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ABSTRACT

The annual cycle of surface air temperature is examined across Northern Hemisphere land areas (north of

258N) by comparing the results from the Climatic Research Unit Time Series (CRU TS) dataset against four

reanalysis datasets: two versions of the NOAA Twentieth Century Reanalysis (20CR and 20CRC) and two

versions of the ECMWF Twentieth Century Reanalysis, version 2 (ERA-20C) and version 2c (ERA-20CM).

Themodulated annual cycle is adaptively derived from an ensemble empirical mode decomposition (EEMD)

filter, and is used to define the phase and amplitude of the annual cycle. TheEEMDmethod does not impose a

simple sinusoidal shape of the annual cycle. None of the reanalysis simulations assimilates surface temper-

ature or land-use data. However, they differ in the parameters that are included: both ERA-20C and 20CR

assimilate surface pressure data; ERA-20C also includes surface wind data over the oceans; and ERA-20CM

does not assimilate any of these synoptic data. It is demonstrated that synoptic variability is critical for ex-

plaining the trends and variability of the annual cycle of surface temperature across the Northern Hemi-

sphere. TheCMIP5 forcings alone are insufficient to explain the observed trends and decadal-scale variability,

particularly with respect to the decline in the amplitude of the annual cycle throughout the twentieth century.

The variability in the annual cycle during the latter half of the twentieth century was unusual in the context of

the twentieth century, and was most likely related to large-scale atmospheric variability, although uncertainty

in the results is greatest before about 1930.

1. Introduction

The annual cycle accounts for potentially.90% of the

variance of surface air temperature (SAT) measured on

daily to monthly time scales across extratropical regions

(Dwyer et al. 2012; Qian and Zhang 2015) and provides a

fundamental control on many biophysical processes

(Wallace and Osborn 2002). Across the Northern

Hemisphere, phenological data (Menzel et al. 2006) and

temperature measurements (Qian et al. 2009) have in-

dicated significant trends in the annual cycle over the

course of the twentieth century, with a decreasing trend in

the amplitude (Stine et al. 2009; Stine and Huybers 2012;

Qian and Zhang 2015) and a tendency toward earlier

phasing (Stine et al. 2009; Stine and Huybers 2012) ob-

served over the last 50 years across most mid- to-high-

latitude land areas. Yet despite the significant changes

that have occurred in the annual cycle of SAT over recent

decades, the subject remains underresearched when

compared to the large number of studies that have ex-

amined trends in surface temperature anomalies. As a

result the factors influencing the trends in the annual
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cycle across the Northern Hemisphere remain uncertain,

particularly at the regional scale (Qian and Zhang 2015).

The atmospheric circulation plays a critical role in

both the interannual variability and long-term trends of

the annual cycle of SAT (Stine and Huybers 2012), with

land–ocean coupling via advection determining the

spatial structure of the annual cycle (McKinnon et al.

2013). A number of studies have examined the re-

lationship between the annual cycle and the leading

modes of atmospheric circulation variability across the

Northern Hemisphere (McCabe et al. 2012; Ault et al.

2011; Stine et al. 2009; Stine and Huybers 2012). Most of

these studies have aimed to determine the relative pro-

portion of the trends in the annual cycle that can be at-

tributed to a given mode of atmospheric circulation

variability, most commonly the leading mode of vari-

ability in the NorthernHemisphere, the northern annular

mode (NAM). As an example, Ault et al. (2011) in-

vestigated the influence of the northern annular and

Pacific–North America (PNA) modes on phase changes

across western North America, and found that while

around half of the interannual variance of spring onset

could be explained by the NAM and PNA, only a third of

the trend over the period 1950–2005 could be explained

by these modes of atmospheric circulation variability. In

contrast, Stine and Huybers (2012)—expanding on the

earlier analysis of Stine et al. (2009)—indicated that the

trend to earlier phasing witnessed across many Northern

Hemisphere land areas was largely a response of the

combined effect of the NAM and PNA.

Other studies have emphasized the link between an-

thropogenic forcings and the changes in the annual cycle

of SAT observed over the last 50 years (Mann and Park

1996; Wallace and Osborn 2002; Qian and Zhang 2015)

or projected into the twenty-first century (Dwyer et al.

2012). To assess the relative importance of natural ver-

sus anthropogenic factors, several attribution studies

have been conducted using model simulations (Braganza

et al. 2004b; Drost and Karoly 2012; Qian and Zhang

2015). Such studies have been limited until fairly recently

by uncertainty regarding the degree to which the models

can replicate the observed trends. Deficiencies have been

reported in the Hadley Centre Coupled Model, version 2

(HadCM2), simulations (Wallace and Osborn 2002) and

also in the range ofmodels produced under phase 3 of the

Coupled Model Intercomparison Project (CMIP3; Stine

et al. 2009). More recent work by Qian and Zhang (2015)

has indicated that the latest CMIP models (CMIP5)

perform reasonably well in simulating the observed

changes in the amplitude of the annual cycle and, the

authors were able to detect an anthropogenic effect on

the amplitude of the annual cycle acrossmost areas of the

Northern Hemisphere. In that study greenhouse gas

forcing was shown to be connected to the long-term

downward trend in the amplitude of the annual cycle

since 1950, whereas aerosol forcing was related to a

nonlinear response, possibly in connection to the global

dimming/brightening phenomenon (Wild 2009). How-

ever, in general the separation of aerosol forcing from

atmospheric circulation variability is confounded by a

broadly common trend throughout the latter decades of

the twentieth century across the NorthernHemisphere in

the aerosol-induced dimming and brightening effects and

the North Atlantic Oscillation (NAO) and NAM

(Chiacchio and Wild 2010; Chiacchio et al. 2011). Fur-

thermore, as pointed out by Qian and Zhang (2015), the

signal-to-noise ratio in the amplitude of the annual cycle

is much lower than is typically found in trends of mean

temperature as a result of the same sign of signals in the

winter and summer seasons. This makes the detection

and attribution of external forcing mechanisms much

more difficult than in comparable studies of mean sea-

sonal temperature.

Themajority of studies that have analyzed trends in the

annual cycle of SAT have focused on the latter half of the

twentieth century because of the greater availability of

station data over that period, and becausemost reanalysis

simulations are only available for that period. Nonethe-

less, several studies have examined the annual cycle by

using long instrumental data series (Thomson 1995; Stine

et al. 2009), which have allowed examination of the phase

and amplitude of the annual cycle over the greater part of

the last 300 years. There is a need, however, to examine

long-term trends in the annual cycle over a wider spatial

area than is permitted by individual station series.

In this paper, we examine trends in the annual cycle

across Northern Hemisphere land areas by comparing the

results from four reanalysis datasets [ECMWF Twentieth

Century Re-Analysis (ERA-20C) and the model only

version (ERA-20CM), and two versions of the NOAA

Twentieth Century Reanalysis (20CR and 20CRC)]

against a purely observed dataset [Climatic Research Unit

Time Series (CRU TS)]. To distinguish between the two

categories of data used in this analysis we refer to CRUTS

as ‘‘data’’ and the reanalyses as ‘‘simulations.’’ The aims of

this paper are twofold: to examine trends in the phase and

amplitude of the annual cycle over the last 100 years across

the Northern Hemisphere, and to investigate the relative

importance of causal mechanisms on the annual cycle over

that time period.We evaluate trends in the annual cycle at

both the hemispheric (section 3) and gridbox scales (sec-

tion 4). As described in the following section (section 2)

none of the reanalysis datasets used in this study assimi-

lates any land-based temperature data or land-use in-

formation, but they differ in the additional forcings that are

included, as well as the modeling frameworks that are
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employed. Through the comparison of these simulations

against CRU TS, which implicitly contains all forcings, an

estimate can be made of the relative influence on the an-

nual cycle of forcings excluded from the reanalyses. The

comparison of NOAA-20CR against observed tempera-

ture data in this way has previously been used to examine

the relative importance of different forcings on trends in

land-based mean temperature. Parker (2011) demon-

strated that 80% of global temperature trends were on

average attributable to global forcings and variations in

atmospheric circulation, with the remainder being tenta-

tively ascribed to forcings such as changes in land use,

urbanization, and aerosols that were not included in the

reanalysis data. Similar results were presented in Compo

et al. (2013), although in contrast to Parker (2011)—who

stressed the marked seasonal and regional differences

between the datasets—the study by Compo et al. (2013)

emphasized the general spatial covariance in trends in

NOAA-20CR compared to the CRU Air Temperature

Anomalies, version 3 (CRUTEM3), a purely observation-

based temperature dataset.

2. Data and methods

a. Datasets used

Monthly means of 2-m temperature were obtained

from NOAA-20CR, NOAA-20CRC (version 2, hence-

forth 20CRand 20CRC, respectively; Compo et al. 2011),

ERA-20C, and ERA-20CM (Hersbach et al. 2015; Poli

et al. 2016). These monthly means are taken to be rep-

resentative of surface temperature values and are derived

from 3-hourly reanalysis values. 20CR [which uses the

NCEP Climate Forecast System, version 2 (NCEP CFS

v2), modeling framework; see Table 1] does not assimilate

any direct aerosol forcings or certain minor greenhouse

gases, whereas ERA-20C (under the IFS, version Cy38r1,

modeling framework) includes these forcings. Both of

these datasets assimilate surface pressure data, but only

ERA-20C incorporates surface wind data across ocean

areas. ERA-20CM contains the same CMIP5 forcings as

ERA-20C and uses the same modeling framework but

does not include any synoptic pressure data or oceanic

wind data. ERA-20C and ERA-20CM use the same

general reanalysis approach and CMIP5 forcings, except

that the latter does not assimilate any mean sea level

pressure (MSLP) or marine wind data. The ECMWF and

NOAA simulations consist of 10 and 56 ensemble mem-

bers, respectively. Each of the 10 ensemble members of

the ECMWF reanalyses is forced with a different re-

alization of SST derived from the Hadley Centre Sea

Ice and Sea Surface Temperature dataset, version 2

(HadISST2), and the ensemble captures the uncertainty in

the observed data sources (Hersbach et al. 2015). 20CRand

20CRC differ in the sea ice, sea surface temperature, and

surface pressure data that are used, although in the case of

the latter this is only a version change of the International

Surface Pressure Databank (ISPD; Cram et al. 2015).

All of the datasets used in this study—including the

CRU TS, version 3.23, data (Harris et al. 2014), which

were used for comparison purposes—were regridded to a

common 28 3 28 regular latitude–longitude grid using bi-

linear interpolation from their respective native grid for-

mats (see Table 1) prior to any further calculations. The

TABLE 1. A summary of the components of the reanalysis simulations used in this study. An asterisk indicates that these parameters are

assimilated at the annual resolution. In the sea ice and sea surface temperature rows, the numbers following HadISST (1.1 or 2.1.0.0)

indicate the version. In the sea ice row, SODAsi.2 represents the Simple Ocean Data Assimilation with sparse input, version 2. In the sea

surface temperature row, COBE-SST2.2 represents the Centennial In Situ Observation-Based Estimates of Sea Surface Temperature,

version 2.2. In the land observations row, the numbers following ISPD (2.2, 3.2.9, and 3.2.6) indicate the version. Finally, in the marine

observations row, the numbers following ICOADS (2.5 and 2.5.1) indicate the version.

20CR 20CRC ERA-20C ERA-20CM

Dataset attributes

Grid resolution 28 3 28 28 3 28 1.1258 (T159) 1.1258 (T159)
Vertical levels 28 28 91 91

Ensemble members 56 56 10 10

Modeling environment NCEP CFS v2 NCEP CFS v2 IFS Cy38r1 IFS Cy38r1

Forcings

Aerosol — — CMIP5 CMIP5

CO2 NCEP* NCEP* CMIP5 CMIP5

Sea ice HadISST1.1 SODAsi.2 HadISST2.1.0.0 HadISST2.1.0.0

Sea surface temperature HadISST1.1 COBE-SST2.2 HadISST2.1.0.0 HadISST2.1.0.0

Solar forcing NCEP* NCEP* CMIP5 CMIP5

Volcanic forcing NCEP* NCEP* CMIP5 CMIP5

Land observations ISPD 2.2 ISPD 3.2.9 ISPD 3.2.6 —

Marine observations ICOADS 2.5 ICOADS 2.5 ICOADS 2.5.1 —
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28 3 28 grid was chosen to match the 20CR simulation—

the coarsest resolution of all datasets used in this study.

Previous analyses of the annual cycle of temperature

have used the CRUTEM dataset (Jones et al. 2012) ex-

clusively. Since CRUTEM provides anomaly values, a

gridded climatology dataset invariably needs to be added

to the anomalies to produce absolute temperature values

in order to analyze the annual cycle. In the case of the

CRUTS dataset used in this paper, absolute temperature

values are provided, so these can be used to directly ex-

tract the annual cycle. This dataset also has the advantage

of being available on a finer spatial resolution than the

58 3 58 resolution of CRUTEM, with the 28 3 28 re-

gridded resolution of CRU TS providing a much larger

sample of gridbox values with which to conduct the trend

tests in this paper. To eliminate grid cells in CRUTS that

are filled using climatological values, we removed any

28 3 28 grid cells that did not contain 16 half-degree

component grid cells formed from station-interpolated

values. Years with fewer than 12 complete months were

removed, and all years over the 1901–2010 period were

required for a grid box to be used in the analysis. The

station-interpolated values are calculated as part of the

CRU TS gridding method and a station value is defined

as a value that occurs within the decorrelation length of

1200km of the target grid cell (Harris et al. 2014).

In the comparison of the reanalysis simulations

against the CRU TS data it should be noted that dif-

ferences between the data and simulationsmay arise as a

result of differences in themethods used to construct the

uniform grids: statistical triangulation in the case of

CRU TS and dynamical modeling in the case of the re-

analysis simulations. Such differences are most likely to

be apparent in the regions of data sparsity where data

beyond the grid cell, but within the correlation distance

decay (CDD) of 1200km, are used. This equally applies

to the reanalysis simulations, except that in this case the

observations are used to drive the numerical simulation.

b. Defining the amplitude and phase of the annual
cycle

In this paperweuse themodulated annual cycle (MAC;

Wu et al. 2008) as an estimate of the annual cycle of

surface air temperature. TheMAC, which is a 1-yr period

band component without intra-annual, interannual, or

longer time-scale variability, was extracted from the SAT

data at each grid box using ensemble empirical mode

decomposition (EEMD; Wu and Huang 2009). This was

applied to the gridded datasets over the period common

for all data of 1901–2010. The EEMD technique has been

used in several studies to isolate the annual cycle from

temperature data at both the daily (Qian et al. 2010,

2011a) andmonthly time scales (Wu et al. 2008; Qian and

Zhang 2015). This annual cycle is obtained adaptively

from the data without assuming a sinusoidal form of the

annual cycle, which has frequently been the case in pre-

vious studies (Thomson 1995; Mann and Park 1996; Stine

et al. 2009; Stine and Huybers 2012; McKinnon et al.

2013). Details of obtaining the MAC are provided in the

appendix. Although the MAC was initially calculated

over the period 1901–2010, spurious values may occur in

the first and the last year of time series decomposed using

the EEMD technique, due to the influence of end effects.

These two years were removed from the MAC time se-

ries, which left the remaining 1902–2009 period for use in

this analysis. Following Qian et al. (2011a) we calculate

values of the instantaneous amplitude modulation by

fitting a cubic smoothing spline to the local maxima offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(MAC)2

q
, where MAC is a monthly time series that is

almost symmetric relative to the zero line. Annual aver-

ages of these smoothed monthly values complete the

calculation of the amplitude of the annual SAT cycle A.

In this way we quantify the annual amplitude as is com-

monly adopted in previous studies (Qian et al. 2011a;

Qian and Zhang 2015). The phase of the annual cycle

u was calculated by linearly interpolating between the

monthly values of theMAC, and defining the phase as the

date of the zero crossing from the start of the year, fol-

lowing Qian et al. (2011b). This phase metric is quite

different from the sinusoid phase that has been used in

several other studies (Stine et al. 2009; Stine and Huybers

2012) and marks the timing during the year at which the

annual cycle passes from the cold to the warm season.

While the focus in this paper is on A and u calculated

using the EEMD technique, we also use a simple index

(si) of the amplitude of the annual cycle Asi, which is

highly correlated with A. Following the example of Qian

and Zhang (2015), we calculate Asi 5 xdjf,t 2 xjja,t, where

xdjf,t is the average December–February temperature

with t denoting the year dated by the January–February

months, and xjja,t being the average June–August tem-

perature. TheAsi has previously been used by Jones et al.

(2003) to examine amplitude changes in long SAT series

across Europe. In Fig. 1 we show the MAC, A, Asi, and

u components, along with the associated monthly mean

temperature time series, for one arbitrarily chosen grid

square. The annual average of the smoothed envelope

values (A) are compared against the corresponding Asi

values (Fig. 1b), from which it can be seen that the two

measures are highly correlated (r 5 0.8) on the in-

terannual basis as well as on longer time scales, which

corresponds to similar findings by Qian and Zhang

(2015). However, while Asi has the advantage of being

much easier to calculate than A and is a useful check on

the results from the EEMDmethod, the results from the

index will also contain weather-induced singularities and
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harmonics that are beyond our definition of the annual

cycle as the amplitude–frequency modulated annual cy-

cle (Wu et al. 2008). Furthermore, in the early part of the

series (before ;1930) there is much greater uncertainty

in the series particularly in data-sparse regions and during

the summer, which results in a much greater interannual

variance in the Asi in these regions. Outliers in the data

have a large effect on the seasonal means, which signifi-

cantly influences the Asi, although this does not seem to

leverage such a significant effect whenA is derived using

the EEMD method. These effects are not apparent in

Fig. 1, however, because those data come from a region

with high-quality observations through the time series.

3. Hemispheric-scale trends

a. Trends in the amplitude

Average annual anomalies of A across the Northern

Hemisphere from the reanalysis simulations and CRU TS

data were examined by calculating anomalies at each grid

box relative to the 1950–2000 average; these values were

then area weighted averaged across the Northern Hemi-

sphere using the cosine of latitude. In these calculations the

reanalysis simulations are the averages across the 10 and

56 ensemble members for the NOAA and ECMWF re-

analyses, respectively. The trend in hemispheric-averaged

A is broadly consistent throughout the twentieth century

between CRU TS and the reanalysis datasets, with the

exception of ERA-20CM (Fig. 2). Over the 1950–2009

period these results correspond to the findings of other

studies (Qian and Zhang 2015), which show a downward

trend in the Northern Hemispheric average over the latter

half of the twentieth century. However, the results in

Fig. 2 also indicate a pronounced decadal-scale variability

throughout the twentieth century and a strong nonlinear

trend over the 1970–2009 period, which was preceded by

relative stability in the early decades of the twentieth

century. The standardized cumulative anomalies in Fig. 2

were calculated for each of the N time series values by

summing all values from the first value to N, following

Mächel et al. (1998). This cumulative anomaly is a form of

low-pass filter, although contrary to more usual smoothing

functions, sustained rising (falling) values indicate the

predominance of positive (negative) anomaly values;

turning points indicate a transition from periods domi-

nated by either positive or negative anomalies and in this

way the filter highlights changepoints in a time series. In

Fig. 2 the points of inflection for the datasets excluding

ERA-20CM typically occur around the late 1970s, when a

shift to more negative anomalies occurs. There is also an

indication of a tendency to more positive anomalies since

the 1990s, which is most prominent in the 20CR and

20CRC simulations compared to either the CRU TS data

or ERA-20C simulation.

The time series of ERA-20CM in Fig. 2 is markedly

different from the other series, both in terms of the

interannual/decadal variability and the long-term

trend. A suppressed interannual variability is appar-

ent in that series and the trend throughout the twenti-

eth century is generally linear. As ERA-20CM

contains only CMIP5 radiative forcings, sea surface

FIG. 1. The components of the annual cycle of SAT used in this

study, demonstrated for one grid box (518N, 118E; central-eastern
Germany) calculated from the CRU TS data. (a) The EEMD-

derived annual cycle is shown against the SAT data, along with

the envelope of the MAC for the 1970–2009 period. (b) The ampli-

tude of the annual cycle as calculated from the annual averages of the

MAC envelope, alongside the simple index (i.e., Asi). (c) Plot of the

phase. Note the different time scales used in (b) and (c) compared to

(a).
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temperature, and sea ice values (see Table 1), the re-

sults shown in Fig. 2 suggest that at the hemispheric

scale the trends and variability in A that are evident in

the other reanalysis simulations and CRU TS data are

profoundly affected over the course of the twentieth

century by the synoptic variability that is common to

both the ERA-20C and 20CR/20CRC simulations, and

not just the forcings contained in ERA-20CM. This

follows the reasoning of Parker (2011) in his exami-

nation of trends in mean surface temperature using

the CRUTEM3 data and 20CR simulation, and relies

on the assumption that all modes of variability and

forcings would be expected to be demonstrated in the

CRU TS data.

To test the robustness of the trends in A across the

ERA-20CM and 20CRC ensembles, we have calcu-

lated the median and range (10th–90th percentiles) of

hemispheric-mean A anomalies across the ensemble

members of these simulations: the values are calcu-

lated across 56 members in the case of 20CRC and

10 members in ERA-20CM. The uncertainty range in

surface temperature in ERA-20CM on a global mean

basis is largely a function of the internal variability of the

model as triggered by SST forcings. For each ensemble

FIG. 2. Average anomalies across the Northern Hemisphere of the amplitude of the annual

cycle derived from the (a) ERA-20C and ERA-20CM or (b) 20CR and 20CRC simulations

and CRU TS data. In (a), a cubic smoothing spline value, which highlights the low-frequency

variability, is included. In each panel the CRUTS results (red) are replicated. The cumulative

anomalies are calculated from the hemispheric average anomalies as the sum from 1 toN for

each of N time steps; these values have then been standardized using Z scores. For similar

results from Asi see Fig. S1 in the supplemental information.
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member a different SST distribution is used and while

the spread in the SST ensemble decreases significantly

over the course of the twentieth century, this is not

apparent in the ERA-20CM simulation, suggesting that

SST acts as initialization for the low-frequency atmo-

spheric variability (Hersbach et al. 2015). In contrast,

the spread across 20CRC ensemble members changes

markedly over time, indicating direct conditioning of

the atmospheric variability through the assimilated

barometric pressure observations (Compo et al. 2011).

As a reflection of this, the amplitude of the annual cycle

across the ERA-20CM ensemble members displays a

consistent spread in values throughout the time series

compared to 20CRC (Fig. 3). This indicates that the

observed trend in ERA-20CM toward positive amplitude

values arises from a consistent model response to the

input forcings, rather than from a variation of input data,

notably the variation in SST data over time. A much

higher interannual variability is evident in 20CRC, which

further illustrates the importance of synoptic pressure

variability on year-to-year and longer time-scale variabil-

ity. While the interannual variability generally exceeds

the uncertainty range on a year-to-year basis after;1930,

there is a larger uncertainty range in the 1900–30 period,

which can be attributed to the much lower observed data

input during that period (Compo et al. 2011). This is also

likely to be the case in the ERA-20C simulation, which

similarly used the barometric pressure data from the

ISPD. While the ISPD version used in these two da-

tasets differs, there has been no significant increase in

data quantity across the Northern Hemisphere in the

newer version of ISPD used in ERA-20C compared to

the older version used in 20CRC.

In Fig. 3 we have included the trend in the median

across the ensemble ofA values. This trendwas calculated

using a generalized additive mixed model (GAMM;

Wood 2006), where the dependent variable (hemispheric

anomalies) is expressed as a smooth function of time. The

smoothing parameter of the cubic splines is chosen using

generalized cross validation (GCV). Autocorrelation up

to lag 4 is significant in the 20CRC values and has been

taken into account in the GAMM. Temporal autocorre-

lation in the ERA-20CM time series was less than for

20CRC (significant up to lag 2), which further reflects the

constraining of the numerical model through the assimi-

lation of MSLP observations in 20CRC. The penalty in

the GAMMwas set to 10; this limits the effective degrees

of freedom (EDF) of themodel although it must be noted

that the actual value of theEDF is chosen byGCV (Wood

2006). Through the use of the GAMM, we do not make

an a priori assumption about the linearity of the trend in

these time series. Nonetheless, the smoothing spline

produced using this method is linear (EDF 5 1) for

both the ERA-20CM and 20CRC ensemble median time

series. All of the ensemble members in ERA-20CM

show a similar positive trend throughout the twentieth

century (Fig. S4), although themagnitude varies across the

members. Similarly, a negative trend is apparent in all of

the ensemble members of 20CRC (Fig. S3). These results

add further support to the assertion that direct synoptic

FIG. 3. Northern Hemisphere averages of the amplitude of the annual cycle calculated

across each of the ensemble members. The shading indicates the yearly 10th and 90th per-

centiles across the ensemble members, and the colored bars indicate the median of these

values. The trend line is derived using a generalized additive mixed model applied to the

median values expressed as a function of time. For similar results from Asi see Fig. S2.
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variability is largely responsible for the tendency toward

lower values and the pronounced decadal-scale vari-

ability apparent in the amplitude of the annual cycle

across Northern Hemisphere land areas over the

course of the twentieth century.

b. Trends in the phase

The hemispheric average anomalies for the phase of

the annual cycle (Fig. 4) indicate much less consistency

across the datasets in terms of the low-frequency vari-

ability and long-term trends than is the case for the am-

plitude of the annual cycle. ERA-20C, 20CR, and 20CRC

show some correspondence in terms of generally negative

anomalies during the first half of the twentieth century

and anomalies that oscillate across the zero line through-

out the latter half of the century, but this contrasts with the

results from CRU TS where there is no such temporal

variation. In comparison to the results from ERA-20CM,

the interannual variation is much more consistent across

CRU TS, ERA-20C, 20CR, and 20CRC than is the case

with the lower-frequency variations.

AswithA the spread across the trends inu (Fig. 5) from

the 20CRC simulation is much greater before;1930, but

is generally consistent in the ERA-20CM simulation over

the time period. Nonetheless the increasing trend and

decadal-scale fluctuation in the 20CRC results are in stark

contrast to the lack of trend in the ERA-20CM results.

This feature is also apparent when considering the results

for each of the ensemble members (Figs. S5 and S6).

4. Gridpoint trends

In this section we investigate regional-scale variations

in A and u by examining gridpoint trends calculated

FIG. 4. As in Fig. 2, but for the phase of the annual cycle.
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from the reanalysis simulations and CRU TS data. We

have calculated the trends over three nonoverlapping

time periods (1902–50, 1951–80, and 1981–2009). As in-

dicated in the previous section, the reliability of the

20CR, 20CRC, and ERA-20C simulations is likely to be

worse in the earlier decades of the twentieth century on

account of the much sparser data coverage compared to

later periods. By separating the time series into three

periods, an assessment can bemade of this reliability. The

1951 date is a reasonable cut off since the values in 20CR

and 20CRC are generally less reliable before 1952

(Compo et al. 2011), although as seen above this is par-

ticularly the case before ;1930. Furthermore, the split-

ting of the time series into three time periods allows us to

better capture the nonlinear trend that is apparent in the

hemispheric averages of Fig. 2, especially in the CRU TS

data and ERA-20C/20CR simulations. Although it

should not be expected that all grid cells will show the

same nonlinear trend as the hemispheric average, the

separation of the trend analysis into these three periods

also allows us to compare the results against studies that

have identified an aerosol-induced influence on the an-

nual cycle, which has been linked to the global dimming/

brightening phenomenon. Dimming is generally ascribed

to the period between the 1950s and 1980s, with bright-

ening occurring thereafter, although the exact timing and

magnitude of the two phases is spatially variable (Wild

2009). Associated with the dimming/brightening phe-

nomenon is the downward trend in the diurnal tempera-

ture range that has been observed over the latter half of

the twentieth century (Braganza et al. 2004a).

The trends in this section were calculated using the

Thiel–Sen method, with confidence intervals estimated

using the prewhitening technique described by Zhang

et al. (2000) and refined by Wang and Swail (2001). This

allows us to take into account lag-1 autocorrelation in the

significance testing of the trends. Trends in the difference

series (reanalysis minus CRU TS) of A and u were also

calculated. By taking the differences between respective

time series, variance common to both datasets is removed

and this allows for a stricter quantification of the differ-

ence in trends between the data, which are highly corre-

lated on the interannual and longer time scales [see

Cornes and Jones (2013) and references therein].

a. Trends in the amplitude

The average value of the trends in A across the North-

ern Hemisphere (Table 2) indicate generally weak trends

over the 1902–50 and 1951–80 periods, although in the

latter period the trends are negative. In the case of ERA-

20C the average trend over 1951–80 is more than double

the rate observed in the other datasets. Average trends in

A over the 1981–2009 period are positive but the value

varies considerably depending on the dataset considered:

trends in the 20CR/20CRC simulations are much greater

than in the CRU TS data and ERA-20C/ERA-20CM

simulations.

Gridpoint trends in most of the datasets indicate dis-

tinct regional differences beyond the average values

(Fig. 6), although in general the results fromCRUTS and

the reanalysis simulations—excluding ERA-20CM—are

broadly comparable in terms of the spatial pattern of

trends in the three periods considered. Of significance are

the reversal of trends in A across Europe from strongly

negative trends in the period 1951–80 to positive trends in

the period 1981–2009, and the large positive trends across

FIG. 5. As in Fig. 3, but for the phase of the annual cycle.
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northern China and Siberia during the period 1981–2009

(Fig. 6c). In the earliest period (1902–50) the trends in A

show less coherence across the datasets. The 20CR and

20CRC simulations in particular show a quite different

pattern over certain areas compared to CRU TS and

ERA-20C, especially over central Asia where a negative

trend is observed, and the north-central United States,

where a positive trend occurs, which is locally much

TABLE 2. Averages of amplitude and phase trends across the Northern Hemisphere. Trends are expressed as rate of change per decade.

Period Dataset A Adiff Asi Asi,diff u udiff

1902–50 20CR 20.01 20.04 0.01 20.02 20.36 0.12

20CRC 20.06 20.09 20.05 20.08 20.12 0.33

ERA-20C 0.03 0.00 0.04 0.00 0.14 0.57

ERA-20CM 0.01 20.02 0.00 20.03 0.17 0.52

CRU TS 0.03 — 0.04 — 20.36 —

1951–80 20CR 20.09 20.04 20.02 20.06 20.82 0.33

20CRC 20.09 20.05 20.03 20.05 20.74 0.40

ERA-20C 20.18 20.14 20.05 20.11 20.84 0.36

ERA-20CM 20.01 0.06 0.03 0.00 0.18 1.38

CRU TS 20.03 — 0.04 — 21.18 —

1981–2009 20CR 0.16 0.09 0.07 0.09 20.2 20.11

20CRC 0.22 0.15 0.14 0.14 20.44 20.28

ERA-20C 0.00 20.05 20.08 20.06 0.05 0.15

ERA-20CM 0.02 20.06 0.02 0.03 0.18 0.31

CRU TS 0.07 — 20.01 — 20.05 —

FIG. 6. Gridbox trends in the amplitude of the annual cycle calculated across three time periods. Gray shading indicates trends locally

significant at p , 0.05 (two-tailed test). Note the different scales used between the panels.
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stronger than in CRU TS. The trends in the difference

series of A (reanalysis minus CRU TS; Fig. 7a) further

demonstrate these anomalous regions and show that

the strong negative trend in central Asia is significantly

different from the trend in CRU TS. The anomalous

trends in northern Canada in the 20CR simulations

(Fig. 7a) are likely attributable to the well-documented

deficiencies in the sea ice data in the 20CR data during

that period (Lindsay et al. 2014), which have a clear

effect on trends in A across northern Canada. This

is largely rectified in the 20CRC dataset although

anomalies relative to CRU TS are still evident in that

dataset.

Aswith the hemispheric average trends described above,

the results from ERA-20CM are quite different from the

other data. With the exception of certain regions/time

periods, a relatively weak positive trend is apparent in

ERA-20CMacrossmost regions and during all of the three

time periods considered (Fig. 6).

Across the contiguous United States a crescent-

shaped pattern of trends is apparent in A over the

1981–2009 period (Fig. 6c): an increase in A occurs

across western and north-central regions while a de-

crease is observed across the southeast of the continent.

This pattern is evident in the results from the 20CR

simulation and to a lesser extent ERA-20C, and while it

can be seen in the CRUTS data, it is less clearly defined.

The crescent-shaped pattern is absent in the ERA-

20CM simulation. Previous studies have identified a

so-called warming hole in trends of surface air temper-

ature in the southeastern United States, where trends

over the 1950–99 period in the west of the country

FIG. 7. As in Fig. 6, but for trends calculated from the difference series (reanalysis minus CRU TS).
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outpaced those in the east by a factor of 2 (Meehl et al.

2012, 2015). A cooling trend was observed in certain

southeastern regions of the country, which was much

greater in the winter compared to the summer, and in

the context of the annual cycle of temperature would

result in an increasing trend in A. A reversal in SAT

trends, again greatest in winter, occurred around the

late 1990s (Meehl et al. 2015) and it is this reducing

seasonal differential that we see in the amplitude of

the annual cycle. Meehl et al. (2012) concluded that

the major factor influencing this feature was atmo-

spheric circulation changes resulting from decadal-

scale atmosphere–ocean interactions associated with

the interdecadal Pacific oscillation (IPO). The results

in Fig. 6c support this view: the 20CR and ERA-20C

simulations include SST data, and would be expected

to provide a good representation of the IPO over this

time period on account of the high density of land-

and ship-derived pressure data. A discrepancy exists,

however, in the results from 20CR and ERA-20C in

that the trend over the western United States is much

weaker, and is comparable to CRU TS; the negative

trends over the ‘‘warming hole’’ region of the south-

eastern United States are comparable.

To assess the uncertainty in the gridbox trends we

have calculated the trends in A for each member of the

56-member 20CRC ensemble, with the spread across

these trends taken as a measure of the uncertainty of the

results. This uncertainty does not quantify model bias

but provides ameasure of internal variability that results

from the model when unconstrained by the observa-

tions. The greatest spread of trends occurs across

northern Canada during the 1902–50 period (Fig. 8).

This is likely to be related to remaining problems with

the sea ice data described above, but may also arise from

the poor coverage of barometric pressure data across the

region during that period. Uncertainty in the trends is

also quite large across parts of China, and this is con-

sistent across the three time periods considered. Across

most of the other regions the 2s error range in the trends

is generally less than 60.18Cdecade21.

b. Trends in the phase

The average trend in u across the Northern Hemi-

sphere in the ERA-20CM simulation is an increase of

approximately two days over the 1902–2009 period

(Table 2); this rate of increase is broadly consistent

across the three time periods and indicates a spring

phase, that is, zero crossing of the MAC (see section 2)

that has occurred later in the year. The rate of change in

the other datasets and across the three time periods

differs considerably. The spatial pattern of trends in u
(Fig. 9) shows a much smoother pattern than A, with a

more coherent spatial pattern of regional differences

evident. Over the 1902–50 period, positive trends are

shown in all datasets across much of the United States,

indicating an increasing trend of ;1.5 days decade21.

Over the 1951–80 period a distinct region of strong

positive trends is evident over Europe in all datasets

apart from ERA-20CM. The trend is consistent across

ERA-20C, 20CR, 20CRC, and CRU TS and is on the

order of 7daysdecade21 compared with ;1 day in the

case of ERA-20CM, indicating a delay in spring phase

onset of around a week per decade. In contrast, over the

1981–2009 period a reversal of this pattern is evident, with

earlier phasing evident at the rate of 2daysdecade21. The

difference plots (Fig. 10) reinforce these assertions.

5. Monthly trends

The modulated annual cycle, as used in this paper,

defines the annual cycle of temperature as an intrinsic

component of the climate system (Wu et al. 2008). In

this way we exclude ‘‘noise,’’ which we consider to be

beyond our definition of the annual cycle, and this al-

lows us to investigate the wider changes of the annual

cycle beyond the phase and amplitude metrics. For

example, using a sample of long instrumental and

documentary series across the Northern Hemisphere,

Jones et al. (2003) have shown that the negative trend

in the amplitude throughout the twentieth century is

attributable to a greater warming of the winter season

compared to summer. Using the MAC we are able to

examine not just these changes in the CRUTS data and

the reanalysis simulations, but also trends for all

months of the year. To achieve this we have calculated

the trends for each month of the year over the three

time periods defined above from the MAC values. The

trends have been averaged across six regions using

all grid cells in the respective regions. The regions

are defined as Canada, 508–708N, 1308–608W; East

Asia, 258–508N, 408E–1808; Mediterranean, 308–508N,

608W–408E; northern Asia, 508–708N, 408E–1808; north-
ernEurope, 508–708N, 608W–408E; and theUnited States,

308–508N, 1308–608W.

In most cases in Fig. 11 the results from 20CR and

20CRC match those of CRU TS and ERA-20C closely.

An exception is evident during the warm half of the year

across East Asia and northern Asia throughout the pe-

riods 1951–80 and 1981–2010. Across those two regions

the trends in 20CR and 20CRC tend to be lower than the

other data during 1951–80 and much higher during the

1981–2010 period.

As has been identified throughout this paper, the

trends in ERA-20CM tend to be quite different from

the other data considered, and the results from the
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FIG. 8. Spread of trends in (a)–(c) A and (d)–(f) u in the 20CRC data. The spread is indicated by two std devs

across the trends. Note the different scales used in (a)–(c) compared to (d)–(f).
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monthly trends in Fig. 11 are no exception. There tends

to be much less month-by-month variation in the

trends in ERA-20CM compared to the other datasets.

During the 1901–50 period there is similarly very little

variation across months in all the datasets and across

the six regions. This is reflected in the weak trend in A

across most Northern Hemispheric land areas identi-

fied above. However, in the 1951–80 and 1981–2010 pe-

riods the anomalous monthly variation in ERA-20CM

trends is clearly apparent when compared with the

significant monthly variation evident in the other da-

tasets. A notable example is northern Europe during

the 1981–2010 period, when a pronounced negative

trend is observed throughout the spring months

(March–May) in all datasets apart from ERA-20CM.

Furthermore, the spread in trends per month across

ensemble members in ERA-20CM (Fig. S10) is as

large as or larger than the spread across the datasets in

Fig. 11. These results reinforce the message that that it

is the constraining of the reanalysis data through the

barometric pressure data (20CR and ERA-20C) and

oceanic wind observations (ERA-20C) that is vital for

the reanalysis simulations to replicate the trends and

variability seen in the observed data.

6. Discussion and conclusions

Previous studies have demonstrated the important

role that the dominant modes of atmospheric circulation

play in the variability of the annual cycle across the

Northern Hemisphere, notably the Pacific–North Amer-

ican (PNA) mode, the northern annular mode (NAM),

and/or the Pacific decadal oscillation (PDO) (Ault et al.

2011; McCabe et al. 2012; Stine et al. 2009; Stine and

Huybers 2012). For example, the study by Stine and

Huybers (2012) identified a west–east split across Europe

in the trends of both A and u, and was attributed to the

influence of theNAM. In this paper we have not explicitly

defined the relationship between the annual cycle and

these modes of atmospheric circulation variability but

rather consider the total response to the atmospheric

circulation at the hemispheric and gridcell scales through

the comparison of reanalysis simulations that assimilate

barometric pressure and/or marine wind observations

FIG. 9. As in Fig. 6, but for the phase of the annual cycle.
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and sea surface temperature, in a modeling framework

that includes various other forcing parameters. This

approach does not dictate what the response of the

annual cycle to atmospheric circulation variability

should be at a given place or time but allows for a dy-

namic response, with the response being determined by

the particular modeling scheme used in each reanalysis.

Nonetheless, the spatial pattern of trends in the phase

and amplitude of the annual cycle over the latter half

of the twentieth century, particularly over Europe, is

consistent with the annual cycle response to variability

of the NAM seen, for example, in the results of Stine

and Huybers (2012). Furthermore, we also see a sig-

nature of the NAM at the hemispheric scale in the time

series of the amplitude of the annual cycle; the phase,

being much more dominated by regional-scale variability,

is less coherent at the hemispheric scale. However, while

the NAMhas a significant control on the variability of the

annual cycle, other atmospheric circulation effects are

also likely to be present in the results, which are of local or

regional significance and which are included implicitly in

the results—an example of this is the observed west–east

split in trends across the United States over the latter half

of the twentieth century in connection with the warming

hole (Meehl et al. 2012). It should be stressed, however,

that using this reanalysis comparison approach we are not

able to separate the influence of natural internal vari-

ability from anthropogenic forcings or to evaluate the

influence of land use or aerosol forcing.

In this analysis we make the assumption that the

response to different forcings, and atmospheric circu-

lation variability, is the same across the reanalyses, and

also the observed data. Clearly this is a simplification

since a statistical interpolation is used in the construc-

tion of the CRU TS data—with stations for a particular

grid cell included if they fall within the 1200-km

distance-decay radius—while surface temperature in

the reanalysis simulations is dictated by the modeling

framework used. The effect of this discrepancy in the

results presented in this paper is likely to be largest at

the gridbox scale and in areas of poor station coverage,

in either the CRU TS or reanalysis data. At the

FIG. 10. As in Fig. 7, but for the phase of the annual cycle.
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hemispheric scale any such differences are expected to be

minor. In the comparison between reanalysis simulations

the assumption of a constant forcing response is only

valid in the comparison of ERA-20CMagainst ERA-20C

since both datasets use the same modeling framework

(IFS Cy28r1) and forcings (Hersbach et al. 2015).

Between 20CR/20CRC and ERA-20C/ERA-20CM the

assumption may not hold since different modeling

frameworks are used in these reanalyses. However, the

generally close association between the results from

20CR/20CRC and ERA-20C suggests that any modeling

difference is less important than the observed data that

FIG. 11. Monthly trends in the EEMD-derived MAC values averaged across six regions in the CRU TS data and reanalysis simulations.
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have been assimilated, and which provide a vital constraint

on the reanalysis simulation.

The results from ERA-20CM in this paper can be

viewed as a form of control, in the sense that the syn-

optic variability in that dataset is not constrained by

observed MSLP and/or marine wind data as is the case

with the other reanalysis simulations analyzed in this

paper. When compared against the results from the

simulations that contain the direct synoptic variability,

as well as CRU TS which implicitly contains all forcings,

we see that most of the interannual and lower-frequency

variability in the amplitude of the annual cycle through-

out the twentieth century arises from synoptic variability;

the increasing trend attributable to the forcings contained

in ERA-20CM is largely linear throughout the twentieth

century with little correspondence to the synoptic-

constrained simulations at the interannual/decadal scale

(Fig. 2). However, a complication arises in this respect

since all of the reanalyses, including ERA-20CM, as-

similate sea surface temperature (see Table 1). Since the

SST data contain all forcings and natural variability im-

plicitly, in a similarmanner to theCRUTSdata on land, a

strict isolation of the CMIP5 forcings using this dataset is

not possible. However, it is clear that it is only when the

reanalysis simulation is constrained by synoptic MSLP

and/or marine data that the reanalysis simulation ap-

proaches the purely observed data (CRU TS). This in-

dicates that it is the advective properties of the synoptic

variability that is the key to understanding changes in the

annual cycle throughout the twentieth century, through

ocean–atmosphere coupling, rather than the atmospheric

circulation response per se. This corresponds to the

findings of McKinnon et al. (2013). However, the longer

time scale analyzed in this paper has enabled us to

identify that the strong nonlinear trend in the amplitude

of the annual cycle across the Northern Hemisphere in

the latter half of the twentieth century was preceded by

relative consistency back to 1902; this is also apparent in

the synoptic-forced reanalyses. It should be stressed,

however, that the ability of the reanalysis datasets to

depict the influence of the atmospheric circulation vari-

ability is directly related to the quality and quantity of the

assimilated data. Across certain areas, such as northern

China, and for most regions prior to;1930 the input data

are relatively sparse, which reduces confidence in the

results for these regions and periods. This relative data

sparsity occurs in the assimilated MSLP data and also

the SST and sea ice data.

The method used in this paper to define the annual

cycle—the modulated annual cycle (Wu et al. 2008)—has

allowed us to examine more detail about changes in the

annual cycle than is permitted from the amplitude and

phase metrics alone. This has revealed a complex change

to the annual cycle throughout the twentieth century, and

one that is regionally specific.However, as with the trends

and variability in the amplitude and phase of the annual

cycle at the hemispheric and gridcell resolutions, the re-

analysis data are only able to replicate the observed

changes when constrained with synoptic-scale observa-

tions, which again suggests the critical influence that

atmosphere–ocean variability has on the annual cycle,

although the degree to which human activity affects

synoptic variability itself remains an open question.
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APPENDIX

Calculation of the Modulated Annual Cycle

In most previous analyses of the annual cycle of tem-

perature the annual cycle has been defined using phase

and amplitude metrics using an annual-period sinusoid

function obtained using the complex demodulation

method (Thomson 1995; Mann and Park 1996) or the

Fourier transform method (Stine et al. 2009; Stine and

Huybers 2012). Using these methods a symmetrical form

of the annual cycle is assumed. In this paper we use the

modulated annual cycle (MAC;Wu et al. 2008) obtained

adaptively using an adaptive and temporally local filter

[ensemble empirical mode decomposition (EEMD)]

(Wu and Huang 2009), which does not assume a partic-

ular shape of the annual cycle. This considers the annual

cycle as an intrinsic, nonlinear, and nonstationary com-

ponent of the climate system, which is in contrast to the

Fourier transform approach, which considers the annual

cycle to be an extrinsic component. Using the EEMD
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approach we are able to examine changes to the annual

cycle in its entirety; this allows, for example, the analysis

in section 5 of the trends for eachmonth of the year in the

context of the MAC. The effectiveness of the MAC has

been shown in several previous studies (e.g., Wu et al.

2008; Qian et al. 2011b; Qian and Zhang 2015).

The EEMD method is a development of empirical

mode decomposition (EMD; Huang and Wu 2008)

whereby a time series is decomposed into a finite set of

oscillation components possessing various time scales

[named intrinsic mode functions (IMFs)] and a long-

term trend through a sifting process. A common prob-

lem with the EMD is ‘‘mode mixing,’’ whereby a given

IMF consists of very different signals. To alleviate this

problem the EEMD was proposed whereby the under-

lying idea is to obtain the arithmetic mean of multiple

observations by adding multiple white noise realizations

to the target data tomimic a scenario ofmultiple trials of

observations for a single trial of observations and carry

out the EMD procedure for each trial. Through using an

ensemble, EEMD cancels various realizations of which

noise added to each trial of the ensemble and finally

obtains scale-consistent signals. The procedure of ex-

tracting theMACusing this method follows the example

of Wu et al. (2008). In the case of monthly data the

second and third components of the EEMD result often

have similar numbers of extrema that are phase locked.

To obtain a relatively narrow band annual cycle, the

second and third components are combined and sub-

jected to a single EMD decomposition.

To extract the MAC in the temperature series in-

vestigated in this paper the following stages were fol-

lowed: 1) White noise with an amplitude of 0.5 times

the standard deviation of the monthly temperature

series was added to the time series. 2) The data with

added white noise were then decomposed into IMFs.

3) Steps 1 and 2 were repeated 1000 times with a new

white noise series added each time. 4) The mean across

the 1000 ensemble members was calculated for each of

the IMFs. 5) The second and third components of the

EEMD result were added. 6) This new series was

subjected to a further EMD, and the first IMF of that

procedure was taken as the MAC.
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