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Abstract 31 

Southern Europe (Italy and the surrounding countries) experienced an unusual wet summer in 2014. The monthly 32 

rainfall in July 2014 was 84% above (more than three standard deviation) normal with respect to the 1982-2013 July 33 

climatology. The heavy rainfall damaged agriculture, and affected tourism and overall economy of the region. In this 34 

study, we tried to understand the physical mechanisms responsible for such abnormal weather by using model and 35 

observed datasets. The anomalously high precipitation over Italy is found to be associated with the positive sea 36 

surface temperature (SST) and convective anomalies in the tropical Pacific through the atmospheric teleconnection. 37 

Rossby wave activity flux at upper levels shows an anomalous tropospheric quasi-stationary Rossby wave from the 38 

Pacific with an anomalous cyclonic phase over southern Europe. This anomalous cyclonic circulation is barotropic 39 

in nature and seen extending to lower atmospheric levels, weakening the seasonal high and causing heavy 40 

precipitation over the Southern Europe. The hypothesis is verified using the National Centers for Environmental 41 

Prediction (NCEP) coupled forecast system model (CFSv2) seasonal forecasts. It is found that two-month lead 42 

forecast of CFSv2 was able to capture the wet summer event of 2014 over Southern Europe. The teleconnection 43 

pattern from Pacific to Southern Europe was also forecasted realistically by the CFSv2 system.  44 
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1. Introduction 47 

Southern Europe (Italy and neighboring countries) experienced an unusually wet and cold summer (June-48 

July-August) during 2014. Much of these regions were hit by severe storms, flooding and unusually chilly weather. 49 

This unprecedented weather during the summer affected the socioeconomic conditions of these regions in terms of 50 

agriculture and tourism. The unusual wet and cold conditions delayed the grape ripening and harvest had been 51 

hindered that caused the Italian wine production fell by 15 percent as per the report of International Organization of 52 

Vine and Wine (OIV, 2014). The cool and wet summer contributed a drop of 34% in the Italian olive oil production 53 

according to International Olive Council (OIC, 2015). As per the report from the Food and Agriculture Organization 54 

of the United Nations, heavy summer rainfall drenched some of France's key wheat-growing areas during this 55 

summer (FAO, 2014). Entire tomato and lattice fields also have been destroyed by persistent torrential rains. 56 

The summer rain washed out family holidays and resulted in the loss of millions of euros in the tourism industry as 57 

reported in several news media (Pasquaré and Venturini, 2016). 58 

Southern Europe is the part of Mediterranean region that lies in a transition zone between the arid climate 59 

of North Africa and the wet climate of central Europe. The transition zone climate is influenced by interactions 60 

between mid-latitude and tropical processes (Raicich et al. 2003; Giorgi and Lionello, 2008). This region 61 

experiences a hot, dry, sunny summer and a rainy winter season. In the boreal summer, the region is characterized 62 

by descending motion (Raicich et al. 2003) and a minimum in seasonal rainfall (Mariotti et al. 2002). The 63 

interannual variability of the circulation over the Atlantic-European sectors is affected by several teleconnections 64 

such as the North Atlantic Oscillation (Hurrell, 1995; Kutiel et al. 1996; Brunetti et al. 2002; Zveryaev, 2004; 65 

Folland et al. 2009), El Niño–southern oscillation (Fraedrich and Muller 1992; Dai et al. 1997; Trenberth et al. 1998; 66 

Behera et al. 2013) and Asian summer monsoons (Rodwell and Hoskins 1996; Tyrlis et al. 2013; Cherchi et al. 67 

2014). While it is the tropical sea surface temperature (SST) that most directly affects the overlaying large-scale 68 

atmospheric circulations (Lau 1985; Lau and Nath 1994; Stern and Miyakoda 1995), atmospheric teleconnections 69 

from the tropics to the extratropics may lead to some seasonal forecast skill in the extratropics via SST forcing of the 70 

tropical atmosphere (Barnston 1994). 71 

Due to its more northerly location and smaller spatial scale of the North Atlantic oscillation (NAO) during 72 

the summer, its influence over the European climate diminishes compared to the winter counterpart (Folland et al. 73 

2009). Also, due to the northward location of NAO during the summer season, the Mediterranean region is not under 74 
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the direct influence of the pressure anomalies associated with it and so its relationship with the Mediterranean 75 

rainfall is small (Bladé et al. 2012). During July 2014, even though the NAO was weak with a slightly positive 76 

(0.18) side 77 

(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/norm.nao.monthly.b5001.current.ascii.table), southern 78 

Europe experienced unusual excess rainfall. Also, the weak Asian monsoon can cause enhanced upward motion over 79 

the Mediterranean region through monsoon-desert mechanism (Rodwell and Hoskins, 1996) and the Indian summer 80 

monsoon in July 2014 was 10% below the normal. However, such negative Indian summer monsoon rainfall 81 

anomaly had never caused such rainfall extreme over the Southern Europe. So, the persistent rainfall throughout 82 

July is likely related to other teleconnections arising from large-scale climate variations or could be related with 83 

internal variability. There are known difficulties in the prediction of boreal summer climate in mid-latitudes 84 

(Zveryaev, 2004; Johansson et al. 1998; Colman and Davey, 1999; Dirmeyer et al. 2003) and so further detailed 85 

analysis of the variability of summer climate is extremely important. The present study describes the exceptional 86 

event and it also shows possible link of the event with the forcing from the sea surface temperature in the Pacific and 87 

teleconnection patterns of the atmospheric circulation.  88 

2. Data and Methodology 89 

In this study, the abnormal high precipitation is verified using the monthly precipitation data from the 90 

Global Precipitation Climatology Project version 2 (GPCP; Adler et al. 2003) and NOAA precipitation 91 

reconstruction over the land (PREC/L; Chen et al. 2002) datasets. The GPCP data is available from 1979 and the 92 

PREC/L data from 1948 and both datasets are available at 2.5 degrees horizontal resolution. The anomaly for these 93 

data is generated from the climatology based on the period from 1982 to 2013. Apart from this, we also used 94 

monthly TRMM 3B43 data (Huffman et al. 2007) available at 1-degree resolution for the verification of the event.  95 

The daily variability of the precipitation during July 2014 is investigated with the aid of the GPCP daily data 96 

(Huffman et al. 2001) at 1-degree resolution. The SST anomaly is derived from the National Oceanic and 97 

Atmospheric Administration (NOAA) Optimum Interpolation sea surface temperature version 2 (OISSTv2; 98 

Reynolds et al. 2002) available at 1 degree resolution. Monthly mean surface temperature, sea level pressure, along 99 

with meridional and zonal wind data, and geopotential heights at various levels were taken from the Interim 100 

European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim; Dee et al. 2011), 101 

available at 1-degree spatial resolution.  102 
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In addition to the analysis based on observational data, we also investigate if a coupled general circulation 103 

model is able to represent the teleconnection that caused the excess rainfall over the Southern Europe. Here, we used 104 

the operational products from the NCEP climate forecast systems version 2 (CFSv2; Saha et al, 2006). The 105 

atmospheric component of CFS is the NCEP Global Forecast System model that has a spectral triangular truncation 106 

of 126 waves (T126) in the horizontal (equivalent to nearly a 100-km grid resolution) and a finite differencing in the 107 

vertical with 64 sigma-pressure hybrid layers. The oceanic component of CFSv2 is the NOAA Geophysical Fluid 108 

Dynamics Laboratory Modular Ocean Model (Griffies et al, 2004) version 4. The details of the model and its 109 

operational forecasts are described by Saha et al (2014). 110 

The CFSv2 generates nine-month forecasts as a part of the seasonal prediction system and it is initialized 111 

four times per day (0000, 0600, 1200, and 1800 UTC). The CFSv2 forecast integrations cover the first partial month 112 

and nine full subsequent months into the future. In this study, we use the lagged ensemble of 40 forecast runs 113 

initialized from 21-30 April 2014 with four forecast members from each day. We diagnose forecast monthly mean 114 

fields of sea surface temperature, precipitation, and atmospheric data such as geopotential height, zonal and 115 

meridional winds at 200 hPa for July 2014, corresponding to a lead time of two months.  As per the availability of 116 

CFS data, the anomalies are computed with respect to the 1999-2010 hindcast climatology. 117 

The vertical motion and the associated low level convergence and upper level divergence induced by the 118 

equatorial sea surface temperature anomaly produce an anomalous vorticity source in the tropics. The upper level 119 

component of this vorticity source, denoted the Rossby wave source (RWS) by Sardeshmukh and Hoskins (1988), 120 

sets off a train of Rossby waves that comprise teleconnection patterns in the extratropics. As per Qin and Robinson 121 

(1993), the RWS is given by 122 

RWS =  −𝑽!! .𝛁 ζ + 𝑓 −   ζ + 𝑓 𝛁.𝑽!! −  𝜁!𝛁.𝑽! −  𝑽!.𝛁𝜁!  

                                                    (S1)         (S2)    (S3)      (S4)             123 

Where 𝑽! is the rotational wind vector, 𝜁 the relative vorticity and  f  the Coriolis parameter.  (     ) and (  !  ) 124 

represent the climatological mean and perturbation, respectively. The above equation is the breakdown of the full 125 

RWS (Sardeshmukh and Hoskins, 1988) into the tropical [S1 + S4 (≈S1)] and extratropical parts (S2 + S3 ≈ S2), 126 

which is instructive for evaluating the different roles played by these components in generating extratropical 127 

responses. It is found that S1 is more effective than S2 in exciting extratropical teleconnections (Sardeshmukh and 128 

Hoskins, 1988) and so in this study we calculated only S1 term to represent the RWS. 129 
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3. Results 130 

3.1 Precipitation anomaly 131 

Southern Europe experienced very high precipitation during July of 2014. The precipitation anomaly 132 

exceeding more than three standard deviations is seen over northern Italy and eastern France and Switzerland (Fig 1).  133 

In addition, anomalous high precipitation is seen over the neighboring regions in Switzerland, France, Germany, 134 

Austria, Slovenia, Croatia and western Hungary. The anomalous positive precipitation can be seen in all the datasets 135 

analyzed in this study (Figure 1a, b, c) though variations in the magnitude of anomalies are noticed. The northern 136 

Europe experienced below normal precipitation during the same period (Fig 1a, b). Due to the limitation of the 137 

availability of the TRMM precipitation at latitudes higher that 50oN, the below normal precipitation over north 138 

Europe is not seen in Fig 1c. It is reported that during July 2014 cities like Turin, Milan, Venice, Parma, Lucca in 139 

Italy received 3 to 9 times more rainfall compared to the July climatology (Pasquaré and Venturini, 2016). 140 

Analyzing the interannual variability of precipitation averaged over an area 30E -180E and 410N - 500N (box in 141 

Figure 1a, b, c) over the period 1982-2014, it can be seen that Italy and surrounding regions received a record excess 142 

of rainfall greater than 3 standard deviation (Fig. 1d) in July 2014, which is 84% higher compared to the July 143 

climatology. This value is the highest in the study period of 33 years. This abnormal rainfall in July 2014 is also 144 

highest during the past 114 years (1901-2014) in the Climate Research Unit (CRU; Harris et al. 2014) precipitation 145 

dataset (not shown). The area averaged daily precipitation over the study domain shows high precipitation in almost 146 

all the days of July 2014 compared to the climatological values (Fig 2a). The region received rainfall greater than 147 

1mm/day for about 25 days in July 2014 (Fig 2b) out of which 8-10 days were having high amount (> 10 mm/day) 148 

of rainfall. Climatologically, July is the month receiving the lowest seasonal rainfall in this region compared to the 149 

other months of the year but the July 2014 was an abnormal month with anomalously high precipitation.  150 

3.2 Surface temperature and circulation anomaly 151 

The surface temperature anomalies during July 2014 show negative values (Fig 3a) over southern Europe 152 

and low anomalies of mean sea level pressure (Fig 3b). On the other hand, northern Europe, which experienced 153 

below normal precipitation, had large positive temperature anomaly (Fig 3a) with positive anomalies of sea level 154 

pressure (Fig 3b).  The 850 level geopotential height shows an anomalous low with a cyclonic circulation centered 155 

over Italy. This low pressure and associated cyclonic circulation extends to the upper troposphere (200 hPa, Fig 3d), 156 

indicating a clear barotropic nature. At the same time over northern Europe, sea level pressure anomalies are 157 
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characterized by a high with associated anticyclonic circulation extending from the surface to upper troposphere. 158 

The above normal surface temperature associated with anticyclonic circulation over the Scandinavia region in the 159 

northern Europe is caused by blocking in the atmosphere (Tyrlis et al, 2015).  The atmospheric blocking plays an 160 

important role in the mid-latitude climate variability and can be responsible for anomalous mean and/or extreme 161 

climate. Dipole patterns of surface temperature and precipitation over Europe have been related to blocking (Behera 162 

et al. 2013; Christensen et al. 2013; Sillmann and Croci-Maspoli, 2009; Masato et al. 2012, 2013) caused by the 163 

quasi-stationary waves generated by SST anomalies in the Pacific Ocean (Behera et al. 2013). In the next section, 164 

we see if  similar processes were responsible for the precipitation anomaly in Europe during July 2014. 165 

3.3 Teleconnection 166 

To investigate the role of large scale processes that might have contributed to the anomalous low over 167 

southern Europe during July 2014, we analyzed the global sea surface temperature and precipitation. The SST 168 

anomalies in July 2014 were warmer than normal north of the equator throughout the Pacific Ocean (contour, Fig 169 

4a). The SST anomalies were warmer than normal during this rather unusual El Niño year, when the warm signal 170 

suddenly died after July to revive again in late autumn. A weak negative Indian Ocean Dipole (IOD; Saji et al. 1999) 171 

also existed in the Indian Ocean during this time (Fig. 4a). A negative IOD can reduce monsoon rainfall over the 172 

Indian sub-continent and this may lead to enhanced upward motion and wet condition over the Mediterranean region 173 

through monsoon-desert mechanism (Rodwell and Hoskins, 1996). On the other hand, the enhanced monsoon 174 

through a positive IOD can cause descent over the Mediterranean region (Guan and Yamagata, 2003).  The tropical 175 

and subtropical Pacific also received above normal precipitation (above 2 to 3 standard deviations) during July 2014 176 

(shaded; Fig 4a). The abnormal precipitation is seen extending from west to east in the tropical Pacific and the 177 

precipitation over the tropical Pacific Ocean (1400E-2700E; 50N – 150N) in July 2014 exceeded the July 1982-2013 178 

climatology by 45%. Even the precipitation over Pacific is very high compared to the other years when the Pacific 179 

Ocean was warmer than normal in July (not shown). This unusually strong convective activity and related 180 

precipitation can induce climatic signal over remote areas through teleconnections.  181 

The positive SST anomalies in the tropical Pacific (Fig 4a) in July 2014 have caused enhanced convection 182 

and created upper level divergence (Fig 4b). This upper level divergence generates anomalous sources for the 183 

Rossby waves (Sardeshmukh and Hoskins, 1988) through interaction with the upper level westerlies in the 184 

subtropical regions. The anomalous tropical Rossby wave source (RWS) associated with the tropical heating is due 185 
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to the advection of the mean absolute vorticity by the anomalous divergent flow (Qin and Robinson, 1993).  The 186 

anomalous divergence at 200 hPa during July 2014 (Fig 4b) interacts with the westerlies in the subtropical region 187 

(Fig 5a; contours) and generates an anomalous RWS in the region over subtropical eastern Pacific and mid-latitude 188 

central-north Pacific (Fig 5a; shaded). To see if the quasi-stationary Rossby wave generated due to the anomalous 189 

RWS affected the climate of southern Europe during July 2014, we calculated the wave activity flux (Takaya and 190 

Nakamura, 2001). The anomalous wave activity flux originates from a source located in the subtropical eastern 191 

Pacific (Fig 5b). It is noted that the surrounding region in the Pacific also received record rainfall during July 2014, 192 

exceeding by about 70% to the 1982-2013 July climatology. The wave activity from this subtropical eastern Pacific 193 

is seen as a major contributor to the anomalous quasi-stationary Rossby wave (vector, Fig 5b) reaching Europe, 194 

though another minor source appears in the mid-latitude central-north Pacific, west of the dateline. The anomalous 195 

quasi-geostrophic streamfunction also clearly shows a quasi-stationary wave from the eastern Pacific to the Europe 196 

(shaded, Fig 5b). The spatial pattern of the generated anomalous Rossby wave train is such that it favors a cyclonic 197 

circulation over Italy and its surrounding region (shaded, Fig 5b) reinforcing an anomalous equivalent barotropic 198 

low there. We have also verified the wave train by analyzing the meridional wind anomaly (Fig. 5c) which shows 199 

wave extending from the Pacific Ocean to Italy. Such mid-latitude circumglobal teleconnections during the Northern 200 

Hemisphere summer are discussed in a few previous studies (Ding and Wang, 2005; Lin 2009; Yasui and Watanabe, 201 

2010; Ding et al. 2011). The above analysis shows that the anomalies in the atmospheric convection/precipitation 202 

caused upper level divergence, which on interaction with the upper level westerlies generated anomalous quasi-203 

stationary Rossby waves. The resulted anomalous cyclonic circulation resulted in higher than normal precipitation 204 

over Italy in July 2014. 205 

Given the understanding that the diabatic heating over the tropical Pacific is largely responsible for the 206 

excess rainfall over southern Europe, we wanted to see if the event was predicted by the CFSv2 system. The 207 

ensemble mean  CFSv2 precipitation anomaly (Fig 6a) shows positive anomalies over southern Europe and negative 208 

anomalies over north and northeast Europe, similar to the observed precipitation anomalies, though weaker in 209 

magnitude. The CFS forecasts could capture the SST and convective anomalies over Pacific realistically (Fig. 6b). 210 

The anomalous quasi-stationary wave from the Pacific to southern Europe was also captured realistically as seen 211 

from the Rossby wave flux anomalies (Fig 6c) and the 200hPa meridional wind anomalies (Fig 6d).  212 
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On analyzing the individual members of the CFSv2 forecast, we found differences in the precipitation 213 

anomalies over Southern Europe among the members. We compared those members by grouping the members that 214 

forecasted wet July 2014 (hereafter ENSwet) against those ensemble members that forecasted dry July 2014 215 

(hereafter ENSdry). A total of four members were found in each category. The forecast rainfall over Italy from the 216 

ensemble mean of ENSwet and ENSdry are presented in Figure 7a, b. The differences between ENSwet and ENSdry 217 

clearly shows positive rainfall anomaly over Italy region (Fig. 7c). The corresponding SST anomaly difference 218 

between ENSwet and ENSdry shows positive anomaly over central, west and subtropical Pacific (Fig. 7f). It is seen 219 

that ENSwet anomaly predicted excess rainfall over the Pacific Ocean compared to ENSdry (Fig. 7g, h) and the 220 

difference is more over central Pacific north of the equator. This is the region for the source of Rossby waves 221 

discussed in the observed analysis. Next, we plotted the meridional wind anomaly for the ENSwet and ENSdry to 222 

check the differences in the wave from Pacific to Italy. It is seen that the simulated wave with ENSwet (Fig. 7j) is 223 

clear and close to the observation. These differences in those two sets of ensemble forecasts further demonstrated 224 

that the excess rainfall observed in the tropical and subtropical Pacific generated the Rossby wave to cause excess 225 

rainfall over Italy. The CFSv2 forecast confirms the mechanism revealed by observational data and demonstrates 226 

that the coupled model is capable of predicting the excess rainfall over southern Europe and associated 227 

teleconnection from the Pacific. 228 

4. Summary 229 

In this study, we tried to understand the mechanism for the record high precipitation observed over 230 

southern Europe (Italy and its surrounding region) during July 2014. To determine the processes responsible for the 231 

rainfall and the associated cyclonic anomalies over Italy, we analyzed global observed SST, precipitation as well as 232 

atmospheric circulation anomalies for this extreme summer. It is seen that the SST anomalies were anomalously 233 

positive in the tropical Pacific during July 2014.  Positive precipitation anomalies were also seen over the tropical 234 

and subtropical Pacific. The corresponding upper level divergence over the subtropical Pacific generated an 235 

anomalous Rossby wave source at 200hPa. The Rossby wave activity flux analysis demonstrated the anomalous 236 

RWS and the associated Rossby wave extending from the Pacific to southern Europe. The phase of the generated 237 

wave was such to favor cyclonic circulation over Italy and the surrounding countries. We have reported this 238 

relationship for the first time and we think that it could be an important factor for the extreme rainfalls over southern 239 

Europe besides already known factors such as monsoon-desert mechanism, local phenomenon, blocking highs and 240 
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other atmospheric internal variability. As the event described in the paper is unique for what we have found so far, 241 

we cannot fully demonstrate the cause-effect relationship and identify it as a clear teleconnections. To fully assess a 242 

direct cause-effect mechanism the event should be demonstrated using other observations or simulations, but the 243 

lack of similar events in the available data is not sufficient for demonstrating the cause-effect relationship. 244 

We also analyzed the excess rainfall over southern Europe and the teleconnection pattern from the NCEP 245 

CFSv2 seasonal forecast. The CFSv2 captured the precipitation anomaly over Europe at the two-month lead time 246 

with the positive anomaly over the southern Europe and negative anomaly over north and northeast Europe. The 247 

model predicted the warm SST and excess rainfall over the subtropical Pacific similar to the observation. This 248 

enhanced precipitation over the Pacific could have generated the Rossby wave through the diabatic heating in the 249 

atmosphere, which can be seen from the wave activity flux. The CFSv2 model output is also analyzed by separating 250 

the ensembles, which generated positive and negative rainfall anomalies over Italy. It is identified that the ensemble 251 

members with wet anomaly over Italy also simulated wet anomalies in the subtropical Pacific compared to the 252 

ensemble with dry anomaly over Italy. The ensembles with wet anomalies over Italy compared to dry ensembles 253 

also simulated the wave realistically as in the observations.  254 

The present study focuses on the mechanism for the unusual summer precipitation over southern Europe 255 

during July 2014 on the possible link with the teleconnection patterns of the atmospheric circulation. Understanding 256 

the observational links and relationship with the summer climate system may lead to an improved ability for 257 

seasonal predictions of the European climate. More studies are desirable to analyze forecasts from other global 258 

model forecast systems to see the fidelity of those models in predicting the observed extreme events.  259 
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 383 

 384 

Figure 1. Standardized precipitation anomaly for July 2014 for (a) GPCP (b) PREC/L and (c) TRMM 3B43 data. 385 

(d) Interannual variability of standardized precipitation anomaly (mm/day) averaged over the area 30E – 180E and 386 

410N-500N (marked as a box in a, b and c) for July month during the period 1982-2014. TRMM data is available 387 

over the latitude band 50S-50N and for the period 1998-2014. The anomalies are calculated with respect to the July 388 

climatology for the period 1982-2013 (1998-2013 for TRMM).  389 

 390 

  391 
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 392 

 393 

 Figure 2. (a) Daily precipitation (mm/day) averaged over the area 30N – 180N and 410N-500N for July 2014 (red 394 

line) and daily climatology for July (black line). (b) Number of wet days > 1 mm in July and (c) Number of wet days 395 

> 10 mm in July. The climatology for the GPCP daily precipitation is obtained for the period 1997-2014.  396 

 397 
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 399 

 400 

 Figure 3. (a) Surface temperature anomaly (K) for July 2014. (b) Same as (a) but for the sea level pressure (hPa). 401 

(c) Geopotential height (m) and wind vector (m/s) anomaly at 850 hPa level. (d) Same as (c) but for 200 hPa level. 402 

All figures are with ERA-Interim data and the anomalies are calculated with respect to the July climatology for the 403 

period 1982-2013.  404 
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 406 

 407 

Figure 4. (a) Precipitation (mm/day, shaded) anomaly and sea surface temperature anomaly (K, contour) for July 408 

2014 standardized with respect to 1982-2013 climatology. The contours for the SST are drawn at 1, 1.5, 2 and 2.5 K. 409 

and (b) Velocity potential (*106 m2 s-1, shaded) and divergent component of winds (m s-1, vectors) at 200 hPa for 410 

July 2014.  411 
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 413 

 414 

Figure 5. (a) Rossby wave source anomaly (*10-11 s-1, shaded) and zonal winds (m/s, contours) at 200 hPa for July 415 

2014. The negative value of RWS is known as source. (b) Stream function anomaly (*106 m2 s-1 shaded) and wave 416 

activity flux (m2 s-2, vector) at 200 hPa level for July 2014. (c) 200 hPa meridional wind anomaly for July 2014. 417 

  418 
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 419 

Figure 6. (a) CFS forecasted precipitation anomaly (mm/day) over Europe. (b) CFS forecasted Sea surface 420 

temperature anomaly (K, contour) and precipitation (mm/day, shaded) anomaly. (c) CFS forecasted stream function 421 

anomaly and wave activity flux at 200 hPa. (d) CFS forecasted 200 hPa meridional wind (m/s) anomaly for July 422 

2014. 423 
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 427 

Figure 7. Precipitation anomaly over South Europe for those ensembles that generated wet (ENSwet) and dry 428 

(ENSdry) anomalies over Italy. (a) ENSwet (b) ENSdry (c) difference between ENSwet and ENSdry. (d, e, f) same 429 

as (a, b, c) but for SST anomalies. (g, h, i) same as (a, b, c) but for precipitation anomalies. (j, k) 200 hPa meridional 430 

wind anomalies for ENSwet and ENSdry. 431 


