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Abstract

This paper presents a novel user-aided method for texture-preserving shadow removal from single images requiring

simple user input. Compared with the state-of-the-art, our algorithm offers the most flexible user interaction to date

and produces more accurate and robust shadow removal under thorough quantitative evaluation. Shadow masks are first

detected by analysing user specified shadow feature strokes. Sample intensity profiles with variable interval and length

around the shadow boundary are detected next, which avoids artefacts raised from uneven boundaries. Texture noise

in samples is then removed by applying local group bilateral filtering, and initial sparse shadow scales are estimated

by fitting a piecewise curve to intensity samples. The remaining errors in estimated sparse scales are removed by local

group smoothing. To relight the image, a dense scale field is produced by in-painting the sparse scales. Finally, a gradual

colour correction is applied to remove artefacts due to image post-processing. Using state-of-the-art evaluation data, we

quantitatively and qualitatively demonstrate our method to outperform current leading shadow removal methods.
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1. Introduction

Shadows are ubiquitous in natural scenes, and their re-

moval is an interesting and important area of research. As

well as a motivation to solve this problem for artistic image

editing, shadows can affect the performance of many com-5

puter vision algorithms. For example, unwanted shadow

boundaries can cause artefacts in image segmentation and

contribute to drift when tracking given moving objects and

scenes.

In this paper, a semi-automatic method is proposed10

for high-quality shadow removal using user-defined flexi-

ble single strokes covering the shadow and lit pixels. Our

method sacrifices full autonomy for extremely simple user
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input, as opposed to existing manual approaches that re-

quire fine-scale input, e.g. accurate shadow contours. Given15

detection, our method produces accurate shadow removal

optimised for robust penumbra recovery. Using the current

state-of-the-art shadow removal ground truth dataset [1],

our solution is quantitatively evaluated against other lead-

ing methods and demonstrates notably improved perfor-20

mance. Numerous visual comparisons of our method ver-

sus existing methods are also presented, demonstrating

qualitatively more pleasing results. Our approach repre-

sents what we believe to be a state of the art technique for

shadow removal with a thorough evaluation against the25

current leading approaches.

1.1. Related Work

A shadow generally consists of an umbra and penum-

bra area. The umbra is the darkest part of the shadow
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while the penumbra is the wide outer boundary with a

gradual intensity change between the umbra and lit area.

The penumbra scale is non-uniform and shadowed surface

textures generally become weaker within it. A shadow im-

age I+c can be considered to be a Hadamard product of a

shadow scale layer Sc and a shadow-free image I∗c as shown

in Eq. 1.

I+c = I∗c ◦ Sc (1)

For a lit pixel, the illumination is constant in both shadow

and shadow-free images. For a shadow pixel, its intensity

in a shadow image is lower than its intensity in the shadow-30

free image. Consequently, the scales Sc of the lit area are

1 and other areas’ scales are between 0 and 1.

However, most images appearing on the Internet are

not linear images. These images have commonly been

post-processed by some non-linear image processing algo-35

rithms such as gamma-correction, JPEG compression, and

non-linear filters. After a linear shadow recovery process,

contrast artefacts can appear in the shadow areas [2].

Approaches to shadow removal can be categorised as

either automatic [1, 3–8] or user-aided [2, 9–11]. The prob-40

lem can be broken down into two stages: shadow detection

and shadow removal.

Automatic approaches do not require any user interac-

tion but risk inaccurate shadow detection or require spe-

cial setups for capture which do not work for general im-45

ages. Intrinsic image based methods are a popular branch

of automatic techniques (e.g. [3, 4]). The decomposition

of intrinsic images provides shading and reflectance infor-

mation but can be unreliable leading to over-processed

results. The decomposition is generally based on an as-50

sumption that the illumination change is smooth or the

refectances of the scene lies on an illumination-invariant

direction. Another branch of techniques are shadow fea-

ture learning based methods [1, 12–16]. However, detec-

tion can be often unreliable due to limited training data55

and the quality of initial image edge detection and seg-

mentation. Several approaches [12–14, 16] detect shadows

by classifying edges in images using edge features, e.g. in-

tensity, texture, chromaticity and intensity ratio. Graph-

ical models [1, 15] can also form the basis of detection.60

Yao et al. [15] detect shadow by using a reliable graph

model and colour features to classify pixels. In their ap-

proach, each pixel is a node with encodes node reliability

based on strength of shadow feature, and node relation-

ships described using similarity between neighbours. Guo65

et al. [1] detect shadows by classifying segments in images

that adopt similar shadow features and remove shadows

using a variant alpha-matting algorithm. Some methods

apply additional active light sources to capture shadowless

objects, e.g., by comparing images with an illumination70

source at different positions [5] and comparing flash and

no-flash image pairs [6]. However, active lighting restricts

the types of scene that shadow removal can be applied to –

as using special lighting setups outdoors is often not prac-

tical. Other methods adopt optical filters to acquire multi-75

spectral information to achieve illumination detection, e.g.

by comparing NIR and RGB images [7] and by compar-

ing RGB and single-colour-filtered images [8], but these

methods are generally limited to special scenario cases,

e.g. sunlight and non-black surfaces.80

User-aided methods generally achieve better shadow

detection and removal at the cost of user input. Wu et

al. [9] require a high degree of user intervention where mul-

tiple regions of shadow, lit area, uncertainty and exclusion

are identified. They apply a Bayesian optimisation to de-85

rive a shadow matte and a shadow-free image. Others [10,

11] require fine input defining the shadow boundary. Liu

and Gleicher [10] proposed a curve fitting method and a

global alignment of gradients to acquire shadow scales but

have issues when relighting the umbra and can introduce90

artefacts at uneven boundaries. Shor and Lischinski [17]

detect shadow using image matting from a grown shadow

seed. They only require one shadow pixel as input, but

have limitations in cases where the other shadowed sur-

faces are not surrounded by the initially detected surface95
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or when the penumbra is too wide. Arbel and Hel-Or [2]

apply a thin-plate model to the intensity surface. They

require users to specify multiple texture anchor points to

detect the shadow mask but the input overhead increases

when shadows are distributed in multiple regions. Su and100

Chen [11] developed a method to estimate shadow scales

using dynamic programming. Their gradient alignment

for intensity samples allows for less accurate user inputs

compared with [9, 10]. They also provide a healing tool

for users to manually amend artefacts in highly-curved105

shadow boundary segments. Gong and Cosker [18] intro-

duced a fast approach which categorises intensity profiles

into several sub-groups and derives the shadow scales for

each of them. They require two types of scribbles for mark-

ing lit and shadow pixels. Similarly, Zhang et al. [19] re-110

quire the same user input of [18].However, their method

requires a shadow matte (guided by the user’s scribbles)

to identify shadows, which is sensitive to user-scribbles be-

cause their image matting is affected by pixel location.

To date, most shadow removal methods [2, 9–11, 19]115

have only been evaluated by visual inspection on some

selected images – with only a few exceptions performing

quantitative evaluation. Guo et al. [1] provided the first

public ground truth data set for shadow removal and per-

form quantitative testing. However, their error measure-120

ment is variant to the size and darkness of shadows and

some of their shadow-free ground truth shows inconsis-

tent illumination compared with the lit area of their cor-

responding shadow images.

1.2. Contributions125

Given our overview of state of the art approaches, 3

main contributions are proposed:

1) Simple user input: Past work, e.g. [2, 9–11], re-

quires precise user-input defining the shadow boundary.

Our method only requires users to define some single rough130

strokes covering related shadow and lit pixels – without

the need to differentiate between samples in shadow and

lit areas.

2) Intelligent sampling: Adaptive sampling with vari-

able intervals and lengths is proposed to address shadow135

boundary artefacts in past work [2, 10], which uses fixed

intervals and lengths. Unlike past work [2, 10, 11], unqual-

ified samples are intelligently filtered. These can affect the

quality of shadow scale estimation, e.g. samples with high

noise or sampling lines passing through boundaries caused140

by occlusions or strong background texture.

3) Robust scale estimation Fast local group processing

is proposed for selected samples and initially estimated

scales to improve smoothness of shadow removal. Post-

processing effects cause inconsistency in shadow corrected145

areas compared with the lit areas both in tone and con-

trast. Without introducing chromatic artefacts, colour-

safe correction is proposed to amend the scales.

To summarise, the paper presents several solutions to

improve shadow removal quality, and these have been quan-150

titatively verified using robust error measurement and the

standard data set in this area [1].

2. User-Assisted Image Shadow Removal

In this section, our algorithm is first described in brief

before being expanded on with technical details for each155

of its components. Our algorithm consists of 4 steps (see

Fig. 1):

1) Pre-processing (§2.1) A shadow mask is detected

(Fig. 1 (b)) using a KNN classifier trained from K-Means

clustered data from user inputs (e.g. Fig. 1 (a)). A fu-160

sion image is generated, which provides an illumination-

insensitive layer, by fusing the channels of YCrCb colour

space and de-noising (Fig. 1 (c)).

2) Intensity sampling (§2.2) Intensity profiles are ob-

tained for sampling lines perpendicular to shadow bound-165

aries. Poor samples are filtered based on similarity of il-

lumination change (Fig. 1 (d)) and de-noised using direc-

tional bilateral filtering (Fig. 1 (e)).

3) Estimation of shadow scale and relighting (§2.3)
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(a)

(b)

(c)

1) Pre-processing
(§2.1)

invalid length
invalid quality

(d)

(e) (f) (g) (h)

2) Intelligent sampling
(§2.2)

scale fitting

(i)

(j)

3) Estimation of shadow
scale and relighting (§2.3)

(k)

(l)

4) Gradual colour cor-
rection (§2.4)

Figure 1: Shadow removal pipeline. (a) input: a shadow image and user strokes in white covering both shadowed and lit pixels; (b) detected

shadow mask; (c) fusion image; (d) initial penumbra sampling: the blue lines are valid samples, the other lines are invalid samples. The

original single stroke has been divided into lit (red) and shadow (blue) parts; (e) boundary image of samples; (f) re-lit and filtered boundary

image; (g) re-lit boundary image after boundary artefact removal; (h) rectified shadow scale of boundary image (each column refers to the

scales for a sample); (i) sparse shadow scales; (j) dense shadow scales; (k) initial shadow-free image; (l) colour-corrected shadow-free image.

Given the filtered intensity samples, these are fit through170

and relit (Fig. 1 (f)) using a piece-wise cubic curve and a

boundary image of the samples (Fig. 1 (e)). Any remain-

ing boundary artefacts are removed using directional scale

suppression (Fig. 11(g)) over the boundary image. Fitted

sparse scales are propagated (Fig. 1 (h-i)) to generate a175

dense scale field (Fig. 1 (j)). Shadows are then removed

(Fig. 1 (k)) by inverse scaling using this dense scale field.

4) Gradual colour correction (§2.4) Any remaining

shadow removal artefacts due to image post-processing

are finally treated with our colour correction (Fig. 1 (l)).180

This uses statistics around penumbra boundaries and the

shadow scale field.

2.1. Pre-processing

Pre-processing provides a shadow mask and a fusion

image to assist intensity sampling (§2.2). Determining185

the initial shadow mask is the first step of shadow re-

moval and is required in many previous methods including

[1, 2, 10, 18, 19]. Although some methods can achieve au-

tomatic shadow detection, these results are dependent on

the quality and variation of training data. In this work, all190

that is required is the user to supply single strokes covering

related shadow and lit pixels (Fig. 1 (a)) – the remaining

differentiation and recognition is fully automatic. Under

many circumstances, our interaction is easy to perform as

it does not require users to explicitly distinguish between195

shadow and lit pixels. The pixels covered by the single

user stroke are first classified as either shadow or lit pixels

using K-Means clustering [20]. K-means is applied for this

task because it is unsupervised and no training samples for

differentiating shadow and lit pixels are provided by a user.200

The feature used for clustering is the normalised RGB in-

tensity and the normalised pixels coordinates. The cluster

with the lowest mean for its RGB intensity is considered

as a shadow cluster and vice versa. The classified input

pixels’ RGB intensities are used as the training features205

to construct a KNN classifier [21] (number of neighbours:

3). Euclidean distance is used as the distance measure

and the majority rule with nearest point tie-break as the

classification measure. KNN is applied for this task as it

is a supervised algorithm that divides data entries into 2210
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clusters. The input image can be binarised as a shadow

mask, e.g. Fig. 1 (b), using the pixel-wise KNN classifier.

We adopt a fusion image [18] for assisting intensity

sample collection. The fusion image provides an illumination-

insensitive layer, e.g. Fig. 1 (c). It can be obtained by

linearly fusing the channels of YCrCb colour space. The

fused image Fp is computed as a weighted sum of the 3

normalised channels Cl as follows:

Fp = (

3∑
l=1

Clϕ(σl))/(

3∑
l=1

ϕ(σl)) (2)

where l is the channel index, σl is the standard derivation

of the umbra sample intensities of Cl. ϕ is an exponen-

tial incentive function for determining the weight for each

channel.

ϕ(x) = x−5 (3)

where x is the pixel intensity. Lower variation of intensity

is preferred as it means higher intensity uniformity in the

umbra segment. To suppress texture noise, a median fil-215

ter [22] with size h1 (default: 10) filter window is further

applied to Fp.

2.2. Intensity Sampling

Our intensity sampling rejects inferior intensity sam-

ples for robust shadow scale estimation. There are 3 steps:

1) Adaptive raw intensity sampling RGB intensity

profiles are extracted along sampling lines perpendicular to

the shadow boundary, e.g. Fig. 1 (d), where the boundary

is obtained from the shadow mask. To accelerate shadow

scale estimation, sampling lines are not measured at each

shadow boundary point. Sparse and fixed distance sam-

pling intervals are also avoided, as this may cause arte-

facts at highly uneven boundary segments [2, 10]. Instead,

smaller sampling intervals are adaptively assigned at seg-

ments along the shadow boundary based on curvature.

Our intention is to sample more intensity samples for curve

shadow boundary segments. We compute a curvature ar-

ray C which stores the curvatures of all shadow boundary

points. A sampling mark is set for shadow boundary point

when its normalised absolute curvature is greater than a

threshold h2 (default 0.05) as shown in the first case of

Eq. 4.

Dm =



1,
|Cm|∑N
i=1 |Ci|

> h2

1, m = 1 or m = N

1,

4∑
i=1

Dm−i = 0

0, Otherwise

(4)

where N is the number of boundary points, m specifies

the index of boundary points, D is the sampling mark ar-220

ray. The mth shadow boundary point is set for sampling

if Dm = 1. To provide enough intensity samples for image

borders, the first and last boundary points are also set for

sampling (second case in Eq. 4). If the boundary is nearly

straight, the sampling interval for that segment is fixed to225

a maxima h3 (default: 5) as shown in the third case of

Eq. 4. As shown in Fig. 2, our variable sampling interval

avoids penumbra removal artefacts around sharp bound-

ary segments.

To adapt the variance of penumbra softness, the length of230

a sampling line is guided by the fusion image. This prob-

lem is equivalent to finding the locations of the two ends

of a sampling line. A bi-directional search [18] is applied

from each boundary point towards the lit area (end point)

and the shadow area (start point) as described in Algo-235

rithm 1. The start and end points are initially set as the

boundary point pb. To get the position for a start point,

the boundary normal nb is iteratively subtracted from the

start point (vice versa for the end point) until the average

of two ends’ projected gradient strength (Ls and Le) is240

small enough (controlled by an attenuation factor h4 with

a default value 5) or either of the ends is outside the range

of image coordinates.

2) Intensity sample selection Outlier intensity sam-

ples, e.g. Fig. 1 (d), can affect accurate shadow scale esti-245

mation and cause unnatural shadow removal results. Two

criteria are adopted for outlier detection: a) Length of
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(a) fixed interval 1 (b) fixed interval 2 [10] (c) variable interval

(d) original (e) fixed 1 (f) fixed 2 [10] (g) variable

Figure 2: Comparison of sampling scheme. The white lines in (a), (b), and (c) are the sampling lines of the fixed interval using boundary-

perpendicular sampling, the fixed interval using horizontal/vertical sampling in [10], and our boundary-perpendicular variable interval sampling

respectively. (d) is the original image. (e), (f), and (g) are the corresponding shadow removal results of the three sampling methods respectively.

Algorithm 1: Sample End-Point Selection

input : boundary point pb, boundary normal nb,

fusion image Fp
output: two ends (ps, pe) of a sampling line

F̃ ←− ∇Fp; L ←− F̃ (pb) · nb;
ps ←− (pb); pe ←− (pb);

repeat

vs ←− F̃ ([ps]); ve ←− F̃ ([pe]);

Ls ←− vs · nb; Le ←− ve · nb;
ps ←− ps − nb; pe ←− pe + nb;

until either ps or pe is outside Fp or

h4(Ls + Le) < L;

sampling line. The minimum length of a sampling line

is 3 and the maximum length is lµ + 3lσ where lµ and

lσ are the mean and the standard derivation of sample250

length respectively. The samples whose lengths are out

of this range are removed; b) Similarity of illumination

changes. Outliers of intensity samples are often caused by

surface texture and such samples can affect illumination

change estimation. Fig. 3 shows a synthetic example of255

various intensity samples which better explains our mo-

tivation. A rough RGB intensity profile is obtained by

down-sampling each intensity sample to 3 pixels’ long us-

ing discrete cosine transform (DCT) [23]. This short in-

tensity profile is useful to cancel out texture noise. To260

obtain the features of illumination change, this short in-

tensity profile is converted to the Log-domain because the

multiplicative shadow scales (Eq. 1) become additive in the

Log-domain. The approximate derivatives for each chan-

nel of each Log-domain intensity sample are supplied as265

illumination change features. This results in a 6-D feature

vector for each intensity sample (two derivatives for each

RGB channel). We assume that the majority of illumina-

tion change features are close to each other and can form a

major cluster. The objective here is to find out the major270

cluster and discard the other minor clusters. A density-

based DBSCAN clustering method [24] (radius h5: 0.2) is

used to categorise the samples. The samples belonging to

the largest cluster are identified as the samples with valid

illumination change and the remaining invalid samples are275

discarded. DBSCAN is chosen for this task as it does not

constrain the number of clusters which is suitable for the

fact that many outliers are often located in uncertain num-

ber of smaller clusters distant to each other.

3) Sample de-noising Texture noise can still affect280

the smoothness of shadow scale estimation even when the

outliers are removed. Texture noise is removed from the

selected intensity samples using a directional (i.e. parallel

to normals of the shadow boundary) bilateral filter [25].

To achieve this, the raw intensity samples are first re-285
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1 2 3 4 5 6

Figure 3: Intensity sample selection example. The 6 marked trans-

parent blue lines are intensity sampling lines. Samples 1, 2, 5, 6

are classified as valid and the rest are invalid. Although the surface

materials of sample 1 and 2 are different, their illumination change

vectors are exactly the same and they both reflect true illumination

change. This is because for each of them, the surface material in the

shadow and lit areas are constant. Samples 3 and 4 are classified as

outliers because the surface materials in the shadow and lit areas are

varying. Sample 5 and 6 contain some varying surface materials, but

the variations of the surface material are not significant. Therefore,

they are still classified as valid samples.

sized as individual columns and their lengths are set as

the maximum length of all raw samples. These columns

are concatenated horizontally to form a boundary image,

e.g. Fig. 1 (e). A bilateral filter [25] is applied to each

RGB channel of this image to suppress texture noise. A290

Bilateral filter is chosen for this task as it removes texture

noise and preserves edge and smooth intensity change.

2.3. Estimation of Shadow Scale and Relighting

This sub-section explains the procedure for removing

shadows based on the processed intensity samples. The

following description of the algorithm is applied to the

samples of each detected shadow boundary. There are 3

steps:

1) Initial intensity fitting Having obtained filtered and

resized intensity samples at different positions along the

boundary, our goal is to find illumination scaling values in-

side the umbra, penumbra and lit area. The shadow scale

change function S for each RGB channel of each intensity

sample is modelled as follows (see also Fig. 4):

S(x) =


K 0 ≤ x ≤ x1

f(x) x1 < x ≤ x2

1 x2 < x ≤ 1

(5)

K

1

x1 x2

Umbra Penumbra Lit

Figure 4: Shadow scale model: x1 and x2 define the ends of a penum-

bra region. K is a scale of umbra intensity scale.

where x is a normalised pixel location within the sam-

pling line, x1 and x2 determine the start and end of the

penumbra area respectively, and K is a positive scale con-

stant for sample points within the umbra area (x < x1).

The constant 1 is assumed for the lit area piece (x > x2)

as this falls inside a lit area of the image and does not

require re-scaling. The function f is parametrised by K,

v1 and v2 as follows:
f(x) = (1−K)B(v1(x− v2)) +K

B(y) = −2y3 + 1.5y − 0.5[
x1 x2

]
= v2 + v−1

1

[
−0.5 0.5

] (6)

where B is a cubic shape function (a sinusoidal function

here also produces adequate results) and y is the input,295

v1 and v2 are two parameters used to define the shape

of the illumination change function and are linearly re-

lated to x1 and x2. Illumination of each channel usually

varies differently (e.g. outdoor shadows appear bluish) and

therefore 3 independent K (in Eq. 5) are estimated for300

each channel. B is a smooth curve with two zero 1st order

derivatives at both ends, which serves as a rough fit to the

intensity change and helps to locate the penumbra loca-

tion. Penumbra boundaries of the 3 channels are usually

the same. Consequently, a common penumbra width and305

position is assumed for each channel, determined by v1

and v2 respectively. This assumption of channel-invariant

penumbra location can make the optimisation more ro-

bust. This is because the intensity sample of one channel

can be very noisy but the others’ are not. In summary, for310

each sampling line, there are 5 parameters to solve in total.

The parameters can be solved by least squares fitting with
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a sequential quadratic programming algorithm [26]. The

fitted parameters of all sampling lines are also smoothed

by using a robust smoothing method (maximum iteration:315

100, weighting function: bi-square) [27].

2) Boundary artefact removal For some over-processed

images, directly relighting the sparse samples using the

fitted shadow scales may cause band-like artefacts in the

penumbra. Directional scale suppression (Fig. 1 (f-h)) is320

therefore applied. Fig. 5 shows an example of more obvious

boundary artefact removal. The band artefacts appear as a

/

(a) Ro (b) Rr (c) Rs

(e) Rfs (d) Rp

/

Figure 5: Boundary artefact removal pipeline. (a) The boundary

frame image Ro. (b) Initial re-lit image Rr. (c) The band-like arte-

fact image Rs extracted from Rr. Rs is visualised in the log do-

main. (d) Band-like artefact removed frame image Rp. (e) Amended

shadow-scale frame image Rfs.

pattern in each re-lit intensity profile (Fig. 1 (b)). To sup-

press these, the previously re-sized and filtered intensity

profile is first aligned according to the estimated penum-325

bra position (x1 and x2) so that the illumination change

of each resized sample is synchronised. The concatenated

boundary image is denoted as Ro. The boundary image

Ro is re-lit by inverse scaling according to Eq. 1 and the

resulting image is termed Rr. It is assumed that band-like330

artefacts are locally similar and a local group size h6 = 5

is specified for suppression. To extract the local band pat-

tern, horizontal filtering is applied to Rr using an average

kernel (size: 5x1) and the filtered image denoted as Rf . To

suppress the band-like artefact, the variance of each col-335

umn’s, i.e. each samples, intensities of Rf are minimised.

To achieve this, a variance image Rs is computed by di-

viding each column’s intensities of Rf by its corresponding

average intensity of that column. The artefact-free and re-

lit boundary image is computed as Rp = Rr � Rs where340

� is an operator for element-wise division. Finally, the

rectified scale image is computed as Rfs = Ro � Rp. The

sparse scales for each sampling lines corresponds to each

column of Rfs.

3) Relighting To obtain a dense scale field (e.g. Fig. 1345

(j)), the sparse scales in the penumbra region are processed

by smoothly interpolating and extrapolating the scales in

other regions by using a general image in-painting algo-

rithm [28]. Our adaptive intensity sampling (§2.2) pro-

vides enough shadow scale samples, in sub-pixel accuracy,350

for recovering dense shadow scales in the curve shadow

boundaries by using in-painting. The shadow-free image

(e.g. Fig. 1 (k)) can be obtained by inverse scaling accord-

ing to Eq. 1. As the dense shadow filed is formed by prop-

agating the shadow scales in penumbra, a wrong shadow355

scale estimate of a sampling line can produce wrong dense

scales for a wider region. Our previous efforts in filtering

bad intensity samples are thus crucial for this step.

2.4. Gradual Colour Correction

Some input images may have been significantly post-

processed, e.g. through JPEG compression or gamma cor-

rection. Highly visible artefacts, e.g. differences in tone

and contrast, may appear in shadow corrected areas as

Eq. 1 does not hold in such cases. To address this, a sim-

ple gradual colour correction is introduced which is gener-

ally compatible for unknown post-processing affects. This

step is only necessary for over post-processed images and

the difference may otherwise be insignificant for the other

images. The shadow removed image is first converted to

L*a*b* colour space because L*a*b* colour space is de-

signed for visual perception adjustment [29]. It is assumed

that the L*a*b* intensity variation of lower frequency is

accurate and the errors appear in the intensity variation

of higher frequencies. Fig. 6 shows the intermediate steps
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(c) Rs

- +

(a) Original (b) Filtered

(c) Variation (d) Aligned Variation

(e) Corrected

Figure 6: Gradual colour correction pipeline. The initial shadow-

removed image (a) exhibits inconsistency between originally-lit and

shadow-removed areas. This image is filtered (b) and used to extract

an image of higher-frequency variation (c). The variation of shadow

and lit areas are aligned. In (d), the original higher variation in

the shadow area is made consistent (i.e. suppressed) with the lit

areas’. The colour-corrected image is computed by adding (b) and

(d). The variation images (c, d) are displayed by applying a gamma

3 to magnify the difference.

of colour correction in corresponding to the result in Fig. 1

(l). Statistics are collected from the lit side pixels Pl and

the umbra side pixels Pu both near penumbra as the tar-

get and source of colour correction respectively. Ps de-

fines the set of all shadow pixels which include both um-

bra and penumbra pixels, i.e., Pu ⊂ Ps. In L*a*b* colour

space, the image of higher frequency intensity variation

Ih = Ir − I l is computed where I l is the initial shadow

removed image Ir filtered by a bilateral filter [25]. The ad-

justment is completed in L*a*b* colour space as described

in Eq. 7. rσ = ς(Ihc (Pl))/ς(I
h
c (Pu))

Irac (Ps) = I lc(Ps) + rσI
h(Ps)

(7)

where c is the channel index, Ira is the colour corrected360

image and the intensities of other unmodified pixel of Ira

are identical to those of Ir, Ps is the set of all shadowed

pixels, ς is a function computes the median absolute devi-

ation.

Since our colour correction is only applied to the entire

shadow segment, some minor intensity discontinuities may

appear in the shadow boundary after colour correction. To

smooth the colour correction result, an alpha blending is

applied in RGB colour space according to the shadow scale

as the follows

Ifc = Irc ◦ Ṡc + Irac ◦ (1− Ṡc) (8)

Ṡc(ẋ, ẏ) = max

(Sc(ẋ, ẏ)− S5%
c

1− S5%
c

, 0

)
(9)

where c is the channel index, x and y are the image coor-365

dinates, Sw is the normalised scale field of S, S5%
c is the

5% percentile of the values in Ṡc, Ifc is the final shadow-

free image. The 5% percentile value is used for shadow

scale normalisation instead of the minimum value because

sometimes the minimum value can be an outlier distant370

to the main cluster of a shadow scale distribution. The

maximum operation ensures that the normalised shadow

scale values are always non-negative. An example of this

alpha-blending effect is shown in Fig. 7.

Initial Removal Colour-Corrected

Figure 7: The colour-corrected image is blended with the initial

shadow removed image. The resulting blend avoids intensity discon-

tinuity at the shadow boundary. The zoom-in patches are makred

by two grey boxes above. A visible crack-like boundary discontinuity

is found in the middle of the left patch.

2.5. Customisable Parameters375

In Tab. 1, we summarise the important parameters

which users can optionally specify. Although fine tuning

these parameters (for an individual case) may improve the

shadow removal result, in practice, we only adopt a set of

default parameters for general shadow removal, which are380

then used for our following evaluation.

3. Evaluation

In this section, we first show results of tests highlight-

ing algorithm behaviour given variable user inputs. Our
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ID Description Value

h1 Filter window size of medium filter to sup-

press texture noise. (§2.1)

10

h2 Sampling curvature interval for placing

sampling lines (§2.1)

0.05

h3 Maximum boundry point interval for plac-

ing sampling lines (§2.1)

5

h4 An grandient attenuation factor for locat-

ing sampling line ends (§2.1)

5

h5 DBScan Radius for filtering bad intensity

samples (§2.1)

0.2

h6 Default local group size of sampling lines

(§2.3)

5

Table 1: Important parameters and their default values

algorithm is then evaluated versus other state-of-the-art385

shadow removal methods using both visual comparisons

and our improved quantitative evaluation measurements.

This includes an additional algorithm for ground truth rec-

tification on the current state-of-the-art open dataset [1].

3.1. Variability under Different User Inputs390

(a) single stroke test 1 (b) single stroke test 2

(c) result with 1 stroke (d) result with more strokes

Figure 8: Variable input behaviours: The top row shows two ex-

amples using single input strokes. We supply 10 examples of single

strokes placed in different locations and used as input (shown in dif-

ferent colours). The 2 grey-level images show the visualised probabil-

ity of each pixel being marked in these 10 independent tests. Fewer

grey pixels indicate higher stability, i.e. the image should only show

black (0% probability) and white (100% probability) pixels when it

is absolute stable. The bottom row shows examples highlighting how

additional strokes can improve the detection result (binary mask).

Given user-specified single strokes, our shadow detec-

tion generates stable results in different conditions (e.g.

Fig. 8 (a) and Fig. 8 (b)). When the shaded surfaces are

made of different materials and a single stroke cannot cover

all of them, multiple strokes may be needed. Often, more395

strokes can lead to more robust detection result (e.g. Fig. 8

(c) and Fig. 8 (d)).

3.2. Rectification of Ground Truth

In the dataset of Guo [1], many of the shadow-free

ground truth images are collected by entirely blocking the400

natural light in the scene. This unfortunately causes in-

consistency in the brightness between some shadow-test

images (e.g. Fig. 9 (a)) and corresponding shadow-free

ground truth (e.g. Fig. 9 (b)). This will result in un-

faithful quantitative evaluations in some test cases. To405

compensate for this, ground truth images of this kind can

be globally re-lit (e.g. Fig. 9 (c)) before evaluation. The

RGB scale vector for global relighting can be estimated

from the average RGB intensity of the common lit area.

Lit pixels are first detected using a ratio image Igr = I�Igt410

where I is the original shadow image, Igt is the shadow-free

ground truth, � is an operator for element-wise division.

K-Means clustering [20] is then used to divide the ratios

into two clusters and the cluster with higher average ratios

are identified as the lit cluster.

(a) Shadow Image (b) Original GT (c) Rectified GT

Figure 9: Ground truth adjustment: An example rectified shadow-

free ground truth image (c) obtained by correcting (b) shows a higher

consistency with the test image (a). Note that in the original ground

truth, the corrected image shows dark pixels as opposed to expected

light ones (corrected in our rectified example).

415

3.3. Quantitative Evaluation

In previous work [1], the quality of shadow removal is

measured by the per-pixel Root-Mean-Square-Error (RMSE)

between the shadow removal result and shadow-free ground

truth in RGB colour space. However, the size and darkness420

of a shadow are often variable and this can result in biased

shadow removal quality measurements. For example, an

unprocessed image with a small area of shadow can have

a smaller RMSE than the error of an image which has a
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large area of shadow that has only been partially corrected.425

Therefore, images with larger or darker shadows can affect

the overall score. Our error ratio is therefore computed as

Er = En/Eo where En is the RMSE between the shadow-

free ground truth and shadow removal result, and Eo is the

RMSE between the shadow-free ground truth and the orig-430

inal shadow image. All error measurements are assessed in

RGB colour space. This normalised measure reflects the

degree of shadow removal towards the ground truth inde-

pendent of original shadow intensity and size. To assess

the robustness, the standard derivation is also computed435

for each measurement.

Extending previous work on ground truth based evalu-

ation [1], we categorise shadows into different types. In our

test, additional scores for particular categories of shadows

with soft penumbra and strong texture background are440

shown. These special categories are included because they

are generally more difficult to process compared with low

texture backgrounds with compact shadows. Quantitative

results are presented in Tab. 2, where starred columns refer

to pixels just in the shadow region being considered, and445

non-starred columns refer to the entire image. Our method

outperforms the other approaches compared against for

most of the scores (especially for soft shadow tests). There

are a small number of our scores that are numerically close

to the second best ones. However, small numerical differ-450

ences may indicate visually significant artefacts which are

shown in the visual comparison sub-section (§3.4).

3.4. Visual Comparisons

Typical examples of our shadow removal algorithm are

shown for visual comparison in Fig. 10. Overall, our method455

produces more qualitatively pleasing removal results against

the evaluated methods specially for shadow boundary re-

covery. However, minor artefacts are sometimes noticeable

when the input image has a highly irregular soft penumbra,

or the background of the shadow area is highly shadow-460

like. Fig. 11 shows some difficult cases where shadows

are soft and broken or cast on a shadow-like background.

These typical examples of limitation cases identified in all

tested shadow removal methods represent future research

challenges in our field.465

4. Conclusion

A user-friendly shadow removal method has been pre-

sented that provides several innovations in this area of re-

search. This includes simple user input, intelligent inten-

sity sampling, a local group processing based shadow scale470

estimation and robust colour correction. The presented al-

gorithm has been quantitatively evaluated using the stan-

dard dataset in this area, and demonstrates state-of-the-

art performance. Visual comparisons are also presented

for a large number of shadow removal cases taken from475

the evaluation data set. Through our analysis, difficult

shadow removal cases such as broken and soft shadows,

and shadows on strong texture background have also been

identified. These represent exciting research challenges in

our area.480
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