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Borneo’s diverse ecosystems, which are typical humid tropical conditions, are deteriorating 14 

rapidly as the area is experiencing recurrent large-scale wildfires, affecting atmospheric 15 

composition1–4 and influencing regional climate processes5,6. Studies suggest that climate-16 

driven drought regulates wildfires2,7–9, but these overlook subsurface processes leading to 17 

hydrological drought, an important driver. Here, we show that models which include 18 

hydrological processes better predict area burnt than those solely based on climate data. We 19 

report that the Borneo landscape10 has experienced a substantial hydrological drying trend 20 

since the early 20th century, leading to progressive tree mortality, more severe than in other 21 

tropical regions11. This has caused massive wildfires in lowland Borneo during the last two 22 

decades, which we show are clustered in years with large areas of hydrological drought 23 

coinciding with strong El Niño events. Statistical modelling evidence shows amplifying 24 

wildfires and greater area burnt in response to El Niño/Southern Oscillation (ENSO) strength, 25 

when hydrology is considered. These results highlight the importance of considering 26 

hydrological drought for wildfire prediction, and we recommend that hydrology should be 27 

considered in future studies of the impact of projected ENSO strength, including effects on 28 

tropical ecosystems, and biodiversity conservation.  29 

 30 

Host for 10,000 plant species in its lowland rainforest alone10 and ca. 5000 vascular plants in 31 

mountainous regions12, Borneo’s ecosystems are deteriorating at an alarming rate. An 32 

important cause is large-scale wildfires, which frequently coincide with prolonged ENSO-33 

driven droughts. Impacts in Borneo are exemplary for other biodiversity hotspots in the humid 34 

tropics (e.g. the Amazon5,8). Future droughts in wet tropical regions will likely increase in 35 

frequency and severity13, and hence the fire risk5. Therefore, a better understanding of fire 36 

area burnt of tropical humid ecosystems during droughts is urgently required. Direct and 37 

indirect impacts of ENSO-drought driven wildfires have already been investigated1–3,14, but 38 

possible long-term drying trends and the associated amplification of ENSO-driven droughts, 39 

as well as the area burnt by wildfires and the underlying hydrological mechanism have not 40 

been quantified yet. We show that including hydrology improves predictions of area burnt, 41 

which so far typically are based on meteorology only. This is essential to predict future fire 42 

extent particularly during strong during ENSO-driven droughts. 43 

 44 

How does hydrological drought drive wildfire? In the humid tropical environment of Borneo, 45 

groundwater dynamics is a key hydrological variable to understand the mechanism of the 46 

drought-fire link (Fig. 1). The groundwater table fluctuation influences hydrological drying of 47 

fuels and the organic soil. The deeper the groundwater table is, the more fire-prone, the humid 48 

tropics become15–18. Climate variability related to ENSO-drought2,7 is the main driver of 49 

wildfire in Borneo, by reducing groundwater recharge that feeds the groundwater table, which 50 

creates dry conditions for usually human-induced fire ignition. Once the fire is lit, it can 51 
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escape in an uncontrolled way mainly during a prolonged (hydrological) drought, which 52 

happens during a strong El Niño event. Human activities through land-use change and 53 

associated drainage and land-clearing immediately following deforestation or long fallow 54 

periods create favourable conditions for the fires and amplify the hydrological drying 55 

processes in the above-ground fuels and the underlying organic soil (Fig. 1). In regions with 56 

few observations, like Borneo, a water balance model can help us to understand the 57 

hydrological drought-fire mechanism. We selected groundwater recharge as a key 58 

hydrological variable that integrates precipitation, actual evapotranspiration and changes in 59 

soil moisture content (Fig. 1). Hence, it is expected to be a stronger explanatory factor to 60 

characterize drought than just the precipitation anomaly (meteorological drought) or the soil 61 

moisture anomaly. We hypothesize that periods with low groundwater recharge will create 62 

conditions for a greater area burnt.  63 

 64 

Figure 1:  The mechanisms of the drought-fire link are explained through the dynamics of 65 

the groundwater table fluctuation, which responds to soil moisture (a), capillary 66 

rise (b) and groundwater recharge (c) driven by weather changes. During a period 67 

with no rainfall (meteorological drought), soil moisture is depleted (soil moisture 68 

drought) to fulfil the evapotranspiration flux, hence groundwater recharge is 69 

reduced or even becomes negatives (capillary rise, b). Short meteorological 70 

drought is characterised by low fire risk. When the meteorological drought lasts 71 

longer, the continuous capillary rise accelerates groundwater table decline 72 

(hydrological drought), until a depth where the capillary rise becomes insufficient 73 

to feed soil moisture (layer 2). Then the soil moisture flux (a) is affected, which 74 

leads to drying out the organic topsoil and the above-ground fuels stimulating 75 

drought stress. This stress leads to shedding of leaves by the evergreen forest and 76 

to accumulation of dry litter on the forest floor (fuel layer). Further persistent 77 

moisture depletion will ease ignition in layer 1 (usually human-induced) and 78 

subsequent spreading of fire. The combined effect of drying out the above-ground 79 

fuels and hydrological drought leads to low moisture in the organic soil (layer 2), 80 

which substantially favours peat smouldering combustion (extremely high fire 81 

risk). Human activities through land clearing change land use, and wetland 82 

canalisation accelerate the (hydrological) drying process (in layers 1 and 2) by 83 

providing abundant fuels and lowering of groundwater tables. Moreover, the dryer 84 

soil increases accessibility, which makes land management activities easier to 85 

carry out. 86 

 87 

Has hydrological drought become more severe and hence created conditions for more 88 

extended wildfires? First, to explore the spatially-distributed hydrological drought in Borneo, 89 

we analysed time-series of monthly climate data provided by the Climatic Research Unit 90 

(CRU19) for the period 1901-2015. We simulated the transient monthly water balance (Eq. 1) 91 

to derive groundwater recharge at the 0.5o latitude/longitude grid scale. Subsequently, we 92 

applied the threshold approach with the 80th percentile20 to derive hydrological drought, i.e. 93 

drought in groundwater recharge across Borneo. Here we report that there has been a drying 94 

trend in Borneo since the early 20th century, as indicated by the proportion of the annual area 95 

in drought (Extended Data Fig. 1) expressed as the annual maximum and annual mean (see 96 

Methods, Eqs. 3 and 4). The monthly groundwater recharge has been derived as follows: 97 

 98 

rch = pre – eta ± ds (1) 99 

 100 
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where: rch is monthly recharge, pre is monthly precipitation, eta is monthly actual 101 

evapotranspiration, and ds is change in monthly soil moisture [units: mm]. 102 

 103 

Does hydrological drought amplify wildfire? To explore the link between hydrological 104 

drought and fire in Borneo, we analysed the monthly fire area burnt from the Global Fire 105 

Emission Dataset (GFED421) for the period 1996-2015 with a 0.25o spatial resolution. This 106 

fire area burnt has been aggregated to 0.5o grid cells. We classified years in this period into 107 

drought and non-drought years. A drought year is defined as a year with prolonged and 108 

spatially extensive hydrological drought events (see Methods). Our analysis illustrates that 109 

wildfires occur annually, i.e. also in non-drought years, but that amplification of wildfires 110 

occurs during drought years. In drought years, maximum area burnt is significantly larger 111 

(Fig. 2a), namely by almost 10 times relative to non-drought years. The larger the area in 112 

drought the higher the annual area burnt. Furthermore, very large fire extents (i.e. area 113 

burnt >10,000 ha) were hardly detected for non-drought years, while 14 times as many events 114 

occurred during drought years (Fig. 2b). Additionally, our grid-scale analysis shows that 115 

large-scale wildfire is mainly widespread in the eastern and southern parts of Borneo during 116 

drought years (Fig. 2c), where prolonged hydrological drought events are more likely to occur 117 

(Extended Data Fig. 2). This finding proves that hydrological drought amplifies wildfires in 118 

terms of area burnt and frequency of very large wildfire events. 119 

 120 

Figure 2:  Area burnt by wildfires in Borneo during drought and non-drought years for the 121 

period 1996-2015; (a) Relation between the annual maximum of area burnt and 122 

the percentage of the annual maximum area in drought. The graph indicates that 123 

area burnt increases substantially during drought years; (b) Frequency of area 124 

burnt by very large wildfires (>10,000 ha); (c). Spatial distribution of the 125 

maximum value of wildfire area burnt at 0.5o spatial resolution. The figures 126 

clearly show that during hydrological drought years, fire area burnt expands. The 127 

unit of area burnt is in ha (natural logarithmic). 128 

 129 

Wildfires are usually explained through the occurrence and severity of meteorological drought 130 

(i.e. below-normal precipitation5,7–9). However, so far no model to predict wildfire area burnt 131 

has been developed that includes hydrology. There are indications that by integrating 132 

hydrological variables, fire occurrence is better identified17,22. To develop a predictive model 133 

for wildfire area burnt, we explored statistical relationships between the fire area burnt 134 

(response Y) from GFED421 and independent predictors (X), which were obtained and derived 135 

from water balance components (Eq. 1), fire weather system indices (FWI), and ENSO (see 136 

Methods) for the period 1996-2015. Three different approaches were used to establish 137 

statistical relationships (i.e. models): a linear approach, non-linear approach with local 138 

regression (loess23), and non-linear approach with random forest24. We note that all data 139 

sources are independently derived, with the GFED4 derived from remotely-sensed data; FWI 140 

from the Global Fire Weather Database (GFWED)25, ENSO derived from sea surface 141 

temperature at the Pacific Ocean; and CRU climate data derived from interpolated station 142 

climate data. We clearly distinguished between models that are solely based on climate (i.e. 143 

precipitation, FWI, and ENSO) and models that also integrate hydrological variables, such as 144 

groundwater recharge, as predictors. In total, over 300 statistical relationships have been 145 

investigated. Our analysis shows that non-linear models using loess better predict area burnt 146 

than the two other approaches for any combination of predictors used in this study (Extended 147 

Data Fig. 3). 148 

 149 
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To what extent does hydrology contribute to the quantification of the area burnt by wildfire? 150 

To assess whether statistical models integrating hydrology perform better than models using 151 

climate only, we clustered the predictive models into two ensembles of models (see Methods), 152 

i.e. climate-oriented models (CLIM) and hydroclimate-oriented models (H-CLIM). We 153 

applied three different goodness-of-fit criteria (see Methods) for the assessment of model 154 

performance. Our model assessment (Extended Data Fig. 4) shows that H-CLIM performed 155 

better in terms of any goodness-of-fit (GOF) measure used; the median of all GOF values is 156 

employed as a measure in hydrology26. Furthermore, the variance of the residuals for the 157 

ensemble of H-CLIM models is significantly lower (30%, α=0.01) than that of CLIM. The 158 

reduced variance provides additional evidence that by integrating hydrological variables, 159 

model uncertainty is significantly reduced. 160 

 161 

Does hydrology matter for the prediction of wildfire area burnt under various ENSO 162 

strengths? To understand how the wildfire area burnt is attributable to the warm phase of 163 

ENSO (El Niño) and to how much hydrology adds, we applied both model ensembles (CLIM 164 

and H-CLIM) to estimate the mean and the maximum of the area burnt per grid cell for 1950-165 

2015. For each year El Niño strength was assigned to one of the four classes (i.e. weak, 166 

moderate, strong and very strong, see Methods). Our analysis shows that the mean annual area 167 

burnt predicted by the H-CLIM model ensemble was larger than that predicted by the CLIM 168 

model ensemble for any El Niño strength (Fig. 3, upper row). The predicted area burnt is at 169 

least 15% greater. In particular, for years with a very strong El Niño the difference in area 170 

burnt between CLIM and H-CLIM ensembles is large. The predicted maximum annual area 171 

burnt is even 154-275% larger for strong and very strong ENSO conditions when hydrology is 172 

integrated (Fig. 3, lower row). If climate-oriented models (i.e. CLIM ensemble) are applied 173 

for predicting area burnt (specifically under extreme El Niño events in the future), the 174 

estimate tends to substantially underestimate the possible very large area burnt that may 175 

occur. Because extreme El Niño events are more frequently projected in the future27,28, 176 

promoting prolonged dry seasons and impacting wildfire area burnt, use of the appropriate 177 

prediction tools that integrate all drivers with hydrology being one of the most important, is 178 

crucial.  179 

 180 

This research improves the assessment of wildfire area burnt in humid tropical ecosystems. So 181 

far, climate-driven prolonged drought is used as the only driver for wildfire occurrence and 182 

strength in the humid tropics, such as the Amazon5,8 and Borneo2,5,7. Our findings provide a 183 

promising direction to improved prediction of area burnt in other humid tropical areas beyond 184 

Borneo for various El Niño strengths.  Hydrological drought has never been considered, so 185 

far, as indicator for strategic policy formulation, and the results indicate that the approach 186 

offers a powerful tool to improve planning and strategies to adapt to climate change. Most 187 

practically, such a tool may be adopted in the ambitious government effort to restore 2 million 188 

hectares of degraded peatland by 2020, among others by rewetting drained peatlands. 189 

 190 

Figure 3:  Predicted area burnt for various El Niño strengths (see Methods) using two model 191 

ensembles (CLIM and H-CLIM). For each ensemble, two different predictions are 192 

provided, namely the mean (upper) and maximum values of all grid cells for 193 

1950-2015 (lower). It appears that predicted area burnt by using the CLIM model 194 

ensemble is substantially smaller than that by applying the H-CLIM model 195 

ensemble except for the moderate El Niño strength. By including hydrological 196 

processes, a greater area burnt is predicted; the CLIM model ensemble tends to 197 

underestimate the area burnt. 198 

 199 
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Methods  259 

Soil water balance model. Borneo has been subdivided into 270 grid cells (0.5°). For each 260 

grid cell, we applied a simple soil water balance model29,30 to simulate transient soil water 261 

storage, actual evapotranspiration, and groundwater recharge (Eq. 1), with as input 262 

precipitation and reference potential evapotranspiration from the CRU dataset19. For a 263 

detailed explanation about the soil water balance model, readers may refer to Ref. 28 and 29. 264 
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The recharge simulation identifies droughts using the land use from 2007 as reference31 and 265 

the climate variability as reflected in the monthly climate data from 1901 to 2015. Land use in 266 

2007 included 2.3% of the area classified as oil palm plantation. In 2010, this increased to 4% 267 

of Borneo32 and is projected to increase in the coming decades33. The emphasis in this study is 268 

on climate variability rather than on land use change, although the latter may influence 269 

wildfires as well34 through providing favourable conditions. Likely, the area burnt will 270 

increase and the importance of hydrology will become even more distinct, if more peatland is 271 

converted into large-scale plantations.  272 

 273 

Area in hydrological drought. Drought events were derived from time series of groundwater 274 

recharge using the threshold level approach, where the threshold is taken to be the 80th 275 

percentile of the cumulative duration curve20 of groundwater recharge. Drought was defined 276 

as the period when the recharge is continuously below this threshold value. We applied 277 

different monthly variable thresholds for each grid cell, representative for its own soil-278 

hydrological properties and given precipitation. Deficit in groundwater recharge (def) is the 279 

hydrological drought characteristic we used in this study. Then we also counted the 280 

proportion of grid cells for Borneo, for which the monthly recharge was below the threshold, 281 

and we defined this proportion as the area in drought30.The monthly percentage area in 282 

drought (���) for the whole of Borneo for month � and year � is calculated as follows: 283 

 284 

���,�=100 ∗ 1
��
 ����,�,�

��

�=1
   (2) 285 

 286 

where: defg,m describes whether a grid cell g for month m and year �	is in drought (0: no 287 

drought, 1: drought), Ng is number of grid cells covering Borneo. 288 

 289 

For each year �, two metrics of area in drought were used, namely the annual max (��_��) 290 

and annual mean (��_���): 291 

  292 

��_��� = max	(���,�)    (3) 293 

��_���� = mean(���,�)   (4) 294 

 295 

Where: ��_���	and ��_����	describe the annual maximum and annual mean area in 296 

drought, which are the maximum area occurring in one of the months in a year and the mean 297 

of the areas in drought derived from the 12 monthly values for each year. 298 

 299 

Drought and non-drought years. Drought was defined as the period with a deficit in the 300 

groundwater recharge over a large area. This definition was introduced to avoid taking into 301 

account droughts that cover only a small area 35. Borneo is well-known as an ENSO-driven 302 

drought region2,36, therefore we defined a drought year as a year with a warm ENSO event 303 

(classification is available at http://ggweather.com/enso/oni.htm). Our analysis shows that in 304 

warm ENSO years, hydrological drought occurred extensively throughout Borneo in more 305 

than 50% of the area. For example, during the ENSO-drought in 2015, 50% of Borneo 306 

experienced hydrological drought for 2-consecutive months. There were seven warm ENSO 307 

years, i.e. 1997-98, 2002, 2004, 2006, 2009, and 2015. For a non-warm ENSO year, we 308 

assumed that at least 40% of Borneo had to be in drought to be selected as a drought year. 309 

This drought should occur as an uninterrupted event for at least two consecutive months. 310 

Under this definition, only one year was identified as a drought year, i.e. 2014. In total we 311 

identified eight out of 20 as drought years in the period for which observed area burnt was 312 

available (1996-2015, Extended Data Table 1). 313 
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 314 

Statistical analysis. We used three different statistical approaches to predict monthly area 315 

burnt (response Y) given by independent predictors (X). There were two types of predictors, 316 

namely predictors based only on climate information (e.g. precipitation, fire weather system 317 

indices, and an El Niño/ ENSO indicator), and predictors including hydrological information 318 

(e.g. groundwater recharge) to complement climate predictors (Extended Data Table 2). From 319 

the water balance components (Eq. 1), predictors were derived, such as the total two 320 

consecutive months with deficit recharge, and FWI (Extended Data Fig. 3). We used the 321 

Oceanic Niño Index (ONI, data available at http://ggweather.com/enso/oni.htm) as an ENSO 322 

predictor. Subsequently, three statistical approaches were explored, namely linear models,  323 

non-linear models using loess (local regression fitting23), and random forest24 as predictive 324 

models. The period 1996-2015 was used for model calibration, as data on area burnt were 325 

available from GFED421.  326 

 327 

We hypothesise that wildfires occur during a drought, when prolonged below normal 328 

precipitation occurs. A threshold of 100 mm/month is commonly used to detect drought 329 

events in the forest ecosystem in Borneo37–39. Here, we used low groundwater recharge 330 

instead to detect drought-fire connectivity. The prediction of area burnt was performed when 331 

the groundwater recharge is below 20 mm/month. This number reflects soil moisture 332 

depletion and groundwater drawdown due to limited water input. Furthermore, we applied the 333 

Nash-Sutcliffe Efficiency (NSE) criterion to assess model performance. NSE indicates the 334 

fraction of the variance of the observations explained by the model and is widely applied in 335 

hydrology26,40. The assessment confirmed that by using the loess approach, the area burnt is 336 

better identified than by using other models (Extended Data Fig 3).  337 

 338 

To assess whether hydrological predictors perform better than climate ones, we clustered the 339 

loess models into two groups, i.e. a climate-oriented ensemble (CLIM) and a hydroclimate-340 

oriented ensemble (H-CLIM). Here, we have chosen the Kling-Gupta Efficiency (KGE)40, as 341 

a combined measure of bias, correlation and scale between observed and model data, and the 342 

RMSE-observation standard deviation ratio (RSR 26) to complement the NSE criterion to 343 

assess model performance. Moreover, we tested the variance of the residuals for both groups 344 

of ensembles with the chi-square test (using α=0.01) to evaluate their performance. We used 345 

the R statistical computing language41 to perform all statistical analyses. Finally, we utilized 346 

the ggplot2 package42 to visualize data and information. 347 

 348 

Model selection procedures. To identify the best explanatory statistical relationships, we 349 

used criteria widely used in hydrology26 for a monthly time step simulation. The performance 350 

of a statistical model is considered acceptable if the NSE >=0.5 and the RSR <0.7. The KGE 351 

should greater than 0.5, as well. By applying these criteria we found 24 models that 352 

performed well in which all of them belong to HCLIM. To reduce the number of models in 353 

the ensemble, we added that the variance of the chosen model should be below the 354 

80th percentile of all models’ variance. By applying this selection procedure, we identified 13 355 

ensemble members that performed well for H-CLIM. On other hand, for CLIM we selected 356 

the best 13 models with full record length (1950-1995) as model ensemble. These best-357 

performing models are labelled in the Extended Data Fig. 5. 358 

 359 

There are not many independent data for the area burnt to verify that the ensemble of H-360 

CLIM models performs better than the CLIM one. During the very strong El-Nino of 361 

1982/198343, wildfires (incl. land and forest) occurred over an area of 3.5 million ha. The 362 

CLIM model ensemble deviated by 60% from the actual area burnt reported, whereas the 363 
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difference for H-CLIM was only 14%. This means that the CLIM models very likely 364 

underestimate the area burnt. 365 

 366 

ENSO classes. We used the ONI for the period 1950-2015 to categorize the years as very 367 

strong, strong, moderate, or weak El Niño years (classification is available at 368 

http://ggweather.com/enso/oni.htm). Based on El Niño strength, we classified the years 1982-369 

83 and 1997-98 as very strong El Niño years, while 1965-66 and 1972-73 were categorized as 370 

strong El Niño years. The years 1991-92 and 2009-10 represent moderate El Niño years. 371 

Years 1976-77 and 2006-07 are the best examples of weak El Niño events. Finally, we 372 

applied both the CLIM and H-CLIM model ensemble members to estimate wildfire area burnt 373 

for these different ENSO classes. 374 

 375 

Data availability. The authors declare that the data supporting the findings of this study can be 376 

found in the corresponding references. Specifically, the data are available online: climate 377 

(https://crudata.uea.ac.uk/cru/data/hrg/), fire area burnt 378 

(ftp://fuoco.geog.umd.edu/gfed4/monthly/, user/password: fire/burnt), and fire weather system 379 

indices (ftp://ftp.nccs.nasa.gov/v2.0, user: GlobalFWI). The statistical models that support the 380 

findings of this study are available from the corresponding author upon request 381 

 382 
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