kinetics used to calculate the penalty flux for activating the
inducible sulfur flux, which means that as environmental sulfur concentration
was decreased, the amount of transporter required to maintain a given uptake
flux increased non-linearly. This non-linear increase in penalty is indicated in
Figure 2.6, where the total amount of sulfur required is plotted, and increases ex-
ponentially as environmental sulfur decreases, as a consequence of flux through
the penalty reaction. Consequently, if, (for a given parameter set), induction is
not favourable at small nutrient stress, it cannot become favourable at higher
stresses, hence we cannot see an optimal strategy of senescence at moderate
stress, and induction at severe stress.

The rate of this non-linear increase in cost is a consequence of the arbitrary
parameter c in Equation 2.4, and the switching point between induction and
senescence is dictated by the values of c and m (see Equation 2.5 in Methods).
The parameter values used lead to somewhat unphysiological behaviour, (as
indicated, for example, immediately adjacent to the labelled ‘switching point’,
when environmental sulfur concentration is approximately 0.08 and almost all
of the sulfur taken up is used to produce more uptake transporter), however the
non-linear relationship will be be same for all positive values of c, and so this
qualitative discussion holds.

Figure 2.5 and Figure 2.6 show that, as a consequence of this non-linear be-
haviour, at some environmental sulfur concentration (here approximately 0.08),
the increase in flux through the penalty reaction becomes greater than the ben-
efit of the increased availability of sulfur, and the optimal solution for the in-
ducible model becomes the same as for the basal model, or the senescence model
for the induction and senescence model, and hence induction ceases.

Interestingly, we were not able to find any parameter set for which the induction
and senescence model was able to perform better than both the induction and
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senescence models for some contiguous range of environmental sulfur concentra-
tions. Consequently the induction and senescence model tracks whichever of the
individual strategies performs better at a given sulfur concentration, switching
between them, and at no evaluated point employing both behaviours concur-
rently (Figure 2.5).

This suggests that the optimal strategy for biomass production as sulfur avail-
ability decreases is indeed a switching behaviour between induction and senes-
cence, as suggested by implication in the literature, rather than the additional
recruitment of senescence to supplement induction of transporters. This is ap-
parently an inevitable consequence of non-linear transporter kinetics with re-
spect to substrate concentration, rather than the particular kinetic parameters
seen experimentally.

This mutual exclusivity is likely to be because the induction of transporters re-
quires a large number of metabolic products. Induction of uptake transporters
therefore necessitates an increase not only in nutrient requirements (as shown
in Figure 2.6, but also in total flux relative to the basal model, and so cannot be
integrated effectively with the reduction in permitted total flux caused by senes-
cence, leading to their exclusive use. We have not explicitly demonstrated that
this switch is irreversible, such that additional supply of sulfur does not reverse
the senescence phenotype, but given this result, it is intuitive that a system in
which reduced total flux is available due to the use of senescence cannot recruit
transporters to take advantage of additional nutrients supplied, without further
(transiently) compromising biomass production. Hence, a greedy approach to
optimisation, (in which every intermediate step must be better than the previ-
ous), cannot be expected to find the (globally) optimal solution of a return to
transporter induction without senescence.

In summary, based upon this modelling, we conclude that optimal behaviour
in response to nutrient stress is initial induction of high affinity transporters,
followed by catabolism at increased stress, and switching between the exclusive
use of induction and catabolism rather than their co-occurence. This result
appears to be independent of the particular parameters used in the model,
and is instead a consequence of the structure of the reaction network, and the
transporter kinetics. Although these results are quite nice, we wanted to relate
them more closely to experimental data, to assess more closely how well this
predicted optimal behaviour relates to the experimentally determined behaviour
of plants under different levels of sulfur stress.

Interestingly, we noticed that in many published studies, although the conditions
imposed upon the plants are reported, it is not necessarily clear to what degree
the organism is actually stressed. Different modelled flux distributions occur
under the induced transporter, and senescent lifestyles, and the relative flux
through these ‘diagnostic reactions’, could potentially be used to quantitatively
determine the level of stress imposed on the plant in a particular study, similar
to the approach taken by Cheung et al. [33] to estimate relative maintenance
costs.
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However for either of these ambitions to be realised, we wanted to confirm that
the flux distributions seen under sulfur stress relate to experimental distribu-
tions. We therefore compared the predicted flux changes under sulfur stress to
transcriptomic studies of sulfur starvation. As mentioned, the degree of stress
imposed in these studies is often unclear, and we therefore fit the parameters in
equations Equation 2.4 and Equation 2.5 to gene expression changes in the ex-
perimental data, so as not to impose an assumed induction or senescence based
lifestyle upon the experimental system.

2.4.3 Comparing predictions to gene expression data

In order to validate the reaction flux predictions of the model, we compared
it to published gene expression data under sulfur sufficient, and sulfur starved
conditions.

As ever, the use of transcriptomic data is not ideal; beyond transcriptional reg-
ulation, many components of sulfur metabolism are additionally controlled by
complex post-transcriptional regulation (reviewed in [216]). However, the avail-
able experimental data for sulfur starvation experiments was predominantly
from micro-array studies. We therefore considered gene response to sulfur star-
vation as a binary up/down response, as this is likely more robust both to the
limitations of the data, and the model.

FBA returns a single flux solution, however it is not necessarily the only optimal
solution, and may not be representative. We therefore used FVA [132] in order
to find the upper and lower flux limits for each reaction imposed by the objective
function, and the reaction network structure. We derived the predicted response
from the correlation of these upper and lower bounds as indicated in Table 2.12
in Methods.

Table 2.7 shows how closely the predictions correspond to previously published
sulfur starvation experiments. Across three smaller datasets, the experimental
data shows quite good agreement to the model predictions. However in the full
dataset of Marayuma-Nakashita [136], there is only just over 50% agreement.
As ‘correct’/‘incorrect’ is only assessed at the level of increase, or decrease under
low sulfur conditions, 50% correct is the level that would naively be expected
by chance. Therefore the FBA model cannot be considered to be performing
well on this dataset.

Interestingly, there is a difference in prediction performance between the genes
which are discussed by Maruyama-Nakashita et al., and therefore included in the
supplementary information of their paper, and their full dataset (Maruyama-
Nakashita et al., 2006 Supp. info versus All data in Table 2.7). We believe that
this is caused by two factors. Firstly, we speculate that Maruyama-Nakashita et
al. preferentially picked genes for discussion for which they had some explana-
tion, and therefore fit the existing biological knowledge which is incorporated in
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Table 2.7: Comparison between predicted and experimental response to sulfur stress.
Predictions were compared to three experiments. As the level of stress experienced by
the plant is not known, for each experiment, the parameters c, and M we fitted, so as
to maximise the correct percentage. This effectively fits whether induction, catabolism,
or neither strategy are used. The experimental data is from the papers [48, 151, 136].
Agreement to small datasets of curated, discussed data is comparatively good, compared
to agreement in the full micorarray experiment. This is likely because the data selected
for discussion in these papers exhibits a relatively large fold change, and makes intuitive
biological sense, and is thus more likely to be captured by the reaction structure of the
model.

Data # Correct # Incorrect % correct

D’Hooghe et al., 2013 9 4 69.2
Nikiforova et al., 2003 25 7 78.1

Maruyama-Nakashita et al., 2006 Supp. info 31 17 64.6
Maruyama-Nakashita et al., 2006 All data 1279 1263 50.3

the Arabidopsis model, and which is therefore better captured by the predictions
of the model than average.

Secondly, transcriptomic studies apply a ratio threshold above which a change
in expression is considered to be real and discussed, and below which is ig-
nored. The potential impact of this step on prediction quality is illustrated in
Figure 2.7. It is not clear that the majority of transcripts ‘truly’, or impor-
tantly change under sulfur stress. The expression ratio change is small for the
majority of genes, and could be due to experimental artefacts. Additionally,
the modal expression ratio is not 1.0 as might be expected, but 1.2. It is not
clear whether this shift is a true biological phenomenon, or an artefact of the
experiment performed.

This modal shift in the experimental distribution means that almost all tran-
scripts are considered to increase, whereas the predictions of the model are more
equally divided between increased and decreased flux. In fact, given difference
the distributions shown in Figure 2.7, numerical simulation suggests that the
model prediction accuracy of 50.3% is better than the majority (89%) of ran-
domly allocated predictions with the same distribution.

In the scores reported in Table 2.7, we considered all expression ratios as in-
dicative of a change in expression. Figure 2.8 shows that the prediction quality
increases as we impose a more extreme cutoff threshold for experimental changes
in expression ratio, and that for very extreme fold changes, predictions are quite
accurate. This is not to suggest that the lack of agreement is entirely caused by
experimental error. The cutoff threshold continues to affect prediction quality
far above the cutoff thresholds used in the literature which are usually in the
order of 1.5-2.0x [48, 151, 136], (at which prediction accuracy is only 54.4%),
suggesting that the model is truly better at predicting transcripts which vary
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Figure 2.7: The distributions of predicted correlation coefficients, and expression ratios are
very different. The majority of genes do not appear to vary much in response to sulfur
stress, conversely the model incorrectly predicts that most reactions should either increase
or decrease response to sulfur stress. The distribution of expression ratios is centred at
approximately 1.2. It is not clear whether an expression ratio of 1.0, or 1.2 should be
considered as the ‘no change’ value. By imposing a more extreme cutoff ratio, we are able
to bystep this issue, as well as reducing experimental error, and only considering genes
which are more likely to ‘truly’ vary in expression.

strongly (rather than weakly) in response sulfur starvation.

Although conditions can be found for which model performance is significantly
improved, it is not necessarily clear from the predictions themselves which are
more likely to be correct. We therefore attempted to find indicators of a pre-
dictions likely accuracy based only on the model output.

Figure 2.9 shows that there is no useful difference in the quality of the predictions
based on the magnitude of the predicted correlation coefficient, although there is
a slight tendency for predictions of a large, negative correlation between reaction
flux and environmental sulfur to be more likely to be correct than others.

It is not expected that the quality of the reaction network model is equivalent
across all regions of metabolism, and we thought that reaction location could
potentially be used to weight prediction confidence. To integrate spatial infor-
mation into our predictions, we divided the reaction network into clusters of
contiguous reactions (the product of one is the substrate for the next) based
on predictions of increased, or decreased flux under sulfur stress (Figure 2.10a).
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Figure 2.8: Prediction accuracy is greater for transcripts which vary more greatly under
high and low sulfur conditions. When we varied the expression ratio threshold, and only
considered genes whose expression changed by at least this value, we found that prediction
accuracy, and that F1 score increased, although with a decrease in the number of genes
which could be considered. The top panel illustrates ‘inner’ as those genes whose expression
ratio is between the expression ratio threshold, and 1 over the expression ratio threshold.
‘% correct is the fraction of predictions which are correct, equivalent to ‘precision’ in
Equation 2.6 calculation of the F1 score is described in Methods. Both % correct, and
accuracy increase over the considered points, until no more genes are considered beyond
a 32 fold cutoff threshold .
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Figure 2.9: Correlation strength is not a good indicator of the reliability of a prediction. We
see that there is little difference in the correlation coefficient distribution between reaction
flux and environmental sulfur concentration for correct predictions, and all predictions,
and therefore correlation strength cannot be used to distinguish a subset of higher quality
predictions.

We then superimposed whether these predictions were in agreement or disagree-
ment with experimental changes in the Maruyuma-Nakashita full dataset [136]
onto these clusters (Figure 2.10b).

These clusters do tend to segregate correct and incorrect predictions, such that
predictions within each cluster tend to be mostly correct, or mostly incorrect to
an greater extent than would be expected if the correct and incorrect predictions
were distributed randomly.

This distribution further validates the reaction network structure, as the struc-
ture causes flux through sets of reactions to covary in a way which is consistent
with the observed experimental data. The dominant source of error is in the
direction of the change under sulfur stress. The mistakes the model makes in
comparison to the transcript data is therefore likely to be caused by either: 1.)
the objective function, 2.) the implementation of induction, and senescence, or
3.) the assumption that induction and senescence are the plant response to sul-
fur starvation. However, although isolating the problem to these steps is good,
in that it suggests that the time intensive process of reaction network building
has not been a waste of time, it is not clear how these errors can be easily fixed
under the FBA framework.

Figure 2.9 does suggest a potential method for the extension of the experimental
data using this network structure information, without the need for the poten-
tially false assumptions imposed. Within each cluster, a prediction of ‘up’ /
‘down’ can be assigned to the reactions which are not covered by the experiment
(grey nodes), based on the consensus direction of the experimental data within
the cluster. By integrating these changes as constraints on the flux bounds of
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Figure 2.10: Network structure does relate to transcript behaviour. We broke up the reac-
tion network into contiguous reaction clusters (such that the product of one reaction is the
substrate for connected nodes) on the basis of predicted response to environmental sulfur
(Figure 2.10a). Blue reaction nodes indicate a negative Pearson’s correlation coefficient,
red indicates positive. In Figure 2.10b, we superimposed a whether the production was
correct or incorrect (green; correct, red; incorrect; purple; multiple linked genes which
respond in different directions, grey; no mapped gene). We see that generally a linked
reaction cluster is either correct or incorrect, indicating that transcripitional response does
relate to network structure, and flux predictions, but the incorrect step is in the response
of these clusters, although it is correct that the clusters should behave in the same way.
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the Arabidopsis model as described in various papers, (reviewed [130]), this in-
tegration could also potentially provide insight as to the metabolic consequences
of observed gene expression changes under sulfur starvation.

Overall in this section, we have seen that agreement between model predictions,
and published gene expression data is reasonable, but is not very good. This is
a consequence of the very different distributions of predicted, and experimen-
tal changes, however the extent to which these differences are artefacts of the
experimental methodology is unclear.

Model derived errors are likely a consequence of the FBA optimisation assump-
tion, and the implementation of induction, and senescence within the model,
rather than the reaction network structure itself. The modelling approach we
have taken is very crude. It is likely that the biomass equation should change
under the ‘senescent’ lifestyle, and although FBA requires the assumption that
metabolism is regulated so as to achieve some metabolic ‘objective’ (see chap-
ter 1), it seems unlikely that this is well approximated by biomass production
under senescence. Furthermore nutrient starvation leads to a reduction in pho-
tosynthesis, which causes photo-oxidation. This additional stress is not easily in-
corporated into the model, but is likely to lead to widespread metabolic changes
in the experimental data. Under senescence, we imposed a general reduction in
total flux, essentially penalising all reactions equally, however different reactions
require different amounts of protein, depending on catalytic activity, and it is
not clear that the data generation required for incorporating this idea into the
model is practically accomplishable.

It is not necessarily easy to address these issues, and consequently the use of
the model to further investigate the switching behaviour described in subsec-
tion 2.4.2 in response to sulfur starvation was reprioritised in favour of other
uses for the genome scale reaction network.

2.5 Conclusion

In this chapter, we have further developed a previously published model of
Arabidopsis metabolism. We have assessed the suitability of this model and
FBA for the analysis of secondary metabolite phenotypes, and also used it for
the investigation of plant response to nutrient deficiency stresses.

Genome scale models are important not only for use in predictive modelling,
but also as data structures to integrate metabolic and genetic information. It is
therefore important to continue to refine and expand these models as more in-
formation becomes available to keep them up to date, irrespective of immediate
improvements to model FBA predictions. As such, although the further curation
of the model has only led to slight improvements in predicted flux distribution
relative to tracer experiment data, the improvement the prediction quality of
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growth/no growth phenotypes indicates that the changes made are useful, and
represents steps towards a ‘correct’ model of Arabidopsis metabolism.

We have consistently seen that FBA performs well in recapturing and providing
additional insight to explain ‘expected’ behaviour. However, particularly in
relation to the production of glucosinolates, it is difficult to claim that we have
gained a useful, novel, insight in agreement with experimental data. In applying
FBA to secondary metabolism, we have moved away from the traditional areas
of strength for metabolic flux analysis, in order to assess its use for potentially
more commercially interesting areas of metabolism. The quality of predictions is
a function of the extent to which the behaviour of the studied phenomena is an
emergent property of existing knowledge, integrated into the model, as opposed
to unknown biological agents. Therefore although our findings suggest that the
current state of plant genome scale models is not sufficiently high to be usefully
applied to secondary metabolism, this is not expected to be the case forever.
Interestingly, we have seen that FBA and GWAS approaches perform differently
in relation to the types of genes which are recovered. This suggests that as plant
models improve, FBA based approaches are likely to have a useful place in the
suit of approaches for identifying the causes of complex, commercially interesting
phenotypes.

Overall, we have seen abundant evidence that the underlying model used does
correctly capture the reaction system. This was the case in the input output
requirement predictions, high predicted flux correlation to MFA data in central
metabolism, good recovery of expected glucosinolate mutants, and even rea-
sonable predictions of the response to stress. Furthermore we have seen some
evidence that errors are imposed on the model structure partially by the assump-
tion of some optimality criteria required by flux balance analysis. Therefore in
chapter 3, we use the same reaction network for elementary flux mode analy-
sis, which does not impose these assumptions, and instead focuses more on the
capabilities of the metabolic network.

2.6 Methods

2.6.1 Flux balance analysis

In this study, flux balance analysis was carried out using the COBRA tool-
box (https://opencobra.github.io/) for MATLAB, and the Gurobi linear
programming solver (http://www.gurobi.com/).

A metabolic network consisting of C metabolites, and R reactions can be repre-
sented by the stoichiometric matrix S, where element S{c,r} is the stoichiometric
coefficient of metabolite c in reaction r. Substrates have negative coefficients,
products positive. vr represents flux through reaction r For each reaction in
(r = 1, ..., R). Steady state flux solutions can be found by solving the equation

https://opencobra.github.io/
http://www.gurobi.com/
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R∑
r=1

S{c,r}vr = 0, ∀c ∈ I (2.1)

lb ≤ v ≤ ub

where I is the set of all internal metabolites, and lb and ub are vectors of lower
and upper bounds on permissible flux values.

Most plants take up nitrogen in the form of ammonia and nitrate. In this chap-
ter, nitrogen uptake was constrained to be 50% nitrate, and 50% ammonium.
Photorespiratory metabolism was simulated by additionally constraining the ra-
tio of carboxygenic to oxygenic rubisco catalysed reactions to three. NADPH
oxidation reactions in the cytosol, plastid, and mitochondria were constrained
to the ratio 1:1:1.

A ‘maintenance cost’ representing miscellaneous energy requirements of the cell
is commonly applied, by the additional constraint

vATPase = m (2.2)

where m is constant, and vATPase is flux through the ATPase reaction

ATP −→ ADP + Pi.

In flux balance analysis, degenerate solution space is reduced by additionally
imposing an objective function. Here the objective function was to maximise:
vb subject to Equation 2.1, and Equation 2.2, where vb is flux through some
‘biomass reaction’, an export reaction, in which individual biomass components
are exported from the model, representing the production of biomass in the
organism.

For each previously published model we assessed, we used the incorporated
biomass model.

The exported components, and the required ratios used in the modified Cheung
model are shown in Table 2.8, and were predominantly derived from the equa-
tion used in [33], and supplemented by the conclusions of manual curation as
described in subsection 2.2.1 & subsection 2.2.2.

In order to find blocked reactions, rather then maximising flux through the
biomass reaction, flux through each reaction was maximised and minimised.
Reactions for which maximum and minimum flux were both zero were considered
to be blocked.

Because FBA does not guarantee the existence of a single solution, flux variabil-
ity analysis (FVA) was used as previously described [132]. As such, after the
primary objective was initially optimised, the optimal value was imposed as an
additional constraint, and flux through each individual reaction was maximised
and minimised in order to find its permissible bounds.
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Table 2.8: The metabolic components of the biomass equation.

Metabolite Ratio

Starch 0.73737832
Cellulose 5.24035317
Xylan 1.13494168
Fatty Acid 0.77115239
Glycerol 0.35252681
4-aminobutanoate 0.09635973
Fumarate 0.00569181
Sucrose 0.20702776
Citrate 0.26372076
Malate 0.42965891
TYR 0.16540407
GLU 0.29439008
LYS 0.25644188
VAL 0.31204192
PHE 0.23737933
GLN 0.29439008
THR 0.20656579
MET 0.10868391
SER 0.36452647
GLY 0.20656579
HIS 0.07877583
LEU 0.35940421
ASP 0.24423117
ILE 0.16493083
ALA 0.45610963
ASN 0.24423117
ARG 0.24870892
ASP 0.09364807
Potassium 1.80000000
Calcium 0.88000000
Magnesium 0.58000000

(a) Published Cheung 2013 model.

Metabolite Ratio

growth no growth
ascorbate 1e−6

beta-alanine 1e−6

biotin 1e−6

chlorophyll-A 1e−6

cholesterol 1e−6

glutathione 1e−6

lipid-IV-A 1e−6

NAD 1e−6

pantothenate 1e−6

plastoquinol 1e−6

pPRO 1e−6

putrescine 1e−6

thiamine pyrophosphate 1e−6

tetrahydrofolate 1e−6

tocopherol 1e−6

blocked reactions
cdp-ethanolamine 1e−6

pTRP 1e−6

coumarin 1e−6

dhurrin 1e−6

gibberellin A110 1e−6

gibberellin A97 1e−6

siroheme 1e−6

heme 1e−6

Beta-alanine betaine 1e−6

sinapaldehyde glucoside 1e−6

syringin 1e−6

quercetin 3 3’ 4’ 7-tetrasulfate 1e−6

benzyl-isothiocyanate 1e−6

1 3 5-trimethoxybenzene 1e−6

thio-molybdenum cofactor 1e−6

ayapin 1e−6

coniferaldehyde glucoside 1e−6

demethylmenaquinone-13 1e−6

all-trans-4 4’-diapophytofluene 1e−6

all-trans-dodecaprenyl diphosphate 1e−6

L-methionine-(S)-S-oxide 1e−6

cyclic AMP 1e−6

all-trans-undecaprenyl diphosphate 1e−6

dammarenediol II 1e−6

3-methylsulfinylpropyl-glucosinolate 1e−6

8-methylthiooctyl-glucosinolate 1e−6

5-methylthiopentyl glucosinolate 1e−6

7-methylthioheptyl-glucosinolate 1e−6

6-methylthiohexylglucosinolate 1e−6

4-methylsulfinylbutyl-glucosinolate 1e−6

4-methylsulfinylbutyl-glucosinolate 1e−6

indolylmethyl-glucosinolate 1e−6

(b) Added during model curation due to ei-
ther the growth/no growth prediction analy-
sis, or the blocked reaction analysis.
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2.6.2 Comparison of metabolic flux analysis to flux bal-
ance analysis

Metabolic flux analysis (MFA) is a method for the determination of metabolic
pathway fluxes based on the experimentally determined distribution of a la-
belled element among metabolites. Although it is based much more closely
on experimental data than FBA, it relies on the imposition of a conceptual
metabolic model of the intracellular reactions, and fluxes are predicted for this
model. For comparison between metabolic flux analysis, and flux balance anal-
ysis, MFA reaction fluxes were mapped onto the FBA model via the grouping of
FBA reactions, the fluxes of which were combined, and compared to the MFA
prediction. The flux range of grouped FBA reactions was calculated by FVA
of the summed flux though the grouped reactions. Mapping to metabolic flux
data in [33, 139, 243, 244] was as described in [33, 243], otherwise the mapping
is as shown in Table 2.9.

2.6.3 Mapping genes to reactions

We mapped genes to model reactions, by incorporating the information in the
TAIR database ([91], https://www.arabidopsis.org/) and Biocyc databases
([253], http://biocyc.org/) into the curated Arabidopsis model. This resulted
in the association of 4,037 unique genes to 1,812 reactions. Genes are often
associated with to multiple reactions, and vice versa. This mapping was purely
automated, and is not considered to be of particularly high quality, for example
these databases generally do not include compartment specific information, and
genes associated with reactions which occur in multiple compartments were
mapped to all instances of the reaction.

2.6.4 Identifying genes & reactions predicted to affect glu-
cosinolate production

To identify the genes which are predicted to affect glucosinolate production, we
carried out FBA. After removing all glucosinolates from the biomass equation,
we calculated maximum biomass production (bwt), and maximum production
of the target glucosinolate, (twt), in the wild-type plant for each glucosinolate
in the model (Table 2.14).

For ‘reaction knockout’; for each target glucosinolate (t), we sequentially applied
the constraint vi = 0 ∀(i = 1, ..., R) to simulate the knockout of every reaction
singly. Alternatively, for ‘gene knockout’; we simulated the knockout of each
gene, by simultaneously constraining flux through all reactions associated with
a given gene to zero. This is expected to result in a relatively large number of
false positives, as 1.) not all genes associated with a reaction are expected to
be essential for that reaction, 2.) due to the lack of compartment information

https://www.arabidopsis.org/
http://biocyc.org/
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in reaction:gene databases, we often associate a gene to every instances of the
catalysed reaction across all compartments.

In knockouts for which

tKO < twt −
twt

1000

meaning that the potential to produce the glucosinolate of interest is reduced,
for reaction knockout, we report all genes associated with the reaction, or for
gene knockout we report the gene identity.

These methods also return knockouts which would not be considered glucosino-
late mutants, because the effect is much more general, for example by preventing
any non-zero steady state flux through any reactions. We therefore also con-
sidered a variant in which reactions/genes were only reported if biomass, (b),
production was not catastrophically effected in the knockout, that is if

bKO >
bwt
10

.

2.6.5 Modelling sulfur limitation

To model sulfur limitation simply, we used the Michaelis-Menten equation Equa-
tion 2.3 to relate the the maximum allowed flux through the sulfate uptake
reaction to the environmental sulfur concentration.

v =
Vmax · [Senv]
Km + [Senv]

(2.3)

We arbitrarily set the Michaelis-Menten constant, Km = 0.05, and Vmax = 1000,
v is the calculated upper limit for permissible flux through this basal sulfate
transporter. We modified the level of sulfur stress by varying the concentration
of environmental sulfur, [Senv].

To model the response to decreased sulfur availability, we assumed that sulfur
starvation can lead to two physiological responses; induction of sulfate trans-
porters to increase uptake from the environment, and senescence, leading to
catabolism of complex molecules to recycle of sulfur, and a reduction in total
catalytic enzyme capacity.

We added an ‘inducible’ sulfate uptake reaction,

3H+
pumped

vind−−−→ SO2−
4

which allows the uptake of sulfate from the environment, powered by a proton
gradient, and a cost, or penalty reaction in which tRNA molecules charged with
amino acids, and pseudo metabolites representing energy costs, are consumed.
This represents the increased protein required for the production of additional
transporters (Table 2.10).
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Table 2.10: The vpenalty reaction equation consumes charged-tRNA molecules, and energy
associated with protein production. The ratios of amino acids are based on relative amino
acid frequencies in the FASTA sequences in the inducible Sulfate transporters SULTR1;1,
and SULTR1;2.

Substrates Products

0.058 Charged-ALA-tRNAs[c] 0.058 ALA-tRNAs[c]
0.023 Charged-ARG-tRNAs[c] 0.023 ARG-tRNAs[c]
0.020 Charged-ASN-tRNAs[c] 0.020 ASN-tRNAs[c]
0.032 Charged-ASP-tRNAs[c] 0.032 ASP-tRNAs[c]
0.007 Charged-CYS-tRNAs[c] 0.007 CYS-tRNAs[c]
0.022 Charged-GLN-tRNAs[c] 0.022 GLN-tRNAs[c]
0.018 Charged-GLT-tRNAs[c] 0.018 GLT-tRNAs[c]
0.045 Charged-GLY-tRNAs[c] 0.045 GLY-tRNAs[c]
0.013 Charged-HIS-tRNAs[c] 0.013 HIS-tRNAs[c]
0.063 Charged-ILE-tRNAs[c] 0.063 ILE-tRNAs[c]

0.066 Charged-LEU-tRNAs[c]
vpenalty−−−−−→ 0.066 LEU-tRNAs[c]

0.038 Charged-LYS-tRNAs[c] 0.038 LYS-tRNAs[c]
0.018 Charged-MET-tRNAs[c] 0.018 MET-tRNAs[c]
0.044 Charged-PHE-tRNAs[c] 0.044 PHE-tRNAs[c]
0.032 Charged-PRO-tRNAs[c] 0.032 PRO-tRNAs[c]
0.045 Charged-SER-tRNAs[c] 0.045 SER-tRNAs[c]
0.035 Charged-THR-tRNAs[c] 0.035 THR-tRNAs[c]
0.005 Charged-TRP-tRNAs[c] 0.005 TRP-tRNAs[c]
0.018 Charged-TYR-tRNAs[c] 0.018 TYR-tRNAs[c]
0.051 Charged-VAL-tRNAs[c] 0.051 VAL-tRNAs[c]
0.653 Protein-polymerisation-cost
0.653 Protein-processing-cost
0.653 Protein-tranlocation-cost

.

Flux through vind and vpenalty reactions are related based upon the Michaelis-
Menten equation (Equation 2.3). We assumed that flux through vpenalty is
proportional to enzyme concentration, and therefore to Vmax in Equation 2.3,
giving

vpenalty =
vind · (Km + [Senv])

[Senv] · c
(2.4)

in which Km is the Michaelis-Menten constant, [Senv] is the concentration of
environmental sulfur available for uptake by the plant (arbitrary units), and c
is some constant relating flux through vpenalty to Vmax, scaling the severity of
the cost of inducing transporters. We set Km = 0.05, the same as that for the
basal, uninducible sulfate transporter.

To model potential catabolism of proteins to enable the recycling of sulfur, we
added a reaction, vcat, which allows the import of amino acids in the ratios
shown in Table 2.11.

The penalty imposed for using the vcat reaction to produce amino acids is that al-
lowable total flux through the system was reduced, proportional to flux through
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Table 2.11: Amino acids and stoichiometries produced by the vcat reaction. Relative ratios
of amino acids are proportional to their frequency in Arabidopsis, based on [119].

vcat products
4.0 ASP[c]
0.5 CYS[c]
7.0 GLT[c]
1.0 ASN[c]
3.5 SER[c]
5.0 GLN[c]
0.5 HIS[c]
1.5 GLY[c]
2.5 THR[c]
0.05 ARG[c]
2.5 THR[c]
0.05 ARG[c]
2.0 ALA[c]
0.05 TYR[c]
0.05 TRP[c]
0.05 MET[c]
0.2 VAL[c]
0.05 PRO[c]
0.1 PHE[c]
0.05 ILE[c]
0.05 LEU[c]
0.5 LYS[c]

vcat, reflecting a reduction in available enzymes. This was implemented by
adding the constraint

Mvcat +

N∑
i=1

v−Si ≤
N∑
i=1

v+Si (2.5)

where vcat is flux through the vcat reaction, v−Si is flux through reaction i under
test, low sulfur conditions, v+Si is flux through reaction i under control, sulfur
replete conditions, and M is some arbitrary scaling constant.

The arbitrary constants c, andM , were manually varied to explore the behaviour
or biomass production at different environmental sulfate concentrations, and set
so as to allow both catabolism and induction to be utilised over the range of
tested sulfate concentrations.
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2.6.6 Comparison to transcript data

For comparison to transcript data, parameters M and c were optimised so as to
minimise the number of incorrect predictions using the scipy.basinhopping

algorithm, as it was not clear whether induction, catabolism, or both were
occurring in the experimental data, and by doing this, the use of induction or
catabolism can be fitted to the data.

Flux balance analysis often returns only one example of a number of optimal flux
distributions, we therefore used flux variability analysis (FVA) [132], in which
after the initial optimisation step, this is added as an additional constraint, and
flux through each reaction is maximised and minimised to calculate the upper
and lower flux bounds permitted by the objective function, and reaction network
structure. Reaction response can be a relatively complex, non-linear function
with respect to environmental sulfur concentration. To simplify this to a single
number for each boundary, we calculated the correlation coefficient between the
bound, and environmental sulfur concentration.

We compared these predicted bounds to the transcript expression ratio under
sulfur stressed, and sufficient conditions from previously published studies ([48,
151, 136]).

The model predicts changes in the lower, and upper bound, therefore each
reaction is associated with two predictions, in comparison the transcrptiomic
data give only a single number per gene product. In order to map predictions of
the changing flux boundaries to the experimental data, and score predictions as
either correct, incorrect, or uninformative, we employed Table 2.12 as a lookup-
table to score predictions.

We considered reactions for which the bounds change in an opposite manner as
uninformative, but did compare predictions for which only one bound changes,
as for many reactions redundancy in metabolic pathways means that the lower
flux bound is unchanging, and zero across sulfur concentrations.

We considered predictions qualitatively rather than quantitatively due to the
simplifying use of correlation coefficient to determine the models prediction,
and the often poor correlation between transcript abundance and catalytic ac-
tivity.

2.6.6.1 F1 score

The F1 score is a measure of a predictive model’s performance. It considers
the ‘precision’ of the predictions (the number of correct positive predictions
divided by the total number of positive predictions) and ‘recall’, the fraction of
true values which are correctly recovered (number of correct positive predictions
over true positive samples). ‘Positive’ predictions were considered to be either

scipy.basinhopping
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Table 2.12: Table for scoring flux boundary predictions relative to experimental expression
ratios. Predicted correlation is correlation between the predicted boundary, and environ-
mental sulfur available, −S

+S
‘Expression Ratio’ is the experimental transcript expression

ration in low versus high sulfur conditions, 3 indicates a correct prediction, 7 indicates an
incorrect prediction, – indicated an uninformative prediction. Cases where multiple gene
identifiers map to a reaction or vice versa, and the genes/reaction did not behave in a
consistent manner were ignored.

Predicted Correlation −S
+S Expression Ratio

min max < 1 > 1
+ve +ve 3 7
+ve –ve – –
+ve 0 3 7

0 +ve 3 7
0 0 – –
0 –ve 7 3

–ve 0 7 3
–ve +ve – –
–ve –ve 7 3

predicted increase, or decrease in flux in response to sulfur stress, depending
upon which response was rarer. The F1 score is defined as

F1 = 2 · precision · recall
precision+ recall

(2.6)

precision =
|u ∩ v|
|v|

(2.7)

recall =
|u ∩ v|
|u|

, (2.8)

where v is the set of rare predictions, and u is the set of genes whose expression
ratio indicates the same response.
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2.7 Appendix

Table 2.13: Genes known or predicted to be involved in glucosinolate metabolism and
regulation, reproduced from Chan et al. [28]. AGI shows the Arabidosis Genome Initiative
identifier for each gene; Pathway shows the particular part of glucosinolate metabolism in
which the gene is predicted to function; Evidence shows the experimental evidence (Genetic
or Biochemical) or sequence evidence based on homology to a validated glucosinolate gene
(Homology).

AGI Gene name/Description Pathway Evidence

AT5G25980 TGG2 GLS Breakdown Biochem
AT5G26000 TGG1 GLS Breakdown Biochem
AT5G48375 TGG3 GLS Breakdown Biochem
AT1G47600 TGG4 GLS Breakdown Biochem
AT1G51470 TGG5 GLS Breakdown Biochem
AT1G51490 TGG6 GLS Breakdown Biochem
AT3G09260 PYK10 GLS Breakdown Biochem
AT1G66280 glycosyl hydrolase family 1 protein GLS Breakdown Homology
AT2G44490 PEN2 GLS Breakdown Biochem
AT1G52400 BGL1 GLS Breakdown Homology
AT1G54040 ESP GLS Breakdown Biochem
AT1G54045 GLS Breakdown Biochem
AT3G16390 AtNSP3 GLS Breakdown Biochem
AT3G16400 AtNSP1 GLS Breakdown Biochem
AT2G33070 AtNSP2 GLS Breakdown Biochem
AT3G16410 AtNSP4 GLS Breakdown Biochem
AT5G48180 AtNSP5 GLS Breakdown Biochem
AT3G07720 GLS Breakdown Homology
AT3G14210 ESM1 GLS Breakdown Biochem
AT1G54010 AGG1/ESM2 GLS Breakdown Biochem
AT1G54020 myrosinase-associated protein GLS Breakdown Homology
AT1G54000 myrosinase-associated protein GLS Breakdown Homology

AT3G14220
GDSL-motif lipase/

hydrolase family protein
GLS Breakdown Homology

AT1G54030 GDSL-motif lipase family protein GLS Breakdown Homology
AT1G52030 MBP2 GLS Breakdown Biochem
AT1G52040 MBP1 GLS Breakdown Biochem
AT2G39330 jacalin lectin family protein GLS Breakdown Homology
AT2G39310 jacalin lectin family protein GLS Breakdown Homology
AT3G16470 JR1 GLS Breakdown Homology
AT3G16450 jacalin lectin family protein GLS Breakdown Homology

AT3G21380
myrosinases binding protein

like protein
GLS Breakdown Homology

AT3G16440 ATMLP-300B GLS Breakdown Homology
AT3G16460 jacalin lectin family protein GLS Breakdown Homology
AT2G25980 jacalin lectin family protein GLS Breakdown Homology
AT1G33790 jacalin lectin family protein GLS Breakdown Homology
AT1G52100 jacalin lectin family protein GLS Breakdown Homology
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AT1G60110 jacalin lectin family protein GLS Breakdown Homology
AT1G60095 jacalin lectin family protein GLS Breakdown Homology
AT1G57570 jacalin lectin family protein GLS Breakdown Homology
AT5G35940 jacalin lectin family protein GLS Breakdown Homology
AT5G35950 jacalin lectin family protein GLS Breakdown Homology
AT1G60130 jacalin lectin family protein GLS Breakdown Homology
AT1G52000 jacalin lectin family protein GLS Breakdown Homology
AT3G16420 PBP1 GLS Breakdown Biochem
AT3G16430 jacalin lectin family protein GLS Breakdown Homology
AT1G16410 CYP79F1 Aliphatic Glucosinolate Biochem
AT1G16400 CYP79F2 Aliphatic Glucosinolate Biochem
AT1G18590 ATST5C Aliphatic Glucosinolate Biochem
AT1G24100 UGT74B1 Aliphatic Glucosinolate Biochem
AT1G31180 IPMDH Aliphatic Glucosinolate Homology
AT1G62540 GSOX2 Aliphatic Glucosinolate Biochem
AT1G62560 GSOX3 Aliphatic Glucosinolate Biochem
AT1G62570 GSOX4 Aliphatic Glucosinolate Biochem
AT1G65860 GSOX1 Aliphatic Glucosinolate Biochem
AT1G65880 BZO1 Aliphatic Glucosinolate Biochem
AT1G12140 GSOX5 Aliphatic Glucosinolate Biochem
AT1G74090 ATST5B Aliphatic Glucosinolate Biochem
AT2G20610 C-S LYASE Aliphatic Glucosinolate Homology
AT2G25450 GS-OH Aliphatic Glucosinolate Genetic
AT2G31790 UGT Aliphatic Glucosinolate Biochem
AT2G43100 Aconitase Aliphatic Glucosinolate Homology
AT3G03190 AtGSTF11 Aliphatic Glucosinolate Guess
AT3G19710 BCAT4 Aliphatic Glucosinolate Biochem
AT3G49680 BCAT3 Aliphatic Glucosinolate Guess
AT3G58990 Aconitase Aliphatic Glucosinolate Homology
AT4G03050 AOP3 Aliphatic Glucosinolate Biochem
AT4G03060 AOP2 Aliphatic Glucosinolate Biochem
AT4G13770 CYP83A1 Aliphatic Glucosinolate Biochem
AT4G12030 Bile Acid Transporter Aliphatic Glucosinolate Guess
AT4G13430 Aconitase Aliphatic Glucosinolate Homology
AT4G13770 CYP83A1 Aliphatic Glucosinolate Biochem
AT5G23010 MAM1 Aliphatic Glucosinolate Biochem
AT5G23020 MAM3 Aliphatic Glucosinolate Biochem
AT5G07460 PMSR2 Aliphatic Glucosinolate Genetic
AT5G07470 PMSR3 Aliphatic Glucosinolate Genetic
AT1G07640 DOF1.1 Aliphatic Glucosinolate Genetic
AT3G09710 IQD1 Aliphatic Glucosinolate Genetic
AT5G07690 MYB29 Aliphatic Glucosinolate Genetic
AT5G07700 MYB76 Aliphatic Glucosinolate Genetic
AT5G61420 MYB28 Aliphatic Glucosinolate Genetic
AT5G61640 PMSR1 Aliphatic Glucosinolate Genetic
AT4G39950 CYP79B2 Indolic Glucosinolate Biochem
AT2G22330 CYP79B3 Indolic Glucosinolate Biochem
AT1G74100 ATST5A Indolic Glucosinolate Biochem
AT1G74090 ATST5B Indolic Glucosinolate Biochem
AT5G60890 ATR1/MYB34 Indolic Glucosinolate Genetic
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AT5G46760 ATR2/bHLH Indolic Glucosinolate Genetic
AT2G30870 AtGSTF10 Indolic Glucosinolate Homology
AT2G30860 AtGSTF07 Indolic Glucosinolate Homology
AT4G31500 CYP83B1 Indolic Glucosinolate Biochem
AT1G18570 MYB51 Indolic Glucosinolate Genetic
AT5G57220 CYP81F2 Indolic Glucosinolate Biochem
AT4G37400 CYP81F3 Indolic Glucosinolate Homology
AT4G37410 CYP81F4 Indolic Glucosinolate Homology
AT4G37430 CYP81F1 Indolic Glucosinolate Homology
AT3G26830 PAD3/CYP71B15 Camalexin Biochem
AT2G30770 CYP71A13 Camalexin Biochem
AT2G30750 CYP71A12 Camalexin Homology
AT2G45570 CYP76C2 Camalexin Guess
AT1G11610 CYP71A18 Camalexin Homology
AT1G58260 CYP79C3 Unknown GLS Homology
AT1G58265 CYP79C2 Unknown GLS Homology
AT1G79370 CYP79C1 Unknown GLS Homology
AT5G35917 CYP79A3 Unknown GLS Homology
AT5G35920 CYP79A4 Unknown GLS Homology
AT1G07780 PAI Tryptophan Guess
AT1G25220 ASB Tryptophan Guess
AT1G29410 PAI Tryptophan Guess
AT2G04400 I3GPS Tryptophan Guess
AT2G29690 ASA2 Tryptophan Guess
AT3G54640 TSA2 Tryptophan Guess
AT4G02610 TSA Tryptophan Guess
AT4G27070 TSB Tryptophan Guess
AT5G05730 ASA1 Tryptophan Guess
AT5G17990 PAT Tryptophan Guess
AT5G48220 I3GPS Tryptophan Guess
AT5G05590 PAI Tryptophan Guess
AT1G08700 homoserine kinase methionine biosynthesis Guess
AT2G17265 homoserine kinase methionine biosynthesis Guess
AT3G03780 methionine synthase methionine biosynthesis Guess
AT3G22740 homocysteine S-methyltransferase methionine biosynthesis Guess
AT3G25900 homocysteine S-methyltransferase methionine biosynthesis Guess
AT3G63250 homocysteine S-methyltransferase methionine biosynthesis Guess
AT4G11610 homoserine kinase methionine biosynthesis Guess
AT5G20980 methionine biosynthesis Guess
AT1G02500 methionine adenosyltransferase methionine degradation I Guess
AT2G36880 methionine adenosyltransferase methionine degradation I Guess
AT3G17390 methionine adenosyltransferase methionine degradation I Guess
AT3G23810 adenosylhomocysteinase methionine degradation I Guess
AT4G01850 methionine adenosyltransferase methionine degradation I Guess
AT4G13940 methionine degradation I Guess
AT1G19920 ATP sulfurylase sulfate assimilation Guess
AT1G62180 APS reductase sulfate assimilation Guess
AT3G22890 ATP sulfurylase sulfate assimilation Guess
AT4G04610 APS reductase sulfate assimilation Guess
AT4G14680 ATP sulfurylase sulfate assimilation Guess
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AT4G21990 APS reductase sulfate assimilation Guess
AT5G04590 sulfite reductase sulfate assimilation Guess
AT5G43780 ATP sulfurylase sulfate assimilation Guess
AT2G14750 AKN1 sulfate assimilation Guess
AT3G03900 AKIN3 sulfate assimilation Guess
AT5G67520 AKIN2 sulfate assimilation Guess

AT1G22410
3-deoxy-7-phosphoheptulonate

synthase
HomoCys Guess

AT1G33320 cystathionine gamma-synthase HomoCys Guess
AT1G55880 HomoCys Guess
AT1G64660 HomoCys Guess
AT3G01120 cystathionine gamma-synthase HomoCys Guess
AT3G10050 cystathionine beta-synthase HomoCys Guess
AT3G22460 cystathionine beta-synthase HomoCys Guess
AT3G57050 cystathionine beta-lyase HomoCys Guess
AT4G23600 cystathionine beta-lyase HomoCys Guess
AT5G28020 HomoCys Guess
AT5G28030 HomoCys Guess
AT1G55920 serine acetyltransferase cysteine biosynthesis Guess
AT2G17640 serine O-acetyltransferase cysteine biosynthesis Guess
AT2G34970 serine O-acetyltransferase cysteine biosynthesis Guess
AT2G43750 O-acetylserine (thiol) lyase cysteine biosynthesis Guess
AT3G03630 cysteine synthase cysteine biosynthesis Guess
AT3G04940 cysteine synthase cysteine biosynthesis Guess
AT3G13110 serine acetyltransferase cysteine biosynthesis Guess
AT3G59760 O-acetylserine (thiol) lyase cysteine biosynthesis Guess
AT3G61440 cysteine synthase cysteine biosynthesis Guess
AT4G14880 O-acetylserine (thiol) lyase cysteine biosynthesis Guess
AT4G29540 serine O-acetyltransferase cysteine biosynthesis Guess
AT5G38530 cysteine synthase cysteine biosynthesis Guess
AT5G56760 serine acetyltransferase cysteine biosynthesis Guess
AT4G23100 glutamate-cysteine ligase Glutathione Synthesis Guess
AT5G27380 glutathione synthetase Glutathione Synthesis Guess



2.7. APPENDIX 85

Table 2.14: Glucosinolates which can be produced from inorganic nutrients in the model.
Representative glucosinolates from each of the three classes can be produced, and various
sizes of elongated aliphatic glucosinolates. Genes which affect the predicted ability to
produce any of these glusosinolates was reported.

Modelled glucosinolates

Aliphatic (from methionine)
homomethionine
3-methylthiopropyl-desulfo-glucosinolate
3-methylthiopropyl-glucosinolate
3-methylsulfinylpropyl-glucosinolate
3-hydroxypropyl-glucosinolate
3-benzoyloxypropyl-glucosinolate
dihomomethionine
4-methylthiobutyldesulfoglucosinolate
4-methylthiobutyl glucosinolate
4-methylsulfinylbutyl glucosinolate
trihomomethionine
5-methylthiopentylglucosinolate
5-methylsulfinylpentyl glucosinolate
4-pentenylglucosinolate
emphtetrahomomethionine
6-methylthiohexyldesulfoglucosinolate
6-methylthiohexylglucosinolate
pentahomomethionine
7-methylthioheptyldesulfoglucosinolate
7-methylthioheptyl glucosinolate
7-methylsulfinylheptyl glucosinolate
hexhomomethionine
8-methylthiooctyldesulfoglucosinolate
8-methylthiooctyl glucosinolate
8-methylsulfinyloctyl glucosinolate

Indolic (from Tryptophan)
indolylmethyl-glucosinolate
indolylmethyl glucosinolate aglycone
4-methoxy-3-indolylmethyl-glucosinolate
4-methoxy-3-indolylmethyl glucosinolate aglycone
4-hydroxy-3-indolylmethyl-glucosinolate

Aromatic (from phenylalanine)
benzyl-desulfoglucosinolate
glucotropeolin
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Table 2.16: The genes which were expected to affect glucosinolate phenotypes, and are
included in the model, but are not predicted by FBA using the ‘gene knockout, no biomass
requirement’ approach. A large number of the genes are involved in degradation which is
not well captured by flux balance analysis. The other failed predictions are likely due to
errors in the model reaction structure, or incomplete mapping of the identified gene to the
reactions which it catalyses.

AGI Gene name Pathway Evidence

AT4G03060 AOP2 Aliphatic Glucosinolate Biochem
AT3G03190 AtGSTF11 Aliphatic Glucosinolate Guess
AT1G65880 BZO1 Aliphatic Glucosinolate Biochem
AT2G30870 AtGSTF10 Indolic Glucosinolate Homology
AT2G22330 CYP79B3 Indolic Glucosinolate Biochem
AT2G30860 AtGSTF07 Indolic Glucosinolate Homology
AT4G39950 CYP79B2 Indolic Glucosinolate Biochem
AT5G35917 CYP79A3 Unknown GLS Homology
AT1G58265 CYP79C2 Unknown GLS Homology
AT5G35920 CYP79A4 Unknown GLS Homology
AT2G30750 CYP71A12 Camalexin Homology
AT2G30770 CYP71A13 Camalexin Biochem
AT1G11610 CYP71A18 Camalexin Homology
AT3G26830 PAD3/CYP71B15 Camalexin Biochem
AT4G29540 serine O-acetyltransferase cysteine biosynthesis
AT3G61440 cysteine synthase cysteine biosynthesis
AT3G10050 cystathionine beta-synthase HomoCys
AT1G64660 cystathionine beta-lyase HomoCys
AT3G25900 homocysteine S-methyltransferase methionine biosynthesis
AT3G03780 methionine synthase methionine biosynthesis
AT3G22740 homocysteine S-methyltransferase methionine biosynthesis
AT3G63250 homocysteine S-methyltransferase methionine biosynthesis
AT4G13940 adenosylhomocysteinase methionine degradation I
AT4G01850 methionine adenosyltransferase methionine degradation I
AT3G23810 adenosylhomocysteinase methionine degradation I
AT1G02500 methionine adenosyltransferase methionine degradation I
AT3G17390 methionine adenosyltransferase methionine degradation I
AT2G36880 methionine adenosyltransferase methionine degradation I
AT1G51470 TGG5 GLS Breakdown Biochem
AT5G25980 TGG2 GLS Breakdown Biochem
AT1G54000 myrosinase-associated protein GLS Breakdown Homology
AT1G54030 GDSL-motif lipase family protein GLS Breakdown Homology
AT1G66280 glycosyl hydrolase family 1 protein GLS Breakdown Homology
AT1G47600 TGG4 GLS Breakdown Biochem
AT1G54010 AGG1/ESM2 GLS Breakdown Biochem
AT5G26000 TGG1 GLS Breakdown Biochem
AT5G48375 TGG3 GLS Breakdown Biochem
AT3G09260 PYK10 GLS Breakdown Biochem
AT1G52400 BGL1 GLS Breakdown Homology
AT1G51490 TGG6 GLS Breakdown Biochem



Chapter 3

The use of elementary
modes for analysis of
nutritional requirements

The calculation of elementary flux modes (EFMs) provides a mathematical
framework for the analysis of metabolic models. Unlike flux balance analy-
sis, elementary modes do not impose an artificial objective upon the metabolic
system, and can therefore be used to analyse the full metabolic space imposed
by the stoichiometry of the model. However until very recently, calculation of
elementary modes was not feasible for genome scale models.

Here we consider sets of elementary modes calculable for the genome scale model
of Arabidopsis thaliana presented in chapter 2. We demonstrate that although
it is still not computationally feasible to calculate all modes, the calculable
subsets approximate the behaviour of the full set, and apply them to the study of
reaction relatedness, nutrient use efficiency, and nutrient requirement tradeoffs.
We find evidence for surprisingly little nutrient use flexibility through metabolic
regulation, but that access to external resources in terms of nitrogen and energy
sources apparently dictate metabolic flexibility.

3.1 Calculable EFM subsets can be used to ap-
proximate the behaviour of the full set

The number of EFMs in a given network depends on the structure of the net-
work, however it is generally understood that the number of EFMs undergoes
a ‘combinatorial explosion’ with the number of reactions. It is, therefore, ex-
pected that genome scale models of metabolism contain billions of EFMs. This

87
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has proven to be a major hurdle to the widespread application of EFM analysis,
and we are not aware of any study in which they have been used for the analysis
of a genome scale model of plant metabolism.

The recently published, TreeEFM algorithm [163], (see Methods) represents a
significant advance in the efficient computation of elementary modes. Here it
was used to calculate EFMs of the Arabidopsis model presented in chapter 2.
However, Figure 3.1 demonstrates that the complete enumeration of all elemen-
tary modes is still not practically possible, even with the TreeEFM software.
This is without consideration of the further difficulty of storage and analysis
which would arise were all EFMs calculable. As well as taking quite a large
amount of time to return only a small fraction of EFMs, Figure 3.1 shows that
the relationship between time and number of EFMs found is non-linear. This
is likely a consequence of the increasingly constrained linear models becoming
harder to solve (see Methods), and indicates that the complete EFM set cannot
be practically calculated by simply running the program for longer.

0 10 20 30 40 50
time (h)

0

1

2

3

4

5

6

n
u
m

b
e
r 

o
f 

e
m

fs
 f

o
u
n
d

1e5

Figure 3.1: It is not currently practically possible to compute all EFMs in the Arabidopsis
model. The number of EFMs which produce biomass, recovered in two independent runs
of TreeEFM, from the genome scale Arabidopsis thaliana consisting of 3,124 reactions,
presented in chapter 2. It takes several days to calculate tens of thousands of modes,
whereas it is expected that billions of modes may exist. Furthermore, the time to calculate
each mode increases with the number that have previously been found.

In order to apply EFM analysis to the Arabidopsis model, we must therefore
establish that the properties of the full EFM set can be approximated by a
calculable subset. In order to achieve this, we wished to establish that the
features of the subset are stable with respect to size. Metrics perviously used to
asses the quality of calculated EFM subsets are the length distribution of the set,
and the fraction of found EFMs each reaction participates in [47, 131].
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Figure 3.2: The length distribution of subsets of EFMs are stable to changes in subset size,
indicating that the length distribution in calculable subsets approximate the behaviour of
the full set.

Figure 3.2 shows that the length distribution of EFMs stabilises extremely
rapidly as subset size increases. After approximately 500 EFMs are calculated,
the length distribution does not change significantly over all subset sizes which
we calculated (up to 300,000 EFMs), and can therefore be expected to be the
same as in the full set.

Figure 3.3a shows the reaction participation fraction in EFMs for all reactions
as EFM subset size increases. For a given reaction this is calculated as the
fraction of EFMs in the subset in which that reaction carries non-zero flux.
Reaction participation can be seen to be fairly dynamic, in terms of subset
size, for subsets of less than approximately 10,000 EFMs, but is moderately
stable above approximately 120,000 EFMs, as the majority of lines become much
straighter. It should be noted that even within this more stable region, reaction
participation for some reactions continue to change, and can switch suddenly
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Reaction Participation
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Figure 3.3: The reaction participation fractions in subsets of EFMs are stable with subset
size, indicating that calculable subsets approximate the behaviour of the full set. A, the
fraction of the found EFMs in which each reaction participates (carries non-zero flux).
Each line corresponds to a single reaction. For EFM subsets of more than approximately
100,000 modes, reaction participation is mostly consistent across subset sizes, although
switching behaviour continues to occur. Arrows indicate examples of reactions which
switch from apparently stable, to dynamic reaction participation behaviour as subset size
increases. B, correlation in reaction participation between small and large EFM subsets
is high. Each point corresponds to the Pearson’s correlation coefficient between reaction
participation in a small EFM subset and large EFM subset. The large subset consists of
160 (left), or 1,000 (right) times the number of EFMs in the small subset. Correlation is
greater, the smaller the scaling factor, and rapidly saturates with subset size.
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from apparently stable, to dynamic behaviour (examples of this behaviour are
highlighted by arrows). This is due to the tree exploration strategy of TreeEFM,
in which solution branches constrained to involve underrepresented reactions
in previous solutions are prioritised for exploration (see Methods), leading to
sudden switches in reaction participation.

Although Figure 3.3a clearly shows that reaction participation stabilises over
the calculated subset sizes, the degree of this stabilisation is difficult to inter-
pret. Figure 3.3b, plots correlation between reaction participation in relatively
small, and large subsets, with the scaling factor between the number of EFMs
per subset indicated. It can be seen that even though the small subsets consid-
ered are within the ‘turbulent’ region identified in Figure 3.3a, the correlation
coefficient to the larger set is >0.9 for all sets of EFMs larger than 50. Although
correlation is greater the smaller the scaling factor, this extremely strong rela-
tionship holds even between subsets differing in size 1000-fold. Furthermore,
correlation increases with the size of the smaller subset, suggesting that the
calculable 300,000 EFM subsets used for analysis in this chapter are extremely
representative of the full EFM set of the model. These coefficients compare
favourably with previously published values of a ‘representative’ EFM subset
[131].

Figure 3.3b also shows that the increase in correlation with subset size saturates,
suggesting that enumeration of EFMs offers diminishing returns in terms of new
information, although as already discussed in relation to Figure 3.1 they take
increasing time to calculate. Therefore although Figure 3.3a indicates that a
small number of reactions exhibit the concerning switching behaviour, these are
unlikely to significantly affect any analysis.

We have shown that subsets of EFMs calculated using TreeEFM well represent
larger sets in terms of two metrics commonly used to evaluate EFM subset
quality. However, large section of analysis presented later in this chapter is
concerned with correlation between reaction flux across the calculated EFMs.
In Figure 3.4, we therefore consider how the Pearson’s correlation coefficient
between all pairwise combinations of reactions relates between smaller and larger
subsets. It can be seen that even the first 10,000 elementary modes calculated
are very representative of a much larger set, as indicated by the strong diagonal
line in the right hand facet, and that again, as the number of EFMs considered
increases, the relationship becomes stronger. It is therefore expected that the
full 300,000 EFM subset used is even more strongly related to a similarly larger
set.

We cannot compare the quality of the calculable subsets to the full, true set of
EFMs, however, the stability of the considered metrics with respect to increasing
subset size, and correlation between reaction correlation coefficients in small and
large subsets indicates that the subsets returned by TreeEFM approximate the
behaviour of the full set, and that therefore the calculated EFM subsets can
reasonably used to analyse the behaviour of the system. We acknowledge that
small subsets calculated using the TreeEFM approach may be more similar to
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Figure 3.4: Correlation coefficients between reaction pairs in small EFM subsets are
strongly indicative of correlation between reaction pairs in large subsets. Each point is
the Pearson’s correlation coefficient between flux in a pair of reactions across the con-
sidered elementary modes. In each graph the large subset consists of 10 times as many
elementary modes as the small subset. Small subsets of different sizes are shown, and the
strength of the relation between the small and large set increases with subset size. This
suggests that correlation coefficients between pairs of reactions derived from the calculable
EFM subsets can be used to approximate the correlation coefficients across the full set of
EFMs.

larger sets calculated using the TreeEFM approach, than an equivalent sized
set calculated using a different method, due to the internal prioritisation of
EFMs for calculation within the TreeEFM algorithm. However, in our hands
the application of other methods to calculate large numbers of EFMs using the
Arabidopsis model was found to be impractically demanding of computational
resources. In the rest of this chapter, subsets of 300,000 EFMs are analysed as
a compromise between computation time and fidelity of approximation to the
full set.

3.2 Reaction correlation analysis

3.2.1 Introduction

The potential usefulness of EFMs for metabolic flux analysis is well established
[189]. However, as network size, and consequently the number of EFMs in-
creases, they become increasingly difficult not only to calculate, but also to
interpret. These difficulties mean that although EFMs have been used success-
fully for a number of applications in plants [193, 178, 167, 18], we are not aware
of any studies which have considered more than a small subset of reactions in
their model. Having seen that newly developed methods allow the calculation
of sufficiently large subsets of elementary modes to approximate the behaviour
of the full set, we now turned to their interpretation. The output of the analysis
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consisted of 300,000 elementary modes, each consisting of flux through more
than 3,000 reactions, and is therefore extremely complicated to interpret. Here
we applied unsupervised statistical learning methods to facilitate the analysis
of this dataset.

One common approach to the simplification of complex systems is modularisa-
tion, in which by grouping similar behaving elements together we can reduce
the number of parts considered. This suggests two approaches to simplify the
interpretation of EFMs. Firstly, we can group similar EFMs themselves, based
upon the similarity of participating reaction sets in order to reduce the number
of EFMs which must be considered. This is equivalent to the clustering of sim-
ilar minimal t-invariants described by Grafahrend-Belau et al. [72]. However
while this has proven somewhat useful in grouping components of regulatory
cascades together, often elementary flux modes of metabolic networks do not
cluster well due to the presence of multiple essentially independent reaction mo-
tifs [160], caused by, for example independent, parallel reaction pathways, and
compartmentalisation.

This suggests that the second approach, in which we analyse reaction related-
ness, and group similar reactions into co-occuring motifs, may be more useful.
This potentially allows an EFM to be more simply analysed in terms of the
presence or absence of these motifs, the number of which are strictly less than
the number of reactions, but additionally, and what we find more appealing, is
that ‘functions’ can potentially be ascribed to these groups, simplifying their
interpretation.

This reaction grouping is similar to the approach of grouping reactions into
functionally related ‘metabolic pathways’ which has historically been important
for the interpreting metabolic flux, and the response of the system to pertur-
bation. At one level, manually derived metabolic pathways can be considered
a ‘gold standard’, in terms of their accuracy, due to the direct experimental
evidence which has led to the association of their member reactions. However
cellular metabolism is often much more plastic than textbook representations
of metabolic pathways [189], and classical metabolic pathways are not a perfect
representation of metabolic modes. Previous EFM studies have already demon-
strated that alternative functions and reaction groupings can be conceptually
useful [167].

Various algorithmic approaches to modularisation have been proposed, broadly
based on: direct analysis of network topology, flux coupling estimated through
flux balance analysis, or through examination of elementary modes (see [101] for
review). In terms of EFMs, reactions have previously been grouped according
to their exact co-occurence [181], i.e. that the presence of one reaction in an
elementary mode is necessary and sufficient for the presence of another. This
results in generation of the smallest “biologically meaningful” motifs. However,
this approach does not capture the inherently hierarchical nature of reaction re-
latedness, (for example, the concept of ‘pathways’ versus ‘superpathways’), and
is of limited use for simplifying large networks due to the extremely small mo-
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tifs produced. Peres et al. [160] propose an alternative motif finding algorithm
which allows more flexibility in specifying the allowed relatedness of grouped
reactions, but in our hands this algorithm is too slow to be practical for the
identification of motifs in large numbers of EFMs consisting of large numbers
of reactions.

Here, we use a motif finding method more similar to the kinds of clustering
approaches traditionally used in the analysis of gene expression profiles [11],
in which transcripts are hierarchically clustered by the correlation coefficient
of their expression across experiments. In our approach, this translates to the
correlation coefficient of predicted flux between reactions across the calculated
EFMs. This is related to flux balance analysis based methods [164, 238, 32],
in which coupling between reactions is estimated within the flux space per-
mitted under some optimality criterion, except that an EFM based approach
more fully considers the full flux space allowed under the metabolic steady state
constraint.

This is also similar to the pioneering null-space based approach of Poolman et al.
[170]. To briefly refresh topics discussed in chapter 1; the null-space of a matrix
S, is the set of all vectors, v, such that S · v = 0. In the context of flux analysis,
where S is the stoichiometric matrix, the null-space is the set of all steady
state flux solutions. All feasible steady states, including elementary modes
are included in the null-space, and in geometric terms EFMs are the extremal
vectors of the null-space [237]. Poolman et al. [170] propose a method in which
a basis of the null-space kernel of the stoichiometric matrix is analysed in order
to derive the correlation coefficients between reactions across all elementary
modes, and then use these coefficients to cluster reactions in several genome
scale models of bacteria.

Our approach differs in that, whereas Poolman et al. consider correlated ex-
pression across all elementary modes, we consider only those which are able
to generate biomass, as indicated by flux through the biomass equation. Our
approach therefore occupies an intermediate space between the optimality as-
sumptions imposed by flux balance analysis, which may restrict the considered
metabolic modes too severely, and the unconstrained nature of the solution of
the Poolman method, which is likely to be adversely affected by EFMs which
are not biologically utilised, and generate spurious reaction relationships, and
hide more realistic ones.

3.2.2 Analysis of correlation coefficient distributions

Before using correlation coefficients to group related reactions together, we ini-
tially consider the distribution of correlation coefficients between reactions. This
preliminary analysis does not allow detailed conclusions in terms of particular
reactions, or flux distributions. However, it does allow a comparison of the con-
sequences of network structure between species on the potential independence of
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reactions. It also demonstrates differences between results generated using our
method, and the Poolman, null-space method [170] justifying the calculation
of EFM sets. Furthermore, it also shows that the reaction relationship struc-
ture suggested by traditional biochemical pathways fails to reflect experimental
relationship data.

3.2.2.1 Comparison to null-space analysis of bacteria

A potentially interesting comparison to make, is between the distribution of
correlation coefficients in models of bacterial species and Arabidopsis. This
allows an assessment of the extent to which reaction co-expression is imposed in
different kingdoms as a consequence reaction network topology, and therefore
of metabolic flexibility expressed through reaction independence. Poolman et
al. [170], consider two bacterial species, Escherichia coli, and Streptomyces
coelicolor. As reproduced in Figure 3.5b, absolute correlation coefficients in both
of these models were seen to follow a log-normal distribution. To enable direct
comparison to this result, we here use the null-space approach as well.

Figure 3.5a shows that relative to bacterial systems, in Arabidopsis there are
proportionally fewer highly correlated reactions, and a long tail of weakly related
reaction pairs. This suggests that relative to microbial species, the Arabidopsis
reaction network allows more flexibility in reaction co-expression. This is likely
to be at least partially a consequence of the subcellular compartmentalisation
within the Arabidopsis model. Compartmentalisation leads to a larger model
in terms of reaction number (thousands rather than hundreds of reactions in
the considered models), but additionally, copies of reactions in different com-
partments can act in a mutually compensatory manner, which causes a reduced
correlation between them, and related reactions.

Hosseini et al. [90] note that flux coupling in E. coli apparently allows some-
what modular control of metabolism by regulation of key ‘root’ fluxes, which
in turn control many subsidiary reactions indirectly, through network topology
constraints. The relative scarcity of highly correlated reaction sets in Arabidop-
sis suggests, perhaps unsurprisingly that more sophisticated regulatory controls
are possible, but also required in higher organisms, as reactions are generally
more independent, thus allowing higher resolution regulation of metabolism,
and greater potential metabolic flexibility.

3.2.2.2 Comparison of null-space derived, and directly calculated
correlation coefficients

The null-space method proposed by Poolman et al. [170] is able to calculate re-
action correlation coefficients more rapidly than calculating them directly from
elementary modes. In order to determine whether the extra steps of calculating
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Figure 3.5: Distribution of correlation coefficients calculated using the null-space method.
A, The distribution of log transformed absolute correlation coefficients across all reactions
in the Arabidopsis. B, The distribution of log transformed, absolute correlation coefficients
in Escheria coli (blue), and Streptomyces coelicolor (red). B is reproduced from [170].
Comparison of A and B indicates that the Arabidopsis model exhibits a large tail of weakly
related reactions relative to the bacteria.
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correlation coefficients from biomass producing EFMs is worthwhile, we com-
pared the reaction correlation coefficients calculated using the null-space method
[170] to those calculated from biomass producing EFMs in order to see whether
the different approaches leads to different expected reaction relationships.

Figure 3.6 shows a lack of agreement between correlation coefficients between
reaction pairs calculated using the null-space method [170], and directly from
flux EFMs. Mathematically, these metrics are equivalent when considering all
EFMs [170], and therefore the disagreement arises because we are considering a
subset of elementary modes. This disagreement is either because 1.) the calcu-
lated subsets of elementary modes are not sufficient to represent the behaviour
or the full set, or 2.) because we only calculate elementary modes which involve
the biomass reaction, rather than all EFMs. We have already seen in section 3.1
evidence that the properties of the EFM subset are stable with regards to the
number of EFMs calculated , and that therefore scenario 1 is unlikely to be the
cause of the observed disagreement. We therefore consider option 2 as likely to
be the dominant factor.

Figure 3.6: The dissimilarity between reaction correlation coefficients calculated using the
null-space method, and directly from EFMs. Each point corresponds Pearson’s correlation
between a reaction pair. This suggests that our method, in which correlation coefficients
between reactions are calculated only for EFMs which produce biomass, produces signifi-
cantly different results to the method of Poolman et al.[170] which uses null-space analysis
to consider correlation between reaction fluxes in all elementary modes.

Figure 3.6 also shows that the null-space based approach tends to derive a
greater proportion of weakly correlated reactions than is seen using direct cal-
culation from biomass producing EFMs, as indicated by the relative number
of points proximal to the horizontal, as opposed to vertical axis. This makes
sense, as the null-space approach considers, for example, futile reaction cycles
comprising small sets of reactions, in which the vast majority of reactions carry
no flux, and other small, independent, biologically implausible modes. These
implausible modes are likely to correspond to a significant proportion of the
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elementary modes considered [64], and obscure reaction relationships in more
biologically likely elementary modes.

In comparison the constraint that EFMs must produce biomass imposes more
structure on the flux modes through the system, and is less likely to obscure
reaction relatedness in this way. Identifying biologically likely subsets of ele-
mentary modes is not trivial, and we do not suggest that the calculated set
of biomass producing modes are all biologically plausible. However, they are
likely to be more representative on average than the full set of all EFMs. In-
deed, Poolman et al. [170] speculate that the relative lack of modularity in the
models they studied could be due to studying all EFMs, including biologically
unlikely ones.

We have shown that there is a difference in results generated using the different
methods, and seen some advantage to calculating correlation through elemen-
tary modes directly, rather than through null-space analysis. It is therefore
interesting to move forward, and consider reaction clustering using the correla-
tion coefficients calculated from EFMs.

3.2.2.3 The distribution of EFM derived reaction relatedness mea-
sures is more similar to experimental data than metabolic
pathway databases

Several manually curated databases exist which group reactions into particular
groups, reflecting conventional views of metabolic pathways. In order to initially
evaluate whether the EFM derived reaction relatedness measures provide any
information not captured in these databases, we compared the distribution of
relatedness metrics derived from these databases, and from EFMs, to correlation
coefficients across transcriptomic experiments. We use transcriptomic data as a
proxy for flux through the enzyme catalysed reaction. Although transcriptomic
data is not an ideal measure of metabolic reaction flux, its abundant availability,
and the success of its use in a number of network inference [166], and flux balance
[220] studies justifies its use.

Figure 3.7 shows the distribution of reaction pair distances derived from two
metabolic pathway databases: Aracyc [253], and KEGG [50], from transcrip-
tomic data, (from the Expression Atlas database [161]), and from EFMs, (see
Methods for details of the reaction pair distance metrics used). The distri-
butions derived from manually curated reaction databases, (Figure 3.7a,b) are
strikingly dissimilar to the ‘true’ relatedness distribution, derived from tran-
scriptomic expression data (Figure 3.7c).

As shown in Figure 3.7a, in the Aracyc database [253], the modal distances
are 1.0, i.e. completely unrelated, followed by 0.0, i.e. completely identical.
Other, intermediate relatedness distances are uncommon. Figure 3.7b shows
that similar pattern is observed in the KEGG database; although a larger num-
ber of intermediate distances is observed, the vast majority of reactions are
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Figure 3.7: Pairwise reaction distance distributions derived from transcriptomic data are
more similar to those calculated from EFMs, than from manually curated databases. The
distance distributions between all pairwise combinations of reactions in A, the Aracyc
database, B, KEGG database, C, Expression Atlas transcriptomic database, D, the first
300,000 recovered EFMs. See Methods for details of the databases, and reaction dis-
tance metrics used. Uncommon, non-zero reaction distances are indicated by arrows in A.
Transcriptomic and EFM derived distances have a unimodal distribution, centred upon an
intermediate distance indicating that most reactions are somewhat related to most others.
Conversely, the modal value in both manually curated databases is 1.0, indicating that re-
actions are completely unrelated. This suggests that EFM derived distances might capture
information about the biological system that is missing in the manually curated databases.
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completely unrelated, with a distance of 1.0. Conversely, in the Expression At-
las [161] transcriptomic dataset, (Figure 3.7c), pairwise transcript expression
distances follow a normal distribution, centred about halfway between complete
relatedness and unrelatedness. Under the assumption that transcript abundance
is related to flux through the reaction(s) associated with the gene product, this
indicates: firstly, that flux through almost all reactions is somewhat predictive
of flux through most others (as indicated by the generally intermediate distance
values), and secondly, that reactions have a much more contiguous, hierarchical
degree of relatedness, than is captured in the databases, as indicated by the
spread of different relatedness values.

The (completely correlated) peak at 0.0 distance in Figure 3.7c is an artefact
of the mapping between transcript and reaction identities, in which the same
transcript species is mapped to all instances of the same reaction in multiple
compartments when no specific compartmental information is available. Gen-
erally, reactions are much less strongly predictive of the most related reactions
than is suggested in the databases. This further indicates the crudity of reaction
relatedness information identified in ‘classical’ biological pathways.

The transcriptomic distribution is based on somewhat noisy experimental data,
and so the normal distribution observed could be partly due to this noise causing
a spread around much more discrete relatedness levels. However the difference in
the modal pairwise reaction distance clearly shows that the relatedness structure
is different between the reaction-path databases and transcriptomic data.

Conversely, the EFM derived distance distribution (Figure 3.7d), is qualitatively
similar to transcript expression distribution, in that it has an approximately
normal distribution, centred at an intermediate relatedness value. Therefore
the EFM derived reaction relatedness measures are indeed correctly capturing
some information not in the reaction databases, and the conventional reaction
grouping of metabolic paths.

The elementary mode distribution is clearly not identical to the transcriptomic
one. The distributions are centred at different points, and the standard devia-
tion is greater in the experimental data, indicating that the spread of partial,
hierarchical relatedness seen is not as great in the EFM derived metric. Al-
though it is difficult to identify the contributions of the various causes of this
discrepancy, it is likely due to a combination of model and mapping inaccuracies,
noisy experimental data, and the disconnect between transcript abundance and
flux through the enzyme catalysed reaction. Nevertheless the distribution of
relatedness in Figure 3.7 is clearly more similar between transcript and EFMs,
than between transcript and path databases.
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3.2.3 Reaction clustering

3.2.3.1 Quality of reaction clusters

Having seen that the EFM-based reaction relatedness approach captures the
existence of weakly related reactions, in a way which conventional metabolic
pathways fail to, we wanted to check whether the EFM derived hierarchical
relatedness linked reactions in a way which makes biological sense. Correla-
tion coefficients were used to hierarchically cluster similarly correlated reactions
together (see Methods), and indeed this appears to generate meaningful asso-
ciations between reactions at different levels of relatedness, in ways which are
not possible by considering the Aracyc database directly.

Some examples of close associations, (between strongly correlated groups of
reactions), derived from EFMs, but not possible when considering reaction re-
latedness at any linkage distance in the Aracyc database are

Urate
PWY −5691−−−−−−−−→ Allantoin

PWY −5697−−−−−−−−→ S-ureidoglycolate

which links two complete Aracyc pathways PWY-5691 and PWY-5697, to pro-
vide a contiguous route for the degradation of urate, with production of urea,
and

5-phospho-α-D-ribose-1-diphosphate
PWY −6277−−−−−−−−→ 5-phosphoribosyl-5-aminoimidazole

5-phosphoribosyl-5-aminoimidazole
PWY −6124−−−−−−−−→ inosine-5’-phosphate

inosine-5’-phosphate
PWY −7219−−−−−−−−→ Adenosine-mono-phosphate

which links pathways PWY-6277, PWY-6124, and PWY-7219 to provide a co-
herent path for the synthesis of Adenosine-mono-phosphate from 5-phospho-α-
D-ribose-1-diphosphate. These examples also illustrate that in general, the de-
rived clusters tend to gather successive reactions to form discrete subnetworks
of the metabolic system, allowing fairly straightforward biological interpreta-
tion.

When the distance threshold for clustering is relaxed, allowing more distantly
related clusters to be grouped, EFM derived clusters still make biological sense,
but reflect more distant biological relationships, for example linking reactions
associated with the photosynthesis light reactions, Calvin-Benson cycle, gluco-
neogenesis, oxaloacetate shuttle, and sucrose and chlorophyll synthesis pathways
into a single cluster.

Importantly, Aracyc pathways are also decomposed, for example, at no link-
age threshold distance (prior to formation of the root cluster), are all reactions
of the Aracyc ‘Calvin-Benson cycle’ grouped together using the EFM correla-
tion approach. This reflects the important position of these reactions in the
centre of carbon metabolism and their role in the interconversion of many dif-
ferent metabolites, not just in photosynthesis. This indicates that the subjective
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judgements historically used to assign to particular groups of reactions to path-
ways may reflect one of their ‘functions’, but do not always reflect a reaction’s
versatility, and therefore the co-occurence of a group of reactions across steady
state flux modes.

To avoid cherry picking example clusters derived from this analysis of EFMs,
and to assess the general quality of the reaction clusters returned, we evalu-
ated the enrichment of gene ontology terms within each EFM derived cluster.
Figure 3.8 shows that clusters generated using correlation coefficients through
EFMs, group reactions with similar gene ontology annotations together, across
the three independent gene ontologies, and that this occurs to a statistically
unlikely extent. This indicates that in general, this method is sensibly grouping
biologically related reactions together, across all threshold distances consid-
ered.

The reaction relationship data exposed through the EFM derived clusters is
of course contained somewhere within the Aracyc data, as after all, the Ara-
bidopsis model used is largely derived from it. However it is not explicitly
available. We have previously seen that EFM derived reaction relationships
capture information not in pathway databases, and now demonstrated that the
same information can be used to group the reactions of a genome scale model
of Arabidopsis in a manner consistent with biological intuition, purely via anal-
ysis of the structure of the network in an automated process, and that methods
using EFMs are one way of doing this.

3.2.3.2 Comparison to transcriptomic derived clusters

It is interesting to compare predicted pathways to those derived from biological
data to see whether the historical paths of the Aracyc database, or the EFM de-
rived groups more accurately reflect to reactions which are actually co-expressed
in the system.

Here we use correlated transcript expression across the 1,000s of microarray
experiments stored in the Expression Atlas database to cluster genes, in order
to see whether the gene products associated with similar groups of reactions
co-occur in this dataset to those associated in the Aracyc database, or derived
through the EFM analysis.

Figure 3.9 shows that neither method seems to group reactions similarly to the
groups based on gene expression correlation. This is shown by the relative sim-
ilarity between the quality distributions of the ‘real’ reaction groupings, and
the randomised ones, which is seen at all linkage distances. In fact the tradi-
tional Aracyc pathways seem to be slightly more related to the gene expression
data than the unbiased EFMs pathways. This is perhaps unsurprising given
than the manual assignation of pathways is ultimately generally based on ex-
perimental evidence that they have some co-function. Therefore although, (as
we have previously seen), these manually identified pathways can be expected
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Figure 3.8: Reactions which are clustered together are enriched for the same gene ontol-
ogy annotations, suggesting that the clusters are generally biologically meaningful. Dashed
lines indicate cluster score for enrichment of the same gene ontology terms within each
cluster, solid lines indicate the probability of achieving an equal or greater cluster score
by chance given the underlying cluster distribution. We see that the clusters generated
through EFM analysis tend to group reactions with the same gene ontology terms to-
gether to a statistically unlikely degree until the linkage threshold reaches 1.3 or 1.4. At
this distance, the number of clusters becomes too small to allow statistically significant
enrichment. Gene ontology terms were not used in the clustering method, and so this
indicates that the clusters derived through EFM analysis are recapturing biological infor-
mation, and grouping reactions sensibly. See Methods for the calculation of the gene
ontology annotation enrichment within clusters score.
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not to tell the full story, by identifying all of the ‘functions’ of a reaction across
metabolic conditions, and therefore miss information about weakly related sets
of reactions, they should correspond to groups of reactions which are strongly
related in at least one function, and therefore commonly co-expressed. I.e. the
manually curated clusters can be expected to have a high accuracy, relative to
the transcriptomic clusters, even if they may have a low recall for relatively
weakly related ‘superpathways’.

Flux control is not homogeneously distributed throughout all reactions of a
metabolic network, but is often higher at branch points [120]. We considered
that enzymes which catalyse these reactions might be more likely to be tightly
regulated, and that therefore gene expression might be more strongly correlated
with reaction flux. We therefore segregated reactions by position within path-
ways according to the Aracyc database in order to see whether this improved
the similarity of the reaction groups generated from EFM and transcriptomic
data. This segregation used the positional information in the Aracyc pathway,
as cluster generation using the EFMs method does not guarantee that contigu-
ous reactions are grouped together (such that the product of one reaction is the
substrate for the next), and so it is unclear which reaction is upstream of which.
Figure 3.10 shows only a small difference in the similarity of clusters generated
from these subsets with the transcriptomic data. Surprisingly, ‘middle’ reac-
tions (not at the start, or branch points of pathways) appear to be grouped
slightly more consistency with the experimental data.

We also considered the similarity of clusters featuring reactions with particular
gene ontology annotations (see Methods). A surprising number of relatively
high performing annotations are associated with the plastid and mitochondria
(Table 3.1). One cause of disagreement between calculated, and transcriptomic
reaction clusters is likely to be the strong disconnect between transcript abun-
dance and flux through a reaction [194]. Correlation between transcript and
protein abundance is well known to be weak, and flux through associated re-
actions is likely further disconnected due to post translational regulation, and
dependence upon the concentration of reaction substrates and products - that
is, indirect regulation by the regulation of up, and downstream reactions.

In contrast to eukaryotes, where post-transcriptional regulation of genes is
widespread, post-transcriptional regulation is relatively uncommon in prokary-
otes [96]. It is tempting to speculate that the evolutionary origin of plastid
and mitochondria allows greater correlation between transcript abundance, and
reaction flux, and this is the cause for this enrichment.

3.2.4 Conclusion

The degree to which metabolic networks can be usefully modularised is un-
clear [170, 175], but this has not limited the pragmatic, and well established
use of pathway concepts to impose order on the interpretation of reaction net-
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Figure 3.9: Neither the Aracyc database, nor EFMs analysis leads to similar reaction
clusters as the transcriptomic data. Cluster similarity was calculated and comparison
made as described in Methods. Aracyc and EFMs derived clusters, were compared to
those derived from the transcriptomic experiments in the Expression Atlas database. For
each linkage distance considered for the Aracyc, of EFMs data, comparison is only shown to
the transcriptomic clusters generated using a linkage distance which gives the most similar
total number of reaction clusters. The distribution of F1 distances calculated for each
linkage distance are shown. In the bottom row, reaction identities were randomly assigned
to clusters following the same cluster size distribution as the real clusters generated using
either method, in order to indicate the level of similarity forced by the underlying cluster
structure. This randomisation shows that, for example, at the largest distances, 1.4,
F1 = 1 for all clusters, as at this linkage distance there is only a single cluster comprising
all reactions.This shows that for the Elementary modes, the F1 distributions are similar in
the real, and randomly assigned clusters, indicating that this method does not generally
group reactions together in a more accurate manner than randomly assigning them, given
the underlying cluster structure. This does not mean that small subsets of reactions could
be accurately grouped, but they are obscured by the generally poor grouping. Conversely,
for the Aracyc database, we see a small improvement between the random, and real groups.
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Figure 3.10: Segregating reactions by their position in metabolic pathways did not lead to
clear improvement in similarity to transcriptomic clusters. Reactions were partitioned into
’end’, and ’middle’ reactions according to Aracyc database defined paths. End reactions
are reactions which are at the start, end, or branch points within paths, middle reactions
are all other reactions. Only reactions which can be mapped between the genome scale
model, the Expression Atlas database, and the Aracyc database were included. Comparison
was carried out as described in Methods, and Figure 3.9. We see that neither the ‘end’
nor ‘middle’ reactions perform much better than random, given the underlying cluster size
distributions.
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Table 3.1: Reactions associated with organelle gene ontologies are grouped more similarly
by EFMs, and transcriptomic data than other reactions. For each gene ontology term, all
reactions with that annotation were identified. For each identified reaction, the F1 simi-
larity between the EFM derived cluster containing it, and the most similar transcriptomic
derived cluster was calculated. Each gene ontology annotation was scored as the mean of
these similarities. The probability of randomly finding better a performing reaction sets
was numerically estimated by drawing 100,000 random sets of reactions of the same size as
the number associated with the gene ontology, and finding the fraction of these sets with
a greater mean F1 score than the reactions associated wth each gene ontology. Corrected
probability is the estimated probability, corrected for multiple gene ontology comparisons
by the Bonferroni method, in which the estimated probability is multiplied by the number
of comparisons made (see section 3.4). Here we show the annotations which perform
better than expected (estimated probability cutoff ≤ 0.05). We see that gene ontologies
associated with the chloroplast, and the mitochondria are over represented, meaning that
EFMs group clusters featuring these gene ontologies more similarly to transcriptomic clus-
ters than on average. This might be because of greater correlation between transcript
abundance, and reaction flux for these gene products than other genes.

Gene Ontology annotation
Estimated
probability

Corrected
probability

Chloroplast
chloroplast thylakoid lumen 0 0
chloroplast thylakoid membrane 5.59E-03 6.76E-01
chloroplast stromal thylakoid 0 0
plastid thylakoid membrane 1.00E-05 1.21E-03
integral component of chloroplast outer membrane 4.96E-02 6.01E+00
chloroplast inner membrane 1.67E-03 2.02E-01
chloroplast 0 0
plastid chromosome 3.90E-04 4.72E-02
plastid 1.90E-03 2.30E-01
plastoglobule 1.20E-03 1.45E-01
photosystem I 3.80E-04 4.60E-02
photosystem II oxygen evolving complex 0 0
PSII associated light-harvesting complex II 0 0
photosystem II reaction center 1.00E-05 1.21E-03
chloroplast ATP synthase complex 0 0
magnesium chelatase complex 1.83E-02 2.22E+00

Mitochondria
mitochondrial inner membrane 2.00E-05 2.42E-03
mitochondrial respiratory chain complex II 1.02E-02 1.23E+00
carbamoyl-phosphate synthase complex 1.00E-05 0.00121

Other
nitrite reductase complex 0 0
glycerol-3-phosphate dehydrogenase complex
extracellular vesicular exosome 0.012 1.452
vacuolar membrane 0.00626 0.75746
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works. We have seen that the analysis of elementary modes which include the
biomass reaction produce significantly different reaction correlation results to
previous methods which the full set of EFMs. We have also shown that the
distribution of reaction correlation coefficients thus generated is more similar
to experimental data than those from traditional pathway databases. Further-
more the hierarchical clusters generated from these coefficients make intuitive
biological sense.

However, we have seen that related reaction clusters derived from both the Ara-
cyc database, and EFMs bear little similarity to clusters derived from transcript
expression profiles. This is likely to be partially caused by the use of transcrip-
tomic data as a proxy for true flux measurements, rather than true flux data,
but also due to some assumptions made in the comparison.

In deriving EFM clusters from the correlation of reactions through all calculated
modes, we have assumed that each of these flux modes is equally likely to be
represented in the flux patterns expressed under experimental conditions in
the Expression Atlas database, and therefore all EFMs were weighted equally
when calculating reaction correlation coefficients. However, this is unlikely to be
true. Only a relatively small subset of EFMs are likely to contribute to a given
steady state flux [12]. In our naive approach, we had hoped that by considering
thousands of such experimental states, the plant may be forced to utilise a wide
array of biomass producing modes and therefore we might see similar behaviour
between transcript behaviour and the full EFM set, however this has not been
the case.

A number of methods have been developed to attempt to identify the principle
elementary modes contributing to a given experimental flux state [239, 153, 236].
It is possible that a strategy which focuses on more biologically relevant modes,
either through incorporating, for example, more sophisticated thermodynamic
constraints [64], or in which correlation of reaction flux is weighted towards these
principle elementary modes might yield more similar clusters to the transcript
data.

We have not explicitly considered the experimental conditions used in the tran-
scriptomic experiments. There is some evidence that related reaction modules
alter depending on environment [247], and so we may be too ambitious in trying
to find consistent modules across a broad array of experimental conditions. It
is possible that a better approach to finding interpretable reaction groups is
to accept metabolic flexibility, and to define highly related reaction groups as
pathways, but to allow reactions to belong to multiple groups, and to make ex-
plicit the scenarios in which membership of a particular group can be expected
to co-occur. In this case, similar gene expression experiments should also be
grouped, prior to any comparison with EFMs.

We have seen the potential of EFMs for the study of reaction function and
co-expression. However, the final approach still requires some methodological
optimisation, either in terms of the method itself, or in the processing of data
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its results are compared to.

3.3 Nutrient requirements

3.3.1 Introduction

We have seen that a reaction modularisation approach cannot easily be used to
facilitate the analysis of the calculated EFMs. However, in addition to mod-
ularisation, other simplification methods exist for the analysis of EFMs. Here
we use a yield space [207, 89] based approach to analyse the nutrient require-
ments for biomass production. In our approach, a slice through the hyper-cone
of possible metabolic states is considered which produces unit biomass. This
slice is projected onto a two dimensional (reaction) axes in order to facilitate
its simple visual analysis. In contrast to previously published work using this
strategy, rather than considering the effect of altered reaction flux on yield, we
examine the effect of nutrient uptake on the requirement for other nutrients.
This allows us to analyse nutrient requirement phenotypes, and potential nutri-
ent requirement trade-offs described by the calculated EFMs, and the reactions
which exhibit significant control over these relationships.

Flux balance analysis has previously been used to consider some aspects of nutri-
ent requirement tradeoffs [168], however, as discussed in chapter 1, these studies
only consider some ‘optimal’ subset of fluxes, and results are highly dependent
on the objective function used, which is assumed to be the objective that the
network is regulated towards achieving. It is not clear that commonly used ob-
jective functions, such as the minimisation of total flux, or the maximisation of
biomass yield are entirely appropriate under any biological circumstances, as it is
likely that networks are regulated so as to manage a trade-off between objectives
[187]. Furthermore, it seems likely that any objective will be dependent upon
tissue type, and environment, for example under starvation conditions it seems
more likely that efficient networks will be favoured, whereas under favourable
conditions flux distributions which allow rapid growth may be preferred.

Therefore we analyse the capabilities of the nutrient requirement spaces deter-
mined only by the structure of the reaction network itself, as the results of this
approach are likely to be more robust across environmental and tissue differ-
ences. As discussed in chapter 1, tissue specific models are made by considering
subsets of reactions from the full model, and therefore any tissue specific flux
solutions must be subsets of this full nutrient requirement space. That said,
our approach essentially considers the whole plant, and does not allow for uni-
versal conclusions irrespective of tissue type and developmental stage. We only
consider elementary modes which are able to produce metabolites in the ratio
required for biomass on average. Consequently, for example, our approach is un-
likely to be informative about metabolism in the mature leaf, which is no longer
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gaining biomass, and instead primarily producing intermediate metabolites for
export to the rest of the plant.

We do not attempt to estimate internal reaction fluxes. Although we expect
that the ‘correct’ flux solution (when averaged over the whole plant) is con-
tained somewhere within the predicted metabolic space, determining exactly
where requires accurate measurements, either of nutrient uptake [244], or tran-
scriptomic data [145] to further constrain the space. The structure of biological
reaction networks tends to permit degenerate solutions, which cannot be differ-
entiated with even large measurement sets, and require the assumption of some
objective function to resolve completely. Given that it appears that even simple
organisms strive to balance competing objectives [187], this is not ideal.

Here, we discuss the use of two metrics for evaluating nutrient use efficiency
in elementary modes. Uptake flux is based on flux though exchange reactions
with the environment, (nutrient uptake reactions), in a manner similar to that
used for the analysis of energy use efficiency (as, for example [6]). The other,
element flux is based on total flux of each element through the whole elementary
mode, in a manner more similar to that previously used for estimating the total
enzyme requirements in constraint-based models, based on total flux through
all reactions (as, for example [33]).

We analyse the relationships between various nutrient requirements. Although
a number of previous studies have been concerned with the efficiencies of plant
metabolic networks, they have primarily studied energy, and carbon conversion
efficiency. Here we consider the relationships between nutrient requirements for
a larger number of minerals essential to plant life. This potentially has practi-
cal applications for better understanding for example nutrient fertiliser require-
ments, as well as the fundamental constraints on nutrient efficiency strategies
and trade-off options available to the plant imposed by the structure of the re-
action network itself. We then attempt to identify important reactions which
can be used to predict, and potentially modify plant nutrient requirements.
We also examine the consequences of environment on metabolic flexibility, and
provide a flexibility based hypothesis to explain the form in which nitrogen is
predominantly taken up by plants.

3.3.2 Analysis using Uptake flux

It is intuitive to consider the nutrient requirements of a flux distribution as
directly related to flux through the nutrient uptake reactions from the environ-
ment into the organism. These reactions in the considered model are shown in
Table 3.3. Flux balance analysis studies have commonly applied various metrics
based on this intuition to energy use, in which flux through some reaction im-
porting ‘photons’, or high energy metabolites into the organism, is divided by
an output flux producing some product of interest in order to calculate an effi-
ciency measure [6, 183]. This approach has also, although less frequently, been
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taken to evaluate carbon, and nitrogen use efficiency in plants [82, 35, 5].

In direct analogy to these metrics, here we analyse the nutrient requirements of
an elementary flux mode by considering the amount of flux through each nutrient
uptake reaction required to allow unit flux through the ‘biomass’ reaction.

Table 3.3: Nutrient uptake reaction equations. Metabolites to the right of the arrow are
imported into the modelled organism, metabolites to the left are exported.

Identity Formula

CO2 tx f =⇒Carbon-dioxide [c]
CO2 tx b Carbon-dioxide [c] =⇒
O2 tx f =⇒Oxygen [c]
O2 tx b Oxygen [c] =⇒
Photon tx =⇒Photon [c]
GLC tx =⇒Glucose [c]
NH4 tx =⇒Ammonia [c]
NO3 tx =⇒Nitrate [c]
Pi tx =⇒Phosphate [c]
SO4 tx =⇒Sulfate [c]
Ca tx =⇒Ca2+ [c]
Fe tx =⇒Fe2+ [c]
K tx =⇒K+ [c]
Mg tx =⇒Mg2+ [c]

Figure 3.11 shows correlation between flux through these nutrient uptake reac-
tions across elementary modes. We see strong internal correlation between those
nutrient uptake reactions associated with an autotrophic lifestyle, (Photon tx,
CO2 tx f, O2 tx b), those with a heterotrophic lifestyle, (GLC tx, CO2 tx b, O2
tx f), and strong anti-correlation between these two groups. This supports both
the proposed model of Arabidopsis, and also this approach to understanding nu-
trient requirements, as it reflects basic experimentally determined relationships
between these fluxes.

We additionally see a number of interesting results which apparently merit fur-
ther investigation, suggesting that this approach generates non-obvious ques-
tions. For example what causes the strong positive correlation between potas-
sium and calcium uptake, and their mutual negative correlation with regards
to magnesium? Or the weak association between increased nutrient uptake and
autotrophy? Or most strikingly, the strong positive correlation between am-
monium, phosphorus, and sulfur uptake, a group which intriguingly does not
include the other nitrogen containing nutrient, nitrate?

In investigating this final conundrum, we produced Figure 3.12, in which several
nutrient efficiencies of the calculated elementary modes are plotted against each
other. Each set of axes corresponds to a different two-reaction projection of the
EFMs. The same EFMs in different axes are linked by grey lines. The nutrient
requirement space which is predicted to be available to the plant consists of
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Figure 3.11: Correlation coefficients between nutrient uptake reactions. Clustering by
average linkage distance. Nutrient exchange reactions associated with autotrophy and
heterotrophy are grouped together due to mutual correlation within each group, and anti-
correlation between the groups. This is as expected, and validates the model.

linear combinations of elementary modes, and therefore the permissible nutrient
efficiency space is the convex hull of the plotted points.

Although 300,000 elementary modes are plotted, they form extremely discrete
clusters in Figure 3.12, and in fact are largely superimposed upon each other.
Additionally, although four nutrient uptake phenoypes are plotted (flux through
SO4 tx, Pi tx, Ntot tx, and the fraction of Ntot taken up un the form of ammo-
nium), we can see that most of the differences across these phenotypes can be
largely explained in terms of elementary mode membership in only four groups.
Group 0 vs group 1 explains Pi tx variation, almost all SO4 tx variation, and
all variation in Ntot for EFMs which uptake some nitrate. Group 2 vs group
3 captures an extremely small difference in the amount of sulfate required by
different elementary modes.

Yield space analysis is known to drastically reduce the number of elementary
modes which must be considered in order to explain the behaviour of the system
[207], however it is surprising that there should be so few factors underlying the
different nutrient requirements of so many elementary modes. Figure 3.12 also
shows that nutrient tradeoff relationships are apparently surprisingly highly
constrained. For example, it suggests that the structure of the reaction net-
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Figure 3.12: Uptake reaction flux phenotypes. Flux through indicated nutrient uptake
reactions, normalised by flux through the biomass reaction for the first 300,000 EFMs
found in the Arabidopsis model. Ntot tx is the sum of flux through the NH4 tx and
NO3 tx reactions. Dashed grey lines highlight the same elementary modes projected onto
different axes. Predicted nutrient requirement phenotype are surprisingly discrete, and
apparently linked, indicating that a small number of differences in the underlying reaction
flux distribution cause the different phenotypes seen.
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Table 3.4: Empirical formulas of metabolites in the reaction RXN-5984. This unbalanced
equation is the cause of the Group 2 versus Group 3 sulfate uptake phenotype.

metabolite C H N O S

dethiobiotin 10 17 2 3 -
S-adenosymethionine 15 23 6 5 1
substrates total 25 40 8 8 1

S-adenosyl-L-homocysteine 14 20 6 5 1
9-mercaptodethiobiotin 10 17 2 3 1
products total 24 37 8 8 2

work means that the requirement for sulfate, and inorganic phosphate must be
(almost) perfectly correlated, with no metabolic flexibility available.

To understand what difference in the flux distributions ‘causes’ the separation
of EFMs in groups 0 & 1, and 2 & 3, we manually examined all reactions which
carry the same flux in all EFMs in group 0 but not 1, and vice versa, and group
2 but not 3 and vice versa.

The separation of groups 2 and 3 is caused by a different route for the production
of Biotin. Elementary modes in Group 2 all carry flux through RXN-5984
which contains a mass balance error (see Table 3.4), leading to greater sulfur
use efficiency. This reaction was present in the original, published model [33],
from which the current model was developed, and likely originated due to an
erroneous Aracyc entry, which has since been corrected in the current database
version.

The elementary modes in group 1 produce ‘excess’ coenzyme-A, which is then
exported from the model, resulting in greater flux through the export reac-
tion in group 1 relative to group 0. The empirical formula of coenzyme-A
is C21H36N7O16P3S, which links the greater group 1 requirement for sulfate,
inorganic phosphate, and nitrogen qualitatively, although it does not entirely
capture the quantitative differences in the requirements of these nutrients (Fig-
ure 3.12). It is therefore possible that some secondary metabolite(s) are also
exported, and differentiate these groups. However, export of coenzyme-A can
be seen to be necessary and sufficient for export of any other associated metabo-
lites, and therefore all differences between group 0 and group 1 can be considered
as a single phenotype.

Determining cause and effect of reaction fluxes of an elementary mode can be
somewhat circular, but we wanted to understand the underlying metabolic dif-
ference between elementary modes in group 0 and 1 which necessitates the
export of coenzyme-A. However, whilst elementary modes within groups 0 and
1 are identical within the projection shown in (Figure 3.12), each elementary
mode is unique when all reactions are considered. Unfortunately, the presence
of complex networks of mutually compensatory, essentially parallel paths made
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it impossible to trace the underlying cause of the difference, beyond the network
shown in Figure 3.13. However, it seems likely that some conserved difference
in flux through central metabolism causes the difference seen between groups 0
and 1.

The difference between considering energy use efficiency, and nutrient use effi-
ciency is that whereas chemical energy can be lost by reaction transformations,
most published metabolic models are mass-balanced, such that that atoms can-
not be lost, or produced by reactions. This means that different reaction flux
vectors for the production of the same products from the same substrates can
require different amounts of energy, but cannot require different amounts of nu-
trients to be taken up into the model. Instead, we have seen that within this
analysis framework, different nutrient use efficiencies (uptake fluxes) arise via er-
rors in reaction stoichiometry, and (predominantly) via the differing production
of ‘waste’ metabolites, as a consequence of the reaction route taken to pro-
duce the biomass reaction substrates. ‘Waste’ metabolites are considered to be
those which cannot be recycled into the production of more biomass substrates
and are exported from the model. In the biological system they are excluded
from metabolism, either by excretion from the plant, or transportation into the
vacuole for indefinite storage.

This suggests a large sensitivity of the nutrient phenotypes seen, to the par-
ticular metabolites which are permitted to be exported from the model. For
example, it is possible that multiple underlying reaction flux differences cause
the nutrient requirement differences between group 0 and 1 elementary modes.
It is possible that the constraints of the model subsume them into a single ‘phe-
notype’ through the need to consume all nutrients in the correct ratio required
for coenzyme-A production, as the ‘true’ waste metabolites cannot be exported,
but are instead converted to coenyzme-A.

This hypothesis predicts different sensitivities of various elements to the per-
mitted waste metabolites. Relatively common elements, such as C, are present
in almost all permitted waste metabolites, and so, disposing of excess C can
be achieved in many ways, resulting a relative insensitivity to the permitted
waste metabolites. Therefore phenotypes involving carbon requirements, (for
example, the correlation between heterotrophic and autotrophic uptake fluxes
shown in Figure 3.11), are robust to the permitted export metabolites. Con-
versely, relatively rare elements, such as sulfur, phosphorus and nitrogen are in
fewer exportable metabolites. In this case, any intermediate waste metabolite
containing phosphorus must be converted to coenzyme-A, with the concurrent
recruitment of sulfur, leading to their highly correlated relationship. We also
see extremely discontinuous rare nutrient requirements in Figure 3.12. This is
possibly a consequence of the complex, interacting stoichiometric requirements
of reaction networks lead to ‘rounding-up’ the nutrient use inefficiencies into
discretised levels.

The addition of alternative waste metabolites is expected to break the mutual
dependency of rare elements for the production of coenzyme-A, and therefore
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also break the correlation between uptake fluxes. This idea is corroborated
by the disappearance of the discussed EFM phenotype groups in a modified
model in which the individual export of all components of the ‘biomass’ equation
was permitted, (here called the ‘flexi-model’). Most importantly, some of the
predicted overall nutrient requirement relationships disappear completely, for
example all correlation between SO4 tx and Pi tx, disappears.

The observed sensitivity to exportable waste metabolites can be addressed by
allowing only the export of the correct (biological) waste metabolites, or by
considering a different nutrient use metric. It is not necessarily easy to identify
waste metabolites experimentally, as the plant vacuole can act as both a perma-
nent bin for ‘true’ waste metabolites, but also as a storage site for metabolites,
which are later recycled back into active metabolism. Furthermore, given the
quality of many genome scale metabolic reconstructions, it is not clear that all
true waste metabolites can be produced in many models. These difficulties are
possibly reflected in the relatively little discussion in modelling papers afforded
to the waste metabolites as compared to metabolites which are allowed to be
taken up, and to the derivation of the biomass equation. Therefore although
uptake based efficiency metrics can be useful to analyse the energy efficiencies
of elementary modes, and to a lesser degree the requirements for common el-
ements, which allows autotrophic, and heterotrophic lifestyles to be captured
using uptake based metrics, the nitrogen, sulfur, and phosphorus relationships
seen are likely artefacts of model inaccuracies.

We therefore proceed using a different metric which is more robust to the iden-
tities of metabolites which can be exported. Termed elemental flux, this is the
total flux of an element within a reaction flux distribution (see subsection 3.4.4
for details of calculation). Intuitively, this is the amount of the element which
must be present somewhere within the metabolic network at metabolic steady
state per unit biomass, and is similar to the common use of total flux as a proxy
for the total amount of enzymes required to catalyse a flux distribution.

Whilst the output of this metric is still somewhat influenced by the specific ex-
port metabolites allowed, due to the need for reactions to convert between ‘true’
and exported waste metabolites, it does not suffer from the very discrete nutrient
use efficiencies seen when using an uptake flux metric, and in our hands, appears
to be more robust to changes in exportable metabolites between the ‘fixed’ and
‘flexi’ models. This is likely because these conversions involve relatively small
numbers of reactions carrying little flux compared to the whole metabolic net-
work. Although to reduce duplication, we only show results generated using the
‘flexi-model’, which does not impose permitted ratios on the export of metabo-
lites from the model, and is therefore more robust to potential inaccuracies in
the stoichiometry of the biomass equation, the discussed conclusions were also
seen using the original model described in chapter 2.
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3.3.3 Nutrient requirement tradeoffs

More nutrients can be made available to the plant through the application of
external fertilisers, however, it is not necessarily clear that it will be able to
utilise them, unless additional resources are also made available. Here we evalu-
ate theses mutual nutrient requirements in the biomass producing EFMs. This
analysis also allows us to assess the extent to which nutrient requirements can
be modulated, and traded-off against each other through favouring alternative
metabolic strategies for the production of the same biomass components. Al-
though previous work has shown that EFMs can be used to study the effect of
nutrition on plant metabolism [18], this study was concerned with the effect of
nitrogen source on internal fluxes, rather than the effect of element requirements
on each other.

Figure 3.14 shows the amount of nitrogen, plotted against other elements, re-
quired to produce unit flux through the biomass reaction, in autotrophic, het-
erotrophic, and mixed elementary modes. The plotted points in the ‘raw’ graphs
correspond to the elemental flux of each element in each elementary mode, nor-
malised by flux through the biomass reaction, and so are a measure of nutrient
use efficiencies (NUEs). Metabolic flux space is defined by linear combinations
of elementary modes, and so the elemental flux space predicted to be accessible
to the plant is described by the convex hull of the plotted points under each
lifestyle.

Starvation of a nutrient can have the effect either of shifting the flux distribution
towards EFMs which are efficient in the utilisation of that nutrient, potentially
without compromising biomass production, or of reducing total flux through
the system, with an associated reduction in flux through the biomass equation.
Positive correlation between nutrient pairs indicates that modes which are effi-
cient in the utilisation of one nutrient are also efficient in the use of the other.
As such, starvation of one of a pair of perfectly correlated nutrients is expected
to have the same effect as starvation of both, and therefore has the same effect
of growth of the plant. Conversely, elementary modes which require more of
one element in a perfectly correlated pair cannot be utilised unless the other is
also available.

The ‘raw’ panels of Figure 3.14 show that there is a strong positive relation-
ship between the predicted nutrient use efficiency of nitrogen, and most other
elements in the model. The elements shown to be correlated with N are also
correlated with each other. Some of the predicted nutrient dependencies agree
with previous experimental findings, for example elevated carbon dioxide levels
are not taken advantage of in the form of more carbon uptake, unless additional
oxygen was available as well [195], and that phosphorus starvation limits carbon
uptake [86].

Iron, magnesium and sulfur to not correlate strongly with the requirements for
other elements. However, of these, iron and magnesium are not well integrated
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Figure 3.14: Elemental flux relationships. See Methods, for calculation of elemental flux.
Each point corresponds to an elementary flux mode, ‘Photon’ corresponds to autotrophic
EFMs in which uptake of glucose is not permitted, ‘GLC’ corresponds to heterotrophic flux
modes in uptake of photons is not permitted, in ‘mixed’ flux uptake of both energy sources
is allowed. In ‘normalised by total flux’ the ‘raw’ values are divided by total elemental flux
through each elementary flux mode. We see that surprisingly, there appears to be little
tradeoff between nutrient requirements in the different metabolic modes. Requirements for
many nutrients are strongly correlated, (with the exception of iron, magnesium, and sulfur),
indicating that additional access to one resource often does not allow access to alternative
metabolic modes, unless other element resources are also available. Correlation between
nutrient requirements appears to be largely caused by mutual correlation to total flux,
indicating that nutrient inefficient modes are also protein inefficient. ‘Mixed’ metabolic
modes appear to be more flexible than either autotrophic or heterotrophic lifestyles, and
are able to access the most nitrogen efficient modes.
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into the model; they are present in only a very small number of reactions, and are
often associated with proteins, which are not explicitly modelled. We therefore
have relatively little confidence in results concerning them.

Although none of the elements are perfectly correlated, we would expect, for
example, the impact of mutual starvation of nitrogen and phosphorus to be less
severe than the impact of the starvation of nitrogen and sulfur, relative to the
starvation of each of these nutrients singly. This is because elementary modes
which efficiently utilise nitrogen are also efficient in phosphorus metabolism,
and so the extra nutrient stress has little effect in further reducing available
metabolic space. In contrast, nitrogen and sulfur stresses are expected to be
fairly independent, and so sulfur starvation is expected to further reduce the
metabolic space available to the plant.

If we assume that nutrient inefficient elementary modes have some benefit, which
is not well captured under the steady state modelling framework, (for example in
increased rate of growth), we would also predict that fertilisation with additional
nitrogen would not be beneficial unless phosphorus is also sufficiently available,
whereas Figure 3.14 shows that most N inefficient modes are comparatively
sulfur efficient.

It is not always necessary to assume some hidden benefit for inefficient modes.
While we have considered the effects of a shortfall of available nutrients, we
have not accounted for any negative or toxic effects from their overabundance.
This is likely to be a problem when the primary nutrient stress has reduced
the capacity for the integration of a secondary nutrient. For example, although
the plant may only be able to incorporate a reduced amount of energy due
to other nutrient stresses, incident light will still provide the same amount of
energy to the plant. It can be seen in ‘N vs Photon tx’ in Figure 3.14 that
N starvation reduces access to inefficient photon flux modes. Consequently
nitrogen starved plants can be expected to be susceptible to photo-oxidative
damage. It is, however, not clear that this idea can be extended to toxicity in
other nutrients given that mineral concentration in plants is typically greater
than in the surrounding environment.

We see correlation between element use and total internal flux, consistent with
the experimental finding that increased oxygen levels leads to increased flux
throughout metabolism [243]. Although the relationship is clearly more compli-
cated, depending on particular enzyme kinetics, and stability, total flux through
a system is often used in constraint-based modelling studies to approximate total
enzyme requirements [18]. Figure 3.14 therefore suggests that element efficient
modes are also protein efficient.

There appears to be surprisingly little nutrient use efficiency tradeoff between
nutrients, energy efficiency, and protein use efficiency in different elementary
modes. This raises the question of whether this is an inevitable consequence
of being constrained to produce the same molecules in the same ratios to pro-
duce biomass, or is a consequence of the particular structure that the metabolic
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network has evolved. Reaction networks can easily be conceived which discon-
nect elemental flux from the elemental composition of the product (for example
by introducing superfluous intermediate steps), but only by making them less
efficient. This suggests that this inflexibility may be an indication of efficient
reaction networks for converting substrates to products. The tradeoffs between
efficiency, robustness, and flexibility have been discussed previously [109], how-
ever, given the famous robustness of biological networks, it is surprising that the
efficient use of elements is so prioritised over their flexible use. Consequently,
any presumed tradeoff in the performance of different flux modes is assumed
to be primarily at the level of efficient versus rapid growth, rather than in the
efficient, flexible use of different resources.

By elimination therefore, alteration of nutrient use efficiency of different el-
ements relative to each other is likely to be achieved primarily by altering
the composition of the plant, (that is the biomass reaction equation), rather
than by picking between the tradeoffs of different flux modes. It is well known
that plants change their morphology and chemical composition under nutrient
stresses [203, 5]. It would be interesting to analyse the effect of these alter-
ations changes in yield space. Previous work has found little difference between
optimal flux through central carbon metabolism in response to altered biomass
composition [244, 168, 249], and concluded that this is likely because production
of biomass precursors requires relatively little energy in comparison to ‘mainte-
nance flux’. Consequently, while nutrient requirements must change somewhat
in response to altered biomass composition (due to the mass-balance constraint),
it is not necessarily clear how much they will change. Intuitively more of a nu-
trient will be required if more metabolites containing it are required for biomass,
but it is not clear how great the elasticity with respect to demand for different
biomass components will be, or that it will be the same for all elements, when
different anabolic routes are considered.

We consider the ‘raw’ graphs shown in Figure 3.14 to be those most relevant
to predictions of nutrient requirements, and the behaviour of the biological
system, however, given the strong correlation between all nutrients and total
flux, it is interesting to look at the relationships between nutrients in elementary
modes when normalised by total flux, which reveals effects obscured by the total
flux.

Many relationships do indeed change, this shows that differences in nutrient
use efficiency are dominated by differences in total flux, and that this big total
flux dependency is what leads to the strong correlation among most elements.
The normalised graphs show that there is some scope for the modification of
nutrient use efficiency through the use of different flux modes, for example the
correlation between nitrogen, and carbon reverses when normalised by total
flux, indicating that for a given value of total flux, nitrogen efficient modes
are inefficient, and vice versa. Conversely, nitrogen, phosphorus, and oxygen
requirements are still correlated, although not so strongly, indicating that it is
very difficult to separate the requirement for these elements, as they are involved
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in the same reactions to a greater degree than elements on average.

Although, as discussed, our results are consistent with some experimental stud-
ies, our somewhat simplistic approach does not capture the full behaviour of
the system. For example some nutrient stresses should decrease carbon con-
version efficiency [137], leading to a greater carbon requirement. Furthermore,
contrary to what is indicated in ‘N vs Total Internal Flux’ of Figure 3.14 exper-
imental nitrogen limitation does not lead to a decrease in total protein levels
[225].

In their model of barley seeds, Grafahrend-Belau et al. [73] found only five
independent, optimal forms of metabolism as environmental sucrose to oxygen
ratios were varied. This reflects the amount of information which is lost in the
optimisation step of flux balance analysis, when compared to the thousands of
independent forms shown in any panel of Figure 3.14. However considering all
elementary modes, as we have approximated here, is probably too broad an ap-
proach. We have made the simplifying assumption that the elementary modes
calculated are representative of the set used by the plant. However, although
plant metabolism must act within the borders of the convex hull of the points
presented, it may not utilise the full space, and consequentially could exhibit
different nutrient use tradeoffs to those described above. How justifiable this
parimonious assumption is is not clear. An interesting next step in this analysis
is therefore to link the full elementary modes set calculated to a subset of bio-
logically utilised modes. This can be achieved by the analysis of transcriptomic
data under different environmental conditions, and the decomposition of this
dataset into the different elementary modes used. In addition to making nutri-
ent tradeoff predictions, comparison between the full elementary set, and used
set will also be useful in identifying the ‘purpose’ behind metabolic regulation,
and how general a priority nutrient use efficiency is across environments.

3.3.4 Hetero, auto, and mixed; the flexible lifestyles of
plants

Here we compare and contrast the constraints on metabolism imposed by au-
totrophy, (in which energy is provided by photosynthesis), heterotrophy, (in
which it is provided by glucose), and ‘mixed’ metabolism, (in which both are
available).

Figure 3.14 shows that elementary modes are on average less nutrient efficient
under autotrophy (blue) than in heterotrophic (green), or mixed (red) modes,
as autotrophic modes occupy the upper, right-most regions of the plotted space
in the ‘raw’ graphs. Interestingly, there are differences in the cause of the
increased nutrient requirements under autotrophy between elements. For ex-
ample, the normalised ‘N vs C’ graph shows that carbon is proportionately
over-required for autotrophy, relative to other elements. Conversely, heterotro-
phy is proportionally enriched for fluxes which require nitrogen, and the greater
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requirement for nitrogen under autotrophy is entirely caused by the increase in
total flux.

The greater total flux in autotrophic modes is largely caused by changes in
flux through pathways directly associated with converting photons into chem-
ical energy, but metabolism is generally different in hetero- and auto-trophic
modes, with 467 reactions carrying over twice as much flux on average in au-
totrophic rather than in heterotrophic metabolism. These broad changes are
consistent with experimental data which suggests that expression of ∼ 35% of
the transcriptome exhibits circadian clock regulation [142]. The ‘heterotrophic’,
and ‘autotrophic’ models used do not exchange metabolites, and so it is diffi-
cult to extrapolate the behaviours of these models to a single system over the
diel cycle. However in examining Figure 3.14 it is tempting to speculate that
plants may grow primarily at night, rather than day in order to reduce the
maximum total flux that must be supported at any single point during the day-
night cycle. By dividing metabolism into the production of storage metabolites
during the day, and production of biomass during the night, metabolic require-
ments are smoothed over the 24 hour period, reducing the difference in peak,
and trough protein requirements, and potentially allowing increased recycling
of amino-acids and cofactors between metabolic pathways at different times of
day.

Average nitrogen requirements clearly vary between autotrophic, and hetero-
trophic flux distributions, being greater overall in autotrophic modes, but greater
per unit flux in heterotrophic modes. Interestingly, experimental evidence sug-
gests that the day night cycle is critical for nitrogen assimilation, as the produc-
tion of glutamine is predominantly fed by the remobilisation of stored molecules
from previously assimilated carbon [63]. These results contrast with FBA stud-
ies [44], which found no difference in nitrogen requirement in day and night,
when using a requirement metric based on flux through nitrogen uptake reac-
tions. This previous finding was likely a consequence of using the same biomass
equation in day and night, and the weaknesses of uptake based metrics, as
discussed previously in subsection 3.3.2.

It is clear from Figure 3.14 that even a simple difference in carbon/energy
source dramatically alters the metabolic capabilities of the organism. Differ-
ent tissues, which also exhibit different biomass compositions, produce various
storage molecules, and potentially have different metabolic ‘objectives’ as well
can therefore be expected to exhibit markedly different nutrient use efficiencies,
and metabolic lifestyles.

Figure 3.14 shows that of heterotrophy, autotrophy, and mixed metabolism,
mixed allows much greater metabolic flexibility, occupying not only the union
space of the other two, and the space accessible through linear combinations of
autotrophy and heterotrophy, but also more extreme regions. The increased nu-
trient use flexibility under mixed metabolic metabolism is due to being able to
access different elementary modes. This is likely to be caused by the relaxation
of the strict stoichiometric relationships between the products of photosynthesis,
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which can be modified by additionally catabolising various amounts of glucose,
therefore allowing access to additional elementary modes. The modification of
stoichiometric ratios of metabolites produced during photosynthesis has previ-
ously been seen to be important, and result in increased metabolic flexibility
[6]. Figure 3.14 only shows this flexibility in terms of nutrient use tradeoffs, but
it is also confirmed by flux variability analysis, which shows that average reac-
tion flux across the entire metabolic network is also more flexible under mixed
metabolism (Table 3.5).

Table 3.5: Reaction flexibility under different lifestyles. Summed flux variability is∑
rmax − rmin for all reactions, where maximum and minimum values are the largest

and smallest fluxes per unit biomass in the calculated set of elementary modes. Mixed
metabolism apparently permits greater flux flexibility. Greater metabolic flexibility is often
associated with robustness to environmental and genetic perturbation [211].

lifestyle summed flux variability

Autotrophic 606,513
Heterotrophic 231,844

Mixed 832,448

Increased metabolic flexibility allows increased control of the ratios between the
different nutrient use requirements of the plant, an indicated by the compar-
atively broad areas of the graphs that the mixed modes are able to access in
Figure 3.14, but also to access the most efficient modes overall. For example
Figure 3.14 shows that only through a mixed lifestyle is access to the most
efficient nitrogen utilising modes possible.

As discussed in chapter 1, various measures based on EFMs have been used
to quantify robustness to genetic perturbation, predominantly based on the
fraction of EFMs remaining after a reaction is removed from the network, such
that more robust networks generally have more EFMs remaining [173, 242, 16,
13]. Consideration of Figure 3.14 suggests a second metric, in which, rather than
assessing the number of remaining EFMs after perturbation, the average volume
of the efficiency space remaining is considered proportional to the robustness
of the system. This approach also incorporates susceptibility to environmental
perturbation. It is expected that mixed metabolism will be found to be more
robust under this metric than exclusively auto- or heterotrophic modes, as mixed
metabolism starts form a more flexible metabolic position.

The approach we have taken to model these different lifestyles is obviously
crude. We are notionally considering the requirements of the whole plants but
do not link the models to promote the production of storage molecules during
autotrophy, or allow the utilisation of a range of element and energy sources
during heterotrophy. Furthermore, we do not alter the stoichiometry of the
biomass equation, or account for shuttling of metabolites between roots and
shoots in autotrophic metabolism. Other models have more carefully considered
metabolism in the whole plant [44], or over the diel cycle [31], however by using
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elementary modes, we have derived some interesting general results based on
the availability of energy sources, which have not been obvious in these flux
balance analysis studies.

We did not constrain the ratio of glucose to photon uptake permitted in the
‘mixed’ metabolic form. Although in the long term, the plant must produce
all available starch, and therefore glucose from photons, effectively putting an
upper limit on this ratio, in the relative short term, this is not necessarily
the case, due the storage of starch. Additionally, any long term ratio can be
expected to vary between different tissues. It is therefore pertinent to consider
the effect of an unconstrained ratio. However, it would be interesting to explore
the effect of a fixed ratio representative of the ratio over the diel cycle, averaged
over the whole plant to see whether this also leads to an increase in metabolic
flexibility.

In vivo, starch accumulates during the day, and is consumed at night. The rate
of starch use at night is carefully regulated, so that ∼ 5% remains at dawn [70].
Overconsumption, leading to the exhaustion of starch stores during the night, is
associated with a starvation response, and reduced growth. Conversely however,
mutations leading to reduced consumption overnight are also associated with
reduced growth [70]. It is therefore unclear why not all starch is consumed by
dawn in vivo, as this presumably would allow increased growth. Rather than
simply an insurance against running out of starch, the advantages of metabolic
flexibility, efficiency, and (potentially) robustness, accessible through the mixed
metabolism of photons and glucose might explain why it is that although plants
use most of their starch stores overnight, under most environments, starch is
not completely depleted, even under severe carbon-limitation [165], potentially
allowing mixed metabolism throughout the day.

3.3.5 Nitrate & ammonium uptake ratio limits scope for
metabolic inefficiency

Plants take up nitrogen from the environment as nitrate, ammonium, and to a
lesser extent, as proteins or amino acids. Using inorganic nitrogen in the form
of ammonium rather than nitrate should be more efficient , due to the large
reductant requirement for conversion of nitrate to ammonium prior to integra-
tion into organic molecules. This makes up most of the reductant requirement
of the cell [138]. The expected difference in energy efficiency between the use
of these N sources was initially confirmed by flux balance analysis [82, 44]. It
is therefore surprising that plants preferentially uptake a mix of nitrate and
ammonium [138].

Retardation of growth through excess ammonium uptake is called ‘ammonium
toxicity’, however the cause of this toxicity is not clear. Ammonium toxicity
has been linked to the uncoupling of proton gradients across membranes [20], or
futile cycling of the import and export of ammonium [24]. If ammonium toxicity
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is caused entirely by these processes, then its analysis is beyond the scope of
this modelling framework, however alleviation of ammonium toxicity by nitrate
[180, 75] suggests that these may not be the only causes of the effect. Here we
evaluate whether elementary modes can provide a new insight into the cause of
ammonium toxicity.

In Figure 3.15 we plot the use efficiency of various elements with respect to
the ammonia:nitrate uptake ratio of EFMs. We see that changes in the form
of nitrogen assimilation are intimately coupled to widespread changes in po-
tential steady state metabolism. This corresponds well to previous observation
of widespread metabolic changes in response to the form in which nitrogen is
supplied [158, 138].

It has previously been shown that the C:N ratio is greater in plants which can
only utilise nitrate and not a mix of nitrate and ammonium [138]. Although we
do not show that this must be true by the distribution of available elementary
modes, in that this relationship does not hold for every mode, we do see that it is
likely, assuming a somewhat parsimonious distribution of true biological fluxes
amongst possible elementary modes. Interestingly, this occurs even without
explicit modification of the biomass equation.

Arnold et al. [6] recently explained the preferentially mixed use of nitrate and
ammonium in terms of energy efficiency, by showing that in their model, flux bal-
ance analysis predicted that mixed uptake of nitrate and ammonium allowed the
most energy efficient production of some amino acids. This is because the fixed
ratio of ATP:NADPH produced during photosynthesis and glucose catabolism
could be altered, by using NADPH to reduce nitrate. Meaning that metabolism
can access more energy efficient flux distributions, which were previously not
usable due to their steady state ATP:NADPH requirements.

Here we see an alternative possible justification for mixed uptake. Figure 3.15
confirms that the most efficient metabolic forms in terms of energy, or nutrients
required to produce biomass do use ammonium exclusively. This is presumably
due to the smaller requirement for the production of reducing potential. How-
ever, these best case differences are extremely small in comparison to the mag-
nitude of the worst case, least efficient elementary modes. Elementary modes
which utilise exclusively either nitrate, or ammonium, can potentially be much
less energy and nutrient efficient than modes which utilise a mix of the two. The
least inefficient elementary modes for a given uptake ratio tend to be located in
the region of 50:50 nitrate to ammonium uptake. If we parsimoniously assume
an approximately equal distribution of flux between all elementary modes acces-
sible at a particular ratio, the average efficiency is much greater for intermediate
uptake than for the exclusive uptake of ammonium.

This suggests that plants may constrain available metabolism by controlling
flux through ammonium and nitrate uptake transporters as an efficient means
to restrict themselves to the ‘least inefficient’ regions of flux space, rather than
regions where thy can potentially access the most efficient modes (although by
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Figure 3.15: Fraction of N from NH4 against other nutrient requirements. Each point
corresponds to an elementary flux mode. In the legend, ‘Photon’ corresponds to EFMs in
which uptake of glucose is not permitted, ‘GLC’ corresponds to flux modes in uptake of
photons is not permitted, in ‘mixed’ flux uptake of both energy sources is allowed. Each
horizontal axis is NH4 / Ntot, such that at ‘0’, all N is taken up as NO3, at ‘1’, all N
is taken up as NH4, at ‘0.5’, both are taken up equally. In the top two rows, vertical
axes indicate the element flux requirement of each EFM, (such that larger values are less
nutrient efficient), in the bottom row, vertical axes correspond to flux through ‘energy’
uptake reaction, total internal flux, and the ratio of carbon to nitrogen required. Nutrient
efficiency space available to the plant is described by the convex hull of the plotted points.
In most cases, EFM distributions approximate a ‘U’ shape, indicating that modes which do
not use an approximately equal NH4: NO3 ratio are on average less nutrient efficient than
those which do. This suggests that nutrient use efficiency may explain the experimentally
observed N use ratio.

only a small margin) but risk being extremely inefficient. This control via the
preferential regulation of reactions which themselves exert strong steady state
regulation of a large number of reactions has previously shown to be used in E.
coli [90], and may be an efficient means of regulation, in terms of energy and
resource investment, in comparison to maintaining a complex regulatory appa-
ratus. Furthermore, the focus on limiting metabolic space to the ‘least bad’,
rather than ‘most efficient’ regions through regulation is interestingly reminis-
cent of successful strategies for the rational design, using elementary modes,
of efficient metabolite producing cell ‘factories’, in which genetic interventions
are prioritised, based upon preventing flux through inefficient pathways, rather
than increasingly the performance of the best ones [224].
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This idea suggests that perhaps one reason for ammonium toxicity is that it
permits more metabolic flexibility, and this allows access to on average less ef-
ficient elementary modes in terms of a large number of other resources. This
does not imply that this is the only cause of toxicity, in what is likely a multi-
pronged problem. However, the other barbs are likely to include the role of
nitrate as a signalling molecule, and antioxidant, and the potential of ammo-
nium to alter compartmental pHs, and are therefore difficult to address through
constraint-based analysis directly.

3.3.6 Reactions controlling model behaviour

Having considered relationships between nutrient requirements, it is a natural
step to also consider correlation between flux through particular reactions, and
nutrient use efficiencies. This has two applications. Firstly to attempt to iden-
tify key diagnostic reactions which should be measured in order to understand
which nutrients are being used. This is not necessarily easy to measure directly
by assaying uptake from the environment, because plants can dissociate nutrient
uptake from use, and use stores in the vacuole to buffer environmental exchanges
[86]. Secondly, in identifying the reactions which most strongly correlate to a
function of interest (in this case nutrient use), we identify potential targets for
intervention in order to most strongly influence nutrient use efficiencies possible
in metabolism in the plant. This is the logic behind ‘Flux Design’ [140], which
in contrast to other EFM derived engineering predictions, allows identification
of reactions for over-, as well as under-expression.

To initially evaluate the potential use of this approach, we plot correlation co-
efficients between reaction flux, and nutrient use efficiency for each reaction for
each phenotype of interest. (Figure 3.16) shows that indeed, a relatively small
number of reactions are highly correlated to each nutrient, and that the large
majority of reactions are uninformative. This means that identifying correlated
reactions is potentially interesting, as clearly reactions are informative to dif-
ferent degrees, and a small, comprehensible, number of reactions appear to be
highly predictive of each behaviour of interest.

The identities of the identified ‘informative’ reactions must be carefully con-
sidered; if only ‘obvious’ reactions are recovered, then this method is not con-
tributing anything of worth. Indeed, we do see that some returned reactions are
trivial, for example flux through the NH4 tx and NO3 tx reactions are among
the strongest predictors of the NH4:NO3 uptake ratio, however we also see inter-
esting reactions as well. Table 3.6 shows the twenty reactions with the greatest
correlation to elemental sulfur flux. Strikingly, these are generally more asso-
ciated with the metabolism of active oxygen species than sulfur directly. The
important sulfur containing metabolite glutathione is well known to be involved
in plant response to reactive oxygen species stress (see [216] for a thorough
review of plant sulfur metabolism), but it is not intuitive that these reactions
would be better predictors for sulfur use than for example those involved in the
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Figure 3.16: Variance of nutrient requirements explained by reactions. Each point is the
coefficient of determination between flux through an individual reaction, and the criterion
variable indicated in the facet. For each nutrient use variable assessed, the large majority
of genes have only very small correlation to the variable, and a small set of reactions has
strong correlation, suggesting that identifying the reactions which correlate to nutrient use
phenotypes is a worthwhile exercise.
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reduction of sulfate, or the formation of cysteine, or methionine. It therefore
seems that the modelling approach taken does provide non-obvious insight into
important reactions controlling particular phenotypes, and therefore identify
potential targets for genetic engineering.

Due to the strong correlation between element flux, and total flux for many
elements, we see that many reactions are likely returned primarily because of
their influence on total flux through the elementary mode. For example Ta-
ble 3.8 shows that many of the strongly correlated reactions are involved in
central metabolism and in determining the balance between heterotrophy and
autotrophy, (which we saw previously is indicative of total flux), rather than of
nitrogen metabolism directly. Further supporting this, many of the nutrients
strongly correlated to nitrogen use in Figure 3.14 also have many of the same
highly correlated reactions as nitrogen use.

Ideally, any modification to metabolism should be as specific as possible. It is
therefore ideal to pick reactions for modification which not only control the vari-
able of interest, but also do not modify other variables. Using this correlation
based approach, it is possible to evaluate the distribution of control between
reactions for the different nutrient requirements, in order to determine firstly;
whether such reactions exist, and secondly; to identify them. Figure 3.17 con-
siders the example in which flux through the photon uptake reaction is desired
to be modified. It shows that no reaction exists which can be expected to alter
photon uptake, without also strongly effecting nitrogen elemental-flux, due to
the tight grouping of all points to the best fit line. However reactions can be
seen to exist which can be targeted with strong control coefficients over photon
flux, but less over phosphorus, or sulfur requirements.

Figure 3.17: Correlation of explanatory power of reactions between photon uptake, and
other elemental nutrient flux. Many of the same reactions correlate strongly to multiple
nutrient phenotypes of interest, however the degree of correlation varies. This has impli-
cations for target selection in order to manage the specificity of any genetic interventions,
and is likely a consequence of correlation between many phenotypes, and total flux.

Interestingly in all cases assessed, correlation between reaction control of the
phenotypes of interest is strongly positive, suggesting that generally reactions
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are important, or not important across multiple phenotypes, and that therefore
unless this step is performed, interventions can be expected to have severe off
target effects. This suggests an extension to the ‘Flux Design’ [140] approach in
which rather than prioritisation based on r2 to the phenotype of interest alone,
reactions are prioritised for modification based on a score

s =
r2i

1
m

∑m
j=1 cjr

2
j

, (3.1)

in which r2i is the explanatory power of the reaction to the reaction to the pheno-
type flux of interest, ~c ∈ IRm, is a vector of weights, prioritising the maintenance
of phenotypes, and r2j is the explanatory power of the reaction for phenotype j
which is desired to be unaffected, and m is the number of phenotypes considered,
where phenotypes are considered to be functions of reaction sets.

Inspired by Behre et al. [16] we extend this metric to the consideration of mul-
tiple knockouts, such that rather than r2i , and r2j corresponding to the squared
correlation between reaction flux, and phenotype flux, it corresponds to the R-
squared between phenotype flux, and a regression model, in which i reaction
fluxes are predictors. This allows the quantification of the suitability of a given
phenotype target as

1

R

R∑
i=1

max(si), (3.2)

where R is the number of reactions in the model, and si is the reaction score
for a set of i knockout reactions defined in Equation 3.1. Although obviously
given the explosion in the number of reaction knockout combinations which
must be considered, we expect that, similar to the metrics proposed by Behre
et al. [16], this value is not practically calculable, it is likely to be reasonably
approximated by considering only small reaction knockout sets, and in particular
can be calculated for the relatively small number of interventions experimentally
possible.

Generally, we observe that it seems more possible to tweak relative nutrient re-
quirements (bottom row of Figure 3.17), without influencing other variables. For
example it is more possible to control the N:P requirement ratio without mod-
ifying photon uptake, than it is to modify nitrogen, or phosphorus requirement
alone. It will be interesting to apply some approximate form of Equation 3.2 in
order to explore whether particular regions of metabolism are more suitable for
engineering than others.

The apparent interrelatedness of control coefficients for many nutrient require-
ments indicates a control structure in which reactions typically either have
strong influence over many nutrient variables, or none. This is consistent with
hierarchical flux coupling studies which have found that in many organisms
reactions often control a subset of subsidiary reaction, but that this control
is not necessarily symmetrical, these key driver reactions are themselves tar-
gets for stringent regulation by the organism [90]. Although this means that
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it is predicted that modification of these reactions will lead to the most dra-
matic changes in metabolism, they do not allow precise control of individual
phenotypes. Deciding the appropriate tradeoff between control coefficients and
ubiquity of effect is likely to be situation dependent, but this correlation based
approach provides a framework through which the relative merits can at least
be assessed.

3.3.7 Conclusion

We have seen that through the unbiased consideration of the elementary modes
of a metabolic network of Arabidopsis, rather than the ‘optimal’ solutions gen-
erated by flux balance analysis type approaches, we are able to gain insights
into metabolism which are not otherwise possible. This was exemplified most
clearly in proposing an explanation for the observed nitrogen uptake ratio of
ammonia to nitrate which explicitly depends upon restricting the distribution
of suboptimal flux distributions to the ‘least bad’ nutrient efficiency region at
the experimentally observed value, an idea which would not be possible through
FBA.

By studying the capabilities of a metabolic network, we also demonstrated the
limitations of a conventional ‘uptake flux’ based assessment of metabolic effi-
ciency when applied to chemical substrates, due to the extreme inflexibility in
detectable efficiency, and developed an alternative metric. This also highlighted
the importance of permitted ‘waste’ metabolites in genome scale models, which
seems to be generally overlooked. Using the element flux metric, we found a sur-
prising inflexibility in nutrient requirements, and the ability to trade-off require-
ments against each other through the selection of alternative flux distributions.
This suggests that in contrast to robustness to genetic perturbation, perhaps
alteration to the biomass equation may be a more important component of envi-
ronmental robustness than the structure of the reaction network. We have also
explored the use of elementary modes for prioritising targets for genetic engi-
neering, and proposed extensions to existing methods. We emphasise that none
of these developments would be possible through alternative constraint-based
analytical frameworks.

A common theme, however, has been the problem that the EFMs assessed are
potentially too unbiased. Flux balance analysis suffers from the imposition of
arbitrary optimality criteria, which potentially restrict the recovered solutions
too much, or to incorrect regions. However, the point of biological regulation
of metabolism is to restrict flux space to some subset of the steady state space
described by elementary modes, and this idea is lost in the analysis described
in this chapter. Metabolic regulation means that it is unlikely that all possible
elementary modes are used by the plant, and it is often unclear how applicable
the behaviour of the full EFM set is to the behaviour of those which are actually
biologically utilised. This shortcoming has been clear, for example when consid-
ering nutrient tradeoff requirements, (Figure 3.14). Although in the whole set of
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EFMs defined by the metabolic network strong correlations may exist, between
for example nitrogen and phosphorus requirements, it is not clear how well this
full set of EFMs approximates the subset which Arabidopsis metabolism is able
to actually use, and therefore how much confidence there can be in any found
nutrient relationships.

The tradeoff between imposing arbitrary assumptions to restrict considered
steady state flux solution space, and not being able to make predictions is cur-
rently difficult to resolve. It is interesting that flux balance analysis variations
have recently been developed which attempt to sample from the solution space,
whilst still imposing optimality criteria [32]. Furthermore, a number of meth-
ods attempt to integrate additional experimental data to restrict, or weight, the
set of elementary modes considered [239, 153, 236]. It seems likely that these
two approaches will converge somewhere in the middle, although it is currently
unclear whether somewhat arbitrary FBA optimality criteria, or EFMs con-
strained using essentially inadequate, but widely available transcriptomic data
will yield the more accurate descriptions of metabolism.

3.4 Methods

3.4.1 TreeEFM

TreeEFM [163], is an algorithm for the calculation of EFMs, and at the time of
writing is among the best performing of such tools. Here I will briefly summarise
the approach. As previously discussed in chapter 2, a metabolic network consist-
ing of C metabolites, and R reactions can be represented by the stoichiometric
matrix S, where element S{c,r} is the stoichiometric coefficient for metabolite c
in reaction r. By convention, substrates are assigned negative coefficients, and
products positive. For each reaction r in (r = 1, ..., R) a continuous variable, vr,
represents flux through it. Steady state reaction sets can be found by solving
the equation

R∑
r=1

S{c,r}vr = 0, ∀c ∈ I (3.3)

where I represents the internal metabolites of the metabolic model. EFMs
are the vertices of the ‘flux cone’ defined by this equation. By cutting this
cone with a hyperplane vr = 1, a projection of the flux cone is generated,
the extreme points of which correspond to EFMs. In the work presented here
the reaction r was chosen to be the so-called ‘biomass equation’, previously
defined in chapter 2, in which all metabolites considered to be essential for
the production of biomass in Arabidopsis are produced, and exported from the
model.

Efficient methods for the enumeration of extreme points have been previously
developed, in the particular implementation of the TreeEFM algorithm used
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here, the Simplex algorithm [45] was used.

In order to calculate diverse subsets of EFMs, a tree based approach is used
to recursively modify the linear programming problem. Each node of the tree
represents a linear program with a different solution set to its ancestors. If the
elementary flux mode solution to an arbitrary parent node, consists of m reac-
tions with non-zero flux, for each non-zero reaction r (r = 1, ...,m) a daughter
node is generated with the additional constraint vr = 0.

This is the basis of the method, although in the implementation provided by
Pey et al. [163] and used here, additional heuristics are used to prioritise the
solution of particular nodes, based on the number of previously found EFMs
which are also feasible in the node.

EFMs are returned in the form of a matrix, E. where each row corresponds to
an elementary flux mode, and each column corresponds to a reaction. Each ele-
ment, E{e,r}, of the matrix corresponds to flux through reaction r in elementary
flux mode e, normalised by flux through the biomass reaction.

3.4.2 Databases

3.4.2.1 Aracyc

The Aracyc database ([253], version 13.0) is one of 7600 pathway/genome data-
bases available as part of the biocyc database collection (biocyc.org). It is
considered a “Tier 1” database, meaning that it was “created through intensive
manual efforts”, and is “constantly updated”. It can therefore be considered a
high quality source of information about the metabolic reactions possible within
the organism Arabidopsis thaliana, and to offer a good representation of current
biological thinking about which pathway(s) a reaction is considered a part of.
This dataset also includes information about the position of reactions within a
pathway.

3.4.2.2 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG, [50], release 77.0, www.
kegg.jp/) is a database of the relationships of a number of biological entities.
‘KEGG-PATHWAY’ was used in this chapter as a second manually curated
database the the reactions found within metabolic paths.

3.4.2.3 Expression Atlas

Expression Atlas ([161], www.ebi.ac.uk/gxa/home) provides a database of gene
expression patterns under different biological conditions. A standardised ‘in-
house’ data processing and analysis pipeline is carried out on all raw data to

biocyc.org
www.kegg.jp/
www.kegg.jp/
www.ebi.ac.uk/gxa/home
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allow comparisons between and across experiments. Here data from 6,719 mi-
croarray chip experiments across 462 published studies of Arabidopsis was used
to calculate the correlation coefficients between all pairs of genes which could
be associated to the Aracyc or KEGG reaction identifiers.

As there is not necessarily a 1:1 relationship between a gene product and a
reaction, the Expression Atlas was preprocessed such that in instances in which
more than one gene product mapped to a reaction, the mean gene product value
was used. When more than one reaction mapped to a single gene product,
the transcript was associated with all mapped reactions. Consequently, as the
Aracyc and KEGG databases do not differentiate between the same reaction in
different compartments, genes were mapped to all instances of a reaction across
compartments.

3.4.3 Reaction Clustering

3.4.3.1 Reaction distance

Within the Aracyc and KEGG databases, each reaction is either present or
absent from a given internally defined biological pathway. This membership
can be represented in each case by the binary membership matrix M consisting
of R reactions, and P paths, where M{r,p} is 1 if reaction r is considered to be
in path p, and zero otherwise.

The similarity between reactions r, and s was calculated as the number of
pathways in which both reactions were involved, (i.e. the number of positions
for which M{r,i} + M{s,i} = 2). This was normalised by the number of paths
in which either reaction were involved, (i.e. the number of positions for which
M{r,i} + M{s,i} 6= 0), so as to account for different reaction promiscuity, and
map similarities onto to a [0,1] interval. The distance between two reactions
was calculated as 1 minus the similarity.

We considered joint membership of all pathways in the database to carry an
equal weight , because it is not clear how any non-equal cost weighting should be
assigned. We normalised only by the number of non-zero entries, rather than all
entries, because most reactions are present in only a small number of pathways,
and normalising by all entires (for which the majority which involve neither
reaction r, nor s), would compress the differences between reaction pairs.

Reaction distance in the Expression Atlas, and EFMs datasets were calculated
as

dr,s =
√

2 · (1− Cr,s) (3.4)

where Cr,s is the correlation coefficient between reactions r and s either in terms
of the abundance of their associated transcript(s) across different experiments,
or their flux in different EFMs respectively.
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Correlation coefficients were calculated either directly from flux through calcu-
lated elementary modes which are able to produce biomass, or via null-space
analysis as described by Poolman et al. [170]. φuv, the cosine of the angle
between rows u and v of the kernel matrix, K

φuv =
~u · ~v

||~u|| · ||~v||
(3.5)

can be shown to be mathematically equivalent to the Pearson’s correlation co-
efficient between the reactions u and v across all EFMs [170].

3.4.3.2 Clustering

Hierarchical clustering of reactions was performed within each dataset us-
ing distance matrices calculated as described above and functions in the
scipy.cluster.hierarchy module (v0.17.1). The ‘average’ linkage method was
used, such that the distance between clusters u, and v was calculated as

D(u, v) =
∑
ij

d(u[i], v[j])

|u| ∗ |v|
(3.6)

where i and j iterate over all reactions in the clusters u, and v, respectively,
and d is the function defined in either paragraph two of subsubsection 3.4.3.1,
or Equation 3.4.

3.4.3.3 Cluster similarity

For comparison of the reaction clusters produced using different datasets, an
initial preprocessing step was included such that only reactions which could be
mapped to both datasets were considered.

For each reaction cluster, u, produced at a given cuttoff linkage distance in the
‘test’ dataset, the similarity measure F1 was calculated as

F1 = 2 · precision · recall
precision+ recall

(3.7)

to each of the clusters, v, generated from the other ‘comparison’ dataset. For
each cluster in the ‘test’ dataset, the F1 to the most similar cluster in the
‘comparison’ dataset is reported.

Precision is the shared number of reactions between the compared clusters, i.e.
the ‘correct’ reactions in cluster v, as a fraction of the total number of reactions
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in v,

precision =
|u ∩ v|
|v|

, (3.8)

and therefore penalises larger, less precise v groups. Recall is the fraction of the
reactions in the group u, which are also in the compared group v,

recall =
|u ∩ v|
|u|

, (3.9)

and therefore penalises the failure to recover all of the expected reactions.

3.4.3.4 Gene ontology annotation enrichment within clusters

For each cluster, each reaction was mapped to gene ontology annotations via
associated genes. Each cluster was scored using

s = 1− unique

total
, (3.10)

where unique is the number of unique gene ontology terms associated with
reactions in the cluster, and total is the number of gene ontology annotations
associated with any reactions in the cluster, including duplicate annotations
associated with multiple reactions.

The score for each set of clusters at a given linkage threshold was calculated
as the mean score of all clusters at that distance. To estimate the probability
achieving of each score by chance, random clusters of reaction identities were
assigned with the same cluster size distribution as the true set. The fraction of
10,000 such random assignations which achieved the same, or better score that
the true clustering was calculated.

3.4.3.5 The effect of gene ontology on reaction clustering perfor-
mance

For each gene ontology annotation, all associated genes were mapped to reac-
tions in the modified Arabidopsis model described in chapter 2. The F1 score
for the annotation was calculated as the mean F1 of the clusters for which these
reactions were members.

The probability of achieving a given gene ontology F1 score by chance was
numerically approximated by randomly sampling an equivalent number of reac-
tions from the ‘test’ dataset 100,000 times, and finding the proportion of random
reaction sets with an equal or better mean F1 score.
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The Bonferroni correction was applied, in which each approximated probability
is multiplied by the number of tests carried out. In this case, this is the
number of different gene ontology annotations associated with reaction in the
model.

3.4.4 Nutrient requirement metrics

Two methods for deriving nutrient requirement phenotype predictions from
EFMs are discussed. In the first, flux (vr) through nutrient uptake reactions
are normalised by flux through the biomass equation in order to directly assess
nutrient use efficiency. Total flux is calculated as the sum of each row of the
elementary flux mode matrix E.

In the second method, elemental flux, matrix T is used, in which rows correspond
to reactions, and each column corresponds to one of C chemical elements, Tr,c is
the stoichiometric coefficient of element c in reaction r, following the convention
that substrates are negative, and products positive. T is therefore analogous
to the transpose of the stoichiometric matrix S, with metabolites replaced by
elements.

As the model is mass balanced, such that elements are neither created, nor
destroyed by internal reactions, the amount of each element in flux through a
reaction can be equivalently expressed in terms of reaction flux multiplied by
either substrate stoichiometry, or product stoichiometry.

To prevent ‘double-counting’ through the addition of substrate and product flux
for each reaction, T p, is the transformation of matrix T, such that all negative
values (i.e. substrates) are replaced by zero. Elemental flux therefore is given
by

F = E · T p (3.11)

where Fe,c corresponds to total flux of chemical element c in elementary flux
mode e, normalised by flux through the biomass reaction. ‘Total elemental flux’
is the sum of each row of matrix F.

3.4.5 Predictor reactions

In order to determine the reactions which are directly or indirectly dominant in
determining the emergent behaviour of the modelled system in terms of nutrient
use requirements, the scikit-learn (v0.17.1) toolkit was used to learn all linear
regression models, and calculate the coefficients of determination (r2) values. To
asses one and two parameter linear models, a brute force approach was used to
enumerate all combinations of one or two indicator reactions for each criterion
variable.



Chapter 4

The regulation of mobile
mRNA

Recently, a large population of messenger RNA (mRNA) was shown to be able
to travel between plant organs via sieve elements as a putative long-distance
signalling molecule. However, a mechanistic basis by which transcripts are se-
lected for transport has not yet been identified. Here we show that experimental
mRNA mobility data in Arabidopsis can be explained by transcript abundance
and half-life. This suggests that the majority of identified mobile transcripts can
be accounted for by non-sequence-specific movement of mRNA from companion
cells into sieve elements.

4.1 Introduction

Acclimation to environmental conditions is vital for plants. At the whole-plant
level, this is aided by long distance signalling between organs, which is important
both for plant development and defence responses [198, 208]. Mechanisms for
long distance communication include calcium and ROS waves, action potentials,
and hydraulic waves, as well as phytohormones and some small RNAs [198,
208, 67]. Long-distance signalling molecules can be transported through the
phloem, in enucleated cells called sieve elements. mRNA is also able to move
in sieve elements, and some mobile transcripts have been shown to give rise to
developmental differences at distal locations [209], leading to the suggestion that
mRNA could be another class of long distance signalling molecules [241].

mRNA moves between host and parasitic plants [107] as well as between het-
erografts [154]. Recently a pioneering grafting approach identified a large popu-
lation of 2,006 mobile mRNA species that were able to move between roots and
shoots in grafted Arabidopsis ecotypes [219]. Interestingly, these data suggest

141
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that a large percentage of mRNA can move against the direction of phloem
flow. Phenotypic changes related to specific mobile mRNAs have been reported
[108, 84, 9, 133, 155] but it remains unclear to what extent mRNA mobility
is biologically meaningful [129, 154]. Correlation between abundance and long
distance mobility has been noted, leading to speculation that mRNA transport
could occur in both a selective and non-selective manner [107, 154].

Here, we investigate the potential link between mRNA abundance and mobility
by evaluating a simple diffusion-based model (termed the abundance model) in
which nonsequence-specific movement of mRNA species from companion cells
into sieve elements leads to long-distance mobility. We find that this model
is sufficient to explain the large population of experimentally observed mobile
transcripts, and makes predictions regarding mobile transcript size and half-life
that are consistent with experimental data.

This analysis suggests that most of the identified mobile mRNA species are
mobile as a consequence of local abundance.

4.2 Results

4.2.1 The probability of mRNA mobility saturates with
mRNA abundance

We developed a simple model to estimate the probability that a transcript is
mobile. In the companion cell, after mRNA crosses the nuclear envelope, most
transcripts move through the cytosol by diffusion [60] and are translated or de-
graded. Alternatively, upon reaching the cell membrane, the transcripts may
pass or be chaperoned through plasmodesmata into sieve elements [103, 154],
in which molecules can move bi-directionally [126]. The fate of each mRNA
molecule of a given transcript species was modelled by a random walk through
a 3D cell. Initially positioned at the centre of the cell, at each time-point,
the molecule could move up, down, left right, forward or back a small distance
relative to the size of the cell, or it could decay with a predefined, constant
probability. At the cell boundary, a spatially uniform, transcript independent
probability that the mRNA could pass into sieve elements was assigned. If any
simulated mRNA molecule passed through the cell membrane, then that tran-
script was considered to be mobile (Figure 4.1a). These assumptions could be
readily extended to include further information, such as varying plasmodesmal
densities, but whilst simple they proved to be sufficient to explain the observed
data, thus not warranting further parameters in the model.

mRNA species abundance is a consequence of transcription rate and half-life.
Different transcription rates were modelled by changing the initial number of
mRNA molecules in the simulation, and half-life by the decay probability. Trans-
port across the graft boundary in sieve elements was assumed to be fast, and
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Figure 4.1: Workflow for the simulation of mRNA mobility. A, cartoon of the mRNA
abundance model. Green boxes represent cells, the side facing inwards being adjacent
to sieve elements. The rows of cells represent different simulation runs and different
transcription rates. Blue diffusion paths indicate simulations in which the transcript was
considered to be mobile, and red indicates those in which the transcript was non-mobile.
B, the output of the abundance model (left, mobility versus abundance plot) was combined
with experimental mRNA abundance data to predict the distributions for mobile and non-
mobile mRNA (see Methods).

so if any molecule of a transcript passed into sieve elements, then that tran-
script was considered to be mobile, otherwise the transcript was considered
non-mobile. Modelled mRNA species fate was seen to be stochastic, and so
for each transcript species, the simulation was run 10,000 times to estimate
a probability of movement out of the cell, which was then used to calculate
the probability of an mRNA species moving into sieve elements from multiple
companion cells.

This simple model predicts a saturation relationship between mRNA abundance
and probability of mobility. The shape of this curve depends on a number
of variables such as cell size, the number of companion cells, plasmodesmatal
conductivity, and nucleus size and position, as well as mRNA half-life, but
can be approximated by a saturation curve with only two unknown parameters
(Figure 4.2, Figure 4.3, Figure 4.4, Methods).



144 CHAPTER 4. THE REGULATION OF MOBILE MRNA

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0

P
(m

o
b
ile

)

ce
ll 

si
ze

=
4

0

P(decay)=0.025

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0

P(decay)=0.05

10 companion cells

20 companion cells

40 companion cells

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0

P
(m

o
b
ile

)

ce
ll 

si
ze

=
3

0

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000 2500 3000

mRNA abundance

0.0

0.2

0.4

0.6

0.8

1.0

P
(m

o
b
ile

)

ce
ll 

si
ze

=
2

0

0 500 1000 1500 2000 2500 3000

mRNA abundance

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.2: The effect of cell size, cell number and half-life on mRNA mobility. The mRNA
abundance model predictions for the effect of species abundance on mRNA mobility, and
the saturation curve approximations of these are shown for simulations with varied cell size,
cell number, and mRNA half-life characterised by the probability of decay, P(decay). Points
are model predictions based on the calculation of the escape probability from a companion
cell in the 3D cell simulations described in the main text. The curves correspond to a fitted
saturation equation for a transcript being mobile as explained in the Methods section.
This shows that although these unknown parameters influence mobility, the effects can
be well approximated by a simple saturation curve, thus reducing the number of unknown
parameters in the model.



4.2. RESULTS 145

Figure 4.3: The effect of nucleus position and size on mRNA mobility. The abundance
model predictions for the effect of species abundance on mRNA mobility and the saturation
curve approximations of these are shown for simulations with varied nucleus position and
size. Variation in nucleus size and position was incorporated in the abundance model by
modifying the initial position of the simulated mRNA molecule. Starting positions were
uniformly sampled on the surface of a sphere, representing the nucleus, positioned as
shown, and of stated radius. Points are model predictions based on the calculation of the
escape probability from a companion cell in the 3D cell simulations described in the main
text. The curves correspond to a fitted saturation equation for a transcript being mobile
as explained in the Methods section. This shows that although nucleus size and position
influence mobility, the effects can be well approximated by a simple saturation curve, thus
reducing the number of unknown parameters in the model.
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Figure 4.4: The effect of varied probability of passing through the cell surface on mRNA
mobility. The abundance model predictions for the effect of species abundance on mRNA
mobility and the saturation curve approximations of these are shown for simulations with
varied probability of passing through the cell surface upon contact with it. With decreased
probability of passing through the surface, K was seen to increase, and n decrease. Points
are model predictions based on the calculation of the escape probability from a companion
cell in the 3D cell simulations described in the main text. The curves correspond to a fitted
saturation equation for a transcript being mobile as explained in the Methods section.
This shows that although these unknown parameters influence mobility, the effects can
be well approximated by a simple saturation curve, thus reducing the number of unknown
parameters in the model.

4.2.2 The predicted abundance distribution of mobile
transcripts fits experimental data

We compared the predicted relationship between mRNA abundance and mobil-
ity from the model to the dataset generated by Thieme et al. [219] (Figure 4.1b,
Methods). With fitted parameters (Figure 4.5a, Methods), the computed rela-
tionship between transcript abundance and probability of mobility was able to
reproduce the distribution of the mobile and non-mobile mRNA species (Fig-
ure 4.5b), although as expected, the fate of individual transcripts was highly
stochastic. This was also observed within the experimental data, where tran-
scripts frequently could be mobile or not in different repeats. As can be seen
in Figure 4.5a & c, the predictions remained within experimental error; how-
ever, the experimental data seemed to deviate from the model at both extremes
of the transcript abundance distribution. This is likely predominantly a con-
sequence of the low copy statistics for mRNA species of extreme abundances
(Figure 4.5b), although it could indicate the existence of an alternative mecha-
nism affecting a small proportion of the population, which is otherwise hidden
by the abundance-driven mobility mechanism.

4.2.3 Analysis of low-abundance mobile transcripts

To investigate whether there are differences in the nature of the transcripts that
deviate most from our simple abundance model, we analysed the sequences of
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Figure 4.5: An abundance model of mRNA mobility captures the experimental mRNA
distributions. A, the fitted and experimentally derived P(mobile) curve, 95% experimental
confidence intervals shown. The experimental P(mobile) was estimated as the ratio of the
number of mobile over non-mobile transcripts, binned by abundance. The confidence in-
terval was calculated using the Clopper-Pearson Exact Binomial method. At high and low
mRNA abundance values, experimental P(mobile) uncertainty increases as a consequence
of the fewer number of high and low abundance transcript species. B, experimental (left),
and modelled (right) abundance distributions of mobile and non-mobile mRNA using the
fitted P(mobile) curve. C, experimental and predicted abundance distribution for mobile
mRNA only, 95% confidence intervals shown, calculated using the Clopper-Pearson Bino-
mial method. The predicted distributions fit the experimental data well. This suggests
that the observed experimental results could predominantly be the result of passive fil-
tering processes, without widespread sequence specific regulation of mobility. More low
abundance transcripts are experimentally mobile than can be explained by the abundance
model. This suggests that a secondary mechanism also affects mobility. It is not thought
likely that the putative secondary mechanism only acts on low abundance transcripts, but
instead that at other abundance values its effect is obscured by transcripts made mobile
by the processes described in the abundance model.
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the low abundance mobile transcripts ( ln(abundance) < 1, left hand side of
Figure 4.5a). These transcripts are listed in Table 4.2, in Appendix. Whereas
for the full dataset we failed to find any statistically significant motifs, for this
subset we identified 3 statistically enriched motifs, (listed in Table 4.1), using
DREME [8]. Analysis of Gene Ontology terms revealed an enrichment of pro-
cesses associated with defence response and the chloroplast for this subset of
transcripts (see Table 4.3, in Appendix).

Table 4.1: Putative mobility motifs identified in the low abundance mobile transcripts
using DREME software [8]. The motifs were enriched in the mobile vs. non-mobile low
abundance transcripts. See Table 4.2 in Appendix for the list of transcripts. Data from
Thieme et al. [219]. P-value is calculated using Fisher’s Exact Test, E-value is the P-value
multiplied by the number of candidate motifs tested. Motifs with E-value < 0.05 are
shown.

Enriched motif P-value E-value
AGTWCAAC 7.6E-7 2.8E-2
ATGGTTTG 8.7E-7 3.2E-2
CCCACS 1.3E-6 4.7E-2

4.2.4 Regulation of mobility through control of abundance
proximal to the vasculature

It is possible that local transcript abundance near sieve elements is altered rel-
ative to the rest of the tissue to control movement from the site of transcription
into sieve elements, and thus, to regulate mRNA mobility. To investigate this
possibility, we analysed two available data sets, one with bundle sheath data [7]
and the other with companion cell data [147]. In the bundle sheath, the mobile
population was not enriched relative to overall leaf expression levels (Figure 4.6a,
Figure 4.7). However, using the more localised companion cell data, we found
that mobile mRNA transcripts were slightly but significantly over-expressed
relative to the rest of leaf (Figure 4.6b, Figure 4.7). This suggests that local
regulation of abundance may be a plausible mechanism for regulating mRNA
mobility, although we do not see clear evidence that it definitely is.

4.2.5 mRNA half-life contributes to transcript mobil-
ity

The abundance model predicts that mRNA half-life should affect the probability
of mobility, as more stable transcripts are likely to have more chances to move
out of the cell into sieve elements before decaying (Figure 4.8. Consistent with
this expectation, the mobile population had a greater half-life than the non-
mobile population (Figure 4.9).
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Figure 4.6: Mobile transcripts may be preferentially expressed proximal to sieve elements.
The transcript expression ratio in cells proximal to the sieve element relative to the rest
of the leaf: A, in the bundle sheath (B.S.), B, in companion cells (C.C.). The statistical
significance of the difference of the means, P-value, was calculated using Welch’s t-test.
Abundance data taken from Mustroph et al. [147], Aubry et al. [7], and Thieme et al.
[219], mobility classification from Thieme et al. [219]. Abundance ratio distributions in the
bundle sheath, and companion cell are similar for mobile, and non-mobile transcripts, i.e.
mobile transcripts are not generally overexpressed proximal to the vasculature relative to
the rest of the leaf. We therefore do not see evidence to suggest widespread regulation of
abundance proximal to the vasculature in order to regulate mobility, although it is certainly
not eliminated as a potential regulatory mechanism.
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Figure 4.7: The abundance distribution of mobile and non-mobile transcripts in cells prox-
imal to the vasculature. Abundance data for the bundle sheath from Aubry et al. [7], for
the companion cell from Mustroph et al. [147], mobility classification data from Thieme et
al. [219]. Transcripts which were found to be mobile in the Thieme dataset are relatively
abundant in these datasets as well.

However, abundance is a function of transcription rate and half-life, and so this
difference could be due to the effect of half-life on abundance, rather than the
separable effect predicted by the model. To address this question, we performed
linear discriminant analysis to find the most informative projection of the data
to separate mobile from non-mobile transcripts, and found that the dominant
eigenvector was

(vabundance , vhalf-life) = (0.992, 0.123)

indicating that there was a half-life effect on mobility separable from its effect
on abundance, but that this contribution was small relative to the size of the
abundance effect. Visually, the best boundary to discriminate mobile from non-
mobile transcripts found by logistic regression could be seen to have both an
abundance and a separate half-life component (Figure 4.10).

4.2.6 Smaller transcripts appear to be more mobile

The observations discussed to this point could also be explained by detection
sensitivity in the RNA-sequencing experiment; if more mRNA species are truly
mobile than were experimentally detected, one might expect the more abundant,
and more stable transcripts to be more likely to be detected, than others. We
see that a toy detection threshold model (see Methods) results in a similar
relationship between abundance and the probability that a transcript is mobile
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Figure 4.8: The predicted effect of half-life and abundance on transcript mobility. For
varied transcription rates and half-lives, transcript abundance and mobility was simulated
using the abundance cell model. Transcripts with longer half-lives can be seen to be more
mobile than shorter transcripts. However, the effect of half-life on mobility can be seen
to interact with transcript abundance, such that the threshold half-life, and sensitivity to
changes in half-life varies with species abundance.
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Figure 4.9: The distribution of half-life for experimentally determined mobile and non-
mobile mRNA populations. Data taken from Narsai et al. [148] and Thieme et al. [219].
95% Clopper-Pearson binomial confidence intervals shown. Mobile transcripts can be seen
to be generally more stable than non-mobile transcripts, in agreement with the abundance
model.
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Figure 4.10: The contributions of half-life and abundance to mRNA mobility. The relation-
ship between experimental half-life, abundance and mRNA species mobility is shown, and
the predicted regions of mobility, and non-mobility, generated using a logistic regression
classifier. Abundance and half-life were both normalised such that the mean value is 0 and
standard deviation is 1. The boundary between the predicted regions has both abundance,
and half-life components, suggesting that half-life has an effect on mobility, independent
from its effect on abundance, as expected under the abundance model.
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Figure 4.11: An experimental detection threshold model results in a similar abundance ver-
sus probability mobile curve as the abundance model. Points correspond to the estimated
probability that a truly mobile mRNA of the indicated abundance is successfully detected
as mobile using the detection threshold model (see Methods). The line fitted to the point
data is of the same form as Equation 4.1. The good fit indicates that the abundance
versus probability mobile curve cannot easily be used to distinguish between these models.

as the abundance model, which can be well described by the same saturation
equation (Figure 4.11).

To distinguish between a detection threshold explanation, in which the effect of
half-life, and abundance on mRNA mobility are an experimental artefact and the
abundance model, in which abundance and half-life modulate the probability
of escaping the producing cell, we considered the effect of molecule size on
mobility.

Under the abundance model, transcripts with a larger Stokes radius would be
less likely to be mobile, as they are slower to diffuse within a cell, and within
a given time less likely to reach plasmodesmata. Although complicated by the
formation of RNA secondary structures, we considered transcript length as a
proxy for the Stokes radius of an RNA species. The dependence of transcript
abundance in the non-producing distal tissue as a function of transcript length
is shown in Figure 4.12a. The small but statistically significant negative corre-
lation qualitatively supported that larger transcripts are less mobile. To check
that this was not due to experimental detection bias, we analysed the depen-
dence of local transcript abundance in the mRNA producing tissue as a function
of transcript length. We would expect that experimental bias to be similar in
local and distal tissue; however, we did not observe this (Figure 4.12b). By
contrast to Figure 4.12a, we found no negative correlation between mRNA tran-
script length and local abundance (a minor positive correlation was observed),
suggesting that experimental bias does not cause the size effect tendency.
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Figure 4.12: The effect of transcript length on mobility suggests that the observed trends in
mobile mRNA species are at least partially caused by the abundance, rather than detection
threshold model. A, Smaller transcripts are more mobile. This plot shows the mRNA
abundance in the distal tissue, (i.e. only for mobile transcripts), as a function of transcript
length. Data taken from Thieme et al. [219]. P-values were computed from Spearman’s
rank correlation, the moving average (red) was calculated with a window size of 300. The
negative correlation indicates that smaller transcripts are more abundant in the distal,
non-producing tissue, in agreement with the abundance model. B, Detected transcript
abundance as a function of length in the producing tissues. A small but statistically
significant positive correlation indicates that there is a slight detection bias favouring longer
mRNA transcripts. This indicates that the negative correlation seen in Figure 4.12a is not
a consequence of experimental sequencing bias leading to misrepresentation of transcript
species abundance. Data taken from Thieme et al. [219], rho and p-values were calculated
using Spearman’s rank. The moving average (red) was calculated using a window size of
6,000.
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4.3 Discussion

Using a simple computational model, we have shown that the large mobile
mRNA population recently identified by Thieme et al. [219] can be explained
by non-sequence- specific movement of mRNA into sieve elements. Within this
model, mRNA abundance is a key determinant of mobility. Furthermore, we
have shown that mRNA half-life and transcript length affect the mobile mRNA
population in a manner consistent with the abundance model. Recently, the
apparently non-specific loss of proteins from companion cells into the sieve-
elements has been observed [159], suggesting that this could be a wide-spread
phenomenon among diverse classes of molecules.

The consistency of the abundance model with existing experimental data does
not imply that identified mobile mRNA species are not biologically relevant
signalling molecules. The probability of reaching the cell surface itself could be
a biologically relevant and regulated mechanism, in which the balance between
half-life and transcription rate determines the mobility of mRNA species, indeed
mRNA 5’ and 3’ UTR regions associated with increased mobility have been
shown to increase transcript half-life [10]. Interestingly, the motif ‘ATGGTTTG’
which was enriched in low abundance, mobile transcripts (Table 4.1) has been
previously found to be associated with stable transcripts [148], suggesting that
stability can indeed compensate for low transcript abundance as predicted by
the model in Figure 4.8. This is also supported by the discovered association of
low abundance, mobile transcripts with the chloroplast, as shown in ‘annotation
cluster 2’ of Table 4.3. Transcripts encoding chloroplast proteins have previously
been shown to have a significantly higher proportion of transcripts with long
half-lives [148].

Although we have predominantly used tissue-level expression data, mobile tran-
scripts are also highly abundant in companion cells relative to non-mobile (Fig-
ure 4.7). Furthermore, mobile transcripts are slightly overexpressed in compan-
ion cells relative to constitutive expression, although it remains unclear whether
this is evidence for a regulatory process governing mobility or whether mobility is
a side effect of a transcriptome that has been changed for other purposes.

Our model defines mRNA mobility as the escape probability from companion
cells and does not explicitly consider the transport process through sieve ele-
ments. This does not rule out a possible sequence-specific unloading process.
Experimental data suggest that once a molecule is in the sieve elements it can
move bi-directionally across a graft junction [126]. Therefore, we did not impose
any directionality of mRNA movement within sieve elements flow. Should quan-
titative measures for transcript movement with sieve elements become available,
the model could be readily extended to include this information.

Key to reproducing experimentally determined mRNA mobility from the model
is the saturation curve shown in Figure 4.1b and Figure 4.5a. Our proposed
abundance model, explained by transcription rate, diffusion and half-life, nat-
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urally captures this behaviour. However, we point out that, in principle, any
process that gives rise to such an abundance-mobility saturation curve could
explain the data.

In developing the presented abundance model, we made a number of approxi-
mations that likely warrant future extensions, such as not including advection
in cytoplasmic transport and using simple box-shaped cells. Notably, we have
not needed to account for different transport probabilities through the plasmod-
esmata, say, as a function of mRNA size or shape to explain the data. Analysis
of the experimental data shows a correlation of abundance in the distal tissue
with transcript length, but does not reveal a size threshold, which would be
indicative of a size exclusion limit. Given the size of mRNA transcripts, they
could be actively chaperoned through the plasmodesmata, perhaps similarly to
viral RNA.

If mRNA transport through plasmodesmata requires chaperones that recognise
a sequence motif that binds with an equilibrium dissociation constant, Kd, then
mRNA with a concentration close to or above that Kd would bind and be trans-
ported. A transcript that has a different but similar motif may result in weaker
binding that would require a higher abundance to bind. Thus, selective and
non-selective mRNA mobility may be conceivably part of a common transport
process, with abundance as the determining factor. The presented model does
not exclude the possibility of mRNA motifs playing a role in mobility. The tight
relationship, however, between mRNA mobility and abundance for the bulk of
the available data clearly demonstrates the importance of abundance, whereas
a similar relationship between mobility and sequence motifs across a large range
of transcripts has yet to be shown. The few putative motifs we identified in a
reduced data set require further experimental investigation.

An alternative mechanism for mRNA movement could be one in which mRNA
enters sieve elements from sieve tube precursor cells, which undergo partial
apoptosis during differentiation. If this were the case, all mRNA could move
across the graft junction and it is possible that experimental detection bias of
mRNA might potentially give rise to the above-mentioned abundance-mobility
saturation curve. However, this possibility is not supported by the trends in the
transcript length and count data, which were not consistent across tissues. Fur-
thermore, the implications of this mechanism are the same as for the presented
abundance model in that the detected mobile mRNA transcripts are mobile
predominantly because of abundance rather than sequence-specific transport
processes.

Based on our results, we suggest that the large majority of identified transcripts
are unlikely to be selectively transported. However, it is possible that mRNA
species made mobile through the processes described in the abundance model
obscure a relatively small population that is made mobile through a different
mechanism, as evidenced by mRNA fusion studies performed by Thieme et al.
[219] and the two statistically enriched motifs identified in the low-abundance
mobile population which have not been linked to stability. We propose that
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the presented abundance model should be considered the null hypothesis when
assessing mRNA mobility data and other mechanisms of mRNA transcript mo-
bility.

Since this work was carried out, a study by Zhang et al. [254] identified tRNA
derived motifs associated with mRNA mobility. They argue for an “active and
regulated” mRNA delivery mechanism on the basis of 1.) the presence of these
sequences, 2.) the transfer of mRNA to “specific aboveground tissues” , and 3.)
that mobile mRNA does not necessarily follow the source to sink flow of phloem
contents.

However, it has been shown previously that molecules are able to move bidi-
rectionally in the phloem, and cross graft junctions both with, and against the
net flow in the phloem [126]. Consistent with bidirectional movement of mRNA
within the phloem, Zhang et al. observed reduced mobility against the phloem
source to sink phloem flow direction [254], suggesting that there may be no need
to invoke the proposed “active transport system”.

Secondly, although mRNA species could be interpreted as exhibiting specific
movement into particular tissues, this observation is also consistent with the
stochastic movement implied by the abundance model. When transcripts cannot
be consistently identified as mobile across biological replicates even in tissues
as comparatively large as the rosette and the root system [219, 254], it is not
surprising that in a single experiment a given transcript species is “specifically”
identified in some aboveground tissues and not others.

The identification of these mobility associated motifs is an exciting step, how-
ever, they are not predicted to interact with polypyrimidine tract binding pro-
teins found in the phloem [254], and their mode of action remains unclear. The
sequences are often found in the 3’-UTR, which is well known to be associ-
ated with mRNA stability (reviewed [143]), and it is possible that their effect is
mediated through mRNA stability. This may explain the somewhat stochastic
nature of their mobility in engineered transcripts (n=9/44, n=6/25 for the two
discovered motifs [254]). Unfortunately, no stability assay was carried out to
evaluate this effect.

The identified motifs were associated with only 11.4% of the identified mo-
bile transcripts [254], similar in magnitude to the number of unexplained tran-
scripts under the abundance model Figure 4.5c, and it remains an interesting,
and I think largely unresolved question, as to what extent mRNA mobility
plays an important role in plant physiology, and the mechanisms by which it is
achieved.
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4.4 Methods

4.4.1 Data sources

Abundance and mobility data was taken from Supplementary Information 1
of Thieme et al. [219]. Thieme et al. [219] performed a grafting experiment,
in which two distantly related ecotypes of Arabidopsis thaliana, Ped-0 & Col-0,
dispaying a high frequency of genomic sequence single nucleotide polymorphisms
(SNPs) were grafted together. RNA-sequencing of each half of the grafted plants
was performed, and ecotype specific SNPs present in RNA molecules allowed
them to identify their origin, and thus their mobility in reciprocal chimaeric
root-shoot grafted plants.

Transcripts with less than three read counts were excluded from the data. For
each transcript, in each grafted tissue, ‘abundance’ was calculated as the average
read count per informative SNP in the local, producing tissue. Transcripts were
considered ‘mobile’ if the read count for the non-local form of the transcript
was greater than zero in the reciprocal grafted tissue. mRNA half-life data
was taken from Supplementary Table 2 of Narsai et al. [148]. Companion cell,
and bundle sheath abundance information used in Figure 4.6, and Figure 4.10
was taken from supplementary data of Mustroph et al. [147] and Aubry et al.
[7].

4.4.2 Calculation of escape probability from many
cells

Probability of escape from a single cell, P (E), was computed using the abun-
dance model as described in subsection 4.2.1. The expected probability of a
mRNA molecule moving into sieve elements from multiple companion cells,
P (F ) was be calculated as P (F ) = 1 − (1 − P (E))m , where m is the num-
ber of companion cells.

4.4.3 Mobility prediction & fitting to abundance data us-
ing saturation curve

The saturation curve equation used to describe the predicted relationship be-
tween mRNA mobility and abundance was

P (m) =
An

Kn +An
(4.1)

where P (m) is the probability of the transcript being mobile, A is the exper-
imentally measured transcript abundance, K is the abundance for which the
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probability of being mobile is 50%, and n gives the steepness of the curve. For
each modelled transcript t, of abundance A, in the set of all experimentally
measured transcripts (T ), P (m) was calculated, using Equation 4.1, and At was
exclusively assigned to either the mobile set M , or the stationary set S based
on the value of P (m) such that

P (At ∈M) = P (m) ∀ t ∈ T
M ∩ S = ∅
M ∪ S = {A1, ..., AT }.

This reflects the experimental approach taken by Thieme et al. [219] in which
transcripts where classified as either ‘mobile’, or ‘non-mobile’ depending on
whether they were detected in the non-producing half of the grafted plant.

To fit the K, and n parameters to the experimental data, the distribution
of abundances for predicted and experimental mobile and non-mobile tran-
scripts were approximated by histograms, and the difference between the
area of predicted and experimental distributions minimised using the scipy.

basinhopping algorithm.

The Clopper-Pearson method was used to calculate the binomial confidence in-
terval for the proportion of the population expected to be mobile in each abun-
dance range, as this allows the calculation of confidence intervals even for abun-
dance ranges in which no mobile transcripts were detected / predicted.

4.4.4 Detection threshold model

Under the assumption that all mRNA molecules are mobile, RNA-sequencing
sensitivity could produce a similar relationship between abundance and detected
probability of mobility. To model the effect of detection sensitivity we sampled
from a binary array R. The number of elements in R corresponds to the number
of all mobile transcript molecules present in the non-local tissue, the number of
non-zero elements correspond to the number of mobile elements of a particular
transcript species of interest. Under the assumption that local cell and tissue
geometry provides no differential impediment to mobility, this is linearly related
to mRNA abundance in the producing tissue.

For each mRNA abundance, the probability of successfully detecting that a
transcript was mobile, apparent P(mobile), was estimated by sampling from
R, 10,000 times, and calculating the fraction of samples containing a non-zero
element. Sample size is equivalent to the fraction of all mobile mRNA molecules
which were sequenced.

scipy.basinhopping
scipy.basinhopping
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4.4.5 Linear discriminant analysis

Linear discriminant analysis is a method, similar to principle component analy-
sis, to find a linear combination of features which best separates two predefined
classes, here mobile, and non-mobile transcripts. Here we used the implemen-
tation in scikit-learn (v0.17.1) to demonstrate that the principle dimension
includes both half-life, and transcript abundance elements, and that therefore
the effect of half-life on mobility was not only caused by the effect of half-life
on abundance.

4.4.6 Logistic regression

Logistic regression is a commonly used tool in applied statistics, in which the
logistic transformation of the probability of set membership is modelled by a
linear equation

log
P (x)

1− P (x)
= β0 + x1 · β1 + x2 · β2. (4.2)

The implementation of logistic regression in scikit-learn (v0.17.1) was used
to examine the relationship between abundance, half-life, and mobility, such
that P (x) was the probability that a transcript is mobile, x1 was normalised
half-life, and x2 was normalised abundance.

scikit-learn
scikit-learn
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Table 4.3: Gene ontology terms associated with defence, and the plastid are enriched
in the low abundance mobile transcripts relative to the low abundance non-mobile set.
Enrichment analysis was carried out using DAVID 6.7 [92], which also clusters ontology
terms together into more interpretable related annotation clusters.

Annotation Cluster 1 Enrichment
Score 2.13

Term P-value
GO 0042742 defense response to bacterium 2.64E-03
GO 0009617 response to bacterium 8.20E-03
GO 0006952 defense response 1.88E-02

Annotation Cluster 2 Enrichment
Score 2.11

Term P-value
GO 0015979 photosynthesis 2.73E-04
GO 0009941 chloroplast envelope 8.11E-04
chloroplast 9.15E-04
GO 0009526 plastid envelope 1.18E-03
GO 0009579 thylakoid 1.30E-03
GO 0044435 plastid part 1.57E-03
GO 0044434 chloroplast part 1.57E-03
GO 0031975 envelope 1.97E-03
GO 0031967 organelle envelope 1.97E-03
transit peptide 2.14E-03
plastid 4.12E-03
calvin cycle 4.80E-03
GO 0009532 plastid stroma 6.37E-03
GO 0015977 carbon utilization by fixation of carbon dioxide 6.52E-03
GO 0019685 photosynthesis dark reaction 6.52E-03
GO 0019253 reductive pentose-phosphate cycle 6.52E-03
GO 0009507 chloroplast 6.95E-03
GO 0009536 plastid 6.95E-03
GO 0009535 chloroplast thylakoid membrane 1.10E-02
GO 0042651 thylakoid membrane 1.10E-02
GO 0034357 photosynthetic membrane 1.10E-02
GO 0055035 plastid thylakoid membrane 1.10E-02
transit peptide Chloroplast 1.42E-02
GO 0009534 chloroplast thylakoid 1.96E-02
GO 0031976 plastid thylakoid 1.96E-02
GO 0031984 organelle subcompartment 1.96E-02
GO 0044436 thylakoid part 1.96E-02
photosynthesis 2.08E-02
GO 0009570 chloroplast stroma 3.57E-02
ath00710 Carbon fixation in photosynthetic organisms 3.59E-02
GO 0048046 apoplast 3.62E-02
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GO 0031090 organelle membrane 6.83E-02
GO 0006091 generation of precursor metabolites and energy 7.00E-02
GO 0005576 extracellular region 8.00E-02
GO 0016051 carbohydrate biosynthetic process 1.35E-01

Annotation Cluster 3 Enrichment
Score 1.99

Term P-value
disulfide bond 1.84E-06
disulfide bond 1.30E-05
IPR018097 EGF-like calcium-binding conserved site 1.11E-04
glycoprotein 1.50E-04
serine/threonine-protein kinase 2.92E-04
PIRSF000575 wall-associated protein kinase 3.03E-04
signal 4.35E-04
IPR017441 Protein kinase / ATP binding site 7.14E-04
glycosylation site N-linked (GlcNAc...) 8.25E-04
IPR008271 Serine/threonine protein kinase active site 1.75E-03
IPR017442 Serine/threonine protein kinase-related 1.93E-03
active site Proton acceptor 2.22E-03
IPR000719 Protein kinase core 3.10E-03
ATP-binding 4.43E-03
signal peptide 4.59E-03
domain Protein kinase 4.66E-03
region of interest Atypical EGF-like 5.16E-03
binding site ATP 5.47E-03
IPR013695 Wall-associated kinase 5.49E-03
kinase 5.66E-03
SM00181 EGF 6.67E-03
GO 0004674 protein serine/threonine kinase activity 7.05E-03
nucleotide-binding 7.36E-03
GO 0006468 protein amino acid phosphorylation 7.47E-03
GO 0005773 vacuole 7.73E-03
GO 0016310 phosphorylation 8.08E-03
GO 0006793 phosphorus metabolic process 8.73E-03
GO 0006796 phosphate metabolic process 8.73E-03
IPR006210 EGF-like 8.97E-03
GO 0004672 protein kinase activity 1.32E-02
nucleotide phosphate-binding region ATP 2.05E-02
membrane 2.43E-02
topological domain Extracellular 2.69E-02
GO 0005509 calcium ion binding 2.76E-02
transferase 3.65E-02
phosphotransferase 4.55E-02
transmembrane 6.77E-02
topological domain Cytoplasmic 7.05E-02
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GO 0005524 ATP binding 8.45E-02
GO 0032559 adenyl ribonucleotide binding 9.34E-02
GO 0001882 nucleoside binding 1.31E-01
GO 0001883 purine nucleoside binding 1.31E-01
GO 0030554 adenyl nucleotide binding 1.31E-01
GO 0043169 cation binding 1.38E-01
GO 0043167 ion binding 1.38E-01
GO 0032553 ribonucleotide binding 1.39E-01
GO 0032555 purine ribonucleotide binding 1.39E-01
GO 0000166 nucleotide binding 1.53E-01
GO 0017076 purine nucleotide binding 1.85E-01
transmembrane region 1.91E-01
GO 0016021 integral to membrane 3.43E-01
GO 0031224 intrinsic to membrane 4.76E-01
GO 0005886 plasma membrane 7.05E-01

Annotation Cluster 4 Enrichment
Score 1.33

Term P-value
GO 0006952 defense response 1.88E-02
GO 0050832 defense response to fungus 6.05E-02
GO 0009620 response to fungus 9.03E-02

Annotation Cluster 5 Enrichment
Score 1.26

Term P-value
hydrolase 3.04E-02
region of interest Substrate binding 4.22E-02
binding site Substrate 1.32E-01

Annotation Cluster 6 Enrichment
Score 0.722

Term P-value
oxidoreductase 1.22E-01
GO 0055114 oxidation reduction 1.30E-01
iron 4.32E-01

Annotation Cluster 7 Enrichment
Score 0.652

Term P-value
GO 0009628 response to abiotic stimulus 1.70E-01
GO 0009416 response to light stimulus 2.49E-01
GO 0009314 response to radiation 2.62E-01



Chapter 5

Discussion

Having recently reviewed work from all stages of the project, it now feels op-
portune to look back, and reflect on what has been a journey of personal and
professional development, and, happily, some scientific discovery. To conclude
this thesis, we discuss how, through the application of mathematical modelling,
and statistical analysis, we have contributed to an understanding of the ‘pur-
pose’ of metabolic flux patterns, and the extent to which this is an appropriate
mindset to address biological questions.

5.1 Curation of metabolic model

Initially, we intended to build an ODE model of the kinetics of sulfur uptake and
assimilation, building upon the specific expertise of the Kopriva group, and the
Bayesian strengths of the Morris group in parameter estimation. Unfortunately,
after several months, we demonstrated that insufficient experimental data was
available to generate any meaningful result.

Following some discussion, it was established that carbon skeleton availability,
rather than sulfur itself is often limiting to sulfur uptake under many environ-
ments. Consequently, the idea of largely parameter free, ‘genome scale’ models
was appealing both scientifically, and practically, and therefore pursued. Al-
though initially beyond the expertise of any project member, this relatively
young field seemed full of opportunity, and early enthusiastic efforts lead to
the results presented in chapter 2, as well as providing the chance to study
MATLAB.

As newcomers to the field of constraint-based approaches, we were initially
taken back by the relatively poor agreement of many published models of plant
metabolism, with basic experimental data. Although these limitations were not

167
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necessarily obvious based upon the analysis carried out in the original publi-
cation, further investigation often yielded surprising errors. This is due not so
much to difficulty of the approach, as to the sheer scale of the modelling prob-
lem. Although simplifying assumptions regarding steady state are made, the
enormous complexity of plant metabolism, and the resulting huge number of
reactions which must be accounted for, make the production of these models
a hugely time consuming task, especially in relation to smaller ODE based ap-
proaches. As described in chapter 2, we have spent a considerable amount of
effort in further refining one such model. This resulted not only in a greater
agreement with the qualitative predictions of gene requirements, which we were
explicitly fitting the model to, but also to a slight improvement in flux predic-
tions as compared to tracer experiments. This model has also provided the basis
of much of the rest of the work carried out.

It is interesting that in similar models of human metabolism, considerable col-
laborative effort has gone into attempting to maintain a single, consensus model,
and recently into re-integrating parallel models [214]. Conversely, in Arabidop-
sis, and plant metabolism generally, a number of separate models have been
maintained, in parallel, across a considerable number of years, and publica-
tions. Given how time consuming these models are to make, the maintenance
of parallel models clearly results in a duplication of effort, and is therefore un-
desirable.

It is unclear what, if any, underlying differences in understanding, or approach
have led to these differences in outcome between the study of human and Ara-
bidopsis metabolism. We speculate that the increased complexity of plant in
comparison to human metabolism may lead to increased uncertainty, and an
unwillingness to accept a consensus model. However, we observed that no two
of the Arabidopsis models evaluated, use the same nomenclature for identifying
model components. Consequently, in spite of the common use of SBML, it is dif-
ficult to compare the specific differences between models, to evaluate metabolic
regions of similarity and difference, in order to determine whether they are
controversial. Although the integration of the various published models of Ara-
bidopsis is an important step in the maturation of the field, it is a complex task,
and expected to require extensive work. However, the enforcement of common
(data) standards is increasingly acknowledged to be an important step across
various aspects of biology, as such it is strongly to be desired that a common
system of agent identification be adopted.

It is desirable to evaluate genome-scale metabolic modes by a common metric.
In work published to date, model quality is assessed primarily in relation to
the interests of the authors. Whilst this is understandable, it limits the reuse
of previously published models. We propose that the ability of a model to
produce biomass from the commonly available inorganic metabolites, and com-
parison of gene lethality predictions to the Lloyd & Meinke database [128] be
reported. Although not sufficient to completely describe the vagaries of a given
model, this at least allows some standardised comparison of the quality of the
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published Arabidopsis models. Previously these have not necessarily been ap-
propriate as metrics, as particular models have focused on relatively small areas
of metabolism, and therefore permitted the external supply of organic metabo-
lites. However, given that models have now been published which are able to
produce biomass from inorganic substrates, there is no reason that further, more
focused models should not be integrated into these.

In spite of the availability of a number of high quality 13C-MFA flux measure-
ment datasets in Arabidopsis, we do not suggest the use of flux predictions for
general use in comparison of relative model quality. Measurements are limited
to only small metabolic regions relative to the whole of metabolism, therefore
although they should of course be considered for verification of the particular
metabolic regions of interest, they do not generally have broad coverage across
the model. Of course transcriptomic datasets offer better coverage, but are
their use to infer flux is controversial. Furthermore, flux predictions derived
from the model are somewhat sensitive to the particular method of constraint-
based analysis used, and thus may reflect this, rather than the quality of the
model itself.

5.2 FBA summary

Flux balance analysis is a computationally tractable method for predicting flux
distribution in a genome scale model. We have used FBA to attempt to ad-
dress the high error rate of current unbiased gene identification approaches, by
providing a second, independent means to identify important reactions for the
production of glucosinolates, important secondary metabolites. The idea being
that two approaches could then be used in conjunction to preferentially target
genes identified by both methods.

We found that indeed the model was able to predict genes which are involved in
glucosinolate production with greater accuracy than other unbiased approaches.
This serves to partially validate the model, and in particular, the areas of sec-
ondary metabolism which have not previously been assessed. However further
investigation suggested that the FBA approach cannot be considered as unbi-
ased as initially assumed; although it nominally considers all of metabolism, in
fact the quality of predictions is not equal across all genes which in fact affect
glucosinolates, and is biased towards the successful recovery of already expected
genes. Consequently, it is not clear that FBA can currently be usefully applied
to facilitate the understanding of secondary metabolism in this way. However,
we did see that interestingly, FBA appears to be able to make predictions of
enzymes which have more subtle effects than is commonly achieved in GWAS
studies. Consequently, we speculate that as the quality of published models
continues to improve, FBA based methods will one day be usefully applied to
the engineering of plants, as has already been done in microbes.
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A quirk of the FBA method, is that it only returns optimal solutions. We
have previously discussed this as a limitation for flux prediction, however it
can be interesting to observe how evolution has guided a plants behaviour to
an optimality, and therefore to help understand the ‘motivation’ behind the
way that metabolism responds to perturbation. In a simple model, integrating
kinetic, and constraint-based approaches, we were able to see that an essentially
biphasic response to slight and severe sulfur stress is the optimal solution to
maintain the ability to produce biomass, and that this is a consequence of
the non-linear relationship of transport to substrate concentration. When we
extended this study to explicitly consider the changes in internal fluxes, we saw
good agreement between model predictions of the response of key enzymes to
sulfur starvation and experimentally observed changes, however, overall the level
of agreement was somewhat middling when compared to a full transcriptomic
dataset.

The difference between discussed, and all studied genes is striking. It is interest-
ing how, often, little of the data generated in ’omic studies can be worked into
an interesting, biological narrative, and discussed within the body of the paper.
Even when an initial hypothesis is answered, the huge datasets generally contain
a great deal more information. However, it is often extremely difficult to work
backwards from the data, either to infer regulatory networks, or to understand
to what ‘purpose’ metabolism is being regulated. This must be ascribed to the
complexity of the networks of metabolic reactions, and the regulation of these
reactions.

Our results again tend to suggest that FBA is currently well able to explain
the expected, and easily discussed genes rather than all truly relevant genes.
However, the potential, (as models continue to improve), of constraint-based
methods to understand the motivation behind changes in gene expression levels
in plant in response to environmental stresses, in order to generate an explana-
tory story is clear.

Transcriptomic datasets are hugely abundant, and offer by far the best coverage,
not only of an enormous variety of perturbations, but also of the reactions of
the metabolic network. However, it should also be remembered that transcript
abundance is not an ideal experimental indicator of flux through an associated
reaction; correlation between transcript, and protein abundance is generally
fairly weak, and it is expected that correlation to flux will be even weaker. It is
currently difficult to pinpoint which disagreements are due to model error, and
which are due to the use of somewhat inappropriate data.

Although I think we have seen that not every conclusion of FBA is supported by
the data which are available, and that often the ideal dataset with which to test
these ideas does not exist, the output of the FBA based modelling approach is
often consistent with the data, and allows the generation of ideas, in particular
with regards to the ‘purpose’ behind metabolism, which I do not think would
easily be possible through other means. Plant metabolism is, of course, a hugely
complex subject. Although not a new approach, constraint based modelling was
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a new idea to me, it is fantastically interesting, and I think surprising that even
some aspects of such a complex system can be addressed through the application
of such a simple framework.

5.3 EFMs summary

At around the time this work was performed, Thomas Wilhelm was working on
a method for the calculation of diverse EFM sets, with Joern Behre at the Insti-
tute of Food Research, in Norwich. This was extremely exciting, and potentially
provided a powerful method for the analysis of our recently updated model using
a reduced set of elementary modes. Furthermore, Thomas and Joern are both
experienced in constraint-based modelling approaches, and their collaboration
allowed us to address the lack of expertise within our group. Unfortunately,
although a large codebase implementing their method had been written by a
succession of developers, it could not be practically applied, due to the com-
putational resources required. After extensive work, learning enough Java to
improve the code, analysing bottlenecks, and tweaking the parameters of the
Cplex Optimiser software, it still could not be practically used, highlighting the
computational difficulties of an EFM based approach. However, the publication
of the more efficient TreeEFM method [163] has allowed the application of EFMs
to the model, and, as presented in chapter 3, generated a number of hypotheses
concerning various aspects of plant nutrition. It is interesting to note that al-
though modelling is normally cited as a means to target, and thus reduce exper-
imental requirements, within the sphere of EFMs, computational requirements
can potentially be alleviated through additional experimental work; metabolite
concentration data can be used to reduce the requirement for EFM calculation
by eliminating thermodynamically inconsistent modes.

Elementary flux modes provide an efficient description of the capabilities of a
metabolic network. Although it remains impractical to calculate all elementary
modes, we have seen that a subset of the modes can be calculated for genome
scale models, and that this subset can be used to approximate the behaviour of
the full set. We have applied EFMs to study nutrient use efficiency. Interestingly
this has highlighted the importance of considering waste metabolites carefully.
The importance of these exchange fluxes has perhaps been neglected in many
previously published models, in favour of the biomass equation, and uptake
fluxes.

Yield space analysis of the elementary modes has generated a large number of
ideas about nutrient use efficiency. Personally I had expected to see a greater
potential for trade-offs between the requirement for different nutrients, which
appears relatively insensitive to ‘decisions’ available to the organism. It is also
interesting to observe that by taking nitrogen up as a mixture of nitrate and
ammonium, plants apparently avoid the ‘worst-case’ nutrient efficiency modes,
rather than selecting for the best. This bears a striking resemblance to some
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EFM based genetic engineering strategies, as well as more diverse biological
processes, such as natural search algorithms [85].

The potential existence of modes which are not biologically utilised means that
although certain narratives, such as these, present themselves, care must be
taken not to over-interpret the EFM distributions, and we do not claim that
these hypotheses are the case. Obviously ideally some of these ideas would be
further tested experimentally, fulfilling the mantra of iterative cycles of experi-
ment, and modelling. Given the limited quality of the results seen under FBA
analysis, in particular with regards to the comparison between sulfur starvation
predictions, and transcriptomic data, it is not necessarily clear how accurate
any of these ideas might prove to be. However, the modelling phase of ‘idea
generation’ is complete.

5.4 Mobile mRNA

In spite of the above described broadening of scope, from sulfur assimilation, to
nutrient use, we remained interested in sulfur metabolism, and spent some time
investigating the bundle sheath expression of many genes associated with sulfur
metabolism, and glucosinolate production. Thieme et al. [219] demonstrated
that sulfur related genes were over represented amongst the mobile mRNA pop-
ulation, suggesting a potential reason for the observed bundle sheath gene ex-
pression pattern. In studying this paper, primarily due to this interest, we
developed the results presented in chapter 4. Unexpectedly, this examination
of the potential role of mRNA as long distance signalling molecules has proven
to be probably the most successful area of study. Although it is clear that a
few developmentally important examples exist of mRNA acting as a signalling
molecule , we have shown that the potential of the large majority of previously
reported mobile transcripts to be functionally significant remains unclear.

Given that similar results have since been reported with regards to a large scale
study of protein mobility [159], it is an interesting, and I think, open question
as to what extent phenomena which are observed, particularly in regards to
’omics studies are 1) functionally relevant, and 2) worthy of report. This raises
questions as to the goals of fundamental biological science; is it to describe the
biological process, or to understand why it is like that? In this example; is it
interesting that transcripts are mobile if it makes no difference to the functioning
of the plant?

It is easy to assume that everything observed which is not due to technical er-
ror is ‘biologically important’; in particular, it seems common to assume that
robustness to biological replication indicates that a result is relevant. How-
ever, as we have seen, given potential structure within ‘error’ terms, (in this
case apparently caused by unrelated mRNA stability, and abundance), it is not
clear that biological replicates provide a sufficient strategy for dealing with this
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problem.

5.5 Conclusion

Analysis, particularly of EFMs, but also through FBA has demonstrated that
relatively simple, constraint-based approaches can be usefully applied to hugely
complex metabolic systems. They can be used to generate interesting hypothe-
ses, in particular concerning the emergent properties of the reaction network as a
system, I am here thinking particularly about flexibility, nutrient tradeoffs, and
‘optimal’ metabolic strategies. This is important because, as we have already
touched upon in the discussion of FBA and transcriptomic response to sulfur
starvation, it seems that people are predominantly interested in a phenomena
if the cause, or motivation, for it can be explained. Consequently, many ’omics
studies use stories to explain the ‘purpose’ behind their observations.

However, as we have seen in studying mobile mRNA, the presence of structured
‘error’ terms via functionally unconnected attributes can lead to the description
of potentially non-functional phenomena, even though these phenomena can be
narratively ascribed a potential purpose. It is perhaps ironic that parallels have
emerged between the strengths of constraint-based approaches, in providing
explanatory stories for the biological ‘motivation’ behind experimental observa-
tions of metabolism, and our work on mRNA; in which we have shown that the
perhaps over enthusiastic assignation of narrative purpose has led beyond what
the data justifies.

We should welcome the ability to generate more sophisticated, quantifiable sto-
ries about metabolic function, but we should also remember that although a
particular story, or purpose presents itself, additional evidence, (beyond data
driven observation), is generally required to demonstrate that this is in fact the
case. A common position is to advocate a return to hypothesis driven exper-
imentation, however it is not clear how this could itself resolve the problem.
In the example considered, the hypothesis that ‘mRNA is a common signalling
molecule’ would have been supported by the experimental data. This is clearly a
hypothesis, but does not serve to overcome the difficulty. Consequently, it seems
more relevant to emphasise the requirement of a higher standard of evidence,
rather than a particular investigative paradigm. We therefore find that data-,
rather than hypothesis-driven science is valuable, but it should be remembered
that it is useful primarily for hypothesis generation, it is not itself convincing
evidence for that hypothesis. Generally, further evidence is required. Hence
we emphasise that the ideas of metabolism presented, particularly in chapter 3
require further experimental investigation.

In comparing predictions derived from this model, and experimental data, we
have generally seen reasonable, although not strong agreement in terms of the
responses of individual reactions to environmental perturbation, or the system to
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perturbation of individual reactions. We conclude that, although genome scale
models of plant metabolism continue to develop, and can already be usefully
applied to specific areas of metabolism, they are not yet sufficiently sophisticated
to be generally applicable.

Particular weaknesses are likely to be in the handling of subcellular compartmen-
talisation, but we have also seen that predictions are weaker in comparison to
whole plants, or to organs than to cell suspension experiments. Consequently, it
seems that the greatest stumbling block for these approaches currently is in the
construction of decent plant models, accounting for tissue type, and intracellu-
lar transport. Although these models are extremely time consuming to develop,
they have continuously advanced in quality. If, in particular, a unified, consen-
sus model is adopted by the field, improvements will only increase in rapidity,
and will likely advance to include high quality tissue specific models of whole
plants. We have here demonstrated that EFM based methods are beginning
to become computationally available for the analysis of genome scale models of
plants, and hence methodological difficulties historically associated with FBA,
and the idea of ‘optimality’ can potentially be sidestepped by sampling from
the true metabolic space.

Although a somewhat winding path has been taken, this project has to date
generated extensive advances in my personal understanding of, as well as some
general insight into, Arabidopsis metabolism. More generally, it has provided
the opportunity to develop from an out-and-out wet-lab scientist into something
approaching a computational biologist, with experience in a number of program-
ming languages, and a (statistically) unlikely interest in modelling.
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