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Synthesizing evidence from quasi-experimental studies presents surmountable challenges 
 
 

ABSTRACT 
 
 
Objective: To outline issues of importance to analytic approaches to the synthesis of quasi-
experiments (QEs), and to provide a statistical model for use in analysis. 
 
Study Design and Setting: We drew on the literatures of statistics, epidemiology, and social-
science methodology to outline methods for synthesis of QE studies. The design and conduct of 
quasi-experiments, effect sizes from QEs, and moderator variables for the analysis of those effect 
sizes were discussed. 
 
Results: Biases, confounding, design complexities and comparisons across designs offer serious 
challenges to syntheses of QEs. Key components of meta-analyses of QEs were identified, 
including the aspects of QE study design to be coded and analyzed. Of utmost importance are the 
design and statistical controls implemented in the QEs. Such controls and any potential sources 
of bias and confounding must be modeled in analyses, along with aspects of the interventions 
and populations studied. Because of such controls, effect sizes from QEs are more complex than 
those from randomized experiments. A statistical meta-regression model that incorporates 
important features of the QEs under review was presented. 
 
Conclusion: Meta-analyses of quasi-experiments provide particular challenges, but thorough 
coding of intervention characteristics and study methods, along with careful analysis, should 
allow for sound inferences. 
 
 
KEYWORDS 
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WHAT-IS-NEW BOX 

 
 

Synthesizing evidence from quasi-experimental studies 

  

  

Meta-analyses of quasi-experiments must investigate moderators that capture key 
features of the interventions examined and methods used in the primary studies.  
 
The use of statistical and design controls in quasi-experiments leads to complexities in 
representing QE study effects, as well as in analysis of those effects. 
 
Exploring potential sources of bias and confounding is especially critical when modeling 
effects from quasi-experimental designs. The use of meta-regression models facilitates 
such analyses. 
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1  INTRODUCTION 

 Syntheses that include quasi-experiments must consider a variety of design and analysis 

issues that greatly increase the complexity of the meta-analysis process. The growing importance 

of synthesizing quasi-experiments is evidenced by a recent special issue of Research Synthesis 

Methods (Volume 4, Issue 1), though research on this topic dates back 30 years (Bryant & 

Wortman, 1984; Wortman, 1992). In this work we discuss key elements of potential analytic 

approaches to the synthesis of quasi-experiments, and provide a broad statistical model for use in 

analysis. 

 Other papers in this themed issue of the Journal of Clinical Epidemiology describe how 

quasi-experimental studies can be identified for evidence synthesis (Glanville et al. 2017), how 

data is best collected from quasi-experimental studies (Aloe et al. 2017), and how the global 

capacity for including quasi-experimental studies in evidence synthesis can best be expanded 

(Lavis et al. 2017, Rockers et al. 2017). In this paper, we begin with a brief discussion of several 

definitions of quasi-experiments (QEs) and describing some challenges that arise in synthesizing 

QEs.  We next describe the information required to carry out such a synthesis. This includes 

information on effect sizes, study features, and the details of the models examined in the primary 

QE research. We conclude with potential unresolved issues in this domain. 

 

2  QUASI-EXPERIMENTAL DESIGNS 

 Campbell and Stanley (1966) introduced the term “quasi-experiment” in their seminal 

book on design of studies. They described QEs as “settings in which the research person can 

introduce something like experimental design… even though he lacks the full control over the 

scheduling of experimental stimuli… which makes a true experiment possible” (p. 34). They 

outlined ten different QE designs. Rockers et al. (2015) drew on this definition and several others 

to arrive at a different definition, writing that QEs “… estimate causal effect sizes using 

exogenous variation in the exposure of interest, which is not directly controlled by the 

researcher” (p. 511). They continue “… five commonly used designs … fit our definition of 

quasi-experiments: natural experiments, instrumental variable analyses, regression discontinuity 

analyses, interrupted times series studies, and difference studies including controlled before-and-

after designs, difference-in-difference designs and fixed effects analyses of panel data” (p. 511). 

Rockers et al. distinguish between study designs that control all confounding (observed and 
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unobserved), observed and some unobserved confounding, or only observed confounding. These 

distinctions emphasize the important role of confounding in the synthesis of QEs. Bärnighausen 

et al. (2017) describe the assumptions that need to be met in different types of quasi-

experimental studies that replace the (strong) unconfoundedness assumption in non-experimental 

studies.    

 

 Various other terms are used across different disciplines to refer to the diverse array of 

nonrandomised studies (e.g., observational studies, natural experiments, cohort designs) not all 

of which are considered QEs. For example, the Cochrane Collaboration Handbook (section 

13.2.2 at 

http://handbook.cochrane.org/chapter_13/13_2_2_guidance_and_resources_available_to_support

_review.htm) tables the features present in 18 non-randomized study designs, and urges 

reviewers to use those design features to determine which studies might be included in a review. 

Also Wells et al. (2013) provide a checklist of design features that may help classify a study 

design. For the meta-analyst, relying on the features of studies may be more informative than 

deciding on inclusion based on global labels (with no discussion of details of design). 

 These lists, along with Campbell and Stanley’s ten original designs from 1966, make 

clear that QEs are complex, are not themselves internally coherent, and are labelled in diverse 

ways across fields, which leads to some of the myriad challenges encountered in syntheses of 

QEs. These issues are compounded in reviews that combine QEs with other kinds of study 

designs, most critically with experiments.   

 A fundamental feature of experiments is that units of interest are assigned to treatment 

conditions randomly and independently (or randomly with explicit constraints, as in randomized 

blocks designs). In QEs, the treatment or exposure is not so tightly controlled, and randomization 

is not, or cannot be, fully achieved.  Because treatments are not randomly assigned to units (or 

vice versa), QEs usually involve designs and analyses that attempt to control confounders and 

other biases in other ways.  However, the fact that an analysis includes control variables does not 

make it a QE. Rockers et al. (2015) and Bärnighausen et al. (2017) further elaborate on 

confounding control in quasi-experimental studies.  

 Wells et al. (2013) provide a checklist of other issues for reviewers to consider when 

attempting a review that may include QEs (or other nonrandomized studies, in their 
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nomenclature). They describe protocol development for the review, primary-study assessment, 

and outcome assessment (within study). We draw on their checklist because it is quite thorough, 

but we do not deal with protocol development in our discussions, because in syntheses we deal 

only with completed studies. (Reeves et al. (2017) provide an update and extension of this 

checklist in this issue.) 

 QEs can vary widely in terms of how control is exercised, and how potential confounding 

is handled. This diversity leads to design-based and/or analysis-based variation in study 

outcomes. This occurs both across designs (e.g., comparing natural experiments versus time-

series designs) and within any given type of design. Design decisions such as selecting restricted 

samples may be made to “control” variance that in other studies is dealt with statistically (e.g., 

with covariates or stratification). For example, age is often a relevant control variable in health 

studies. However, some studies may control for age by restricting the sample to a particular age 

group while other studies include a wider variety of participant ages and use age as a covariate in 

the analytic model. Thus control variables may be part of the analysis in some QEs, whereas they 

will not in others. In both cases, control is exerted. Other design and analysis approaches may be 

used to deal with potential confounding and other biases. Wells et al. (2013) give extensive 

suggestions on how to evaluate whether primary studies have dealt with confounding. Extracting 

(Aloe et al., this issue) and analyzing information on biases and controls is critical in a synthesis 

of QEs. Understanding the relevant counterfactuals for included designs may be helpful in 

choosing what features to extract. 

 In addition, design features and other study characteristics such as the nature of the 

population or features of the interventions or outcome measure used may be confounded across 

studies in any review of research, leading to entangled conclusions about effects (Lipsey, 2003).  

This will likely be an issue when different types of QEs are summarized, especially if quasi-

experiments and true experiments are synthesized together. As one example, Kownacki and 

Shadish (1999) summarized studies of a variety of Alcoholics Anonymous (AA) rehabilitation 

programs. They discovered that randomized controlled trials (RCTs), in the main, had examined 

populations of persons mandated to attend AA because of drunk driving or other offenses. These 

randomized studies showed poorer results for AA than did nonrandomized studies. In contrast, 

the nonrandomized designs (some of which appeared badly biased) examined other types of 

attendees.  
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 Kownacki and Shadish found that study design and subpopulations studied were greatly 

confounded, with biases in the mix as well. The feature confounded with study design was 

subpopulation, but any study feature could be confounded with study design (e.g., QEs may aim 

at larger samples of the population than RCTs, thus treatments may be less well implemented 

because of sheer study size). If QEs and RCTs are included in one synthesis, their features must 

be coded and examined statistically. Graphical displays such as grouped forest plots will also 

prove useful. This holds as well for syntheses with different kinds of QEs in the mix (and no 

RCTs). Aloe and co-authors (this volume) discuss the coding of QE studies in detail. 

Because study features may be confounded with each other and with aspects of design in 

particular, meta-analysts should always examine the correlations among study features of 

interest. High correlations among study features mean that clear conclusions may not be 

reachable for a particular research domain (e.g., Becker, 1986, pp. 203-204). This also means 

that multiple predictor variables may provide competing explanations of the variation in study 

results. If correlated predictors appear together in a meta-regression model, the issue of 

multicollinearity may also arise. Rubin (1992) noted that all meta-analyses are at high risk of 

confounding of study features, due to the survey-like nature of the data-collection process.  

 To summarize, the large heterogeneity inherent in QEs and other study designs presents 

both challenges and opportunities to reviewers. However, as Berlin (1995) noted in an 

assessment of the potential to synthesize observational studies, “heterogeneity is our friend.” 

When diverse studies are analysed properly, heterogeneity can lead to better understandings of 

phenomena of importance. Take the AA example above: Coding and analyzing differences due to 

each study’s research design, population characteristics (including whether participation was 

mandatory), and their interactions will tease out much more useful information about the 

effectiveness of AA than any simple meta-analysis of just the subset of RCTs or QEs involved.    

 

3  WHAT IS NEEDED TO DO A META-ANALYSIS OF QES? 

3.1  Effect sizes 

 Meta-analyses require measures of effect magnitude that can be compared across studies. 

Effect sizes for QEs are discussed in detail by Aloe et al. (this issue). For each study (or sample, 

for studies with multiple samples), the meta-analyst should extract both an estimate of effect size 
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and its standard error (SE). If a study does not report standard errors they may be available from 

related test statistics (e.g., t tests, p values). Effect estimates can be obtained from observed 

significance levels, but if the SE cannot be obtained or imputed the study may need to be dealt 

with in a narrative fashion.  

 3.1.1  Partial and bivariate effects. Because QEs aim to assess the effectiveness of 

treatments, the fundamental effect of interest is likely to be based on a mean difference or 

comparison of counts or odds. However, because of the complexities of quasi-experimental 

designs, the effect size will nearly always be something other than a simple standardized mean 

difference (d, as in Hedges & Olkin, 1985), or a simple odds ratio. Aloe et al. (this issue) discuss 

the computation of effect sizes for QE studies. Thus here we only note that when varied 

analytical approaches are used in QEs, their effect sizes will likely not be estimating “the same” 

(i.e., mathematically identical) parameters across studies. Most effect sizes will likely be partial 

(adjusted) effects, arising for instance from multiple regression analyses where covariates control 

for confounds and explain variation in the outcome (e.g., Aloe & Becker, 2011; Keef & Roberts, 

2004). Their magnitudes will depend on what is included in each study’s analysis. Therefore 

during data extraction meta-analysts must code detailed information about the covariates and 

design approaches used – be they design controls, statistical control variables, other predictors of 

interest, or all of the above. 

 If some studies in a synthesis report bivariate effects and others report partial effect sizes, 

the reviewer must decide how to proceed. One option is to include all effects and ignore 

differences between them. This is potentially problematic because partial effect sizes estimate 

different parameters and can be larger, smaller, or even opposite in sign from bivariate effects 

because of the variables that were adjusted for (Aloe, 2014). We recommend that reviewers 

record whether each effect is bivariate or partial (and also extract information on use of specific 

control variables in each QE), and test for differences in effect sizes across effect-size types. 

Distinctions can also be made between QE studies that control for the effects of other variables 

by design (and may provide bivariate effect sizes) versus other QEs with partial effects that 

adjust for other variables statistically.  

 Several analytic options are possible. Most simply, the meta-analyst could report separate 

analyses for bivariate effects and partial effects. This strategy also may be valuable when QEs 

and experiments both appear in a synthesis. Alternately one could summarize all bivariate and 
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partial effects together, using a meta-regression model to capture what is controlled in each 

study.  

 3.1.2  Effects from very different designs. Studies with quite different designs may 

need to be analyzed separately. Aloe et al. (this issue) pointed out that even within different types 

of QE designs primary studies could be estimating different types of study-level effects.  

Separating studies by design may be especially useful when design type is confounded with the 

type of effect size that is reported or with population type, as in Kownacki and Shadish (1999). 

However doing nothing more than just separating the sets of studies misses an important 

opportunity to statistically control for study-level quality differences, biases, and confounders. 

Thus the meta-analyst needs to consider whether the parameters being estimated in the array of 

studies collected in the review are commensurable “enough”, and thus could be analyzed 

together, or whether they are so fundamentally different estimators thus should be kept apart. 

 3.1.3  Multiple effects. Sometimes primary studies report several models – either 

examining distinct subsamples of participants or showing contributions of different subsets of 

predictors. If a study reports models for non-overlapping, independent subsamples, effects can be 

extracted from each without great concern for statistical dependence. 

 In contrast, when several models are estimated for the same participants it can be 

problematic to include the multiple effects that represent them if they are treated as independent 

effects. For example, a study may examine how a treatment impacts two outcomes, say blood 

pressure and quality of life. Or researchers using regression methods to estimate the impact of an 

intervention on one outcome may present findings from models where they have adjusted for 

many, few, or no covariates, and the results may differ from one model to another. Some meta-

analysts have extracted effects from all models given in each primary study, even when they are 

estimated for a single sample. This practice leads to violations of the independence assumption 

required by univariate analyses of effect sizes (Becker, Aloe, & Olkin, under review), and 

privileges results from studies that report more models by giving them more weight in the 

analysis.  

 If a study has examined how a predictor (e.g., an intervention) relates to two different 

measures of the same outcome, a variety of different approaches exist for handling the well-

understood covariation between the effect sizes for those two relationships. Reviewers can use 

either some a priori objective criterion for selecting one estimate per study (e.g., taking an 
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average of the two effects, selecting the estimate that maximizes similarity with other studies in 

the meta-analysis, randomly selecting one estimate) or employ more sophisticated analyses that 

accommodate within-study dependence.  Becker (2000) and others have discussed at length 

potential choices of a single effect.  Generalized least squares (GLS; Berkey et al., 1996; 

Raudenbush, Becker & Kalaian, 1988; among others) and computing cluster-robust standard 

errors (Hedges, Tipton, & Johnson, 2010) adjust the variance-covariance matrix for within-study 

dependence and thereby correct confidence intervals and resulting inferences.  Unbalanced 

panel, multi-level, and hierarchical linear (HLM) models have been widely used by meta-

analysts to accommodate within study dependence (Kalaian & Raudenbush, 1996; Rosenberger 

& Loomis, 2000; Stanley & Doucouliagos, 2012; Van Den Noortgate et al., 2013). Some 

approaches described in the literature are simple, but are not effective at accounting for 

dependence (e.g., including effects for all outcomes or models, and weighting them by the 

inverse of the number of reported estimates per study). 

 Criteria for selecting a single model to represent the meta-analysis parallel the 

suggestions for addressing situations in which a study presents more than one measure of the 

same outcome. For example, researchers could select one model based on objective criteria 

stated a priori, such as the model with the most predictors, the model that best approximates the 

meta-analyst’s view of the selection process, or the model that includes a specific pattern of 

covariates. Meta-analysts might also consider requesting that the primary-study authors run a 

specific model (i.e., a model with the meta-analysts’ preferred set of covariates), or could request 

the original data run the desired analysis themselves. 

3.2  Key theoretical variables 

 Perhaps obviously, the meta-analyst should extract critical population and setting 

characteristics.  Frameworks such as PICOS (Patients, Intervention, Comparisons, Outcomes, 

Study Design; Richardson et al., 1995) or MUTOS (Methods, Units, Treatments, Observations, 

Settings) can guide selection of relevant features (Cronbach, 1982; see also Becker, 1996; 

Becker & Aloe, 2008). It may be useful to define an ideal target study (Sterne et al., 2013) and 

characterize studies based on its critical features. Slavin argued that “…a useful organizing 

principle is the need to be strict on issues with potential for bias and liberal on issues that have 

little such potential” (2008, p. 7). Other between-studies differences that might affect reported 

study outcomes should also be extracted. 
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3.3  Design information 

 3.3.1  Nature of relevant comparison. Wells et al. (2013) argued that the first defining 

characteristic of a nonrandomized design study is whether two (or more) groups are compared, 

or a single group is measured over time. These design types differ both conceptually (Valentine 

& Thompson, 2013) and statistically. Conceptually, QE designs can differ in terms of the logic 

underlying the counterfactual condition (e.g., a design might estimate an average treatment 

effect, or a local average treatment effect, see e.g., Imbens & Angrist, 1994). Also a single-group 

design has no untreated comparison group, implying no placebo effect is expected. The statistical 

issue that makes multi-group versus single-group effects different is the dependence of measures 

over time. This causes effect sizes from time-series designs to be distributed differently from 

effects based on independent groups. This topic has been extensively discussed for effect sizes 

for continuous outcomes from experimental designs (e.g., Becker, 1988, Gibbons et al. 1993; 

Morris & Deshon, 2002). More recent work covers multivariate categorical outcomes (Trikalinos 

& Olkin, 2008, 2012).  

 A second facet of the nature of the comparison for each study is whether treated and 

control groups are based on individuals or clusters of individuals. Clusters of individuals in 

neighborhoods, villages or other units such as medical practices may figure in the provision of 

treatment, or may simply exist as part of the data collection approach in a primary study. The 

nesting involved in clustered study designs needs to be considered in the computation and 

analysis of effect sizes (e.g., Hedges, 2007). The choice of effect size (e.g., what variance is used 

to standardize a mean difference) will depend on the nature of the desired comparisons.  

 3.3.2  Group formation. The manner in which groups are formed can impact the 

distributions and behavior of effect sizes. Recent work on within study comparisons, a method 

for understanding the conditions under which the results of QEs can approximate the results of 

RCTs, suggests that researchers must understand, and be able to model, the group formation 

process (e.g., Cook, Shadish, & Wong, 2008). Thus we concur with Wells et al. that reviewers 

must record as much detail as possible about how groups are created – by the researcher or via 

other processes such as self-selection, location, and so forth.  

 3.3.3  General analytic approach. Because primary studies vary in the ways control is 

exerted, meta-analysts must document the analytical models used in each QE. The control 
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variables used – either as design or analysis features – should be examined in the meta-analysis. 

Lists of theoretically relevant variables or potential confounders/biases in the studies can guide 

data extraction. DuMouchel (1994) has argued for coding whether particular design features or 

control variables are missing (rather than present), and whether confounders are present. Coding 

features as missing allows the intercept in a model of effect size to represent the effect from an 

ideal study, with other coefficients representing the presence of confounders or biasing features. 

This approach is in line with Rubin’s (1992) concept of predicting out to an ideal study, rather 

than modeling only the kinds of studies that exist in the literature. Risk of bias tools (e.g., 

Higgins & Altman, 2008; Higgins et al., 2011; Waddington et al., this issue) and considerations 

of target studies (e.g., Sterne et al., 2013) may be of use in this task.    

 Some authors have used risk-of-bias instruments to create scores. Information is scant on 

the psychometric properties of these instruments (e.g., inter-item correlations, agreement among 

raters; but see Armijo-Olivo et al., 2012, 2013). The advantage of using such scores as 

moderators in meta-regression is simplicity (and spare use of data; having a single score leads to 

a one degree of freedom test). The disadvantage is that different sources of bias in a study may 

cancel out or compensate for each other; this information is lost when using one single bias 

score. Further, there is no reason to believe that a single score arising from a quality scale is 

valid. However, some assessment of study quality is critical, especially because different types of 

QEs may be differentially at risk for particular biases. For instance, lengthy interrupted time 

series designs are more susceptible to attrition than one-shot studies. Modeling each potential 

bias (e.g., with separate predictors for selection bias, attrition, incomplete reporting, etc.) allows 

for the examination of specific sources of bias.  However, it uses more degrees of freedom, 

requires more studies for modeling in a meta-regression context, and to the extent biases are 

correlated could suffer from collinearity. 

 

4  WHAT META-ANALYSES OF QES SHOULD INCLUDE 

 Given the above information, what should the meta-analyst include or report in a 

synthesis of QEs? As in any meta-analysis the effect sizes (and their variances) must be 

described. If several types of effects are synthesized together, this choice must be justified. 

Descriptions (including statistical summaries) of the coded variables and graph(s) displaying the 

effect sizes are needed.   
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 Authors must examine moderator variables in weighted regressions, analysis-of-variance-

like approaches, or Bayesian models. We recommend accommodating for heteroscedasticity via 

inverse variance weighting (e.g., weighted least squares and generalized least squares) as 

described below. In the case of within-study dependence (e.g., multiple outcomes per study) 

generalized least squares analyses (Berkey et al., 1996; Raudenbush, Becker & Kalaian, 1988; 

among others), cluster-robust standard errors (Hedges, Tipton, & Johnson, 2010), unbalanced 

panel methods (Rosenberger & Loomis, 2000; Stanley & Doucouliagos, 2012), multi-level 

models (Kalaian & Raudenbush, 1996) or data reduction may be required.  

 After this, other typical meta-analytic methods should be applied. We recommend 

robustness checks and investigations of publication and other biases. Outlier and influence 

analyses (e.g., eliminating or adjusting certain extreme estimates, or sets of effects) may be 

especially important. Higgins and Thompson’s (2004) permutation test may be useful especially 

for meta-analyses with small numbers of studies. A discussion of alternative explanations of 

results is critical because study features and predictor variables tend to be confounded in meta-

analyses.   Assessment of the generalizability of the conclusions should include a close 

evaluation of remaining threats/existing weaknesses. Collinearity among the coded features 

should be assessed (e.g., by cross-tabulating or correlating moderator variables); this may reveal 

confounding among study features in the literature, and preclude adoption of a single “best 

explanation” of variation in study effects.  Review authors may also find it useful at this point to 

assess the overall quality of the literature using a system like GRADE (Grade Working Group, 

2004; Guyatt et al., 2008) that has been adopted by the Cochrane Collaboration, among others. 

GRADE views bodies of evidence based on randomized trials to be of the highest quality, but 

says nothing about how to grade reviews that combine RCTs and QEs. Last, gaps in analyses, or 

the literature more generally, should be described, along with the inevitable questions for future 

research. 

 

5  STATISTICAL FRAMEWORK 

 As noted above a range of possible statistics can serve as effect sizes in QEs. Thus we use 

a general notation system, with details to be determined by the reviewer’s choice of metric.  

Consider k quasi-experimental studies of a particular topic of interest with comparable effect 

sizes T1 through Tk. For simplicity, assume that each study has contributed only one effect size 
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for one outcome variable. Depending on available study data, the Ti may be regression slopes 

(bi), correlations (ri or some form of partial correlation), standardized mean differences (di), or 

odds ratios.  We also assume that all studies contribute the same kind of effect sizes. If quite 

different types of effects (e.g., d’s and r’s) have been extracted, they must be expressed on the 

same metric to be analyzed together.  

 Assume further that each Ti estimates some population parameter θi, and that in large 

samples the effect size is approximately normal, such that Ti ~ N(θi, σ2(θi)). Most meta-analytic 

effect sizes follow this form (Hedges & Olkin, 1985; Keef & Roberts, 2004). Typically σ2(θi) is 

a function of the sample size ni and, for some Ti, of the parameter θi. We will denote the sample 

estimate of σ2(θi) as Vi. Also, we let p represent the full number of features to be considered in a 

particular analysis, and define xib as a variable representing study feature b from the ith study. 

 Given this asymptotic distributional form, many meta-analytic approaches use inverse 

variance weighting (e.g., via weighted least squares (WLS) or generalized least squares (GLS) 

analyses; Hedges & Olkin, 1985). Further, in meta-analyses of QEs it is critical to account for 

the coded design differences and study features discussed above, as well as for any remaining 

unexplained differences between studies. The model we propose is thus 

 

�� = � + ����� + ����� +⋯+ �
��
 + �� + �� 	,                       (1) 

where ei ~ N(0, Vi) represents sampling error in Ti and ui ~ N(0, τ) represents variation not 

explained by the model. Under model 1, the weights wi = 1/[Vi + �̂] are used, and WLS, GLS and 

Bayes estimation methods may be applied. The xij reflect study features that may relate to 

between studies differences in effect sizes.  If the ui term is omitted, model 1 is a fixed-effects 

model and provides tests of model fit. Omnibus tests of model significance are available under 

fixed-effects and random-effects models for single or multiple study outcomes. For those who 

choose to avoid significance testing, all of these methods provide standard errors and confidence 

intervals. Model 1 is not the only model in contention for use in analyses. Stanley and 

Doucouliagos (2015, 2016) argue that an unrestricted fixed-effects WLS analysis provides 

estimates that are statistically comparable to random-effects estimates in all cases and superior to 

random-effects in many.  Other estimation approaches have also been developed, including 

maximum likelihood as well as Bayesian approaches (e.g., Thompson & Sharp, 1999). 
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 With no predictors, model (1) provides the random-effects estimate of the overall mean.  

However, it would be rare to stop at a simple random-effects mean, and in some cases that 

average may be meaningless, especially if effect-size parameters  are not consistently defined 

across studies (e.g., when different factors are controlled across studies). 

 The x’s in the model represent methodological differences (e.g., presence/absence of a 

given covariate or confound) or other features such as intensity or duration of treatment, and the 

like.  A variety of design characteristics and substantively important treatment or sample features 

should be analyzed. However, when the number of estimates (studies) is limited and many study 

features are to be examined, it may not be possible to consider all predictors in one analysis. We 

suggest prioritizing the most critical predictors and including all of them initially (barring 

significant issues of multicollinearity). We would give top priority to x’s representing biases, 

controls, and design variations. Differences in the nature of the interventions or populations can 

capture excess heterogeneity when added as further moderator variables. The final estimated 

model can be used to obtain the conditional effect size of each design by substituting specific 

combinations of moderator variable values into the formula in model 1, or used to predict to an 

optimal result, as suggested by Rubin (1992). In cases of small meta-analyses, key predictors 

could be run in several sets so as to have fewer predictors per model. Also α levels could be 

reduced to control for multiple analyses being run, though this would make it harder for slope 

tests to reach significance. 

5.1  Categorical predictors  

 For categorical moderators, a series of dummy variable x’s can be modeled. However, 

ANOVA-like models (for p groups) are often easier to use (e.g., Hedges, 1982). Due to space 

considerations we do not elaborate on the ANOVA-like model here. A related approach 

considers categories of studies as panels. Rockers et al. (2015, p. 517, citing Donald & Lang, 

2007) identify the fixed-effects panel model as a general QE design for primary research that 

encompasses both difference-in-difference and control before-and-after QE designs.  Stanley and 

Doucouliagos (2012) have argued that using fixed-effects panel meta-regression models gives 

the systematic reviewer the opportunity to elevate inherently observational meta-analyses to the 

status of a QE by controlling variations in study quality and other study-level biases or 

confounders.  

5.2  Publication bias 
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 The regression model above has been generalized to accommodate publication bias, by 

incorporating a predictor with values equal to the standard error or variance of the effect size Ti. 

Moreno et al. (2009) provide a thorough study of such models including Egger’s original method 

(Egger et al., 1997) in which the standard error or variance is the only predictor. Different 

weighting schemes have been applied as well. Multiple regressions with substantive or design-

based predictors in addition to the standard error or variance appear to investigate potential 

publication bias conditional on other possible sources of heterogeneity (Stanley & Doucouliagos, 

2012, 2014). Simulation studies (e.g., Koetse et al., 2010) have shown that meta-regression 

analysis can simultaneously correct multiple sources of bias in the primary literature, including 

potential publication selection bias (e.g., Stanley & Doucouliagos, 2016).    

 

6  CONCLUSION 

 Quasi-experimental studies are likely to contain greater heterogeneity across studies than 

is typical among RCTs. However, meta-analytic methods are up to this challenge when the 

relevant research literature contains sufficient information to identify and control statistically the 

many potential sources of bias and heterogeneity.  Finally, the meta-analyst who undertakes the 

approaches suggested in this article should exercise extreme caution not to make causal 

statements regarding the relationship between the effect sizes and modeled study features.  

Relationships between moderators and study outcomes (i.e., the effect size) are observational 

even when the primary studies in question are randomized (see Thompson & Higgins, 2002).      
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