©©CoOoO~NO U WNBE

The Effect of Noise and Lipid Signals on Determination of Gaussian

and Non-Gaussian Diffusion Parameters in Skeletal Muscle

Donnie Cameron, Ph.D.2

Mustapha Bouhrara, Ph.D.

David A. Reiter, Ph.D.*f
Kenneth W. Fishbein, Ph.D.
Seongjin Choi, Ph.D.*

Christopher M. Bergeron, A.S.*
Luigi Ferrucci, M.D., Ph.D.**
Richard G. Spencer, M.D., Ph.D.**

National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.
’Norwich Medical School, University of East Anglia, Norwich, UK.

t,* These authors contributed equally to this work.

Corresponding Author Info: Richard G. Spencer, M.D., Ph.D., NIH/National Instituteon

Aging, Intramural Research Program, BRC 04B-116, 251 Bayview Boulevard, Baltimore, MD
21224. E-mail: spencer@helix.nih.gov.

Word Count: 4999

Grant Support: Thiswork was supported entirely by the Intramural Research Program of the
NIH, National Institute on Aging.

Keywords: diffusion-weighted imaging, non-Gaussian diffusion, fat suppression, muscle,

parameter estimation.

Abbreviations Used:

ADC — apparent diffusion coefficient


mailto:spencer@helix.nih.gov

o~NO O WN -

o — stretching parameter

BMI — body massindex

D’ — pseudo-diffusion coefficient

DDC — distributed diffusion coefficient
DWI — diffusion-weighted imaging

EPI — echo planar imaging

fqy — diffusion fraction

f," — corrected diffusion fraction

f, — perfusion fraction

f | — corrected perfusion fraction

IVIM — intravoxel incoherent motion

K — kurtosis
LA — limits of agreement

MD — mean difference

mDIXON — multiecho two-point Dixon
RM SE — root-mean-square error

ROI — region of interest

SX — stretched exponential

SENSE — sensitivity encoding

SNR — signal-to-noise ratio

SPAIR — spectra attenuated inversion recovery

SSGR - dlice-select gradient reversal

WSE — water-specific excitation
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ABSTRACT SUMMARY

Thiswork characterizes the effect of lipid and noise signals on muscle diffusion parameter

estimation in several conventional and non-Gaussian models, the ultimate objectives beingto
characterize popular fat suppression approaches for human muscle diffusion studies, to provide

simulations to inform experimental work, and to report normative non-Gaussian parameter
values. The modelsinvestigated in this work were the Gaussian monoexponential and intravoxel
incoherent motion (1VIM) models, and the non-Gaussian kurtosis and stretched exponential

models. These were evaluated via simulations, and in vitro and in vivo experiments. Simulations
were performed using literature input values, modeling fat contamination as an additivebaseline

to data, while phantom studies used a phantom containing aliphatic and ol efinic fats and muscle-

like gel. Human imaging was performed in the hamstring muscles of ten volunteers. Diffusion-

weighted imaging was applied with spectral attenuated inversion recovery (SPAIR), slice-select
gradient reversal, and water-specific excitation fat suppression, alone and in combination.

M easurement bias (accuracy) and dispersion (precision) were evaluated, along with intra- and
interscan repeatability. Simulations indicated that noise in magnitude images resulted in <6%

biasin diffusion coefficients and non-Gaussian parameters (o, K), while baselinefitting
minimized fat bias for all models, except IVIM. In vivo, popular SPAIR fat suppression proved

inadequate for accurate parameter estimation, producing non-physiol ogic parameter estimates
without baseline fitting and large biases when it was used. Combining all three fat suppression

techniques and fitting data with a baseline offset gave the best results out of the methods studied

for both Gaussian diffusion and, overall, for non-Gaussian diffusion. It produced consistent
parameter estimates for all models, except 1IVIM, and highlighted non-Gaussian behavior

perpendicular to muscle fibers (a~0.95, K~3.1). These results show that effective fat suppression
iscrucia for accurate measurement of non-Gaussian diffusion parameters, and will bean

essential component of quantitative studies of human muscle quality.
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INTRODUCTION

Diffusion-weighted imaging (DWI) has been used as a non-invasive probe of humantissue

ultrastructure (1, 2), with the conventional diffusion model, in which signal intensity decays
monoexponentially as afunction of b-value, being the most well-studied. However, non-

monoexponential, ‘non-Gaussian’ diffusion models may better reflect complex tissue
architecture (3). For example, multi-exponential models describe multiple monoexponential
diffusion components, each with its own signal fraction and decay constant, while kurtosisand

stretched exponential (SX) models can characterize a continuum of diffusion components, with
component amplitudes described by a probability distribution. Description in terms of non-

Gaussian diffusion may be particularly appropriate for skeletal muscle, given that it exhibits

restrictive cellular architecture, and devel ops microstructural changes in response toresistance

training, pathologies, and age-related sarcopenia (4, 5). Clearly, this approach shows great
potential for studying skeletal muscle ultrastructure, though the current literature is sparse (6, 7).

When applying new diffusion analysis models, it isimportant to consider possiblesources
of error in parameter estimation. Noise has a del eterious effect on diffusion parameter

estimation, as has been demonstrated for Gaussian models (8-10) and, to alimited extent, for
non-Gaussian models (11). However, a heretofore neglected area of study is the effect of lipid

signals on hon-Gaussian diffusion models. Fat poses two main problems for diffusion analysisin
muscle: first of al, improperly suppressed lipids dominate the diffusion-weighted signal athigh

b-values and result in underestimation of monoexponential water diffusivity (12); and secondly,

even with optimal fat suppression, water present in adipose tissue can give rise to partial volume
effects and associated errors (9, 13, 14). The former of these two effects isfrequently

overlooked, and will receive thorough treatment here.
Lipid signals are difficult to suppressin DWI, particularly when Bo homogeneity is poor,

and the low-bandwidth sampling intrinsic to the use of echo-planar imaging (EPI) readoutsleads
to spatially misregistered lipid signals that obscure the anatomy of interest. There aremultiple

lipid resonances, including aliphatic fat from 1.2-3.0 ppm and olefinic fat at 5.3 ppm,
necessitating suppression of several species, one of which is close to the water resonance.
Fortunately, many techniques are available for suppressing these signal's, including frequency-

selective methods like spectral attenuated inversion recovery (SPAIR)(15), water-specific
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excitation (WSE)(16), and slice-select gradient reversal (SSGR)(17). Each techniqueoffers
different strengths, with associated costs: WSE excites only water and adjacent olefinicfat
resonances, at the expense of increased slice thickness and TE; SPAIR effectively suppresses

most aliphatic fat, while extending the minimum TR; and SSGR partially suppressesboth
olefinic and aliphatic fat, at no added cost. It is already clear from these brief considerationsthat

the signal from olefinic fat, while approximately a factor of ten smaller in amplitude than that of
aliphatic fat, is more resistant to conventional fat-suppression techniques due to its proximity to
the water resonance. However, advanced methods for eliminating olefinic fat have recently been

reported (18, 19).
The objective of thiswork istwofold. Firstly, we experimentally investigate optimization of

fat-suppression for DWI using three readily-implemented techniques. WSE, SPAIR, and SSGR.

Secondly, we explore the effect of noise and lipid signals on parameter estimatesin

monoexponential, stretched exponential, kurtosis, and intravoxel incoherent motion (1VIM)
diffusion models, via extensive numerical simulations. The results of these investigationswill

guide the experimentalist in their choice of DWI fat suppression methods and analysis models, as

well as providing normative diffusion parameter estimates in healthy skeletal muscle.

THEORY

Candidate Diffusion Models
The functional forms for the models evaluated are:
» Monoexponential :
S=S e XP(—PADC) +¢, (1)
where Sisthe observed signal, Somuseis the signal from muscle at b = 0, ADC is the apparent

diffusion coefficient, and ¢ is a baseline offset used to mitigate bias from residual fat.
 Sretched exponential (SX):

S=$ mse exp(—(bDDC) )+g, )
where DDC is the distributed diffusion coefficient and a is the stretching parameter, with
0<a <2 (20). Thismodel reduces to a monoexponentia fora =1, with o <1 indicating

subdiffusive behavior and « > 1superdiffusive behavior.
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* Kurtosis:
S= S muwicXP(~bDDC +b?DDC? (K - 3)/6) +¢ , (3)
where K iskurtosis, with K > 1, and K = 3 indicates monoexponentia diffusion. Thisdefinition
permits calculation of relative errors, unlike the ‘excess’ kurtosis definition, whereK,, . =K -3

and K, .. = O represents monoexponential diffusion.

* Intravoxel incoherent moti ()n (IVIM):

( )

S= Smee foexp —bD +1-f, exp ~bADC “+¢, 4
abiexponential model wheref,is the perfusion fraction and D’ is the pseudo-diffusion

coefficient (21). To account for blood-tissue relaxation time differences (22), fpis corrected tofy’

asfollows:
f) -ffn“mc
f (%) = bod 100, (5)
P 1_ f (1_ Cmusclew
p\ Cblood )
whereC,., and C_,. arerelaxation correction factors for blood and muscle, given by
Coiood= exp(—TE /I' 2blood ) : (1_ exp(—TR/T Luood)) ) (6)
Coete= EXP(~TE /Ny e ) (1- xp(-TR/T, ) ). (7)

=275ms, T =

2,blood 771, muscle

with T1 and T2 of blood and muscle at 3T takenasT, ., = 1932 ms, T,
1412 ms,and T

2,muscle

= 45 ms, respectively (23). Once fp’ has been determined, the diffusion

fraction, fq, is sSimply corrected to fq' by 100 —fp'".

Accuracy, Precision, and M odel Goodness-of-Fit
In thiswork, the accuracy and precision of diffusion model parameter estimates are reported as
the relative bias and dispersion, respectively:
spersion, respective g )
Bias(%) = N X —X , (8)
L N - i ref J/(ref
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L N-15

where X; isthe parameter value estimated for the iv noise redlization, x, isthetruevalue, Xis
the mean of all estimates, and N isthe number of noise realizations (24). The goodness-of-fit of

each diffusion model is expressed as the root-mean-sgquared error:

RMSE = &S, (10)
n-k

where n isthe number of data points, RSSis the residual sum-of-squares, and the number of

parameters, k, isincluded to adjust for the number of degrees of freedom. A smaller RMSE
indicates better fit quality.

METHODS

Fitting Data
For al experiments, the monoexponential, SX, and kurtosis diffusion models were fit to datafor

b =0, 276, 381, 525, 725, 1000, 1380, 1904, 2627, 3624, and 5000 mm? using the 'Isqcurvefit'
least-squares agorithm (MATLAB; MathWorks, Natick, USA). The muscle signal at b =0,

Somuscle, Was included as afitted parameter for all models. A maximum b-value, bmex, of 5000
s/mm?was chosen to improve baseline fitting (8), and to allow detection of the kurtosis model’s

guadratic term while neglecting higher-order terms (6, 25).
The IVIM model wasfit to datafor b =0, 10, 18, 33, 60, 110, 276, 381, 525, 725, and 1000

s/mm? using a multi-step approach whereby (1- f ) and ADC were estimated by alinear fit to

log-transformed, perfusion-free data (b-values highlighted in italics)(26), before being inputto
the biexponential fit as fixed terms.

In vitro and in vivo, diffusion signal decays were calculated from regions of interest (ROISs),
and fit with Equations 1—4. Pixel-by-pixel parameter maps were calculated solely tovisualize

the spatial variation of parameters, and were not used for quantification.
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Numerical Simulations
Simulations were used to determine the effect of noise and fat on the accuracy and precision of
diffusion parameter estimation in skeletal muscle. Firstly, diffusion signal decays weregenerated

as per Equations 1—4, without offset ¢, using the following input values:
o ADC =2.0x10°% 1.5x10° and 1.3x10° mm?/s,
¢ DDC =2.0x10°mm/s,

e K=30,3.3 and3.6,

from the literature (5, 6); and values from previous work (27),
o fy=15%, 10%, and 5%,
o D =250x10°mm%s,

e o=1.0,0.9, and0.8.
Constant baseline offsets, ¢, were added to these data to produce fat signal fractionsof

0—25%, in steps of 0.125%, relative to the fat-free b = 0 signal amplitude (12). The range of fat

fractions was chosen to correspond to values seen experimentally with typical DWI acquisitions.
Constant offsets were used to reflect the fact that fat’s ADC (~2x10°- 4x10° mm?/s)is

approximately two orders of magnitude smaller than that of water (28).

For each fat fraction, zero-mean Gaussian noise, with standard deviation (SD) o, was added
to both the real and the imaginary parts of the complex signal to produce arange of SNRs,
defined as S(O) / o . Magnitude data were generated for SNR = 1-50, in steps of 0.25, each with
1000 noise realizations, and noiseless data were generated for the case of infinite SNR.

To investigate fitting functions for fat and noise compensation in DWI data, the

monoexponential, SX, kurtosis, and IVIM models were also applied with no offset terms, with
baseline offset ¢, and with a baseline offset plus a noise parameter, ¢ (8), for arange of bmax

values (see Supplementary Material).

Magnetic Resonance | maging

Imaging was conducted on a Philips Achieva 3.0T X-series system (Philips Healthcare, Best,
The Netherlands) equipped with Quasar Dual gradients (80 mT/m maximum amplitude, 100

mT/m/ms slew rate), with a 32-channel cardiac coil for signal reception and a quadrature body
coil for transmission.

The following scans were performed both in vivo and invitro:
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e Multiecho two-point Dixon (mDIXON), to acquire high-resolution water and fat images
(29); TR=4.1ms, TE=1.5and 2.7 ms, flip angle = 15°, field-of-view =270 mm x 270 mm, in-

plane resolution = 1 mm x 1 mm, slice thickness = 5 mm, and sensitivity encoding (SENSE)
factor = 2.

¢ Diffusion-weighted spin echo single-shot EPI, with TR/TE = 3000/71 ms, field-of-view =
270 mm x 270 mm, in-plane resolution = 2.7 mm x 2.7 mm (reconstructed to 1.7 mm x 1.7 mm),

dlice thickness = 22 mm, 8 averages, partial Fourier factor = 0.6 in the phase-encodingdirection,
SENSE factor = 2, diffusion gradient duration d = 27 ms and interval A =35 ms, 16

logarithmically-spaced b-values (0, 10, 18, 33, 60, 110, 276, 381, 525, 725, 1000, 1380, 1904,
2627, 3624, and 5000 Ymm?), and diffusion sensitization in the slice and readout directions.
To evaluate fat suppression quality, atotal of 16 DWI datasets were acquired, applyingthe

following fat suppression configurations with diffusion sensitization in the slice and readout
directions: (i) no fat suppression; (ii) SSGR; (iii) SPAIR; (iv) WSE; (v) SPAIR+SSGR,; (vi)

WSE+SSGR,; (vii) WSE+SPAIR; and (viii) WSE+SPAIR+SSGR, with abinomial 1-4-6-4-1
WSE pulse, SPAIR delay = 200 ms, and SPAIR offset = 250 Hz. Fig. 1 illustrates all threefat

suppression modules as they appeared in the sequence.

Signal-to-Noise Determination. To facilitate comparison of in vivo and in vitro datawith
simulations, DWI SNR was estimated using ab = 0 image along with a noise referencescan

acquired without RF or gradients:

SNR = mean(S (1)) / /42 .SD (N (1)), (11)
reROl — 7T reROl

asper Yu et a.(30), where §(r) isthesignal intensity in pixel r = (r,, r,, r,) in agiven ROI,N(r)
the signal from the noise image, and \/2/(4— ) the Rayleigh limit of Rician-distributed noise.

General MRI Data Processing

All data processing was performed in MATLAB. To account for signal drift and eddy current
effects (31, 32), in vitro and in vivo DWI datawere registered to mDIXON images via an affine

control-point algorithm. They were then masked using a composite water-fat image generated
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from mDIXON water data and b = 5000 Ymm?DWI data, where the latter highlights shifted
olefinic fat signals.

In Vitro Experiments
Phantom Construction. A two-chamber coaxial phantom, similar to that described by

Winfield et a.(33), was constructed from polycarbonate plastic with dimensionsapproximating
the cross-section of the human thigh: overall length = 135 mm, overall diameter = 150 mm, and

inner chamber diameter = 119 mm. Theinner cylinder was filled with an agarose gel (3% w/v,
Sigma-Aldrich) containing nickel sulphate hexahydrate (0.4 mM, Sigma-Aldrich), sucrose(1.5%

w/v, Sigma-Aldrich), and sodium chloride (9 g/I, J.T. Baker), to give an inner compartment with
T, and T2 relaxation times (23), diffusivity (5), and conductivity similar to muscle tissue (34).

The outer chamber was filled with corn oil (Mazola), to give alipid spectrum similar to that of

subcutaneous fat (33).

In-Vitro Imaging Protocol. The phantom’s long-axis was aligned with the magnet bore, and
its Bo homogeneity was optimized using a projection-based shimming agorithm. Besidesthe
mDIXON and DWI acquisitions, axial images were a so obtained using the following sequences:

e |nversion recovery fast-spin-echo, to measure the gel T1; TR/TE = 10000/10 ms, and Tl =
50, 75, 150, 300, 600, 1200, and 2400 ms, plus an acquisition without an inversion pulseto

measure Mo.
e Multiple spin echo, to measure the gel T2; TR = 10000 ms and TE = 20—140 ms, in steps

of 20 ms.

Quality of Fat Suppression In Vitro. All fat suppression configurations were applied infive
separate scan sessions to assess variability, with the phantom being removed, repositioned, and

reshimmed between sessions. In asixth session, a coarse, three-slice image-based shim (35) was

applied over the whole phantom to produce broad spectral lines to challenge fat suppression.
Each session lasted approximately 75 minutes.

All fat suppression combinations were quantitatively assessed using ROIs drawn on b=
1000 Ymm?images in areas where agarose gel and shifted aliphatic and ol efinic fat signals
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appeared separately. Water and fat signal intensities were measured in these three ROI's and used
to calculate mean and SD water:aliphatic-fat and water:olefinic-fat ratios over the fivesessions.
To evaluate fat’s influence on model parameter estimation, two additional ROIs were drawn

in areas where shifted aliphatic and olefinic fat signals, repectively, overlaid the signal from
agarose gel. For these, and the gel-only ROI, model parameters were estimated and their bias

(Equation 8) was evaluated relative to estimates in well-shimmed, non-fat-suppressed gel—to

avoid errors arising from perturbations of the water signal.

In Vivo Experiments
All volunteers received a comprehensive description of the study, including possible risks, and

gave informed consent according to the local Institutional Review Board guidelines.

In Vivo Imaging Protocol. Participants were positioned feet-first, supine with the left thigh
approximately at isocenter. A 10 cm bolster was placed under their kneesto align the ‘fusiform’

hamstring muscles with the bore, minimizing angulation between hamstring muscle fibersand
the prescribed diffusion sensitization directions. After localizers, the entire thigh was shimmedto

second order using image-based shimming (35), and asingle DWI slice was planned inthe
thickest part of the thigh, using WSE+SPAIR+SSGR fat suppression.

Quality of Fat Suppression In Vivo. All fat suppression configurations were applied in 2

volunteers with distinctly different body habitus (both male, ages 30 and 51 years, BMI = 20 and

33, respectively), in order to create different fat suppression and Bo shimming challenges. These
scans took approximately 75 minutes.

To determine fat’s effect on parameter estimation invivo, two additional ROIs weredrawn
in muscle overlaid with shifted subcutaneous aliphatic and olefinic fat signals, respectively. For

these, and the muscle-only ROI, model parameters were estimated and their bias (Equation 8)
was evaluated rel ative to WSE+SPAIR+SSGR-fat-suppressed muscle, in order to avoid bias

from intramuscul ar fat.
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In Vivo Normative Diffusion Parameters and Repeatability. Fat-suppressed DWI data
were obtained in 10 additional volunteers (all male, median age = 40, range = 27-78 years), with
diffusion gradients applied in the slice direction in al 10, and in the readout direction in8.

Intra- and inter-session repeatability of DWI were assessed for both diffusion directionsin5
of these participants, using Bland-Altman analysis. Participants were scanned twice inone

session and again in a separate session within one week. Each scan lasted approximately 30

minutes.

RESULTS

Numerical Simulation Results

Analyses of fitting functions with no offset terms, with baseline offset ¢, and with an offset plus

noise parameter £, for multiple are shown in the Supplementary Material, along with theeffects
of the choice of bmex.

Fig. 2 showsrelative bias and dispersion of parameter estimates for each diffusion model as
afunction of fat fraction and SNR. At 0% fat fraction (bottom of each plot), the

monoexponential, SX, and kurtosis models show similar bias and dispersion for estimatingADC
or DDC, with each approaching an asymptote at SNR~10. The stretching parameter, a, shows

similar biasesto DDC, again with an asymptote at SNR~10. Its dispersion, however, decreases
more slowly for increasing SNR, and K showed an even shallower decrease in biasand
dispersion as SNR increased. For the IVIM model, ADC and f, show negative biases and large

dispersions at SNR<10, but the bias and dispersion of ADC approached those of theother
models’ diffusion coefficients above this threshold. The bias in D decreased with increasing

SNR, though its dispersion was typically >100% for al perfusion fractions and simulated SNRs.
Assuming fat fraction = 0, at the level of in vivo SNR, ~40, each model showed lessthan
6% biasin diffusion coefficient estimation. IVIM parameters showed bias (dispersion): in fp,-18

(153)% for anominal fp = 15%, -26 (249)% for f, = 10%, and -50 (722)% for fp, = 5%; and for
D", -18 (101)% for f, = 15%, -13 (138)% for f, = 10%, and -6 (161)% for f, = 5%. The SX model

showed a bias (dispersion) in a of ~6% (~8%), while kurtosis showed a bias (dispersion) of-14

(20)% for K = 3.0, -8 (12)% for K = 3.3, and -1 (1)% for K =3.6.
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Asfat fraction increased, the biasin diffusion coefficients decreased at low SNRs, and
dispersion increased monotonicaly. IVIM was markedly fat-sensitive: the biasinIVIM-
estimated ADC was -66% for 25% fat, decreasing with increasing fat fraction due to skewing of
the linear fit, which also led to smaller estimates of (1-f ) . However, non-modeled fat signal

simultaneously increased the apparent fq, leading to large biasesin f, for each fat fraction.
Finally, D" showed a monotonic relationship with fat fraction, though the slope of this
relationship changed sign as afunction of SNR.

In Vitro Results

Quality of Fat Suppression In Vitro. Example phantom DWI images acquired with each fat
suppression method are presented in Fig. 3, alongside mDIXON images and parameter maps.

Shifted aliphatic fat signals are prominent for all fat suppression configurationsexcept
WSE+SPAIR and WSE+SPAIR+SSGR, while shifted olefinic fat remainsin all cases. Maps of
fp show that shifted fat signals produce a spurious perfusion component in the phantom.

Fig. 4 shows water-fat ratios in vitro. The mean (SD) water:aliphatic-fat was largest for
WSE+SPAIR+SSGR, 75.6 (7.3), and marginally smaller for WSE+SPAIR, 73.7 (12.1); both

methods showed significantly greater water-fat ratios than the other methods (p<0.001) without
being significantly different from one another. Water:olefinic-fat was relatively constant inall

cases, indicating the difficulty in suppressing olefinic fat along with aliphatic fat. Thewater
signal showed less than 2% attenuation for all fat suppression configurations (data not shown).

The phantom’s gel compartment showed monoexponential diffusion, with a measured o=

1.00 and K = 3.00; its mean (SD) T1and T2 were 1386.8 (19.2) ms and 46.6 (1.4) ms,

respectively. All models yielded gel diffusion coefficients of 1.90x10™ mm?/s, except IVIM, for
which ADC = 1.87x10° mm?s; IVIM showed the largest biases of the 4 models. Relative biases

in each parameter were >8% in fat-contaminated regions with no fat suppression or with SSGR
(Fig. 5). For al models except IVIM, ol€finic fat contamination produced a bias of 2-3%,
irrespective of the fat suppression method used. Except for IVIM parameters, SPAIR reduced

biasin all parameters below 8% in regions contaminated by aliphatic fat, while
WSE+SPAIR+SSGR reduced it below 1%. WSE+SPAIR+SSGR and WSE+SPAIR gave similar

parameter values, consistent with their comparable fat suppression performance. For coarsely-

shimmed data, fat suppression performance was markedly poorer: no method produced biases
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better than £23% in regions contaminated with aliphatic fat. Furthermore, SSGR and
WSE+SSGR showed large biases even in gel-only regions.

In Vivo Results
Quality of Fat Suppression In Vivo. Example DWI images are shown in Fig. 6 for eachfat

suppression modality, along with mDIXON images. All fat suppression configurationsshowed
pronounced shifted aliphatic fat signals, except WSE+SPAIR and WSE+SPAIR+SSGR. Of
these, WSE+SPAIR+SSGR showed better fat suppression homogeneity, with shifted aliphaticfat

being consistently suppressed across thefield-of-view.
Fig. 7 highlights the increased bias in diffusion parametersin vivo as compared to invitro.

All diffusion coefficients showed similar, substantial biases in the presence of fat contamination.
Derived vauesfor K, f,and D’ tended to decrease with improved fat suppression, while

estimated o decreased. In muscle regions containing only intramuscular fat, biases were large
with no fat suppression or with SSGR aone. In the younger participant, with BMI = 20, SPAIR

reduced the absol ute bias of parameters, except f, and D', to <15%, SPAIR+SSGR, WSEand
WSE+SSGR al performed similarly, and WSE+SPAIR reduced biases below 10%. Thesame

trends held true for data contaminated with shifted olefinic fat, where biases were similar to
muscle data; however, IVIM showed larger biases than the other models. Finally, data

contaminated with shifted aliphatic fat showed biases consistently around 20%, includingwith
use of WSE+SPAIR and WSE+SSGR+SPAIR. Thisislikely dueto structura differencesin

underlying muscle between the olefinic and aliphatic-fat-contaminated regions. In the older, BMI

= 33 participant, parameter biases were generally greater due to reduced Bo homogeneity and a
concomitant decrease in SNR; however, data obtained with WSE+SPAIR showed similarly low

biases in both participants.

In Vivo Normative Diffusion Parameters and Repeatability. Diffusion parameters fromin
vivo hamstring muscle data are summarized in Table 1, along with goodness-of-fitand

repeatability measures. Fig. 8 shows ROI-planning, maps for parameter visualization, and quality
control images.
In the hamstring muscles, the mean (SD) SNR in two participants was 39.7 (8.8). All

models measured larger diffusion coefficientsin the slice direction, parallel to muscle fibers,
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than in the readout direction, perpendicular to fibers. In agreement with simulations and invitro
data, IVIM gave smaller diffusion coefficient estimates than the other models, all of whichgave
similar values. This disparity in diffusion coefficients was larger in vivo than in vitro; themean

IVIM ADC was 1.87x10° mm?s in the slice direction, while the other models’ derived diffusion
coefficients were ~2.13-2.17x10° mm?s.

We measured a~1 and K~3 parallel to muscle fibers, indicating near-monoexponential
diffusion. Perpendicular to muscle fibers, o and K tended toward non-Gaussian behavior, with
mean (SD) o =0.94 (0.04) and K = 3.27 (0.13). The SX model also gave the best fit to thedata,

with asubstantially smaller RM SE than other models.
Table 1 shows that diffusion coefficients were similarly repeatable for all models, withmean

intra- and inter-session differences <4%, and lines of zero difference, indicating perfect
correlation between scans, within the 95% limits of agreement. Estimates of a, K, and f,’showed

small mean differences, but K and fp" had large limits of agreement: up to 0.34 differencefrom
the mean for the former, and 5.8% absolute difference for the latter. D” showed generally poor

repeatability, with broad 95% limits of agreement and aline of zero difference typically closeto

or outside of those limits; Fig. 8 shows example D” maps from repesat scans.

DISCUSSION

To our knowledge, this study isthe first to investigate the effect of fat signals and fat suppression

methodology on Gaussian and non-Gaussian diffusion parameter estimation in skeletal muscle,

and it expands on earlier analyses of noise effects in such models (8-11). Previous work on fatin
DWI focused on parameter bias arising from water signals, rather than lipid signals, in fat tissue

(9, 13, 14). These works also used the diffusion tensor model, and are thus inherently low b-
value, monoexponentia studies. Our work considers only isotropic diffusion models, asnon-

Gaussian models have still seen little penetration into tensor formulations; however, extending
this work to the tensor model would be a valuable next step.

We have demonstrated here that conventional and non-Gaussian models are sensitiveto
noise and shifted fat signals, as expected when performing any analysis in which sources of error
are not adequately accounted for. We found that data quality can be improved by combining

multiple fat suppression techniques with a high b-value acquisition and a baseline offset. Our
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extensive simulations, discussed in the Supplementary Material, showed that different DWI
fitting functions should be used depending on the experimental data. A baseline offset parameter
(12) proves beneficial for ROI-based DWI fitting, where SNR is high and considerable fat

signals can be present; our data show triple-fat-suppressed water-fat ratios of the order of 1-5%
(data not shown) and SNRs of around 40, where it is appropriate to use an offset. Conversely,

when applied in alow fat-fraction, low-to-middling SNR regime, the offset produces asmall,
positive parameter estimation bias. This effect can be mitigated by incorporating anadditional
noise parameter (8), which improves parameter estimation for middling SNR, low fat-fraction

data. Finally, no offset or noise parameters are needed to fit data in the absence of lipidsignals;
however, bmax must be chosen judiciously to avoid noise bias (6).

SX and kurtosis models require b-values up to 5000 mm?to characterize signal persistence

at high b-values (20, 25), which may be modeled in part by incorporation of anoffset.

Monoexponential and IVIM models, however, are frequently applied with bmax of 1000 gmm’or
less, and are thus subject to large biases when fat is present. This could account for reported

inconsistencies in muscle diffusion measures with aging (36). For example, Galban et al.
reported areduction in calf muscle diffusion coefficients by up to 10% in older participants(5).

By simulating Galban’s b-value scheme with muscle and lipid signals (Supplementary M aterial,
Supp. Fig. 5), we observe abias error in diffusion coefficient estimates of -10% upon addition of

5% fat fraction. Increases in intramuscular fat content of this order have been demonstratedin

aging (37), and should be carefully considered when interpreting diffusion coefficient changes.

In our corn oil and gel phantom, the commonly-used SPAIR fat suppression method was
sufficient for accurate parameter estimation, even when the gel signal was contaminated with

aliphatic fat. However, its effectiveness decreases with reduced Bo homogeneity, due to broad,
hard-to-suppress fat resonances. Thisis clearly seenin the in vivo data presented here, wherethe

use of SPAIR alone gave diffusion parameter estimates substantially different fromthose
obtained with better-performing configurations. With a non-modeled baseline, representing a

typical monoexponential or IVIM diffusion study, SPAIR-fat-suppressed data gavenon-
physiologic ADCs of 0.7x10™ mm?/s, and showed bias errors around 20% for a and K (data not
shown). The smallest parameter bias was found for WSE+SPAIR and WSE+SPAIR+SSGR
schemes, when models were applied with baseline offsets; WSE+SPAIR+SSGR reduced
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aliphatic fat signal to between 1 and 5% of the water signal in vivo, versus 10—30% for SPAIR
alone (data not shown). Simulations showed that this was sufficient to estimate non-Gaussian
diffusion parameters with a bias of less than 6%, for SNR = 40. In general, WSE+SPAIR and

WSE+SPAIR+SSGR performed similarly, though the latter gave slightly improved fat
suppression homogeneity in vivo. These methods, and more-sophisticated approaches (18, 19),

will prove useful when considerable intramuscular fat may be present, such asin the elderly, and
in diseases such astype I diabetes.
Olefinic fat was less well-suppressed than aliphatic fat in our experiments. Whileimproved

olefinic fat suppression has been achieved via multi-acquisition TE-shifting (18), navigated
water-fat separation (19), or additional frequency-selective saturation pulses (13), thesemethods

can be challenging to implement. We excluded shifted subcutaneous olefinic fat from our muscle

ROIs, and no intramuscular olefinic fat signal was visible in our high b-value DWI or mDIXON

images, consistent with previous work (18). With the further addition of a baseline offset to our
model fits, we surmise that the effect of olefinic fat on our parameter estimatesisminimal.

With our triple-fat-suppressed DWI approach, in vivo diffusion coefficients showed
minimal intra- and intersession differences; however, other parameters, particularly fpand D',

showed broad 95% limits of agreement, with D” showing the poorest repeatability overall. This
is consistent with our simulations, and with previous work (22), confirming that D™ estimationis

challenging at clinically-achievable SNRs. The poor repeatability of the IVIM model indicates

that it may not be suitable for analysis of muscle microcirculation without furtherimprovement.

Skeletal muscle has complex architecture, comprising intra- and extra-cellular spaces, fat, and
vascul ature, and mobile protons are expected at a variety of displacement time and length scales.

Thus, the “true” underlying signal behavior as a function of b-value may consist of
superpositions or extensions of the functions investigated here. Indeed. the most commonly-used

model, the monoexponential, is likely a substantial oversimplification of underlyingsignal
behavior, while models such as SX and kurtosis have the potential for greater sensitivity and

specificity to the details of muscle ultrastructure (20, 25). The present study represents thefirst
application of the SX model to in vivo skeletal muscle diffusion data, with the derived valuesfor

a indicating the presence of non-Gaussian diffusion in the hamstring muscles.
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Parallel to muscle fibers, o was close to 1 in the majority of participants, suggesting that
diffusion along fibersis monoexponentia in these cases. However, there remains the possibility
that these o estimates are biased toward 1 by noise, as shown by our simulations. Furthermore,

our DWI sequence may have too long a TE to detect a-modifying short-T> components.
Perpendicular to muscle fibers, estimates of o<1 suggested the presence of non-

monoexponential signal decay in spite of possible noise bias. Several younger participants
showed mean o values around 0.9, indicating greater complexity perpendicular to muscle fibers
than along fibers and representing an appreciable departure from the monoexponential case(38).

Consistent with our oo measurements, our K estimates al so took non-monoexponential
values, agreeing with Marschar et a. (6), who reported excess kurtosis between 0.1 and 0.4in

skeletal muscle. Both kurtosis and the SX are expected to highlight muscle tissueheterogeneity,

reflecting multiple monoexponential diffusion components arising from intra- and extracellular

compartments (20, 25), and different fiber types or dimensions (39). However, of thefour
models studied, the SX provided the best fit to the diffusion data, as shown by RM SE measures

in Table 1. This suggests that the SX is the most appropriate of the models for characterizing

muscle diffusion, but detailed model selection experiments are required to confirm thisfinding.

CONCLUSION

Our extensive numerical simulations have shown that effective fat suppression is crucial for

accurate measurement of diffusion parameters in skeletal muscle, and thecommonly-used

SPAIR fat suppression technique may be inadequate for this purpose. More thorough methods,
such astriple-fat-suppressed DWI, are required for accurate and precise estimation of Gaussian

and non-Gaussian diffusion parameters. Non-Gaussian parameters appear to giveadditional
information on muscle microstructural properties beyond that provided by conventional models

and, with further validation, they could be used to study muscle pathology and explore
underlying causes of decline in muscle biomechanical quality withaging.
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SLICE (n = 10)
Model DorD (mm?%S)  MDina(95% LA) MDinter (95% LA) Parameters MDintra (95% LA) MDinter (95% LA)  RMSE
2.13 -0.03 (-0.19, -0.06 (-0.33, 7.2
Mono - - -
(0.12) x10° 0.12) x10° 0.20) x10° (3.7)
IVIM 30.4 11.8 (-135, 59.6 (-25, £, =33 0.3 1.1
-—-Perf. (37.7) x10° 111) x10° 145) x10° (1.9) % (-5.1,5.8) % (-1.1,3.2) % 14.3
1.87 -0.01 (-0.06, -0.02 (-0.18, fi'=96.7 -0.3 -1.1 (6.4)
---Diff. (0.08) x10°® 0.09) x10° 0.14) x10° (1.9) % (-5.8,5.1) % (-3.2,1.1) %
2.14 -0.04 (-0.23, -0.08 (-0.39, o =0.97 0.02 0.02 5.2
T (0.13) x10° 0.14) x10° 0.23) x10° (0.03) (-0.05, 0.09) (-0.07,0.11)  (3.9)
2.17 -0.05 (-0.30, -0.08 (-0.45, K =3.09 -0.06 -0.03 5.5
re (0.15) x10° 0.19) x10°® 0.29) x10°® (0.11) (-0.30,0.18) (-0.32, 0.26) (3.3)
READ (n = 8)
I:\/L?gil D or Dl ngZ/S) M%E‘U&‘@é%é‘,‘\) M%W(Pé%_é_’A) Parameters MDintra (95% LA) MDinter (95% LA)  RMSE
""""" (0.06) x10° 0.12) x10° 0.20) x10° - - - (11.2)
IVIM 9.04 -4.5 (-26.5, 4.7 (-11.1, £, =25 0.3 0.6
--Perf. (7.57) x10’® 17.6) x10° 20.6) x10° (1.3) % (-1.7,1.0) % (-2.2,3.4) % 17.9
1.23 0.01 (-0.06, -0.05 (-0.23, £/ =975 -0.3 -0.6 (7.0)
---Diff. (0.05) x10° 0.09) x10°° 0.12) x10° (1.3) % (-2.4,1.8) % (-3.4,2.2)%
1.43 0.05 (-0.10, 0(-0.17, o =0.94 -0.02 -0.05 9.9
T (0.05) x10° 0.20) x10° 0.17) x10° (0.04) (-0.13, 0.09) (-0.14, 0.03) (6.2)
1.47 0.08 (-0.09, 0.01 (-0.16, K=3.27 0.03 0 11.8
T (0.06) x10°® 0.18) x10? 0.19) x10° (0.13) (-0.25, 0.30) (-0.34,034)  (6.6)

Table 1. Calculated in vivo diffusion parameter s and their repeatability. Results are shown for ROIs drawn in the hamstring
muscles (see Figure 9). Data are obtained from triple fat-suppressed images with diffusion-sensitization in the slice-select (parald to
muscle fibers) and readout (perpendicular to muscle fibers) directions. M easurements are quoted as mean (SD) over al participants.
Intra- and inter-session repeatability are described in 5 participants by Bland-Altman measures. namely, mean difference (MD), and
95% limits of agreement (LA) in brackets. D = diffusion coefficient, including the apparent diffusion coefficient (monoexponential
and IVIM models) and the distributed diffusion coefficient (stretched exponential and kurtosis models), D” = pseudo-diffusion
coefficient, fp' = corrected perfusion fraction, fq’ = corrected diffusion fraction, a = stretching parameter, IVIM = intravoxel incoherent

motion, K = kurtosis.
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Figure 1: Pulse sequence diagram showing the triple-fat-suppressed, diffusion-weighted
spin echo single-shot echo-planar imaging (EPI) sequence used in this study. This consistsof
adiffusion-weighted spin echo sequence with a ramp-sampling EPI readout, preceded by a

spectral attenuated inversion recovery (SPAIR) module, which suppresses fat via an adiabatic
inversion pulse followed by gradient spoilers (Sp). The SPAIR Tl used in this study was 200 ms,

and the TE was 71 ms. Further fat suppression was achieved using water-specific excitation
(WSE, highlighted in green) and slice-select gradient reversal (SSGR, highlighted in blue) within
the spin echo sequence. WSE consisted of a dlice-selective composite RF pulsein al—4—6—4-1

configuration, with interpulse intervals of 1.15 ms, and component flip angles of
5.6°—22.5°-33.8°-22.5°-5.6°, adding to the equivalent of a 90° excitation. SSGR consisted of a

reversal of the slice-select gradient polarity during the spin echo refocusing pulse. Note that G,=
dice-select direction, Gy = phase encoding direction, and G = readout direction, and diffusion-

weighted (DW) gradients are shown as dashed blocks. Gradients were played along only asingle
axis for each implementation of the sequence, depending on the desired direction of diffusion

sensitization.

Figure 2: Plots of biasand dispersion in fitted parametersfor all four candidatediffusion
modelsin Monte-Carlo simulations. Results are visualized as colored matrix plots, grouped by

monoexponential, stretched exponential, kurtosis, and intravoxel incoherent motion (1VIM)
models. These are subdivided into their fitted parameters by dashed lines, where top and bottom

rows denote relative bias (B%) and relative dispersion (D%), respectively. Columnsdenote

different input parameter values, as obtained from the in vivo literature (non-monoexponential
diffusion coefficients and the IVIM pseudo-diffusion coefficient, D, were fixed at 2.0x107

mm?s and 25x10°° mm?/s, respectively). Individua matrix plots are shown with signal-to-noise
ratios (SNRs) increasing along the x-axis (1-50 in increments of 0.25), with a separate column

for infinite SNR; fat signal fractions are shown on the y-axis, (0—25% in increments 0f0.125%).
The color lookup table of relative bias and dispersion was limited to £75% to improvecolor

contrast between different model parameters. As shown, for most diffusion coefficient estimates
parameter bias and dispersion tend to increase as SNR decreases, and a subtle bias is seen for
small fat fractions. For IVIM, ADC bias increases strongly with inlarge, discrete biases were

seen in the perfusion fraction, f,, where fat signal adds to the apparent slow-diffusing fraction
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while simultaneously skewing the fit of f, toward larger values. ADC = apparent diffusion

coefficient, a = stretching parameter, DDC = distributed diffusion coefficient, and K =kurtosis.

Figure 3: Phantom fat suppression results and example parameter maps. The top tworows
show multiecho two-point Dixon (mDIXON) water and fat images (top left), diffusion-weighted

b = 1380 smm?images for all 8 fat suppression combinations, and positioning of the regions of
interest (ROIs) within the phantom. In these images, olefinic fat signal is shifted updlightly,
while aliphatic fat signal is shifted down to a much greater degree, due to its large chemical shift

relative to water. A diagram of the phantom is shown in the bottom left, and some example
parameter maps from all four diffusion models are shown in the bottom two rows of the figure.

The third row shows maps generated from the non-fat-suppressed diffusion-wei ghtedimages

(Ieft-hand arrow), and the fourth row shows maps from data obtained with a combination of

water-specific excitation (WSE), spectral attenuated inversion recovery (SPAIR), and sliceselect
gradient reversal (SSGR) fat suppression methods (right-hand arrow). Images were acquiredin

the axial plane with diffusion sensitization in the dlice direction. ROIs were defined in shifted
olefinic fat (pale blue) and aliphatic fat (pale green) alone, for calculation of water-fat signal

ratios (Fig. 4), and in gel contaminated with olefinic fat (dark blue) and aliphatic fat (green), to
evaluate the effect of fat contamination on parameter estimation (Fig. 5). Uncontaminated

agarose gel (red) isused as areference for both of these analyses. As shown, shifted aliphatic fat
signals are prominent for all fat suppression configurations except WSE+SPAIR and

WSE+SPAIR+SSGR, leading to parameter estimation biasin the example maps, while shifted

olefinic fat remainsin all cases. ADC = apparent diffusion coefficient, a = stretching parameter,
DDC = distributed diffusion coefficient, fp = perfusion fraction, IVIM = intravoxel incoherent

motion, and K = kurtosis.

Figure 4: Water-fat signal ratios obtained from phantom images using combinations of fat
suppression methods. Measurements were made on b = 1000 ¥mm? diffusion-weighted images,

where water and fat signals were clearly visible, using the red, pale green, and pale blue ROIs
shown in Fig. 3. Signal intensities were measured in shifted fat and agarose gel for each fat
suppression combination, and are expressed as mean water:olefinic-fat and water:aliphatic-fat

ratios in the bar plot shown. All fat suppression combinations were applied in series and repeated
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in five separate scan sessions, with the phantom being removed, recentered and reshimmed
between sessions; error bars show the standard deviations of water-fat ratios across each of the
five acquisitions. As shown, water:aliphatic-fat was largest for WSE+SPAIR+SSGR and

marginaly smaller for WSE+SPAIR. Water:olefinic-fat was relatively constant in all cases,
indicating the difficulty in suppressing olefinic fat along with aliphatic fat. SSGR = dlice select

gradient reversal, SPAIR = spectral attenuated inversion recovery, WSE = water-specific

excitation.

Figure5: Comparison of in vitro diffusion parameter estimates using different fat
suppression combinations. Results are shown for diffusion sensitization in theslice-sel ect

direction; ‘Shim 1’ and Shim 2’ represent data acquired with a projection-based shim, with SNR
=110, and a coarse, image-based shim, with SNR = 41, respectively. Each shim was applied

across the whole phantom. Data are shown for gel contaminated by shifted aliphatic fat (Ieft-
hand column, A), gel contaminated by shifted olefinic fat (middle column, O), and gel alone

(right-hand column, G); namely, from the green, dark blue, and red ROIsillustrated in Fig. 3.
Gel-only parameter values obtained from well-shimmed, non-fat-suppressed data were taken as

the reference values, and thus the top-right cell of each ‘Shim 1” plot has an error of 0%. These
reference values were chosen to represent pure gel parameters without possiblesignal

perturbation effects from the fat suppression methods. It can be seen that parameter biasestend
toward zero as fat suppression methods are added, but this trend is weakened when By shimming

ispoor. ADC = apparent diffusion coefficient, a = stretching parameter, D* =pseudo-diffusion

coefficient, DDC = distributed diffusion coefficient, f, = perfusion fraction, IVIM = intravoxel
incoherent motion, K = kurtosis, SSGR = slice select gradient reversal, SPAIR = spectral

attenuated inversion recovery, WSE = water-specific excitation.

Figure 6: In vivo fat suppression results. Representative multiecho two-point Dixon
(mDIXON) water and fat images, in vivo region of interest (ROI) positioning, and diffusion-

weighted, b = 1380 mm?images for all 8 fat suppression configurations are shown. Asin Fig.
3, olefinic fat signal is shifted up, overlapping muscle signal at the posterior of the thigh, while
aliphatic fat signal is shifted down to a greater degree, obscuring muscle across the femur and

part of the quadriceps femoris. Images were acquired axially across the thigh, withdiffusion
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sensitization in the slice direction, corresponding to the long axes of muscle fibers. ROIs (upper
right image) were defined in muscle contaminated by shifted olefinic fat (dark blue), muscle
contaminated by shifted aliphatic fat (green), and uncontaminated hamstring muscles (red)to

evaluate the effect of fat contamination on model parameter estimation (Fig. 7). Asshown,
pronounced shifted aliphatic fat signals are present for al fat suppression configurations, except

WSE+SPAIR and WSE+SPAIR+SSGR. SPAIR = spectral attenuated inversion recovery, SSGR
= dice select gradient reversal, WSE = water-specific excitation.

Figure 7. Comparison of in vivo diffusion parameter estimates using different fat
suppression combinations. Results were obtained from two healthy volunteers: both male, ages

30 and 51 years, BMI = 20 and 33, and SNR = 83 and 45, respectively. Diffusion sensitization

was applied in the slice-select direction, corresponding to the long axes of muscle fibers, andthe

readout direction, corresponding to their short axes. Plots show data from the green, dark blue,
and red ROIsillustrated in Fig. 6: muscle and shifted aliphatic fat (Ieft-hand column, A), muscle

and shifted olefinic fat (middle column, O), and muscle aone (right-hand column, M). Thecolor
scale shows the relative bias with respect to triple-fat-suppressed muscle; therefore, thebottom-

right cell of each plot has an error of 0%. Note that these reference values are different from
those of Fig. 5, and ROIs are planned in different muscle regions with possiblestructural

differences. In this case, the muscle signals contain contributions from intramuscular fat, and
thus the best measure of pure muscle parameters is obtained when all 3 fat suppression methods

are applied together. Parameter biases appear large in muscle, even where thereis no visiblefat

signal; however, the addition of fat suppression methods eliminates this contribution and pushes
parameter biases toward zero. The older participant, with higher BMI, shows larger parameter

biases in general, but these are sufficiently reduced by the most effective fat suppression
combinations. ADC = apparent diffusion coefficient, a = stretching parameter, DDC=

distributed diffusion coefficient, f, = perfusion fraction, IVIM = intravoxel incoherent motion, K
= kurtosis, SSGR = dlice select gradient reversal, SPAIR = spectral attenuated inversion
recovery, WSE = water-specific excitation.

Figure 8: Diffusion parameter maps and region-of-interest (ROI) positioning. Parameter

maps were generated from data with a signal-to-noise ratio (SNR) of 45, and are organized by
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model and diffusion sensitization direction. The following b-values were used: 0, 276, 381, 525,
725, 1000, 1380, 1904, 2627, 3624, and 5000 'mm? for monoexponential, stretched exponential,
and kurtosis models; and 0, 10, 18, 33, 60, 110, 276, 381, 525, 725, and 1000 Smm? for

intravoxel incoherent motion (IVIM). IVIM was fit with constraints on the perfusion fraction, f,,
and the pseudo-diffusion coefficient, D (0-50% and 5-150x10"° mm?s, respectively); when

parameters converged to these limits, the corresponding pixel was excluded from themap.
‘Repeat Scans’ highlight variationin D" in a second scan session. ‘ROI Positioning” showsan
example of aregion of interest, highlighted in purple, used to calculate the parameter values

listed in Table 1. ‘Quality Control” figures were used as a guide for ROI definition and to check
for intramuscular fat. These include root-mean-square error (RM SE) and baseline offset (bsl)

maps, both in signal units, generated from a monoexponential fit with diffusion sensitizationin

the slice direction; awater/fat image for masking residual fat (ab = 5000 smm?image, purple,

overlaid on an mDIXON water image, green); and an mDIXON fat image. Also shownareb =0
and noise images used to calculate SNR. ADC = apparent diffusion coefficient, DDC=

distributed diffusion coefficient, a = stretching parameter, and K =kurtosis.
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Figure 1: Pulse sequence diagram showing the triple-fat-suppressed, diffusion-weighted spin echo single-
shot echo-planar imaging (EPI) sequence used in this study. This consists of a diffusion-weighted spin echo
sequence with a ramp-sampling EPI readout, preceded by a spectral attenuated inversion recovery (SPAIR)
module, which suppresses fat via an adiabatic inversion pulse followed by gradient spoilers (Sp). The SPAIR
TI used in this study was 200 ms, and the TE was 71 ms. Further fat suppression was achieved using water-
PGS0 NS AN R S5Rem Sl Seles R eSSk SR R YYgteg g )

configuration, with interpulse mtervals of 1.15 ms, and component flip angles of
5.6°-22.5°-33.8°-22.5°-5.6°, adding to the equivalent of a 90° excitation. SSGR consisted of a reversal

of the slice-select gradient polarity during the spin echo refocusing pulse. Note that Gz = slice-select
direction, Gy = phase encoding direction, and Gx = readout direction, and diffusion-weighted (DW)

gradients are shown as dashed blocks. Gradients were played along only a single axis for each

implementation of the sequence, depending on the desired direction of diffusion sensitization.

Fig. 1
146x68mm (300 x 300 DPI)
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Figure 2: Plots of bias and dispersion. in fitted parameters for all four candidate diffusion models in Mante-
(J:%rro szlmulat?ons. Fgesults arepv[fsua ized as co oreg]matrix plots, roupeé| gy monoexponentclla , stretcohe

exponential, kurtosis, and intravoxel incoherent motion (IVIM) models. These are subdivided into their fitted
parameters by dashed lines, where top and bottom rows denote relative bias (B%) and relative dispersion
(D%), respectively. Columns denote different input parameter values, as obtained from the in vivoliterature
(non-monoexponential diffusion coefficients and the IVIM pseudo-diffusion coefficient, D*, were fixed at
2.0x102 mm?/s and 25x10° mm?/s, respectively). Individual matrix plots are shown with signal-to-noise
ratios (SNRs) increasing along the x-axis (1-50 inincrements of 0.25), with a separate column for infinite
SNR; fat signal fractions are shown on the y-axis, (0—25% in increments of 0.125%). The color lookup table

of relative bias and dispersion was limited to £75% to i e color contrast between different model
parramze\{ers'. 3 shovx}nr,)%r' movs\,lt é.P#?}s'}on coef |éi|e?1t es'm%%s pararme{'err s|as al‘\l/é Epe‘rseign tenc? 90

increase as SNR decreases, and a subtle bias is seen for small fat fractions. For IVIM, ADC bias increases
strongly with inlarge, discrete biases were seen in the perfusion fraction, f,, where fat signal adds tothe
apparent slow-diffusing fraction while simultaneously skewing the fit of f, toward larger values. ADC =
apparent diffusion coefficient, a = stretching parameter, DDC = distributed diffusion coefficient, and K=
kurtosis.
Fig. 2
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Figure 3: Phantom fat suppression results and example parameter maps. The top two rows show modified
DIXON (mDIXON) water and fat images (top left), diffusion-weighted b = 1380 s/mm?images for all 8 fat
suppression combinations, and positioning of the region of interest (ROI) within the phantom. In these
images, olefinic fat signal is shifted up slightly, while aliphatic fat signal is shifted down to a much greater
degree, due to its large chemical shift relative to water. A diagram of the phantom is shown in the bottom
R e AR SR SRS B ColR Bl B el el are shoy i, i BRI SRS of
(left-hand arrow), and the fourth row shows maps from data obtained with a combination of water-specific
excitation (WSE), spectral attenuated inversion recovery (SPAIR), and slice select gradient reversal (SSGR)
fat suppression methods (right-hand arrow). Images were acquired in the axial plane with diffusion
sensitization in the slice direction. ROIs were defined in shifted olefinic fat (pale blue) and aliphatic fat (pale
green) alone, for calculation of water-fat signal ratios (Fig. 4), and in gel contaminated with olefinic fat(dark
blue) and aliphatic fat (green), to evaluate the effect of fat contamination on parameter estimation (Fig. 5).
Uncontaminated agarose gel (red) is used as a reference for both of these analyses. As shown, shifted
B3 Rk SEBAR T BRg B o Bl oL RS B o (e Bons XS eRi TS BAMR A ernic fat
remains in all cases. ADC = apparent diffusion coefficient, a = stretching parameter, DDC =distributed
diffusion coefficient, f, = perfusion fraction, IVIM = intravoxel incoherent motion, and K = kurtosis.

Fig. 3
451x310mm (300 x 300 DPI)



©CoOo~NOOOR~AWNPE

80 1 T’
| ] la2s
‘ !

o L

| ;
i _

o
o
T
—
—_—
fE—
—
—_—
o

Water-Fat Ratio
—
&
Water-Fat Ratio

l 0.5
10 T
1
T & & & & & & T & & & = & & &,°
2 QF 2
3 2 2
§ & F & & £ &5 5 FEFF LT IS
Il @ @ 2 b 2 2 & <& @ @ b o - 25
£ § & & &7 0@ §F & & &
g & & £ F & & ¢

Figure 4: Water-fat signal ratios obtained from phantom,i es using combinations of fat suppressio
methods. Measureme%ts were mage on g = 10(530 s/mrgE Q}'ﬁgsion-w [ %tec?images, where W%F’Eer an(Pfat

signals were clearly visible, using the red, pale green, and pale blue ROIs shown in Fig. 3. Signal intensities
were measured in shifted fat and agarose gel for each fat suppression combination, and are expressed as

mean water:olefinic-fat and water:aliphatic-fat ratios in the bar plot shown. All fat suppression combinations

were applied in series and repeated in five separate scan sessions, with the phantom being removed,
recentered and reshimmed between sessions; error bars show the standard deviations of water-fat ratios
across each of the five acquisitions. As shown, water:aliphatic-fat was largest for WSE+SPAIR+SSGR and
marginally smaller for WSE+SPAIR. Water:olefinic-fat was relatively constant in all cases, indicatingthe
affcaly in supicssing SIEERLG (26 TIRAFLH BLBlEN, s Shterineerleciaraion. reversal SPAIR =
ig.

309x170mm (300 x 300 DPI)
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Figure 5: Comparison of in vitro diffusion parameterestimates using different fat suppression combinations.
Results are shown for diffusion sensitization in the slice-select direction; ‘Shim 1’ and Shim 2’ represent data
acquired with a projection-based shim, with SNR = 110, and a coarse, image-based shim, with SNR = 41,
respectively. Each shim was applied across the whole phantom. Data are shown for gel contaminated by
shifted aliphatic fat (left-hand column, A), gel contaminated by shifted olefinic fat (middle column, O),and
gel alone (right-hand column, G); namely, from the green, dark blue, and red ROIs illustrated in Fig. 3. Gel-
only parameter values obtained from well-shimmed, non-fat-suppressed data were taken as the reference
values, and thus the top-right cell of each ‘Shim 1’ plot has an error of 0%. These reference values were

S8R PRS0 RSB O L e 3R B8 D S oM PO BRIS 2 90R% REWHFRIPB SRSk (ISPt methods

are added, but this trend is weakened when Bo shlmmlng is poor. ADC = apparent d|ffu5|on coefficient, a=
stretching parameter, D* = pseudo-diffusion coefficient, DDC = distributed diffusion coefficient, f, =
perfusion fraction, IVIM = intravoxel incoherent motion, K = kurtosis, SSGR = slice select gradientreversal,
SPAIR = spectral attenuated inversion recovery, WSE = water-specific excitation.
Fig. 5
421x254mm (299 x 299 DPI)
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mDIXON - Water

Figure 6: In vivo fat suppression results. Representative modified DIXON (mDIXON) water and fat images,
in vivo region of interest (ROI) positioning, and diffusion-weighted, b = 1380 s/mm?images for all 8 fat
suppression configurations are shown. As in Fig. 3, olefinic fat signal is shifted up, overlapping musclesignal
at the posterior of the thigh, while aliphatic fatsignal is shifted down to a greater degree, obscuring muscle
across the femur and part of the quadriceps femoris. Images were acquired axially across the thigh, with
diffusion sensitization in the slice direction, corresponding to the long axes of muscle fibers. ROIs (upper
right image) were defined to evaluate the effect of fat contamination on model parameter estimation (Fig.
7), and are positioned in muscle contaminated by shifted olefinic fat (dark blue), muscle contaminated by

5 F e A e e e o S R e
WSE+SPAIR+SSGR. SPAIR = spectral attenuated inversion recovery, SSGR = slice select gradient reversal,
WSE = water-specific excitation.

Fig. 6
438x169mm (299 x 299 DPI)
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SNR = 83 and 45, respectively. D|ffu5|on sensitization was applied in the slice-selectdirection,
corresponding to the long axes of muscle fibers, and the readout direction, corresponding to their short
axes. Plots show data from the green, dark blue, and red ROIs illustrated in Fig. 6: muscle and shifted
aliphatic fat (left-hand column, A), muscle and shifted olefinic fat (middle column, O), and musclealone
(right-hand column, M). The color scale shows the relative bias with respect to triple-fat-suppressed muscle;
therefore, the bottom-right cell of each plot has an error of 0%. Note that these reference values are

different from those of Fig. 5, and ROIs are planned in different muscle regions with possiblestructural

TeTEee DM a5 s CMeELs SIOnslE.ROiRl, S HINR R nfromusular (2L a0 s Lipbest

Parameter biases appear large in muscle, even where there is no visible fat signal; however, the add|t|on of
fat suppression methods eliminates this contribution and pushes parameter biases toward zero. The older
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participant, with higher BMI, shows larger parameter biases in general, but these are sufficiently reduced by
the most effective fat suppression combinations. ADC = apparent diffusion coefficient, a = stretching
parameter, DDC = distributed diffusion coefficient, f, = perfusion fraction, IVIM = intravoxel incoherent
motion, K = kurtosis, SSGR = slice select gradient reversal, SPAIR = spectral attenuated inversionrecovery,
WSE = water-specific excitation.
Fig. 7
412x508mm (300 x 300 DPI)
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Figure 8: Diffusion parameter maps and region-of-interest (ROI) positioning. Parameter maps were
generated from data with a signal-to-noise ratio (SNR) of 45, and are organized by model and diffusion
sensitization direction. The following b-values were used: 0, 276, 381, 525, 725, 1000, 1380, 1904, 2627,
3624, and 5000 s/mm? for monoexponential, stretched exponential, and kurtosis models; and 0, 10, 18, 33,
60, 110, 276, 381, 525, 725, and 1000 s/mm? for intravoxel incoherent motion (IVIM). IVIM was fitwith
constraints on the perfusion fraction, f,, and the pseudo-diffusion coefficient, D* (0-50% and 5-150x107
mm?/s, respectively); when parameters converged to these limits, the corresponding pixel was excluded
from the map. ‘Repeat Scans’ highlight variation in D* in a second scan session. ‘ROI Positioning’ showsan
By Coner D h et ey S G R Ot o G o Gh B Ty muSeular et TRk
include root-mean-square error (RMSE) and baseline offset (bsl) maps, both in signal units, generated from
a monoexponential fit with diffusion sensitization in the slice direction; a water/fat image formasking
residual fat (a b = 5000 s/mm?image, purple, overlaid on an mDIXON water image, green); and an
mDIXON fat image. Also shown are b = 0 and noise images used to calculate SNR. ADC = apparent diffusion
coefficient, DDC = distributed diffusion coefficient, a = stretching parameter, and K = kurtosis.

Fig. 8
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SUPPLEMENTARY METHODS

M odeling of Lipid and Noise Signals
Each model described inthe main text wasinvestigated with regardsto suitablelipid and noise

compensation terms. Monoexponential, stretched exponentia (SE), kurtosis, and  intravoxel

incoherent motion (1VIM) fitting functions were each applied with: 1) no offset; 2) witha
baseline offset, €; and 3) abaseline offset plus anoise parameter, &. Furthermore, each of these

variants were assessed with arange of maximum b-values, brax, in order to assess their

performance with or without high b-value sampling. For thereader’s convenience, each of the
fitting functionsarelisted here.

BaseFitting Functions. Thesimplest diffusion-weighted imaging (DWI1) fitting functions
assessed consisted of the monoexponential, SE, kurtosis, and 1VIM functions without abaseline

offset or noise correction, as follows.

» Monoexponential:
S=Smee€XP(~bADC), (S1)
where Sisthe observed signal, Smusle isthe signal at b = 0, and ADC isthe apparent  diffusion

coefficient.
* Stiretched exponential (SX):

S=S mese&p(~(bDDC) ), (S2)

where DDC is the distributed diffusion coefficient and o is the stretching parameter, with
O<a<2.

* Kurtosis:
S=Smsie &P (_bDDC+B’DDC? (K -3)/6) (S3)

where K iskurtosis, with K > 1,and K = 3 indicates monoexponentia diffusion.

* Intravoxel incoherent motion (IVIM):

( )

S= %,mme( foexp -bD +1-f_  exp -bADC ", (S4)

a biexponential fitting function wheref; is the perfusion fraction and D isthe pseudo-diffusion
coefficient. Thiswasthe IVIM function that was used in themain  text.

Baseline Offset. A baseline offset, &, was added to each fitting function to compensate for
lipid signals and noise. This modifies the observed signal, S as follows:

Ss=S+ ¢, (S5)
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creating four new functions. These were the functions applied in the main text, except for IVIM.

Noise Correction. A noise parameter, &, wasincluded in addition to the baseline offset to
further compensate for noise signals, as described by Jones and Basser (2004). This can serve to
mitigate biases in the baseline offset fitting functions when no lipid signals are present. The

basdline offset models are modified as follows:

Sonoe =V +E (S6)

creating another 4 functions, for atotal of 12 variants.

Numerical Simulations
Simulations were run using methods similar to those described in the main text. Firstly, diffusion
signal decays were generated as per Equations S1-S4 using the following input values: ADC =

2.0x10° mm?s, DDC = 2.0x10° mm?%s, K = 3.3, f, = 10%, D" = 25.0x10°° mm?/s, and a = 0.9.
Constant baseline offsets were added to these datato  produce fat signal fractions of 0—25%,
in steps of 0.25%, relative to the fat-free, b = 0 signal amplitude, with the range of fat fractions

being chosen to correspond to values seen experimentally with atypical  DWI acquisition.
For each fat fraction, zero-mean Gaussian noise, with standard deviation (SD) o, was added

to both the real and the imaginary parts of the complex signal to produce a range of signal-to-

noise ratios (SNRs) defined by S(0) Jo . Magnitude data were generated for SNR = 1-50, in
steps of 0.5, each with 250 noise realizations, and noiseless data were generated for the case of

infinite SNR.
Data were then fit using each of the functions described in the ‘Modeling of Lipid and Noise

Signals’ section, using the same set of b-values listed in the main text: O, (IVIM 10, 18, 33, 60,

110), 276, 381, 525, 725, 1000, 1380, 1904, 2627, 3624, and 5000 Ymm?. However, separate
analyses were performed to investigate how each fitting function was affected by the choice of

bmeax. To this end, additional curve fits were performed using subsets of  the aforementioned b-

values, where bma Was chosen as 1000, 1380, 1904, 2627, 3624 or 5000 mm?, wherea larger
bmex implies a greater number of points for fitting. For each of these analyses, the bias and

dispersion of parameter estimates were calculated according to Equations 8 and 9 in the main

text.
It should be noted that IVIM signal decay curves were log-transformed and  subjected to a

linear fit (up to b = 1000 Ymm?) to estimate (1- fp) and ADC prior to curve fitting with a bi-
exponential function. These parameters were inserted into the bi-exponentid fit as fixed terms;

thus, ADC and f, were not affected by the inclusion of baseline offset and noise  parameters.
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Furthermore, in these analyses, IVIM bi-exponentia fitting was also investigated for bmax Up  to

5000 mm?, unlike in the main text where the IVIM model used bmax = 1000 S/mm?.

Estimating the Effect of Lipidson Monoexponential Fittingin an Aging Cohort
To explore the potential influence of lipid signals on results reported in the literature, additional

simulations were run with the b-value scheme used by Galban et a. (2007). These simulations
were identical to those described in ‘Numerical Simulations’, except for the following

differences: only monoexponential signal decays were generated, with ADC = 2.0x10°  mm?/s;

the range of fat signal fractions was 0—50%, in steps of 1%; the SNR range was 1-50, in steps of
1; 250 noise redlizations were generated; and simulated data were log-transformed and fitted with

afirst-degree polynomial, using Galban’s b-value scheme (b = 0 and 400 s/mm?).

SUPPLEMENTARY RESULTS & DISCUSSION

Colored matrix plots for each model are shown in Supp. Figs. 1-4, arranged according to their
respective base model: monoexponential, SE, kurtosis, and IVIM. Furthermore, plots  are

subdivided by fitting function, the equations for which are shown alongsidethe data.

Numerical Simulations

Base Fitting Functions. When baseline offset and noise parameters were  excluded from
fitting, ADC and DDC estimates were strongly, negatively biased by lipid signalsfor all four

models, with the bias becoming more pronounced for higher values of bma. However, when lipid

content was less than ~3% and SNR was greater than 10, the bias was near-zero. In general,
diffusion coefficients showed similar bias trends across all models; dispersion typicaly

approached an asymptote at SNR~5, decreasing with increasing bmax for the kurtosis  model,
remaining relatively constant with bmax for the SX model, and increasing with bmax  for
monoexponential ADC—see Supp Fig. 1.

Kurtosis DDC estimates were the least biased by lipid signals, particularly for low  bmax

(Supp. Fig. 3). This may be due to the K parameter fitting the lipid baseline—an interpretation
that is supported by the concomitant increase in K estimation bias for these data. Generally, the

biasin K was consistent across the range of bmax values, being dominated by poor detection of the

kurtosis model’s quadratic term at low bmex, and by lipid-related errorsfor high bmax. The
dispersion in K estimates decreased gradually with increasing  bmax.
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Supplementary Figure1: Biasand dispersion in monoexponential parameterswith and without
a baseline offset in Monte-Carlo simulations. Colored matrix plots show relative bias (B%) and
dispersion (D%) of estimated apparent diffusion coefficients (input ADC = 2 x 10° mmzls). Results
are shown for fitsincor porating a baseline offset, fits with no offset, and fits with an offset plus noise
correction. Individual matrix plots are shown with SNR along the x-axis (1-50 in increments of 1),

with a separate column for infinite SNR, and fat signal fraction on the y-axis (0-25% in steps of 1%).

Turning to the SX model’s a parameter (Supp. Fig. 2), this showed trends in estimation bias
that were similar to those for the diffusion coefficients, with bias worsening with increasing bmax.
The dispersion in o was small and consistent across the bmax range.

For the IVIM model (Supp. Fig. 4), linear fitting of the log of the diffusion signal produced
ADC and f, estimates that were strongly sensitive to lipid signals, with the latter showing large
bias and dispersion even for fat fractions of 2-3%. The pseudo-diffusion coefficient, D*, showed a
monotonic relationship with fat fraction, though the slope of thisrelationship changed signasa
function of SNR. though its dispersion was typically >100% for most simulated SNRs. Its

dispersion worsened slightly withincreasing bmax, while biasminorly improved.
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Supplementary Figure2: Biasand dispersion in stretched exponential parameter swith and
without abaseline offset in Monte-Carlo simulations. Colored matrix plots show relative bias (B%)

fraction on the y-axis (0-25% in steps of 1%).

and dispersion (D%) of estimated distributed diffusion coefficients (input DDC = 2 x 103 mm2/s), and
stretching parameters, (input o = 0.9). Results are shown for fitsincor porating a baseline offset, fits

with no offset, and fits with an offset plus noise correction. Individual matrix plots are shown with
SNR along the x-axis (1-50 in increments of 1), with a separate column for infinite SNR, and fat signal
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Baseline Offset. After adding a baseline offset parameter, without a noise term, ADC and
DDC estimates were relatively unbiased for all fat-fractions. However, a bias was observed at
low SNRs and low fat fractions, particularly for monoexponential ADC (Supp. Fig. 1.) and SX
DDC (Supp. Fig. 2), wherethiseffect persisted up to SNR~30. Dispersionin diffusion coefficient
estimateswas generally larger when abaseline offset parameter wasincluded; however, higher
bmax values provided a better baseline fit, with dispersions at bmax = 5000 s/mm? bei ng similar to
those for data fit with no baseline offset or noise parameters.

Much like for diffusion coefficient parameter estimation, addition of an offset mostly
eliminated fat-related biasin o and K (Supp. Figs. 2 and 3); however, the minimum SNR needed
to avoid large dispersion increased when an offset was added, particularly for low values of bmax.
Furthermore, for K, the addition of an offset fli pped the bias polarity—Ieading to strong, negative
biasesat low SNRs, particularly for |ow bmax values.

Adding a baseline offset to the IVIM fitting function caused the polarity of the D" estimation
biastoflip at low SNRs (Supp. Fig. 4), becoming strongly positive; however, at high SNRsit was
performed similarly to the base IVIM fitting function. The dispersion in D wassimilar in
magnitude to that in data fit without a baseline offset. Fat fractions of 10% or grester led to a

large negative biasand small dispersionin D" estimation, producing largeerrorsinD”.

Noise Correction. Upon fitting with both a baseline offset and a noise parameter, ADC and
DDC estimates became slightly more sensitive to fat-related bias versus fitting with an offset
alone, though the noise related bias at 0% fat was reduced. For monoexponential ADC (Supp.
Fig. 1) and SX and kurtosisDDC (Supp. Figs. 2 & 3) dispersion was dlightly larger than for data
with abaseline offset alone, though the use of higher bmax valueswas seen to mitigate this effect.

The use of baseline offset and noise parameters also slightly increased the sensitivity of a to
fat-related biasat higher fat fractions, but the biasat low fat fractions wasimproved (Supp. Fig.
2). Dispersion was similar to that observed for the “offset only” model.

Addition of anoise parameter made very little difference to the biasand dispersionin K
(Supp. Fig. 3), relativeto datafit with an offset only.

Dispersionin D estimation (Supp. Fig. 4) was little influenced by the addition of a noise
parameter; however, thebiasin D" was more similar to that seen for thebase I VIM fitting

function datarather than the ‘baseline offset’ data

Summary. In general, diffusion parameter estimation performs well without baseline offset
or noise parameters provided thefat fraction is sufficiently low, and SNR issufficiently high. The

choice of bmax values only becomesimportant when estimating kurtosis, or when considerablefat
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Supplementary Figure 3: Biasand dispersion in kurtosisparameterswith and without a baseline

offset in M onte-Carlo simulations. Colored matrix plots show relative bias (B%) and dispersion
(D%) of estimated distributed diffusion coefficients (input DDC = 2 x 10 mm?/s), and kurtosis, (input
K = 3.3). Results are shown for fitsincor porating a baseline offset, fits with no offset, and fitswith an

offset plus noise correction. Individual matrix plots are shown with SNR along the x-axis (1-50 in
increments of 1), with a separate column for infinite SNR, and fat signal fraction on the y-axis (0-25%

in steps of 1%).
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Supplementary Figure 4: Bias and dispersion in intravoxel incoherent motion (IVIM)
parameters with and without a baseline offset in Monte-Carlo simulations. Colored matrix plots
show the relative bias (B%) and dispersion (D%) of estimated apparent diffusion coefficients (input
ADC = 2x10° mn12/s), perfusion fractions (input f,,= 10%), and pseudo-diffusion coefficients (input
D" = 25 x 10 mm?/s). Results are shown for fitsincorporating a baseline offset, fits with no offset, and
fits with an offset plus noise correction. Individual matrix plots are shown with SNR along the x-axis
(1-50inincrements of 1), with a separate column for infinite SNR, and fat signal fraction on they-axis
(0-25% in steps of 1%).

contamination is present: the greater the bmax, the more sensitive parameter estimationisto lipid
signals. Noise biasin experimental datacould be mitigated by removing high b-values, as shown
by Marschar et a. (2015); however, particular care must be taken with the kurtosis model, where
high b-values are needed to detect kurtosis.

Use of a baseline offset parameter becomes useful for high SNR DWI data that are known to

contain lipid signals, small or large: for example, in DWI signal decays that are generated from
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Supplementary Figure5: Monte-Carlo simulation data showing biasand dispersionin the
appar ent diffusion coefficient (ADC) for alow b-valueacquisition. Colored matrix plots show the

relative bias and dispersion of estimated ADC, with parameters asfollows: monoexponential decay,
input ADC = 2.0x 10 mm?/s, linear fit to log-transfor med data with b = 0 and 400 s/mn’, and 250

noise realizations. Plots show SNR increasing along the x-axis and fat signal fraction (%) increasing
along they-axis, both from oneto fifty in increments of one. The color map for relative bias and

dispersion waslimited to +50% to improve color contrast between different fat signal fractions. As
shown, small changesin fat fraction can lead to relatively large negative biasesin ADC estimates.

regions of interest rather than on a pixel-by-pixel basis. However, use of abaseline offset term
typically led to a noise-related bias at low SNRs and ~0% fat fraction, and was detrimental to D’

estimation—Ieading to large biases of varying sign without any improvement in  dispersion.

Further addition of a noise parameter to DWI fitting functions mitigates the noise bias seen at
~0% fat fraction with baseline offset fitting functions; however, thisleadsto small increasein

lipid sengitivity, with no improvement to bias or dispersion in D’ estimation for the [VIM  model.

Ingeneral, DWI fitting functionsincorporating baseline off set and noi se parameters may be
of usefor datawith middling SNR and low to middling fat fractions.

Estimating the Effect of Lipidson M onoexponential Fittingin an Aging Cohort
Fitting thelogarithm of amonoexponential signal decay using afirst-degree polynomial ledto

substantial lipid sensitivity in estimated ADCs (Supp. Fig. 5). Biasin ADC estimation was

consistent acrosstherange of SNRsinvestigated, though it approached an asymptoteat SNR ~ 5;
biasworsened with increasing fat fraction at the rate of -10% for every 5% fat fraction added.

Dispersion was more dependent on SNR, only dlightly increasing asfat fraction increased.



