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Abstract

Background: Plants are exposed to diverse pathogens and pests, yet most plants are resistant to most plant pathogens.
Non-host resistance describes the ability of all members of a plant species to successfully prevent colonization by any
given member of a pathogen species. White blister rust caused by Albugo species can overcome non-host resistance and
enable secondary infection and reproduction of usually non-virulent pathogens, including the potato late blight pathogen
Phytophthora infestans on Arabidopsis thaliana. However, the molecular basis of host defense suppression in this complex
plant–microbe interaction is unclear. Here, we investigate specific defense mechanisms in Arabidopsis that are suppressed
by Albugo infection.

Results: Gene expression profiling revealed that two species of Albugo upregulate genes associated with tryptophan-
derived antimicrobial metabolites in Arabidopsis. Albugo laibachii-infected tissue has altered levels of these metabolites,
with lower indol-3-yl methylglucosinolate and higher camalexin accumulation than uninfected tissue. We investigated
the contribution of these Albugo-imposed phenotypes to suppression of non-host resistance to P. infestans. Absence of
tryptophan-derived antimicrobial compounds enables P. infestans colonization of Arabidopsis, although to a lesser
extent than Albugo-infected tissue. A. laibachii also suppresses a subset of genes regulated by salicylic acid; however,
salicylic acid plays only a minor role in non-host resistance to P. infestans.

Conclusions: Albugo sp. alter tryptophan-derived metabolites and suppress elements of the responses to salicylic acid
in Arabidopsis. Albugo sp. imposed alterations in tryptophan-derived metabolites may play a role in Arabidopsis non-
host resistance to P. infestans. Understanding the basis of non-host resistance to pathogens such as P. infestans could
assist in development of strategies to elevate food security.
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Background
Plants are exposed to diverse pathogens and pests, yet
most plants are resistant to most plant pathogens. Suc-
cessful pathogens and pests suppress plant immunity to
enable plant colonization. Current models envisage a
multi-level evolutionary arms race between plants and
pathogens or pests [1–4]. Plant defense responses are
initiated by recognition of pathogen or pest attack via
detection of pathogen molecules by plant cell surface re-
ceptors. Relatively invariant and indispensable molecules
known as microbe- or pathogen-associated molecular
patterns, are recognized by transmembrane pattern rec-
ognition receptors at the plasma membrane. This leads
to signaling responses that result in pattern-triggered
immunity (PTI). PTI is sufficient to prevent colonization
by most non-adapted pathogens or pests, but pathogens
which are adapted to particular host plants have evolved
effectors that suppress PTI. In turn, plants evolved intra-
cellular receptors that recognize the structure or action
of effectors, resulting in effector-triggered immunity
(ETI). The pathogen may subsequently adapt to the host
further by evolving a variant non-recognized effector or
evolving other effectors to suppress ETI.
Non-host resistance (NHR) describes the ability of all

members of a plant species to successfully prevent
colonization by any given member of a pathogen species
[5, 6]. In principle, NHR might result from the triggering
of PTI, ETI or antimicrobial secondary metabolites. It
has been proposed that the more distantly related a non-
host plant is from a host plant for a pathogen, the
greater the relative contribution of PTI compared to ETI
in NHR [7].
Albugo species are obligate biotrophic oomycetes that

cause white blister or white rust disease in plants [8].
Albugo laibachii specializes on Arabidopsis [9], whereas
A. candida is comprised of physiological races (formae
speciales) that cause disease in diverse members of the
Brassicaceae, Cleomaceae, and Capparaceae [8, 10]. Al-
though most plants resist most pathogens, Albugo spp.
not only overcome plant immune responses against
themselves, but also suppress immunity against other
filamentous pathogens. A. laibachii and A. candida can
suppress resistance in Arabidopsis and Brassica juncea
to downy mildews and other filamentous pathogens to
which the plants are naturally resistant [10, 11]. Sup-
pression of immunity could allow A. candida strains
with different host ranges to co-exist on the same host
and sexually reproduce, thus allowing genetic exchange
that potentially facilitates colonization of new hosts [10].
We recently found that A. laibachii suppresses Arabi-

dopsis non-host resistance to Phytophthora infestans
[12]. P. infestans is a hemibiotrophic oomycete that
causes late blight disease in potato and tomato, leading
to global yield losses [13], and is adapted to a few

solanaceous plant species [14], but not to Arabidopsis
[15]. A better understanding of the mechanisms that
prevent P. infestans colonizing Arabidopsis may lead to
new methods for controlling late blight disease in crop
species. Crop protection strategies based on non-host re-
sistance are of interest because they have the potential
to be durable. Initial efforts to understand Arabidopsis
NHR to P. infestans examined cytological and gene ex-
pression responses. Resistance is associated with epider-
mal cell death and induction of jasmonic acid (JA)
responses followed by salicylic acid (SA) responses [15,
16]. However, the coronatine-insensitive 1 (coi-1) mutant,
compromised in JA signaling, is resistant to P. infestans
[17]. Subsequently, several Arabidopsis genes involved in
NHR to P. infestans have been identified. Penetration2
(PEN2) encodes an atypical myrosinase that hydrolyses
4-methoxyindol-3-ylmethylglucosinolate (4MO-I3M)
into antimicrobial compounds [18]. PEN3 encodes a
pleiotropic drug resistance ATP-binding cassette (ABC)
transporter implicated in secreting antimicrobial com-
pounds, including those produced by PEN2 [19–21].
pen2 and pen3/atpdr8 mutants show increased epider-
mal penetration and invasive growth by P. infestans and
subsequent enhanced plant cell death in response [19,
22, 23]. A forward genetic screen to identify additional
components of Arabidopsis NHR to P. infestans identi-
fied enhanced response to Phytophthora (erp) mutants
[24, 25]. erp1 encodes a phospholipid:sterol acyltransfer-
ase and shows increased cell death and callose deposi-
tions in the mesophyll without increased growth by the
pathogen [24]. erp6 encodes EDR1 (enhanced disease re-
sistance1) and plays a role in post-invasive NHR to P.
infestans, where it acts as a negative regulator of PTI,
SA signaling, and callose deposition [25]. However, while
P. infestans can penetrate into the leaf tissue of some of
the Arabidopsis mutants so far identified, there have
been no reports of P. infestans producing haustoria or
sporulating.
Compounds that are not directly involved in the pri-

mary processes of basic growth and development are
termed secondary metabolites, which comprise a large
collection of diverse small molecules. Specific classes of
secondary metabolite are often restricted to a narrow
phylogenetic lineage [26], but may perform conserved
functions in plant immunity [27]. Arabidopsis secondary
metabolites with a role in defense include the
tryptophan-derived secondary metabolites glucosino-
lates, which are mostly restricted to the order Brassicales
[28], and camalexin that appears to be present only in
species belonging to the Camelinae tribe [29]. Camalexin
and indolic glucosinolates play a role in plant immunity
against diverse microbial pathogens and insect pests
(reviewed by [30]). Interestingly, tryptophan-derived sec-
ondary metabolites have recently been shown to play a
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role in immunity to the oomycetes Phytophthora brassicae
and Phytophthora capsici [31, 32]. The importance of
camalexin to plant immunity in the Brassicales can also be
seen from the examples of pathogens that detoxify these
compounds in order to colonize the host [33–35].
The phenolic phytohormone SA plays an important

signaling role in plant immunity [36]. SA regulates im-
munity, especially against biotrophs and hemibiotroph
pathogens [37]. PTI and ETI lead to the accumulation of
SA [38–40] and therefore the combined effects can be
thought of as SA-triggered immunity (SATI). Mutants in
SA signaling are more susceptible to both adapted and
non-adapted pathogens (e.g. [31, 41, 42]), and effectors
from several pathogen species target SA accumulation
and SATI (reviewed by [43]).
The Albugo-Arabidopsis pathosystem offers the oppor-

tunity to investigate the mechanistic nature of immune-
suppression in detail. We investigated how Albugo spp.
suppress Arabidopsis NHR to P. infestans. We used ex-
pression profiling to look for plant pathways regulated
by two Albugo species during infection. Albugo infection
of Arabidopsis alters the profile of tryptophan-derived
secondary metabolites, increasing camalexin accumula-
tion and decreasing indol-3-ylmethylglucosinolate (I3M)
levels. Interestingly, the camalexin accumulated in
Albugo-infected tissue, though detectable in extracts, ap-
pears to be biologically unavailable for defense against
the necrotrophic fungus Botrytis cinerea. Albugo also
suppresses SATI, but lack of SA is not sufficient to allow
colonization of Arabidopsis by P. infestans. Our results
therefore suggest that Albugo affects many aspects of
plant immunity, leading to the plant becoming suscep-
tible to previously resisted pathogens, and that
tryptophan-derived metabolites play a role in Arabidop-
sis NHR to P. infestans.

Methods
Biological material
Arabidopsis (Arabidopsis thaliana) plants were grown as
previously described [12]. Seeds were sown on Scotts
Levington F2 compost (Scotts, Ipswich, UK) and verna-
lized for one week at 5–6 °C. Seedlings were subse-
quently grown in a controlled environment room (CER)
with a 10 h day and a 14 h night photoperiod and at a
constant temperature of 22 °C for 2 weeks and then
pricked out into “Arabidopsis mix” (600 L F2 compost,
100 L grit, 200 g Intercept insecticide) and returned to
the CER. Arabidopsis plants were infected with Albugo
when they were 4 or 5 weeks old. Arabidopsis lines used
in this study are listed in Additional file 1.
Brassica juncea seeds were sown on Scotts Levington

F2 compost (Scotts). Seedlings were subsequently grown
in a CER with a 10 h day and a 14 h night photoperiod
and at a constant temperature of 22 °C for 1 week and

then pricked out into “Arabidopsis mix” and returned to
the CER.
Phytophthora infestans isolate 88069td expresses a

cytosolic tandem DsRed protein [44]. P. infestans isolate
NL12226 was isolated by Geert Kessel (Wageningen
University and Research, Wageningen) in 2012 from infected
Solanum tuberosum cultivar Toluca in Valthermond,
Flevoland, The Netherlands. Both isolates were cultured on
rye sucrose agar [45] at 18 °C in the dark [46].
Albugo strains were propagated as follows: zoosporan-

gia from plants inoculated 14 days earlier were sus-
pended in cold water and incubated on ice for 30 min.
The spore suspension was then sprayed on plants using
a spray gun, and plants were incubated in a cold room
(5 °C) in the dark overnight to promote Albugo spore
germination. Infected plants were kept under 10-h light
and 14-h dark cycles with a 21 °C day and 14 °C night
temperature. Albugo laibachii strain Nc14 [47] was main-
tained on Col-gl resistance to powdery mildew (RPW)8.1
and RPW8.2 Arabidopsis [48]. Albugo candida (Ac) strains
Ac2V [10], AcEx1 (this study), and AcNc2 [10] were
maintained on Brassica juncea cultivar Burgonde, Col-0,
and Ws-2 Arabidopsis ecotypes, respectively.
Hyaloperonospora arabidopsidis isolate Waco9 was in-

oculated as described previously [49, 50].
Botrytis cinerea was cultured and inoculated as de-

scribed previously [51]. B05.10 is the wildtype strain.
ΔBcatrB4 is a B05.10 derived gene-replacement mutant
in BcatrB [52]. The BcatrB promoter–β-Glucuronidase
(GUS) fusion strain BcatrBp803GUS-7 contains the 803
bp upstream of the BcatrB start codon fused in-frame to
the uidA gene from Escherichia coli [53]. The
OliCpromoter-GUS fusion strain OliCGUS shows con-
stitutive expression of the uidA gene [53, 54].

Gene expression analysis over Albugo infection time
course
To harvest samples representing a time course of infec-
tion of A. laibachii and A. candida on Arabidopsis we
have used a multi-parent recombinant inbred derived
line, Multi-parent Advanced Generation Inter-Cross
(MAGIC) 107 [55]. Arabidopsis ecotype Col-0 is resist-
ant to AcNc2 and ecotype Ws-2 shows necrotic lesions,
while MAGIC 107 shows significantly reduced trailing
necrosis and exhibits a compatible interaction with
AcNc2 and AlNc14. AcNc2 and AlNc14 were spray in-
oculated as described above. For mock treatment, plants
were sprayed with cold water. Plants were incubated
overnight in the dark at 5 °C. Arabidopsis leaf samples
were collected immediately after the cold treatment (0
time point) and at 2, 4, 6, and 8 days post inoculation
(dpi). Four independent biological replicates for each
treatment and each time point were collected.
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RNA extraction, EXpression Profiling through Randomly
Sheared cDNA tag Sequencing (EXPRSS) library prepar-
ation for Illumina sequencing, and sequence read to gene
mapping were performed as described previously [56].
Double stranded cDNA samples were sheared for library
preparation using Covaris S220X (Covaris settings: inten-
sity, 5; duty cycle, 20%; cycles/burst, 200; duration, 60 sec).
The libraries were sequenced using Illumina Genome
Analyzer II producing sequence reads of 76 nucleotides.
The sequence data has been deposited in the National Cen-
ter for Biotechnology Information’s Gene Expression
Omnibus [57] and are available under series accession
number GSE75016. Sequence reads to gene associations
were carried out using the considerations and scripts previ-
ously published [56]. Mock samples were analyzed in pair-
wise manner with each Albugo species infection data,
independently. Quality-filtered libraries of mock and
AlNc14-infected samples were aligned to the combined ge-
nomes of The Arabidopsis Information Resource version
10 (TAIR10) [58] and AlNc14 version 1 [47]; similarly,
mock and AcNc2-infected samples were aligned to com-
bined genomes of TAIR10 and AcNc2 version 1 [10] using
Bowtie version 0.12.8 [59]. Unaligned reads from previous
steps were mapped to the combined cDNA reference se-
quences of the respective Arabidopsis (TAIR10) and Albugo
strain (AlNc14 version1 and AcNc2 version1) combinations
using Novoalign v2.08.03 [60]. Details of software parame-
ters, genomes, and gene sequences used for the analysis are
available online [61].
Uniquely aligned read counts were selected for differ-

ential expression analysis. For gene expression analysis,
each Albugo (AlNc14 or AcNc2) infection time point
data was compared against respective mock time point
data resulting from pairwise analysis. Differential expres-
sion analysis was performed using the R statistical lan-
guage [62] version 2.11.1 with the Bioconductor package
[63] and edgeR version 1.6.15 [64] with the exact nega-
tive binomial test using tagwise dispersions. The Benja-
mini–Hochberg method [65] based false discovery rate
(FDR) was applied and genes with FDR < 0.01 were se-
lected as differentially expressed (Additional file 2).
For comparative analysis of benzo-(1,2,3)-thiadiazole-7-

carbothioic acid (BTH) and JA responsive gene progression
during Albugo infection, previously published microarray
data of Arabidopsis treatment with BTH [66] and methyl
jasmonate [67, 68] were used. Microarray data normalization
and differential expression analysis was carried out as de-
scribed previously [56]. Genes with FDR < 0.05 were selected
for comparative gene expression analysis.

Gene Ontology (GO) enrichment analysis
Lists of Arabidopsis genes that were up-regulated or
down-regulated at each time point in infected plant tis-
sue compared to the control were compiled (Additional

file 3). Overlap between the AlNc14 and AcNc2 gene
lists was determined using the Venn diagram available in
the Public Research Centre for Health [69]. These lists
were then used to perform Singular Enrichment Analysis
with FDR = 0.05 using AgriGO v1.2 and default settings
[70]. GO annotations are based on TAIR10.

P. infestans infection assays
Sequential infection of plants with Albugo and then P.
infestans were carried out with appropriate controls as
previously described [12].
Assays with non-Albugo-infected Col-0 and mutant

Arabidopsis were conducted by placing droplets of P.
infestans spores on the abaxial side of detached leaves
and incubating for up to 3 days at 100% relative humid-
ity. After 36 hours, the droplets were gently removed
using paper towel to prevent the growth of P. infestans
in the water rather than the leaf.

Visualizing and quantifying P. infestans
P. infestans 88069td colonization of Arabidopsis was vi-
sualized using a Leica M165FC microscope with
DFC425 camera and EL6000 light source (Leica Micro-
systems, Milton Keynes, UK) and a DSR filter (excitation
wavelength of 510–560 nm and emission wavelength of
590–650 nm). P. infestans growth is represented by red
fluorescence. Leaves that were inoculated with P. infes-
tans on the abaxial surface may show no fluorescence
from the adaxial surface due to lack of pathogen
colonization (e.g. Col-0 plants).
P. infestans colonization of Arabidopsis was quantified

using qRT-PCR. Leaf discs (10 mm diameter) were
punched out of Arabidopsis leaves inoculated with P.
infestans and DNA extracted with DNeasy plant mini kit
(Qiagen, Hilden, Germany). Four discs were used per
replicate for water-sprayed plants, and three discs per
replicate for Albugo-sprayed plants. DNA was diluted to
5 ng/μL and 5 μL used per qRT-PCR reaction. qRT-PCR
was conducted as described below, using primers for
At3g21215 and PiO8-3-3 (Additional file 4) to compare
the amount of P. infestans DNA present.
P. infestans NL12226 sporulation on Col-0 and

cyp79b2/b3 Arabidopsis was quantified by infecting
leaves from 4-week-old plants (as described above), then
checking for the presence of P. infestans spores between
3 and 5 dpi by placing droplets of water on the leaf sur-
face and examining them under a light microscope.

qRT-PCR of plant genes
Plants were sprayed with Albugo or water, and subse-
quently inoculated with P. infestans as described above.
Samples consisted of two Arabidopsis leaves and two
samples were taken per experiment per time point, with
the experiment being repeated three times.
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Samples were homogenized using a TissueLyser II (Qia-
gen) and 3-mm tungsten carbide beads (Qiagen) under
cold conditions. Total RNA was extracted using Tri-
Reagent (Sigma-Aldrich), Direct-zolTM RNA miniprep kit
(Zymo Research, Irvine, CA), and on-column DNase treat-
ment. Purity and integrity were checked using a Nanodrop
8000 (Thermo Scientific) and agarose gel. cDNA was syn-
thesized from 1 μg RNA using Oligo dT12–18 primers (Life
Technology, Paisley, UK) and Superscript III reverse tran-
scriptase (Life Technology) according to the manufacturer’s
instructions. cDNA from these reactions was diluted 1:20
with distilled water before qRT-PCR. Stable reference
genes for normalization were selected as previously
described [71]. Candidate reference genes were selected
from previously identified superior reference genes [72]
(Additional file 4). Analysis of eight candidates (elongation
factor 1 alpha, two A and related phosphatase-associated
protein42-interacting protein of 41 kD (TIP41), U-BOX,
glyceraldehyde-3-phosphate dehydrogenase C2, ACTIN2,
PEROXIN4, monensin sensitivity1, and adaptor protein-2
MU-ADAPTIN) using geNORM [73] and NormFinder
[74] identified the optimal number of reference genes
needed for normalization to be two, and the two most
stable genes across the experimental conditions to be
TIP41 (At4g34270) and elongation factor 1-alpha
(At5g60390). Primer sequences and annealing temperature
used for qRT-PCR are described in Additional file 4.

qRT-PCR assays
Each reaction consisted of 20 μL containing 5 μL of DNA
or cDNA and 0.5 μM of each primer (Additional file 4)
added to SYBR Green JumpStart Taq ReadyMix (Sigma-
Aldrich) in a single well of a 96-well white ABgene PCR
plate (Thermo Scientific). Reactions were run in a CFX96
Real-Time System with a C1000 Thermal Cycler (Bio-
Rad). PCRs were carried out using the following thermo-
cycle: 3 min at 95 °C, followed by 40 cycles of 30 s at 95 °C,
30 s at the relevant annealing temperature (Additional file
4), and 30 s at 72 °C, followed by melt curve analysis
(65–95 °C at 0.5 °C increments, 5 s for each). Primer effi-
ciencies were calculated using a dilution series of DNA or
cDNA. To calculate the relative expression levels of target
genes, mean cycle threshold values for each sample-primer
pair combination were calculated from three replicate reac-
tion wells. The cycle threshold values and primer efficien-
cies were then used to calculate normalized relative
quantities (NRQs) for each gene using the EasyqpcR pack-
age [75] in R. NRQs were then log2 transformed [76] and
statistical analyses performed as described below.

Metabolite analysis
Plants were sprayed with Albugo or water, and subse-
quently inoculated with P. infestans or water as de-
scribed above. Single leaves were collected 20 hours post

P. infestans/control treatment for analysis of indolic glu-
cosinolates and 48 hours post treatment for camalexin
analysis.
Plants were sprayed with AlNc14 or water, and subse-

quently sprayed with B. cinerea or quarter-strength po-
tato dextrose broth. Sets of three leaves were collected
26 hours post B. cinerea/control treatment for camalexin
analysis. All samples were immediately flash frozen in li-
quid nitrogen and subsequently dry frozen.
Glucosinolates were analyzed as desulfo glucosinolates

through a modified version of a previously described
method [77]. Leaf material was lyophilized and homoge-
nized in 85% methanol containing 0.02 mM para-hydro-
xybenzyl glucosinolate as internal standard. Samples
were centrifuged at 13,000 g for 10 min and the super-
natant was transferred to a 96-well filter plate (Milli-
pore) loaded with 45 mg diethylaminoethyl sephadexTM

A-25 column material (GE Healthcare Biosciences),
which had been equilibrated for 4 hours in 300 μL water
before samples were applied. Glucosinolates were bound
to the column material while samples were sucked
through the filter plate by applying a brief vacuum.
Afterwards, columns were washed with 2 × 100 μL 70%
methanol and 2 × 100 μL water, respectively. Then, 20
μL sulfatase (SIGMA E.C. 3.1.6.) solution (2 mg mL–1)
was added to the columns and allowed to incubate at
room temperature overnight; 100 μL water were applied
to the columns and a short spin eluted the desulfo-
glucosinolates into a 96-well format plate. The samples
were analyzed on a Shimadzu high performance liquid
chromatography (HPLC)-DAD system and separated on
a Zorbax SB-AQ column (4.6 mm× 25 cm, 5 μm particle
size) at a flow rate of 1 mL min–1. Compounds were de-
tected at 229 nm using a diode array UV and separated
utilizing eluents (A: H2O, B: 100% acetonitrile) using the
following program: 5 min gradient from 1.5% to 7%
eluent B; 5 min gradient from 7% to 25% eluent B; 4
min gradient from 25% to 80% eluent B; 3 min at 80%
eluent B; 2 min gradient from 80% eluent B to 35%
eluent B; 2 min gradient from 35% to 1.5% eluent B; a
final 3 min at 1.5% eluent B. Response factors for ab-
sorbance at 229 nm were used to quantify the desulfo-
glucosinolates [78–80].
Leaf samples for camalexin analysis were disrupted in

methanol using a Retsch Mixer Mill 303 (Retsch, Haan,
Germany). Samples were spun down and the super-
natant collected, and the process was repeated with the
pellet tissue. Supernatants were filtered through a 0.22-
μm filter (Millipore). Samples were quantified using
synthetic camalexin as an external standard. The peak at
5.17 min was identified as camalexin by comparison
with authentic standard with respect to retention time
and UV spectrum (photodiode array detector 168,
Beckman Instruments, Fullerton, CA) and quantified by
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using a Shimadzu F-10AXL fluorescence detector (318
nm excitation and 370 nm emission) and by UV absorp-
tion at 318 nm.

Botrytis cinerea
Inoculation of Arabidopsis with B. cinerea was performed
as described previously [81], with minor modifications.
For disease assays, plants sprayed with AlNc14 or water
12 days previously were pairwise-inoculated with the dif-
ferent isolates using 5 μL droplets of 2.5 × 105 spores per
mL in quarter-strength potato dextrose broth. Six leaves
per plant and at least eight plants per experiment were
used. Lesion diameters were measured at 3 dpi.
For determination of GUS activity in OliCGUS and

BcatrBp803GUS-7 water- or AlNc14-sprayed leaves were
inoculated by pairwise droplet inoculation of three drop-
lets of each strain on either side of the leaf or sprayed as
a whole plant till near run-off. For visual examination of
the droplets inoculated leaves were detached at 48 hours
post inoculation (hpi) and vacuum-infiltrated three times
for 2 mins in X-Gluc staining buffer (50 mM sodium
phosphate buffer pH 7.0, 10 mM ethylenediaminetetra-
acetic acid (EDTA), 0.5 mM K3Fe(CN)6, 0.5 mM
K4Fe(CN)6, 0.5% w/v Triton X-100 and 0.5 mg mL−1 X-
Gluc cyclohexylammonium salt) [51, 82]. Leaves were
incubated for 20 h at 37 °C, destained in four changes of
ethanol, and the intensity of blue staining at each inocu-
lation site was estimated on a scale from 0 to 3. The
score of all droplets per leaf was averaged and expressed
as percentage of the maximum per leaf and data pre-
sented are averages of three experiments with at least
five leaves per pairwise comparison. For determination
of GUS activity in sprayed leaves, three leaves were col-
lected 48 hpi, blotted dry on tissue paper, weighed and
frozen in 2-mL tubes. Leaves in each tube were pul-
verised in a genogrinder 2010 [83] with two 3-mm stain-
less steel balls for 1 min at 1250 strokes per minute in
blocks cooled with dry-ice. Enzymes were extracted with
25 mM sodium phosphate buffer pH 7.0 with 0.1% Tri-
ton and GUS activity determined as the conversion of 4-
methylumbelliferyl-β-D-glucuronide (Sigma) by GUS to
its fluorescent degradation product on a Varioskan Flash
multiplate reader (Thermo Scientific) adapted from Jef-
ferson et al. [84]. The remaining pellet was used for total
DNA extraction and qRT-PCR determination of B.
cinerea levels in each sample according to Gachon et al.
[85] (Additional file 4). GUS expression was normalized
against the B. cinerea weight portion of each sample.

Microscopy of PR1::GUS leaves
GUS activity in leaves of pathogenesis-related 1
(PR1)::GUS plants was assayed histochemically with 5-
bromo-6-chloro-3-indolyl b-D-glucuronide cyclohexylam-
monium salt (1 mg mL–1) (Magenta b-D-GlcA CHX,

Carbosynth Limited, Compton, UK) in a buffer containing
100 mM sodium phosphate pH 7.0, 0.5 mM potassium
ferrocyanide (Sigma-Aldrich, St Louis, USA), 0.5 mM po-
tassium ferricyanide (Sigma-Aldrich), 10 mM EDTA
(Thermo Scientific, Loughborough, UK), and 0.1% Triton
(Sigma-Aldrich). Arabidopsis leaves were vacuum-
infiltrated with staining solution and incubated overnight
at 37 °C in the dark. Leaves were then boiled in lactophe-
nol containing 0.17 mg mL–1 trypan blue (Sigma-Aldrich)
for 1 min and destained by incubation in 2.5 g mL–1

chloral hydrate (Sigma-Aldrich). Staining of whole leaves
was visualized using a Leica M165FC microscope with
DFC425 camera and EL6000 light source (Leica Microsys-
tems). The percentage of the leaf stained with magenta-
GlcA was determined by measuring the leaf area and the
stained area using ImageJ [86].

Statistical analyses
Statistical analyses were conducted using R 3.2.2 [62]
within RStudio 0.99.483 [87] (data are available in
Additional files relating to each figure; please see below).
Technical replicates consist of readings from the same
condition in the same experiment, whereas biological
replicates consist of independent experiments with
batches of plants sown on different days. Data were ana-
lyzed using the following pipeline: data were assessed for
their suitability to be analyzed using parametric tests by
testing for the normal distribution of the residuals
(D’Agostino–Pearson and Shapiro–Wilk tests) and visu-
alizing residuals with Q-Q plots. The assumption of
equal variances between the conditions was tested using
the Bartlett test for data with normally distributed
residuals and the Fligner test for data with non-normally
distributed residuals. If the data were suitable for con-
ducting parametric tests, then Welch’s two sample t-test
or analysis of variance (ANOVA) were used as appropri-
ate. Percentage data in Additional file 5 were trans-
formed in order to meet the assumptions of parametric
tests. The percentage of leaf stained was first arcsine
square root transformed (arcsine(square root(percen-
tage/100))), and then subsequently log10 transformed
(log10(transformed data point + 1)). If the data were not
suitable for parametric tests, then the appropriate
non-parametric test (Wilcoxon rank sum test, Kruskal–
Wallis rank sum test) was used if possible. Data that
did not meet the assumptions for parametric tests but
had more than one set of treatments were analyzed
within a generalized linear model (GLM) using a Pois-
son distribution, or a quasi-Poisson distribution if the
data were over dispersed. Multiple comparisons were
corrected for using Tukey’s honest significant difference
(HSD) where appropriate, and otherwise Bonferroni
correction.
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Results
Two Albugo species compromise plant immunity and
enables sporulation of Phytophthora infestans
We recently reported that A. laibachii Nc14 (AlNc14)
[47] suppresses Arabidopsis NHR to P. infestans ([12],
Fig. 1a, b, d and e). As immunosuppression was also dem-
onstrated for the related species A. candida [10, 11], we
investigated whether A. candida infection of Arabidopsis
and Brassica juncea compromises NHR to P. infestans. A.
candida isolate Exeter 1 (AcEx1), which is adapted to
many Arabidopsis ecotypes including Col-0, suppressed

NHR in Arabidopsis to P. infestans (Fig. 1c and f). A. can-
dida isolate 2V (Ac2V) is adapted to B. juncea but not
Arabidopsis ecotypes [10], and also suppresses plant NHR
to P. infestans on B. juncea (Fig. 1g–i). P. infestans sporu-
lates in both AcEx1- and Ac2V- infected leaves (Fig. 1c, f,
g and i). To test if the NHR suppression was imposed by
other biotrophic oomycetes that infect Arabidopsis, we in-
oculated Hyaloperonospora arabidopsidis (Hpa)-infected
Arabidopsis with P. infestans. We saw no P. infestans
colonization of Arabidopsis infected with the compatible
Hpa isolate Waco9 (Additional file 6). Together, these

Fig. 1 Two Albugo species compromise plant immunity and enable sporulation of Phytophthora infestans. a–f Albugo species compromise
Arabidopsis immunity to P. infestans. Water-sprayed (a, d), Albugo laibachii Nc14-sprayed (b, e), and Albugo candida AcEx1-sprayed (c, f) Col-0
leaves (13 days post inoculation (dpi)) were drop inoculated with 100 μL of 5 × 104 spores per mL P. infestans 88069td. a–c Photographs taken 3
dpi with P. infestans. Scale bar: 5 mm. Arrows denote P. infestans sporulation. d–f Fluorescence microscopy of the adaxial surface of the leaf. Red
fluorescence denotes P. infestans growth. Scale bar: 200 μm. Results shown are representative of three independent experiments. g–i A. candida
compromises Brassica juncea immunity to P. infestans. g Water-sprayed (left) and A. candida Ac2V-infected (right) B. juncea leaves (12 dpi) were
drop inoculated with several 250 μL drops of 4 × 104 spores per mL P. infestans 88069td. Photographs were taken 3 dpi with P. infestans. Scale
bar: 5 mm. Arrows denote P. infestans sporulation. h, i Fluorescence microscopy of the adaxial surface of water-sprayed (h) and Ac2V-infected (i)
leaves. Red fluorescence denotes P. infestans growth. Scale bar: 200 μm. Results shown are representative of three independent experiments
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data suggest that suppression of NHR to P. infestans is
imposed after infection by Albugo species but not by other
biotrophic oomycete pathogens of Arabidopsis.

Albugo-infection upregulates plant tryptophan
metabolism
To understand the effect of Albugo infection on plant gene
expression over a time course of infection we used
EXPRSS, a sensitive, reliable, and high-throughput tag-
based expression profiling method [56]. We wished to com-
pare the Arabidopsis gene expression responses to infection
with two Albugo species, AlNc14 and A. candida isolate
Nc2 (AcNc2). While AlNc14 is compatible with many Ara-
bidopsis ecotypes, Col-0 is resistant to AcNc2 and Ws-2
shows necrotic lesions upon AcNc2 infection. Arabidopsis
MAGIC line 107 [55] was chosen after screening multiple
MAGIC lines because it shows the most compatible inter-
action (significantly reduced trailing necrosis) with AcNc2,
and also showed compatibility with AlNc14. We hypothe-
sized that both species of Albugo suppress NHR to P. infes-
tans by similar mechanisms. We treated MAGIC line 107
[55] with AlNc14, AcNc2 [10], or water as a control, and
then took leaf samples for RNA extraction at 0, 2, 4, 6, and
8 dpi. EXPRSS libraries were prepared from the extracted
RNA and sequenced using Illumina sequencing. The se-
quences were mapped to genes, and differential expression
analysis conducted. There was some overlap in the Arabi-
dopsis genes differentially regulated by both pathogen spe-
cies, with around 25% of the total up-regulated and down-
regulated genes across the time course shared by the two
pathogen species (Fig. 2). To identify which plant pathways

were altered by Albugo, we conducted GO enrichment ana-
lysis using AgriGo [70] on lists of differently expressed
genes (Additional files 7 and 8), focusing on specific lower
level terms within biological processes. Few plant pathways
were up-regulated at early time points in both infections
(Table 1). At later time points, pathways associated with
plant defense, such as SA and JA, were up-regulated. The
only enriched down-regulated plant processes shared by in-
fection with either pathogen were photosynthesis and RNA
elongation. We focused on the up-regulation of the
tryptophan-derived secondary metabolites, which include
camalexin and indole-derived compounds, as these path-
ways were enriched in genes up-regulated by AlNc14 and
AcNc2 infection (Table 1; 8 dpi and Combined time
points), and they have been shown to play a role in Arabi-
dopsis immunity to other Phytophthora species [31, 32].

Albugo infection changes the proportions of camalexin
and indolic glucosinolates
To explore whether tryptophan-derived secondary metabo-
lites are involved in Arabidopsis responses to P. infestans
and how Albugo infection may alter their accumulation, we
measured Arabidopsis transcriptional responses and metab-
olite accumulation in water-sprayed and Albugo-infected
plants in response to P. infestans. We selected genes that
were at the start of the pathway (cytochrome P450
(CYP)79B2), on the camalexin branch (CYP71A13 and
phytoalexin deficient3 (PAD3)), on the core indolic gluco-
sinolate pathway (CYP83B1 and sulfotransferase16
(SOT16)), and involved in indolic glucosinolate modifica-
tion (CYP81F2) (Fig. 3). At 6 hours (Fig. 4a, Additional files
9 and 10), Albugo infection alone up-regulated CYP71A13,
PAD3, and CYP81F2. P. infestans infection alone up-
regulated all of the genes except CYP83B1. SOT16 expres-
sion induced by P. infestans was suppressed in the presence
of Albugo. At 48 hours (Fig. 4b, Additional files 10 and 11),
Albugo infection alone up-regulated the same genes as at 6
hours plus CYP79B2. P. infestans infection alone up-
regulated the same genes as at 6 hours, with the exception
of SOT16. Albugo and P. infestans infection together led to
increased expression of CYP79B2 and CYP81F2, and de-
creased expression of CYP83B1 compared to P. infestans
infection alone. These data support the inference of the ex-
pression profiling and GO enrichment analysis that genes
involved in tryptophan-derived secondary metabolite pro-
cesses are up-regulated in Albugo-infected tissue. They also
show that these genes respond to P. infestans infection.
We measured camalexin and indolic glucosinolate (I3M

and 4MO-I3M) levels in leaves with the same experimental
design as above. Albugo-treatment (t =–6.037, P < 0.001,
GLM) and P. infestans inoculation (t =–7.340, P < 0.001)
led to significant accumulation of camalexin (Fig. 4c,
Additional file 10). Albugo-infected tissue accumulates sig-
nificantly less I3M (t = 5.884, P < 0.001, GLM) but P.

Fig. 2 Genes differentially expressed in expression profiling experiment.
The number of differentially expressed genes in MAGIC 107 Arabidopsis
infected with AlNc14 or AcNc2 was calculated over an 8-day time course.
The data are the average of four experiments. The Venn diagrams show
the percentage of genes (with number of genes in brackets) that were
up-regulated (red rings) or down-regulated (blue rings) at that time point
and whether they were either unique to infection with one pathogen
species, or were shared between the two pathogen species. Combined
time points show genes that were up-regulated at one or more time
points and not subsequently down-regulated (and vice versa)
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infestans inoculation has no effect (t = 0.037, P = 0.971)
(Fig. 4d, Additional file 10). Neither of the treatments
change the accumulation of 4MO-I3M (Albugo: t =–0.123,
P = 0.90, P. infestans: t =–0.762, P = 0.45, GLM) (Fig. 4d,
Additional file 10). 4MO-I3M accumulates in the pen2-1
mutant upon challenge with flg22 or non-host pathogens
due to reduced hydrolysis [18, 88]. However, we found
similar results to Col-0 when we repeated the experiment
in the pen2-1 mutant (Additional files 12 and 13).
In conclusion, P. infestans infection of Arabidopsis
elicits transcriptional responses in the camalexin and
indolic glucosinolate metabolic pathways, and the ac-
cumulation of camalexin. Albugo-infection appears to
alter tryptophan-derived secondary metabolite levels
leading to increased accumulation of camalexin and
decreased accumulation of I3M.

Indole glucosinolate-deficient, but not aliphatic
glucosinolate-deficient mutants, show reduced resistance
to P. infestans
To further investigate the role of tryptophan-derived
secondary metabolites in NHR to P. infestans we se-
lected mutants deficient in different parts of the path-
way. We tested NHR to P. infestans in mutants deficient
in indolic glucosinolates and camalexin (cyp79b2/b3),
deficient in camalexin (pad3), reduced in 4MO-I3M
(cyp81f2), deficient in PEN2-dependent hydrolysis of
4MO-I3M (pen2-1), and deficient in PEN2-dependent
hydrolysis of 4MO-I3M and camalexin (pen2-1 pad3)
(Fig. 3). cyp79b2/b3, pen2-1, and pen2-1 pad3 showed
cell death in response to P. infestans inoculation, with

Table 1 Gene ontology (GO) terms enriched in Arabidopsis genes differentially expressed by both pathogen infections

Category 2 dpi 4 dpi 6 dpi 8 dpi Combined time points

Up-regulated vs.
control (0 dpi)

• Golgi
apparatus

• rRNA
modification

• Jasmonic acid-mediated
signaling pathway

• MAPKKK cascade
• Negative regulation of
programmed cell death

• Salicylic acid-mediated
signaling pathway

• Systemic acquired resistance

• Indole derivative
biosynthetic processes

• Jasmonic acid-mediated
signaling pathway

• MAPKKK cascade
• Negative regulation of
programmed cell death

• Response to hormone
stimulus

• Salicylic acid-mediated
signaling pathway

• Systemic acquired
resistance

• Tryptophan metabolic
processes

• Camalexin biosynthetic
processes

• Indole-derived metabolic
processes

• Jasmonic acid-mediated
signaling pathway

• MAPKKK cascade
• Negative regulation of
defense response

• Negative regulation of
programmed cell death

• Response to hormone
stimulus

• Salicylic acid-mediated
signaling pathway

• Systemic acquired
resistance

• Tryptophan metabolic
processes

Down-regulated vs.
control (0 dpi)

• Photosynthesis
• RNA
elongation

• Photosynthesis
• RNA
elongation

• Photosynthesis
• RNA elongation

• Photosynthesis
• RNA elongation

• Photosynthesis
• RNA elongation

Fig. 3 The tryptophan-derived metabolite pathway. Simplified schematic
of the tryptophan-derived metabolite pathway, adapted from Buxdorf et
al. [113] and Frerigmann et al. [114]
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the strongest phenotype observed with cyp79b2/b3
(Fig. 5b, h and i). These observations were complemen-
ted by fluorescence microscopy, which revealed that
cyp79b2/b3, cyp81f2, pen2-1, and pen2-1 pad3 allowed
P. infestans growth within the leaf that was visible from
the adaxial surface (Fig. 5e, f, k and l). P. infestans was
observed to form haustoria (Additional file 14) and

occasionally sporulate (between 0 and 8.9% of leaves;
Additional file 15, Fig. 5e) during infection of cyp79b2/
b3 tissue. We quantified the relative amount of P. infes-
tans biomass on each mutant compared to Col-0 using
qRT-PCR. In agreement with microscopy, P. infestans
biomass was significantly higher on cyp79b2/b3 than
Col-0 or the other mutants (P < 0.05, Fig. 6a, Additional

Fig. 4 Albugo infection changes the proportions of camalexin and indolic glucosinolates but does not eliminate them. a and b Albugo infection changes
expression of selected genes in the tryptophan-derived metabolite pathway upon P. infestans infection. Open circles and bars denote the mean± SE of target
gene expression (log2 transformed normalized relative quantities) in water-sprayed or AlNc14-infected tissue after water or P. infestans (100 μL of 1.25 × 105

spores per mL) inoculation. a 10 days post inoculation (dpi) with water or AlNc14, 6 hours post inoculation (hpi) with water or P. infestans. b 12 dpi with water
or AlNc14, 48 hpi with water or P. infestans. Data are three independent biological replicates with two technical replicates each. Closed, black circles denote
individual data points. Different letters indicate significant differences (P< 0.05) (Two-way ANOVA with Tukey’s honest significance difference). c Albugo and P.
infestans infection triggers camalexin accumulation. High-performance liquid chromatography (HPLC) analysis of water-sprayed or AlNc14-infected Col-0 tissue
(12 dpi), 48 hours post water or P. infestans inoculation (100 μL of 2.75 × 105 spores per mL). Open circles and bars denote the mean camalexin content per
mg fresh weight ± SE of three independent biological replicates with six technical replicates each. Closed, black circles denote individual data points. Asterisks
indicate significant differences from mock-treated plants (12 dpi water, 48 hpi water). Generalized linear model (GLM) with *P< 0.001. d Albugo infection
decreases I3M levels but does not affect 4MO-I3M levels. HPLC analysis of mock or AlNc14-infected Col-0 tissue (12 dpi), 20 hpi mock or P. infestans (100 μL
of 3 × 105 spores per mL). Open circles and bars denote the mean indolic glucosinolate content per g of fresh weight ± SE of five independent biological
replicates with six technical replicates each. Closed, black circles denote individual data points. GLM with different letters indicating significant
differences (P< 0.001)
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file 16). We also tested the susceptibility to P. infestans
of an Arabidopsis line that overproduces brassinosteroid
and was reported to have a similar I3M and 4MO-I3M
profile to Albugo-infected plants (35S:DWF4 (DWARF4)
[89]). 35S:DWF4 was not compromised in NHR to P.
infestans (Additional files 16). Surprisingly, P. infestans
grew less well on 35S:DWF4 plants infected with AlNc14
than on Col-0 plants infected with AlNc14 (Additional
file 13 and 16).
Having identified cyp79b2/b3 as compromised in NHR to

P. infestans we then investigated whether cyp79b2/b3 acts
in the same pathway as Albugo in Arabidopsis NHR to P.
infestans. We infected water- and AlNc14-sprayed Col-0
and cyp79b2/b3 Arabidopsis with P. infestans and quanti-
fied P. infestans biomass with qRT-PCR. Albugo-infected
Col-0 and Albugo-infected cyp79b2/b3 had the same degree
of P. infestans colonization, which was significantly higher

than water-sprayed cyp79b2/b3, which in turn was signifi-
cantly higher than water-sprayed Col-0 (pre-treatment: F(1,
30) = 270.1, P < 0.001, genotype: F(1, 30) = 18.36, P < 0.001,
interaction: F(1, 30) = 5.347, P = 0.028; two-way ANOVA
with Tukey’s HSD) (Fig. 6b, Additional file 17). Albugo-in-
fected Col-0 and Albugo-infected cyp79b2/b3 were more
susceptible to P. infestans than water-sprayed cyp79b2/b3,
suggesting that deficiency in tryptophan-derived metabo-
lites does not solely explain Albugo-immunosuppression.
To further investigate the role of glucosinolates in P. infes-

tans NHR we tested whether aliphatic glucosinolates, which
are not derived from tryptophan, play a role. We infected
the myb28/29 double mutant, which does not accumulate
aliphatic glucosinolates [90], with P. infestans. myb28/29 did
not allow colonization by P. infestans (Additional file 18).
We also tested thioglucoside glucohydrolase (tgg)1/tgg2, a
mutant in two myrosinases expressed in aerial tissue [91]. P.

Fig. 5 P. infestans successfully colonizes cyp79b2/b3. P. infestans colonization of mutants in the tryptophan-derived metabolite pathway. a–c, g–i
Leaves were inoculated with 100 μL of 1 × 105 spores per mL P. infestans 88069td and photographed at 3 dpi. Scale bar: 5 mm. Leaves from three
independent experiments are shown. d–f, j–l Adaxial surface of the leaves was examined using fluorescence microscopy at 3 dpi. Scale bar: 100
μm. Three independent experiments were conducted, microscopy from one of the experiments is shown
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infestans did not colonize tgg1/tgg2 (Additional file 18). We
therefore conclude that aliphatic glucosinolates play a min-
imal role in P. infestans NHR. In summary, Albugo-suppres-
sion of P. infestans NHR involves tryptophan-derived
secondary metabolites. However, given the increase in P.
infestans colonization between water-sprayed and Albugo-
infected cyp79b2/b3, we conclude that additional changes
are imposed by Albugo infection, which promotes P. infes-
tans susceptibility.

Albugo-induced camalexin is biologically unavailable to
Botrytis cinerea
Albugo-infected plants accumulated camalexin (Fig. 4c),
which is toxic to necrotrophic fungi including Botrytis

cinerea [51, 92, 93]. We therefore tested whether Albugo-in-
fected plants had altered susceptibility to B. cinerea by meas-
uring the growth of B. cinerea wild type strain B05.10 and
mutant ΔBcatrB4 (lacking a detoxifying ABC exporter) on
water-sprayed and Albugo-infected plants. ΔBcatrB4 was
more susceptible to camalexin and had reduced virulence on
Col-0 but not on the camalexin-deficient mutant pad3 [51].

Fig. 6 P. infestans shows increased biomass on cyp79b2/b3 compared to
Col-0 in the absence of Albugo, but not in its presence. a P. infestans
biomass on mutants in the tryptophan-derived metabolite pathway. Leaves
were inoculated with 100 μL of 1 × 105 spores per mL P. infestans 88069td.
DNA was extracted at 3 dpi and the proportion of P. infestans DNA to plant
DNA determined using qRT-PCR. Open circles and bars denote the mean
± SE of P. infestans DNA (log2 transformed normalized relative quantities
(NRQs)) in Arabidopsis tissue from four independent biological replicates
with three technical replicates per biological replicate. Closed, black circles
denote the individual data points. Different letters indicate significant
differences (P< 0.01) (Kruskal–Wallis rank sum test with Dunn multiple
comparisons test and Bonferroni correction). b Higher P. infestans biomass
on AlNc14-infected Arabidopsis than on cyp79b2/b3. Leaves were
inoculated with 100 μL of 1 × 105 spores per mL P. infestans 88069td. DNA
was extracted at 3 dpi and the proportion of P. infestans DNA to plant
DNA determined using qRT-PCR. Open circles and bars denote the mean
± SE of P. infestans DNA (log2 transformed NRQs) in Arabidopsis tissue from
three independent biological replicates with three technical replicates per
biological replicate. Closed, black circles denote the individual data points.
Different letters indicate significant differences (P<0.01) (Two-way ANOVA
with Tukey’s honest significance difference test)

a

c

b

Fig. 7 Albugo-induced camalexin is biologically unavailable to Botrytis
cinerea. a B. cinerea gives increased disease symptoms on Albugo-infected
tissue. Leaves of water-sprayed or AlNc14-infected Col-0 Arabidopsis (11
dpi) were inoculated with 2.5 × 105 spores per mL of B. cinerea B05.10 or
camalexin sensitive ΔBcatrB4 mutant, and lesion diameters were measured
at 2 dpi. Bars represent mean lesion diameter ± SE of three independent
biological replicates with between 7 and 11 technical replicates per
biological replicate (n = 28). Different letters indicate significant differences
between treatments at P<0.01 (Two-way ANOVA with Tukey’s honest
significance difference). b Camalexin accumulates in plants infected by
Albugo and B. cinerea, either alone or together. High-performance liquid
chromatography (HPLC) analysis of mock or AlNc14-infected Col-0 tissue
(12 dpi), 26 hours post mock or B. cinerea B05.10 inoculation by spraying
(2.5 × 105 spores per mL). Open circles and bars denote mean camalexin
content per mg of fresh weight ± SE of three independent biological
replicates with six technical replicates per biological replicate. Closed, black
circles denote individual data points. Asterisks indicate significant
differences from mock treated plants (12 days post water spraying, 26
hours post inoculation) at P< 0.001 (Generalized linear model (GLM)). c B.
cinerea detects less available camalexin in Albugo-infected tissue. Leaves of
mock or AlNc14-infected Arabidopsis (11 dpi) were drop inoculated with
2.5 × 105 spores per mL of B. cinerea strains OliCGUS (constitutive GUS
expression) or BcatBp803GUS-7 (camalexin inducible GUS expression).
Leaves were stained with X-gluc at 2 dpi and the percentage of infection
sites showing staining determined. Bars represent mean± SE three
independent biological replicates with between two and four technical
replicates per biological replicate (bars left to right n = 5, 8, 7, 10, 5, 8).
Different letters indicate significant differences P<0.05 (Three-way ANOVA,
Tukey’s honest significant difference test)
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We found that B. cinerea B05.10 infection of Albugo-infected
plants resulted in lesions almost twice as big as on water-
sprayed plants (Fig. 7a). The camalexin sensitive ΔBcatrB4
mutant grew significantly less well on water-sprayed plants
but produced lesions of a similar size to wild type B05.10
on Albugo-infected plants (Pre-treatment: F(1, 104) = 305.9, P
< 0.001, strain: F(1, 104) = 56.31, P < 0.001, interaction: F(1,
104) = 8.713, P < 0.01; two-way ANOVA with Tukey’s HSD)
(Fig. 7a, Additional file 19). Next, we quantified the accu-
mulation of camalexin in response to B. cinerea B05.10 and
AlNc14. Albugo treatment (z =–3.409, P < 0.001, GLM) and
B. cinerea inoculation (z = 9.784, P < 0.001) led to significant
accumulation of camalexin, although the interaction be-
tween the two treatments was not significant (z = –0.025, P
= 0.980) (Fig. 7b, Additional file 19). Therefore, the in-
creased susceptibility of Albugo-infected plants to B. cinerea
is not due to an overall lack of camalexin accumulation. On
the contrary, it suggests that, after Albugo infection, cama-
lexin levels no longer restrict B. cinerea proliferation, as le-
sion sizes are similar in the presence or absence of the
detoxifying transporter BcatrB. To assess whether B. cinerea
encounters the camalexin present in the plant tissue we
used a BcatrB promoter–GUS fusion strain of B. cinerea
(BcatrBp803GUS-7). BcatrBp803GUS-7 has low basal ex-
pression and is inducible by camalexin [51, 54]. As a control
for GUS staining we used the OliCpromoter-GUS fusion B.
cinerea strain OliCGUS, which shows constitutive expres-
sion of the reporter [53, 54]. We also used pad3 to assess
the background expression of BcatrBp803GUS-7 in the ab-
sence of camalexin. The two B. cinerea GUS-strains showed
similar staining on water-sprayed Col-0 plants but on
Albugo-infected Col-0 plants the GUS expression in
BcatrBp803GUS-7 was reduced significantly to levels com-
parable to when the same strain infected pad3 plants (P =
0.002) (Pre-treatment: F(1, 37) = 13.449, P < 0.001, strain: F(1,
37) = 19.39, P < 0.001, genotype: F(1, 37) = 26.559, P < 0.00,
interaction between strain and genotype: F(1, 37) = 13.449, P
< 0.01; three-way ANOVA with Tukey’s HSD) (Fig. 7c,
Additional file 19 and 20). The reduction in GUS produc-
tion by BcatrBp803GUS-7 on Albugo-infected plants was
confirmed by quantifying GUS enzymatic activity using
4-methylumbelliferyl-beta-D-glucuronide (Additional files
13 and 21). These results suggest that, in Albugo-infected
plants, B. cinerea is exposed to lower camalexin levels than
might be expected based on camalexin level measurements
in whole leaves.

SA regulated genes during Albugo infection
As depletion of tryptophan-derived secondary metabo-
lites did not fully mimic the susceptibility of Albugo-in-
fected plants to P. infestans we looked for additional
candidate pathways in the GO enrichment analysis of
the expression profiling. As previously noted, genes up-
regulated by both pathogens were enriched for GO

terms associated with SA signaling (Table 1). To investi-
gate this further, we visualized Arabidopsis genes differ-
entially regulated by the SA mimic BTH [66] in our
expression data (Fig. 8a, Additional file 22). The results
showed a mixture of responses by BTH-regulated genes
to Albugo infection, suggesting a subset of SA responsive
genes may be targeted by the pathogens. In particular, a
set of genes were less expressed during infection with ei-
ther pathogen compared to BTH treatment (top of the
figure). GO enrichment analysis of Arabidopsis genes
differentially expressed specifically by AlNc14 also re-
vealed SA biosynthesis and signaling to be down-
regulated (Additional file 23).

SA-regulated gene verification
To confirm the gene expression changes in Albugo-
MAGIC 107 interactions mirrored those in Albugo-Col-
0 interactions we conducted qRT-PCR on AlNc14-
infected Col-0 Arabidopsis using a set of genes often
used as SA markers (PR1, non-inducible immunity1-
interacting 1 (NIMIN1), WRKY54 and WRKY70 [36, 66,
94, 95]). These genes had different expression profiles
over the time course of our data, with PR1 being signifi-
cantly up-regulated at 4 dpi and not differentially
expressed at other time points, WRKY54 being signifi-
cantly down-regulated at 4, 6, and 8 dpi, NIMIN1 being
significantly down-regulated at 6 and 8 dpi, and
WRKY70 being significantly down-regulated at 8 dpi
(Additional file 22). Using qRT-PCR we found that, at 10
dpi AlNc14, WRKY54 was significantly down-regulated
(P < 0.001), while PR1 expression did not significantly
change (P = 0.395), and WRKY70 and NIMIN1 showed
non-significant trends of being down-regulated (P =
0.065 and P = 0.072, respectively) (Fig. 8b, Additional file
24). These data show similarities to the expression pro-
file data, and therefore suggest that interactions between
Albugo and MAGIC 107/Col-0 are likely to be similar.
Recent studies with Hpa have shown that the patho-

gen triggers PR1 expression in the surrounding plant tis-
sue while locally suppressing it in haustoriated cells [49,
50]. This cell-specific response is not captured in qRT-
PCR assays of whole leaves. We used PR1::GUS pro-
moter Arabidopsis line to explore whether AlNc14 sup-
presses PR1 expression. We combined magenta-GUS
staining with trypan blue staining to reveal both the re-
porter gene induction (purple) and the pathogen (dark
blue). In striking contrast to Hpa, AlNc14 does not trig-
ger high levels of PR1 expression in surrounding tissue
(Fig. 8c), suggesting suppression of immunity can be im-
posed systemically in non-haustoriated cells. We tested
whether AlNc14 infection could suppress PR1 induction
in response to BTH and SA. Significantly more GUS ex-
pression was seen in water-pre-treated plants after BTH
and SA treatment compared to AlNc14 pre-treated
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plants. The treatments that we compared were inocula-
tion (water or AlNc14: F(1, 74) = 21.65, P < 0.001), treat-
ment (mock, BTH or SA: F(1, 74) = 84.23, P < 0.001), and
interaction between inoculation and treatment (F(1, 74) =
45.72, P < 0.01; two-way ANOVA with Tukey’s HSD)
(Fig. 8c, Additional files 5 and 13). Thus, these data
show that AlNc14 can suppress the expression of some
of the Arabidopsis genes induced by SA.

SA signaling suppression is not sufficient for
susceptibility of Arabidopsis to P. infestans
We next explored whether the suppression of plant SA re-
sponses by AlNc14 occurred during the interaction with P.
infestans, which has been shown to induce PR1 expression
at 2–3 dpi in Arabidopsis [16]. To see if AlNc14 suppresses

P. infestans-induced PR1 expression, we infected AlNc14
and water-sprayed PR1::GUS leaves with P. infestans. We
did not observe the same decrease in magenta GUS staining
in the Albugo-inoculated leaves compared to the water-
sprayed leaves with P. infestans infection (Fig. 9a and b) that
was seen for SA and BTH treatments. To further investigate
potential suppression of SA responses to P. infestans in
AlNc14-infected plants, we conducted qRT-PCR on SA
marker genes PR1, WRKY54, and NIMIN1 in leaves of
AlNc14-infected or water-sprayed control plants that were
subsequently drop inoculated with water or P. infestans
(Fig. 9c, Additional file 25). PR1 expression did not vary
across the treatments (pre-treatment: F(1, 19) = 1.066, P=
0.315; inoculation: F(1, 19) = 1.075, P = 0.313; interaction: F(1,
19) = 2.428, P= 0.136; two-way ANOVA). WRKY54

Fig. 8 Albugo-infected leaves reveal reduced expression of salicylic acid (SA)-regulated genes. a Expression pattern of 671 benzo-(1,2,3)-thiadiazole-7-
carbothioic acid (BTH)-inducible genes reported by [66] after inoculation with AcNc2 and AlNc14 over an 8-day time course in MAGIC 107. The data are the
average of four experiments. The expression of the same genes during methyl jasmonate treatment [67, 68] are shown for comparison. The relative
expression (in log2 ratios) is colored red for induction and green for repression as illustrated in the color bar. b Altered SA-regulated gene expression in AlNc14
infected Arabidopsis Col-0. Open circles and bars denote the mean± SE of target gene expression (log2 transformed normalized relative quantities) in AlNc14
infected tissue from three independent biological replicates with two technical replicates per biological replicate. Closed, black circles denote the individual
data points. Different letters indicate significant differences (P<0.05) in gene expression (Welch Two Sample t-test (PR1, P= 0.395,WRKY54, P< 0.001, NIMIN1,
P= 0.072), Wilcoxon rank sum test (WRKY70, P= 0.065) followed by Bonferroni correction). c AlNc14 suppresses BTH and SA induction of PR1. To visualize
reporter gene induction and pathogen growth in the same leaf, leaves were collected and stained with magenta-GUS to reveal GUS activity, followed by
trypan blue to reveal pathogen growth. Leaves of Col-0 pro(PR1)::GUS were previously inoculated with water or AlNc14 (13 dpi) and infiltrated with DMSO
(mock), BTH (200 μM) or SA (200 μM) for 8 hours, then stained. Scale: 5 mm. Leaf images are from the same biological replicate and are representative of the
average percentage of staining for each treatment across three independent biological replicates.
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expression was significantly decreased in AlNc14-
infected leaves compared to water-sprayed control
leaves (pre-treatment: F(1, 19) = 71.520, P < 0.001; in-
oculation: F(1, 19) = 0.026, P = 0.8738; interaction: F(1,
19) = 4.796, P = 0.041; two-way ANOVA with Tukey’s
HSD). NIMIN1 expression was significantly decreased
in AlNc14-infected leaves compared to P. infestans in-
oculated water-sprayed control leaves (pre-treatment:
F(1, 19) = 22.096, P < 0.001; inoculation: F(1, 19) = 0.274,
P = 0.607; interaction: F(1, 19) = 5.327, P = 0.032; two-
way ANOVA with Tukey’s HSD). In summary, we
demonstrated that AlNc14 suppresses P. infestans-
triggered NIMIN1 expression and confirmed our

previous finding that AlNc14 suppresses WRKY54
expression.
Isochorismate synthase 1 (ics1) (a.k.a. SA-induction de-

ficient 2 (sid2)) is required for SA biosynthesis, and ics1
mutants accumulate very low levels of SA upon pathogen
challenge [96]. Since Albugo infection suppresses some of
the plant SA responses, we tested whether sid2 was suscep-
tible to P. infestans. Observations of infected sid2 leaves
showed small amounts of cell death in response to P. infes-
tans infection (Fig. 9e). Microscopy revealed a greater degree
of tissue colonization in sid2 than Col-0 (Fig. 9g and h), al-
though no P. infestans spore formation was observed. A
similar phenotype of cell death and increased P. infestans

Fig. 9 Albugo suppression of Arabidopsis salicylic acid (SA) responses is not sufficient for full susceptibility to P. infestans. a and b PR1::GUS
staining upon P. infestans infection. Leaves were collected and stained with magenta-GUS to reveal GUS activity, followed by trypan blue to reveal
pathogen growth. PR1::GUS plants were pre-treated with water or AlNc14 and subsequently inoculated with 100 μL of 1.25 × 105 spores per mL P.
infestans 88069td, collected at 2 dpi and stained. Scale: 5 mm. Representative leaves shown are from each of two independent experiments. c
AlNc14 infection prevents P. infestans-induced upregulation of SA marker genes in Col-0. Open circles and bars denote the mean ± SE of target
gene expression (log2 normalized relative quantities (NRQs)) at 48 hours post treatment (100 μL water or P. infestans (1.25 × 105 spores per mL))
of three independent biological replicates with two technical replicates each. Closed, black circles denote the individual data points. Different letters indicate
significant differences (P< 0.05; two-way ANOVA with Tukey’s HSD test). d–i P. infestans partially colonizes sid2 and NahG Arabidopsis. Leaves were inoculated
with 100 μL of 1 × 105 spores per mL P. infestans 88069td, photographed (d–f) and the adaxial surface examined using fluorescence microscopy (g–i) at 3
dpi. Red fluorescence denotes P. infestans growth, Scale bars: 5 mm for photographs, 1 mm for microscopy. Results shown are representative of three
independent experiments. j P. infestans growth on sid2 is not significantly larger than Col-0 Arabidopsis. Leaves were inoculated as in d, e, g, h. DNA was
extracted at 3 dpi and the proportion of P. infestans DNA to plant DNA determined using qRT-PCR. Open circles and bars denote the mean± SE of P. infestans
DNA (log2 transformed NRQs) in Arabidopsis tissue from four independent biological replicates with three technical replicates each. Closed, black circles
denote the individual data points. The two genotypes were not significantly different (P= 0.012) (Wilcoxon rank sum test followed by Bonferroni correction)
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colonization without spore formation was seen in the NahG
Arabidopsis line (Fig. 9f and i) which expresses salicylate hy-
droxylase and degrades SA into catechol [97]. To quantify
the amount of P. infestans biomass on sid2 compared to
Col-0 we estimated relative levels of P. infestans DNA using
qRT-PCR (Fig. 9j, Additional file 25). Although a trend of in-
creased P. infestans colonization of sid2 was seen (P =
0.012), this was not statistically significant after Bonferroni
correction. Taken together, these data suggest that Albugo
can suppress a subset of SA responses in Arabidopsis, but
the lack of SA responsiveness is unlikely to significantly
contribute to the susceptibility of Albugo-infected Arabi-
dopsis to P. infestans.

Discussion
We investigated mechanisms of immuno-suppression by
Albugo spp., in particular its remarkable capacity to ren-
der Arabidopsis susceptible to the potato late blight
pathogen P. infestans [12]. Our data reveal alterations in
tryptophan-derived secondary metabolite biosynthesis
and availability, a role for tryptophan-derived secondary
metabolites in Arabidopsis NHR to P. infestans, and sup-
pression of host defense triggered by SA in Albugo-in-
fected tissue.
Confirming that A. candida suppresses Arabidopsis NHR

to P. infestans allowed us to use two Albugo species to in-
vestigate shared plant genes altered by Albugo infection
through expression profiling. We saw a large number of dif-
ferentially expressed plant genes between uninfected and
infected tissue, which is in contrast to a recent study of the
apoplastic proteome of uninfected and A. laibachii-infected
tissue that found no significant differences [98]. Surpris-
ingly, the only enriched GO terms in genes downregulated
by both pathogens were photosynthesis, commonly down-
regulated in plants under biotic stress [99], and RNA elong-
ation. The enriched GO terms in genes upregulated by
both pathogens were generally related to plant defense re-
sponses (SA and JA), again surprising given the immuno-
compromised nature of the host. Although cells colonized
by haustoria may be completely immunosuppressed, adja-
cent cells may be the source of defense activation revealed
in expression profiling, as seen with Hpa infection [49].
However, we cannot rule out the possibility that Albugo
may cause changes in immunity at the protein level in
addition to the level of the transcriptome. Changes in sec-
ondary metabolites common among Albugo hosts but ab-
sent from P. infestans hosts can be regarded as plausible
candidates for a role in P. infestans NHR.
To investigate how Albugo might alter tryptophan-

derived secondary metabolites, we measured gene expres-
sion and metabolite accumulation in response to P. infes-
tans in the presence and absence of Albugo. Arabidopsis
responds to P. infestans inoculation by upregulating the
genes involved in camalexin biosynthesis, leading to

camalexin accumulation. The main changes in the indolic
glucosinolate pathway were an upregulation of SOT16 at
early time points and upregulation of CYP81F2 at early and
late time points, with no change in the accumulation of
I3M and 4MO-I3M. Accumulation of camalexin and indo-
lic glucosinolates in Arabidopsis in response to non-host
pathogens is not uniform. Challenge with biotrophic Bgh
leads to no change in camalexin, a decrease in I3M and no
change in 4MO-I3M [18], whereas challenge with the
necrotrophic fungus Plectosphaerella cucumerina and an
incompatible strain of P. brassicae leads to an increase in
camalexin, a decrease in I3M, and an increase in 4MO-I3M
[32, 100]. Responses to P. infestans in Albugo-infected Ara-
bidopsis were similar to those in plants without Albugo,
with the main difference being no significant SOT16 ex-
pression and a significant reduction in I3M. The inability to
separate I3M from other indole-3-acetaldoxime-derived in-
dolic compounds makes it difficult to test with Arabidopsis
mutants whether a reduction in I3M but not camalexin
contributes to P. infestans NHR. CYP83B1 mutants accu-
mulate increased indole-3-acetic acid, resulting in pleio-
tropic effects (e.g., [101, 102]), whereas SOT16 mutants are
yet to be characterized but may also have a similar pheno-
type. 35S:DWF4 has reduced I3M compared to Col-0 and
similar amounts of 4MO-I3M [89], but we found that this
plant line was not susceptible to P. infestans in the absence
of Albugo and was less susceptible than Col-0 in the pres-
ence of Albugo. While the transcriptional responses to P.
infestans were similar in uninfected and Albugo-infected
tissue, the response per amount of P. infestans was much
lower in the Albugo-infected tissue due to increased P.
infestans colonization in this tissue.
cyp79b2/b3 is deficient in tryptophan-derived second-

ary metabolites including indolic glucosinolates and
camalexin [103, 104] and is the first Arabidopsis mutant,
to our knowledge, on which P. infestans can sporulate, if
only occasionally. As the pen2-1 pad3 mutant, deficient
in camalexin and hydrolysis of 4MO-I3M, did not show
the same level of P. infestans colonization as cyp79b2/
b3, we conclude that tryptophan-derived antimicrobial
metabolites, in addition to camalexin and indolic gluco-
sinolates, play a role in P. infestans NHR in Arabidopsis.
Our data agree with recent reports [32, 100, 105] of
uncharacterized tryptophan-derived secondary metabo-
lites that play an important role in immunity to non-
adapted filamentous pathogens. The recent discovery
that Arabidopsis synthesizes 4-hydroxyindole-3-carbonyl
nitrile from tryptophan, and that mutants in its biosyn-
thesis are more susceptible to the hemibiotroph bacterial
pathogen Pseudomonas syringae [106], emphasizes that
other molecules contributing to plant defense may re-
main to be discovered.
Albugo-infected cyp79b2/b3 mutants support more P.

infestans growth than uninfected cyp79b2/b3, suggesting
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that either Albugo-infection has a stronger phenotype
than the cyp79b2/b3 mutant, or mechanisms in addition
to indole glucosinolates, camalexin, and tryptophan-
derived metabolites contribute to P. infestans resistance,
and that these mechanisms are also suppressed by
Albugo infection. The Albugo-infected mutant was not
more susceptible than infected Col-0, suggesting that
indole-derived metabolites are less effective at suppress-
ing microbial growth in Albugo-infected plant tissue. If
Albugo suppression of NHR was working separately to
tryptophan-derived secondary metabolites, then we
would expect that Albugo-infected plants of cyp79b2/b3
would show additional enhanced susceptibility compared
to Albugo-infected Col-0. This suggests that there is
interplay between NHR and tryptophan-derived second-
ary metabolites, although conceivably the additive
phenotype was overlooked due to technical limitations.
In addition to tryptophan-derived secondary metabolites,
we also identified a very minor role for SATI in Arabi-
dopsis NHR to P. infestans, but it is possible that other
aspects of plant immunity contribute too.
Albugo-infected plants accumulate camalexin in the ab-

sence and presence of B. cinerea. However, both wild type B.
cinerea and the camalexin-sensitive mutant ΔBcatrB4 pro-
duce bigger lesions on Albugo-infected plants, while the
BcatrBp803GUS-7 B. cinerea strain responds as if the
amount of camalexin in Albugo-infected plants is the same
as in a camalexin-deficient pad3 mutant. We therefore
conclude that the camalexin must be biologically unavailable
to B. cinerea, and also possibly to P. infestans. How
camalexin is made biologically unavailable remains to be de-
termined. Conceivably, Albugo infection leads to the
compartmentalization of camalexin away from B. cinerea
and other pathogens potentially accumulated within the
Albugo cells. Alternatively, camalexin may be modified by
Albugo in some way to make it biologically inert, though no
such modification is visible in our metabolomics analysis. A
recent study demonstrated that metabolites inhibiting the
germination of P. infestans spores required secreting to the
leaf surface to be effective [107]; therefore, it is also possible
that Albugo alters metabolite transport, and hence spatial
distribution. Whether altering tryptophan-derived metabolite
biosynthesis and availability provides an advantage to Albugo,
and is a direct result of Albugo effectors, remains unresolved.
Some pathogens, such as the maize smut fungus Ustilago
maydis, use effectors to manipulate plant metabolism to
their advantage [108, 109]. Other pathogens have been
shown to detoxify plant phytoalexins by active transport [51]
or enzymatic modification [33–35]. Tryptophan-derived sec-
ondary metabolites are unlikely to be essential for Albugo in-
fection of Arabidopsis, as Albugo can infect cyp79b2/b3 and
reduce NHR to P. infestans to the same extent as Col-0.
We also investigated SA-responsive gene expression in

Albugo-infected tissue. We conducted qRT-PCR to

investigate the expression of four SA marker genes identi-
fied in the expression profiling. The qRT-PCR largely
matched the expression profiling, withWRKY54 being sig-
nificantly down-regulated, WRKY70 and NIMIN1 showing
less expression, and PR1 showing no change. We also used
PR1::GUS reporter lines and SA/BTH to show that Albugo
suppresses PR1::GUS transcription in the presence of SA/
BTH. The suppression of SATI by Albugo provides a po-
tential explanation for the observation that A. laibachii
colonization is not significantly increased on sid2 com-
pared with Col-0 [98], and may also partly explain the im-
pairment of host resistance against other pathogens [10,
11]. We have proposed that defense suppression is not
only necessary for the pathogen’s own colonization, but
also may allow different isolates to co-exist on a common
host in order to facilitate hybridization between races that
would not otherwise colonize the same host [10].
P. infestans induces expression of PR1::GUS in Arabi-

dopsis [16]. Albugo-infected Arabidopsis does not show the
clear suppression of PR1::GUS expression upon P. infestans
challenge that was seen with BTH and SA. SA marker gene
expression was not significantly induced in our qRT-PCR
experiments with P. infestans. This may be because expres-
sion is localized to the site of inoculation, therefore being
diluted at the whole leaf level, or the level of expression in-
duced by P. infestans is relatively small. Alternatively, a
more frequent time course experiment could be conducted
to identify whether these genes peak in expression. NIMIN1
was significantly down-regulated upon P. infestans chal-
lenge in Albugo-infected tissue compared to uninfected tis-
sue, thus providing evidence that SATI to P. infestans is
compromised in the presence of Albugo. Arabidopsis mu-
tants in SATI are more susceptible to P. capsici [31]. A
slight decrease in resistance, e.g., trailing necrosis, was also
observed upon infection of NahG and nonexpresser of pr
genes 1 (npr1) plants after inoculation with an incompatible
strain of P. brassicae [110]. The SA biosynthesis mutant
sid2 supported more P. infestans colonization compared to
Col-0. Our results differ from a recent report of P. infestans
infection of sid2, which did not identify any increase in P.
infestans colonization or any increased cell death compared
to Col-0 [25]. This may be due to a difference in the P.
infestans strains used or the conditions for the experiments.
We did not observe P. infestans spore formation on sid2
Arabidopsis, unlike Albugo-infected tissue and cyp79b2/b3.
This suggests that the contribution of SATI to P. infestans
NHR is likely to be minor.

Conclusions
Previously, Albugo suppression of plant immunity had been
described but the mechanisms involved had not been inves-
tigated. Now, the identification of Albugo-induced alterations
in tryptophan-derived secondary metabolite biosynthesis
and availability and suppression of SATI will inform more
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focused studies on potential Albugo effectors, as for other
pathogens and pests [111, 112], by providing phenotypes to
screen for. Identification of proteins that are recognized by
plants, leading to resistance against Albugo will also help
identify likely effectors. In the future, it may be possible to
take advantage of the apparent conservation of function of
secondary metabolites in plant immunity [27] by using
tryptophan-derived secondary metabolites and other phylo-
genetically limited metabolites in crop protection strategies
against P. infestans and other pathogens or pests, either
through direct application of the metabolites or by transge-
nically transferring the metabolic pathways into new species.
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Additional file 1: Plant lines used in the study. A list of the Arabidopsis
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mutants and transgenic lines are in the Col-0 background except pen2-1
and Col-gl RPW8.1 RPW8.2, which are in the glabrous1 background.
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profiling through randomly sheared cDNA tag sequencing (EXPRSS) data.
Lists of the Arabidopsis genes that were differentially expressed in AlNc2
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Arabidopsis genes differentially expressed during infection with AlNc2
and/or AlNc14 over a time course. (XLSX 104 kb)

Additional file 4: Primers used in the study. Details of the primers used
to conduct qRT-PCR in the study. (DOCX 25 kb)

Additional file 5: AlNc14 suppresses benzo-(1,2,3)-thiadiazole-7-
carbothioic acid (BTH) and salicylic acid (SA) induction of PR1. To visualize
reporter gene induction and pathogen growth in the same leaf, leaves
were collected and stained with magenta-GUS to reveal GUS activity,
followed by trypan blue to reveal pathogen growth. Leaves of Col-0
pro(PR1)::GUS were previously inoculated with water or AlNc14 (13 dpi)
and infiltrated with DMSO (mock), BTH (200 μM) or SA (200 μM) for 8
hours, then stained and examined with a microscope. The percentage of
each leaf stained with GUS was determined using ImageJ. (A) Open
circles represent mean ± SE of the raw data (percentage of leaf stained)
of three independent biological replicates with between two and seven
technical replicates per biological replicate (bars left to right n = 10, 12, 13,
15, 14 and 16). (B) Open circles represent mean ± SE of the transformed data
(arcsine square root transformation followed by log10 transformation) of
three independent biological replicates with between two and seven
technical replicates per biological replicate (bars left to right n = 10, 12, 13,
15, 14 and 16). Different letters indicate significant differences P < 0.001
(Two-way ANOVA, Tukey’s HSD test). (PDF 33 kb)

Additional file 6: Hyaloperonospora arabidopsidis (Hpa) Waco9 infection
does not allow P. infestans colonization of Arabidopsis. (A) Water sprayed,
(B) AlNc14 sprayed (12 dpi) and (C) Hpa sprayed leaves (6 dpi) were drop
inoculated with 100 μL of 3.25 to 5 × 104 spores per mL P. infestans
88069td. Fluorescence microscopy of the adaxial surface of the leaf taken
at 3 dpi P. infestans. Scale bar: 100 μm. Results shown are representative
of two independent experiments. (TIF 3605 kb)

Additional file 7: Gene ontology (GO) terms within biological processes
that are significantly enriched amongst genes up-regulated in the expression
profiling. Results of the GO enrichment analysis for up-regulated genes.
(XLSX 328 kb)

Additional file 8: Gene ontology (GO) terms within biological processes
that are significantly enriched amongst genes down-regulated in the
expression profiling. Results of the GO enrichment analysis for down-
regulated genes. (XLSX 157 kb)

Additional file 9: Two-way ANOVA results from qRT-PCR of tryptophan-
derived secondary metabolite genes at 6 hours post P. infestans inoculation.
ANOVA table. (DOCX 13 kb)

Additional file 10: Data analyzed in Fig. 4. Spreadsheets showing the
data analyzed in Fig. 4a–d. (XLSX 30 kb)

Additional file 11: Two-way ANOVA results from qRT-PCR of tryptophan-
derived secondary metabolite genes at 48 hours post P. infestans inoculation.
ANOVA table. (DOCX 13 kb)

Additional file 12: Indolic glucosinolate measurements in pen2-1 plants
in response to pre-treatment with water or Albugo and subsequent
inoculation with water or P. infestans. HPLC analysis of mock or Albugo
infected pen2-1 tissue (12 dpi), 20 hours post mock or P. infestans
treatment (100 μL of 3 × 105 spores per mL). Open circles and bars
denote mean indolic glucosinolate content ± SE of three independent
biological replicates with six technical replicate per biological replicate.
Closed, black circles denote the individual data points. Different letters
indicate significant different values within each glucosinolate measured
(P < 0.05) (Two-way ANOVA, Tukey’s HSD test). (PDF 175 kb)

Additional file 13: Data analyzed in Additional files. Spreadsheets
showing the data analyzed in Additional files 11, 16 and 20. (XLSX 27 kb)

Additional file 14: P. infestans forms haustoria in cyp79b2/b3 plants. Leaves
of Nicotiana benthamiana (A and B) and Arabidopsis cyp79b2/b3 (C and D)
were drop inoculated with 50 μL of 1 × 105 spores per mL P. infestans 88069td
and examined using confocal microscopy at 2 dpi (A and B) and 3 dpi (C and
D). A and C show colonization of the leaf by P. infestans. Scale bar = 100 μM. B
and D show formation of infection structures by P. infestans, with haustoria
denoted by asterisks. Scale bar = 10 μM. (PDF 485 kb)

Additional file 15: P. infestans sporulation on cyp79b2/b3 plants. Leaves
of Col-0 and cyp79b2/b3 were inoculated with 100 μL of 2.5 × 105 spores
per mL P. infestans NL12226. Photographs were taken of the abaxial
surface of Col-0 (A) and cyp79b2/b3 (B) leaves at 3 dpi. Scale bars: 5 mm.
(C and D) Leaves were examined for sporulation between 3 and 5 dpi by
placing water droplets on the leaves and examining them for the presence
of spores using a light microscope (C). Frequency of sporulating leaves in
three independent experiments were recorded (D) (Replicate 1: Col-0,
n = 44, sporulating = 0; cyp79b2/b3, n = 56, sporulating = 5. Replicate 2: Col-0,
n = 42, sporulating = 0; cyp79b2/b3, n = 62, sporulating = 4. Replicate 3: Col-0,
n = 22, sporulating = 0; cyp79b2/b3, n = 71, sporulating = 0). (TIF 9710 kb)

Additional file 16: Albugo-infected 35S:DWF4 is less susceptible to P.
infestans than Albugo-infected Col-0. (A–D) Fluorescence microscopy of the
adaxial surface of water-sprayed Col-0 (A), water-sprayed 35S:DWF4 (B), Albugo-
infected Col-0 (C) and Albugo-infected 35S:DWF4 (D) leaves. Leaves were
sprayed with water or Albugo and subsequently inoculated (12 days post
spraying) with 100 μL of 1 × 105 spores per mL P. infestans 88069td. Leaves
were examined using fluorescence microscopy at 3 dpi. Red fluorescence
denotes P.i. growth. Scale bars: 200 μm. Results shown are representative of
three independent experiments. (E and F) Photographs of Albugo-infected Col-0
(E) and Albugo-infected 35S:DWF4 (F) leaves, infected as described above, were
taken at 3 dpi. Scale bars: 5 mm. (G) Quantification of P. infestans biomass on
Albugo infected Col-0 and 35S:DWF4 by qRT-PCR. Leaves were inoculated with
100 μL of 1 × 105 spores per mL P. infestans 88069td. DNA was extracted at 3
dpi and the proportion of P. infestans DNA to plant DNA determined using qRT-
PCR. Open circles and bars denote means ± SE of three independent biological
replicates with three technical replicates per biological replicate. Closed, black
circles denote the individual data points. Different letters indicate significant
differences (Welch two sample t-test) (P < 0.001). (TIF 3282 kb)

Additional file 17: Data analyzed in Fig. 6. Spreadsheets showing the
data analyzed in Fig. 6a and b. (XLSX 17 kb)

Additional file 18: myb28/29 and tgg1/tgg2 are not susceptible to P.
infestans. (A–C) Leaves of Col-0, myb28/29 and cyp79b2/b3 (positive
control) were inoculated with 100 μL of at least 1 × 105 spores per mL P.
infestans 88069td. (D–F) Leaves of Col-0, tgg1/2 and AlNc14 sprayed Col-0
(positive control) were inoculated with 100 μL of at least 1 × 105 spores
per mL P. infestans 88069td. The adaxial surface of the leaves was
examined using fluorescence microscopy at 3 dpi. Scale bars: 100 μm.
Red fluorescence denotes P.i. growth. Results shown are representative of
two (A–C) and three (D–F) independent experiments. (TIF 5249 kb)
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Additional file 19: Data analyzed in Fig. 7. Spreadsheets showing the
data analyzed in Fig. 7a–c. (XLSX 17 kb)

Additional file 20: Example of staining of GUS-expressing B. cinerea
strains on water and Albugo-sprayed Col-0 leaves. Photograph of three
representative leaves. Top row are AlNc14-infected leaves and the
bottom row are water-sprayed leaves. The left hand side of each leaf
received three droplets of OliCGUS B. cinerea and the right hand side
received three drops of BcatrBp803GUS-7 B. cinerea. Leaves were
removed from the plant and stained at 2 dpi B. cinerea. (TIF 6351 kb)

Additional file 21: B. cinerea detects less available camalexin in Albugo-
infected tissue. Leaves underwent protein extraction and GUS enzyme
activity was determined using a fluorescence-based assay. Results were
normalized to B. cinerea weight proportion of each sample using qRT-
PCR on Botrytis and Arabidopsis genomic DNA. Open circles and bar dots
represent the mean ± SE of three independent biological replicates with
three or four technical replicates per biological replicate. Closed, black
circles denote the individual data points. Asterisk indicates significant
differences measured at P < 0.05 (Wilcoxon rank sum test within B. cinerea
strain followed by Bonferroni correction), n.s. = not significant.
(PDF 176 kb)

Additional file 22: Benzo-(1,2,3)-thiadiazole-7-carbothioic acid (BTH)
regulated genes during Albugo infection time course. Spreadsheet
showing the expression of Arabidopsis BTH regulated genes during
infection with Albugo. (XLSX 346 kb)

Additional file 23: List of selected, lower level gene ontology (GO)
terms enriched in genes differentially expressed during AlNc14 infection
but not AcNc2 infection. Table showing the GO terms enriched in
Arabidopsis genes differentially expressed during AlNc14 infection only.
(DOCX 14 kb)

Additional file 24: Data analyzed in Fig. 8. Spreadsheets showing the
data analyzed in Fig. 8b. (XLSX 14 kb)

Additional file 25: Data analyzed in Fig. 9. Spreadsheets showing the
data analyzed in Fig. 9c and j. (XLSX 16 kb)
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