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Synthesizing evidence from quasi-experimental studs presents surmountable challenges

ABSTRACT

Objective: To outline issues of importance to analytic apphes to the synthesis of quasi-
experiments (QEs), and to provide a statistical ehéat use in analysis.

Study Design and SettingWe drew on the literatures of statistics, epid#agy, and social-
science methodology to outline methods for synthesQE studies. The design and conduct of
guasi-experiments, effect sizes from QEs, and natdevariables for the analysis of those effect
sizes were discussed.

Results Biases, confounding, design complexities and aompns across designs offer serious
challenges to syntheses of QEs. Key componentsetd-analyses of QEs were identified,
including the aspects of QE study design to be d@ohel analyzed. Of utmost importance are the
design and statistical controls implemented inQiies. Such controls and any potential sources
of bias and confounding must be modeled in ana)ydeng with aspects of the interventions

and populations studied. Because of such conetis;t sizes from QEs are more complex than
those from randomized experiments. A statisticaiaanegression model that incorporates
important features of the QEs under review wasqntesl.

Conclusion Meta-analyses of quasi-experiments provide padrochallenges, but thorough
coding of intervention characteristics and studyhods, along with careful analysis, should
allow for sound inferences.

KEYWORDS

Meta-analysis, quasi-experiment, effect size, abkias, moderator variables, confounding

WHAT-IS-NEW BOX

Meta-analyses of quasi-experiments must investig@@erators that capture key
features of the interventions examined and methsdd in the primary studies.

The use of statistical and design controls in geaperiments leads to complexities
representing QE study effects, as well as in arsbfsthose effects.

n

Exploring potential sources of bias and confoundsngspecially critical when modeling
effects from quasi-experimental designs. The usaeaif-regression models facilitates
such analyses.




1 INTRODUCTION

Syntheses that include quasi-experiments musid®emna variety of design and analysis
issues that greatly increase the complexity ohtle¢a-analysis process. The growing importance
of synthesizing quasi-experiments is evidenced f®cant special issue Besearch Synthesis
Methods (Volume 4, Issue 1), though research on this tdpites back 30 years (Bryant &
Wortman, 1984; Wortman, 1992). In this work we dsxkey elements of potential analytic
approaches to the synthesis of quasi-experimemtspeovide a broad statistical model for use in
analysis.

Other papers in this themed issue ofitxr nal of Clinical Epidemiology describe how
guasi-experimental studies can be identified fadewce synthesis (Glanville et al. 2017), how
data is best collected from quasi-experimentalistifhloe et al. 2017), and how the global
capacity for including quasi-experimental studiegvidence synthesis can best be expanded
(Lavis et al. 2017, Rockers et al. 2017). In tlapgr, we begin with a brief discussion of several
definitions of quasi-experiments (QEs) and desogliome challenges that arise in synthesizing
QEs. We next describe the information requiredaimy out such a synthesis. This includes
information on effect sizes, study features, amddétails of the models examined in the primary

QE research. We conclude with potential unresoisgges in this domain.

2 QUASI-EXPERIMENTAL DESIGNS

Campbell and Stanley (1966) introduced the teroa%experiment” in their seminal
book on design of studies. They described QEsettirigs in which the research person can
introduce something like experimental design... edeugh he lacks the full control over the
scheduling of experimental stimuli... which makesue texperiment possible” (p. 34). They
outlined ten different QE designs. Rockers et2016) drew on this definition and several others
to arrive at a different definition, writing thate3 “... estimate causal effect sizes using
exogenous variation in the exposure of interesiclvis not directly controlled by the
researcher” (p. 511). They continue “... five comnyaméed designs ... fit our definition of
guasi-experiments: natural experiments, instrumeat@able analyses, regression discontinuity
analyses, interrupted times series studies, afereifce studies including controlled before-and-
after designs, difference-in-difference designs faxetl effects analyses of panel data” (p. 511).

Rockers et al. distinguish between study desigaisdbntrol all confounding (observed and



unobserved), observed and some unobserved confayrationly observed confounding. These
distinctions emphasize the important role of confiing in the synthesis of QEs. Barnighausen
et al. (2017) describe the assumptions that nebd toet in different types of quasi-
experimental studies that replace the (strong) nfocmdedness assumption in non-experimental

studies.

Various other terms are used across differentglises to refer to the diverse array of
nonrandomised studies (e.g., observational studasral experiments, cohort designs) not all
of which are considered QEs. For example, the Goeh€Collaboration Handbook (section
13.2.2 at
http://handbook.cochrane.org/chapter_13/13 2 2 ampael and_resources_available to_support
_review.htm) tables the features present in 18naodomized study designs, and urges
reviewers to use those design features to detemwtiigh studies might be included in a review.
Also Wells et al. (2013) provide a checklist of idesfeatures that may help classify a study
design. For the meta-analyst, relying on the festof studies may be more informative than
deciding on inclusion based on global labels (wibhdiscussion of details of design).

These lists, along with Campbell and Stanley’saeginal designs from 1966, make
clear that QEs are complex, are not themselvemity coherent, and are labelled in diverse
ways across fields, which leads to some of the amychallenges encountered in syntheses of
QEs. These issues are compounded in reviews thdiine QEs with other kinds of study
designs, most critically with experiments.

A fundamental feature of experiments is that uoitsiterest are assigned to treatment
conditions randomly and independently (or randowibi explicit constraints, as in randomized
blocks designs). In QEs, the treatment or expoisunet so tightly controlled, and randomization
is not, or cannot be, fully achieved. Becausdineats are not randomly assigned to units (or
vice versa), QEs usually involve designs and aeslylsat attempt to control confounders and
other biases in other ways. However, the factdhadnalysis includes control variables does not
make it a QE. Rockers et al. (2015) and Barnighaesal. (2017) further elaborate on
confounding control in quasi-experimental studies.

Wells et al. (2013) provide a checklist of othesues for reviewers to consider when

attempting a review that may include QEs (or otf@randomized studies, in their
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nomenclature). They describe protocol developmanthfe review, primary-study assessment,
and outcome assessment (within study). We drawe@n ¢hecklist because it is quite thorough,
but we do not deal with protocol development in discussions, because in syntheses we deal
only with completed studies. (Reeves et al. (2Qit@yide an update and extension of this
checklist in this issue.)

QEs can vary widely in terms of how control is ei®ed, and how potential confounding
is handled. This diversity leads to design-basetlaaranalysis-based variation in study
outcomes. This occurs both across designs (e.mp&ong natural experiments versus time-
series designs) and within any given type of dedigsign decisions such as selecting restricted
samples may be made to “control” variance thatheostudies is dealt with statistically (e.qg.,
with covariates or stratification). For examplege agjoften a relevant control variable in health
studies. However, some studies may control fortggeestricting the sample to a particular age
group while other studies include a wider varietparticipant ages and use age as a covariate in
the analytic model. Thus control variables may ae pf the analysis in some QEs, whereas they
will not in others. In both cases, control is egdrtOther design and analysis approaches may be
used to deal with potential confounding and othasés. Wells et al. (2013) give extensive
suggestions on how to evaluate whether primaryiesuthve dealt with confounding. Extracting
(Aloe et al., this issue) and analyzing informat@nbiases and controls is critical in a synthesis
of QEs. Understanding the relevant counterfactimlgicluded designs may be helpful in
choosing what features to extract.

In addition, design features and other study ataristics such as the nature of the
population or features of the interventions or oaote measure used may be confounded across
studies in any review of research, leading to egiemhconclusions about effects (Lipsey, 2003).
This will likely be an issue when different typedsQEs are summarized, especially if quasi-
experiments and true experiments are synthesizgdher. As one example, Kownacki and
Shadish (1999) summarized studies of a varietylodiAolics Anonymous (AA) rehabilitation
programs. They discovered that randomized conttafials (RCTs), in the main, had examined
populations of persons mandated to attend AA becafidrunk driving or other offenses. These
randomized studies showed poorer results for AA thd nonrandomized studies. In contrast,
the nonrandomized designs (some of which appea@lg biased) examined other types of

attendees.



Kownacki and Shadish found that study design agapulations studied were greatly
confounded, with biases in the mix as well. Theueaconfounded with study design was
subpopulation, but any study feature could be aamded with study design (e.g., QEs may aim
at larger samples of the population than RCTs, tteaments may be less well implemented
because of sheer study size). If QEs and RCTshaheded in one synthesis, their features must
be coded and examined statistically. Graphicallayspsuch as grouped forest plots will also
prove useful. This holds as well for syntheses wifferent kinds of QEs in the mix (and no
RCTs). Aloe and co-authors (this volume) discusscibding of QE studies in detail.

Because study features may be confounded with@heln and with aspects of design in
particular, meta-analysts should always examinednelations among study features of
interest. High correlations among study featureamthat clear conclusions may not be
reachable for a particular research domain (egrk8r, 1986, pp. 203-204). This also means
that multiple predictor variables may provide cotimmeexplanations of the variation in study
results. If correlated predictors appear together meta-regression model, the issue of
multicollinearity may also arise. Rubin (1992) ribthat all meta-analyses are at high risk of

confounding of study features, due to the survieg-tiature of the data-collection process.

To summarize, the large heterogeneity inherefs and other study designs presents
both challenges and opportunities to reviewers. éle@g as Berlin (1995) noted in an
assessment of the potential to synthesize obsenatstudies, “heterogeneity is our friend.”
When diverse studies are analysed properly, hetemity can lead to better understandings of
phenomena of importance. Take the AA example abBeding and analyzing differences due to
each study’s research design, population charatitariincluding whether participation was
mandatory), and their interactions will tease outmmore useful information about the

effectiveness of AA than any simple meta-analy$isist the subset of RCTs or QEs involved.

3 WHAT IS NEEDED TO DO A META-ANALYSIS OF QES?
3.1 Effect sizes

Meta-analyses require measures of effect magnthatecan be compared across studies.
Effect sizes for QEs are discussed in detail byeAdbal. (this issue). For each study (or sample,

for studies with multiple samples), the meta-artadyould extract both an estimate of effect size



and its standard error (SE). If a study does nmbntestandard errors they may be available from
related test statistics (e.gjtestsp values). Effect estimates can be obtained fronemvesl
significance levels, but if the SE cannot be olg@dior imputed the study may need to be dealt

with in a narrative fashion.

3.1.1 Partial and bivariate effects.Because QEs aim to assess the effectiveness of
treatments, the fundamental effect of intereskedy to be based on a mean difference or
comparison of counts or odds. However, becauseeoédmplexities of quasi-experimental
designs, the effect size will nearly always be sihing other than a simple standardized mean
difference ¢, as in Hedges & Olkin, 1985), or a simple oddmrailoe et al. (this issue) discuss
the computation of effect sizes for QE studies.sThere we only note that when varied
analytical approaches are used in QEs, their effeet will likely not be estimating “the same”
(i.e., mathematically identical) parameters acetgdies. Most effect sizes will likely be partial
(adjusted) effects, arising for instance from nplétiregression analyses where covariates control
for confounds and explain variation in the outcdme., Aloe & Becker, 2011; Keef & Roberts,
2004). Their magnitudes will depend on what isudeld in each study’s analysis. Therefore
during data extraction meta-analysts must codeldétaformation about the covariates and
design approaches used — be they design conttatistisal control variables, other predictors of

interest, or all of the above.

If some studies in a synthesis report bivariateot$ and others report partial effect sizes,
the reviewer must decide how to proceed. One opgitm include all effects and ignore
differences between them. This is potentially peatrtic because partial effect sizes estimate
different parameters and can be larger, smallezyen opposite in sign from bivariate effects
because of the variables that were adjusted fargA22014). We recommend that reviewers
record whether each effect is bivariate or pafaad also extract information on use of specific
control variables in each QE), and test for diffees in effect sizes across effect-size types.
Distinctions can also be made between QE studasctntrol for the effects of other variables
by design (and may provide bivariate effect sizes$us other QEs with partial effects that
adjust for other variables statistically.

Several analytic options are possible. Most simiblg meta-analyst could report separate
analyses for bivariate effects and partial effettss strategy also may be valuable when QEs

and experiments both appear in a synthesis. Altelsnane could summarize all bivariate and

7



partial effects together, using a meta-regressiodatito capture what is controlled in each
study.

3.1.2 Effects from very different designs.Studies with quite different designs may
need to be analyzed separately. Aloe et al. (8s134) pointed out that even within different types
of QE designs primary studies could be estimatiffgrént types of study-level effects.
Separating studies by design may be especiallylstien design type is confounded with the
type of effect size that is reported or with popiolatype, as in Kownacki and Shadish (1999).
However doing nothing more than just separatingstte of studies misses an important
opportunity to statistically control for study-ldwality differences, biases, and confounders.
Thus the meta-analyst needs to consider whethgrait@meters being estimated in the array of
studies collected in the review are commensuradetgh”, and thus could be analyzed
together, or whether they are so fundamentallyegfiit estimators thus should be kept apatrt.

3.1.3 Multiple effects.Sometimes primary studies report several modelthere
examining distinct subsamples of participants @wshg contributions of different subsets of
predictors. If a study reports models for non-caepling, independent subsamples, effects can be

extracted from each without great concern for stigil dependence.

In contrast, when several models are estimatethéosame participants it can be
problematic to include the multiple effects thginesent them if they are treated as independent
effects. For example, a study may examine howadrtrent impacts two outcomes, say blood
pressure and quality of life. Or researchers usiggession methods to estimate the impact of an
intervention on one outcome may present findingsmfmodels where they have adjusted for
many, few, or no covariates, and the results mtigrdrom one model to another. Some meta-
analysts have extracted effects from all modelsmin each primary study, even when they are
estimated for a single sample. This practice l¢adsolations of the independence assumption
required by univariate analyses of effect sizexkBg Aloe, & Olkin, under review), and
privileges results from studies that report moraleis by giving them more weight in the

analysis.

If a study has examined how a predictor (e.gintarvention) relates to two different
measures of the same outcome, a variety of diffexpproaches exist for handling the well-
understood covariation between the effect sizethiase two relationships. Reviewers can use

either some priori objective criterion for selecting one estimate gtedy (e.g., taking an
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average of the two effects, selecting the estirttetemaximizes similarity with other studies in
the meta-analysis, randomly selecting one estinmatejnploy more sophisticated analyses that
accommodate within-study dependence. Becker (28@@)thers have discussed at length
potential choices of a single effect. Generalileadt squares (GLS; Berkey et al., 1996;
Raudenbush, Becker & Kalaian, 1988; among otherd)camputing cluster-robust standard
errors (Hedges, Tipton, & Johnson, 2010) adjusvdr&nce-covariance matrix for within-study
dependence and thereby correct confidence inteavalgesulting inferences. Unbalanced
panel, multi-level, and hierarchical linear (HLMpdels have been widely used by meta-
analysts to accommodate within study dependencligfa& Raudenbush, 1996; Rosenberger
& Loomis, 2000; Stanley & Doucouliagos, 2012; VaarlNoortgate et al., 2013). Some
approaches described in the literature are sirbpieare not effective at accounting for
dependence (e.g., including effects for all outcememodels, and weighting them by the

inverse of the number of reported estimates pely¥tu

Criteria for selecting a single model to repregbatmeta-analysis parallel the
suggestions for addressing situations in whicludyspresents more than one measure of the
same outcome. For example, researchers could selechodel based on objective criteria
stateda priori, such as the model with the most predictors, tbdehthat best approximates the
meta-analyst’s view of the selection process, emtiodel that includes a specific pattern of
covariates. Meta-analysts might also consider r&tipgpthat the primary-study authors run a
specific model (i.e., a model with the meta-analygteferred set of covariates), or could request

the original data run the desired analysis theneselv
3.2 Key theoretical variables

Perhaps obviously, the meta-analyst should extritatal population and setting
characteristics. Frameworks such as PICOS (Pstikrtervention, Comparisons, Outcomes,
Study Design; Richardson et al., 1995) or MUTOS tfMds, Units, Treatments, Observations,
Settings) can guide selection of relevant feat(@esnbach, 1982; see also Becker, 1996;
Becker & Aloe, 2008). It may be useful to defineid@al target study (Sterne et al., 2013) and
characterize studies based on its critical feat8kin argued that “...a useful organizing
principle is the need to be strict on issues witeptial for bias and liberal on issues that have
little such potential” (2008, p. 7). Other betwestndies differences that might affect reported

study outcomes should also be extracted.



3.3 Design information

3.3.1 Nature of relevant comparisonWells et al. (2013) argued that the first defining
characteristic of a nonrandomized design studyhistiaer two (or more) groups are compared,
or a single group is measured over time. Thesgdeagpes differ both conceptually (Valentine
& Thompson, 2013) and statistically. Conceptudd¥; designs can differ in terms of the logic
underlying the counterfactual condition (e.g., aige might estimate an average treatment
effect, or a local average treatment effect, sge Enbens & Angrist, 1994). Also a single-group
design has no untreated comparison group, implyaglacebo effect is expected. The statistical
issue that makes multi-group versus single-grotgres different is the dependence of measures
over time. This causes effect sizes from time-satdesigns to be distributed differently from
effects based on independent groups. This topibbas extensively discussed for effect sizes
for continuous outcomes from experimental designg.(Becker, 1988, Gibbons et al. 1993;
Morris & Deshon, 2002). More recent work covers tiwatiate categorical outcomes (Trikalinos
& Olkin, 2008, 2012).

A second facet of the nature of the comparisoreémh study is whether treated and
control groups are based on individuals or clustérsdividuals. Clusters of individuals in
neighborhoods, villages or other units such as ca¢gractices may figure in the provision of
treatment, or may simply exist as part of the datkection approach in a primary study. The
nesting involved in clustered study designs needgetconsidered in the computation and
analysis of effect sizes (e.g., Hedges, 2007).chuéce of effect size (e.g., what variance is used

to standardize a mean difference) will depend emtture of the desired comparisons.

3.3.2 Group formation. The manner in which groups are formed can imgeet t
distributions and behavior of effect sizes. Rewemtk on within study comparisons, a method
for understanding the conditions under which ttseiite of QEs can approximate the results of
RCTs, suggests that researchers must understathteaable to model, the group formation
process (e.g., Cook, Shadish, & Wong, 2008). Theisencur with Wells et al. that reviewers
must record as much detail as possible about houpgrare created — by the researcher or via

other processes such as self-selection, locatiahsa forth.

3.3.3 General analytic approachBecause primary studies vary in the ways control is

exerted, meta-analysts must document the analytiodkls used in each QE. The control
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variables used — either as design or analysisresatushould be examined in the meta-analysis.
Lists of theoretically relevant variables or potehtonfounders/biases in the studies can guide
data extraction. DuMouchel (1994) has argued fdirgpwhether particular design features or
control variables are missing (rather than present) whether confounders are present. Coding
features as missing allows the intercept in a motieffect size to represent the effect from an
ideal study, with other coefficients representing presence of confounders or biasing features.
This approach is in line with Rubin’s (1992) conceppredicting out to an ideal study, rather
than modeling only the kinds of studies that exighe literature. Risk of bias tools (e.g.,

Higgins & Altman, 2008; Higgins et al., 2011; Waxgion et al., this issue) and considerations
of target studies (e.g., Sterne et al., 2013) neagfluse in this task.

Some authors have used risk-of-bias instrumentsstate scores. Information is scant on
the psychometric properties of these instrumentg, (eter-item correlations, agreement among
raters; but see Armijo-Olivo et al., 2012, 2013)eTadvantage of using such scores as
moderators in meta-regression is simplicity (anarspse of data; having a single score leads to
a one degree of freedom test). The disadvantapetislifferent sources of bias in a study may
cancel out or compensate for each other; thisimédion is lost when using one single bias
score. Further, there is no reason to believealsatgle score arising from a quality scale is
valid. However, some assessment of study qualityiical, especially because different types of
QEs may be differentially at risk for particulanbes. For instance, lengthy interrupted time
series designs are more susceptible to attritian tne-shot studieSlodeling each potential
bias (e.g., with separate predictors for seledbi@as, attrition, incomplete reporting, etc.) allows
for the examination of specific sources of biaswdver, it uses more degrees of freedom,
requires more studies for modeling in a meta-resypescontext, and to the extent biases are
correlated could suffer from collinearity.

4 WHAT META-ANALYSES OF QES SHOULD INCLUDE

Given the above information, what should the naetalyst include or report in a
synthesis of QEs? As in any meta-analysis the e$iees (and their variances) must be
described. If several types of effects are syn#eeisiogether, this choice must be justified.
Descriptions (including statistical summaries)ltd toded variables and graph(s) displaying the

effect sizes are needed.
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Authors must examine moderator variables in weighegressions, analysis-of-variance-
like approaches, or Bayesian models. We recommetahanodating for heteroscedasticity via
inverse variance weighting (e.g., weighted leastises and generalized least squares) as
described below. In the case of within-study depecd (e.g., multiple outcomes per study)
generalized least squares analyses (Berkey @986, Raudenbush, Becker & Kalaian, 1988;
among others), cluster-robust standard errors (efgdfpton, & Johnson, 2010), unbalanced
panel methods (Rosenberger & Loomis, 2000; Sta&lBpucouliagos, 2012), multi-level
models (Kalaian & Raudenbush, 1996) or data redactiay be required.

After this, other typical meta-analytic methodswld be applied. We recommend
robustness checks and investigations of publicatrahother biases. Outlier and influence
analyses (e.g., eliminating or adjusting certaitneare estimates, or sets of effects) may be
especially important. Higgins and Thompson’s (20@mutation test may be useful especially
for meta-analyses with small numbers of studiedis&ussion of alternative explanations of
results is critical because study features andigiadvariables tend to be confounded in meta-
analyses. Assessment of the generalizabilith@fconclusions should include a close
evaluation of remaining threats/existing weaknesSe#linearity among the coded features
should be assessed (e.qg., by cross-tabulatingr@lating moderator variables); this may reveal
confounding among study features in the literatanel preclude adoption of a single “best
explanation” of variation in study effects. Reviauwthors may also find it useful at this point to
assess the overall quality of the literature usirsystem like GRADE (Grade Working Group,
2004; Guyatt et al., 2008) that has been adoptaddoochrane Collaboration, among others.
GRADE views bodies of evidence based on randontizaid to be of the highest quality, but
says nothing about how to grade reviews that coemBiGTs and QEs. Last, gaps in analyses, or
the literature more generally, should be describ&uhg with the inevitable questions for future

research.

5 STATISTICAL FRAMEWORK

As noted above a range of possible statisticsseare as effect sizes in QEs. Thus we use
a general notation system, with details to be datexd by the reviewer’s choice of metric.
Considerk quasi-experimental studies of a particular topimterest with comparable effect

sizesT; throughTy. For simplicity, assume that each study has dauted only one effect size
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for one outcome variable. Depending on availahldystlata, thd; may be regression slopes
(by), correlationsri or some form of partial correlation), standardimeean differencesly), or
odds ratios. We also assume that all studiesibotérthe same kind of effect sizes. If quite
different types of effects (e.gl’s andr’s) have been extracted, they must be expresséueon
same metric to be analyzed together.

Assume further that eadh estimates some population paraméfeand that in large
samples the effect size is approximately normathshatT; ~ N(®;, 6*(6;)). Most meta-analytic
effect sizes follow this form (Hedges & Olkin, 198&ef & Roberts, 2004). Typicallyg’(6;) is
a function of the sample singand, for somé;, of the parametdd;. We will denote the sample
estimate ob?(8;) asV;. Also, we letp represent the full number of features to be cansidlin a
particular analysis, and defing as a variable representing study featufieom thei™ study.

Given this asymptotic distributional form, manyta@nalytic approaches use inverse
variance weighting (e.g., via weighted least sqguéveLS) or generalized least squares (GLS)
analyses; Hedges & Olkin, 1985). Further, in metahgses of QEs it is critical to account for
the coded design differences and study featuresisied above, as well as for any remaining

unexplained differences between studies. The medgiropose is thus

T; = B+ B1xiy + Baxip + -+ BpXip +u; + e, (1)

whereg ~ N(0, V;) represents sampling errorfhandu; ~ N(O, T) represents variation not
explained by the model. Under model 1, the weights 1/[V; + 7] are used, and WLS, GLS and
Bayes estimation methods may be applied. Xjhreflect study features that may relate to
between studies differences in effect sizes. dittierm is omitted, model 1 is a fixed-effects
model and provides tests of model fit. Omnibusste$tmodel significance are available under
fixed-effects and random-effects models for siraglenultiple study outcomes. For those who
choose to avoid significance testing, all of thesghods provide standard errors and confidence
intervals. Model 1 is not the only model in contentfor use in analyses. Stanley and
Doucouliagos (2015, 2016) argue that an unrestriixed-effects WLS analysis provides
estimates that are statistically comparable tooandffects estimates in all cases and superior to
random-effects in many. Other estimation apprositiaere also been developed, including

maximum likelihood as well as Bayesian approackes,(Thompson & Sharp, 1999).
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With no predictors, model (1) provides the randeffiects estimate of the overall mean.
However, it would be rare to stop at a simple randadfects mean, and in some cases that
average may be meaningless, especially if effeetysarameters are not consistently defined
across studies (e.g., when different factors angrotbed across studies).

TheX's in the model represent methodological differen@eg., presence/absence of a
given covariate or confound) or other features saghntensity or duration of treatment, and the
like. A variety of design characteristics and sabsvely important treatment or sample features
should be analyzed. However, when the number ohatgs (studies) is limited and many study
features are to be examined, it may not be possilatensider all predictors in one analysis. We
suggest prioritizing the most critical predictorslancluding all of them initially (barring
significant issues of multicollinearity). We woujive top priority tox's representing biases,
controls, and design variations. Differences inrtature of the interventions or populations can
capture excess heterogeneity when added as funibéerator variables. The final estimated
model can be used to obtain the conditional eBex of each design by substituting specific
combinations of moderator variable values intofthenula in model 1, or used to predict to an
optimal result, as suggested by Rubin (1992). sesaf small meta-analyses, key predictors
could be run in several sets so as to have fevegligiors per model. Alsa levels could be
reduced to control for multiple analyses being though this would make it harder for slope
tests to reach significance.

5.1 Categorical predictors

For categorical moderators, a series of dummyabéek’'s can be modeled. However,
ANOVA-like models (forp groups) are often easier to use (e.g., Hedge£)1B8e to space
considerations we do not elaborate on the ANOVA&-likodel here. A related approach
considers categories of studies as panels. Roekats (2015, p. 517, citing Donald & Lang,
2007) identify the fixed-effects panel model azagyal QE design for primary research that
encompasses both difference-in-difference and obbéfore-and-after QE designs. Stanley and
Doucouliagos (2012) have argued that using fixdeet paneimeta-regression models gives
the systematic reviewer the opportunity to elevaberently observational meta-analyses to the
status of a QE by controlling variations in studsbity and other study-level biases or
confounders.

5.2 Publication bias
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The regression model above has been generalizettonmodate publication bias, by
incorporating a predictor with values equal to skendard error or variance of the effect Jize
Moreno et al. (2009) provide a thorough study afsonodels including Egger’s original method
(Egger et al., 1997) in which the standard errorasiance is the only predictor. Different
weighting schemes have been applied as well. Maltggressions with substantive or design-
based predictors in addition to the standard ermariance appear to investigate potential
publication biasonditional on other possible sources of heterogeneity (Stanl®o&couliagos,
2012, 2014). Simulation studies (e.g., Koetse.eRall0) have shown that meta-regression
analysis can simultaneously correct multiple sagiafebias in the primary literature, including
potential publication selection bias (e.g., Stadeyoucouliagos, 2016).

6 CONCLUSION

Quasi-experimental studies are likely to contagater heterogeneity across studies than
is typical among RCTs. However, meta-analytic meéshare up to this challenge when the
relevant research literature contains sufficiefdrimation to identify and control statistically the
many potential sources of bias and heterogenéityally, the meta-analyst who undertakes the
approaches suggested in this article should exeesiseme caution not to make causal
statements regarding the relationship betweenfthetesizes and modeled study features.
Relationships between moderators and study outc{ireesthe effect size) are observational

even when the primary studies in question are nakd (see Thompson & Higgins, 2002).
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