TRADEOFFs in climate effects through aircraft routing: forcing due to radiatively active gases

Stordal, F., Gauss, M., Myhre, G., Mancini, E., Hauglustaine, D. A., Köhler, M. O., Berntsen, T., Stordal, E. J. G., Iachetti, D., Pitari, G. and Isaksen, I. S. A. (2006) TRADEOFFs in climate effects through aircraft routing: forcing due to radiatively active gases. Atmospheric Chemistry and Physics. ISSN 1680-7375

[thumbnail of Published manuscript]
Preview
PDF (Published manuscript) - Published Version
Available under License Other licence.

Download (668kB) | Preview

Abstract

We have estimated impacts of alternative aviation routings on the radiative forcing. Changes in ozone and OH have been estimated in four Chemistry Transport Models (CTMs) participating in the TRADEOFF project. Radiative forcings due to ozone and methane have been calculated accordingly. In addition radiative forcing due to CO2 is estimated based on fuel consumption. Three alternative routing cases are investigated; one scenario assuming additional polar routes and two scenarios assuming aircraft cruising at higher (+2000 ft) and lower (−6000 ft) altitudes. Results from the base case in year 2000 are included as a reference. Taking first a steady state backward looking approach, adding the changes in the forcing from ozone, CO2 and CH4, the ranges of the models used in this work are −0.8 to −1.8 and 0.3 to 0.6 m Wm−2 in the lower (−6000 ft) and higher (+2000 ft) cruise levels, respectively. In relative terms, flying 6000ft lower reduces the forcing by 5–10% compared to the current flight pattern, whereas flying higher, while saving fuel and presumably flying time, increases the forcing by about 2–3%. Taking next a forward looking approach we have estimated the integrated forcing (m Wm−2 yr) over 20 and 100 years time horizons. The relative contributions from each of the three climate gases are somewhat different from the backward looking approach. The differences are moderate adopting 100 year time horizon, whereas under the 20 year horizon CO2 naturally becomes less important relatively. Thus the forcing agents impact climate differently on various time scales. Also, we have found significant differences between the models for ozone and methane. We conclude that we are not yet at a point where we can include non-CO2 effects of aviation in emission trading schemes. Nevertheless, the rerouting cases that have been studied here yield relatively small changes in the radiative forcing due to the radiatively active gases.

Item Type: Article
Additional Information: Status: this preprint was under review for the journal ACP. A revision for further review has not been submitted.
Uncontrolled Keywords: sdg 13 - climate action ,/dk/atira/pure/sustainabledevelopmentgoals/climate_action
Faculty \ School: Faculty of Science > School of Environmental Sciences
Related URLs:
Depositing User: Pure Connector
Date Deposited: 10 May 2017 05:05
Last Modified: 25 Sep 2024 12:44
URI: https://ueaeprints.uea.ac.uk/id/eprint/63432
DOI: 10.5194/acpd-6-10733-2006

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item