Cmr is a redox-responsive regulator of DosR that contributes to M. tuberculosis virulence

Smith, Laura J., Bochkareva, Aleksandra, Rolfe, Matthew D., Hunt, Debbie M, Kahramanoglou, Christina, Braun, Yvonne, Rodgers, Angela, Blockley, Alix, Coade, Stephen, Lougheed, Kathryn EA, Hafneh, Nor Azian, Glenn, Sarah M, Crack, Jason C, Le Brun, Nick E ORCID: https://orcid.org/0000-0001-9780-4061, Saldanha, José W, Macarov, Vadim, Nobeli, Irene, Arnvig, Kristine, Mukamolova, Galina V, Buxton, Roger S and Green, Jeffrey (2017) Cmr is a redox-responsive regulator of DosR that contributes to M. tuberculosis virulence. Nucleic Acids Research, 45 (11). pp. 6600-6612. ISSN 0305-1048

[thumbnail of Published manuscript]
Preview
PDF (Published manuscript) - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

Mycobacterium tuberculosis (MTb) is the causative agent of pulmonary tuberculosis (TB). MTb colonizes the human lung, often entering a non-replicating state before progressing to life-threatening active infections. Transcriptional reprogramming is essential for TB pathogenesis. In vitro, Cmr (a member of the CRP/FNR super-family of transcription regulators) bound at a single DNA site to act as a dual regulator of cmr transcription and an activator of the divergent rv1676 gene. Transcriptional profiling and DNA-binding assays suggested that Cmr directly represses dosR expression. The DosR regulon is thought to be involved in establishing latent tuberculosis infections in response to hypoxia and nitric oxide. Accordingly, DNA-binding by Cmr was severely impaired by nitrosation. A cmr mutant was better able to survive a nitrosative stress challenge but was attenuated in a mouse aerosol infection model. The complemented mutant exhibited a ∼2-fold increase in cmr expression, which led to increased sensitivity to nitrosative stress. This, and the inability to restore wild-type behaviour in the infection model, suggests that precise regulation of the cmr locus, which is associated with Region of Difference 150 in hypervirulent Beijing strains of Mtb, is important for TB pathogenesis.

Item Type: Article
Uncontrolled Keywords: sdg 3 - good health and well-being ,/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_being
Faculty \ School: Faculty of Science > School of Chemistry
UEA Research Groups: Faculty of Science > Research Groups > Biophysical Chemistry (former - to 2017)
Faculty of Science > Research Centres > Centre for Molecular and Structural Biochemistry
Faculty of Science > Research Groups > Chemistry of Life Processes
Depositing User: Pure Connector
Date Deposited: 16 May 2017 05:05
Last Modified: 22 Oct 2022 02:40
URI: https://ueaeprints.uea.ac.uk/id/eprint/63524
DOI: 10.1093/nar/gkx406

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item