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22 Abstract 
 

23 1.   A crucial step in the use of DNA markers for biodiversity surveys is the assignment of Linnaean 

24 taxonomies (species, genus, etc.) to sequence reads. This allows the use of all the information 

25 known based on the taxonomic names. Taxonomic placement of DNA barcoding sequences is 

26 inherently probabilistic because DNA sequences contain errors, because there is natural 

27 variation among sequences within a species, and because reference databases are incomplete 

28 and can have false annotations. However, most existing bioinformatics methods for taxonomic 

29 placement either exclude uncertainty, or quantify it using metrics other than probability. 

30 2.   In this paper we evaluate the performance of a recently proposed probabilistic taxonomic 

31 placement method PROTAX by applying it to both annotated reference sequence data as well 

32 as unknown environmental data. Our four case studies include contrasting taxonomic groups 

33 (fungi, bacteria, mammals, and insects), variation in the length and quality of the barcoding 

34 sequences (from individually Sanger-sequenced sequences to short Illumina reads), variation 

35 in the structures and sizes of the taxonomies (from 800 to 130 000 species), and variation in 

36 the completeness of the reference databases (representing 15% to 100% of the species). 

37 3.   Our results demonstrate that PROTAX yields essentially unbiased assessment of probabilities 

38 of taxonomic placement, and thus that its quantification of species identification uncertainty is 

39 reliable. As expected, the accuracy of taxonomic placement increases with increasing coverage 

40 of taxonomic and reference sequence databases, and with increasing ratio of genetic variation 

41 among taxonomic levels over within taxonomic levels. 

42 4.   Our results show that reliable species-level identification from environmental samples is still 

43 challenging, and thus neglecting identification uncertainty can lead to spurious inference. A 

44 key aim for future research is the completion and pruning of taxonomic and reference 

45 sequence databases, and making these two types of data compatible. 
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47 DNA barcoding, DNA metabarcoding, molecular species identification, multinomial regression, 
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52 Introduction 
 

53 In this paper, we use the term ‘DNA barcoding’ to refer to molecular species identification with 

54 the help of ‘barcoding’ genes, which are short sequences of DNA that vary greatly between 

55 species but little within species (Hebert et al. 2003). DNA barcoding has revolutionized biological 

56 studies by increasing the speed and reliability of assigning Linnaean taxonomies to biological 

57 specimens (Ratnasingham and Hebert 2007). When combined with high-throughput sequencing, 

58 barcoding can be applied to bulk samples or environmental DNA, which approach we call here 

59 ‘DNA metabarcoding’ (Taberlet et al. 2012; Yu et al. 2012). 
 

60 In the metabarcoding pipeline, DNA is extracted from a bulk sample containing potentially 

61 multiple species, a taxonomically informative gene is PCR-amplified, and the resulting PCR- 

62 products are sequenced. The raw sequence output is processed through a bioinformatics pipeline 

63 that includes denoising and removal of low quality and chimeric sequences, assignment of 

64 sequences to their samples, and grouping similar sequences into ‘operational taxonomic units’ 

65 (OTUs). OTUs are meant to represent distinct biological taxa, usually distinct species. The term 

66 OTU indicates that the clusters are not necessarily biological species but that they can be 

67 considered as species hypotheses. This is because OTUs are typically defined phenetically using a 

68 sequence-similarity threshold. Finally, in a crucial step, the researcher wishes to know the species 

69 identities behind the OTUs, i.e. to place them into a Linnaean taxonomy. 
 

70 Taxonomic placement of OTUs to high-level ranks (phylum, class, order) is relatively 

71 straightforward (e.g. Yu et al. 2012), whereas placement to lower ranks (family, genus, species) 

72 has remained more difficult. This is partly because of the limited information contained in the 

73 short sequences generated by high-throughput sequencing platforms, and partly because of the 

74 incomplete nature of reference databases, with missing taxa and limited within-taxon sampling 

75 (Lou and Golding 2012). Furthermore, widely applied methods for low-level taxonomic placement 

76 lack a proper assessment of identification reliability. For example, a user of the Barcode of Life 

77 Database System (www.boldsystems.org, accessed 5 Aug 2016) encounters the warning “this 

78 search only returns a list of the nearest matches and does not provide a probability of placement 

79 to a taxon”. As we discuss in more detail below, the ability to conduct reliable low-level taxonomic 

80 placement would make major contributions to species-level analyses, community-level analyses, 

81 as well as metabarcoding methodology itself. 

http://www.boldsystems.org/
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82 The value of assigning species names to barcoding sequences is that it allows one to link the 

83 samples to the rest of our vast biological knowledge (Janzen et al. 2005). For instance, if 

84 mammalian DNA isolated from a mosquito blood meal can be reliably assigned to red fox (Vulpes 

85 vulpes), it enables one to combine the sample with many other kinds of information. These may 

86 include information on the red fox’s behaviour, population growth rate, age structure, geographic 

87 distribution, habitat requirements, and trophic position, such as its top-down control of rodent 

88 vectors of Lyme disease (Levi et al. 2012). More generally, accurate low-level taxonomic 

89 placement of metabarcoding sequences improves many kinds of assessments of the structure and 

90 function of communities, and how these change over space, time, or environmental gradients. For 

91 example, species-level identifications of gut contents or faeces allows the construction of high- 

92 resolution food webs (e.g. Wood et al. 2015). As another example, environmental change can be 

93 inferred through species-level identification of ancient DNA, derived e.g. from lake sediments 

94 (Pansu et al. 2015). As a further example, in food and medicine, DNA barcoding can be used to 

95 improve food safety and wildlife forensics (Staats et al. 2016), e.g. through the detection of falsely 

96 labelled products (Wong and Hanner 2008) and forbidden ingredients (Coghlan et al. 2012). As a 

97 final example, metabarcoding can be used to monitor nature reserves and to detect endangered 

98 species, e.g. rare rainforest mammals from the residual blood meals of leeches (Schnell et al. 

99 2012). 
 

100 The ability to conduct accurate low-level taxonomic placement would also contribute to the 

101 metabarcoding methodology itself. Although OTUs are meant to represent single species, 

102 biological species can unintentionally be split or merged during OTU clustering. Accurate species- 

103 level taxonomic placement enables one to merge multiple OTUs that receive identical taxonomic 

104 placements. Conversely, cases in which a single OTU is assignable with equal confidence to 

105 multiple species can be used to identify taxonomic groups that would benefit the most from 

106 better reference databases or where taxonomic revision may be needed. In addition, accurate 

107 low-level taxonomic placement makes it easier to detect and remove contaminant OTUs. 
 

108 As demonstrated by the above examples, for many kinds of purposes it is of critical importance to 

109 know when we can and when we cannot reliably identify an OTU down to family, genus, or 

110 species. Many kinds of bioinformatics programs are currently available for taxonomic placement. 

111 These can be classified into three general categories: similarity-based, similarity/phylogeny-based, 

112 and phylogenetic-placement-based. The most common are those that compare the similarities 
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113 between the environmental sequences and the sequences of the reference database: BLAST 

114 (Altschul et al. 1997), MEGAN (Huson et al. 2007), BOLD (Ratnasingham and Hebert 2007), UTAX 

115 (Edgar 2013), NBC (Wang et al. 2007), and the Geneious Sequence Classifier (Kearse et al. 2012). 

116 Similarity-based methods find the most phenetically similar reference sequence, and they do not 

117 thus define taxonomic clades based on fundamental principles from systematic biology related to 

118 synapomorphies (shared, derived characters). The second category of similarity/phylogeny-based 

119 methods is represented by the Statistical Assignment Program (SAP), which first uses BLAST to 

120 create a group of sequence homologues for an OTU (Munch et al. 2008). Multiple phylogenetic 

121 trees are then generated for the OTU and its homologues, and taxonomic placement is guided by 

122 the summarised position of the OTU within the trees. The third category of phylogenetic- 

123 placement-based methods includes pplacer (Matsen et al. 2010) and the Evolutionary Placement 

124 Algorithm (EPA) (Berger et al. 2011). These methods first construct a single maximum-likelihood 

125 phylogeny from all available reference sequences, after which they place the OTUs within the 

126 phylogenetic tree. 
 

127 A major challenge affecting all taxonomic placement methods is that reference databases are 

128 incomplete, and that they may contain mislabelled reference sequences. This is especially 

129 problematic when trying to identify a sequence within a large taxonomic clade in regions of high 

130 biodiversity where many organisms have yet to be sequenced. Ideally, uncertainty due to 

131 incomplete or mislabelled reference sequences should result in taxonomic placement to higher 

132 taxonomic ranks, not to the most similar reference sequence that happens to be available. Thus 

133 far, only heuristic solutions to this problem have been proposed. For example, in MEGAN, a 

134 lowest-common-ancestor (LCA) assignment algorithm uses several best BLAST hits to determine 

135 the taxonomic level into which the assignment is given, but incomplete reference databases may 

136 still lead to false annotations. 
 

137 In our previous work, we developed the bioinformatics pipeline PROTAX (PRObabilistic TAXonomic 

138 placement, Somervuo et al. 2016) which accounts explicitly for incompleteness of taxonomic and 

139 reference databases. This is achieved by placing environmental sequences into a Linnaean 

140 taxonomy that is typically only partly populated by reference sequences. The taxonomic 

141 placements generated by PROTAX include known taxonomic units (species present in the Linnaean 

142 taxonomy) for which reference sequences are available, known taxonomic units for which 

143 reference sequences are not available, and unknown taxonomic units, such as species or genera 
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144 that are missing from the Linnaean taxonomy. A key feature of PROTAX is that it is probabilistic, 

145 i.e. it decomposes the probability of one among all possible assignment outcomes. In the ideal 

146 case, one of the outcomes obtains a high probability whereas the other taxonomic placements 

147 obtain probabilities close to zero. In ambiguous cases, several outcomes obtain a non-negligible 

148 classification probability, and thus reliable taxonomic placement can be achieved only at a higher 

149 taxonomic rank. PROTAX is based on a statistically rigorous model, making its classification 

150 probabilities unbiased, as shown in Somervuo et al. (2016) for simulated data and a small-scale 

151 empirical case study. In other words, if PROTAX assigns an 80% probability for placement to a 

152 given taxonomic unit for 100 sequences, the classification will be on average correct for 80 of 

153 those sequences, whereas it will not be correct for 20 of the sequences. 
 

154 This paper has two aims. The first aim is to evaluate the potential of DNA (meta)barcoding for 

155 obtaining species-level identifications, given the current state of taxonomic databases, sequence 

156 reference databases, and sequencing technologies.  The second aim is to evaluate the 

157 performance of PROTAX as a general tool for taxonomic placement. To address both aims, we 

158 apply PROTAX to four contrasting case studies, which differ greatly in their taxonomic scope 

159 (fungi, insects, mammals, and bacteria), the number of species involved, the coverage and quality 

160 of the reference databases, and the sequencing technology applied to environmental data. For 

161 each case study, we conduct two kinds of analyses. First, we examine how well PROTAX is able to 

162 classify validation sequences sampled from the reference database. Second, we apply PROTAX to 

163 environmental sequence data to examine the level of species identification resolution that can be 

164 expected to be achieved by different kinds of empirical studies. 
 

165 Materials and methods 
 

166 We consider four case studies, for each of which we use three kinds of data: a taxonomy database, 

167 a reference sequence database, and environmental sequences originating from an empirical study 

168 (Table 1). The case studies vary greatly in many aspects: their taxonomic scopes (mammals, fungi, 

169 insects and bacteria), the sizes and coverages of the taxonomies and the reference databases, the 

170 barcoding gene used, and the sequencing technology applied. These influence e.g. the level of 

171 overlap among genetic variation between consecutive taxonomic levels (Fig. 1), with obvious 

172 implications to the possibility of species-level taxonomic placement. As the four case studies vary 

173 simultaneously in many aspects, their comparison does not enable asking e.g. whether it is 
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174 generally easier to identify insects or fungi. Instead, they are selected to be diverse in order to 

175 illustrate the many kinds of issues that influence the accuracy of taxonomic placement. 
 

176 For each case study, we first utilized the taxonomy and reference sequence databases to 

177 parameterize the PROTAX statistical model. To do so, we followed Somervuo et al. (2016), except 

178 for small modifications that we describe below. We then used the parameterized model to classify 

179 a set of well-identified reference sequences, with the aim of evaluating the classification accuracy 

180 of PROTAX at different taxonomic levels, and to assess if the classification probabilities are 

181 unbiased. Finally, we clustered the environmental data to OTUs, roughly at the species level, 

182 picked the most common sequence to represent each cluster, and used the parameterized 

183 PROTAX model for probabilistic taxonomic placement of these OTUs. The aim here was to assess 

184 how large a fraction of environmental data can be reliably classified to each taxonomic level, and 

185 to examine which fraction of environmental sequence data represents the two unknown 

186 categories included in PROTAX: species that are present in the taxonomy but for which reference 

187 sequences are available, and species that are missing from the taxonomy. 
 

188 We first describe the three data types (taxonomy database, reference database, and 

189 environmental data) that we acquired for each case study, as well as make some remarks about 

190 the particularities of each case study. We then explain how PROTAX was fit to these data and how 

191 we assessed PROTAX’s performance in probabilistic taxonomic placement. 

 

192 Identifying mammals from leech blood meals 
 

193 Taxonomy database. We used the NCBI taxonomy (NCBI Resource Coordinators 2016) of all clades 

194 within Mammalia. This database has high coverage as it includes all 6674 species for which 

195 molecular data are available.  The taxonomy is classified to the four levels of order, family, genus 

196 and species. For some species, classifications to intermediate levels or species-level were missing. 
 

197 Reference sequence database. We used all available mammalian mitochondrial 16S rRNA gene 

198 sequences (mt 16S rRNA) downloaded from GenBank (Clark et al. 2016). We removed ambiguous 

199 bases and kept only sequences of length 300-1600 bp. We included at most 10 sequences of per 

200 species, resulting in a database of 2627 sequences representing 1315 different species. 
 

201 Environmental sequences. We used mammalian mt 16S rRNA gene sequences (see Schnell et al. 

202 2012 for further details on primer) derived from residual blood meals of ~20,000 haematophagous 
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203 leeches collected in the central Annamite mountains of Vietnam and Laos (Yu et al., unpublished 

204 data). DNA extraction was conducted using the Qiagen QIAquick PCR purification kit, and 

205 sequencing by Illumina HiSeq 2000. Raw reads were denoised with bfc (Li 2015), chimeras 

206 removed by UCHIME (Edgar et al. 2011), and the sequences assigned to samples using the QIIME 

207 (Caporaso et al. 2010) script split_libraries.py. The reads were clustered into OTUs at 98% 

208 similarity using CROP (Hao et al. 2011). OTUs that were not identified as vertebrate mt 16S rRNA 

209 based on BLAST against GenBank were removed. 
 

210 Remarks. As we use here individual, very short single-read (typically 100 bp) sequences provided 

211 by Illumina HiSeq, we aim to demonstrate how PROTAX performs in the case of high identification 

212 uncertainty, rather than attempting to identify the specimens as well as would be possible e.g. by 

213 including an assembly step. To illustrate the effect of sequence length, we parameterized the 

214 model both for full length and short length sequences. 
 

215 Identifying insects from individually sequenced specimens 
 

216 Taxonomy database. We compiled a list of all species of the class Insecta (excluding Psocodea) 

217 recorded in Greenland, based on Böcher et al. 2015, with additions from Wirta et al. (2016). The 

218 environmental sequence data (see below) comes from the same study region as that of Wirta et 

219 al. (2016), and thus the taxonomic database is expected to cover the species of the region 

220 relatively well. The 1332 taxa were classified to the four levels of order, family, genus and species. 

221 Most of the taxa were defined to species, but a fraction as a sole representative of a genus. 
 

222 Reference sequence database. We used barcode sequences of specimens collected from 

223 Zackenberg, Greenland. The reference database included the standard cytochrome c oxidase 

224 1 (CO1) barcode sequence for 241 morphologically identified insect species (deposited in BOLD 

225 under dataset dx.doi.org/10.5883/DS-ZACKANIM). 
 

226 Environmental sequences. We used 7939 CO1 sequences from insect tissue caught on sticky traps 

227 mimicking a flower in northeast Greenland. Each sequence (deposited in BOLD with the code 

228 ZACKD) represents a separate specimen (Tiusanen et al., unpubl. data) that was Sanger sequenced 

229 in one direction. 
 

230 Remarks. As here both the taxonomy database as well as the reference database are specifically 

231 tailored to the environmental data, and as here the environmental sequence data consist of high 

232 quality sequences, this case study is aimed to illustrate a best case scenario. 
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233 Identifying wood-inhabiting fungi from saw dust samples 
 

234 Taxonomy database. We used the Index Fungorum database (www.indexfungorum.org), classified 

235 into the six levels of phylum, class, order, family, genus, and species. We reduced the amount of 

236 redundancy in the taxonomy by removing likely synonyms, such as old names of species that had 

237 been renamed. The resulting taxonomy consists of 130 795 species. 
 

238 Reference sequence database. To construct the reference database of 75 104 sequences, we used 

239 the UNITE+INSD sequence database (https://unite.ut.ee/) consisting of fungal ITS region, 

240 complemented with the database of Ovaskainen et al. (2013). In order to increase the coverage of 

241 the reference sequences for poorly studied species groups, we also included those species 

242 hypothesis (SH) from UNITE that were more than 97% divergent from the other reference 

243 sequences. We extracted the ITS2 region of the reference sequences using ITSx software 

244 (Bengtsson-Palme et al. 2013). The majority (73%) of the reference sequences were annotated to 

245 the species level, but many only to the genus (11%) level or family or higher levels (16%). We 

246 included at most five sequences per species. 
 

247 Environmental sequences. We used fungal ITS2 sequences originating from the study of 

248 Ovaskainen et al. (2013). The saw dust samples originate from 100 spruce logs sampled in autumn 

249 2008 in a natural forest in southern Finland. DNA extraction was conducted using the Power Soil 

250 DNA isolation kit (MoBio Laboratories, Inc., Carlsbad, CA, USA), and sequencing was done on a 

251 Genome Sequencer FLX (454 Life Sciences, Roche, Branford, CT, USA). We removed all sequences 

252 that were shorter than 150 bp, resulting in 259 327 sequences.   We used cutadapt (Martin 2011) 

253 to detect the presence of ITS4 primer in order to be sure that the sequence represented ITS2 

254 region. To cope with homopolymer errors, all consecutive repetitions of the same nucleotide were 

255 removed as in Ovaskainen et al. (2010, 2013), both for reference and environmental sequences. 

256 Environmental sequences were clustered using UCLUST (Edgar 2010) with 99% identity threshold. 
 

257 Remarks. This case study is aimed to illustrate how PROTAX copes with a very large taxonomy that 

258 is only poorly covered by reference sequences. We further use the fungal case study to examine 

259 how additional information can be incorporated into the PROTAX model: in addition to the 

260 baseline model, we constructed an alternative model, where we gave more weight to species that 

261 are expected to be found from the geographic area where the sampling was conducted (for more 

262 details, see below). 
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263 Identifying bacteria from a food production pipeline 
 

264 Taxonomy database. The taxonomy used for bacteria is different from other taxonomies in the 

265 sense that it is not an independent Linnaean taxonomy but it was generated from the Ribosomal 

266 Database Project (RDP) reference sequences (Wang et al. 2007) and therefore fully coincides with 

267 the reference sequence database (see below).  The RDP reference taxonomy contains both 

268 bacteria and archaea, and it is well curated down to the genus level. Here we included the six 

269 levels of domain, phylum, class, order, family and genus. The taxonomy consists of 60 phyla 

270 classified to 2175 genera. 
 

271 Reference sequence database. For the reference sequence database, we used the RDPClassifier 

272 training sequences, labeled to the genus level (trainset15_092015.fa from 

273 RDPClassifier_16S_trainsetNo15_rawtrainingdata.zip, available at 

274 rdp.cme.msu.edu/misc/resources.jsp). 
 

275 Environmental sequences. We used bacterial 16S rRNA gene sequences from the study of Hultman 

276 et al. (2015), who aimed to understand the effect of food-preparation-surface microbiomes on the 

277 end product. The samples originate from surfaces of a food processing facility, from raw food 

278 material, and from cooked food products. As detailed in Hultman et al. (2015), total DNA was 

279 extracted from the samples using a bead beating method.  The V1 to V3 region was PCR-amplified 

280 and sequenced with 454 GS FLX. The reads were quality filtered, chimeras were removed, and 

281 reads were assigned to OTUs with QIIME (Caporaso et al. 2010) using 97% similarity. 

282 Homopolymers were treated as in the fungal data. The raw sequence reads can be downloaded 

283 from Sequence Read Archive (SRA) of the NCBI under BioProject number PRJNA293141. 
 

284 Remarks. As noted above, the bacterial case study differs fundamentally from the other case 

285 studies as the taxonomy database is not independent of the reference sequence database. 

286 Compared especially to mammals and Greenland insects, the taxonomy is likely to be incomplete. 

287 Thus with this case study we were interested in examining whether the environmental sample 

288 includes a high fraction of material that PROTAX would classify to belong to missing branches. 
 

289 Fitting the PROTAX model 
 

290 PROTAX converts sequence similarities into probabilities of taxonomic classification in a 

291 hierarchical manner, starting from the root node of the taxonomy and proceeding towards the 

292 species nodes. Each node divides its probability into its child nodes by means of a multinomial 



11 

 

 

 
 
 
 

293 regression model. The predictors used in the multinomial regression can be chosen in many ways. 

294 While the results of Somervuo et al. (2016) suggest that a combination of similarity-based and 

295 phylogenetic-based predictors yields the best performance both for simulated and real data, in 

296 this study we used solely similarity-based predictors. 
 

297 The regression model for each taxonomic node containing seven predictors !", … , !%. The baseline 

298 case where all the seven predictors are zero corresponds to a child node that represents a missing 

299 branch of the taxonomy. Predictor !" is an indicator variable for a known child node that contains 

300 no reference sequences, whereas predictor !& is an indicator variable for a known child node that 

301 contains at least one reference sequence. Predictors !' and !( are, respectively, the mean and the 

302 maximum value of pairwise sequence similarities between the query sequence and the reference 

303 sequences. To allow PROTAX to account in the predictions for the availability of the number of 

304 reference sequences (with which e.g. maximal similarity is expected to increase just by chance), 

305 we included as predictors also the log-transformed number of reference sequences representing 

306 the child node (!)), and the interactions between log-transformed number of reference  sequences 

307 and mean (!*) and maximal (!%) similarities. 
 

308 We calculated pairwise sequence similarities using LAST (Kielbasa et al. 2011) with the following 

309 deviations from the default parameters. We set the LAST argument -T 1 to make the similarity 

310 score represent the entire overlap alignment length between two sequences, excluding only the 

311 possible overhangs. We set the gap open penalty to (-a 1). In order to get meaningful values to the 

312 mean sequence similarity predictor of the PROTAX model, we set the maximum number of initial 

313 matches per query position (-m) values between 1000 and 3000 instead of the default value 10. 

314 We replaced pairwise sequence similarities that were missing from LAST output by zeros, and 

315 converted sequence similarities to the range [0,1] by dividing the alignment score by the 

316 alignment length. 
 

317 We generated training data to parameterize the PROTAX model as described in Somervuo et al. 

318 (2016), i.e. by modifying both the taxonomic tree itself as well as its coverage by the reference 

319 sequences to mimic the different kinds of outcomes: (i) known species with reference sequences, 

320 (ii) known species without reference sequences, and (iii) unknown species or unknown higher 

321 taxonomic branches. For each case study, we generated in total 1000 training data points, out of 

322 which 100 represented the category (iii), with an even distribution over the taxonomic levels. The 

323 remaining 900 sequences representing categories (i) and (ii) were generated by randomly 
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324 selecting one of the species present in the database, and generating training data directly for that 

325 species, or if not possible, for another species that was taxonomically as close to the selected 

326 species as possible. For example, if the selected species had no reference sequences, we selected 

327 the closest species that had at least one such sequence, selected one sequence to represent the 

328 query sequence, and removed all the other sequences to mimic a species with no reference 

329 sequences. 
 

330 In our baseline analyses, we assumed a priori that all species that are part of the Linnaean 

331 taxonomy are equally likely to be present in the empirical sample. If there is prior information 

332 about which species are more likely to be found from an empirical sample than others, such 

333 information can be incorporated into PROTAX by a weighting scheme, which can be considered as 

334 an informative prior in the context of Bayesian analyses. To illustrate the influence of the prior, we 

335 conducted an alternative version of the fungal analyses, where we gave more prior weight for 

336 those species that are known to occur in Finland, as our environmental samples originate from 

337 there. From the list of Finnish 6645 fungal species, we could map 4718 names to the 130 795 

338 species taxonomy. In the weighted analysis, we assumed a priori that each sequence present in 

339 our environmental sample represents one of the species known to occur in Finland with 

340 probability 90%, and thus dividing the remaining probability of 10% among the remaining species. 
 

341 We derived maximum a posteriori (MAP) parameter estimates for the PROTAX models using the 

342 Bayesian approach presented in Somervuo et al. (2016), except that in the present study we 

343 parameterized the models separately for each taxonomic level. The model parameters for each 

344 level include the seven regression coefficients corresponding to each of the predictors, as well as 

345 the probability by which the reference sequence is mislabeled (Somervuo et al. 2016). 
 

346 Evaluating the performance of PROTAX 
 

347 We used the parameterized PROTAX models to perform taxonomic placements of both reference 

348 sequences as well as environmental sequences. In the first set of analyses, we performed 

349 taxonomic placements for 1000 validation sequences, which were chosen from the reference 

350 sequence database in the same way as the training sequences described above. While PROTAX 

351 yields for each of these the full probability distribution over possible outcomes, we selected here 

352 only the outcome with the highest probability. We considered a taxonomic placement as 

353 “plausible” if the classification probability was at least 50%, and as “reliable” if the classification 
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354 probability was at least 90%. To examine the overall confidence of classifications, we computed 

355 the proportions of plausible and reliable classifications at each taxonomic level. To assess if the 

356 probabilities of taxonomic placement were unbiased, we ordered the classification probabilities 

357 from lowest to highest, and computed a cumulative sum of both these probabilities as well as the 

358 indicator variables describing whether the outcome predicted with highest probability was a 

359 correct one. We then plotted these two cumulative sums against each other. If the classification 

360 probabilities are unbiased, such a plot should follow the identity line. 
 

361 In the second set of analyses, we performed taxonomic placements for the environmental 

362 sequence data. As the mammalian, fungal and bacterial case studied involved a large number of 

363 sequences generated by high-throughput methods, we first clustered these sequences. The data 

364 submitted to PROTAX involved 1514 (mammal), 4163 (fungi), and 6855 (bacteria) OTUs, and 7939 

365 individual insect sequences. 
 

366 To visualize community composition within each environmental data set, we used Krona (Ondov 

367 et al. 2011) to plot for each case study a pie chart that shows the expected number of sequences 

368 representing each taxonomic unit. To compute the expected abundances, we did not account only 

369 for the highest probabilities, but we summed over the entire distribution of predicted probabilities 

370 (ignoring values lower than 0.01 for computational reasons). To visualize the quality of the 

371 classifications, we colored the charts to show six categories. The first three categories consisted of 

372 well-identified taxonomic units for which the proportion of sequences for which the classification 

373 was reliable was (1) in the range 50%-100%, (2) in the range 0%-50%, or (3) 0%. The remaining 

374 three categories consisted of non-identified taxonomic units for which the proportion of 

375 sequences for which the classification was reliable was (4) in the range 50%-100%, (5) in the range 

376 0%-50%, or (6) 0%. Above, well-identified taxonomic unit refers to a single taxonomic unit for 

377 which reference sequences were available, whereas non-identified taxonomic units refers to the 

378 union of taxonomic units without reference sequences and unknown branches of the taxonomy. 
 

379 Results 
 

380 As expected based on our earlier results (Somervuo et al. 2016) and the fact that PROTAX is a 

381 statistical model fitted to training data, PROTAX yielded essentially unbiased probabilities of 

382 taxonomic placement for all the cases considered. This is evidenced by the fact that all lines in Fig. 

383 2 generally follow the identity lines, the small deviations being attributable either to sampling 
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384 error due to finite sizes of the validation data sets, or to issues related to model misspecification, 

385 the latter of which we return to in the Discussion. The probabilities shown in Fig. 2 are level- 

386 specific, thus asking e.g. how well genera can be separated within a known family, or how well 

387 species can be separated within a known genus. For high taxonomic levels, these probabilities are 

388 lowest for fungi, which is consistent with the fact that for fungi there is the greatest amount of 

389 overlap in sequence similarities among consecutive taxonomic levels (Fig. 1). For example, if 

390 within-species similarities are sometimes lower than among-species similarities, accurate 

391 taxonomic placement to the species-level is not always possible. 
 

392 When performing a taxonomical placement of environmental samples, PROTAX works in a 

393 hierarchical manner starting from the root of the tree, and proceeding level by level towards the 

394 tips of the tree that represent typically species. The probabilities of taxonomic placement for a 

395 given level (illustrated in Figs. 3 and 4) are thus obtained by multiplying the level-specific 

396 conditional probabilities (illustrated in Fig. 2) for all levels lower than or equal to the focal level. 

397 Figure 3 shows the proportions of the reference sequences (black lines) and environmental 

398 sequences (gray lines) that were possible to identify reliably (dashed lines) or plausibly 

399 (continuous lines). Let us first make two obvious remarks. First, as the threshold for plausible 

400 identification (>50% probability of taxonomic placement) is lower than that of reliable 

401 identification (>90% probability of taxonomic placement), the proportion of plausible 

402 identifications is always higher than that of reliable identifications. Second, as the lower level 

403 taxonomic placements are conditional on the higher level ones, the fraction of reliable (and 

404 plausible) identifications decreases monotonously with taxonomic level. 
 

405 Beyond the above made trivial remarks, Fig. 3 shows a number of interesting results. As the first 

406 result, that we derive from the taxonomic placement of the validation sequences, reliable species- 

407 level identification (dashed black lines in Fig. 3) was most successful for insects (74% of the 

408 sequences), followed by mammals (46%) and fungi (15%). These numbers do not reflect only the 

409 resolution of the barcoding sequences (Fig. 1), but also the fact that the insect taxonomy and 

410 reference sequence databases were restricted to species occurring in Greenland, whereas the 

411 mammalian and fungal databases were global and thus were larger and more heterogeneous 

412 (Table 1). For mammals, full-length mt 16S sequences (black crosses in Fig. 3C) can be expectedly 

413 classified with much higher confidence than fragmented sequences (black dots in Fig. 3C), the 
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414 latter corresponding to the nature of the environmental data. In case of bacteria, reliable genus- 

415 level identification was possible for the majority (62%) of the cases. 
 

416 As the second result, Fig. 3 shows that taxonomic placement of environmental sequences is often 

417 less reliable than that of reference sequences (mammals and fungi), but sometimes environmental 

418 sequences can be identified essentially equally reliably (insects) or even more reliably (bacteria) 

419 than reference sequences. The main reason why taxonomic placement of environmental 

420 sequences for mammals was much more difficult than that of reference sequences is simply that 

421 in our case study the environmental sequences were very short fragments. If fragmenting the 

422 reference sequences equally much (into 100 bp segments), their taxonomic placement became 

423 essentially equally unreliable than that of reference sequences (lines with black dots in Fig. 3C). In 

424 case of fungi (Fig. 3A), the reason for the difference between the taxonomic placement of the 

425 reference and environmental sequences was not only a similar (though less pronounced) 

426 difference in sequence length and quality as for mammals, but also the fact that the 

427 environmental sequences are likely to represent many unknown units that are lacking from the 

428 taxonomy. If bringing the prior information that, instead of any globally known fungi, the species 

429 within the environmental sample are likely to represent species that are known to occur in 

430 Finland, the proportion of reliable identifications increases dramatically from 3% to 14% (Fig. 3C). 

431 The reason why for the insect data (Fig. 3D) the taxonomic placements are essentially equally 

432 reliable for the reference and environmental sequences is that for this case study both kinds of 

433 sequences were acquired by identical methods, i.e. Sanger sequencing of DNA sampled from 

434 individual specimens. Thus, the only differences between the two were whether the specimens 

435 were identified morphologically or not, and whether the specimens represent a random sample of 

436 the community (environmental sequences) or whether they were targeted to represent the entire 

437 community (reference sequence data). The most curious case is that of bacteria, where reliable 

438 genus level taxonomic placements were more frequent for environmental sequences than for 

439 reference sequences (Fig. 3B). The likely reason here is that in this case the environmental 

440 sequences originated from the food production pipeline, the bacterial communities of which 

441 represent one of the most well studied groups, and thus are better covered in the reference 

442 sequence database than bacteria in general. 
 

443 Let us then turn into the main question that motivates DNA (meta)barcoding studies: what are the 

444 species behind the environmental samples? The answer to this question is given in Fig. 4, where 
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445 the pie charts show the proportions of sequences that belong to known and unknown taxonomical 

446 unit at each hierarchical level. In this figure, the areas of the sectors show the expected number of 

447 sequences that belong to each taxonomic unit, whereas the colors illustrate the proportions of 

448 reliable identifications, and they thus echo the information shown by the grey dashed lines in Fig. 

449 3. While our main interest here is not on the detailed results relating to the four case studies, let 

450 us note that the overall patterns in Fig. 4 are consistent with expectations. Concerning fungi, the 

451 majority of the species Agaricomycetes, and the reliably identified species (e.g. Antrodia serialis; 

452 see the insert in Fig. 4) typically represent well known wood decomposers. Concerning mammals, 

453 both Artiodactyla, Chiroptera, Rodentia and Carnivora were detected, as well as some primates. 

454 While there are very few reliable or even plausible species-level taxonomical placements, among 

455 possibly identified species are e.g. the endangered mammals Muntiacus vuquangensis (Giant 

456 Muntjac; 43% identification probability) and Rusa unicolor (sambar; 27% identification 

457 probability). Concerning bacteria, a large proportion of the sequences were assigned as 

458 Lactobacillales, specifically to Streptococcaceae, Lactobacillaceae, and Leuconostocaceae (Figure 

459 4). Further, the high proportion of Brochotrhrix observed by Hultman (2015) was supported by the 

460 PROTAX results. Concerning insects, the majority of the species belonged to Diptera and the 

461 minority to Hymenoptera. Among the total of 104 distinct species that were reliably identified, the 

462 most common one was Drymeia segnis, which has been observed to be common in the study area 

463 also based on morphological identifications (Rasmussen et al. 2013). 
 

464 In Supporting Information, we provide the same information as shown in Fig. 4 as interactive 

465 HTML files, which allow the pie charts to be displayed using a standard web browser without any 

466 additional plugins. This allows one to examine the taxonomic placements and their reliabilities in 

467 much greater detail by e.g. using search tools and zooming to taxonomic clades of specific 

468 interest. 
 

469 Discussion 
 

470 In this work, we have evaluated the potential of DNA barcoding for obtaining reliable taxonomic 

471 placements at different taxonomic levels, and in particular illustrated how the PROTAX method 

472 can be used as a general tool for quantifying uncertainty in such taxonomic placements. PROTAX 

473 accounts for many kinds of uncertainties, including the possibilities of unknown taxonomic 

474 branches, incomplete coverage of reference sequence databases, and mislabelling of reference 

475 sequences. This makes its quantification of taxonomic placement uncertainty robust, as illustrated 
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476 by Fig. 2 and the simulations by Somervuo et al. (2016). However, it is important to understand 

477 that the classification accuracy does not necessarily increase when taking all uncertainties into 

478 account; it can rather be the opposite. To put it bluntly, it may be more tempting e.g. to claim that 

479 the study detected the endangered mammal Giant Muntjac from a leech blood meal, rather than 

480 to specify that this was the case with 43% probability, as the latter statement makes it explicit that 

481 the species behind the sequence may actually have been some other one. However, making 

482 uncertainty explicit is necessary for scientific reliability. 
 

483 There are many choices to be done when applying DNA (meta)barcoding to an empirical case 

484 study. As illustrated by our results, these choices can have a major influence on the reliability of 

485 the resulting taxonomic placements. The first set of choices relates to the taxonomy and reference 

486 databases used, which choices are in practice mostly guided by on what databases are available 

487 rather than what might be optimal to use. Importantly, as PROTAX accounts for missing branches 

488 in the taxonomy, the incompleteness of the taxonomy database should not lead to spurious false 

489 positives, rather to decreased probabilities of taxonomic placement. This is because in the training 

490 phase PROTAX generates situations in which some branches of the taxonomy are missing, making 

491 it learn which kinds of values of the predictors (e.g. low values of sequence similarity) are 

492 indicative of missing branches. Similarly, mislabeled reference sequences or inconsistencies 

493 between the taxonomy and the reference databases are expected to decrease the probabilities of 

494 taxonomic placement, but not to bias them. As one example, we used the RDP database for 

495 bacteria. Since the reference taxonomy was constructed based on the reference sequences, 100% 

496 of the taxa in the validation data were covered (Table 1). Somewhat surprisingly, the bacterial 

497 reference database appeared to represent also the vast majority of the environmental sequences, 

498 with only very few missing branch identified (Fig. 4). This however does not mean that the used 

499 taxonomy would cover all the bacteria in the world, and novel phyla have indeed been discovered 

500 in several recent metagenomic studies (e.g. Brown et al. 2015). The other commonly used 

501 bacterial and archaeal databases are SILVA (Quast et al. 2013) and Greengenes (DeSantis et al. 

502 2007). Compared to RDP, these two databases contain more representatives of the Candidate 

503 divisions that have been recently found in various soil environments (Brown et al. 2015; Hug et al. 

504 2016). Therefore, depending on the environment under analysis, the use of different reference 

505 databases should be considered. 
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506 The second set of choices to be made relates to the DNA barcode applied, as well as the 

507 sequencing technology. As has been long pointed out, an optimal barcoding gene should involve 

508 much variation among species but only little within a species (Meyer and Paulay 2005). Further, 

509 the environmental sequences should obviously have as long read length and as high quality as 

510 possible. For example, if in the mammalian case study full length mt 16S rRNA sequences had 

511 been available instead of the very short 100 bp fragments used here, the proportion of reliable 

512 taxonomic placement would have been likely to increase from the present 0% to ca. 46%, where 

513 the latter was the proportion of reference sequences that we could classify reliably. But even if 

514 one would have full length sequences and complete taxonomic and reference sequence 

515 information, some uncertainty will inevitably remain. For example, in the insect study the 

516 mosquito species Aedes impiger and Aedes nigripes could not be disentangled since their COI 

517 sequences are identical, and thus PROTAX assigned for some of the specimens a probability close 

518 to 50% for both of these species. To resolve such cases, a deeper genomic approach (Bourke et al. 

519 2013) than the single gene DNA barcoding approach should be used. 
 

520 The third set of choices relates to the way in which the training data in PROTAX are generated, 

521 technically the prior assumed for the empirical data. This is probably the most critical and at the 

522 same time most difficult choice to be done by the user, as making a justified choice requires 

523 biological knowledge and intuition. For example, one may assume either that each sequence in 

524 the environmental sample represents any of the species present in the taxonomy with equal 

525 probability (as we have done here), or utilize a hierarchical prior that assumes that each branch 

526 under a given node is equally likely (as we did in Somervuo et al 2016). One may further give 

527 additional weight for species that are known to occur in the geographic region where the samples 

528 originated, as we did for the fungal case study. If such information is available, the prior can also 

529 be adjusted e.g. based on the expected abundances of the species, or on the match between the 

530 substrates sampled and the habitat requirements of the species. In addition to the known species, 

531 the prior involves an assumption about the frequency of missing branches at different parts of the 

532 taxonomic tree. As it may be difficult to make informative choices about all of the above 

533 mentioned aspects, we recommend the user the test the sensitivity of the results against different 

534 choices of the prior, as should be done with Bayesian analyses in general. 
 

535 Finally, the fourth set of choices relates to the predictors used for the multinomial regression 

536 underlying the PROTAX model. In this paper, we have used simply similarity-based predictors, 
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537 even if our previous work suggests that similarity-based predictors and phylogeny-based 

538 predictors involve complementary information and thus their combination optimizes performance 

539 (Somervuo et al. 2016). The reason behind the choice made for the present work was mainly 

540 computational, as some of our databases were extensive, making LAST-based similarity the most 

541 practical choice. For fungi, the use of phylogeny-based predictors is challenging also for the reason 

542 that the construction of multiple sequence alignments is difficult with the ITS region only. 

543 Phylogeny-based methods are easier/more suitable with conserved barcodes such as CO1 and 

544 mt16S which allow sequences to be globally aligned even at high taxonomic levels. In more refined 

545 studies focusing on any specific case study, the set of predictors should be optimized to maximize 

546 the reliability of taxonomic placements. While there is no objective way to select the best prior, 

547 the choice of the predictors can be optimized more or less objectively by examining which 

548 predictors maximize unbiased probabilities of taxonomic placement for independent validation 

549 sequences. The reason why for some choices of the predictors the classification probabilities can 

550 be biased (as was to a limited extent a case for some of our case studies, Fig. 2) is that while the 

551 PROTAX model is parameterized by training data, the model may be structurally misspecified. For 

552 example, we have assumed that the model parameters are constant across the taxonomic tree. 

553 Thus, when classifying an environmental sequence e.g. to the species level under a known genus, 

554 the parameters (and thus the influences of the predictors, such as sequence similarity) are 

555 assumed to be independent of the genus. This assumption is not likely to hold for large and 

556 heterogeneous taxonomic groups, such as all mammals or all fungi. An indication of this in our 

557 results was that, at the species level, the parameter estimates obtained for mislabeling probability 

558 were much inflated, being ca. 80% for mammals and ca. 60% for fungi. This does not suggest that 

559 there is such a vast amount of mislabeling, but that PROTAX used the mislabeling parameter to 

560 correct for model misspecification. Thus, an important challenge for future work is to further 

561 develop the statistical model underlining PROTAX, either by building a hierarchical structure that 

562 allows for heterogeneity in the parameterization, or by finding predictors that are able to correct 

563 for such heterogeneity. 
 

564 To conclude, molecular species identification by DNA barcoding and metabarcoding is an exciting 

565 and rapidly evolving research field, which has major potential to change our understanding of the 

566 structure and functioning of ecological communities. To make the use of these methods practical 

567 and reliable, a key challenge is the completion and pruning of taxonomic and reference sequence 
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568 databases, as well as making these two sources of information compatible. Similarly important is 

569 the application and further development of statistical methods that allow one to make the most 

570 out of such data by providing accurate taxonomic placements and reliable assessments of the 

571 uncertainties inherent in such placements. Such methods are critical for providing a firm basis for 

572 deriving species- and community-level inferences from DNA (meta)barcoding data, especially for 

573 environmental DNA that by definition do not have physical specimens that could be verified 

574 independently. Incorrect assignments can result in accumulated interpretation error, which can 

575 result in wasted resources and social conflict in multiple social arenas, from conservation to food 

576 safety.  It is important to get the name right – or to be aware that it may be wrong. 
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703 Figures 

 

704  

 

705 Figure 1. The distribution of pairwise LAST-similarities between reference sequences within each 

706 taxonomical levels of species (S), genus (G), family (F) and order (O). The distribution of similarities 

707 in a given taxonomical level originates from 1000 randomly selected sequence pairs. At the 

708 species level, each sequence pair represents two different individuals of the same species. At the 

709 genus, family, and order levels, each sequence pair represents, respectively, two different species, 

710 genera, or families that belong to the same genus, family, or order. 
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712 Figure 2. An assessment of bias and accuracy of the PROTAX algorithm for classifying well- 

713 identified sequence data to different taxonomic levels. We used PROTAX to classify well-identified 

714 reference sequences, with the focal sequence removed from the reference database to avoid 

715 circularity. The classification probabilities shown here are level-specific conditional probabilities, 

716 thus measuring e.g. the accuracy of species-level classifications conditional on knowing the true 

717 genus. While PROTAX yields a vector of identification probabilities for all possible outcomes, we 

718 considered here only the outcome with the largest identification probability, which we compared 

719 to the true identity of the species. For each taxonomic rank (indexed as S=species, G=genus, 

720 F=family, O=order, C=class, D=domain), panels show the cumulative number of correct 

721 identifications on the y-axis versus the cumulative sum of the identification probabilities on the x- 

722 axis (both normalized by the number of sequences). A curve matching with the identity line (y=x) 

723 indicates unbiased identification probabilities, both for small and large probabilities, as the 

724 identifications have been sorted in the order of increasing largest identification probability. The 

725 position of the dot gives the mean identification probability among the samples. 
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727 Figure 3. Confidence of taxonomic placement at different taxonomical levels. The value on the y- 

728     axis is the proportion of plausible (solid line) and reliable (dashed line) taxonomic placements. 

729    Results for validation data sampled from reference sequence database are shown in black and 

730       results for environmental query data are shown in gray. For fungi, gray crosses denote results 

731 from environmental data where species probabilities were weighted according to prior knowledge 

732 on which species exist in Finland. For mammals, black crosses denote results using full-length mt 

733 16S rRNA sequences as validation data. Taxonomic labels at x-axis from left to right: D=domain, 

734 P=phylum, C=class, O=order, F=family, G=genus, S=species. 
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736 Figure 4. Taxonomy pie charts of PROTAX output showing the composition of the environmental 

737 data sets. The width of each sector is proportional to the expected number of sequences that was 

738 placed to that taxonomic units. The colors code both the reliability of the identifications, and 

739 whether the identifications relate to taxonomic units that are part of the taxonomy or to unknown 

740 units (see color label). The enlarged insert illustrates species-level resolution for the fungal data. 

741 The charts are snapshots from interactive web pages (provided in the Supporting Information) 

742 generated by Krona software from the PROTAX output. 
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744 Tables 
 

745 Table 1. Case studies used to evaluate the performance of PROTAX in probabilistic taxonomic placement of environmental sequence data. 
 

Species 

group 

Marker Taxonomy Reference 

database 

Environmental 

data 

Number of 

species 

(genera for 

bacteria) in 

taxonomy 

Number of 

taxonomic 

levels used 

Spatial 

extent of 

taxonomy 

Reference 

sequences 

Proportion 

of species 

with 

reference 

sequences 

Median/Mean/Max 

number of sequences 

per species (for those 

which have >0 

sequences) 

Fungi ITS2 Index 

Fungorum 

UNITE and 

Ovaskainen 

et al. (2013) 

Wood-inhabiting 

fungi sequenced 

from saw-dust 

samples from 100 

spruce logs in 

Finland 

130795 6 Global 75104 15% 2/2.8/5 

Bacteria 

and 

Archaea 

16S SSU 

rRNA 

gene 

Ribosomal 

database 

project 

RDP Release 

11.4, 

trainset 15 

Food processing 

plant factory 

microbiome, 101 

samples 

2175 6 Global 11127 100% 2/5.1/504 

Insects CO1 Greenland 

entomofauna, 

excluding 

Psocodea 

Wirta et al. 

(2016) 

Insect tissue from 

~7000 specimens 

from North-East 

Greenland 

844 4 Greenland 1853 26% 4/7.1/368 

Mammals 16S 

mtDNA 

NCBI GenBank iDNA of mammals 

from the residual 

blood meals of 

~20,000 leeches 

from Vietnam and 

Laos 

6675 4 Global 2627 20% 1/2.0/10 
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