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α – stretching parameter 
4 
5 

6 BMI – body mass index 
7 
8 D* 

– pseudo-diffusion coefficient 
9 
10 DDC – distributed diffusion coefficient 
12 
13 DWI – diffusion-weighted imaging 
14 
15 EPI – echo planar imaging 
16 
17 
18 fd 

19 
20 

– diffusion fraction 

21 fd 
 – corrected diffusion fraction 

22 
23 

24 f p 

25 
26 

– perfusion fraction 

27 f p
 – corrected perfusion fraction 

28 
29 IVIM – intravoxel incoherent motion 
30 
31 

32 K – kurtosis  
33 
34 LA – limits of agreement 
35 
36 MD – mean difference 
37 
38 

39 mDIXON – multiecho two-point Dixon 
40 
41 RMSE – root-mean-square error 
42 
43 ROI – region of interest 
44 
45 
46 SX – stretched exponential 
47 
48 SENSE – sensitivity encoding 
49 
50 

SNR – signal-to-noise ratio 
52 
53 SPAIR – spectral attenuated inversion recovery 
54 
55 SSGR – slice-select gradient reversal 
56 
57 

58 WSE – water-specific excitation 
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3 
1 
2 
3 ABSTRACT SUMMARY 
4 
5 
6 
7 This work characterizes the effect of lipid and noise signals on muscle diffusion parameter 
8 

9 estimation in several conventional and non-Gaussian models, the ultimate objectives being to 
10 characterize popular fat suppression approaches for human muscle diffusion studies, to provide 
12 simulations to inform experimental work, and to report normative non-Gaussian parameter 
13 
14 values. The models investigated in this work were the Gaussian monoexponential and intravoxel 
15 
16 incoherent motion (IVIM) models, and the non-Gaussian kurtosis and stretched exponential 
17 

18 models. These were evaluated via simulations, and in vitro and in vivo experiments. Simulations 

19 were performed using literature input values, modeling fat contamination as an additive baseline 
20 
21 to data, while phantom studies used a phantom containing aliphatic and olefinic fats and muscle- 
22 
23 like gel. Human imaging was performed in the hamstring muscles of ten volunteers. Diffusion- 
24 

25 weighted imaging was applied with spectral attenuated inversion recovery (SPAIR), slice-select 

26 gradient reversal, and water-specific excitation fat suppression, alone and in combination. 
27 
28 Measurement bias (accuracy) and dispersion (precision) were evaluated, along with intra- and 
29 
30 interscan repeatability. Simulations indicated that noise in magnitude images resulted in <6% 
31 
32 bias in diffusion coefficients and non-Gaussian parameters (α, K), while baseline fitting 
33 minimized fat bias for all models, except IVIM. In vivo, popular SPAIR fat suppression proved 
35 inadequate for accurate parameter estimation, producing non-physiologic parameter estimates 
36 
37 without baseline fitting and large biases when it was used. Combining all three fat suppression 
38 
39 techniques and fitting data with a baseline offset gave the best results out of the methods studied 
40 

41 for both Gaussian diffusion and, overall, for non-Gaussian diffusion.  It produced consistent 

42 parameter estimates for all models, except IVIM, and highlighted non-Gaussian behavior 
43 
44 perpendicular to muscle fibers (α~0.95, K~3.1). These results show that effective fat suppression 
45 
46 is crucial for accurate measurement of non-Gaussian diffusion parameters, and will be an 
47 

48 essential component of quantitative studies of human muscle quality. 
49 
50 
51 
52 
53 
54 
55 
56 
57 
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4 
1 
2 
3 INTRODUCTION 
4 
5 
6 
7 Diffusion-weighted imaging (DWI) has been used as a non-invasive probe of human tissue 
8 

9 ultrastructure (1, 2), with the conventional diffusion model, in which signal intensity decays 
10 monoexponentially as a function of b-value, being the most well-studied. However, non- 
12 monoexponential, ‘non-Gaussian’ diffusion models may better reflect complex tissue 
13 
14 architecture (3). For example, multi-exponential models describe multiple monoexponential 
15 
16 diffusion components, each with its own signal fraction and decay constant, while kurtosis and 
17 

18 stretched exponential (SX) models can characterize a continuum of diffusion components, with 

19 component amplitudes described by a probability distribution. Description in terms of non- 
20 
21 Gaussian diffusion may be particularly appropriate for skeletal muscle, given that it exhibits 
22 
23 restrictive cellular architecture, and develops microstructural changes in response to resistance 
24 

25 training, pathologies, and age-related sarcopenia (4, 5). Clearly, this approach shows great 

26 potential for studying skeletal muscle ultrastructure, though the current literature is sparse (6, 7). 
27 
28 When applying new diffusion analysis models, it is important to consider possible sources 
29 
30 of error in parameter estimation. Noise has a deleterious effect on diffusion parameter 
31 
32 estimation, as has been demonstrated for Gaussian models (8-10) and, to a limited extent, for 
33 non-Gaussian models (11). However, a heretofore neglected area of study is the effect of lipid 
35 signals on non-Gaussian diffusion models. Fat poses two main problems for diffusion analysis in 
36 
37 muscle: first of all, improperly suppressed lipids dominate the diffusion-weighted signal at high 
38 
39 b-values and result in underestimation of monoexponential water diffusivity (12); and secondly, 
40 

41 even with optimal fat suppression, water present in adipose tissue can give rise to partial volume 

42 effects and associated errors (9, 13, 14). The former of these two effects is frequently 
43 
44 overlooked, and will receive thorough treatment here. 
45 
46 Lipid signals are difficult to suppress in DWI, particularly when B0 homogeneity is poor, 
47 

48 and the low-bandwidth sampling intrinsic to the use of echo-planar imaging (EPI) readouts leads 
49 to spatially misregistered lipid signals that obscure the anatomy of interest. There are multiple 
51 lipid resonances, including aliphatic fat from 1.2–3.0 ppm and olefinic fat at 5.3 ppm, 
52 
53 necessitating suppression of several species, one of which is close to the water resonance. 
54 
55 Fortunately, many techniques are available for suppressing these signals, including frequency- 
56 

57 selective methods like spectral attenuated inversion recovery (SPAIR)(15), water-specific 
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5 
1 
2 
3 excitation (WSE)(16), and slice-select gradient reversal (SSGR)(17). Each technique offers 
4 
5 different strengths, with associated costs: WSE excites only water and adjacent olefinic fat 
6 
7 resonances, at the expense of increased slice thickness and TE; SPAIR effectively suppresses 
8 

9 most aliphatic fat, while extending the minimum TR; and SSGR partially suppresses both 
10 olefinic and aliphatic fat, at no added cost. It is already clear from these brief considerations that 
12 the signal from olefinic fat, while approximately a factor of ten smaller in amplitude than that of 
13 
14 aliphatic fat, is more resistant to conventional fat-suppression techniques due to its proximity to 
15 
16 the water resonance. However, advanced methods for eliminating olefinic fat have recently been 
17 

18 reported (18, 19). 

19 The objective of this work is twofold. Firstly, we experimentally investigate optimization of 
20 
21 fat-suppression for DWI using three readily-implemented techniques: WSE, SPAIR, and SSGR. 
22 
23 Secondly, we explore the effect of noise and lipid signals on parameter estimates in 
24 

25 monoexponential, stretched exponential, kurtosis, and intravoxel incoherent motion (IVIM) 

26 diffusion models, via extensive numerical simulations. The results of these investigations will 
27 
28 guide the experimentalist in their choice of DWI fat suppression methods and analysis models, as 
29 
30 well as providing normative diffusion parameter estimates in healthy skeletal muscle. 
31 
32 
33 

THEORY 
35 
36 
37 Candidate Diffusion Models 
38 
39 The functional forms for the models evaluated are: 
40 

41 • Monoexponential: 

43 S  S0,muscle expbADC  , (1) 
44 
45 where S is the observed signal, S0,muscle is the signal from muscle at b = 0, ADC is the apparent 
46 

47 diffusion coefficient, and ε is a baseline offset used to mitigate bias from residual fat. 
48 • Stretched exponential (SX): 
50 

51 S  S0,muscle  exp bDDC     , (2) 
52 
53 where DDC is the distributed diffusion coefficient and α is the stretching parameter, with 
54 
55 0    2 (20). This model reduces to a monoexponential for  1, with  1 indicating 
56 
57 subdiffusive behavior and   1superdiffusive behavior. 
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• Kurtosis: 
4 
5 
6 
7 

 
 
 
 

S  S0,muscle exp 

 
 

bDDC  b2 DDC2
 

 
 

(K  3) 6

6 
 
 

 
  , (3) 

8 where K is kurtosis, with K   1, and K  3 indicates monoexponential diffusion. This definition 
9 
10 permits calculation of relative errors, unlike the ‘excess’ kurtosis definition, where Kexcess   K 3 
11 
12 and 
13 
14 
15 
16 

Kexcess   0 represents monoexponential diffusion. 
 
• Intravoxel incoherent motion (IVIM): 

  *     
17 S  S0,muscle 

18 
f p exp bD  1 f p    exp bADC  , (4) 

19 a biexponential model where fp is the perfusion fraction and D* is the pseudo-diffusion 
20 
21 coefficient (21). To account for blood-tissue relaxation time differences (22), fp is corrected to fp′ 
22 

23 as follows: 
24 

25 f p 26  
Cmuscle 
C 

27 f (%)   blood 100 , (5) 
28 1 f  C 

1 muscle 
p 

29 
30 


Cblood   

31 where Cblood 

32 
33 
34 
35 

and Cmuscle are relaxation correction factors for blood and muscle, given by 

Cblood  expTE T2,blood 1 expTR T1,blood , (6) 

36 Cmuscle  expTE T2,muscle 1 expTR T1,muscle , (7) 
38 

39 with T1  and T2  of blood and muscle at 3T taken as T1, blood  = 1932 ms, T2,blood  = 275 ms, T1, muscle  = 
40 

41 1412 ms, and T2,muscle  = 45 ms, respectively (23). Once fp′ has been determined, the diffusion 
42 
43 fraction, fd, is simply corrected to fd′ by 100 − fp′. 
44 
45 
46 Accuracy, Precision, and Model Goodness-of-Fit 
47 
48 In this work, the accuracy and precision of diffusion model parameter estimates are reported as 
49 
50 the relative bias and dispersion, respectively: 
51 N 
52 

Bias(%)  
100 

x  x 
  

x , (8) 
53 
54 


i1 

i ref  



ref 

p 

N 



 

   1  
N 1 

N 2 

 i x  x 
i1 

RSS 

n  k 

25 

32 

41 

45 

 

7 
1 
2 
3  
4 
5 Dispersion (%)  100  (9) 

6 
7 
8 where xi 

9 

 
 

is the parameter value estimated for the ith noise realization, 

 
 
xref 

 
 
is the true value,  x is 

10 the mean of all estimates, and  N is the number of noise realizations (24). The goodness-of-fit of 
11 
12 each diffusion model is expressed as the root-mean-squared error: 
13 
14 
15 RMSE 
16 

, (10) 

17 where n is the number of data points, RSS is the residual sum-of-squares, and the number of 
18 
19 parameters, k, is included to adjust for the number of degrees of freedom. A smaller RMSE 
20 
21 indicates better fit quality. 
22 
23 
24 

METHODS 
26 
27 
28 Fitting Data 
29 
30 For all experiments, the monoexponential, SX, and kurtosis diffusion models were fit to data for 
31 

b = 0, 276, 381, 525, 725, 1000, 1380, 1904, 2627, 3624, and 5000 s/mm2 using the 'lsqcurvefit' 
33 least-squares algorithm (MATLAB; MathWorks, Natick, USA). The muscle signal at b = 0, 
34 
35 S0,muscle, was included as a fitted parameter for all models. A maximum b-value, bmax, of 5000 
36 
37 s/mm2 was chosen to improve baseline fitting (8), and to allow detection of the kurtosis model’s 
38 

39 quadratic term while neglecting higher-order terms (6, 25). 
40 

The IVIM model was fit to data for b = 0, 10, 18, 33, 60, 110, 276, 381, 525, 725, and 1000 
42 s/mm2  using a multi-step approach whereby (1 f 43 p 

) and ADC were estimated by a linear fit to 

44 log-transformed, perfusion-free data (b-values highlighted in italics)(26), before being input to 
46 the biexponential fit as fixed terms. 
47 
48 In vitro and in vivo, diffusion signal decays were calculated from regions of interest (ROIs), 
49 
50 and fit with Equations 1−4. Pixel-by-pixel parameter maps were calculated solely to visualize 
51 

52 the spatial variation of parameters, and were not used for quantification. 
53 
54 
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8 
1 
2 
3 Numerical Simulations 
4 
5 Simulations were used to determine the effect of noise and fat on the accuracy and precision of 
6 
7 diffusion parameter estimation in skeletal muscle. Firstly, diffusion signal decays were generated 
8 

9 as per Equations 1−4, without offset ε, using the following input values: 
10 

  ADC = 2.0×10-3, 1.5×10-3, and 1.3×10-3 mm2/s, 
12 

   DDC = 2.0×10-3 mm2/s, 
13 
14    K = 3.0, 3.3, and 3.6, 
15 
16 from the literature (5, 6); and values from previous work (27), 
17 
18  fp = 15%, 10%, and 5%, 
19 

20    D* = 25.0×10-3 mm2/s, 
21 

   α = 1.0, 0.9, and 0.8. 
23 Constant baseline offsets, ε, were added to these data to produce fat signal fractions of 
24 
25 0−25%, in steps of 0.125%, relative to the fat-free b = 0 signal amplitude (12). The range of fat 
26 
27 fractions was chosen to correspond to values seen experimentally with typical DWI acquisitions. 
28 Constant offsets were used to reflect the fact that fat’s ADC (~2×10-5

– 4×10-5 mm2/s) is 
30 approximately two orders of magnitude smaller than that of water (28). 
31 
32 For each fat fraction, zero-mean Gaussian noise, with standard deviation (SD) σ, was added 
33 
34 to both the real and the imaginary parts of the complex signal to produce a range of SNRs, 
35 
36 defined as S 0
37 

 . Magnitude data were generated for SNR = 1−50, in steps of 0.25, each with 

38 1000 noise realizations, and noiseless data were generated for the case of infinite SNR. 
39 
40 To investigate fitting functions for fat and noise compensation in DWI data, the 
41 

42 monoexponential, SX, kurtosis, and IVIM models were also applied with no offset terms, with 
43 baseline offset ε, and with a baseline offset plus a noise parameter, ξ (8), for a range of bmax 

45 values (see Supplementary Material). 
46 
47 
48 
49 Magnetic Resonance Imaging 
50 

51 Imaging was conducted on a Philips Achieva 3.0T X-series system (Philips Healthcare, Best, 

52 The Netherlands) equipped with Quasar Dual gradients (80 mT/m maximum amplitude, 100 
53 
54 mT/m/ms slew rate), with a 32-channel cardiac coil for signal reception and a quadrature body 
55 
56 coil for transmission. 
57 

58 The following scans were performed both in vivo and in vitro: 
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9 
1 
2 
3 

 Multiecho two-point Dixon (mDIXON), to acquire high-resolution water and fat images 
5 (29); TR = 4.1 ms, TE = 1.5 and 2.7 ms, flip angle = 15°, field-of-view  = 270 mm × 270 mm, in- 
6 
7 plane resolution = 1 mm × 1 mm, slice thickness = 5 mm, and sensitivity encoding (SENSE) 
8 
9 factor = 2. 
10 

11   Diffusion-weighted spin echo single-shot EPI, with TR/TE = 3000/71 ms, field-of-view = 

12 270 mm × 270 mm, in-plane resolution = 2.7 mm × 2.7 mm (reconstructed to 1.7 mm × 1.7 mm), 
13 
14 slice thickness = 22 mm, 8 averages, partial Fourier factor = 0.6 in the phase-encoding direction, 
15 
16 SENSE factor = 2, diffusion gradient duration δ = 27 ms and interval ∆ = 35 ms, 16 
17 

18 logarithmically-spaced b-values (0, 10, 18, 33, 60, 110, 276, 381, 525, 725, 1000, 1380, 1904, 
19 

2627, 3624, and 5000 s/mm2), and diffusion sensitization in the slice and readout directions. 
21 To evaluate fat suppression quality, a total of 16 DWI datasets were acquired, applying the 
22 
23 following fat suppression configurations with diffusion sensitization in the slice and readout 
24 
25 directions: (i) no fat suppression; (ii) SSGR; (iii) SPAIR; (iv) WSE; (v) SPAIR+SSGR; (vi) 
26 

27 WSE+SSGR; (vii) WSE+SPAIR; and (viii) WSE+SPAIR+SSGR, with a binomial 1-4-6-4-1 

28 WSE pulse, SPAIR delay = 200 ms, and SPAIR offset = 250 Hz. Fig. 1 illustrates all three fat 
29 
30 suppression modules as they appeared in the sequence. 
31 
32 
33 

34 Signal-to-Noise Determination. To facilitate comparison of in vivo and in vitro data with 
35 simulations, DWI SNR was estimated using a b = 0 image along with a noise reference scan 
37 acquired without RF or gradients: 
38 
39 
40 SNR  mean(S (r )) 
41 rROI 
42 

 SD (N (r )) , (11) 
rROI 

43 as per Yu et al.(30), where  S(r) is the signal intensity in pixel r  (rx , ry , rz ) in a given ROI, N(r) 
44 
45 the signal from the noise image, and 
46 
47 
48 
49 General MRI Data Processing 
50 

the Rayleigh limit of Rician-distributed noise. 

51 All data processing was performed in MATLAB. To account for signal drift and eddy current 

52 effects (31, 32), in vitro and in vivo DWI data were registered to mDIXON images via an affine 
54 control-point algorithm. They were then masked using a composite water-fat image generated 
55 
56 
57 
58 
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10 
1 
2 
3 from mDIXON water data and b = 5000 s/mm2 DWI data, where the latter highlights shifted 
4 
5 olefinic fat signals. 
6 
7 
8 

9 In Vitro Experiments 

10 Phantom Construction. A two-chamber coaxial phantom, similar to that described by 
11 
12 Winfield et al.(33), was constructed from polycarbonate plastic with dimensions approximating 
13 
14 the cross-section of the human thigh: overall length = 135 mm, overall diameter = 150 mm, and 
15 

16 inner chamber diameter = 119 mm. The inner cylinder was filled with an agarose gel (3% w/v, 
17 Sigma-Aldrich) containing nickel sulphate hexahydrate (0.4 mM, Sigma-Aldrich), sucrose (1.5% 
19 w/v, Sigma-Aldrich), and sodium chloride (9 g/l, J.T. Baker), to give an inner compartment with 
20 
21 T1 and T2 relaxation times (23), diffusivity (5), and conductivity similar to muscle tissue (34). 
22 
23 The outer chamber was filled with corn oil (Mazola), to give a lipid spectrum similar to that of 
24 

25 subcutaneous fat (33). 
26 
27 
28 In-Vitro Imaging Protocol. The phantom’s long-axis was aligned with the magnet bore, and 
29 
30 its B0 homogeneity was optimized using a projection-based shimming algorithm. Besides the 
31 

32 mDIXON and DWI acquisitions, axial images were also obtained using the following sequences: 
33 

34   Inversion recovery fast-spin-echo, to measure the gel T1; TR/TE = 10000/10 ms, and TI = 

35 50, 75, 150, 300, 600, 1200, and 2400 ms, plus an acquisition without an inversion pulse to 
36 
37 measure M0. 
38 
39   Multiple spin echo, to measure the gel T2; TR = 10000 ms and TE = 20−140 ms, in steps 
40 

41 of 20 ms. 
42 
43 
44 Quality of Fat Suppression In Vitro. All fat suppression configurations were applied in five 
45 
46 separate scan sessions to assess variability, with the phantom being removed, repositioned, and 
47 
48 reshimmed between sessions. In a sixth session, a coarse, three-slice image-based shim (35) was 
49 

50 applied over the whole phantom to produce broad spectral lines to challenge fat suppression. 

51 Each session lasted approximately 75 minutes. 
52 
53 All fat suppression combinations were quantitatively assessed using ROIs drawn on b = 
54 
55 1000 s/mm2 images in areas where agarose gel and shifted aliphatic and olefinic fat signals 
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11 
1 
2 
3 appeared separately. Water and fat signal intensities were measured in these three ROIs and used 
4 
5 to calculate mean and SD water:aliphatic-fat and water:olefinic-fat ratios over the five sessions. 
6 
7 To evaluate fat’s influence on model parameter estimation, two additional ROIs were drawn 
8 

9 in areas where shifted aliphatic and olefinic fat signals, repectively, overlaid the signal from 
10 agarose gel. For these, and the gel-only ROI, model parameters were estimated and their bias 
12 (Equation 8) was evaluated relative to estimates in well-shimmed, non-fat-suppressed gel—to 
13 
14 avoid errors arising from perturbations of the water signal. 
15 
16 
17 

18 In Vivo Experiments 

19 All volunteers received a comprehensive description of the study, including possible risks, and 
20 
21 gave informed consent according to the local Institutional Review Board guidelines. 
22 
23 
24 

25 In Vivo Imaging Protocol. Participants were positioned feet-first, supine with the left thigh 

26 approximately at isocenter. A 10 cm bolster was placed under their knees to align the ‘fusiform’ 
27 
28 hamstring muscles with the bore, minimizing angulation between hamstring muscle fibers and 
29 
30 the prescribed diffusion sensitization directions. After localizers, the entire thigh was shimmed to 
31 
32 second order using image-based shimming (35), and a single DWI slice was planned in the 
33 thickest part of the thigh, using WSE+SPAIR+SSGR fat suppression. 
35 
36 
37 Quality of Fat Suppression In Vivo. All fat suppression configurations were applied in 2 
38 
39 volunteers with distinctly different body habitus (both male, ages 30 and 51 years, BMI = 20 and 
40 

41 33, respectively), in order to create different fat suppression and B0 shimming challenges. These 

42 scans took approximately 75 minutes. 
43 
44 To determine fat’s effect on parameter estimation in vivo, two additional ROIs were drawn 
45 
46 in muscle overlaid with shifted subcutaneous aliphatic and olefinic fat signals, respectively. For 
47 

48 these, and the muscle-only ROI, model parameters were estimated and their bias (Equation 8) 
49 was evaluated relative to WSE+SPAIR+SSGR-fat-suppressed muscle, in order to avoid bias 
51 from intramuscular fat. 
52 
53 
54 
55 
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12 
1 
2 
3 In Vivo Normative Diffusion Parameters and Repeatability. Fat-suppressed DWI data 
4 
5 were obtained in 10 additional volunteers (all male, median age = 40, range = 27-78 years), with 
6 
7 diffusion gradients applied in the slice direction in all 10, and in the readout direction in 8. 
8 

9 Intra- and inter-session repeatability of DWI were assessed for both diffusion directions in 5 
10 of these participants, using Bland-Altman analysis. Participants were scanned twice in one 
12 session and again in a separate session within one week. Each scan lasted approximately 30 
13 
14 minutes. 
15 
16 
17 

18 RESULTS 
19 
20 
21 Numerical Simulation Results 
22 
23 Analyses of fitting functions with no offset terms, with baseline offset ε, and with an offset plus 
24 

25 noise parameter ξ, for multiple are shown in the Supplementary Material, along with the effects 
26 of the choice of bmax. 
28 Fig. 2 shows relative bias and dispersion of parameter estimates for each diffusion model as 
29 
30 a function of fat fraction and SNR. At 0% fat fraction (bottom of each plot), the 
31 
32 monoexponential, SX, and kurtosis models show similar bias and dispersion for estimating ADC 
33 or DDC, with each approaching an asymptote at SNR~10. The stretching parameter, α, shows 
35 similar biases to DDC, again with an asymptote at SNR~10. Its dispersion, however, decreases 
36 
37 more slowly for increasing SNR, and K showed an even shallower decrease in bias and 
38 
39 dispersion as SNR increased. For the IVIM model, ADC and fp show negative biases and large 
40 

41 dispersions at SNR<10, but the bias and dispersion of ADC approached those of the other 

42 models’ diffusion coefficients above this threshold. The bias in D* decreased with increasing 
43 
44 SNR, though its dispersion was typically >100% for all perfusion fractions and simulated SNRs. 
45 
46 Assuming fat fraction = 0, at the level of in vivo SNR, ~40, each model showed less than 
47 

48 6% bias in diffusion coefficient estimation. IVIM parameters showed bias (dispersion): in fp, −18 
49 

50 (153)% for a nominal fp = 15%, −26 (249)% for fp = 10%, and −50 (722)% for fp = 5%; and for 
51 D*, −18 (101)% for fp = 15%, −13 (138)% for fp = 10%, and -6 (161)% for fp = 5%. The SX model 
52 
53 showed a bias (dispersion) in α of ~6% (~8%), while kurtosis showed a bias (dispersion) of −14 
54 
55 (20)% for K = 3.0, −8 (12)% for K = 3.3, and −1 (1)% for K = 3.6. 



 

13 

22 

38 

45 

54 

 

13 
1 
2 
3 As fat fraction increased, the bias in diffusion coefficients decreased at low SNRs, and 
4 
5 dispersion increased monotonically. IVIM was markedly fat-sensitive: the bias in IVIM- 
6 
7 estimated ADC was -66% for 25% fat, decreasing with increasing fat fraction due to skewing of 
8 

9 the linear fit, which also led to smaller estimates of (1 f p ) . However, non-modeled fat signal 
10 
11 simultaneously increased the apparent fd, leading to large biases in fp for each fat fraction. 

12 Finally, D* showed a monotonic relationship with fat fraction, though the slope of this 
14 relationship changed sign as a function of SNR. 
15 
16 
17 
18 In Vitro Results 
19 
20 Quality of Fat Suppression In Vitro. Example phantom DWI images acquired with each fat 
21 suppression method are presented in Fig. 3, alongside mDIXON images and parameter maps. 
23 Shifted aliphatic fat signals are prominent for all fat suppression configurations except 
24 
25 WSE+SPAIR and WSE+SPAIR+SSGR, while shifted olefinic fat remains in all cases. Maps of 
26 
27 fp show that shifted fat signals produce a spurious perfusion component in the phantom. 
28 

29 Fig. 4 shows water-fat ratios in vitro. The mean (SD) water:aliphatic-fat was largest for 

30 WSE+SPAIR+SSGR, 75.6 (7.3), and marginally smaller for WSE+SPAIR, 73.7 (12.1); both 
31 
32 methods showed significantly greater water-fat ratios than the other methods (p<0.001) without 
33 
34 being significantly different from one another. Water:olefinic-fat was relatively constant in all 
35 

36 cases, indicating the difficulty in suppressing olefinic fat along with aliphatic fat. The water 
37 signal showed less than 2% attenuation for all fat suppression configurations (data not shown). 
39 The phantom’s gel compartment showed monoexponential diffusion, with a measured α = 
40 
41 1.00 and K = 3.00; its mean (SD) T1 and T2 were 1386.8 (19.2) ms and 46.6 (1.4) ms, 
42 
43 respectively. All models yielded gel diffusion coefficients of 1.90×10-3 mm2/s, except IVIM, for 
44 which ADC = 1.87×10-3 mm2/s; IVIM showed the largest biases of the 4 models. Relative biases 
46 in each parameter were >8% in fat-contaminated regions with no fat suppression or with SSGR 
47 
48 (Fig. 5). For all models except IVIM, olefinic fat contamination produced a bias of 2-3%, 
49 
50 irrespective of the fat suppression method used. Except for IVIM parameters, SPAIR reduced 
51 

52 bias in all parameters below 8% in regions contaminated by aliphatic fat, while 
53 WSE+SPAIR+SSGR reduced it below 1%. WSE+SPAIR+SSGR and WSE+SPAIR gave similar 
55 parameter values, consistent with their comparable fat suppression performance. For coarsely- 
56 
57 shimmed data, fat suppression performance was markedly poorer: no method produced biases 



50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

repeatability measures. Fig. 8 shows ROI-planning, maps for parameter visualization, and quality 

control images. 

In the hamstring muscles, the mean (SD) SNR in two participants was 39.7 (8.8). All 

models measured larger diffusion coefficients in the slice direction, parallel to muscle fibers, 
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14 
1 
2 
3 better than ±23% in regions contaminated with aliphatic fat. Furthermore, SSGR and 
4 
5 WSE+SSGR showed large biases even in gel-only regions. 
6 
7 
8 

9 In Vivo Results 
10 Quality of Fat Suppression In Vivo. Example DWI images are shown in Fig. 6 for each fat 
12 suppression modality, along with mDIXON images. All fat suppression configurations showed 
13 
14 pronounced shifted aliphatic fat signals, except WSE+SPAIR and WSE+SPAIR+SSGR. Of 
15 
16 these, WSE+SPAIR+SSGR showed better fat suppression homogeneity, with shifted aliphatic fat 
17 

18 being consistently suppressed across the field-of-view. 

19 Fig. 7 highlights the increased bias in diffusion parameters in vivo as compared to in vitro. 
20 
21 All diffusion coefficients showed similar, substantial biases in the presence of fat contamination. 
22 
23 Derived values for K, fp and D* tended to decrease with improved fat suppression, while 
24 

25 estimated α decreased. In muscle regions containing only intramuscular fat, biases were large 

26 with no fat suppression or with SSGR alone. In the younger participant, with BMI = 20, SPAIR 
27 
28 reduced the absolute bias of parameters, except fp  and D*, to <15%, SPAIR+SSGR, WSE and 
29 
30 WSE+SSGR all performed similarly, and WSE+SPAIR reduced biases below 10%. The same 
31 
32 trends held true for data contaminated with shifted olefinic fat, where biases were similar to 
33 muscle data; however, IVIM showed larger biases than the other models. Finally, data 
35 contaminated with shifted aliphatic fat showed biases consistently around 20%, including with 
36 
37 use of WSE+SPAIR and WSE+SSGR+SPAIR. This is likely due to structural differences in 
38 
39 underlying muscle between the olefinic and aliphatic-fat-contaminated regions. In the older, BMI 
40 

41 = 33 participant, parameter biases were generally greater due to reduced B0 homogeneity and a 
42 concomitant decrease in SNR; however, data obtained with WSE+SPAIR showed similarly low 
43 
44 biases in both participants. 
45 
46 
47 

48 In Vivo Normative Diffusion Parameters and Repeatability. Diffusion parameters from in 
49 vivo hamstring muscle data are summarized in Table 1, along with goodness-of-fit and 
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15 
1 
2 
3 than in the readout direction, perpendicular to fibers. In agreement with simulations and in vitro 
4 
5 data, IVIM gave smaller diffusion coefficient estimates than the other models, all of which gave 
6 
7 similar values. This disparity in diffusion coefficients was larger in vivo than in vitro; the mean 
8 

9 IVIM ADC was 1.87×10-3 mm2
/s in the slice direction, while the other models’ derived diffusion 

10 coefficients were ~2.13−2.17×10
-3 mm2/s. 

12 We measured α~1 and K~3 parallel to muscle fibers, indicating near-monoexponential 
13 
14 diffusion. Perpendicular to muscle fibers, α and K tended toward non-Gaussian behavior, with 
15 
16 mean (SD) α = 0.94 (0.04) and K = 3.27 (0.13). The SX model also gave the best fit to the data, 
17 

18 with a substantially smaller RMSE than other models. 

19 Table 1 shows that diffusion coefficients were similarly repeatable for all models, with mean 
20 
21 intra- and inter-session differences ≤4%, and lines of zero difference, indicating perfect 
22 
23 correlation between scans, within the 95% limits of agreement. Estimates of α, K, and fp′ showed 
24 

25 small mean differences, but K and fp′ had large limits of agreement: up to 0.34 difference from 

26 the mean for the former, and 5.8% absolute difference for the latter. D* showed generally poor 
27 
28 repeatability, with broad 95% limits of agreement and a line of zero difference typically close to 
29 
30 or outside of those limits; Fig. 8 shows example D* maps from repeat scans. 
31 
32 
33 

DISCUSSION 
35 
36 
37 To our knowledge, this study is the first to investigate the effect of fat signals and fat suppression 
38 
39 methodology on Gaussian and non-Gaussian diffusion parameter estimation in skeletal muscle, 
40 

41 and it expands on earlier analyses of noise effects in such models (8-11). Previous work on fat in 

42 DWI focused on parameter bias arising from water signals, rather than lipid signals, in fat tissue 
43 
44 (9, 13, 14). These works also used the diffusion tensor model, and are thus inherently low b- 
45 
46 value, monoexponential studies. Our work considers only isotropic diffusion models, as non- 
47 

48 Gaussian models have still seen little penetration into tensor formulations; however, extending 
49 this work to the tensor model would be a valuable next step. 
51 We have demonstrated here that conventional and non-Gaussian models are sensitive to 
52 
53 noise and shifted fat signals, as expected when performing any analysis in which sources of error 
54 
55 are not adequately accounted for.  We found that data quality can be improved by combining 
56 

57 multiple fat suppression techniques with a high b-value acquisition and a baseline offset. Our 
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16 
1 
2 
3 extensive simulations, discussed in the Supplementary Material, showed that different DWI 
4 
5 fitting functions should be used depending on the experimental data. A baseline offset parameter 
6 
7 (12) proves beneficial for ROI-based DWI fitting, where SNR is high and considerable fat 
8 

9 signals can be present; our data show triple-fat-suppressed water-fat ratios of the order of 1−5% 
10 (data not shown) and SNRs of around 40, where it is appropriate to use an offset. Conversely, 
12 when applied in a low fat-fraction, low-to-middling SNR regime, the offset produces a small, 
13 
14 positive parameter estimation bias. This effect can be mitigated by incorporating an additional 
15 
16 noise parameter (8), which improves parameter estimation for middling SNR, low fat-fraction 
17 

18 data. Finally, no offset or noise parameters are needed to fit data in the absence of lipid signals; 

19 however, bmax must be chosen judiciously to avoid noise bias (6). 
20 
21 SX and kurtosis models require b-values up to 5000 s/mm2 to characterize signal persistence 
22 
23 at high b-values (20, 25), which may be modeled in part by incorporation of an offset. 
24 

25 Monoexponential and IVIM models, however, are frequently applied with bmax of 1000 s/mm or 

26 less, and are thus subject to large biases when fat is present. This could account for reported 
27 
28 inconsistencies in muscle diffusion measures with aging (36). For example, Galbán et al. 
29 
30 reported a reduction in calf muscle diffusion coefficients by up to 10% in older participants (5). 
31 
32 By simulating Galbán’s b-value scheme with muscle and lipid signals (Supplementary Material, 
33 Supp. Fig. 5), we observe a bias error in diffusion coefficient estimates of -10% upon addition of 
35 5% fat fraction. Increases in intramuscular fat content of this order have been demonstrated in 
36 
37 aging (37), and should be carefully considered when interpreting diffusion coefficient changes. 
38 
39 
40 

41 In our corn oil and gel phantom, the commonly-used SPAIR fat suppression method was 

42 sufficient for accurate parameter estimation, even when the gel signal was contaminated with 
43 
44 aliphatic fat. However, its effectiveness decreases with reduced B0 homogeneity, due to broad, 
45 
46 hard-to-suppress fat resonances. This is clearly seen in the in vivo data presented here, where the 
47 

48 use of SPAIR alone gave diffusion parameter estimates substantially different from those 
49 obtained with better-performing configurations. With a non-modeled baseline, representing a 
51 typical monoexponential or IVIM diffusion study, SPAIR-fat-suppressed data gave non- 
52 
53 physiologic ADCs of 0.7×10-3 mm2/s, and showed bias errors around 20% for α and K (data not 
54 
55 shown). The smallest parameter bias was found for WSE+SPAIR and WSE+SPAIR+SSGR 
56 

57 schemes, when models were applied with baseline offsets; WSE+SPAIR+SSGR reduced 
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1 
2 
3 

aliphatic fat signal to between 1 and 5% of the water signal in vivo, versus 10−30% for SPAIR 
4 
5 alone (data not shown). Simulations showed that this was sufficient to estimate non-Gaussian 
6 
7 diffusion parameters with a bias of less than 6%, for SNR = 40.  In general, WSE+SPAIR and 
8 

9 WSE+SPAIR+SSGR performed similarly, though the latter gave slightly improved fat 
10 suppression homogeneity in vivo. These methods, and more-sophisticated approaches (18, 19), 
12 will prove useful when considerable intramuscular fat may be present, such as in the elderly, and 
13 
14 in diseases such as type II diabetes. 
15 
16 Olefinic fat was less well-suppressed than aliphatic fat in our experiments. While improved 
17 

18 olefinic fat suppression has been achieved via multi-acquisition TE-shifting (18), navigated 

19 water-fat separation (19), or additional frequency-selective saturation pulses (13), these methods 
20 
21 can be challenging to implement. We excluded shifted subcutaneous olefinic fat from our muscle 
22 
23 ROIs, and no intramuscular olefinic fat signal was visible in our high b-value DWI or mDIXON 
24 

25 images, consistent with previous work (18). With the further addition of a baseline offset to our 

26 model fits, we surmise that the effect of olefinic fat on our parameter estimates is minimal. 
27 
28 With our triple-fat-suppressed DWI approach, in vivo diffusion coefficients showed 
29 
30 minimal intra- and intersession differences; however, other parameters, particularly fp and D*, 
31 
32 showed broad 95% limits of agreement, with D* showing the poorest repeatability overall. This 

33 is consistent with our simulations, and with previous work (22), confirming that D* estimation is 
35 challenging at clinically-achievable SNRs. The poor repeatability of the IVIM model indicates 
36 
37 that it may not be suitable for analysis of muscle microcirculation without further improvement. 
38 
39 
40 

41 Skeletal muscle has complex architecture, comprising intra- and extra-cellular spaces, fat, and 

42 vasculature, and mobile protons are expected at a variety of displacement time and length scales. 
43 
44 Thus, the “true” underlying signal behavior as a function of b-value may consist of 
45 
46 superpositions or extensions of the functions investigated here. Indeed. the most commonly-used 
47 

48 model, the monoexponential, is likely a substantial oversimplification of underlying signal 
49 behavior, while models such as SX and kurtosis have the potential for greater sensitivity and 
51 specificity to the details of muscle ultrastructure (20, 25). The present study represents the first 
52 
53 application of the SX model to in vivo skeletal muscle diffusion data, with the derived values for 
54 
55 α indicating the presence of non-Gaussian diffusion in the hamstring muscles. 
56 
57 
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Parallel to muscle fibers, α was close to 1 in the majority of participants, suggesting that 
4 
5 diffusion along fibers is monoexponential in these cases. However, there remains the possibility 
6 
7 that these α estimates are biased toward 1 by noise, as shown by our simulations. Furthermore, 
8 

9 our DWI sequence may have too long a TE to detect α-modifying short-T2 components. 
10 Perpendicular to muscle fibers, estimates of α<1 suggested the presence of non- 
12 monoexponential signal decay in spite of possible noise bias. Several younger participants 
13 
14 showed mean α values around 0.9, indicating greater complexity perpendicular to muscle fibers 
15 
16 than along fibers and representing an appreciable departure from the monoexponential case (38). 
17 

18 Consistent with our α measurements, our K estimates also took non-monoexponential 

19 values, agreeing with Marschar et al. (6), who reported excess kurtosis between 0.1 and 0.4 in 
20 
21 skeletal muscle. Both kurtosis and the SX are expected to highlight muscle tissue heterogeneity, 
22 
23 reflecting multiple monoexponential diffusion components arising from intra- and extracellular 
24 

25 compartments (20, 25), and different fiber types or dimensions (39). However, of the four 

26 models studied, the SX provided the best fit to the diffusion data, as shown by RMSE measures 
27 
28 in Table 1. This suggests that the SX is the most appropriate of the models for characterizing 
29 
30 muscle diffusion, but detailed model selection experiments are required to confirm this finding. 
31 
32 
33 

CONCLUSION 
35 
36 
37 Our extensive numerical simulations have shown that effective fat suppression is crucial for 
38 
39 accurate measurement of diffusion parameters in skeletal muscle, and the commonly-used 
40 

41 SPAIR fat suppression technique may be inadequate for this purpose. More thorough methods, 

42 such as triple-fat-suppressed DWI, are required for accurate and precise estimation of Gaussian 
43 
44 and non-Gaussian diffusion parameters. Non-Gaussian parameters appear to give additional 
45 
46 information on muscle microstructural properties beyond that provided by conventional models 
47 

48 and, with further validation, they could be used to study muscle pathology and explore 
49 underlying causes of decline in muscle biomechanical quality with aging. 
51 
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3 SLICE (n = 10) 

4 Model D or D* (mm2/s) MDintra (95% LA) MDinter (95% LA) Parameters MDintra (95% LA) MDinter (95% LA) RMSE 
5 
6 Mono 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 Mono 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
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19.8 

34 Table 1. Calculated in vivo diffusion parameters and their repeatability. Results are shown for ROIs drawn in the hamstring 
35 muscles (see Figure 9). Data are obtained from triple fat-suppressed images with diffusion-sensitization in the slice-select (parallel to 
36 muscle fibers) and readout (perpendicular to muscle fibers) directions. Measurements are quoted as mean (SD) over all participants. 
37 Intra- and inter-session repeatability are described in 5 participants by Bland-Altman measures: namely, mean difference (MD), and 
38 95% limits of agreement (LA) in brackets. D = diffusion coefficient, including the apparent diffusion coefficient (monoexponential 

40 and IVIM models) and the distributed diffusion coefficient (stretched exponential and kurtosis models), D* = pseudo-diffusion 
41 coefficient, fp′ = corrected perfusion fraction, fd′ = corrected diffusion fraction, α = stretching parameter, IVIM = intravoxel incoherent 
42 motion, K = kurtosis. 
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contrast between different model parameters. As shown, for most diffusion coefficient estimates 

parameter bias and dispersion tend to increase as SNR decreases, and a subtle bias is seen for 

small fat fractions. For IVIM, ADC bias increases strongly with inlarge, discrete biases were 

seen in the perfusion fraction, fp, where fat signal adds to the apparent slow-diffusing fraction 
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26 
1 
2 
3 Figure 1: Pulse sequence diagram showing the triple-fat-suppressed, diffusion-weighted 
4 
5 spin echo single-shot echo-planar imaging (EPI) sequence used in this study. This consists of 
6 
7 a diffusion-weighted spin echo sequence with a ramp-sampling EPI readout, preceded by a 
8 

9 spectral attenuated inversion recovery (SPAIR) module, which suppresses fat via an adiabatic 
10 inversion pulse followed by gradient spoilers (Sp). The SPAIR TI used in this study was 200 ms, 
12 and the TE was 71 ms. Further fat suppression was achieved using water-specific excitation 
13 
14 (WSE, highlighted in green) and slice-select gradient reversal (SSGR, highlighted in blue) within 
15 
16 the spin echo sequence. WSE consisted of a slice-selective composite RF pulse in a 1−4−6−4−1 
17 

18 configuration, with interpulse intervals of 1.15 ms, and component flip angles of 

19 5.6°−22.5°−33.8°−22.5°−5.6°, adding to the equivalent of a 90° excitation. SSGR consisted of a 
20 
21 reversal of the slice-select gradient polarity during the spin echo refocusing pulse. Note that Gz = 
22 
23 slice-select direction, Gy = phase encoding direction, and Gx  = readout direction, and diffusion- 
24 

25 weighted (DW) gradients are shown as dashed blocks. Gradients were played along only a single 

26 axis for each implementation of the sequence, depending on the desired direction of diffusion 
27 
28 sensitization. 
29 
30 
31 
32 Figure 2: Plots of bias and dispersion in fitted parameters for all four candidate diffusion 
33 models in Monte-Carlo simulations. Results are visualized as colored matrix plots, grouped by 
35 monoexponential, stretched exponential, kurtosis, and intravoxel incoherent motion (IVIM) 
36 
37 models. These are subdivided into their fitted parameters by dashed lines, where top and bottom 
38 
39 rows denote relative bias (B%) and relative dispersion (D%), respectively. Columns denote 
40 

41 different input parameter values, as obtained from the in vivo literature (non-monoexponential 

42 diffusion coefficients and the IVIM pseudo-diffusion coefficient, D*, were fixed at 2.0×10-3
 

43 
44 mm2/s and 25×10-3 mm2/s, respectively).  Individual matrix plots are shown with signal-to-noise 
45 
46 ratios (SNRs) increasing along the x-axis (1−50 in increments of 0.25), with a separate column 
47 

48 for infinite SNR; fat signal fractions are shown on the y-axis, (0−25% in increments of 0.125%). 
49 The color lookup table of relative bias and dispersion was limited to ±75% to improve color 
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where water and fat signals were clearly visible, using the red, pale green, and pale blue ROIs 

shown in Fig. 3. Signal intensities were measured in shifted fat and agarose gel for each fat 

suppression combination, and are expressed as mean water:olefinic-fat and water:aliphatic-fat 

ratios in the bar plot shown. All fat suppression combinations were applied in series and repeated 
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27 
1 
2 
3 while simultaneously skewing the fit of fp toward larger values. ADC = apparent diffusion 
4 
5 coefficient, α = stretching parameter, DDC = distributed diffusion coefficient, and K = kurtosis. 
6 
7 
8 

9 Figure 3: Phantom fat suppression results and example parameter maps. The top two rows 
10 show multiecho two-point Dixon (mDIXON) water and fat images (top left), diffusion-weighted 
12 b = 1380 s/mm2 images for all 8 fat suppression combinations, and positioning of the regions of 
13 
14 interest (ROIs) within the phantom. In these images, olefinic fat signal is shifted up slightly, 
15 
16 while aliphatic fat signal is shifted down to a much greater degree, due to its large chemical shift 
17 

18 relative to water. A diagram of the phantom is shown in the bottom left, and some example 

19 parameter maps from all four diffusion models are shown in the bottom two rows of the figure. 
20 
21 The third row shows maps generated from the non-fat-suppressed diffusion-weighted images 
22 
23 (left-hand arrow), and the fourth row shows maps from data obtained with a combination of 
24 

25 water-specific excitation (WSE), spectral attenuated inversion recovery (SPAIR), and slice select 

26 gradient reversal (SSGR) fat suppression methods (right-hand arrow). Images were acquired in 
27 
28 the axial plane with diffusion sensitization in the slice direction. ROIs were defined in shifted 
29 
30 olefinic fat (pale blue) and aliphatic fat (pale green) alone, for calculation of water-fat signal 
31 
32 ratios (Fig. 4), and in gel contaminated with olefinic fat (dark blue) and aliphatic fat (green), to 
33 evaluate the effect of fat contamination on parameter estimation (Fig. 5). Uncontaminated 
35 agarose gel (red) is used as a reference for both of these analyses. As shown, shifted aliphatic fat 
36 
37 signals are prominent for all fat suppression configurations except WSE+SPAIR and 
38 
39 WSE+SPAIR+SSGR, leading to parameter estimation bias in the example maps, while shifted 
40 

41 olefinic fat remains in all cases. ADC = apparent diffusion coefficient, α = stretching parameter, 

42 DDC = distributed diffusion coefficient, f  = perfusion fraction, IVIM = intravoxel incoherent 
43 
44 motion, and K = kurtosis. 
45 
46 
47 

48 Figure 4: Water-fat signal ratios obtained from phantom images using combinations of fat 

49 suppression methods. Measurements were made on b = 1000 s/mm2 diffusion-weighted images, 
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28 
1 
2 
3 in five separate scan sessions, with the phantom being removed, recentered and reshimmed 
4 
5 between sessions; error bars show the standard deviations of water-fat ratios across each of the 
6 
7 five acquisitions. As shown, water:aliphatic-fat was largest for WSE+SPAIR+SSGR and 
8 

9 marginally smaller for WSE+SPAIR. Water:olefinic-fat was relatively constant in all cases, 
10 indicating the difficulty in suppressing olefinic fat along with aliphatic fat. SSGR = slice select 
12 gradient reversal, SPAIR = spectral attenuated inversion recovery, WSE = water-specific 
13 
14 excitation. 
15 
16 
17 

18 Figure 5: Comparison of in vitro diffusion parameter estimates using different fat 

19 suppression combinations. Results are shown for diffusion sensitization in the slice-select 
20 
21 direction; ‘Shim 1’ and Shim 2’ represent data acquired with a projection-based shim, with SNR 
22 
23 = 110, and a coarse, image-based shim, with SNR = 41, respectively. Each shim was applied 
24 

25 across the whole phantom. Data are shown for gel contaminated by shifted aliphatic fat (left- 

26 hand column, A), gel contaminated by shifted olefinic fat (middle column, O), and gel alone 
27 
28 (right-hand column, G); namely, from the green, dark blue, and red ROIs illustrated in Fig. 3. 
29 
30 Gel-only parameter values obtained from well-shimmed, non-fat-suppressed data were taken as 
31 
32 the reference values, and thus the top-right cell of each ‘Shim 1’ plot has an error of 0%. These 
33 reference values were chosen to represent pure gel parameters without possible signal 
35 perturbation effects from the fat suppression methods. It can be seen that parameter biases tend 
36 
37 toward zero as fat suppression methods are added, but this trend is weakened when B0 shimming 
38 
39 is poor. ADC = apparent diffusion coefficient, α = stretching parameter, D* = pseudo-diffusion 
40 

41 coefficient, DDC = distributed diffusion coefficient, fp = perfusion fraction, IVIM = intravoxel 

42 incoherent motion, K = kurtosis, SSGR = slice select gradient reversal, SPAIR = spectral 
43 
44 attenuated inversion recovery, WSE = water-specific excitation. 
45 
46 
47 

48 Figure 6: In vivo fat suppression results. Representative multiecho two-point Dixon 
49 (mDIXON) water and fat images, in vivo region of interest (ROI) positioning, and diffusion- 
51 weighted, b = 1380 s/mm2 images for all 8 fat suppression configurations are shown. As in Fig. 
52 
53 3, olefinic fat signal is shifted up, overlapping muscle signal at the posterior of the thigh, while 
54 
55 aliphatic fat signal is shifted down to a greater degree, obscuring muscle across the femur and 
56 

57 part of the quadriceps femoris. Images were acquired axially across the thigh, with diffusion 



 

11 

34 

50 

 
 

29 
1 
2 
3 sensitization in the slice direction, corresponding to the long axes of muscle fibers. ROIs (upper 
4 
5 right image) were defined in muscle contaminated by shifted olefinic fat (dark blue), muscle 
6 
7 contaminated by shifted aliphatic fat (green), and uncontaminated hamstring muscles (red) to 
8 

9 evaluate the effect of fat contamination on model parameter estimation (Fig. 7). As shown, 
10 pronounced shifted aliphatic fat signals are present for all fat suppression configurations, except 
12 WSE+SPAIR and WSE+SPAIR+SSGR. SPAIR = spectral attenuated inversion recovery, SSGR 
13 
14 = slice select gradient reversal, WSE = water-specific excitation. 
15 
16 
17 

18 Figure 7. Comparison of in vivo diffusion parameter estimates using different fat 

19 suppression combinations. Results were obtained from two healthy volunteers: both male, ages 
20 
21 30 and 51 years, BMI = 20 and 33, and SNR = 83 and 45, respectively. Diffusion sensitization 
22 
23 was applied in the slice-select direction, corresponding to the long axes of muscle fibers, and the 
24 

25 readout direction, corresponding to their short axes. Plots show data from the green, dark blue, 

26 and red ROIs illustrated in Fig. 6: muscle and shifted aliphatic fat (left-hand column, A), muscle 
27 
28 and shifted olefinic fat (middle column, O), and muscle alone (right-hand column, M). The color 
29 
30 scale shows the relative bias with respect to triple-fat-suppressed muscle; therefore, the bottom- 
31 
32 right cell of each plot has an error of 0%. Note that these reference values are different from 
33 those of Fig. 5, and ROIs are planned in different muscle regions with possible structural 
35 differences. In this case, the muscle signals contain contributions from intramuscular fat, and 
36 
37 thus the best measure of pure muscle parameters is obtained when all 3 fat suppression methods 
38 
39 are applied together. Parameter biases appear large in muscle, even where there is no visible fat 
40 

41 signal; however, the addition of fat suppression methods eliminates this contribution and pushes 

42 parameter biases toward zero. The older participant, with higher BMI, shows larger parameter 
43 
44 biases in general, but these are sufficiently reduced by the most effective fat suppression 
45 
46 combinations. ADC = apparent diffusion coefficient, α = stretching parameter, DDC = 
47 

48 distributed diffusion coefficient, fp = perfusion fraction, IVIM = intravoxel incoherent motion, K 
49 

= kurtosis, SSGR = slice select gradient reversal, SPAIR = spectral attenuated inversion 
51 recovery, WSE = water-specific excitation. 
52 
53 
54 
55 Figure 8: Diffusion parameter maps and region-of-interest (ROI) positioning. Parameter 
56 

57 maps were generated from data with a signal-to-noise ratio (SNR) of 45, and are organized by 
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30 
1 
2 
3 model and diffusion sensitization direction. The following b-values were used: 0, 276, 381, 525, 
4 
5 725, 1000, 1380, 1904, 2627, 3624, and 5000 s/mm2 for monoexponential, stretched exponential, 
6 
7 and kurtosis models; and 0, 10, 18, 33, 60, 110, 276, 381, 525, 725, and 1000 s/mm2 for 
8 

9 intravoxel incoherent motion (IVIM). IVIM was fit with constraints on the perfusion fraction, fp, 

10 and the pseudo-diffusion coefficient, D* (0–50% and 5–150×10-3 mm2/s, respectively); when 
12 parameters converged to these limits, the corresponding pixel was excluded from the map. 
13 
14 ‘Repeat Scans’ highlight variation in D*  

in a second scan session. ‘ROI Positioning’ shows an 
15 
16 example of a region of interest, highlighted in purple, used to calculate the parameter values 
17 

18 listed in Table 1. ‘Quality Control’ figures were used as a guide for ROI definition and to check 

19 for intramuscular fat. These include root-mean-square error (RMSE) and baseline offset (bsl) 
20 
21 maps, both in signal units, generated from a monoexponential fit with diffusion sensitization in 
22 
23 the slice direction; a water/fat image for masking residual fat (a b = 5000 s/mm2 image, purple, 
24 

25 overlaid on an mDIXON water image, green); and an mDIXON fat image. Also shown are b = 0 

26 and noise images used to calculate SNR. ADC = apparent diffusion coefficient, DDC = 
27 
28 distributed diffusion coefficient, α = stretching parameter, and K = kurtosis. 
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17 
18 
19 
20 
21 
22 
23 Figure 1: Pulse sequence diagram showing the triple-fat-suppressed, diffusion-weighted spin echo single- 
24 shot echo-planar imaging (EPI) sequence used in this study. This consists of a diffusion-weighted spin echo 
25 sequence with a ramp-sampling EPI readout, preceded by a spectral attenuated inversion recovery (SPAIR) 
26 module, which suppresses fat via an adiabatic inversion pulse followed by gradient spoilers (Sp). The SPAIR 
27 TI used in this study was 200 ms, and the TE was 71 ms. Further fat suppression was achieved using water- 
28 specific excitation (WSE, highlighted in green) and slice-select gradient reversal (SSGR, highlighted in blue) 

within the spin echo sequence. WSE consisted of a slice-selective composite RF pulse in a 1−4−6−4−1 
29 configuration, with interpulse intervals of 1.15 ms, and component flip angles of 
30 5.6°−22.5°−33.8°−22.5°−5.6°, adding to the equivalent of a 90° excitation. SSGR consisted of a reversal 
31 of the slice-select gradient polarity during the spin echo refocusing pulse. Note that Gz = slice-select 
32 direction, Gy = phase encoding direction, and Gx = readout direction, and diffusion-weighted (DW) 
33 gradients are shown as dashed blocks. Gradients were played along only a single axis for each 
34 implementation of the sequence, depending on the desired direction of diffusion sensitization. 
35 Fig. 1 
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23 
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25 
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27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 Figure 2: Plots of bias and dispersion in fitted parameters for all four candidate diffusion models in Monte- 

Carlo simulations. Results are visualized as colored matrix plots, grouped by monoexponential, stretched 

40 exponential, kurtosis, and intravoxel incoherent motion (IVIM) models. These are subdivided into their fitted 

41 parameters by dashed lines, where top and bottom rows denote relative bias (B%) and relative dispersion 

42 (D%), respectively. Columns denote different input parameter values, as obtained from the in vivo literature 

43 (non-monoexponential diffusion coefficients and the IVIM pseudo-diffusion coefficient, D*, were fixed at 

44 2.0×10-3 mm2/s and 25×10-3 mm2/s, respectively).  Individual matrix plots are shown with signal-to-noise 

45 ratios (SNRs) increasing along the x-axis (1−50 in increments of 0.25), with a separate column for infinite 

46 SNR; fat signal fractions are shown on the y-axis, (0−25% in increments of 0.125%). The color lookup table 

47 of relative bias and dispersion was limited to ±75% to improve color contrast between different model 
parameters. As shown, for most diffusion coefficient estimates parameter bias and dispersion tend to 

48 increase as SNR decreases, and a subtle bias is seen for small fat fractions. For IVIM, ADC bias increases 

49 strongly with inlarge, discrete biases were seen in the perfusion fraction, fp, where fat signal adds to the 

50 apparent slow-diffusing fraction while simultaneously skewing the fit of fp toward larger values. ADC = 

51 apparent diffusion coefficient, α = stretching parameter, DDC = distributed diffusion coefficient, and K = 

52 kurtosis. 
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20 
21 
22 
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24 
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26 
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28 
29 
30 Figure 3: Phantom fat suppression results and example parameter maps. The top two rows show modified 
31 DIXON (mDIXON) water and fat images (top left), diffusion-weighted b = 1380 s/mm2 images for all 8 fat 
32 suppression combinations, and positioning of the region of interest (ROI) within the phantom. In these 
33 images, olefinic fat signal is shifted up slightly, while aliphatic fat signal is shifted down to a much greater 
34 degree, due to its large chemical shift relative to water. A diagram of the phantom is shown in the bottom 
35 left, and some example parameter maps from all four diffusion models are shown in the bottom two rows of 

the figure. The third row shows maps generated from the non-fat-suppressed diffusion-weighted images 
36 (left-hand arrow), and the fourth row shows maps from data obtained with a combination of water-specific 
37 excitation (WSE), spectral attenuated inversion recovery (SPAIR), and slice select gradient reversal (SSGR) 
38 fat suppression methods (right-hand arrow). Images were acquired in the axial plane with diffusion 
39 sensitization in the slice direction. ROIs were defined in shifted olefinic fat (pale blue) and aliphatic fat (pale 
40 green) alone, for calculation of water-fat signal ratios (Fig. 4), and in gel contaminated with olefinic fat (dark 
41 blue) and aliphatic fat (green), to evaluate the effect of fat contamination on parameter estimation (Fig. 5). 
42 Uncontaminated agarose gel (red) is used as a reference for both of these analyses. As shown, shifted 
43 aliphatic fat signals are prominent for all fat suppression configurations except WSE+SPAIR and 

WSE+SPAIR+SSGR, leading to parameter estimation bias in the example maps, while shifted olefinic fat 
44 remains in all cases. ADC = apparent diffusion coefficient, α = stretching parameter, DDC = distributed 
45 diffusion coefficient, fp = perfusion fraction, IVIM = intravoxel incoherent motion, and K = kurtosis. 
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26 Figure 4: Water-fat signal ratios obtained from phantom images using combinations of fat suppression 

methods. Measurements were made on b = 1000 s/mm2  diffusion-weighted images, where water and fat 

27 signals were clearly visible, using the red, pale green, and pale blue ROIs shown in Fig. 3. Signal intensities 

28 were measured in shifted fat and agarose gel for each fat suppression combination, and are expressed as 

29 mean water:olefinic-fat and water:aliphatic-fat ratios in the bar plot shown. All fat suppression combinations 

30 were applied in series and repeated in five separate scan sessions, with the phantom being removed, 

31 recentered and reshimmed between sessions; error bars show the standard deviations of water-fat ratios 

32 across each of the five acquisitions. As shown, water:aliphatic-fat was largest for WSE+SPAIR+SSGR and 

33 marginally smaller for WSE+SPAIR. Water:olefinic-fat was relatively constant in all cases, indicating the 

34 difficulty in suppressing olefinic fat along with aliphatic fat. SSGR = slice select gradient reversal, SPAIR = 
spectral attenuated inversion recovery, WSE = water-specific excitation. 
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Figure 5: Comparison of in vitro diffusion parameter estimates using different fat suppression combinations. 
28 

Results are shown for diffusion sensitization in the slice-select direction; ‘Shim 1’ and Shim 2’ represent data 29 
acquired with a projection-based shim, with SNR = 110, and a coarse, image-based shim, with SNR = 41, 30 
respectively. Each shim was applied across the whole phantom. Data are shown for gel contaminated by 31 

shifted aliphatic fat (left-hand column, A), gel contaminated by shifted olefinic fat (middle column, O), and 
32 

gel alone (right-hand column, G); namely, from the green, dark blue, and red ROIs illustrated in Fig. 3. Gel- 33 
only parameter values obtained from well-shimmed, non-fat-suppressed data were taken as the reference 34 
values, and thus the top-right cell of each ‘Shim 1’ plot has an error of 0%. These reference values were 

35 
chosen to represent pure gel parameters without possible signal perturbation effects from the fat 
suppression methods. It can be seen that parameter biases tend toward zero as fat suppression methods 36 

are added, but this trend is weakened when B0  shimming is poor. ADC = apparent diffusion coefficient, α = 37 
stretching parameter, D* = pseudo-diffusion coefficient, DDC = distributed diffusion coefficient, fp = 38 

perfusion fraction, IVIM = intravoxel incoherent motion, K = kurtosis, SSGR = slice select gradient reversal, 39 
SPAIR = spectral attenuated inversion recovery, WSE = water-specific excitation. 40 

Fig. 5 
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Figure 6: In vivo fat suppression results. Representative modified DIXON (mDIXON) water and fat images, 21 
in vivo region of interest (ROI) positioning, and diffusion-weighted, b = 1380 s/mm2 images for all 8 fat 

22 
suppression configurations are shown. As in Fig. 3, olefinic fat signal is shifted up, overlapping muscle signal 

23 
at the posterior of the thigh, while aliphatic fat signal is shifted down to a greater degree, obscuring muscle 

24 
across the femur and part of the quadriceps femoris. Images were acquired axially across the thigh, with 

25 diffusion sensitization in the slice direction, corresponding to the long axes of muscle fibers. ROIs (upper 
26 

right image) were defined to evaluate the effect of fat contamination on model parameter estimation (Fig. 
27 

7), and are positioned in muscle contaminated by shifted olefinic fat (dark blue), muscle contaminated by 
28 

shifted aliphatic fat (green), and in uncontaminated hamstring muscles (red). As shown, pronounced shifted 
aliphatic fat signals are present for all fat suppression configurations, except WSE+SPAIR and 29 

WSE+SPAIR+SSGR. SPAIR = spectral attenuated inversion recovery, SSGR = slice select gradient reversal, 
30 

WSE = water-specific excitation. 
31 
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47 Figure 7. Comparison of in vivo diffusion parameter estimates using different fat suppression combinations. 

Results were obtained from two healthy volunteers: both male, ages 30 and 51 years, BMI = 20 and 33, and 

48 SNR = 83 and 45, respectively. Diffusion sensitization was applied in the slice-select direction, 

49 corresponding to the long axes of muscle fibers, and the readout direction, corresponding to their short 

50 axes. Plots show data from the green, dark blue, and red ROIs illustrated in Fig. 6: muscle and shifted 

51 aliphatic fat (left-hand column, A), muscle and shifted olefinic fat (middle column, O), and muscle alone 

52 (right-hand column, M). The color scale shows the relative bias with respect to triple-fat-suppressed muscle; 

53 therefore, the bottom-right cell of each plot has an error of 0%. Note that these reference values are 

54 different from those of Fig. 5, and ROIs are planned in different muscle regions with possible structural 

55 differences. In this case, the muscle signals contain contributions from intramuscular fat, and thus the best 
measure of pure muscle parameters is obtained when all 3 fat suppression methods are applied together. 

56 Parameter biases appear large in muscle, even where there is no visible fat signal; however, the addition of 

57 fat suppression methods eliminates this contribution and pushes parameter biases toward zero. The older 
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Figure 8: Diffusion parameter maps and region-of-interest (ROI) positioning. Parameter maps were 39 
generated from data with a signal-to-noise ratio (SNR) of 45, and are organized by model and diffusion 

40 
sensitization direction. The following b-values were used: 0, 276, 381, 525, 725, 1000, 1380, 1904, 2627, 

41 
3624, and 5000 s/mm2 for monoexponential, stretched exponential, and kurtosis models; and 0, 10, 18, 33, 

42 
60, 110, 276, 381, 525, 725, and 1000 s/mm2  for intravoxel incoherent motion (IVIM). IVIM was fit with 

43 constraints on the perfusion fraction, fp, and the pseudo-diffusion coefficient, D* (0–50% and 5–150×10-3
 

44 
mm2/s, respectively); when parameters converged to these limits, the corresponding pixel was excluded 

45 
from the map. ‘Repeat Scans’ highlight variation in D* in a second scan session. ‘ROI Positioning’ shows an 

46 
example of a region of interest, highlighted in purple, used to calculate the parameter values listed in Table 
1. ‘Quality Control’ figures were used as a guide for ROI definition and to check for intramuscular fat. These 47 
include root-mean-square error (RMSE) and baseline offset (bsl) maps, both in signal units, generated from 

48 
a monoexponential fit with diffusion sensitization in the slice direction; a water/fat image for masking 

49 
residual fat (a b = 5000 s/mm2 image, purple, overlaid on an mDIXON water image, green); and an 

50 
mDIXON fat image. Also shown are b = 0 and noise images used to calculate SNR. ADC = apparent diffusion 

51 
coefficient, DDC = distributed diffusion coefficient, α = stretching parameter, and K = kurtosis. 

52 
Fig. 8 
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5 GRAPHICAL  ABSTRACT 
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7 
8 Non-Gaussian  diffusion  models  are   seeing 
9 
10 increased  application  in  muscle,   but   their 
11 

12 sensitivity to lipids and noise has not   been 

13 systematically investigated. Here, Gaussian 
14 
15 (monoexponential,  IVIM)  and non-Gaussian 
16 

17 (kurtosis, stretched exponential) models are 

18 evaluated  under  different  noise  and    fat- 
19 
20 suppression conditions via simulations, 
21 

22 phantom studies, and in vivo experiments. A 

23 combination of three fat suppression 
24 
25 techniques    gave    the    smallest  parameter 
26 

27 biases, and use of a baseline offset  reduced 

28 model  sensitivity  to  fat;  data  acquired as 
29 
30 such  show  non-Gaussian  diffusion behavior 
31 

32 in muscle. 
33 
34 
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38 
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1 SUPPLEMENTARY  METHODS 
2 
3 
4 Modeling of Lipid and Noise Signals 
5 Each model described in the main text was investigated with regards to suitable lipid and noise 
7 compensation terms. Monoexponential, stretched exponential (SE), kurtosis, and    intravoxel 
8 
9 incoherent motion (IVIM) fitting functions were each applied with: 1) no offset; 2) with a 
10 baseline offset, ε; and 3) a baseline offset plus a noise parameter, ξ. Furthermore, each of these 

12 variants were assessed with a range of maximum b-values, bmax, in order to assess   their 
13 
14 performance with or without high b-value sampling. For the reader’s convenience, each of the 
15 fitting functions are listed here. 

17 
18 
19 Base Fitting Functions. The simplest diffusion-weighted imaging (DWI) fitting functions 
20 assessed consisted of the monoexponential, SE, kurtosis, and IVIM functions without a baseline 
22 offset or noise correction, as  follows. 
23 
24 • Monoexponential: 
25 

 

26 S  S0,muscle expbADC, (S1) 
27 
28 where S is the observed signal, S0,muscle  is the signal at b = 0, and ADC is the apparent   diffusion 
29 

30 coefficient. 

31 • Stretched exponential (SX): 
32 

34 
S  S0,muscle expbDDC   , (S2) 

35 

36 where DDC is the distributed diffusion coefficient and α is the stretching parameter,    with 
37 0    2. 
38 
39 • Kurtosis: 
40 
41 S  S0,muscle  exp 
42 

bDDC  b2 DDC2
 (K  3) 6, (S3) 

43 where K is kurtosis, with K   1, and K  3  indicates monoexponential diffusion. 
44 
45 

• Intravoxel incoherent motion  (IVIM): 
47 

 *      
48 S  S0,muscle 
49 

f p  exp bD  1 f p    exp  b ADC , (S4) 

50 a biexponential fitting function where fp  is the perfusion fraction and D*  is the   pseudo-diffusion 

51 coefficient. This was the IVIM function that was used in the main   text. 
52 
53 
54 

55 Baseline Offset. A baseline offset, ε,    was added to each fitting function to compensate for 

56 lipid signals and noise. This modifies the observed signal, S, as   follows: 
57 
58 

59 Sbsl   S +  , (S5) 



 

S 2 bsl   2 

15 

20 

25 

30 

 
 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

 

3 

 

creating four new functions. These were the functions applied in the main text, except for IVIM. 
 
 

Noise Correction. A noise parameter,  , was included in addition to the baseline offset to 

further compensate for noise signals, as described by Jones and Basser (2004). This can serve to 

mitigate biases in the baseline offset fitting functions when no lipid signals are present. The 

baseline offset models are modified as  follows: 

13 Sbsl+noise  

14 creating another 4 functions, for a total of 12  variants. 

16 
17 
18 Numerical Simulations 

, (S6) 

19 Simulations were run using methods similar to those described in the main text. Firstly, diffusion 

21 signal decays were generated as per Equations S1−S4 using the following input values: ADC = 
22 
23 2.0×10-3  mm2/s, DDC = 2.0×10-3  mm2/s, K = 3.3, fp  = 10%, D*  = 25.0×10-3  mm2

/s, and α =  0.9. 
24 

Constant baseline offsets were added to these data to    produce fat signal fractions of 0−25%, 

26 in steps of 0.25%, relative to the fat-free, b = 0 signal amplitude, with the range of fat fractions 
27 
28 being chosen to correspond to values seen experimentally with a typical    DWI acquisition. 
29 For each fat fraction, zero-mean Gaussian noise, with standard deviation (SD) σ, was added 
31 to both the real and the imaginary parts of the complex signal to produce a range of signal-to- 
32 
33 noise ratios (SNRs) defined by  S 0  . Magnitude data were generated for SNR = 1−50,   in 
34 
35 steps of 0.5, each with 250 noise realizations, and noiseless data were generated for the case of 
36 

37 infinite SNR. 

38 Data were then fit using each of the functions described in the ‘Modeling of Lipid and Noise 
39 
40 Signals’ section, using the same set of b-values listed in the main text: 0, (IVIM 10, 18, 33, 60, 
41 

42 110), 276, 381, 525, 725, 1000, 1380, 1904, 2627, 3624, and 5000 s/mm2. However, separate 
43 analyses were performed to investigate how each fitting function was affected by the choice of 
44 
45 bmax. To this end, additional curve fits were performed using subsets of    the aforementioned b- 
46 

47 values, where bmax  was chosen as 1000, 1380, 1904, 2627, 3624 or 5000 s/mm2, where a   larger 

48 bmax  implies a greater number of points for fitting. For each of these analyses, the bias   and 
49 
50 dispersion of parameter estimates were calculated according to Equations 8 and 9 in the main 
51 

52 text. 

53 It should be noted that IVIM signal decay curves were log-transformed and    subjected to a 
54 
55 linear fit (up to b = 1000 s/mm2) to estimate  (1  f 
56 

)  and ADC prior to curve fitting with a  bi- 

57 exponential function. These parameters were inserted into the bi-exponential fit as fixed terms; 
58 
59 thus, ADC and fp  were not affected by the inclusion of baseline offset and noise   parameters. 

p 
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46 

51 

 

4 

1 Furthermore, in these analyses, IVIM bi-exponential fitting was also investigated for bmax  up   to 
2 
3 5000 s/mm2, unlike in the main text where the IVIM model used bmax  = 1000   s/mm2. 
4 
5 
6 Estimating the Effect of Lipids on Monoexponential Fitting in an Aging   Cohort 
7 
8 To explore the potential influence of lipid signals on results reported in the literature, additional 
9 

10 simulations were run with the b-value scheme used by Galbán et al. (2007). These simulations 

11 were identical to those described in ‘Numerical Simulations’, except for the    following 
12 
13 differences: only monoexponential signal decays were generated, with ADC = 2.0×10-3      mm2/s; 
14 

 

15 the range of fat signal fractions was 0−50%, in steps of 1%; the SNR range was 1−50, in steps of 

16 1; 250 noise realizations were generated; and simulated data were log-transformed and fitted with 
17 
18 a first-degree polynomial, using Galbán’s b-value scheme (b = 0 and 400   s/mm2). 
19 
20 
21 
22 
23 SUPPLEMENTARY  RESULTS  & DISCUSSION 
24 
25 

Colored matrix plots for each model are shown in Supp. Figs. 1-4, arranged according to their 

27 respective base model: monoexponential, SE, kurtosis, and IVIM. Furthermore, plots    are 
28 
29 subdivided by fitting function, the equations for which are shown alongside the    data. 
30 
31 
32 Numerical Simulations 
33 
34 Base Fitting Functions. When baseline offset and noise parameters were    excluded from 
35 fitting, ADC and DDC estimates were strongly,    negatively biased by lipid signals for all four 

37 models, with the bias becoming more pronounced for higher values of bmax. However, when lipid 
38 
39 content was less than ~3% and SNR was greater than 10, the bias was near-zero. In general, 
40 diffusion coefficients showed similar bias trends across all models; dispersion    typically 

42 approached an asymptote at SNR~5, decreasing with increasing bmax  for the kurtosis   model, 
43 
44 remaining relatively constant with bmax for the SX model, and increasing with bmax     for 

45 monoexponential ADC—see Supp Fig.  1. 

47 Kurtosis DDC estimates were the least biased by lipid signals, particularly for low   bmax 
48 
49 (Supp. Fig. 3). This may be due to the K parameter fitting the lipid baseline—an interpretation 
50 that is supported by the concomitant increase in K estimation bias for these data. Generally, the 

52 bias in K was consistent across the range of bmax  values, being dominated by poor detection of    the 
53 
54 kurtosis model’s quadratic term at low bmax, and by lipid-related errors for high bmax.   The 

55 dispersion in K estimates decreased gradually with increasing   bmax. 
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Supplementary Figure 1: Bias and dispersion in monoexponential parameters with and without 

a baseline offset in Monte-Carlo simulations. Colored matrix plots show relative bias (B%) and 

dispersion (D%) of estimated apparent diffusion coefficients (input ADC = 2 ×10-3 mm2/s). Results 

are shown for fits incorporating a baseline offset, fits with no offset, and fits with an offset plus noise 

correction. Individual matrix plots are shown with SNR along the x-axis (1-50 in increments of 1), 

with a separate column for infinite SNR, and fat signal fraction on the y-axis (0-25% in steps of 1%). 

 

Turning to the SX model’s α parameter (Supp. Fig. 2), this showed trends in estimation bias 

that were similar to those for the diffusion coefficients, with bias worsening with increasing bmax. 

The dispersion in α was small and consistent across the bmax    range. 

For the IVIM model (Supp. Fig. 4), linear fitting of the log of the diffusion signal produced 

ADC and fp  estimates that were strongly sensitive to lipid signals, with the latter showing large   

bias and dispersion even for fat fractions of 2-3%. The pseudo-diffusion coefficient, D*,    showed a 

monotonic relationship with fat fraction, though the slope of this relationship changed sign as a 

function of SNR. though its dispersion was typically >100% for most simulated SNRs. Its 

dispersion worsened slightly with increasing bmax, while bias minorly improved. 
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50 Supplementary Figure 2: Bias and dispersion in stretched exponential parameters with and 

51 without a baseline offset in Monte-Carlo simulations. Colored matrix plots show relative bias (B%) 
52 

53 and dispersion (D%) of estimated distributed diffusion coefficients (input DDC = 2 ×10-3 mm2/s), and 

54 stretching parameters, (input α = 0.9). Results are shown for fits incorporating a baseline offset, fits 
55 

56 with no offset, and fits with an offset plus noise correction. Individual matrix plots are shown with 

57 SNR along the x-axis (1-50 in increments of 1), with a separate column for infinite SNR, and fat signal 
58 
59 fraction on the y-axis (0-25% in steps of 1%). 
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Baseline Offset. After adding a baseline offset parameter, without a noise term, ADC and 

DDC estimates were relatively unbiased for all fat-fractions. However, a bias was observed at 

low SNRs and low fat fractions, particularly for monoexponential ADC (Supp. Fig. 1.) and SX 

DDC (Supp. Fig. 2), where this effect persisted up to SNR~30. Dispersion in diffusion coefficient 

estimates was generally larger when a baseline offset parameter was included; however, higher 

bmax  values provided a better baseline fit, with dispersions at bmax  = 5000 s/mm2  being similar  to 

those for data fit with no baseline offset or noise parameters. 

Much like for diffusion coefficient parameter estimation, addition of an offset mostly 

eliminated fat-related bias in α and K (Supp. Figs. 2 and 3); however, the minimum SNR needed 

to avoid large dispersion increased when an offset was added, particularly for low values of bmax. 

Furthermore, for K, the addition of an offset flipped the bias polarity—leading to strong, negative 

biases at low SNRs, particularly for low bmax values. 

Adding a baseline offset to the IVIM fitting function caused the polarity of the   D*  estimation 

bias to flip at low SNRs (Supp. Fig. 4), becoming strongly positive; however, at high SNRs it was 

performed similarly to the base IVIM fitting function. The dispersion in D* was similar in 

magnitude to that in data fit without a baseline offset. Fat fractions of 10% or greater led to a 

large negative bias and small dispersion in D* estimation, producing large errors in D*. 
 

Noise Correction. Upon fitting with both a baseline offset and a noise parameter, ADC and 

DDC estimates became slightly more sensitive to fat-related bias versus fitting with an offset 

alone, though the noise related bias at 0% fat was reduced. For monoexponential ADC (Supp. 

Fig. 1) and SX and kurtosis DDC (Supp. Figs. 2 & 3) dispersion was slightly larger than for data 

with a baseline offset alone, though the use of higher bmax values was seen to mitigate this effect. 

The use of baseline offset and noise parameters also slightly increased the sensitivity of α to  

fat-related bias at higher fat fractions, but the bias at low fat fractions was improved (Supp. Fig. 

2). Dispersion was similar to that observed for the ‘offset only’ model. 

Addition of a noise parameter made very little difference to the bias and dispersion in K 

(Supp. Fig. 3), relative to data fit with an offset only. 

Dispersion in D*  estimation (Supp. Fig. 4) was little influenced by the addition of a   noise 

parameter; however, the bias in D* was more similar to that seen for the base IVIM fitting 

function data rather than the ‘baseline offset’ data. 

 
Summary. In general, diffusion parameter estimation performs well without baseline offset 

or noise parameters provided the fat fraction is sufficiently low, and SNR is sufficiently high. The 

choice of bmax values only becomes important when estimating kurtosis, or when considerable fat 
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Supplementary Figure 3: Bias and dispersion in kurtosis parameters with and without a baseline 
50 
51 offset in Monte-Carlo simulations. Colored matrix plots show relative bias (B%) and dispersion 

52 (D%) of estimated distributed diffusion coefficients (input DDC = 2 ×10-3 mm2/s), and kurtosis, (input 

54 K = 3.3). Results are shown for fits incorporating a baseline offset, fits with no offset, and fits with an 
55 

56 offset plus noise correction. Individual matrix plots are shown with SNR along the x-axis (1-50 in 

57 increments of 1), with a separate column for infinite SNR, and fat signal fraction on the y-axis (0-25% 
58 

59 in steps of 1%). 
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Supplementary Figure 4: Bias and dispersion in intravoxel incoherent motion (IVIM) 

parameters with and without a baseline offset in Monte-Carlo simulations. Colored matrix plots 

show the relative bias (B%) and dispersion (D%) of estimated apparent diffusion coefficients (input 

ADC = 2 ×10-3 mm2/s), perfusion fractions (input fp,= 10%), and pseudo-diffusion coefficients (input 

D* = 25 ×10-3 mm2/s). Results are shown for fits incorporating a baseline offset, fits with no offset, and 

fits with an offset plus noise correction. Individual matrix plots are shown with SNR along the x-axis 

(1-50 in increments of 1), with a separate column for infinite SNR, and fat signal fraction on the y-axis 

(0-25% in steps of 1%). 

 

contamination is present: the greater the bmax, the more sensitive parameter estimation is to lipid 

signals. Noise bias in experimental data could be mitigated by removing high b-values, as shown 

by Marschar et al. (2015); however, particular care must be taken with the kurtosis model, where 

high b-values are needed to detect kurtosis. 

Use of a baseline offset parameter becomes useful for high SNR DWI data that are known to 

contain lipid signals, small or large: for example, in DWI signal decays that are generated from 
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14 
15 
16 
17 
18 Supplementary Figure 5: Monte-Carlo simulation data showing bias and dispersion in the 

19 apparent diffusion coefficient (ADC) for a low b-value acquisition. Colored matrix plots show the 
20 
21 relative bias and dispersion of estimated ADC, with parameters as follows: monoexponential decay, 

22 input ADC = 2.0×10-3 mm2/s, linear fit to log-transformed data with b = 0 and 400 s/mm2, and 250 
23 
24 noise realizations. Plots show SNR increasing along the x-axis and fat signal fraction (%) increasing 

25 along the y-axis, both from one to fifty in increments of one. The color map for relative bias and 
26 
27 dispersion was limited to ±50% to improve color contrast between different fat signal fractions. As 

28 shown, small changes in fat fraction can lead to relatively large negative biases in ADC estimates. 
29 
30 
31 

32 regions of interest rather than on a pixel-by-pixel basis. However, use of a baseline offset term 

 

33 typically led to a noise-related bias at low SNRs and ~0% fat fraction, and was detrimental to D*
 

34 
35 estimation—leading to large biases of varying sign without any improvement in    dispersion. 
36 
37 Further addition of a noise parameter to DWI fitting functions mitigates the noise bias seen at 

38 ~0% fat fraction with baseline offset fitting functions; however, this leads to small increase in 
39 
40 lipid sensitivity, with no improvement to bias or dispersion in D*  estimation for the IVIM   model. 
41 
42 In general, DWI fitting functions incorporating baseline offset and noise parameters may be 

43 of use for data with middling SNR and low to middling fat fractions. 
44 
45 
46 
47 Estimating the Effect of Lipids on Monoexponential Fitting in an Aging Cohort 
48 Fitting the logarithm of a monoexponential signal decay using a first-degree polynomial led to 
49 
50 substantial lipid sensitivity in estimated ADCs (Supp. Fig. 5). Bias in ADC estimation   was 
51 

52 consistent across the range of SNRs investigated, though it approached an asymptote at SNR ~ 5; 

53 bias worsened with increasing fat fraction at the rate of -10% for every 5% fat fraction added. 
54 
55 Dispersion was more dependent on SNR, only slightly increasing as fat fraction    increased. 
56 
57 


