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Abstract  

Balancing selection can maintain immunogenetic variation within host populations, but detecting its signal in a 

post-bottlenecked population is challenging due to the potentially overriding effects of drift. Toll-like receptor 

genes (TLRs) play a fundamental role in vertebrate immune defence and are predicted to be under balancing 

selection. We previously characterised variation at TLR loci in the Seychelles warbler (Acrocephalus 
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sechellensis), an endemic passerine that has undergone a historical bottleneck. Five out of seven TLR loci were 

polymorphic, which is in sharp contrast to the low genome-wide variation observed. However standard 

population genetic statistical methods failed to detect a contemporary signature of selection at any TLR loci. 

We examined whether the observed TLR polymorphism could be explained by neutral evolution, simulating 

the population’s demography in the software DIYABC. This showed that the posterior distributions of mutation 

rates had to be unrealistically high to explain the observed genetic variation. We then conducted simulations 

with an agent-based model using typical values for the mutation rate, which indicated that weak balancing 

selection has acted on the three TLR genes. The model was able to detect evidence of past selection elevating 

TLR polymorphism in the pre-bottleneck populations, but was unable to discern any effects of balancing 

selection in the contemporary population. Our results show drift is the overriding evolutionary force that has 

shaped TLR variation in the contemporary Seychelles warbler population, and the observed TLR 

polymorphisms might be merely the ‘ghost of selection past’. Forecast models predict immunogenetic 

variation in this species will continue to be eroded in the absence of contemporary balancing selection. Such 

‘drift debt’ occurs when a genepool has not yet reached its new equilibrium level of polymorphism, and this 

loss could be an important threat to many recently bottlenecked populations. 

 

Introduction 

Balancing selection can maintain variation in a gene pool in the face of genetic drift, yet the relative impact of 

both evolutionary forces in bottlenecked populations remains unclear (Acevedo-Whitehouse & Cunningham, 

2006). As well as being important from a conceptual evolutionary perspective, a better understanding of this 

interaction is required in conservation biology, where levels of genetic variation can influence individual fitness 

and population persistence as a result of inbreeding depression and adaptive potential (Frankham et al., 1999; 

Reed & Frankham, 2003). 

Genetic drift is thought to outweigh the effects of selection in small, bottlenecked populations, 

resulting in a loss of genetic variation and leading to population isolation and differentiation and isolation 

(Miller & Lambert, 2004; Grueber et al., 2013). Indeed, genetic variants with selection coefficients (s) smaller 

than the reciprocal of twice the effective population size (s < 1/(2Ne)) are considered to behave neutrally 

(Kimura, 1979). This implies that in a population that has gone through a single generation bottleneck of just 

10 individuals, alleles with selection coefficients s < 0.05 have an equal probability of becoming lost or fixed as 

neutral alleles, assuming they have the same initial frequency. However, selection acting before the bottleneck 

will have changed the allele frequencies at loci under selection compared to the frequencies at neutral loci. For 

example, some types of selection create an allele frequency spectrum with a relative excess of intermediate-

frequency alleles – hence the term “balancing selection”. Such intermediate frequency alleles are less likely to 

drift to fixation (i.e. being lost from the population) than the (generally low-frequency) neutral alleles. 

Consequently, a locus that is under balancing selection in the pre-bottlenecked population may continue to 

show a relatively elevated level of gene diversity compared to a neutral gene after the bottleneck, even in the 
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absence of contemporary balancing selection. This elevated level of polymorphism could be a “ghost of 

selection past” that does not reflect the contemporary regime of selection. To put this another way, a recently 

bottlenecked population is unlikely to be in mutation-drift-selection equilibrium, and the currently observed 

levels of polymorphism at genes under balancing selection might overestimate future genetic diversity. In this 

paper, we refer to this phenomenon as the “drift debt”.  

 Immune genes are ideal candidates with which to investigate the link between genetic variation and 

fitness because of their direct effects on survival (Sorci & Moller, 1997; Merino et al., 2000; Moller & Saino, 

2004; la Puente et al., 2010) and reproductive success (Pedersen & Greives, 2008; Kalbe et al., 2009; la Puente 

et al., 2010; Radwan et al., 2012). Variation at immune genes can have an important impact on the 

demographic structure of populations (Hudson, 1986; Redpath et al., 2006; Deter et al., 2007; Pedersen & 

Greives, 2008). They are also thought to evolve faster than the rest of the genome as a result of host-pathogen 

co-evolution (Trowsdale & Parham, 2004). Much work has been done investigating how balancing selection 

can maintain genetic variation at genes of the Major Histocompatibility Complex (MHC) (for reviews, see 

Piertney & Oliver, 2006; Spurgin & Richardson, 2010). However, the MHC is a large multigene family with a 

complex evolutionary history and with many evolutionary forces acting simultaneously on the various gene 

members (see, van Oosterhout, 2009). For example, gene conversion (e.g. Spurgin et al., 2011; Eimes et al., 

2011) and the generally unknown locus-affiliation of alleles can complicate population genetic analysis of the 

MHC in wild populations. In contrast, many other immune genes remain relatively understudied, yet these 

genes are increasingly recognised as important candidates for investigating functional variation and selection 

(Acevedo-Whitehouse & Cunningham, 2006; Turner et al., 2012; Grueber et al., 2013; Chapman et al., 2016). 

 Toll-like receptors (TLRs) are membrane-bound sensors of the vertebrate immune system that 

recognise pathogen-associated molecular patterns (PAMPs) and help trigger an immune response (Akira et al., 

2001; Werling & Jungi, 2003). Vertebrate TLRs fall into six different families depending on the specific PAMPs 

they recognise (Takeda & Akira, 2005; Kawai & Akira, 2010). Different TLRs bind to different elements, ranging 

from bacterial lipoproteins (Takeuchi et al., 2002; Jin et al., 2007), lipopolysaccharides (Bihl et al., 2003; Kim et 

al., 2007), DNA motifs (Keestra et al., 2010; Brownlie & Allan, 2011) and viral RNA (Yoneyama & Fujita, 2010). 

Studies have shown evidence of positive selection acting within TLR loci across a range of vertebrate taxa 

(Ferrer-admetlla et al., 2008; Nakajima et al., 2008; Areal et al., 2011; Palti, 2011; Grueber et al., 2014) and it 

appears that this selection largely targets the TLR extracellular domain responsible for binding PAMPs (for 

reviews, see Takeda & Akira, 2005; Kawai & Akira, 2010). If TLRs are involved in a co-evolutionary arms race 

with pathogens, it is likely that balancing selection operates at these genes. This idea is also supported by the 

direct links that have been made between in vitro nucleotide variation at these genes with differential disease 

outcome (Basu et al., 2012; Netea et al., 2012).  

 Avian models are widely used for looking into patterns of functional variation both within and 

between populations (for examples, see Hellgren et al., 2010; Bonneaud et al., 2011; Kyle et al., 2014; 

Gonzalez-Quevedo et al., 2016), including studies that have looked into the relationship of this variation with 
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anthropogenic factors (e.g. Wright et al., 2014; Gonzalez-Quevedo et al., 2016). A study on the entire TLR 

multigene family in seven phylogenetically-diverse avian species has inferred polymorphic TLRs to be under 

strong balancing selection (Alcaide & Edwards, 2011) but only recently have studies been able to link this 

variation to drivers of selection in avian populations, particularly those that have undergone a genetic 

bottleneck (e.g. Bonneaud et al., 2011; Grueber et al., 2014; Gonzalez-Quevedo et al., 2015). 

 The Seychelles warbler, Acrocephalus sechellensis,  is an island endemic passerine species that went 

through a population bottleneck of less than 30 individuals on a single island during the last century (Collar & 

Stuart, 1985). In a previous study, we characterised variation at TLR genes in this population (Gilroy et al., 

2016). We found that despite the considerable losses of genome-wide variation due to the bottleneck (Spurgin 

et al., 2014), considerable polymorphism remained at five different TLR loci (TLR1LA, TLR1LB, TLR3, TLR5 and 

TLR15), while two loci were monomorphic (TLR4 and TLR21). Remarkably, four functional variants (alleles) 

were found at a single locus (TLR15), which calls into question the inferred neutrality of this locus. 

 Due to the overwhelming effect of stochastic processes, detecting the signature of selection in 

bottlenecked populations using standard population genetic statistical methods is difficult. This includes 

population genetic summary statistics such as Fst outlier analysis, dN/dS ratio and allele frequency spectrum 

tests, which may not always be able to identify the signatures of selection. Furthermore, these methods make 

unrealistic demographic assumptions, such as assuming constant population size and no population structure 

(Nielsen, 2001), and they fail to distinguish historic selection from current selection (Nielsen, 2005). Several 

reviews have attempted to disentangle selection effects from those of demography, but they all come to the 

same conclusion that no single statistical method can convincingly separate the forces (for examples, see 

Stajich & Hahn, 2005; Wegner, 2008; Alcaide, 2010; Sutton et al., 2011).  Additionally, a rejection of neutral 

evolution only indicates that a population is not in mutation-drift equilibrium. Such deviation from equilibrium 

is consistent with both the effects of selection as well as a post-bottleneck population expansion, making the 

interpretation of such tests complicated (Ramírez-Soriano et al., 2008). This problem is particularly acute in 

relation to conservation genetics given that, by definition, endangered populations are not in equilibrium. In 

an attempt to resolve this problem, we re-analysed the Seychelles warbler data with an agent-based model 

that uses forward-in-time simulations to account for the stochasticity during the population bottleneck, as well 

as the effects of balancing selection and other evolutionary forces before the bottleneck in the ancestral 

population. As explained above, this is important because balancing selection does not only affect the 

population genetic dynamics of alleles during the bottleneck, but also affects the initial allele frequency and 

polymorphism at a locus in the ancestral population. By simulating the exact bottleneck scenario, as previously 

inferred through neutral markers and historic data (Spurgin et al., 2014), we estimate the strength of balancing 

selection acting on these genes before, during, and after the bottleneck. In addition, we estimate the 

predicted future loss of genetic variation at the TLRs, i.e. the ‘drift debt’, which is likely to occur until the 

Seychelles warbler has reached its new mutation-drift-selection equilibrium state.  
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Materials and Methods 

Study species  

The Seychelles warbler (Acrocephalus sechellensis) is a small (ca 12-15 g) passerine bird endemic to the 

Seychelles archipelago (Safford & Hawkins, 2013). This species underwent a recent bottleneck when the world-

wide population was reduced to < 30 birds on the island of Cousin by the 1960s (Crook, 1960). This bottleneck 

reduced the effective population size (Ne) of Seychelles warblers from ca 6900 in the early 1800s to < 45 in the 

contemporary population (Spurgin et al., 2014). As a result of subsequent conservation actions, by 1982 the 

population on Cousin recovered to carrying capacity of ca 330 adult birds (Komdeur, 1992; Brouwer et al., 

2006). This population has since provided an excellent study system for evolutionary, ecological and 

conservation study (Komdeur, 1992; Richardson et al., 2003; Barrett et al., 2013; Spurgin et al., 2014). Since 

1997, > 96% of the Cousin population has been caught and given unique colour ring combinations and a metal 

British Trust of Ornithology ring (Richardson et al., 2002). Blood samples (ca 25 µl) are taken at each catch via 

brachial venipuncture, placed in absolute ethanol in a 2 ml screw-top Eppendorf tube and kept in the fridge at 

4oC. 

Molecular methods 

Blood samples used in the present study were from adult birds (> 1-year-old) chosen at random from the 

contemporary 2000-2008 population. Genomic DNA was extracted using a salt extraction method (Richardson 

et al., 2001) and sex was confirmed using a molecular sexing protocol (Griffiths et al. 1998). The following TLR 

loci were amplified: TLR1LA, TLR1LB, TLR3, TLR4, TLR5, TLR15 and TLR21, in 22-30 individuals, as detailed in 

Gilroy et al. (2016).  

Demographic scenario 

The demographic scenario of the Seychelles warbler has been reconstructed by Spurgin et al., (2014), and this 

has been used to evaluate whether the observed polymorphism can be explained by neutral evolution (i.e. no 

selection). First, to establish the genetic variation in the ancestral population, each locus could accumulate 

polymorphisms in an ancestral population with an effective population size Ne = 6900 (Spurgin et al., 2014). 

The burn-in consisted of 200 000 generations during which the population reached a mutation-drift-selection 

equilibrium value of polymorphism (Fig. 1). We also explored the minimum and maximum estimates of the 

ancestral effective population size (Ne = 2600 and 9700; see Spurgin et al. 2014), again to account for variance 

in this estimate. After the burn-in, we applied a bottleneck of 22 generations at Ne = 50, followed by three 

generations of population expansion with Ne = 100, 150 and 200, and finishing with nine generations at Ne = 

250 (Spurgin et al., 2014). We assume there is no recombination and that variation is solely introduced by 

mutation. This was based on previous tests using Genetic Algorithm Recombination Detection (GARD) analyses 

(Pond et al., 2006) on sequences for all TLR loci in the Seychelles warbler, which failed to detect any evidence 

of recombination using site-by-site analysis (Gilroy et al., 2016). 
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Testing neutral evolution with DIYABC 

To assess whether an elevated mutation rate could explain present-day Seychelles warbler TLR diversity in the 

absence of selection, we implemented the demographic model as described above in the program DIYABC v2.1 

(Cornuet et al., 2014) and then examined the posterior distributions of mutation rates. This was done on the 

premise that if posterior mutation rates came out unrealistically high, balancing selection may be responsible 

for maintaining the variation, partially countering the effects of drift. The programme bases its posterior 

distributions on the simulated scenarios that most closely match the observed data in terms of a set of user-

defined summary statistics. We tested each locus separately, using a Jukes Kantor mutation model with a 

uniform prior of 10-12-10-6, leaving all other mutation parameters as default. For summary statistics, we 

enabled all except number of private segregating sites (redundant for single-sample analyses). After a 

preliminary run of 1 M simulation to evaluate the validity of prior settings and to check the potential for 

matching the summary statistics to observed value, we ran 5 M simulations for each locus and used the closest 

20 000 in the local linear regression for posterior estimation (Cornuet et al., 2014). 

Forward-in-Time Computer Simulations 

An agent-based model was built to simulate the loss of genetic variation at an autosomal locus under 

balancing selection (symmetric overdominance) in a diploid panmictic population that experienced a 

bottleneck of known size and duration.  Briefly, TLR loci with known number of base-pairs were simulated. 

Individuals were diploid, and the fitness (w) of an individual with a homozygous locus was given by w = 1 – S, 

with S being the selection coefficient. Based on preliminary findings (Gilroy et al., 2016), we explored the 

parameter space across selection coefficients 0.0 ≤ S ≤ 0.1. The fitness of heterozygote individuals was equal to 

unity. Generations were discrete, and selection acted on individuals once per generation. Individuals survived 

if their fitness was larger than a randomly drawn value from a uniform distribution between zero and one (U 

[0,1]). Genetic drift was simulated by randomly drawing individuals so that the population size was equal to 

the user-defined effective population size of that generation.  Surviving individuals could reproduce and 

contributed gametes to the next generation. Gametes unified randomly to make the next generation of 

individuals. In a population of constant size, this procedure results in a Poisson distribution of the number of 

offspring with a mean and variance of two. Given the small amplicon size (x̅ = 637 bp) of TLR loci, 

recombination was set to zero. The mutation rate was µ = 10-9 per base pair per generation, a well-justified 

estimation for this taxonomic group (Kumar & Subramanian, 2002), but we also examined a mutation rate ten 

times higher (µ = 10-8) to account for uncertainty in this parameter. The bottleneck scenario was started at 

random points in time after the burn-in, and these sampling points were separated by >100 generations to 

avoid pseudo-replication. Finally, a subsample equal to the number of genotyped birds was randomly drawn 

from the simulated contemporary population, and heterozygosity (Hsim) in this sub-sample was assessed and 

compared to the observed value (Hobs).  

Simulations were first run with a selection coefficient S = 0.0 to test whether the null model of neutral 

evolution could be rejected. If neutral evolution was rejected, different selection coefficients were explored to 
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examine the parameter space and determine the strength of selection that was most consistent with the 

observed heterozygosity in the post-bottleneck Seychelles warbler population. We therefore compared the 

simulated value (Hsim) to the observed heterozygosity (Hobs) in the contemporary Seychelles warbler population 

using a total of 1000 independent sampling points to calculate the distribution of Hsim for each selection 

coefficient S of each locus. To determine the minimum selection coefficient required to explain the observed 

heterozygosity, the percentage of simulations with Hsim < Hobs was calculated, and if this was less than 5%, the 

selection coefficient was rejected as being too weak. 

To examine whether we could also detect the effect of selection since the bottleneck, we ran a 

second set of simulations to examine the effect of reducing parasite mediated balancing selection on TLR 

variation. This is relevant for conservation genetics given that isolated bottlenecked populations may lose a 

component of their parasite fauna (Bergstrom et al., 1999; Fairfield et al., 2016) and so the strength of 

parasite-mediated selection will be reduced and have genetic consequences. We focused on TLR15, the most 

polymorphic locus in the Seychelles warbler, and compared the loss of heterozygosity under modest balancing 

selection (S = 0.03) with that under neutral evolution (S = 0.00) during and after the bottleneck. Observing a 

continued decline in gene diversity under the neutral scenario, we then performed forecast modelling to 

predict the future loss of genetic variation at TLR loci in the original Cousin island population of the Seychelles 

warbler. This part of the study was performed to quantify the ‘drift debt’ by analysing the loss of genetic 

polymorphism still required to reach the mutation-drift-selection equilibrium value appropriate for the given 

effective populations size. In these simulations, we assume a ‘no-change’ scenario regarding the future 

demography and population size of the Seychelles warbler. The model predicted the amount of genetic 

variation at TLR15 in 2050 and 2100. We assumed an average four-year generation time and an effective 

population size Ne = 250 (Wright, 2014). All simulations were run using Minitab 17 statistical software (2010); 

macros are available on GitHub (https://github.com/DGilroy89/TLRsims). 

Results 

DIYABC’s posterior distributions of mutation rates for each of the five polymorphic TLR loci are given in Table 

1. The programme was unable to estimate posteriors for the two monomorphic loci, even when we reduced 

the mutation rate prior range to 10-15-10-9 and only sought to match one summary statistic (number of 

haplotypes). To account for the observed level of polymorphism, the posterior distribution of the mutation 

rates exceeds the expected values for birds, reported in Nobholz et al. (2009). This suggests that neutral 

evolution can be rejected in two out of seven loci.  

Simulations with the agent based model show that populations reached mutation-drift equilibrium 

after 100 000 generations with θ = 2.76 × 105 (which is equivalent to Ne = 6900 and μ = 10-9), and that Hsim 

reaches a plateau (Fig. 1). Values of Hsim increase with an increased coefficient of balancing selection (S). When 

simulating neutral evolution, the mutation-drift equilibrium value of heterozygosity is as close to, if not, zero 

(Hsim ≈ 0.0). In contrast, even a small selection coefficient of S = 0.01 results in high gene diversity (Hsim ≈ 0.7). 
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A previous study showed that five out of seven TLR loci remained polymorphic in the Seychelles 

warbler population (Gilroy et al., 2016). According to our simulations, we can reject neutral evolution for the 

three most polymorphic loci (TLR1LB, TLR3 and TLR15; P < 0.001 for all), but not for the two less diverse loci 

(TLR1LA and TLR5; P = 0.991, 0.964, respectively; Tables 2 & 3). Both monomorphic loci, TLR4 and TLR21, also 

appear to be evolving neutrally (P = 0.939, 0.996, respectively; Fig. 2, Fig. S1).  

We then explored the effects of the ancestral effective population size on the level of contemporary 

variation, simulating both the minimum and maximum estimates (Ne = 2600 and 9700). The Ne of the 

ancestral population does not appear to have a significant effect on the overall conclusions (Fig. S2). However, 

when we used a 10× higher mutation rate (μ = 10-8), only the two most diverse TLR loci (TLR1LB and TLR15) 

have a level of genetic polymorphism that is inconsistent with neutral evolution (Fig. S3).  

Next we tested whether we could discern the effects of contemporary balancing selection, i.e. 

selection during the 34 generations of the bottleneck (for details see Spurgin et al., 2014). We simulated 

TLR15, the most polymorphic TLR locus in our study, and found that there is no discernible difference in the 

initial decline of heterozygosity between the scenario with and without balancing selection (S = 0.03 and S = 

0.00 respectively) (Fig. 3). However, without balancing selection, the gene diversity continues to decline into 

the future.  

To test this further and quantify the ‘drift debt’, we conducted forecast modelling to predict the 

amount of genetic variation at TLR15 that will remain in the Seychelles warbler population over the next 

decades without balancing selection. Simulations show that in this scenario, genetic variation continues to 

decline by a further 2.2% and 4.5% by 2050 and 2100 respectively, even with the future Seychelles warbler 

population size remaining constant at present day levels. In contrast, if balancing selection continues to act at 

a constant intensity (S = 0.03), the TLR variation is expected to neither decline further nor increase. 

 

Discussion 

We first used the program DIYABC v2.1 (Cornuet et al., 2014) to assess whether an elevated mutation rate 

could explain present-day Seychelles warbler TLR diversity in the absence of selection. We implemented the 

demographic model inferred for the Seychelles warbler by Spurgin et al. (2014), and found that the posterior 

distributions of mutation rates had to be unrealistically high if mutation rate was to explain the observed 

variation within the Seychelles warbler population. For example, the most polymorphic locus TLR15 had its 

lowest value estimate for the 5% quantile at 4.85 x 10-8, and a median µ value of 1.63 x 10-7. Based on what we 

know of mutation rate estimates in birds, the fastest substitution rate is in the order Passeriformes is equal to 

3.8 x 10-8 (and the median is 4.0 x 10-9), which are both smaller than out 5% maximum estimate. In other 

words, our posterior estimates significantly exceed the established µ values in Aves (Nobholz et al., 2009), and 

hence, we argue that balancing selection may be responsible for maintaining the TLR variation. 
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Our simulations suggest that balancing selection has been acting on five out of seven TLR genes in the 

past, assuming an expected typical mutation rate equal to µ = 10-9 per base pair per generation (Kumar & 

Subramanian, 2002). With a higher mutation rate (µ = 10-8), neutral evolution was rejected in only two of the 

seven loci. The strength of selection inferred in the Seychelles warbler differs between TLR loci but is generally 

relatively weak (0.005 ≤ S ≤ 0.03) compared to what has been found for TLRs in other avian species (Alcaide & 

Edwards, 2011; Grueber et al., 2012). However, the model does not discern a signal of contemporary balancing 

selection during 34 generations of bottlenecking; the change in allele frequencies during the bottleneck is 

governed only by drift and not by selection. In other words, the rate of loss of variation is nearly identical for a 

neutral gene as for a gene under modest balancing selection (S = 0.03). The important difference, however, 

between neutral genes and genes under balancing selection is the high level of heterozygosity of genes under 

balancing selection in the ancestral population prior to the bottleneck. In large ancestral populations, such 

genes tend to possess several alleles present in intermediate allele frequencies, and it takes a considerable 

amount of drift to lose this amount of polymorphism. In other words, polymorphism in post-bottlenecked 

populations is ‘a ghost of selection past’, not ‘evidence of selection present’.  

Previous studies have also found that drift often overrides the effect of balancing selection during 

bottlenecks (e.g. Bollmer et al., 2011; Strand et al., 2012; Gonzalez-Quevedo et al., 2015). Our forecast 

modelling suggests that genetic variation might continue to decline due to a ‘drift debt’ in which the post-

bottlenecked population reaches a new and considerably lower equilibrium level of polymorphism. This is of 

concern for the conservation genetics of endangered species given that bottlenecked populations are reported 

to lose a component of their parasite fauna (Bergstrom et al., 1999) and thus the pathogen-mediated selection 

they face. If the intensity of parasite-mediated balancing selection in the post-bottlenecked Seychelles warbler 

population remains similar to that in the ancestral population, TLR variation in the contemporary gene pool 

will have reached its new equilibrium value and it is not expected to decline any further. For this reason, a 

comparative quantitative analysis of parasite load and diversity between mainland and island populations, or 

between pre- and post-bottlenecked population samples, would be insightful, as this may help determine the 

future trajectory of decline in immunogenetic variation and the ‘drift debt’.  

Considering the genetic background of the Seychelles warbler, there is considerably more variation 

within the TLR gene-group than was observed in another innate immune gene group of arguably equal 

importance, avian beta-defensins (AvBDs). Our previous study showed high levels of conservation and 

monomorphism across AvBD loci (Table S1; Gilroy et al., 2016b), which emphasises the significance of our 

findings particularly at TLR15. As the most polymorphic TLR locus in the Seychelles warbler, TLR15 is predicted 

to maintain a considerable amount of heterozygosity with a relatively small selection coefficient (S = 0.03). 

Interestingly, there is still much debate around which PAMPs bind to the TLR15 receptor, originally it was 

thought to be exclusively fungi (Boyd et al., 2012) but other studies suggest a wider suite of pathogens 

including bacteria (Oven et al., 2013; Hu et al., 2016). While it is clear that TLR15 has a unique role in defence 

against pathogens, poor understanding of its structure limits understanding of its evolution. Previous studies 

on other phylogenetically-distant avian species also identified TLR15 as the most polymorphic locus (Alcaide et 
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al., 2007; Brownlie & Allan, 2011; Boyd et al., 2012). The house finch (Carpodacus mexicanus) shows high 

levels of polymorphism with at least 16 alleles at the TLR15 locus, which probably reflects the species’ large 

effective population size as well as the effect of balancing selection (Alcaide & Edwards, 2011). More similar to 

the Seychelles warbler is the New Zealand Stewart Island robin (Petroica australis raikura), another island 

endemic that has undergone a recent bottleneck. In this species, TLR15 was found to possess two functional 

variants and was inferred to be under balancing selection (Grueber et al., 2012). Whether or not TLR15 is 

currently still under balancing selection can, however, only be determined through an analysis comparing the 

fitness of individuals that are homozygous and heterozygous at this locus. Given that such analysis requires 

large sample sizes to obtain sufficient statistical power (Hedrick et al., 2001), this may require an elaborate 

analysis of (pedigreed) birds collected over multiple generations. 

Why did the previous analysis of TLR sequence variation in the Seychelles warbler fail to detect 

positive selection (also in the historic population)? There has been much criticism on the relatively poor power 

underlying the use of genetic markers in molecular ecology to detect selection within populations (Waples & 

Gaggiotti, 2006; Vasemagi & Primmer, 2005; Sutton et al., 2011).  Indeed, sequence-based tests of selection 

come with several caveats such as low statistical power and restrictive assumptions (for review, see Ford, 

2002). Sharp changes in demography and population size, as well as the limited number of samples available 

for analysis, are issues that are particularly problematic in studies of endangered species. For this reason, 

agent-based models might be a better alternative to understand the evolutionary forces that have shaped 

genetic variation within endangered populations (see also Carvajal-Rodríguez, 2010). Conservation genetic 

studies that failed to detect selection in their study species despite observing (moderately) polymorphic loci 

may have suffered from insufficient statistical power.  

A computer simulation approach also offers a further important advantage over population genetic 

statistics in that it enables researchers to estimate the future loss of genetic variation that may occur in 

endangered species. Such information allows conservation managers to make informed decisions by 

anticipating deleterious changes in genepools and to strategically plan interventions such as genetic 

supplementation (Lynch & Hely, 2001; Miller et al., 2003; van Oosterhout et al., 2007; Frankham, 2008). 

Forecast modelling of the Cousin island population of Seychelles warbler indicated that the genetic variation at 

TLR15 might continue to decline depending on the presence or absence of parasite-mediated selection. The 

further loss, however, is small, with less than 5% further decline in variation predicted in the next 80 years, 

assuming no change in Ne. In more recently bottlenecked populations, the continued decline in genetic 

variation will be more severe because the allele frequencies in such gene pools will be further from their 

equilibrium values than the Seychelles Warbler. In this species (and our simulations), the bottleneck 

commenced 34 generations ago, during which time most of the loss of variation has already occurred; for 

example, according to the simulations 8.2% of the gene diversity of TLR15 was lost within the first 10 

generations after the bottleneck. Without contemporary parasite-mediated selection, the observed loss of 

genetic variation at immune genes in recently bottlenecked populations is likely to significantly exceed the 

level expected in a genepool that is in a mutation-drift-selection equilibrium. This emphasises the importance 
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in also considering the conservation of pathogens, particularly when translocating individuals to new islands 

and wanting to optimise genetic capture and long-term viability (Fairfield et al., 2016). Analogous to the 

‘extinction debt’ (Kuussaari et al., 2009), genetic variation is expected to be lost under a ‘no change’ scenario. 

We have referred to this as the ‘drift debt’, and we believe this is likely to affect many recently bottlenecked 

populations and needs to be considered in conservation management strategies. 
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Table 1. Posterior distributions of mutation rate (µ; per base pair per generation) for five TLR loci derived from 

analysis with DIYABC v2.1. For each distribution, the median and inter-quartile ranges are presented, and 

whether the estimated mutation rate exceeds typical values at each locus. The programme was unable to 

estimate posteriors for the two monomorphic loci (TLR4 and TLR21).  

Table 2. Polymorphism statistics for TLR loci in the Seychelles warbler. Adapted from Gilroy et al. 2016.  

Table 3. Selection coefficient (S) estimates based on plotted simulated TLR heterozygosity (H) following 

specific demographic scenario after 100 000 generations under a constant selective pressure. P-values indicate 

any significant difference between observed and simulated H based on the percentage of simulations (n = 

1000) where Hsim < Hobs and if less than 5%, the selection coefficient was rejected as being too weak. 

 

Figure 1. Simulated heterozygosity of a gene subject to overdominance selection and which consists of 528 

base pairs in a population with an effective population size Ne = 6900 and a mutation rate µ = 10-9 across a 

range of selection coefficients (S = 0.00, 0.01, 0.02, 0.03 and 0.05). The equilibrium heterozygosity is reached 

after ca 100 000 generations. 

Figure 2. Mean (5 - 95% CI) simulated heterozygosity (Hsim) across a range of selection coefficients (S) in a 

contemporary population of Seychelles warblers. The observed heterozygosity Hobs is indicated by the dashed 

line for each locus. 

Figure 3.  Heterozygosity in simulations with a constant balancing selection S = 0.03 both before and after the 

bottleneck event (solid) and balancing selection in the ancestral population (Sb = 0.03) followed by neutral 

evolution during / after the bottleneck (Sn = 0) (open symbols). Dotted horizontal line indicate actual 

heterozygosity (He = 0.682) observed in the population sample and the contemporary sample was collected at 

generation 34 (dashed vertical line). There is little difference between simulations with and without balancing 

selection, indicating that the loss in polymorphism is governed by drift, not selection. However, without 

contemporary balancing selection, the population continues to lose genetic diversity due to the ‘drift debt’.  
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Table 1. 

Locus Median µ IQR 95% range Reject posterior estimate 
TLR1LA 5.27E-08 2.40 × 10-08 - 1.10 × 10-07 4.38 × 10-09 - 3.91 × 10-07 Accept 
TLR1LB 8.33E-08 4.92 × 10-08 - 1.42 × 10-07 1.92 × 10-08 - 4.49 × 10-07 Accept 
TLR3 1.12E-07 6.96 × 10-08 - 1.92 × 10-07 2.96 × 10-08 - 5.60 × 10-07 Reject 
TLR4 Not estimated Not estimated Not estimated Not estimated 
TLR5 8.63E-08 4.93 × 10-08 - 1.50 × 10-07 1.72 × 10-08 - 4.80 × 10-07 Accept 
TLR15 1.63E-07 9.79 × 10-08 - 2.73 × 10-07 3.83 × 10-08 - 6.93 × 10-07 Reject 
TLR21 Not estimated Not estimated Not estimated Not estimated 

 

Table 2. 

Locus Number of 
sequences 

Fragment 
size (bp) 

Number of 
unique alleles 

Number of 
functional alleles* 

Heterozygosity 
(Hobs) 

TLR1LA 44 531 2 1 0.35 
TLR1LB 66 750 4 2 0.63 

TLR3 56 801 5 3 0.53 
TLR4 60 648 1 0 0.00 
TLR5 46 741 3 1 0.12 

TLR15 60 528 4 3 0.68 
TLR21 60 453 1 0 0.00 

*alleles resulting in different translated amino acids 

 

Table 3. 

Locus S based on H S based on number 
of haplotypes 

Percentage of Hobs 
< Hsim when S = 0  

Reject or accept 
Hobs 

TLR1LA 0.010 0.010 0.991 Accept  
TLR1LB 0.025 0.045 0.000 Reject 

TLR3 0.015 0.075 0.000 Reject 
TLR4 0.000 0.000 0.929 Accept 
TLR5 0.005 0.010 0.964 Accept 

TLR15 0.030 0.085 0.000 Reject 
TLR21 0.000 0.000 0.986 Accept 
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Figure 1. 
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Figure 3.  
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