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Abstract

Central to plant survival is the ability to activate immunity upon pathogen

perception. Plants deploy immune receptors to recognise specific pathogen-

derivedmolecules (effectors) and to trigger defence. These receptors usually

recognise a specific effector, but some work in pairs and can detect multiple

effectors. The Arabidopsis RRS1-R/RPS4 receptor pair forms an immune com-

plex, conferring recognition of two distinct bacterial effectors, AvrRps4 and

PopP2. A paralogous pair linked to RRS1/RPS4, designated as RRS1B/RPS4B,

only recognises AvrRps4. My work has revealed that both pairs detect

AvrRps4 via an integrated WRKY domain of RRS1 or RRS1B, which mimics

the effector’s host targets: the WRKY transcription factors (TF). It has also

been shown that the WRKY TF-targeting PopP2 is also perceived by the

RRS1-R WRKY domain. Together, we suggest that RRS1 (or RRS1B) with

the WRKY domain fusion has evolved to protect defence-regulating WRKY

proteins from being attacked by effectors. These integrated domains of

immune receptors are becoming popular targets for synthetic resistance en-

gineering. However, one of the biggest challenges is to avoid auto-activity

while enabling new recognition capacity when manipulating the integrated

domains.

To better understand how these receptors operate to convert effector

perception into defence activation, I investigated the dynamic molecular

interactions in the pre-activation complex, and those that change upon

effector perception. I found that RRS1-R/RPS4 complex is negatively reg-

ulated by the WRKY domain during pre-activation, and effector-triggered

activation is likely mediated by de-repression of the WRKY domain. After

effector-triggered RRS1 de-repression, the activation signal is transduced

to RPS4. Domain swaps between RRS1-R/RPS4 and RRS1B/RPS4B have re-

vealed the key interaction required for this transduction is between RRS1

domain 4 and the RPS4 C-terminal domain. Furthermore, I discovered pos-

sible distinct domain-domain interactions that enable AvrRps4- and PopP2-

triggered activation. The mechanistic insights into complex auto-inhibition

and activation described in this thesis will prove valuable for many other

cooperative immune receptor systems.
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1Introduction

1.1 Overview of plant-pathogen interactions

Plants constantly face the threat of various pathogenic microorganisms, in-

cluding fungi, bacteria, viruses, oomycetes and nematodes. These pathogens

use host-derived nutrients to grow and multiply at the expense of plant

health, causing diseases. Yet each plant species is only susceptible to a

relatively small number of pathogens, indicating a largely successful plant

defence system that fends off numerous invaders [1]. This durable resistance

against a wide range of potential pathogens, known as non-host resistance,

is common to all plant species [2, 3].

Effective non-host resistance relies on both preformed and inducible

defence responses. Preformed structural and chemical barriers (e.g. cuticle

layers, cell walls, antimicrobial secondary metabolites) provide constitutive

protection at the plant surface and apoplast, whereas inducible defence

is often triggered upon the perception of pathogen invasions at the cell

wall-plasma membrane interface [4]. Plants can detect physical and molec-

ular changes caused by these invasion attempts, either via recognising

exogenous signals as ‘non-self’ or by monitoring the modified ‘self’. The

endogenous molecules released upon pathogen invasion are referred to

as damage- or danger-associated molecular patterns (DAMPs)[5, 6]. The

typical non-self signatures referred to as pathogen- or microbe-associated

molecular patterns (PAMPs or MAMPs), are recognised by trans-membrane

pattern recognition receptors (PRRs) in plants and in other multicellular or-

ganisms [6–8]. Perception of PAMPs by PRRs activates a chain of signalling

events leading to a defence response, termed PAMP- or pattern-triggered

immunity (PTI) [9].

During evolution, PTI can be overcome by certain pathogens deploy-

ing virulence factors (effectors), which can suppress plant defence and

render the plant species susceptible to pathogen colonisation [9]. Such

plant species are considered hosts. Specific host-pathogen interactions

exert strong selection pressure on the hosts, selecting for the evolution



14 Introduction

of host resistance within a susceptible plant species. Host resistance re-

lies on plant resistance genes (R genes) that confer specific recognition of

pathogen effectors, and activate effector-triggered immunity (ETI) [9, 10].

Plant R genes usually encode intracellular immune receptors called NLRs

(Nucleotide-binding domain and Leucine-rich Repeat-containing), analo-

gous to animal intracellular NLR proteins that mediate innate immunity

[11]. The first characterised effectors were called “avirulence (AVR) proteins”

because they were recognised by an NLR encoded by a specific R gene, re-

sulting in disease resistance and the loss of pathogen virulence [12].

The host-pathogen co-evolutionary dynamics therefore can be exempli-

fied by the interactions between highly polymorphic plant R genes, which

encode NLRs, and fast diversifying AVR genes, which encode pathogen ef-

fectors, that are selected to evade recognition while retaining function. The

“gene-for-gene” hypothesis [13] describes a simple one-to-one relationship

between AVR and R genes that genetically determine the outcome of a

plant-pathogen interaction. Matching of AVR and R genes leads to host

resistance (incompatible interaction), while mismatching leads to disease

(compatible interaction). Since then, increased understanding of effector-

triggered immunity has revealed that in addition to one-to-one, there are

many-to-one, one-to-many or many-to-many AVR-R relationships, thus re-

quiring a more elaborate “genes-for-genes” model [14]. Recent insights on

convergent targeting of host proteins by effectors and the cooperation of

R proteins for resistance function also emphasise the need for a greater

understanding of the protein-protein interaction network in immunity [14–

17].

Overall, the plant innate immune system is thought to primarily com-

prise PTI and ETI. PTI is activated by largely conserved microbe elicitors

(PAMPs), while ETI is activated by specific pathogen effectors. The down-

stream defence responses of PTI and ETI are similar (e.g. changes in gene

expression), with the ETI response being quantitatively faster and stronger

and usually involving localised cell death called the hypersensitive response

(HR) [10, 18]. However, the boundaries between PTI and ETI are blurred

at elicitor recognition level, as PAMPs and effectors, PRRs and R proteins

sometimes could not be exclusively defined [19, 20]. Furthermore, possi-

ble interplays and cross-talk between PTI and ETI defence signalling make

it more complex to dissect the output of plant resistance. Therefore the

identification of immediate downstream components that convey signals
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of PRR and NLR activation may help us better understand the similarities

and differences between PTI and ETI. On the other hand, the overall dis-

ease outcome also depends on the lifestyle of the pathogen (biotrophy,

necrotrophy or hemibiotrophy), the developmental status of the plants,

and the environmental elements [1]. For future plant immunity research,

finer insights into the molecular processes as well as a broader perspective

integrating developmental and environmental elements are needed.

1.2 Pathogen recognition is the key to immunity

Lacking the mobile immune cells found in animals, plants rely on the

innate immunity of each cell to recognise pathogens and mount defence

responses. The effective pathogen recognition via the trans-membrane and

intracellular receptors compensates for the lack of an adaptive immune

system in plants. On the other hand, pathogens evolve counter strategies

to dodge plant perception and suppress immunity. Therefore, pathogen

recognition is the key to plant immunity, and recognition specificity usually

defines the specificity of plant-pathogen interactions.

1.2.1 Recognition of PAMPs by PRRs triggers immunity

Microbial pathogens need to breach the plant cell wall and sometimes the

plasma membrane to gain access to host resources for successful colonisa-

tion. While the infectious pathogens are invading the apoplast, they shed

PAMPs, which are recognised by PRRs. PAMPs are usually considered as

conserved and indispensable for the microbes, serving as molecular signa-

tures for non-self perception of a whole class of microbes in both plants and

animals [21, 22].

Plants are capable of recognising a wide range of PAMPs derived from

bacteria, fungi and oomycetes [6, 21]. Well studied bacterial PAMPs in-

clude flagellin and elongation factor Tu (Ef-Tu), which are recognised by

the leucine-rich repeat receptor kinases FLS2 (Flagellin-Sensing 2) and EFR

(Ef-Tu Receptor) respectively [23–26]. Flagellin, the main component of

the flagellum, is present in almost all flagellated bacteria, including non-

pathogenic ones. The epitope flg22 (the N-terminal 22 amino acids of

flagellin), corresponding to a region of flagellin required for bacterial viru-

lence and mobility, is sufficient to trigger FLS2-dependent PTI in Arabidopsis
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thaliana and many other higher plants [23]. More recently, a flagellin epi-

tope (flgII-28) of Pseudomonas syringae distinct from flg22 was found to

be specifically recognised in Solanaceae species by an additional unknown

receptor, anticipated as FLS3 (Flagellin-Sensing 3) [27, 28].

Similarly, the Ef-Tu epitope elf18 if N-acetylated is as potent as the

full length Ef-Tu to trigger EFR-dependent defence in Brassicaceae plants

[25]. These examples illustrate the precise targeting of plant perception to

the essential core of PAMPs to hinder the rapid pathogen mutations that

would otherwise lead to the loss of PAMP recognition. However in some

cases, bacteria are able to mutate residues within the recognised epitope

to dodge recognition, exhibiting variations in PAMP sequences (e.g. flg22,

flgII-28) and the subsequent plant perception [20, 28–31]. Recent evidence

suggests that plants may counteract pathogenmutations by evolving recep-

tors to recognise different epitopes within the PAMP, such as flgII-28, CD2-1

(epitopes of flagellin) and Efa50 (an epitope of Ef-Tu) [25, 32, 33]. The diver-

sity found in the PRR-PAMP system suggests a host-pathogen co-evolution

more specific than previously suspected [20].

Other characterised bacterial PAMPs include: structural components

such as lipopolysaccharides (LPS) and peptidoglycan (PGNs), proteinaceous

PAMPs such as harpins and cold shock proteins, microbial nucleic acids such

as non-methylated CpG DNA [21, 34–36]; though many corresponding PRRs

for these PAMPs are yet to be identified. Fungal chitin is recognised by lysine

motif-containing (LysM) proteinsOsCeBiP andOsCERK1 in rice (Oryza sativa),

and AtCERK1 in Arabidopsis thaliana [37, 38]. Furthermore, LysM proteins

such as OsLYP4 and OsLYP6 in rice, and AtLYM1 and AtLYM3 in Arabidopsis

directly perceive bacterial PGNs to trigger immunity [39–41]. Interestingly,

PGN perception induces complex formation of PGN-receptors with CERK1

to initiate downstream defence signalling, indicating the dual role of CERK1

in chitin- and PGN-triggered immunity [41].

In addition to direct pathogen recognition (PAMP recognition), pathogen

invasions can also trigger the production of host-derived compounds termed

DAMPs, which signal “danger” in the cell to activate defence response. For

example, cell wall integrity is closely monitored by various mechanosen-

sors for physical damage, and by receptors that can detect released plant

cell wall fragments during pathogen attack [4, 42]. One such DAMP re-

ceptor that contributes to plant immunity is the wall-associated kinases
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(WAKs), which monitor the integrity of pectin by sensing the presence of oli-

gogalacturonides [43]. However, for many other cell wall integrity sensors,

the detailed mechanisms of ligand perception and signalling during plant

defence remain obscure.

1.2.2 Pathogen-secreted effectors facilitate invasion

Adapted pathogens usually deliver a suite of effectors into the plants, which

promotes pathogen virulence and results in effector-triggered susceptibility

(ETS) in host plants [9]. The effector protein family is evolutionarily diverse

and exhibits a range of functions targeting different aspects of eukaryotic

cellular processes [44]. Recent studies revealed the convergent targeting

of effectors from distinct plant pathogens to highly connected host protein

‘hubs’ [16, 45]. Through mimicking or manipulating host cellular functions,

effectors often suppress host defence (PTI or ETI) to promote pathogen

colonisation. Fungi and oomycete pathogens typically secrete effectors

into the biotrophic interface, of which some remain in the apoplast and

some are translocated into the host cytosol, to suppress host defence [46].

Additionally, some of these effectors may also play structural roles during

haustorial formation; othersmay contribute to nutrient release into apoplast

during infection.

Bacterial T3SS is a key virulence feature

Diverse gram-negative bacteria use the type III secretion system (T3SS),

which forms a needle-like structure, to inject effector proteins into the host

cytoplasm. Many of the most important plant diseases are caused by T3SS

bacteria, best exemplified by Pseudomonas syringae, Ralstonia solanacearum

and Xanthomonas spp. that are responsible for bacterial spot, blight and wilt

diseases on a range of crops [47]. T3SS is essential to bacterial virulence,

as T3SS deletion from a virulent strain leads to full induction of PTI and the

failure of pathogen colonisation in otherwise susceptible plants. However,

the virulence function is carried out by its cargo, the T3SS effectors.

Effectors share overlapping functions

Single strains of Pseudomonas spp. can deliver ~30 effectors into plant cells,

where they function in a diverse and redundant manner. Genome-enabled
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bioinformatics and effector mutation screens in P. syringae pv. tomato (Pst)

DC3000 and other strains provide valuable insights into the functional com-

position of the effector repertoire [48]. Although single effector mutations

seldom produce significant reduction of virulence, multiple deletions can

reveal the importance of redundant effectors. For example, while double

knockout of AvrE and HopM1 at the conserved effector locus (CEL) of P. sy-

ringae severely reduces virulence, single knockouts have no apparent effect

on pathogenicity [49]. Similarly, overlapping effector function is illustrated

by unrelated P. syringae effectors AvrPto and AvrPtoB, which both target the

FLS2-BAK11 complex to suppress PTI [50, 51]. In fact, Alan Collmer’s work1 BAK1: BRI1-
Associated Kinase
1 was identified
as a co-receptor
of brassinosteroid
insensitive 1 (BRI1).

on Pst DC3000 has revealed that no single effector is necessary or sufficient

for pathogen full virulence, implying both redundancy and cooperativity of

the effectors [48].

The evolutionary advantage for pathogens to maintain effector redun-

dancy is not immediately apparent in a single host, as it may increase the

risk of host recognition. However, because a single effector can some-

times limit host range (due to ETI), having redundant effectors could be

crucial for the pathogen to flexibly adapt to a range of hosts. Perhaps

as an outcome of counteracting plant recognition, effectors redundantly

targeting the same plant protein sometimes use different modes of action.

For instance, P. syringae effectors AvrB, AvrRpm1, AvrRpt2 and HopF2 all

target RPM1-INTERACTING PROTEIN 4 (RIN4), but adopt different molecular

strategies: AvrB or AvrRpm1 phosphorylates RIN4 via host kinases; AvrRpt2

cleaves RIN4; whereas HopF2 protects RIN4 from cleavage [52–55] (see later

sections for more details).

Do pathogens of different lifestyle tend to deploy specific effectors

to modulate certain functions of the host? Or do effectors from distinct

pathogens share largely overlapping functions? Wide-scale yeast-two-

hybrid analyses of Arabidopsis proteins and pathogen effectors from three

different kingdoms suggest that the answer is the latter [16, 45]. These data

suggest that independently evolved effectors convergently target a limited

set of host protein hubs, which are the heart of highly connected protein-

protein interaction networks of defence-related or key cellular processes.

Mukhtar et al. [16] postulated that pathogens have evolved effectors to tar-

get protein hubs for effective network manipulation. One example is that

the P. syringae effector AvrPphB and Xanthomonas campestris effector AvrAC

both target a key PTI-regulating kinase BIK1 (Botrytis-Induced Kinase 1), for
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cleavage (AvrPphB) or for uridylylation (AvrAC) [56, 57]. Recent studies also

revealed that effectors of distinct pathogens, P. syringae (AvrRps4) and R.

solanacearum (PopP2) convergently target host WRKY transcription factors

for immune suppression [58, 59].

T3SS effectors suppress host defence

Many T3SS effectors contribute to virulence by targeting different com-

ponents of the PTI pathways to suppress plant defence response. The

PRR receptor complex at the plasma membrane (PM) is a major target for

PTI inhibition: the FLS2-BAK1 complex is targeted by AvrPto and AvrPtoB;

BIK1, which is required for FLS2 signalling, is targeted by AvrPphB and Xan-

thomonas effector AvrAC. Many of the above mentioned effectors, including

AvrPto, AvrPphB, AvrB, AvrRpm1 and HopF2, exploit the host myristoylation

machinery for targeting to the PMwhere PTI signalling initiates [60]. Interest-

ingly, this behaviour of incorporating eukaryotic myristoylation motifs into

bacterial effectors appears specific to plant pathogens [44]. Effectors target

other signalling components of PTI. For example, MAPK (Mitogen-activated

protein kinase) is dephosphorylated and suppressed by Pst DC3000 effector

HopAI1. Moreover, some effectors are able to suppress the PAMP-responsive

microRNA pathway to inhibit PTI signalling [61], and others can interfere

with plant hormone signalling to suppress defence [47].

Vesicle trafficking is important for plant defence responses as it is im-

plicated in delivering various antimicrobial compounds (e.g. pathogenesis

related (PR) proteins) and components for cell wall reinforcement to the

site of infection [62]. Pst DC3000 effectors HopM1 and AvrE as well as

Xanthomonas effector XopJ have been shown to target vesicle trafficking

pathways [49, 63]. HopM1 causes degradation of a guanine nucleotide

exchange (GEF) factor named AtMIN7, which is thought to regulate G

protein-mediated vesicle trafficking, via host proteasome [49]. An inter-

esting parallel to animal pathogens is that several bacterial effectors act as

GEFs (e.g. Salmonella effector SopE and SptP) to manipulate host G proteins

involved in cytoskeletal regulation [44].

A group of transcription-activator like effectors (TALEs) from Xanthomonas

spp. has evolved to directly manipulate host gene expression. Significantly,

it was found that the central repeat domain of each TAL effector codes

for a precise DNA target sequence. Decoding of these DNA binding mo-
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tifs enables the accurate engineering of specific DNA-targeting machinery,

which has since become a powerful tool for genome editing [64, 65]. TALEs

evolve to activate host susceptibility genes, and yet plants have hijacked

this mechanism for defence activation. Plant R gene Bs3 demonstrates

this remarkable countermeasure: It incorporates the binding sequence of

AvrBs3 into its promoter; so instead of activating the virulence promoting

genes, AvrBs3 activates Bs3 and ETI [66, 67].

Pathogens with avirulence effectors that trigger ETI are under selec-

tion to evolve new strategies that can suppress ETI [9]. Indeed, several P.

syringae effectors have been reported to specifically suppress host recog-

nition of another effector(s). For example, RIN4 cleavage and degradation

triggered by effector AvrRpt2 suppresses AvrB- and AvrRpm1-mediated ac-

tivation of RPM1 [52–54]. When AvrB or AvrRpm1 induces phosphorylation

of RIN4 via the host kinase RIPK (RPM1-interacting protein kinase), RPM1

senses the conformational change of RIN4 (following phosphorylation at

Threonine 166) and triggers defence [68, 69]. A recent study has revealed

that AvrPphB can suppress RPM1 recognition of AvrB via cleaving RIPK [70].

Intriguingly, this AvrPphB-mediated ETI suppression is specific to AvrB but

not to AvrRpm1, suggesting that RIPK is not required for AvrRpm1 phospho-

rylation of RIN4 [70]. Consistent with this, the ripk knockout does not impair

AvrRpm1-triggered resistance in Arabidopsis [68]. Furthermore, while host R

protein RPS2 can recognise AvrRpt2-induced RIN4 cleavage, effector HopF2

can interfere with this RIN4 cleavage, and thereby suppress RPS2 activation

[55].

Besides deploying new effectors to counteract ETI, pathogens are ca-

pable of ‘upgrading’ effectors to defy their own recognition. For instance,

while the N-terminus of AvrPtoB can be recognised by the plant kinase Fen,

resulting in programmed cell death in resistant plants, the C-terminus of

AvrPtoB remarkably mimics E3 ubiquitin ligase and targets Fen for protea-

somal degradation in susceptible plants [71, 72]. In other words, the acqui-

sition of the C-terminal E3 ligase domain ‘upgrades’ the avirulent AvrPtoB,

enabling the suppression of its own ETI through Fen degradation. Alto-

gether, these examples demonstrate the the intricacy of evolutionary arms

race between the plant recognition mechanism and pathogen suppression

of immunity.
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T3SS effectors evolvemultiple functions

What domains and motifs of an effector are responsible for its virulence

function(s)? Despite the immense diversity of effector functions, they seem

to possess a relatively small subset of domains and motifs that have de-

fined functions in virulence. The N-terminal part of most T3SS effectors

contains a 15-25 aa signal sequence essential for type III secretion, followed

by a longer downstream chaperone-binding domain. Consequently the

N-terminal amino acid composition have been used to identify potential

effectors. However, although the N-terminal secretion signals are often

functionally interchangeable between effectors, they lack apparent consen-

sus sequences [44, 73].

Effectors are often multifunctional proteins. In fact, each effector pro-

tein can contain functionally distinct domains or motifs, which appear to

evolve independently and combine to form chimeric effectors, a common

effector phenomenon called ‘chimerization’. Stavrinides et al. [74] found

a higher percentage of chimeric effectors (32%) amongst all T3SS effector

families compared to other protein families. The evolutionary advantage

of effector chimerization is possibly to enable rapid emergence of new

effectors to maintain diversity while conserving basic virulence functions.

For example, P. syringae effectors HopD1 and HopAO1 share a homologous

N-terminal domain, while each possessing a unique C-terminal domain that

allows them to perform distinct biological functions [47, 75]. Similarly,

AvrRps4 and HopK1 from P. syringae with distinct C-termini also share an

N-terminal domain, which is believed to target the effectors to the host

chloroplast [76]. SptP exemplifies such a chimeric effector from the animal

pathogen Salmonella, which is composed of a N-terminal domain similar to

Pseudomonas ExoS, and a C-terminal region homologous to YopH [44]. Since

different domains within an effector can carry out distinct and unrelated

functions, the effector repertoire can be viewed as a mosaic of functional

domains combined together.

Another driving force behind effector evolution is hypothesised to be

horizontal gene transfer (HGT). Some evidence suggests that bacterial ef-

fector genes have distinct G/C base composition [77] and produce unique

phylogenies [47] compared to the rest of the bacterial genome. It provides

an attractive hypothesis where pathogens may acquire foreign genetic ma-

terials, which they mix and match via genomic shuffling to rapidly produce
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fresh effector repertoires. Bacterial conjugation and DNA transfer via viruses

might assist HGT, however, exactly how HGT occurs is unclear.

Fungi and oomycetes secrete effectors to aid invasion

Fungi such as rice blast fungus Magnaporthe oryzae, and oomycetes such

as the potato late blight pathogen Phytophthora infestans are eukaryotic

filamentous pathogens that pose serious threats to crops. Fungi and

oomycetes are known to secrete effectors at different invasion stages, and

the effectors function in extracellular spaces (apoplast) as well as in diverse

subcellular compartments after translocation into the host cytosol [46]. Fun-

gal effectors often carry a signal peptide for secretion. Oomycete effectors

sometimes carry characteristic motifs associated with host translocation

(e.g. RXLR motif of P. infestans effectors) after the signal peptide. However,

very few conserved motifs exist to allow predictions of effector function.

It remains a challenge to dissect the functions of fungi and oomycete

effectors, especially with the diverse nature of their spatiotemporal deploy-

ment.

Most fungi and oomycete effectors are host-induced and expressed at

different stages associated with pathogen transitions [46]. Some evidence

suggests that effectors can be deployed even before pathogen penetration

[78]. Kleemann et al. [78] showed that distinct sets of Colletotrichum higgin-

sianum candidate effectors are delivered in successive waves: one before

penetration and another before and during penetration [78]. The tomato

leaf mould fungus Cladosporium fulvum, which proliferates in extracellular

spaces, typically deploys apoplastic effectors to combat host defence. Other

pathogens such as M. oryzae, P. infestans and C. higginsianum invade host

cells with intracellular hyphae, and secrete apoplastic effectors predomi-

nantly at the biotrophic interaface [46].

To defend against fungal or oomycete pathogens, plants secrete chiti-

nases to breakdown chitin, a major component of the fungal cell wall. C. ful-

vum effector Avr4, a chitin binding effector, is able to protect the fungal cell

wall from plant chitinases [79]. Chitin fragments released by chitinases can

also be recognised as PAMPs to trigger PTI. The C. fulvum LysM-containing

effector Ecp6, however, binds chitin oligosaccharides with high affinity,

which is believed to out-compete chitin-binding PRRs to reduce fungal

recognition [80]. Apoplastic LysM effectors are also used by other fungal
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pathogens (e.g. slp1 from M. oryzae) to suppress chitin-induced PTI. An-

other C. fulvum apoplastic effector Avr2 inhibits the cysteine protease RCR3

in tomato. However, the Avr2-mediated modification of RCR3 is recognised

by the plant transmembrane receptor-like resistance protein Cf-2, triggering

defence [81]. Similar resistance proteins Cf-4 and Cf-9 recognise C. fulvum

Avr4 and Avr9 respectively, via their extracellular membrane-anchored LRR

domain [82–84].

Some effectors are translocated into the host cell after secretion. For

example, the P. infestans cytoplasmic effector Avr3a stabilises a host E3

ubiquitin ligase (CMPG1) to block defence-related cell death and promote

biotrophic growth in potato [85]. Another cytoplasmic effector Avrblb2 of

P. infestans accumulates around the special feeding structure, termed the

haustorium, to prevent the secretion of a tomato immune protease C14

[86]. Interestingly, the Uromyces fabae cytoplasmic effector Rtp1, which

also accumulates around the haustoria, was suggested to play a structural

role during infection [87]. Kemen et al. [87] reported that Rtp1 forms

amyloid-like filaments in vitro, and may stabilise and protect the haustoria

structurally.

Additionally, some fungal and oomycete effectors can contribute to

nutrient release into the apoplast during infection [9, 88]. Furthermore, a

recent study revealed that the root pathogen Fusarium oxysporum is able

to secrete a virulence peptide reminiscent of the plant RALF (rapid alka-

linization factor) to hijack host regulatory pathways and increase infection

[89]. Overall, better understanding of the dynamic functions of fungi and

oomycete effectors would provide valuable insights to plant-pathogen in-

teraction.

1.2.3 Recognition of effectors by NLRs triggers immunity

To counteract the virulence activity of pathogen effectors, plants have

evolved R proteins dedicated to recognise specific effectors and to trig-

ger defence. They either directly recognise effectors through physical in-

teraction, or indirectly via recognising the effector-triggered modification

of a host protein. Most plant R proteins contain a characteristic NB-ARC

domain2 and a leucine rich repeat (LRR) domain, thus are called NLR pro- 2 NB-ARC domain:
Nucleotide-Binding
domain shared by
human apoptotic
regulator APAF-1,
plant R proteins
and CED-4 from
C.elegans.

teins. Generally, plant NLRs can be divided into two classes based on

their N-terminal signalling domain: The TNLs, which contain an N-terminal



24 Introduction

TIR (Toll/Interleukin-1 receptor/Resistance protein) domain; and the CNLs,

which contain an N-terminal CC (coiled-coil) domain. Similarly, animal NLRs

are comprised of a nucleotide binding NACHT domain1, a LRR domain and

an N-terminal signalling domain, which is often a PYRIN domain (PYD) or a

caspase recruitment domain (CARD). Together, plant and animal NLRs form

part of a structural class termed STAND2 [90]. Accumulating evidence is

revealing interesting functional parallels between the NLRs from the two

kingdoms. In this section, I will mainly focus on the diverse mechanisms

plant NLRs used to maximise their recognition capacity and to protect

various cellular processes from pathogen effectors. Based on well-studied

examples, several models for NLR-mediated effector recognition have been

proposed, including the receptor-ligand model, the guard hypothesis and

the decoymodel, although none of the current models is able to adequately

describe all recognition mechanisms.

NLR proteins can recognise their ligands through direct binding

Some NLR receptors directly interact with their effector ligands to activate

defence, as proposed by the ‘receptor-ligand’ model. Interestingly, the ma-

jority of these direct recognition examples are demonstrated for fungi or

oomycete effectors. For instance, rice CNL Pi-ta recognises the rice blast

fungus (M. oryzae) effector Avr-Pita through direct interaction [91]. In addi-

tion, flax TNLs L and M interact with cognate effectors AvrL567 and AvrM

from the flax rust fungus Melampsora lini respectively [92, 93]. Likewise, the

recognition of the downy mildew (Hyaloperonospora arabidopsidis) effector

ATR1 by Arabidopsis TNL RPP1 is also mediated by direct interaction [94].

The high level of observed polymorphism and the presumed flexibility of

the LRR domain makes it a logical candidate site for effector interaction;

it is also the site of interaction between many cell surface PAMP detectors

and their ligands [95]. Indeed, the NLRs RPP1 and Pi-ta interact with their

cognate effectors via their LRR domains. However, in some cases, the N-

terminal TIR or CC domain of NLRs can interact with the AVR ligand [96, 97].

The receptor-ligand model focuses on the necessity but not the sufficiency

of the AVR/R interaction. Therefore we should not exclude the requirement
1NACHT domain: NAIP (Neuronal Apoptosis Inhibitor Protein), C2TA (MHC class 2 Tran-

scription Activator), HET-E (incompatibility locus protein from Podospora anserina) and TP1
(telomerase-associated protein).

2STAND: Signal TransductionATPasewithNumerousDomains. This class of P-loopNTPases
includes the AP-ATPases (e.g. APAF-1, CED-4, and plant R proteins) and NACHT NTPases.
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for AVR/R subcellular localisation and the roles of accessory proteins during

effector detection and NLR signalling.

NLR proteins can indirectly recognise effectors via “guarding” their host
targets

In most cases, however, plant NLR proteins do not directly interact with their

cognate effectors. To explain the observed indirect recognition, the ‘Guard

hypothesis’ was proposed, in which an R protein “guards” (ie monitors the

integrity of ) the virulence target (guardee) of the effector to activate defence

after detection of effector-induced modifications [98]. This model is best

exemplified by the guardee RIN4, which is targeted by multiple P. syringae

effectors and is guarded by two NLRs. RPM1 and RPS2 (NLR proteins)

constitutively associate with RIN4 to detect the AvrB- or AvrRpm1-mediated

phosphorylation and AvrRpt2-mediated protease activity respectively [52,

53]. The convergent effector targeting on RIN4 implies a central role of

RIN4 in immunity and/or pathogenicity. So far, studies suggest that RIN4

is a versatile immune regulator, playing both positive and negative roles in

various defence pathways [99, 100].

For example, FLS2 or EFR-induced phosphorylation of RIN4 at residue

S141 enhances PTI signalling; and AvrB- and AvrRpm1-mediated phospho-

rylation of RIN4 T166 could inhibit this PTI-promoting S141 phosphorylation

of RIN4 [100]. In addition, HopF2 that ribosylates RIN4 may also promote

pathogen virulence via inhibiting the accumulation of S141 phosphory-

lated RIN4 to suppress PTI [69]. On the other hand, the NO₃-induced (NOI)

domain containing fragments of RIN4, which are released upon AvrRpt2

cleavage, are capable of suppressing PTI [101]. Also, RIN4 is proven to assist

pathogenicity through enhancing stomata opening [99]. Perhaps the multi-

functional nature of RIN4 in a highly interconnected immune networkmakes

it an attractive effector target, and a hub that is worth guarding.

In an elaboration of the guard model, van der Hoorn and Kamoun

proposed that plants could evolve guarded decoys that had lost their orig-

inal functionality and now only functioned as “effector baits” [102]. These

decoy proteins, possibly evolved from duplications of the effector target

gene, may divert the selection pressure from the real effector target, and

specialise in enabling effector perception [10]. This model is consistent with

the protein kinase Pto, which activates tomato NLR Prf upon detection of
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P. syringae effectors AvrPto and AvrPtoB [103, 104]. As it plays no critical

role during basal defence, Pto is thought to be a decoy that mimics the

kinase domains of the effector host targets, such as FLS2 and BAK1 [50, 51].

Another decoy protein kinase PBS1 (AvrPphB-Susceptible 1) activates the

NLR RPS5 upon its cleavage by the cysteine protease effector AvrPphB [105,

106]. PBS1 closely resembles a group of PTI-regulating RLCKs (Receptor Like

Cytoplasmic Kinases) such as BIK1 and PBL1 (PBS1-like kinase 1) that are tar-

geted by AvrPphB [56]. It should be noted that although Pto and PBS1 are

decoys of immune kinases, their kinase activity is not lost and is required for

ETI activation [106–108] . The decoy protein ZED1, on the other hand, is a

pseudokinase that functions to detect the acetylation by P. syringae effector

HopZ1a and to activate the associating NLR ZAR1 [109]. Interestingly, ZAR1

forms a complexwith another pseudokinase RKS1, which specifically recruits

the kinase PBL2, when PBL2 is uridinylated by Xanthomonas effector AvrAC

[57]. PBL2 has been shown to be a decoy of the AvrAC target, BIK1; and the

kinase activity of PBL2 is not required for AvrAC-triggered immunity [57].

These examples demonstrate that whether the ‘guardee’ is a true decoy

(functional mimic) that only participates in effector recognition is not en-

tirely dependent on the loss of ancestral biochemical function. Altogether,

the guard and decoymodels describe efficientmechanisms bywhich a plant

can use a limited repertoire of NLRs to recognise a multitude of pathogens

via specifically guarding a limited number of host proteins.

NLR proteins evolve to integrate domains that can detect effectors

Certain plant NLRs integrate atypical domains into the canonical TIR-NB-

ARC-LRR or CC-NB-ARC-LRR structure. Recently, many of these integrated

domains have been associated with a specialised function in effector detec-

tion, expanding our view of NLR recognition mechanisms [58, 59, 110–113].

Detailed functional analyses of two NLR pairs in particular, the Arabidopsis

RRS1/RPS4 and the rice RGA4/RGA5, have led to the proposition of the

‘integrated decoy’ model [112]. In this model, Cesari et al proposed that the

atypical domains of NLRs are likely to be decoys of the true effector host tar-

gets, incorporated into the NLR structure for effector sensing. Arabidopsis

TNL RRS1 may have integrated such a C-terminal WRKY domain, homolo-

gous with the family of WRKY transcription factors. It has been recently

reported that bacterial effectors PopP2 from R. solanacearum and AvrRps4

from P.syringae interact with Arabidopsis TNL RRS1 via its integrated WRKY
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domain [58, 59]. Since both AvrRps4 and PopP2 associate with several

host WRKY proteins, presumably to suppress their function in immunity,

it was proposed that RRS1 integrates a structural mimic of the effector

targets (WRKY proteins) for effector detection [58, 59]. RRS1 forms a consti-

tutive complex with another TNL RPS4, which is adjacent and divergently

transcribed from RRS1 [114, 115]. Unlike RRS1, RPS4 has a canonical TIR-

NB-ARC-LRR structure, and acts as a signalling partner for RRS1 [115, 116].

Similarly, the rice CNL pair RGA4/RGA5 functions to recognise two M. oryzae

effectors, AVR1-CO39 and Avr-Pia, via an integrated heavy metal-associated

(HMA) domain at the C-terminus of RGA5 [110]. The HMA domain is also

integrated into the rice CNL Pikp-1, between its CC and NB-ARC domain,

which functions to directly interact with the M. oryzae effector AVR-PikD

[113]. Again, Pikp-1 requires its pair partner Pikp-2, to activate defence.

Rice HMA domain-containing protein Pi21 is a disease susceptibility factor

[117]. It was therefore hypothesised that these integrated HMA domains

are decoys of potential HMA-containing host proteins targeted by effectors

for pathogen virulence [112].

Recent studies have revealed the widespread occurrence of atypical

domains in NLR proteins in various plant genomes [118, 119]. Most of these

domains appear to have a distinct evolutionary history compared to the

rest of the NLR domains, indicating a relatively recent fusion event that has

combined them to make the chimera NLR [118].

Where do these extraneous domains originally come from? One expla-

nation in line with the integrated decoy model states that these domains

derive from duplicated effector host targets, which subsequently fuse into

the NLR structure [112, 120]. During the course of evolution, the integrated

domain would evolve specifically towards effector detection and might lose

its ancestral function (becoming a decoy). However, Wu et al. [120] pointed

out that some domains might retain their ancestral functions possibly to

assist immunity, acting more like integrated ‘guardees’ rather than ‘decoys’;

and thus the broader term ‘sensor domain’ is more suitable. After the

fusion event, the NLRs equipped with an effective ‘effector sensor’ would

be selected for, and retained. Supporting this theory, Saucet et al. [121]

has identified a possible pre-WRKY fusion ancestor of RRS1 and its paralog

RRS1B, present in Brassica rapa and Arabidopsis lyrata, but lost in Arabidopsis

thaliana [121]. Interestingly, the orthologs of RRS1 or RRS1B in A. lyrata and

Capsella rubella appear to be further duplicated, showing evidence of selec-
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tive advantage of the WRKY fusion [121]. One of the advantages could be

the rapid acquisition of new effector recognition capacity. Additionally, the

physical fusion of the guard to a guardee (or decoy) would ensure adaptive

co-evolution and genetic co-segregation.

Some domains are observed to be integrated more often than others,

with protein kinase, WRKY and BED domain among the most common

[118, 119]. WRKY transcription factors and various protein kinases are often

associated with plant immunity, therefore could be important nodes for the

plants to guard against the effectors. Recently, a BED-domain containing

ZBED protein in rice has been shown to mediate resistance towards M.

oryzae [119]. Intriguingly, 32 NLRs in poplar (Populus trichocarpa) have been

identified to carry the BED domains [122], indicating possible targeting

of BED-domain proteins in poplar by effectors. Some of these integrated

domains have been identified in NLRs with known functions: wheat stem

rust resistance protein Rpg5 in barley has an integrated kinase domain [123];

Arabidopsis RRS1 and RRS1B both integrate a C-terminal WRKY domain [114,

121]; and rice Xa1, with integrated BED domains, recognises an unknown

bacterial blight effector [124]. Conceivably, many other NLR fusions may be

functional effector sensors that use similar strategies.

With the observations of effectors converging on important cellular

hubs to suppress immunity [16, 45], it is plausible that NLR proteins would

evolve to incorporate hub-mimicking domains to ensure efficient host pro-

tection, and to maximise their gain of recognition capacity. In line with this

is the discovery of a RIN4-like NOI domain fused into the rice CNL Pi5-2,

which pairs with Pi5-1 [125, 126]. Additionally, the CNL AetRGA2a has a C-

terminal integrated domain, which mimics the Exo70 protein, a component

of the exocyst complex [127]. Exo70 plays a crucial role in polarised exo-

cytosis (vesicle trafficking) that is important for plant immunity (discussed

previously). It is also guarded by rice CNL Pii to detect the M. oryzae effector

Avr-Pii [128]. Exo70 protein is also guarded in Arabidopsis, as the loss of func-

tion mutant exo70b1 triggers constitutive defence activation dependent on

a TIR-NB-ARC-only protein (TN2) [129]. Many other integrated domains of

NLRs do not yet to have any defined role in immunity (or susceptibility),

such as the LIM domain of Arabidopsis CHS3 [130] and the brevis radix

domains of RLM3 [131]. The implications of integrated domains resembling

important cellular targets of effectors could provide a new source to identify

immune components previously unknown to us [118, 119, 126]. Moreover,
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increasing insights into the recognition and activation of fusion NLRs will

open up the possibility to engineer new or expanded resistance capacities

via manipulating the integrated domains.

NLR proteins often cooperate to function

Many NLRs require another NLR to function. Some are genetically linked

pairs that work closely with each other, such as RRS1/RPS4, RRS1B/RPS4B,

RGA4/RGA5 and Pikp-1/Pikp-2 [110, 113, 114, 121]. Interestingly, functional

specialisations of pair partners are implicated in all above examples: typi-

cally one partner executes defence signalling (termed ‘the executor’), and

the other senses the effector through an integrated domain specialised

for detection (termed ‘the sensor’). In fact, pair partners exhibiting dif-

ferential domain architectures are frequently observed: Arabidopsis TNLs

RPP2A/RPP2B [132] and CHS3/CSA1 [130], wheat CNLs LR10/RGA2 [133]

and melon Fom-1/Prv [134] are all pairs with only one member containing

additional domains, yet no function has been ascribed to them. Presum-

ably, co-evolution of the linked pair partners, especially those that function

together in a complex, could result in increasingly specific cooperation. The

paralogous pairs RRS1/RPS4 and RRS1B/RPS4B demonstrate such specificity,

as inappropriate pairings of RRS1/RPS4B and RRS1B/RPS4 are non-functional

[121].

On the other hand, some NLRs cooperate with genetically unlinked

NLRs, and often with less specificity. For example, the TNL N in tobacco

(Nicotiana tabacum) requires a CNL NRG1 to recognise p50 of the tobacco

mosaic virus (TMV) [135]. Another example of a TNL and a CNL that

function together is the Arabidopsis TAO1 (TNL) and RPM1 (CNL), which

additively provide full resistance to P. syringae carrying AvrB [136]. However,

although required by RPM1 for AvrB recognition, TAO1 is able to function

independently from RPM1, suggesting partial cooperation of the NLRs [136].

Tomato NLR Prf, which functions in complex with the kinase Pto, requires the

NLRs NRC2a/b and NRC3 [137]. In addition, three redundant CNLs (ADR1,

ADR1-L1 and ADR1-L2) are shown to be required for the function of several

unrelated Arabidopsis NLRs [138, 139]. These NLRs, which assist one or

more NLRs to function, are often referred to as helper NLRs. Helper NLRs are

perceived to act downstream of the ‘sensor’ NLR that detect the effectors,

mirroring the role of the ‘executor’ in genetically linked pairs. Several helper
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NLRs appear to co-evolve with a specific clade of NLRs, with which they may

cooperate with broad specificity [137, 140]. Nevertheless, it is not simple to

define whether the cooperation between helpers and sensors or between

pair partners would evolve to become more specific or more general, as

various elements could steer the evolution differently.

1.3 Activation and signalling: how do plant receptors
convert recognition to defence?

1.3.1 PTI signalling and responses

The best understood PTI signalling and response are demonstrated in the

FLS2-mediated pathway. Upon flg22 elicitation, FLS2-flg22 recruits the

co-receptor BAK1 in a stable complex, resulting in auto-phosphorylation

of both FLS2 and BAK1 [141]. bak1 mutants are impaired in their flg22

response, which render them susceptible to Pseudomonas syringae [142].

BAK1 is an LRR-RLK (Receptor-Like Kinase) that has been shown to regulate

the brassinosteroid receptor kinase BRI1, which functions in plant develop-

ment and growth [142, 143]. In fact, BAK1 or related SERK proteins have

been implicated to form complexes with several other PRRs to mediate their

activation [144, 145].

The receptor-like cytoplasmic kinases (RLCKs) are the direct substrates

of PRR complexes to activate downstream PTI responses [95, 145]. One such

RLCK, BIK1, associates with both FLS2 and BAK1 in the absence of flg22, and

flg22 treatment leads to the phosphorylation and disassociation of BIK1

[56]. Interestingly, single and/or double mutants of BAK1 and BIK1 result

in salicylic acid (SA)-dependent cell death, suggesting that their activities

may be protected against effector suppression [146]. The release of BIK1 is

believed to bring about the activation of PTI signalling. Importantly, BIK1

directly phosphorylates the NADPH oxidase RBOHD [147, 148], which is

responsible for the rapid production of apoplastic reactive oxygen species

(ROS), a hallmark of PTI.

FLS2 also interacts constitutively with the DENN-domain protein SCD1

(Stomata Cytokinesis-Defective 1), which has been shown to positively reg-

ulate FLS2-medieated signalling (such as ROS burst) [149]. SCD1 plays a role

in endocytosis during cytokinesis and cell expansion [150]. This is consistent

with the hypothesis that endocytosis and degradation of PRRs after ligand
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activation may serve to prevent constitutive signalling, and also to recycle

and refresh PRRs at the PM [151].

Downstream of PAMP perception, at least two separate MAPK (Mitogen

Activated Protein Kinase) cascades are activated, which subsequently repro-

gram a set of immune related genes via phosphorylatingWRKY transcription

factors. In addition, PAMP perception triggers a calcium (Ca2+) burst that ac-

tivates CDPKs (Calcium-Dependent Protein Kinases), which can also turn on

transcription factors. In N. benthamiana, CDPKs phosphorylate the NADPH

oxidase RbohB to induce ROS burst [152]. ROS and nitric oxide (NO) serve

as important signalling messengers and antimicrobial compounds during

PTI. At later stage, callose deposition, strengthening of the cell wall and lim-

iting water and nutrients availability all contribute to restricting pathogen

growth.

1.3.2 NLR activation and signalling: Intra- and inter-molecular
regulation is essential for a robust immune response

The multi-domain NLRs accomplish dual roles of pathogen perception and

signal initiation for the activation of defence. Canonical NLRs consists of

an N-terminal CC or TIR motif as the scaffolding and signalling domain; a

central nucleotide-binding NB-ARC domain as the ‘molecular switch’; and a

C-terminal LRR as the regulatory domain [153, 154]. NLR-mediated defence

activation often leads to cell death, so activation of NLRs must be both

resilient to inappropriate stimuli to avoid ectopic activation, and sensitive to

specific pathogenic stimuli. How do hosts fine-tune their NLRs at rest and

then activate them with great versatility? As discussed in previous sections,

increasing evidence shows that combinatorial cooperation of NLRs and the

fusion of non-canonical domains may greatly enhance the NLR repertoire

[17, 155]. Current models for canonical NLR activation in plants provide the

foundation for understanding individual domain activity, but need expand-

ing in light of recent findings of NLR pairings and non-canonical NLRs.

The NB-ARC domain is required for ATP/ADP binding.

The conserved NB-ARC domain of plant NLRs is believed to act as a molec-

ular switch regulated by nucleotide binding and ATP hydrolysis activity

[153, 154]. Similarly, the structurally related NACHT domains of mammalian

NLR proteins also directly bind nucleotides and have ATPase activity [156,
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157]. The architecturally and functionally similar APAF-1 undergoes intra-

molecular conformational changes when activated, with the subsequent

replacement of ADP to ATP at the NB-ARC domain [158]. This is proposed

to be the core mechanism of NLR activation [153, 159, 160].

In plants, supporting evidence comes from mutational analysis: when

mutated, conserved motifs in the NB-ARC domain essential for nucleotide

binding (P-loop, MHD3) or for hydrolysis (Walker-B) often lead to loss-of-3 MHD: conserved
methionine his-
tidine aspartate
motif present at the
carboxy-terminus
of ARC2.

function or auto-activity of the NLR [116, 129, 161–165]. However, direct

structural evidence demonstrating changes from a closed ADP-bound ‘OFF’

state to an open ATP-bound ‘ON’ state is lacking for plant NLRs. Recent

studies on two CNLs, potato Rx1 and tomato I-2, have linked the NLR

activation with the newly discovered DNA-binding activity of the NB-ARC

domains [166, 167]. These findings implicate a possible direct role of active

NLR proteins on DNA, bending or melting the DNA, which may contribute

to defence activation [166, 167]. However, it remains to be seen if a binding

partner is required to provide some DNA-binding specificity. Furthermore,

an ‘Equilibrium-based switch’ model was recently proposed based on a

study of flax TNLs L6 and L7. This model proposes that NLRs exist in an

equilibrium between ‘ON’ and ‘OFF’ states, and effectors bind to the ‘ON’

state to stabilise the active conformation and shift the equilibrium towards

activation [168].

Recent studies ofmouseNLRC4, using crystallography and cryo-electron

microscopy, have resolved this NLR structure in both an inactive state and

in an active oligomer complex [169–172]. Structural comparison revealed a

dramatic rearrangement of the subdomains in the NACHT, creating a new

oligomerisation surface crucial for NLRC4 activation.

Although ADP was implicated to be critical for maintaining a closed

conformation of NLRC4 [169], it is unclear whether ADP/ATP exchange is

the cause or consequence of activation [171, 173].

In plants, several examples indicate that ADP/ATP exchange is not

always required for NLR activation. Rice CNL Pb1 (Panicle blast 1), lacking

the P-loopmotif for ADP/ATP binding, provides durable resistance to a broad

range of M. oryzae races [174]. In the paired NLR systems of Arabidopsis

RRS1/RPS4 and rice RGA4/RGA5, for the immune complex to activate, an

intact P-loop is only required in one of the partners (RPS4 and RGA4), but is

dispensable in the other partner that detects effectors (RRS1 and RGA5) [112,
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116]. This reflects the functional specialisation of the pair partners, each

adopting a separate role as sensor and executor respectively. As an immune

complex may only need one NB-ARC switch to execute defence activation,

the NB-ARC function of those NLRs specialised in effector sensing (e.g. RRS1

and RGA5) would become redundant. Intriguingly, this redundancy of P-

loop activity seems to coincide with the integration of extraneous domains,

which are often observed in paired NLRs, although not exclusively [15, 112,

119, 126]. Similar to the pairs, ‘helper NLRs’ that function in a complex with

other NLRs also show examples of a relaxed requirement for a functional

P-loop: one such example is ADR1-L2, which retains its helper function even

with a mutated P-loop [138, 163]. However, this is not the case for all plant

helper NLRs. In parallel, the animal NLR NAIP5 does not require ATP binding

activity to initiate NAIP5-NLRC4 inflammasome assembly; although unlike

ADR1-L2, NAIP5’s role is to sense the elicitor [175].

Auto-inhibition of NLRs is mediated bymultiple domains

Intra- and inter-molecular interactions are important to regulate the fine

balance between auto-inhibition and activation of NLRs. To stabilise the ‘off’

state at the resting stage, NLRs are likely to form a compact conformation,

involving multiple interactions between domains. Various domain surfaces

of NB, ARC2 (subdomains of NB-ARC) and the LRR N-terminus have been

shown required to retain the ‘off’ conformation, as domain swaps or specific

point mutations in them often trigger constitutive activation [176, 177]. The

N-terminal domains (TIR or CC) are often predicted to be in close proximity

with the LRR C-termini, and may also structurally regulate the ATP/ADP

exchange at the NB-ARC domain [154, 168, 178]. Accordingly, a simple

model emerges for auto-inhibition that the N-terminal domain and the

LRR domain enclose the central NB-ARC domain, inhibiting active ATP/ADP

exchange and defence activation [153, 154, 179].

LRR domains of NLRs have been shown to play an important regulatory

role, to prevent inappropriate activation, and to transduce the effector-

activation signal to de-repress the immune receptor complex. In the ab-

sence of empirical structural knowledge, predictions of several plant LRR

domains (from Lr10, Rx1, Gpa2) helped to generate representative struc-

tural models, which suggest a bipartite-functioning LRR, with the N-termini

contributing to NLR auto-inhibition, and the C-termini mediating pathogen
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recognition [179–181]. In these models, the positively charged LRR N-

terminal region associates with a negatively charged region of the NB-ARC

to stabilise the closed conformation in an inactive NLR [154]. This is exem-

plified by RPS5, in which the first 4 LRRs are required for the LRR association

with the NB-ARC in order to keep the NLR inactive [182]. Consistently,

LRR dis-association due to interface disruption via domain swap or residue

mutations also causes auto-activation of some NLRs [180, 181]. In addi-

tion, deletion of LRR domains in many plant NLRs results in auto-activity

[183–185]. This is also true for several animal NLRs; for example, deletion

of the LRR domain of NLRC4 or NOD1 results in constitutive defence acti-

vation (Caspase1-dependent cell death) in the absence of the elicitors [175,

186]. The crystal structure of NLRC4 revealed that interaction between

the LRR and the nucleotide-binding domain (NBD), as well as interactions

between the NBD and a C-terminal subdomain of the NACHT (called HD2)

sterically prevented oligomerisation of NLRC4, providing an explanation for

the auto-inhibitory mechanism of the LRR [169].

Nevertheless, LRR interaction with the NB-ARC has recently been shown

to positively regulate NLR activity: In the auto-active maize Rp1 (CNL)

proteins, the interaction of the LRRwith the NB-ARC de-represses CC domain

via releasing NB-ARC/CC association [165]. Another example demonstrating

the positive role of the LRR domain is that the expression of Rx NB-ARC

domain with auto-active mutations requires the presence of the LRR to

trigger full host defence [178].

On the other hand, domain swaps between Rx and its homologue Gpa2

revealed the key role of LRR C-termini in pathogen recognition specificity

[153, 178]. This LRR-driven specificity is also observed for flax L5 and

L6, which perceive variants of flax rust effector AvrL567 [187]. Consistant

with its function, the highly variable structure of LRR C-termini exhibits

strong diversifying selection, possibly under the pressure of ever-changing

pathogen effectors [98, 188] . Although the exact role of LRRs during

pathogen perception awaits clarification, at least in some cases, LRRs can

act as a sensor for effector-induced perturbations [179].

With the recently apparent function of integrated domains in NLR

proteins in effector sensing, it is logical to ask: how do they convert the

effector perception into NLR activation? As with the multi-functional LRR

domain, it is conceivable that the integrated domains may also function
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as both an effector-sensor and a regulatory module. Consistent with this

hypothesis, mutating or acetylating the WRKY domain of RRS1 is sufficient

to trigger effector-independent cell death when transiently or stably co-

expressed with RPS4 in N. tabacum [58, 59]. This suggests that the WRKY

domain negatively regulates the RRS1/RPS4 immune complex when in a

resting state, and pathogen recognition via the WRKY domain releases

this negative regulation, activating immunity. It would be interesting to

test whether the fusion domain in other paired NLRs (HMA domain in

RGA4/RGA5 and Pikp-1/Pikp-2, and the LIM domain of CHS3/CSA1) also

functions similarly to RRS1 WRKY domain as an auto-inhibitory and sensor

domain. Intriguingly, the N-terminal ‘sensor domain’ of mouse NLRP1b also

contributes to auto-inhibition, as the N-terminal cleavage by anthrax lethal

factor activates NLRP1b and initiates inflammasome assembly [189].

Last but not least, auto-inhibition maintained by domain-domain inter-

actions is also essential for competent activation upon elicitor perception,

as the activation requires appropriate de-repression. Indeed, NLR residues

essential for auto-inhibition and activation often overlap. However, the fact

that mutations can lead to either constitutive activation or loss-of-function

indicates auto-inhibition and activation require unique aspects of domain-

domain interactions. By shuffling polymorphic sites between Rx1 and Gpa2,

Slootweg et al. [181] have revealed that residues on different interfaces

of the ARC2 domain, ARC2-LRR and ARC2-NB interfaces, are involved in

effector-dependent and -independent activation respectively [181]. This

shows how a single domain could play different roles during auto-inhibition

and activation via interactions at different interfaces.

The N-terminal TIR/CC domain of NLRs is important for signalling and
oligomerisation

The majority of plant NLRs seem to rely on their N-terminal domains for

defence signalling [140]. Transient overexpression of the TIR domains of

many TNLs (e.g. RPS4, RPP1, L10, L6) and the CC domains of some CNLs

(e.g. MLA, NRG1, ADR1) induces cell death [94, 140, 168, 185, 190]. In these

systems, TIR or CC domains are often viewed as the minimal functional unit

for cell death induction [159, 191]. It is often observed that the TIR/CC

of the executor component of an NLR pair (e.g. RPS4) or the helper NLR

(e.g. ADR1, NRG1), which is directly involved in signalling, triggers cell
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death when expressed as a truncated protein, or is at least essential for cell

death mediated by ectopic NLR expression [135, 138, 185]. It is possible

that cell death triggered by the overexpression of CC or TIR domains is

an ectopic activation that differs from authentic NLR immune signalling.

However, not all N-terminal domains of functional NLRs trigger cell death

when overexpressed, for example, the sensor NLR RRS1 does not.

TIR/CC domains also function as scaffolds, facilitating the formation

of NLR complexes. For example, self-association of the CC domain is

required for homo-dimerisation and activation of the barley CNL MLA10

[192]. Alternatively, hetero-dimerisation of the N-terminal domains is nec-

essary to build the functional NLR-pair complexes RPS4/RRS1 (TIR/TIR) and

RGA4/RGA5 (CC/CC) [111, 115]. On the basis of transient co-expression in

Nicotiana spp. followed by co-immunoprecipitation, these NLR pair com-

plexes appear to be assembled prior to effector activation. Inactive immune

complexes likely adopt a closed conformation that sequesters the signalling

surface of TIR/CC domains. Consistently, structural models predict a spa-

tial proximity of TIR/CC to LRR C-terminus in the absence of the effectors

[154]. Upon effector activation, conformational changes occur that might

allow the recruitment of downstream signalling components as part of de-

fence activation. It has recently been shown that the CC domain of Rp1

directly interacts with its NB-ARC domain, and this interaction prevents the

CC-domain triggered defence activation [165].

Some animal NLRs multimerise to form a wheel-like structure, termed

the inflammasome [170, 171, 173, 193, 194]. Inflammasome assembly pro-

motes close proximity of the NLR N-terminal domains, which provide the

activation platform for signalling components [195, 196]. As with the animal

NLRs, the N-terminal domain (CC or TIR) of plant NLRs is shown to be crucial

for oligomerisation-dependent defence signalling. Crystal structures of the

CC domain of barley MLA10 and the TIR domain of Flax L6 have revealed

the in solution status of CC/CC or TIR/TIR homo-dimers, which are sufficient

to trigger defence signalling in planta [190, 197]. Mutations in the CC/CC or

TIR/TIR interface abolish both dimerisation and signalling activity, support-

ing the idea that N-terminal domain oligomerisation is required for defence

activation [154]. Furthermore, Bernoux et al. [197] revealed a conserved

patch on the L6 TIR/TIR interface required for dimerisation, suggesting a

possible common feature of TIR-dependent dimerisation of TNLs [197]. Nev-

ertheless, whether oligomerisation is a mechanism common to all plant NLR
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activation, and whether plant NLRs form high molecular-weight multimers

resembling the animal inflammasomes, remain open questions.

Recent structural studies revealed that at the centre of the animal NLR

inflammasome “wheel”, the N-terminal domains recruit adaptor proteins

to transduce the signal [170–172]. Some data suggest that the adaptor

proteins, such as caspase-1 and ASC, are able to polymerise into filaments

upon inflammasome formation, probably for rapid signal amplification [196,

198, 199]. Conceivably, plant NLRs could use a similar mechanism to recruit

signalling adaptors via their N-terminal domains. Induced proximity of

N-terminal domains of plant NLRs or their associated adaptors may be

sufficient to initiate defence signalling. The observation that increasing

the local concentration of TIR or CC domains by transient overexpression

triggers effector-independent cell death supports this hypothesis [159, 165,

185, 191, 200].

In addition, the RPP1WsB TIR domain when fused to a GFP tag, which

is prone to forming homo-dimers at high concentrations, is sufficient to

induce TIR domain self-association and cell death in transient assays [94].

In contrast, the RPP1WsB TIR-domain fusion to a monomeric GFP does not

trigger cell death [94]. Likewise Rp1 CC domain also depends on a GFP

fusion for cell death induction [165]. More recently, Schreiber et al (2016)

has demonstrated that the auto-activity of the RPP1 TIR domain is correlated

with its self-association ability in solution [201]. Intriguingly, on the L6

TIR domain, residues required for signalling activities have been identified

independently from the ones required for dimerisation, suggesting that the

TIR domain plays a role in defence signalling after NLR activation (possibly

in adaptor recruitment) [197]. Altogether, oligomerisation of the N-termini

of plant NLRs is likely to play a role in signalling.

TruncatedNLRs in Arabidopsis, such as TIR-NB-ARC (TN) and TIR-unknown

domain (TX), are able to trigger defence activation when transiently overex-

pressed in both N. tabacum and Arabidopsis [202, 203]. Although functions

of these truncated NLRs are largely unknown, they have been shown to di-

rectly interact with NLR proteins and pathogen effectors, implying their role

in immunity [203]. Interestingly, Chan et al. [204] observed that an Arabidop-

sis TIR-only protein structurally resembles Myd88, the adaptor for Toll-like

receptor-signalling in mammals [204]. This suggest that TIR-containing pro-

teins may function as adaptors for TNL signalling in plants. It is possible that
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the truncated NLR repertoire may directly cooperate with other full length

NLRs as adaptors for downstream signalling.

However, despite the effort to identify N-terminal domain interactors,

few candidates so far have shown the potential to be signalling components

thatmay act immediately downstream of plant NLRs [179]. These N-terminal

domain interactors are often diverse and sometimes highly specific, which is

conflicting with the concept of a common downstream signalling pathway

for plant NLRs. In fact, TIR domains have been implied as the specificity

determinant in some TNLs against flax rust, and the CC domain of Lr10,

which also plays a role in recognition specificity, shows greater sequence

diversity than the LRR domain [168, 180]. Such diversity observed in plant

N-terminal domains may be an indication that the plant NLR signalling

pathway can bemore complex than the animal NLR system. Overall for plant

NLRs, themechanism of N-terminal domain triggered cell death and the role

of the N-terminal domain in defence signalling awaits elucidation.

Subcellular localisation of the NLR immune complex is important for
defence signalling

Increasing evidence suggests that appropriate subcellular localisation of im-

mune components, including the immune receptors, cognate effectors and

their interactors, is crucial for the full establishment of defence response

[205]. Nuclear accessibility is essential for several NLRs to activate defence

(e.g. N, MLA, SNC1, Pb1, RPS4); and blocking their nuclear localisation render

these receptors non-functional. More often than not, the nuclear localisa-

tion of these NLR proteins is required for their interactions with transcription

factors (TFs) to activate defence. For example, upon pathogen perception,

the increased nuclear pool of barley MLA proteins (CNLs) can interact with

both negative and positive immune TFs to activate defence [206, 207]. The

active MLA10 (also MLA1) interacts with a defence activator MYB6 via its CC

domain to release MYB6 from the repressor WRKY1, andMYB6 subsequently

binds DNA to activate defence genes [207]. The rice CNL Pb1 activates de-

fence via binding and protecting the positive TF WRKY45 from degradation

[174, 208]. The tobacco TNL, N, associates with transcription factor SPL6 via

its LRR domain [209]. Another TNL, SNC1, associates with transcriptional co-

repressor TPR1 (Topless Related 1) via its TIR domain, and TPR1 suppresses

the expression of the negative defence regulators DND1 and DND2 [210]. In



How do plant receptors convert recognition to defence? 39

addition, SNC1 as well as RPS4 interacts with the positive immune regulator

TF bHLH84 [211].

For some NLRs, nucleocytoplasmic trafficking and the dual distribution

are required for their full functions (e.g. MLA, N, Rx and Rp1), indicating NLR

activities in distinct subcellular compartments [96, 192, 200, 210, 212, 213].

For the nucleocytoplasmically distributed MLA10, forced cytoplasmic locali-

sation (MLA10-NES) results in cell death induction but with no restriction of

pathogen growth; whereas forced nuclear-localisation (MLA10-NLS) is suffi-

cient to provide disease resistance, but fails to trigger cell death [192, 206].

These findings suggest that cytoplasmic and nuclear pools of MLA10 me-

diate cell death and disease resistance signalling respectively, and proper

coordination of the signalling pathways are important to achieve full de-

fence responses. Another example demonstrating the importance of dual

subcellular localisation is the maize auto-active Rp1-D21 protein, as target-

ing Rp1-D21 predominantly to either the nucleus or the cytoplasm abol-

ishes HR when transiently expressed in N. benthamiana [200]. Furthermore,

confined co-expression of Rp1-D21-NLS (in the nucleus) and Rp-D21-NES

(in the cytoplasm) can not provide full activity, showing that nucleocy-

toplasmic trafficking is essential for the cell death induction of Rp1-D21

[200]. What is mediating the nucleocytoplasmic trafficking of NLRs? It has

been reported that proper nucleocytoplasmic distribution of Rx1 requires

Ran GTPase-activating protein2 (RanGAP2) [212] and the nucleocytoplasmic

translocation of EDS1/PAD4/SAG101 seems to be required for the functions

of several NLRs (e.g. N, SNC1) [210, 213].

Co-localisation of the R proteins and their cognate effectors in certain

cellular compartments is also important for the activation of defence. Re-

cent studies have confirmed that the co-localisation and direct interaction

of RRS1 with either PopP2 or AvrRps4 occurred in the nucleus, and forced

exclusion of either the NLR protein or the effector can abolish defence sig-

nalling [58, 116, 214]. Recognition of potato virus X (PVX) coat protein (CP)

by Rx on the other hand requires co-localisation to the cytoplasm, as forced

nuclear localisation of CP fails to activate Rx.

Nevertheless, some NLR proteins, such as RPM1 and RPS2 are shown

exclusively localised at the plasma membrane for effector detection and

signalling initiation [215, 216]. How these NLRs activate defence signalling

in the nucleus is still unknown. Overall, NLRs often co-localise with their
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cognate effectors and/or their host targets, and sometimes move to specific

subcellular compartments to perform different branches of immune func-

tions. Future studies should reveal where pathogens are perceived in the

cell and in which subcellular compartment the different branches of the

defence system are activated by NLRs.

Several signalling components are required for plant NLR-triggered
immunity

In plants, studies have identified several signalling components that seemed

to act downstream of different groups of NLRs. For example, EDS1 (En-

hanced Disease Susceptibility 1) is a lipase-like protein that is required for

the immune signalling of all known TNLs, and has been shown to inter-

act with the TNLs RPS4, RPS6 and SNC1 [213, 217]. It has been reported

that pathogen effectors disrupt the interactions between EDS1 and cer-

tain TNLs, which might allow EDS1 to function downstream [217]. Recent

structural studies demonstrated that EDS1 forms heterodimers with PAD4

(PhytoAlexin Deficient 4) or the structurally related SAG101 (Senescence-

Associated Gene 101) , which are indispensable for EDS1 function [218].

EDS1, PAD4 and SAG101 form nuclear and cytoplasmic complexes and have

been implicated in bridging NLR defence signalling in different cellular com-

partments (cytoplasm and nucleus) [213]. EDS1 also interacts with SRFR1,

a negative regulator of immunity, which interacts and suppresses a sub-

set of TCP-family transcription factors [219–222]. These interactions may

contribute to signal transduction in a subset of TNLs.

Some CNLs localise to the plasma membrane (PM) and require NDR1

for immune signalling (e.g. RPS2, RPM1, and RPS5) [223, 224]. NDR1 (non-

race-specific disease resistance 1) undergoes glycosylphosphatidyl-inositol

and glycosylation for PM anchoring [225]. NDR1 has been demonstrated

to associate with RIN4, which is required for RPM1 and RPS2-mediated

resistance [226]. The ndr1-1 mutant is susceptible to Pst DC3000 carrying

AvrRpm1, AvrRpt2 and AvrPphB, and overexpression of NDR1 results in

enhanced resistance to Pst DC3000 [225]. Interestingly, Knepper et al.

[227] suggest that NDR1 may function like a mammalian integrin protein,

mediating the adhesion of plasma membrane and cell wall to prevent fluid

loss during pathogen infection [227]. However, how this protein participates

in the activation of effector-triggered immunity is still unclear.
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HSP90 (heat shock protein 90) and its co-chaperones RAR1 (Required

for MLA12 Resistance 1) and SGT1 (Suppressor of the G2 allele of Skp1) form

dynamic complexes to assist the functioning of both TNLs and CNLs [228].

These chaperones are important for the assembly and stabilisation of NLR

proteins so they maintain proper intra- and inter-molecular interactions for

their signalling competence [176, 229–231]. In addition, chaperone pro-

teins are shown to associate with the SCF (SKP1, Cullin, F-box protein) E3

ubiquitin ligase complex that mediates proteasomal degradation of target

proteins [232]. For example, SGT1 was shown to interact with the SCF com-

plex in yeast, which results in the ubiquitination and degradation of many

signalling proteins [233, 234]. Silencing of SGT1 affects the accumulation

of NLR proteins, suggesting that SGT1 regulates the stability of NLRs, and

may also degrade improperly folded NLRs via the ubiquitination pathway

[235]. Regulation of the NLR accumulation level is essential, as overex-

pression of NLRs may trigger harmful constitutive defence activation. It is

also possible that the HSP90/SGT1 (or HSP90/RAR1) complex may employ

ubiquitin-mediated protein degradation of immune suppressors to help

activate plant defence [236].

1.4 The NLR pair RRS1/RPS4 as a model to study plant
defence

1.4.1 Arabidopsis dual resistance genes, RRS1 and RPS4, prevent
infection by distinct pathogens

Arabidopsis RPS4 (Resistance to P. syringae 4) was found to be genetically re-

quired for the resistance against Pst expressing AvrRps4, and it was mapped

as a single dominant locus on chromosome 5 (At5g45250) in a cross be-

tween the susceptible accession RLD and the resistant accession Ws-0 [237,

238]. RRS1 (Resistance to R. solanacearum 1) was independently identified

by its ability to confer resistance to R. solanacearum GMI1000 carrying the

effector PopP2, and was mapped to chromosome 5 (At5g45260) closely

linked to RPS4 [214, 239, 240]. Interestingly, RRS1 segregates as a recessive

locus for R. solanacearum resistance: the F1 is susceptible in a cross between

the resistant Nd-1 (carrying a RRS1-R allele) and the susceptible Col-0 (car-

rying a RRS1-S allele) [239]. Allelic variation of RRS1 is observed in various

Arabidopsis accessions, and these polymorphisms seem to determine their
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resistance to R. solanacearum (PopP2) [114]. In this thesis, RRS1-R refers to

the resistance allele of Ws-2, and RRS1-S refers to the susceptible allele of

Col-0.

It was later discovered that RRS1 and RPS4 are both genetically re-

quired for resistance against two bacterial pathogens, Pst (AvrRps4) and

R. solanacearum (PopP2), and also the fungal pathogen C. higginsianum

[114, 241, 242]. The rps4 or rrs1 single mutant is sufficient to render the

plant susceptible to R. solanacearum and C. higginsianum, each phenocopies

the double mutant, suggesting that RPS4 and RRS1 function cooperatively

rather than additively [114]. It should be noted thatmutants that abolish the

RRS1/RPS4 function in Ws-2 and Col-0 still show resistance to Pst (AvrRps4),

indicating an additional R protein may recognise AvrRps4 independently

of RRS1/RPS4 [114, 241, 243]. An additional gene pair conferring Avr-

Rps4 recognition, designated as RRS1B/RPS4B, was discovered in the Jones

lab [121]. Following up this discovery, I report analyses of RRS1B/RPS4B

and RRS1/RPS4 in Chapter 3. The specific allelic requirement of RRS1 for

R. solanacearum (PopP2) resistance seems to hold true for the immunity

against C. higginsianum, but is not required for Pst (AvrRps4): RPS4/RRS1-R

confers resistance to the three pathogens, whereas RPS4/RRS1-S is only

effective against Pst (AvrRps4) [114, 241, 242]. The molecular basis for the

allelic determination of recognition specificity is still under investigation. I

will address and discuss the possible specific determinants for PopP2 and

AvrRps4 recognition capability mainly in Chapter 5.

RPS4 and RRS1 are arranged in the genome in a head-to-head orienta-

tion separated by a small intergenic region (264bp), which possibly func-

tions as a bidirectional promoter [238]. This head-to-head arrangement is

commonly observed for functional gene pairs (e.g.RGA4/RGA5, Pik-1/Pik-2),

which maybe a signature of transcriptional co-regulation and close coopera-

tion of the pair partners [110, 113, 114]. Interestingly, many RPS4 homologs

are paired with RRS1 homologs in a similar inverted arrangement with vari-

able intergene distances [238], suggesting their co-evolution as a linked

pair.

The Jones lab showed that transient co-expression of RRS1 and RPS4 via

Agrobacterium tumefaciens-mediated transformation in N. tabacum confers

specific recognition of effector proteins (AvrRps4 and PopP2), triggering HR

[58, 115]. In contrast, the expression of a single R protein with either effector
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fails to trigger HR, consistent with their cooperative function. Importantly,

this transient system in N. tabacum recapitulates the allelic-dependent vari-

ation of effector recognition capability observed in Arabidopsis, and also

does not display ectopic cell death when treated with non-recognisable

effector mutants [58, 115]. These data and many other evidence suggest

that for RRS1 and RPS4 this heterologous system is a viable tool to study

their native functions in Arabidopsis. This assay is frequently used in this

thesis for functional studies of R proteins, and is often referred to as the N.

tabacum (tobacco) transient assay or agro-infiltration assay.

Remarkably, Arabidopsis RRS1 and RPS4 have recently been shown to

function in two other Brassicaceae, Brassica rapa and Brassica napus, and

also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycop-

ersicum), conferring disease resistance [244–246]. In addition to RRS1/RPS4’s

function to protect Brassicaceae against C. higginsianum, the gene pair can

also prevent Colletotrichumorbiculare infection in cucumber (Cucurbitaceae)

[244, 245]. However, cognate effectors in these fungal species recognised

by RRS1/RPS4 have yet to be identified.

1.4.2 Themodular structure of TNLs RRS1 and RPS4

RPS4 encodes a TIR-NB-LRR receptor with a C-terminal 338 aa that does

not show homology to other known functional protein domains. This RPS4

C-terminal domain is abbreviated as CTD in this thesis Figure 1.1. RPS4

produces alternative transcripts, which encode various truncated proteins

corresponding to the TIR and TIR-NB domains, and these alternative splic-

ing varients in combination with full-length transcripts are required for RPS4

function [238, 247]. During pathogen-induced defence activation, the total

mRNA level and the alternative splicing of RPS4 are both increased, confirm-

ing their importance in defence [248]. Compared to the functional RPS4Col-0,

the non-functional RPS4RLD (encoded by RPS4 allele from RLD) contains five

amino acid changes, of which two (N195D and Y950D) are responsible for

it’s loss of function [238]. Molecular functions of these specific residues in

functional RPS4 have not been demonstrated.

RRS1 encodes a TIR-NB-LRR with an atypical C-terminal WRKY domain,

which resembles the WRKY family of transcription factors [240]. WRKY

transcription factors play crucial roles in regulating plant defence [249]. The

slh1 (Sensitive to low humidity 1) mutant of RRS1-R, with a single leucine
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insertion in the WRKY domain, exhibits constitutive defence activation and

a dwarf phenotype in Arabidopsis [250]. In turn, a popular hypothesis

emerged that RRS1 may negatively regulate defence via directly binding

to the DNA, and the disruption of WRKY domain DNA binding (in the slh1

mutant) would trigger defence activation. Furthermore, due to its chimeric

structure, RRS1 has been proposed to be a ‘Rosetta stone’ that can combine

the function of recognition, signalling and defence activation into one unit

[251, 252]. Recent evidence from the Jones lab suggest that the loss of RRS1

DNA binding is not sufficient to activate defence: Unlike RRS1-Rslh1, RRS1-

Sslh1 that also loses DNA binding activity does not trigger auto-immunity

[58]. Whether RRS1 activation depends its DNA binding activity will be

discussed in detail in Chapter 4 and Chapter 5 with further evidence.

Comparison of RRS1-S with RRS1-R reveals a pre-mature stop codon

in the S allele, leading to an 83-90 amino acid (aa) deletion (depending

on the accessions) at its C-terminus after the WRKY domain [240], and the

C-terminal extension is crucial for PopP2 recognition by RRS1-R [58]. In this

thesis, the shorter C-terminal extension (21 aa) after the WRKY ‘HNH’ motif

in RRS1-SCol-0 and the longer extension (104 aa) in RRS1-R Ws-2 are termed

the domain 6 of RRS1 Figure 1.1, and abbreviated as DOM6-S or DOM-R

respectively. The roles of the WRKY and DOM6 in effector recognition and

immune complex activation will be explored in Chapter 4 and Chapter

5. Similar to the slh1 mutant, Narusaka et al (2016) recently reported

that mutations of a leucine zipper (LZ) motif located between the LRR

and WRKY domain in RRS1-RWs-2 triggers RPS4-dependent auto-immunity

in Arabidopsis and in N. benthamiana [253]. This LZ motif of RRS1 seems

to be conserved in many different Arabidopsis accessions [253], however

the contribution of this motif to RRS1 activity is still unclear. Besides the LZ

motif, no function has been ascribed to the 322 aa between the LRR and

the WRKY domain of RRS1, and in this thesis we define this domain of RRS1

as domain 4, or DOM4 Figure 1.1. Functional studies regarding domain 4

of RRS1 will be included in Chapter 5.

Furthermore, wild type (WT) RRS1 has been reported to have a dom-

inant negative effect on its auto-immune allele slh1, as co-expression of

RRS1-WT with RRS1-Rslh1/RPS4 suppresses HR induction in tobacco tran-

sient assays [116], and the slh1 mutant is recessive in crosses to RRS1-R or

RRS1-S. This mirrors the recessiveness of RRS1-R (for PopP2 recognition) in

heterozygotes with RRS1-S [239, 250]. Interestingly, using similar transient
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RRS1-R
(Ws-2)

LRR DOM4

NB-ARC LRR CTDRPS4
(Col-0)

NB-ARC

LRR DOM4RRS1-S
(Col-0)

NB-ARC

TIR

DOM6-S

DOM6-RWTIR

TIR W

1 182 659 879 1217  aa

1 153 595 867 1189 1269 1372  aa

1289  aa

Figure 1.1: Domain architecture of RPS4, RRS1-R and RRS1-S with defined boundaries.
The six domains of RRS1-RWs-2 & RRS1-SCol-0 (TIR, NB-ARC, LRR, Domain 4 (DOM4), WRKY,

Domain 6 (DOM6)) and the four domains of RPS4Col-0 (TIR, NB-ARC, LRR, C-terminal domain

(CTD)) are defined. Numbers indicate the amino acid positions for domain boundaries.

assays, Narusaka et al. [253] showed that RRS1 cannot completely abolish

the HR triggered by the LZ mutant of RRS1-R coexpressed with RPS4, sug-

gesting the RRS1-R LZ mutant maybe semi-dominant. However, it is also

possible that by mixing two Agrobacterium strains, transient co-expression

of RRS1-WT and RRS1-R LZ mutant may allow certain cells to express only

the RRS1-R LZ mutant, thus explaining the residual HR. The P-loop motif

of RRS1 is required for its dominant negative effect [116]. In Chapter 5, I

will further explore the requirement of RRS1 for suppressing its auto-active

alleles, hopefully to learn more about the recessiveness of RRS1.

1.4.3 RRS1/RPS4 recognises effectors AvrRps4 and PopP2 in the
nucleus

Both RRS1 and RPS4 contain a predicted nuclear localisation signal (NLS)

[240, 254], however their functions in the nucleus have not been clearly char-

acterised. Wirthmueller et al. [254] showed that RPS4 is distributed between

the endomembrane (cytoplasm) and the nuclei, and that nuclear accumu-

lation of RPS4 requires the NLS and is important for defence activation

and resistance to Pst AvrRps4 [254]. AvrRps4 shows a nucleocytoplasmic

distribution, and forced nuclear export of AvrRps4 (via fusing to NES) par-

tially suppresses cell death responsiveness and resistance in Arabidopsis,

suggesting that nuclear co-localisation of AvrRps4 and RPS4 is required for

defence activation [213]. Although the cytoplasmic fraction of AvrRps4 has

been suggested to specifically mediate cell death signalling (independent

of the resistance signalling) [213], later reports showed that forced nuclear
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localisation of AvrRps4-NLS does not abolish cell death [116]. Overall, these

results suggest that the nucleus is the main site where AvrRps4 recognition

and subsequent signalling occurs. It remains possible that a sub-pool of

AvrRps4may be detected in the cytoplasm, yet the defence signalling needs

to be carried out in the nucleus. As RPS4 does not re-localise after effec-

tor treatment, EDS1 has been proposed to be the signalling coordinator

between the cytoplasm and the nucleus [213, 217].

RRS1 has been observed to co-localise with the effector PopP2 in the

nucleus [214]. The N-terminal NLS signal of PopP2 is required for the

nuclear localisation of the RRS1/PopP2 complex, and deletion leads to the

nuclearcytoplasmic distribution of RRS1/PopP2 complex [214]. However,

PopP2 with the NLS deletion (149-448aa) is still recognised by RRS1-R/RPS4

[116], suggesting that nuclear targeting of PopP2 is not necessary for it

to be recognised. Perhaps after RRS1 perceives PopP2 (149-448aa) in the

cytoplasm, it can relocate PopP2 into the nucleus for defence activation.

On the other hand, PopP2(149-448aa)-NES forced to the cytoplasm is not

recognised and fails to trigger RRS1-R/RPS4 mediated resistance [116]. To

summarise, it seems PopP2 recognition also requires nuclear co-localisation

with its receptor similar to AvrRps4. Indeed, Sarris et al. [58] confirmed

that the receptor complex RRS1/RPS4 associates with both AvrRps4 and

PopP2 in the nucleus using Bimolecular Fluorescence Complementation

(BiFC) assay.

1.4.4 The knowns and unknowns: T3SS effectors AvrRps4 and
PopP2

AvrRps4 was identified from the Pseudmonas syringae pv. pisi, and it is a

221 aa protein with an N-terminal domain sufficient for its delivery into the

plant cell by the T3SS [237, 255]. After secretion, AvrRps4 is cleaved in planta

between G133 and G134, and the processed C-terminal 88 amino acids are

necessary and sufficient to induce resistance, referred to as AvrRps4 C-term

in this thesis [256]. Nevertheless, this in planta processing is not neces-

sary for AvrRps4-triggered immunity, as the processing-deficient mutant

AvrRps4-R112L is still recognised [256]. The crystal structural of the AvrRps4

C-term has revealed an anti-parallel α-helical coiled coil, with a prominent

negative charged patch predicted to be important for protein-protein inter-

action [243]. Interestingly, residues E187 and E175 on the negative patch
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as well as the KRVY motif (135-138 aa) at the N-terminus of AvrRps4 C-term

are essential for AvrRps4 recognition [243, 256]. In addition, a surface ex-

posed residue L167 of AvrRps4, which is on a distinct patch from E187 and

E175, is shown to be specifically required for RRS1- and RPS4- independent

recognition [243]. Chapter 3 will focus on the recognition mechanism of

AvrRps4, and will address the reason why these residues are required for its

avirulence.

Virulence activity of AvrRps4 was demonstrated where expression of

AvrRps4 in Arabidopsis lacking RPS4 promotes susceptibility to Pst DC3000

[256]. Both the in planta cleavage and the exposed KRVY motif after the

cleavage are required to achieve this full virulence [256]. Interestingly, it has

been shown that AvrRps4 is targeted to the chloroplast for processing via a

possible N-terminal chloroplast transit peptide, which is sharedwith effector

HopK1 [69]. This result indicates that although the recognition occurs in

the nucleus, AvrRps4 may perform some of its virulence functions in the

chloroplast. Furthermore, as with many other multifunctional effectors, the

N-terminal and C-terminal cleavage products of AvrRps4 could play distinct

roles in different cellular compartments.

R. solanacearum T3SS effector PopP2 belongs to the YopJ protein fam-

ily that is present in both mammalian and plant pathogens [214, 257].

PopP2 has been shown to physically interact with RRS1-R and RRS1-S, and

subsequently stabilizing the R proteins possibly via preventing their protea-

somal degradation [214, 257]. PopP2 also interacts with a cysteine protease

RD19 (Responsive to dehydration 19) required for PopP2-triggered immu-

nity, which is transported into the nucleus in the presence of PopP2 [258].

The role of RD19 during defence activation is not known. PopP2 is an active

acetyl-transferase, and the catalytic core residue C321 is essential for the vir-

ulence and avirulence function of PopP2 [257]. Recent studies showed that

PopP2 contributes to R. solanacearum virulence via acetylating host WRKY

transcription factors, which abolishes their DNA binding [58, 59]. Le Roux

et al. [59] also demonstrate that delivery of PopP2 by the non-pathogenic

strain Pseudomonas fluorescens PfO-1 can suppress PTI in N. benthamiana

[59]. PopP2 also acetylates the WRKY domain of both RRS1-R and RRS1-S,

which leads to its recognition by RRS1-R/RPS4 [58, 59]. The link between the

virulence activity and its recognition will be detailed in Chapter 4.
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1.4.5 How does the RRS1/RPS4 immune complex operate?

RRS1 and RPS4 associate to form a functional immune complex that detects

effector and activates defence [58, 115, 121]. The TIR domains of RRS1 and

RPS4 can form homo- and heter-dimers, and the crystal structure of RRS1-

RPS4 TIR-TIR heterodimer demonstrates the physical interaction between

the two proteins [115]. TIR domain hetero-interaction mediated by the

conserved SH motif is essential for effector recognition by the RRS1/RPS4

complex, although SH-AA mutants of full-length RRS1 and RPS4 are still

able to associate [115]. A long standing observation is that RPS4 or RPS4 TIR

domain can trigger effector-independent cell death when over-expressed,

implicating it’s function in defence signalling [185, 254]. Williams et al.

[115] further demonstrate that homo-dimerisation of RPS4 TIR domains is

required for this signalling activity. Moreover, P-loop mutation in RPS4,

but not in RRS1, renders the RRS1/RPS4 immune complex non-functional

for effector recognition [115], confirming the role of RPS4 as an executor.

Chapter 3 will investigate the functional implications of TIR domain homo-

and hetero-oligomerisation during the immune complex assembly and ac-

tivation, not only for RRS1/RPS4, but also for RRS1B/RPS4B. Specific pairing

between cognate partners is required for the functioning of immune com-

plexes RRS1/RPS4 and RRS1B/RPS4B, I will explore in Chapter 3 the domain

components required for this specificity. Chapter 4 and Chapter 5 will re-

veal the distinct roles of RRS1 and RPS4 within the immune complex, with

Chapter 4 focusing on recognition mechanisms for AvrRps4 and Chapter

5 focusing on immune complex activation after effector recognition. The

background and project aim will be individually introduced in each of the

result chapters.

In summary, the Arabidopsis R gene pair RRS1/RPS4 together with its

paralogous pair RRS1B/RPS4B serves as a good system to study NLR mecha-

nisms. The chimeric nature of RRS1 and RRS1B, which is shared with many

other fusion NLRs, provides a unique opportunity to uncover new NLR func-

tional mechanisms. Variations in the NLR pairs’ ability to perceive different

effectors (AvrRps4, PopP2) allow us to explore the recognition specificity

and NLR activation in a dynamic context. How paired NLR proteins work

as a single immune complex is an interesting and important problem. It

is a challenge to study the dynamic molecular interactions that convert

effector recognition to defence activation, but dissecting their operating



The NLR pair RRS1/RPS4 as a model to study plant defence 49

mechanisms will provide valuable insights for many other cooperative NLR

systems. The molecular details of auto-inhibition and effector-triggered

activation of this iconic NLR pair would provide a foundation for future

synthetic resistance engineering.
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2Materials and Methods

2.1 Materials

2.1.1 Plant Materials

Arabidopsis thaliana

Wild type or mutant Arabidopsis thaliana (hereafter Arabidopsis) lines used

in this study are in Col-0 (Columbia) or Ws-2 (Wassilewskija) accession. All

mutant lines are listed in (Table 2.1). Seeds were sown directly on compost

and plants were grown under controlled conditions: 21 °C; 10 hours light

and 14 hours dark (short days); 75% humidity.

Mutant allele Accession Reference/Source

rrs1-3 Col-0 [121], SALK-061602

rps4-2 Col-0 [254], SALK-057697

rrs1b-1 Col-0 [121], SALK-001360

rps4b-2 Col-0 [121], SALK-063382

rrs1-3/rrs1b-1 Col-0 [121]

rps4-2/rrs1b-1 Col-0 [121]

rps4-2/rps4b-2 Col-0 [121]

eds1-2 Col-0 [259]

rrs1-1 Ws-2 [114]

rps4-21 Ws-2 [241]

rps4b-1 Ws-2 [121], FLAG-049F09

rrs1-1/rps4b-1 Ws-2 [121]

rps4-21/rps4b-1 Ws-2 [121]

Table 2.1: Mutant Arabidopsis lines used in this study. T-DNA insertion lines obtained

from the SALK and INRA institutes are given IDs.
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Nicotiana spp.

Nicotiana benthamiana and Nicotiana tabacum (cultivar ‘Petit Gerard’) were

used for transient Agrobacterium tumefaciens-mediated transformation of

leaf tissues. Seeds were sown directly on compost and plants were grown

under controlled conditions: 24 °C; 16 hours light and 8 hours dark (long

days); 55% humidity.

2.1.2 Antibiotics

Antibiotic Stock concentration Working concentration

Carbenicillin (Carb) 100 mg/mL in H₂O 100 µg/mL

Chloramphenicol (Cam) 10 mg/mL in H₂O 30 µg/mL

Gentamycin (Gen) 10 mg/mL in H₂O 20 µg/mL

Kanamycin (Kan) 50 mg/mL in H₂O 50 µg/mL

Rifampicin (Rif ) 10 mg/mL in methanol 50 µg/mL

Spectinomycin (Spt) 100 mg/mL in H₂O 50 µg/mL

Tetracycline (Tet) 5 mg/mL in 50% ethanol 10 µg/mL

Table 2.2: Antibiotics used in this study.

Stock solutions were stored at -20 °C, except for Rifampicin, which was

stored at 4 °C. Working concentrations indicate the final concentrations

used in selective media.

2.1.3 Bacterial strains

Pseudomonas spp.

Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) and Pseu-

domonas fluorescens strain Pf0-1 (Pf Pf0-1) were used. Pst DC3000 is a se-

quenced Pst strain, and is Rifampicin (Rif ) resistant. Pf Pf0-1 was engineered

with a functional T3SS for effector delivery [260], and is Chloramphenicol

(Cam) and Tetracyclin (Tet) resistant. All Pseudomonas strains carrying var-

ious constructs used in this study were obtained from Kee Hoon Sohn

(previous member of the lab), detailed cloning information were described

in [243] and [116]. Constructs were introduced into Pst DC3000 and Pf Pf0-1

using standard triparental mating methods described in [255].



Materials 53

Strain Construct Antibiotic resistance

Pst DC3000 pVSP61 (empty vector) Rif/Kan

Pst DC3000 pVSP61::avrRps4 Rif/Kan

Pf Pf0-1 pBBR1MCS-5::avrRps4 Cam/Tet/Gen

Pf Pf0-1 pBBR1MCS-5::avrRps4-KRVYAAAA Cam/Tet/Gen

Pf Pf0-1 pBBR1MCS-5::avrRps4-E187A Cam/Tet/Gen

Pf Pf0-1 pBBR1MCS-5::avrRps4-L167T Cam/Tet/Gen

Pf Pf0-1 pBBR1MCS-5::avrRps4-L167S Cam/Tet/Gen

Pf Pf0-1 pEDV6::popP2 Cam/Tet/Gen

Pf Pf0-1 pEDV6::popP2-C321A Cam/Tet/Gen

Pf Pf0-1 pML123::hopA1 Cam/Tet/Gen

Table 2.3: Pseudomonas strains used in this study

Escherichia coli

E. coli strains DH10B and DH5α were used in this study for cloning pur-

poses.

DH5α genotype: F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1

hsdR17 (rK-, mK+) phoA supE44 λ- thi-1 gyrA96 relA1 [261]

DH10B genotype: F-mcrAΔ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15ΔlacX74

recA1 endA1 araD139 Δ(ara leu) 7697 galU galK rpsL nupG λ- [262]

Agrobacterium tumefaciens

A. tumefaciens strains GV3101 and Agl1 were used in this study for transient

transformation of Nicotiana spp.. The strain Agl1 is Rifampicin and Carbeni-

cillin resistant. The strain GV3101 carrying the helper plasmid pMP90 is

Rifampicin and Gentamycin resistant [263].

2.1.4 Oligonucleotides (Primers)

Lyophilised primers were resuspended in ddH₂O to a final concentration

of 100 µM and stored at -20 °C. The working solutions were diluted to 10

µM. Primers used for polymerase chain reaction (PCR) to amplify R gene

fragments are listed in (Table 2.7), and the ones used for quantitative

reverse transcription-PCR (qRT-PCR) are listed in (Table 2.4).
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2.2 Methods

2.2.1 Molecular biological methods

Isolation of genomic DNA from Arabidopsis

Arabidopsis genomic DNA (gDNA) was extracted using Qiagen DNeasy Plant

Mini kit following manufacturer’s instructions. Briefly, 4–5-week-old plant

leaves were ground into fine powder using mortar and pestle in liquid nitro-

gen. Samples were then lysed and homogenized through the QIAshredder

spin column. By passing the samples through the DNeasy Mini spin column,

the DNA selectively binds to the silica membrane while contaminants pass

through. Remaining contaminants and enzyme inhibitors were removed

by wash steps. Genomic DNA was then eluted in water, and stored at

-20 °C.

Polymerise chain reaction (PCR)

Standard PCR reactions (e.g. for colony PCR) were performed using Taq

DNA polymerase (NEB, Qiagen). For cloning of PCR products, Phusion high-

fidelity DNA polymerase (NEB) were used. Reaction mix was made following

manufacturer’s instructions. Depending on the experiment, plasmid DNA,

genomic DNA or cDNAwas used as template. PCR reactions were carried out

in a thermocycler (DNA engine PTC225, MJ Research), following standard

protocol instructions for cycles and thermal conditions. Annealing tempera-

tures and elongation time were optimised based on primer properties and

the desired amplifying fragments’ size for each experiment.

Isolation of total RNA from Arabidopsis

Leaves of 5-week-old Arabidopsis were snap frozen in liquid nitrogen for

RNA extraction. Samples were ground into fine powder either by using

mortar and pestle or by shaking in a 2 mL centrifuge tubes with 1.2 mm

stainless steel beads. 1 mL of TRI reagent (Sigma) was added to (~100 mg)

samples and homogenised by vortexing. After incubation at room tempera-

ture for 5 min (for dissociation of nucleo-protein complexes), samples were

centrifuged at 12000 g for 5 min at 4 °C. One hundred µL of BCP (1-bromo

3-chloropropane, Sigma) was then added to each sample, which was shaken
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vigorously for 15 seconds. After incubation for 10 min at room temperature,

samples were centrifuged at 12000 g for 15 min at 4 °C. The RNA containing

upper aqueous phase (~0.5 mL) were then transferred into a new eppendorf

tube.

RNA was precipitated by adding 0.5 volumes of isopropanol and 0.5

volumes of high salt precipitation solution (0.8 M sodium citrate and 1.2

M NaCl), and mixed well by turning the tubes. After incubation at room

temperate for 5 min, samples were centrifuged for 15min at 12 at 12000 g at

4 °C. The RNA pellets were washed with 1.5 mL of 75 % ethanol, centrifuged

for 5 min at 7500 g at 4 °C.

Pellets were air dried at room temperature for 5–10 min, and re-

suspended in DEPC-treated H₂O. To remove DNA from the RNA samples,

DNAse treatment was applied according to the DNase I (RNase-free) proto-

col (Roche). After the treatment, proteinase K were added to the RNA and

incubated for 15 min at 42 °C to deactivate DNAse I. RNA was then purified

using Qiagen RNeasy columns following the manufacturer’s instructions.

Integrity of RNAs was assessed by electrophoresis. RNA concentration was

quantified using Nanodrop (Thermo scientific, UK). RNA was then stored at

-80 °C.

Quantitative reverse transcription-PCR (qRT-PCR)

First strand cDNA was synthesised from 1–2 µg purified total RNA using

SuperScript II Reverse Transcriptase (Invitrogen). Reverse transcription re-

action mix was made with oligodT following manufacturer’s instructions.

Note that the sample mixture was incubated at 70 °C for 10 min to disrupt

secondary structures, and then transferred on ice. Then the reaction mix

was incubated at 42 °C for 75 min and transferred back on ice. The cDNA

was adjusted to 50-100 μl and stored at -80 °C. Quantitative RT-PCR were

performed in the CFX96 Thermal Cycler (Bio-Rad) using real time PCR SYBR

Green JumpStart Taq ReadyMix (Sigma) as dye. Specific defence marker

gene primers used in this study were listed in (Table 2.4).

Each reaction (~50 ng cDNA per reaction) was performed in triplicates

and the average threshold cycle (Ct) was used to quantify relative gene

expression. The relative expression values of defense marker genes were

determined using the comparative Ct method (ΔΔCt) with Ef1α (At5g60390)

as a reference for normalization.
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Gene Size Forward Primer Reverse Primer

EF1α (AT5G60390) 150 bp TGAGCACGCTCTTCTTGCTTTCA GTTGTATCCGACCTTCTTCAGG

SARD1 (AT1G73805) 202 bp CCGATATGCGAAGTTATGAAAGC AGTGGCTCGCAGCATATTGTT

SID2 (AT1G74710) 208 bp CAATTGGCAGGGAGACTTACG GAGCTGATCTGATCCCGACTG

EDS5 (AT4G39030) 194 bp ACCTTTCTTCATGGCGTTGTCT ATTGAAATCCGACGAGAACGA

PAD4 (AT3G52430) 188 bp TGTTCTTTTCCCCGGCTTATC ATAGAAGCCAAAGTGCGGTGA

Table 2.4: List of primers used for qRT-PCR experiments in this study

Golden Gate Cloning

The Golden Gate technology enables a single-step assembly of multiple

DNA fragments into a destination vector, utilising the activities of a type IIS

endonuclease (BsaI was used in this study) and T4 DNA ligase [264] [265]

[266]. The Type IIS endonucleases cleave outside their recognition sites,

creating 4 base pair (bp) overhangs after digestion. Therefore the Type IIS

recognition site is designed to be distal to the cleavage site in both the

inserts and destination vectors, such that digestion & ligation can remove

the recognition sequence, allowing seamless assembly.

For ease of interpretation, the DNA fragments (or insert-containing

plasmids) are termed the modules, the destination vectors are termed the

acceptors, and the one-pot one-step digestion & ligation reaction is termed

the dig-lig reaction. For each assembly, a unique set of compatible 4 bp

overhangs at the junctions of all modules and the acceptor are designed to

ensure the assembly in a desired order. It should be noted that all modules

and acceptor plasmids must be otherwise free of internal recognition sites

for the enzyme (e.g. BsaI), and the removal of these sites are called “domes-

tication”. The dig-lig reaction composition and cycles are shown in Table
2.5 & Table 2.6.

Each 20 µL reaction was desalted using a sepharose column, of which

1-5 µL was transformed into competent E. coli cells.

Golden gate assembly of chimeric proteins

Domain boundary definitions In Chapter 5, six domains of RRS1-R and

RRS1B (TIR, NB-ARC, LRR, Domain 4 (DOM4), WRKY, Domain 6 (DOM6)) and

four domains of RPS4 and RPS4B (TIR, NB-ARC, LRR, C-terminal domain
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Components volume per 20 µL reaction

100 ng/µL Acceptor plasmid 1 µL

Modules (inserts), each adjusted to 2:1 molar con-

centration of insert:acceptor

1 µL per module

20 U/µL BsaI (ThermoFisher) 1 µL

400 U/µL T4 DNA ligase (NEB) 1 µL

10x CutSmart Buffer (NEB) 2 µL

10 mM ATP 2 µL

Table 2.5: Digestion-ligation reaction composition dH₂O was added to bring the total

volume to 20 µL.

Temperatures Duration Cycles

40 °C 10 min

16 °C 10 min x3

50 °C 10 min x1

80 °C 20 min x1

16 °C ∞

Table 2.6: Digestion-ligation reaction cycles

(CTD)) are defined with their swapping breakpoint amino acid labelled in

Table 5.1. Ws-2 alleles of RRS1-R, RRS1B and RPS4B and Col-0 allele of RPS4

were used. TIR, NB-ARC and LRR domains are generally defined based on

sequence homologies and domain boundaries characterised in other plant

TNLs, and the WRKY domain of RRS1 and RRS1B in Chapter 5 is defined

from 22-25 aa before the WRKYGQK motif at EKK (RRS1-R) or NNK (RRS1B)

till the end of the zinc finger motif HNH. The domains with no predicted

function (based on homology) are subsequently defined as RRS1 or RRS1B

Domain 4 (between LRR and the WRKY domain), RRS1 or RRS1B Domain 6

(the C-terminal amino acids after the defined WRKY domain) and RPS4 or

RPS4B CTD (the C-terminal domain after the LRR) respectively. The exact

domain boundaries were chosen for cloning and swapping purposes so

that the breakpoint amino acids are identical between RRS1-R & RRS1B and

RPS4 & RPS4B, and also are designed to minimise potential disruption of

predicted structural and functional motifs.
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Chimera assembly Using the Golden Gate shuffling method, each single

domain was cloned as a module, and together assembled into full-length

R genes with varying domain combinations from the A pair (RRS1, RPS4)

or the B pair (RRS1B, RPS4B) according to these defined boundaries. Each

domain module was generated by PCR-amplifying fragments from genomic

DNA materials with primers containing the BsaI recognition site and a

specific 4 bp overhang, and then cloned into the pCR8/GW/TOPO vector

(ThermoFisher). Table 2.7 lists the primers and cloning information for all

domain modules. Note that prior to domain fragments amplification, the

RRS1, RPS4, RRS1B, RPS4B gDNA templates were ‘domesticated’ i.e. removal

of internal BsaI sites. The 4 bp overhangs at the domain junctions are

designed that they match between the A pair and B pair modules. The 3 nu-

cleotides within the 4 bp overhangs that code for the swapping breakpoint

amino acids were highlighted in Figure 5.1.

Each full-length chimeric (or wild type) R gene was assembled with

a C-terminal tag module pICSL50001 containing the HF tag (6xHis 3xFlag)

into a binary vector (pICSL86922 or pICSL86977), which has a built-in 35S

(CaMV) promoter. These acceptor vectors are compatible for BsaI digestion,

accepting insert modules with overhangs starting with AATG and ending

with GCTT. More information about Golden Gate compatible plasmids and

cloning techniques can be found on [http://synbio.tsl.ac.uk/]. Exper-

imental procedures for Golden Gate assembly are described in the previous

section.

Transformation of competent bacterial cells and selection

Plasmids or ligation products were transformed into electro-competent E.

coli (DH10B, DH5α) or A. tumefaciens (Agl1, GV3101) by electroporation. 50

μl of competent cells were thawed on ice before adding 1-2 µL plasmid DNA

(~200-500 ng/µL) or 5 µL ligation products and mixed well. The mixture

was then transferred into a pre-cooled electroporation cuvettes (1 mm gap)

and kept on ice. Electroporation was performed using a cell porator (Gene

Pulser Xcell, Bio-Rad) with following conditions: for E. coli, voltage = 1800

V, capacitance = 25 μF, resistance = 200 Ω; for A. tumefaciens, voltage =

2400 V, capacitance = 25 μF, resistance = 200 Ω. Immediately after the

electroporation, cells were recovered by adding of 250 µL of L-medium

http://synbio.tsl.ac.uk/
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Domain 
modules 

Amino acid 
No.(aa)  

Nucleotide 
No. (bp)

Over-hangs 
5'-3'

R1-TIR 1-153 1-568 AATG F CACCGGTCTCTAATGACCAATTGTGAAAAGGATG
153aa 568bp R TACGGTCTCATCCAATTCGTCCAACATAAAAG

R1-NB-ARC 154-595 569-1974 TGGA F CACCGGTCTCTTGGAATCTATTCGAAGCTGCT
442aa 1406bp R TACGGTCTCAGGTTCCACCCCAAAGTTTCTG

R1-LRR 596-867 1975-2883 AACC F CACCGGTCTCTAACCAAGGTAAGCAATCTCT
272aa 909bp R TACGGTCTCAGTAGCTTCTCCGAGTCAGAAC

R1-DOM4 868-1189 2884-4036 CTAC F CACCGGTCTCTCTACCTATGCATTACAAGTTC
322aa 1153bp R TCCGGTCTCACTTTTTTGGTACGTCAGACA

R1-WRKY 1190-1269 4037-5959 AAAG F CGCCGGTCTCTAAAGTAAGTTCTCTTTTTCTATC
80aa 1923bp R TCCGGTCTCAATGGTTATGCTCAGATAGGTA

R1R-DOM6 1270-1373 5960-6271 CCAT F CAAGGTCTCTCCATCCACGGCCCACTAAA
104aa 312bp R TAGGTCTCACGAACCATAATCGAAGAATGTTGACCAAGG

R1B-TIR 1-144 1-499 AATG F CACCGGTCTCTAATGATCGAGAGTGAGCAAATC
144aa 499bp R TCCGGTCTCATCCAATTCGTTCCATATAA

R1B-NB-ARC 145-588 500-1914 TGGA F CACCGGTCTCTTGGAATCTACTCGAAGCTG
444aa 1415bp R TACGGTCTCAGGTTCCACTCCAAAGTTTCT

R1B-LRR 589-811 1915-2671 AACC F CACCGGTCTCTAACCAAGGTAAGCAATCTCA
223aa 757bp R TACGGTCTCAGTAGCTTCTTGAAGTCCAAAC

R1B-DOM4 812-1162 2672-3802 CTAC F CACCGGTCTCTCTACCAGTGCATTACACATT
351aa 1131bp R TACGGTCTCACTTTCGGCGACTCTTTGAAC

R1B-WRKY 1163-1237 3803-4190 AAAG F CGCCGGTCTCTAAAGTATGTTGCTTAGTTT
75aa 388bp R TACGGTCTCAATGGTTATGCTCAGAGATGT

R1B-DOM6 1238-1372 4191-4598 CCAT F CAAGGTCTCTCCATCCATTCCCCACTCTAC
135aa 408bp R TAGGTCTCACGAACCTCTATTCAGAATTTTACTAG

R4-TIR 1-182 1-694 AATG F CACCGGTCTCTAATGGAGACATCATCTATTTCC
182aa 694bp R TATGGTCTCATCCCTCCGGTGGTATTCC

R4-NB-ARC 183-659 695-2318 GGGA F CAATGGTCTCTGGGAAGTCACAACGCCGT
477aa 1624bp R TGCCGGTCTCAGTGTGTCCTATTACAGAAAA

R4-LRR 660-879 2319-2977 ACAC F CAACGGTCTCTACACCATGCTTAAGGTGGGT
220aa 659bp R TCCGGTCTCATGGAACTGATGTAAGACTCGT

R4-CTD 880-1217 2978-4113 TCCA F CACCGGTCTCTTCCAGAGTTTCCACCAAAT
338aa 1136bp R TATGGTCTCACGAACCGAAATTCTTAACCGTGTG

R4B-TIR 1-181 1-777 AATG F CAAAGGTCTCTAATGGCGGCGTCGTCGTCCT
181aa 777bp R TACGGTCTCATCCCTCCAATGAAACTTTCTTCA

R4B-NB-ARC 182-659 778-2404 GGGA F CAAGGTCTCTGGGAAGCCAAAAGGTGGTGTC
478aa 1627bp R TACCGGTCTCAGTGTATCCTGAGCAGTAAAA

R4B-LRR 660-855 2405-2991 ACAC F CACCGGTCTCTACACCAGTCTTAAAATGGGT
196aa 587bp R TACCGGTCTCATGGAACATATGTAAGCTTCG

R4B-CTD 856-1165 2992-4030 TCCA F CAAAGGTCTCTTCCAGAGTTGCCACCAACTC
310aa 1039bp R TACCGGTCTCACGAACCACTAGTGACTTTATCTTCTA

RRS1Ws-2 (R1)

RRS1BWs-2 (R1B)

RPS4Col-0 (R4)

RPS4BWs-2 (R4B)

Primers (5'-3')

Table 2.7: List of primers used for cloning domainmodules of RRS1, RRS1B, RPS4 and RPS4B. Forward (F) and Re-

verse (R) primers used to amplify each domain from genomic DNA of BsaI-domesticated RRS1Ws-2, RRS1BWs-2, RPS4Col-0

and RPS4BWs-2 are listed. The primers highlight BsaI recognition sequences (blue) and cleavage sites (bold & under-

lined). Amino acid numbers and nucleotide numbers indicate the boundaries and the size of each domain. The 4 bp

overhang at the 5’ end of each domain is shown.
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followed by incubating in a shaker for 1 h at 37 °C for E. coli and at 28 °C for

A. tumefasciens.

Transformed cells were then selected on L agar plates supplemented

with the appropriate antibiotics Table 2.2. Positive clones can also be

selected using blue/white section if vector plasmids contained the lacZ

cassette. For blue-white selection, IPTG (0.5 mM) and X-gal (40 µg/mL)

were spread onto agar plates prior to adding bacterial cells. Plates were

incubated at 37 °C for E. coli overnight, or at 28 °C for A. tumefasciens for 2–3

days to select for single colonies.

Plasmid purification and confirmation

The cultures of bacterial clones carrying desired DNA plasmids were either

grown from single colonies on a selective agar plate, or re-cultured from

a frozen glycerol stock (details see below). Cultures were grown in liquid

L-medium in a shaking incubator (200 rpm, at 37 °C overnight for E.coli;

200 rpm, at 28 °C 2 days for A. tumefaciens). Cells were collected by

centrifugation for 10 min at 3500 rpm, and then lysed and purified using

QIAprep Spin Miniprep Kit (Qiagen) following manufacturer’s instructions.

Each preparation was eluted in 40 μl dH₂O and stored at -20 °C.

Successful DNA insertions into the plasmids were checked by restriction

enzyme digestion analysis. Plasmid sequences, especially the DNA inserts,

were then confirmed by illumina sequencing using services provided by

the GATC Biotech company [http://www.gatc-biotech.com/en/index.

html]. Correct plasmids were re-transformed to obtain single colonies, and

then cultured and stored as glycerol stocks at -80 °C: 800 µL bacterial liquid

culture made from a single colony plus 400 µL 60% glycerol.

2.2.2 Bacterial infection and infiltration assays

P. syringae pv. tomato (Pst) growth assay

Pst DC3000 strains carrying denoted constructs were grown on selective L-

medium agar plates for 48 hours (h) at 28 °C. Bacteria were harvested from

plates and re-suspended in 10mM MgCl₂, and adjusted to OD600=0.001

[5x10⁵ colony forming unit (cfu)/mL] for infiltration. Leaves of 5-week-old

Arabidopsis plants were hand-infiltrated with needle-less syringes. Infected

leaf samples were harvested 3 days post infiltration (dpi) using a cork borer

http://www.gatc-biotech.com/en/index.html
http://www.gatc-biotech.com/en/index.html
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(d = 0.6 cm), resulting in 1 cm²-sized leaf discs. For each condition, six leaf

discs from 4 independent plants were randomly sampled, and ground in

10 mM MgCl₂. The suspensions were then serially diluted (10², 10³, 10⁴,

10⁵), and spotted (each spot=10 μl) on selective L agar plates to grow at

28 °C for 48 h before colony counting. The bacterial growth (cfu/cm²) was

estimated according to the average colony counts per unit of sample leaf

area, normalised to respective dilution factors.

Infiltration (HR) assays of P. fluorescens (Pf)

Pf Pf0-1 strains carrying denoted constructs were grown on selective L-

medium agar plates for 24 h at 28 °C. Bacteria suspension in 10mM MgCl₂

were adjusted to OD600=0.2 (1x 10⁸ cfu/mL) for infiltration. Leaves of 5-

week-old Arabidopsis plants were hand-infiltrated and kept for 20–24 h for

HR symptom development (leaf tissue collapse).

Agrobacterium-mediated transient transformation of N. tabacum and N.
benthamiana

A. tumefaciens strains carrying denoted binary constructs were streaked

on selective L-medium agar plates and grown for 24-48 h. From single

colonies, cultures were grown in liquid L-medium for 24 h in a shaking

incubator (200 rpm, 28 °C). Cells were harvested by centrifugation and

re-suspended at OD600=0.5 (2.5x10⁸ cfu/mL) in infiltration medium (10mM

MgCl₂, 10mM MES, pH 5.6). For co-expression, each bacterial suspensions

carrying individual constructs was adjusted to OD600=0.5 in the final mix

for infiltration. Leaf sections of 5-week-old N. tabacum or leaves of N.

benthamiana were infiltrated with 1 mL needle-less syringe. The infiltrated

N. benthamiana leaves were taken off at 2 dpi for total protein extraction

and co-immunoprecipitation. N. tabacum cell death or HR phenotypes were

photographed at 4–5 dpi.

2.2.3 Biochemical methods

Protein extraction from plant cells

Protein samples were prepared from N. benthamiana 48 h after Agrobac-

terium-mediated transformation. Plant materials were flash-frozen and

ground in a pre-cooled mortar with liquid nitrogen. Total proteins were
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extracted in GTEN buffer (10% glycerol, 150 mM Tris-HCl pH 7.5, 1 mM EDTA,

150 mM NaCl) supplemented extemporaneously with 10 mM DTT, 0.2%

(v/v) Nodinet-40, anti-protease tablet (Complete EDTA-free RoChe) and 2%

PVPP. Homogenisation was achieved by mixing on a rotator for 20 min at

4 °C.

The lysates were then centrifuged for 20 min at 5000 g at 4 °C, and the

supernatant was filtered through Miracloth. This total protein extract was

either mixed with 3xSDS loading buffer (30% glycerol, 3.3% SDS, 94 mM

Tris-HCl pH 6.8, 0.05% (vol/vol) bromophenol blue) supplemented with 10

mM DTT for SDS-PAGE and immunoblot analysis as input samples or used

for immunoprecipitation.

Co-immunoprecipitation (Co-IP) from total plant extract

Immunoprecipitations were conducted on 1.5 mL of filtered extract incu-

bated with 30 μl agarose beads (α-FLAG M2, Sigma; α-GFP, Chromotek)

for 2 h at 4 °C under gentle agitation. Antibodies-coupled agarose beads

were then collected via centrifugation at 7000 rpm for 30 seconds in 1.5 mL

tubes, followed by removal of supernatant. Beads were washed three times

in the washing buffer (GTEN buffer supplemented with 10 mM DTT, 0.2%

Nodinet-40 and Anti-protease tablet), and re-suspended in SDS-loading

buffer supplemented with 10 mM DTT. The immunoprecipitated protein

samples were released from the beads and denatured by boiling at 96 °C for

10 min. Proteins were separated by SDS-PAGE and analysed by immunoblot-

ting.

SDS-PAGE and immunoblot analysis

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out to sep-

arate protein samples according to their molecular weight (in kilodalton,

kDa). Tris-Glycine polyacrylamide (PAA) gels were prepared with 5% poly-

acrylamide for stacking gel, and 8, 10 or 12% polyacrylamide for resolving

gels in this study. Denatured protein samples were separated by elec-

trophoresis in 1xSDS running buffer (0.1% SDS) firstly at 90 V (stacking gel)

and then at 130 V (resolving gel) for as long as appropriate for protein

separation. The pre-stained protein ladder (PageRuler, ThermoFisher) was

used as molecular weight marker from 10 to 180 kDa.
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Proteins on the gels were than transferred to an immobilon-P PVDF

membrane (Merck Millipore) using a semi-dry transfer apparatus supplied

by Trans-Blot Turbo (Bio-Rad). Membrane was blocked for 1 h at room

temperature or overnight at 4 °C in TBST (Tris-Buffered Saline with 0.1%

Tween) containing 5% (w/v) non-fat dry milk. Membrane incubation with

Horseradish Peroxidate (HRP) conjugated antibodies (α-FLAG M2, 1:10000

dilution, Sigma; α-GFP, 1:10000 dilution, Santa Cruz Biotechnology) was

carried out in TBST supplemented with 5% milk by gentle agitation at

room temperature for 1 h. The membrane was then rinsed 3 times each

time for 10 min in TBST, and once in TBS (Tris-Buffered Saline) for 10 min.

Chemiluminescence detection for a protein of interest was carried out firstly

by incubating the membrane with developing reagent (SuperSignal West

Pico & West Femto), and then exposing it to X-ray film (Fuji) or imaging

using ImageQuant LAS 4000 (Life Sciences).

2.2.4 Cell biology

Multi-colour bimolecular fluorescence complementation (BiFC)
assays

For transient expression, A. tumefacien strains carrying BiFC constructs were

used for infiltration of N. benthamiana leave sections at OD600=0.5. Based on

vectors published in [267], Golden Gate compatible modules for multi-color

BiFC tagging were constructed. The N- and/or C- termini of the protein was

tagged with the C-terminal part of CFP (cCFP) as a bait, and the N-terminal

part of either Venus (nVenus) or Cerulean (nCerulean) as a prey respectively

(e.g. cCFP:D456-R:nVenus, cCFP:D456-R:nCerulean). Interactions of the cCFP

with nVenus tags generate yellow fluorescence (YFP), and interactions of

cCFP with nCerulean tags generate blue fluorescence (CFP). In this study,

effector proteins (or their mutant controls) used for co-expression with R

proteins in the BiFC assays were C-terminally tagged with mCherry. All

control experiments were conducted on different sections of the same leaf,

with each experiments replicated independently for at least 3 times.

For microscopic analyses, leaf sections were sampled 2 dpi with water

as imaging medium. Live-cell imaging with a Leica DM6000B/TCS SP5

laser-scanning confocal microscope (Leica microsystems, Bucks, UK), using

a 63x (water immersion) objective. Fluorescence emissions were collected

between 465–485 nm for CFP (shown in blue), 680–700 nm for chlorophyll
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autofluorescence (shown in red), 530–550 nm for YFP (shown in yellow),

and 580–620 nm for mCherry (shown in red). Image analysis was performed

with Fiji [http://fiji.sc/Fiji].

http://fiji.sc/Fiji


3Two linked pairs of Arabidopsis TNL resistance
genes independently confer recognition of
bacterial effector AvrRps4

Notes: Figures and results presented in this chapter include my contribu-

tions to Williams et al (2014) [115] and Saucet et al (2015) [121] unless stated

otherwise. As an author of [115, 121], I have obtained copyright permis-

sion to use the figures and captions. Simon Saucet’s (SS) contribution is

acknowledged as appropriate.

3.1 Introduction and Chapter aim

In Arabidopsis accessions Ws-2 and Col-0, the recognition of P. syringae

effector AvrRps4 requires both RRS1 and RPS4. Only in Ws-2, RRS1-R and

RPS4 confer resistance to R. solanacerum effector PopP2. However, AvrRps4

recognition was retained in both Col-0 and Ws-2 after mutating RRS1 or

RPS4 [114, 241, 243, 268]. Furthermore, this residual AvrRps4 recognition

is also EDS1-dependent [121, 223], suggesting an additional TNL protein

confers RRS1- and RPS4-Independent AvrRps4 Recognition (RRIR). Saucet et

al (2015) identified a pair of TNL encoding genes (At5g45050/At5g45060) on

chromosome 5 linked to RRS1/RPS4, designated as RRS1B/RPS4B, which are

responsible for the RRIR. For simplicity, hereafter RRS1/RPS4 are referred to

as the A pair, and RRS1B/RPS4B as the B pair.

RRS1B and RPS4B are divergently transcribed and in a head-to-head

configuration similar to RRS1 and RPS4 (Figure 3.1). Moreover, the B pair

proteins closely resemble the exon/intron architecture and domain arrange-

ment of the A pair proteins (Figure 3.1). However, RRS1B/RPS4B only

confers recognition of AvrRps4 but not of PopP2. This is supported by the

genetic evidence that RRS1-RmutantWs-2 rrs1-1, which carries RRS1B/RPS4B,

shows the complete loss of PopP2 recognition and HR (Figure 3.2A). Like
RRS1/RPS4, both RRS1B and RPS4B are genetically required for RRIR. Mu-

tations of either RRS1B (Col-0 050-1) or RPS4B (Col-0 060-2, Ws-2 060-1)

completely abolish the residual AvrRps4 responsiveness and disease resis-
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Figure 3.1: Schematic representation of RRS1/RPS4 and RRS1B/RPS4B gene pairs. Black
arrows indicate the reading frame direction. Boxes depict exons, with encoding domains

highlighted on the top: TIR, Toll/Interleukin-1 receptor/R protein; NB-ARC, Nucleotide bind-

ing, APAF1, R proteins and CED4; LRR, leucine-rich repeat; WRKY, WRKY transcription factor

family DNA binding domain; NLS, nuclear localisation signal. White triangles indicate the

positions of T-DNA insertions for various mutant lines. At5g45050/At5g45060 are abbreviated

as 050 and 060respectively. Figure was generated by SS, adapted from[121] Fig 2b.

tance in RRS1 or RPS4 mutant backgrounds (Figure 3.2A,B). In other words,

any double mutants that compromises both A and B pair functions loses

the ability to recognise and respond to AvrRps4. Using transient assays

in tobacco (N. tabacum), Saucet et al (2015) has shown that co-expression

of RPS4B and RRS1B confers recognition and HR when co-delivered with

AvrRps4, but not with PopP2 (Figure 3.3A) [121].

This chapter will investigate the molecular mechanisms of how the

immune receptor pair RRS1B/RPS4B functions to recognise AvrRps4 and

then triggers defence, in comparison with RRS1/RPS4.

3.2 RRS1B and RPS4B associate and function
together

RRS1 and RPS4 have been reported to associate in an immune complex for

effector perception and defence activation [115]. Using co-immunoprecipitation

(Co-IP) we (YM and SS independently) showed that without any effectors,

RRS1B and RPS4B also associate in planta when transiently co-expressed
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Figure 3.2: RRS1B and RPS4B are both required for the RRIR. (A) HR assays in Ws-2, Ws-2 single and double mu-

tants using leaf infiltration with Pf Pf0-1 secreting AvrRps4-KRVYAAAA, AvrRps4, PopP2 or HopA1. HR phenotypes

were assessed 24 h post infiltration (hpi). Magenta arrows indicate leaves showing HR. (B) Bacterial growth of Pst

DC3000 carrying either pVSP61 empty vector (EV) or secreting AvrRps4 in Col-0, Col-0 single and double mutants.

Bacterial growth was measured 3 days post infiltration (dpi). RRS1B mutant of Col-0 is shown as 050-1, RPS4B mutants

are shown as 060-1 or 060-2 in Ws-2 and Col-0 respectively. Means ± standard error of four replicates per sample are

given. Samples with different letters are statistically different at the 5% confidence level based on Tukey’s test. Figure

was generated by SS, adapted from [121] Fig 2c,d.
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in N. benthamiana (Figure 3.3B). This indicates that similar to RRS1/RPS4,

the RRS1B and RPS4B may also associate in an immune complex prior to

pathogen perception. However, we cannot exclude that the pre-activation

immune complex detected using the over-expressing transient systems in

N. benthamiana may not accurately reflect the complex formation status in

Arabidopsis.

Given that RRS1B/RPS4B are the closest paralogs of RRS1/RPS4 in Ara-

bidopsis (~70% identity), it is interesting that inappropriate combinations of

RRS1 and RPS4B, or RRS1B and RPS4 are non-functional. Genetic evidence

in Arabidopsis shows that Ws-2 rrs1-1/rps4b-1 (RRS1B/RPS4 combination)

does not give HR to P. fluorescens (Pf ) Pf0-1 secreting AvrRps4 (Figure 3.2A).
Likewise Col-0 rps4-2/rrs1b-1 (RRS1/RPS4B combination) is susceptible to

P. syringae pv tomato (Pst) DC3000 carrying AvrRps4 (Figure 3.2B). Consis-
tently, the combinations of RRS1/RPS4B or RRS1B/RPS4 co-expression in N.

tabacum transient assays failed to show HR in response to any effectors,

AvrRps4 or PopP2 (Figure 3.3A). These data demonstrate that each R pro-

tein must pair with its cognate partner to assemble functional immune

complexes.

To investigate whether inappropriate combinations of R proteins lose

the ability to form complexes, I carried out Co-IP experiments to test the R

protein associations between the inappropriate pairings (RRS1B/RPS4 and

RRS1/RPS4B). We found that RRS1B-GFP Co-IPs with RPS4-FLAG, and RRS1-

GFP Co-IPs with RPS4B-FLAG (Figure 3.3B). However, the intensity of the

Co-IP signals is higher between the appropriate pair partners (lane 2,6) than

between the inappropriate partners (lane 3,5) (Figure 3.3B). Therefore I in-

fer that the complexes formed between RRS1B and RPS4 or between RRS1

and RPS4B are less stable than the authentic pair complexes (RRS1/RPS4

and RRS1B/ RPS4B). The lack of stability may compromise the function of

the mis-pairing complexes. However, the complete loss of function is un-

likely to be fully explained by weaker affinity between the full-length R

proteins. The most likely explanation is that complex activation requires

specific domain-domain interactions between pair partners, and incompat-

ible domain-domain interactions within the inappropriate pairings lead to

non-functionality. However, it is also possible that the weaker associa-

tions between inappropriate pairings observed using the over-expressing

transient system in N. benthamiana are non-authentic, and do not exist in

Arabidopsis.
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Collectively, our data suggest immune complexes are formed preferably

between respective partners, and only these appropriate pairing complexes

(RRS1/RPS4 and RRS1B/RPS4B) enable effector recognition and defence

signalling.

3.3 TIR domains of RRS1B/RPS4B and RRS1/RPS4
associate in planta

Many lines of evidence suggest that TIR/TIR interactions are important for

TNL function [115, 197]. Williams et al (2014) [115] showed that the TIR

domains of RRS1 and RPS4 physically associate. Crystal structures of the TIR

domains in homo-dimeric or hetero-dimeric complexes reveal a common

TIR/TIR interaction interface, stabilised by conserved histidine and adjacent

serine residues, termed the SH motif. Alanine substitutions of the SH motif

in RPS4 TIR domain (S33A/H34A) and in RRS1 TIR domain (S25A/H26A) dis-

rupt TIR/TIR interaction, and impair effector recognition of the RRS1/RPS4

complex. Therefore, TIR/TIR interactions are essential to assemble a func-

tional RRS1/RPS4 complex for effector-triggered immunity.

The predicted TIR domains of RRS1B (1–144 aa) and RPS4B (1–181 aa),

consisting of complete 5 α helices, each share 64.58% and 61.67% identity

and similar predicted topologies with the TIR domains of RRS1 (1–153

aa) and RPS4 (1–182 aa) respectively [269]. Interestingly, the SH motif is

conserved in both RPS4B and RRS1B TIR domains. Furthermore, structural

modelling based on the crystal structure of the RRS1 and RPS4 TIR/TIR

hetero-dimer predicts a similar TIR/TIR interface for the RRS1B/RPS4B TIR

domains stabilised by the SH motifs (data not shown). This suggests that

the TIR domains of the B pair (RRS1B/RPS4B) may interact and function

similarly to those of the A pair (RRS1/RPS4).

It has been shown that the TIR domains of the A pair interact in a

yeast two hybrid (Y2H) assay, and associate in planta after Co-IP [115].

Furthermore, both assays (Y2H and Co-IP) demonstrated specificity of the

heterotypic interaction between the TIR domains of RRS1 and RPS4, as

they did not interact with L6 or RPP5 TIR domains [115]. To investigate

whether the TIR domains of the B pair associate with each other in planta,

and whether the association is specific within the pair, I carried out Co-IP

experiments. TIR domain containing regions of RRS1 (1–175 aa), RPS4 (1–
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Figure 3.3: Corresponding pair partner association in planta is required for function. (A) Transient assays in N.

tabacum leaves using A. tumefaciens transformation (agro-infiltration) show that inappropriate pair combinations fail

to respond to effectors. Each leaf section was co-infiltrated to express a different combination of R genes together

with GFP, avrRps4-GFP or PopP2-GFP. RRS1, RPS4, RRS1B and RPS4B were cloned from Ws-2 gDNA and fused to a C-

terminal FLAG tag. Cell death pictures were taken 5 dpi. (B) Co-IP analysis shows the associations within and between

RRS1/RPS4 and RRS1B/RPS4B pair proteins. RRS1, RPS4, RRS1B and RPS4B were fused to either a C-terminal FLAG or

GFP tag. The combination of fusion proteins in each sample (C-terminal tag indicated on the right) is listed in the

panel with a corresponding number (1–6). Immunoblots show the presence of proteins in total extracts (Input) and

after IP with α-GFP beads (IP-GFP). Asterisks indicate the presence of protein bands after Co-IP. Figure adapted from

[121] Fig 5; Awas generated by SS.
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235 aa), RRS1B (1–166 aa) and RPS4B (1–235 aa), designated as RRS1TIR,

RPS4TIR, RRS1BTIR and RPS4BTIR, were cloned from Ws-2 gDNA and fused to

either a C-terminal FLAG or GFP tag. After agro-infiltration in N. benthami-

ana, RRS1BTIR-FLAG Co-IPs with both RPS4BTIR-GFP and RPS4TIR-GFP, likewise

RPS4BTIR-FLAG Co-IPs with both RRS1BTIR-GFP and RRS1TIR-GFP (Figure 3.4).
The results show that, similar to full-length proteins, RRS1BTIR and RPS4BTIR

hetero-dimerise and also associate with RPS4TIR and RRS1TIR respectively in

planta . As mis-pairing TIR domains hetero-dimerise with similar affinities to

the authentic pairing, it suggests that heterotypic TIR/TIR associations are

not specific between these two pairs.

Figure 3.4: TIR domains of RRS1B and RPS4B associate in planta. This Co-IP analysis

shows the associations of TIR domains from respective or different pair partners. TIR domain

containing regions of RRS1(1–175 aa), RPS4(1–235 aa), RRS1B(1–166 aa) and RPS4B(1–235

aa) designated as RRS1TIR, RPS4TIR, RRS1BTIR and RPS4BTIR, were cloned from Ws-2 gDNA and

fused to a C-terminal FLAG or GFP tag. The combination of fusion proteins in each sample

(C-terminal tag indicated on the right) is listed in the panel with a corresponding number

(1 - 6). Immunoblots show the presence of proteins in total extracts (Input) and after IP with

α-GFP beads (IP-GFP). Asterisks indicate the presence of protein bands after Co-IP. Published

in [121] Fig 6b.

TIR domains are considered to play a crucial role in defence activa-

tion as many of them can trigger effector-independent defence when

over-expressed alone in planta [140, 159, 185, 270, 271]. I found that over-

expression of RPS4TIR-GFP but not RRS1TIR-GFP triggered cell death, whereas

neither RPS4BTIR-GFP nor RRS1BTIR-GFP triggered cell death in tobacco (Fig-



72 Two TNL pairs confer recognition of AvrRps4

ure 3.5A,C) [115, 121]. Homotypic oligomerisations of some TIR domains,

including RPS4TIR, have shown to be essential to initiate defence signalling

(e.g. L6) [115, 197]. Kee Hoon Sohn and others have demonstrated that

mutations (S33A, H34A and S33A/H34A) that disrupt homo-dimerisation of

RPS4TIR completely abolished cell death signalling in tobacco [115]. On

the other hand, the RPS4TIR(R30A) variant, which promotes stronger homo-

dimerisation, induced a stronger cell death in tobacco compared to the

RPS4TIR wild type [115]. Although homo-dimerisation of RPS4TIR is required

for cell death signalling, the ability to homo-dimerise does not guarantee

signalling competence: RRS1TIR forms a homo-dimer, but fails to trigger cell

death. Williams et al. [115] pointed out that the major differences between

TIR domains of RRS1 and RPS4 is in the αD-helical region, where RRS1TIR con-

tains one helix and RPS4TIR contains three. Sequence analysis and structural

modelling suggest that RRS1BTIR contains one αD helix whereas RPS4BTIR

contains three αD helices, similar to RRS1TIR and RPS4TIR respectively [269].

Therefore it is puzzling that RPS4BTIR, with high structural similarities to

RPS4TIR, fails to trigger cell death in tobacco (Figure 3.5A,C).

Interestingly, I found co-expression of RRS1TIR-GFP suppressed RPS4TIR-

GFP induced cell death, whereas the S25A/H26A loss-of-hetero-dimerisation

variant of RRS1TIR(SHAA)-GFP did not (Figure 3.5A) [115]. Because a stronger

hetero-dimeric interaction compared to homo-dimeric interactions of RPS4

and RRS1 TIR domains was observed using Co-IP and Y2H [115], we infer that

the inactive hetero-dimer outcompetes the formation of the active RPS4TIR

homo-dimer thus suppressing cell death. Additionally, we (YM and SS

independently) found that the RRS1-RPS4 TIR-TIR tandem fusion, which links

RRS1TIR (6-153 aa) and RPS4TIR (10–178 aa) with a five-residue linker (GSGGS)

to enable crystallisation [115], remained signalling inactive when transiently

expressed in tobacco (Figure 3.5B). However, the RRS1-RPS4 TIR(SHAA)-

TIR fusion, introduced with the non-dimerising S25A/H26A mutations into

RRS1TIR, did not restore RPS4TIR cell death signalling in tobacco (Figure
3.5B). We suspected that the short 5 aa linker fused to the N-terminus of

RPS4TIR might restrict its movement away from the RRS1TIR, posing steric

hindrance to cell death signalling. Therefore I constructed a new tandem

protein which links RRS1TIR (6-153 aa) and RPS4TIR (10-178 aa) with a longer

13 aa linker, designated as RRS1-RPS4 TIR+-TIR+. While the RRS1-RPS4 TIR+-

TIR+ fusion did not trigger cell death in tobacco, the mutant RRS1-RPS4

TIR+(SHAA)-TIR+ did (Figure 3.5B).
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Figure 3.5: TIR domain of RRS1 or RRS1B suppresses RPS4 TIR domain-triggered cell death. (A-C) Transient as-
says in N. tabacum leaves using agro-infiltration assess cell death activities of various TIR domains and their combina-

tions. RRS1, RPS4, RRS1B and RPS4B TIR domains or their mutant variants were expressed individually or as TIR-TIR fu-

sions. Each leaf section was indicated by a white square with corresponding infiltrated samples labelled. Pictures were

taken 5 dpi. (A) RRS1TIR-GFP (1–175 aa) suppresses RPS4TIR-GFP (1–235 aa)-induced cell death. Mutations in the SH

motif of RRS1TIR(SHAA) abolish the suppression activity. (B) RRS1-RPS4 TIR-TIR and RRS1-RPS4 TIR+-TIR+ tandem fusions,

C-terminally tagged with 6xHis3xFlag (HF), do not trigger cell death. Mutations in the SH motif of RRS1TIR, restores

cell death activity of RRS1-RPS4 TIR+(SHAA)-TIR+-HF but not RRS1-RPS4 TIR(SHAA)-TIR-HF. (C) Neither RRS1BTIR-GFP

(1–166 aa) nor RPS4BTIR-GFP (1–235 aa) triggers cell death. RRS1BTIR-GFP suppresses RPS4TIR-GFP-triggered cell death

similarly to RRS1TIR-GFP. (D-F) Immunoblot detection of TIR domain expression at 2 dpi in N. benthamiana leaves cor-

responds to those used in (A-C) respectively. TIR domains were tagged with GFP or HF as indicated. Commassie blue

(CBB) staining of the large subunit of RuBisCo served as loading control. Asterisks indicate the presence of expected

protein bands. Figure panels A and C adapted from [115] Fig 2D, and [121] Fig 6A.
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Consistent with Figure3.5A, these new fusion phenotypes suggest that

RRS1TIR suppresses RPS4TIR by forming a poised stable hetero-dimer. When

the mutant RRS1TIR(SHAA) failed to hetero-dimerise, RPS4TIR was left free to

homo-dimerise thus triggering cell death. Interestingly, despite their lack

of activity, RRS1-RPS4 TIR-TIR-HF and RRS1-RPS4 TIR(SHAA)-TIR-HF accumu-

late at higher levels compared to RRS1-RPS4 TIR+-TIR+-HF and RRS1-RPS4

TIR+(SHAA)-TIR+-HF in Western blots (Figure 3.5E). This suggests that the

longer linker used between the TIR-TIR tandems possibly de-stabilises the

RRS1 and RPS4 TIR/TIR hetero-dimer. On the other hand, the longer linker

of RRS1-RPS4 TIR+(SHAA)-TIR+ may also provide extra flexibility for RPS4TIR

to form homo-oligomers away from the RRS1TIR(SHAA), contributing to cell

death signalling. Furthermore, the S25A/H26A mutations of RRS1TIR do not

affect protein accumulation, both when introduced into RRS1TIR expressed

alone (Figure 3.5D) and into the fusions (Figure 3.5E), demonstrating that

the lack of suppression activity of RRS1TIR(SHAA) was not due to less accumu-

lation.

As I previously showed that RRS1BTIR can hetero-dimerise with RPS4TIR,

I next investigated whether RRS1BTIR is able to interfere with RPS4TIR-

triggered cell death. Indeed, I found that co-expression of RRS1BTIR can

suppress RPS4TIR-triggered cell death (Figure 3.5C). While the protein ac-

cumulation level of RRS1BTIR is lower compared to RRS1TIR (Figure 3.5F),
their suppression activity is comparable, indicating the hetero-dimer of

RRS1BTIR/RPS4TIR is equally stable compared to RRS1TIR/RPS4TIR. This phe-

notype is consistent with our biochemical evidence that the non-pairing

TIR domains (RRS1BTIR/RPS4TIR and RRS1TIR/RPS4BTIR) Co-IP as well as the

authentic pairing (Figure 3.4).

3.4 TIR swaps between R protein pairs retain
function

We (YM and SS) next assessed if, despite associations of TIR domains be-

tween non-paired R proteins, the TIR domains contribute to the specificity

of R protein function with each respective pair partner. To answer this

question, we (YM and SS) constructed chimeras in which RRS1Ws-2 and

RRS1BWs-2 TIR domains were exchanged, and similarly with RPS4Ws-2 and

RPS4BWs-2 TIR domains. Here we designated the 4 domains of RRS1 and

RPS4 (TIR, NB, LRR and C-Terminal Domain (CTD)) as “AAAA” and of RRS1B
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and RPS4B as “BBBB”, defining the TIR domain-swapped full-length chimeric

proteins as RRS1(BAAA), RRS1(ABBB), RPS4(ABBB), and RPS4(BAAA) (Figure
3.6A). Note that in Chapter 4, the C-Terminal Domain (CTD) of RRS1Ws-2

and RRS1BWs-2 will be further divided into three separate domains: the

4th domain C-terminal of the LRR domain (Domain 4, or DOM4), a WRKY

DNA binding domain (WRKY), and the 6th domain extended from the C-

terminal end of the WRKY domain (DOM6) (Figure 5.1). These TIR-swapped

chimeras were tested in combination with wild type R proteins for Avr-

Rps4 and PopP2 recognition using tobacco transient assays. Similar to

the wild type combination RRS1(AAAA) + RPS4(AAAA), both RRS1(BAAA) +

RPS4(AAAA) and RRS1(AAAA) + RPS4(BAAA) are able to recognise AvrRps4

and PopP2, triggering strong cell death (Figure 3.6B). On the other hand,

RRS1(ABBB) + RPS4(BBBB) and RRS1(BBBB) + RPS4(ABBB) respond only to

AvrRps4, phenocopying the wild type RRS1(BBBB) + RPS4(BBBB) (Figure
3.6B). The accumulations of chimeric proteins and effectors were confirmed

by immunoblots (Figure 3.6C,D).

These results show that the exchange of TIR domains from paralogous

R genes does not compromise AvrRps4 or PopP2 recognition. We therefore

infer that the TIR domains do not determine the pairing specificity for

function, and domain-domain interactions other than TIR-TIR must account

for the pairing specificity of RRS1/RPS4 and RRS1B/RPS4B.

We (YM and SS) also characterised additional domain swaps between

RRS1Ws-2 and RRS1BWs-2, with the breakpoint at the junction of exon 4 and

exon 5. In RRS1Ws-2 and RRS1BWs-2, exons 5, 6 and 7 encode the WRKY

domain plus the C-terminal amino acids (DOM6) and ~260 amino acids

between the LRR domain and the WRKY domain (part of DOM4), which alto-

gether corresponds to a C-terminal part of the CTD defined in this chapter.

These swaps were designated as RRS1(AAAB) and RRS1B(BBBA), and tested

for responsiveness to AvrRps4 and PopP2 in the presence of either RPS4 or

RPS4B. Neither of the RRS1(AAAB) or RRS1(BBBA) chimeras conferred recog-

nition of AvrRps4 or PopP2 (Figure 3.7A). Accumulation of the chimeric

proteins was confirmed by Western blots, suggesting that the lack of cell

death was not due to a lack of protein accumulation (Figure 3.7B). The loss

of effector responsiveness in RRS1(BBBA)+ RPS4B(BBBB) indicates the im-

portance of the RRS1B C-terminal region during effector-triggered defence

activation: it might be required for specific interactions with RPS4B during

activation. It is also possible that these C-terminal swaps have impaired the
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Figure 3.6: TIR domain swaps between RRS1/RPS4 and RRS1B/RPS4B retain function (A) Schematic representa-

tion of RRS1, RRS1B, RPS4, RPS4B from Ws-2, and a chimera RRS1(BAAA), showing domain structures: RRS1 or RRS1B

as TIR-NB-LRR-CTD (C-Terminal Domain); RPS4 or RPS4B as TIR-NB-LRR-CTD. Each domain is indicated as an ‘A’ or

‘B’, depending on which pair they belong to: RRS1/RPS4 (‘A’ pair), RRS1B/RPS4B (‘B’ pair). (B) Transient assays in N.

tabacum leaves using agro-infiltration assess the effector responsiveness of the TIR domain-swapped chimeras in com-

bination with their cognate partners. Each leaf section was co-infiltrated to express a different combination of wild

type and chimeric proteins with TIR exchanged between ‘A’ and ‘B’ pair proteins together with GFP, avrRps4-GFP or

popP2-GFP. Pictures were taken 5 dpi. (C-D) Immunoblot detection of (C) Chimeric protein accumulation, RRS1(ABBB),

RRS1(BAAA), RPS4(ABBB) and RPS4(BAAA)(with C-terminal FLAG tag); as well as (D) effector protein accumulation,

AvrRps4 and PopP2 (with C-terminal GFP tag) at 2 dpi in N. benthamiana leaves. Coomassie blue (CBB) staining of the

large subunit of RuBisCO served as loading control. Asterisks indicate the presence of expected protein bands. Pub-

lished in [121] Fig 6C,D; experiments done together with SS.
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Figure 3.7: The RRS1(AAAB) chimera is auto-active in combination with RPS4 but not with RPS4B. (A) Transient

assays in N. tabacum leaves using agro-infiltration assess the functionality of CTD-swapped RRS1 and RRS1B chimeras.

Each leaf section was co-infiltrated to express a different combination of RPS4 or RPS4B with the chimeric proteins

RRS1(AAAB) and RRS1(BBBA) (RRS1Ws-2 and RRS1BWs-2 exchanging a WRKY-containing C-terminal part, encoded by

exons 5,6 and 7) together with GFP, avrRps4-GFP or popP2-GFP. Pictures were taken 5 dpi. (B) Immunoblot detection

of chimeric proteins RRS1(AAAB) and RRS1(BBBA) (with C-terminal FLAG tag) accumulation at 2 dpi in N. benthamiana

leaves. Coomassie blue (CBB) staining of the large subunit of RuBisCO served as loading control. Asterisks indicate the

presence of expected protein bands. Published in [121] Fig S15; experiments done together with SS.
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integrity of the domain(s), disrupting proper folding of the chimeric pro-

teins, thus rendering them non-functional. On the other hand, RRS1(AAAB)

in combination with RPS4(AAAA) triggers constitutive cell death in the ab-

sence of an effector (Figure 3.7A). This suggests that the integrity and

appropriate interactions in the C-terminal regions of these proteins might

be crucial for auto-regulation in a pre-activation immune complex. In

contrast, RRS1(AAAB) in combination with RPS4B(BBBB) fails to trigger this

effector-independent cell death, implying that RPS4(AAAA) is specifically

required for RRS1(AAAB)-triggered auto-activity (Figure 3.7A).

3.5 RRS1B associates with AvrRps4 and PopP2 in
planta

Williams et al (2014) showed that the R protein complex formed by RRS1-

RWs-2 and RPS4 when co-expressed can associate with AvrRps4 or PopP2

in planta using Co-IP. Because RRS1-R and RPS4 are able to interact before

effector perception, the paired R proteins are proposed to detect the effec-

tors as a RRS1-R/RPS4 complex [115]. RRS1-RNd-1 alone was also shown to

interact with PopP2 in a yeast split-ubiquitin assay (Y2H) [214]. However, in-

teraction with the R protein is not sufficient for defence activation, as PopP2

also interacts with RRS1-SCol-5 but does not trigger an immune response in

Col-5 [214].

I examined whether RRS1B/RPS4B as a complex can associate with

AvrRps4 and also PopP2 in planta, even though RRS1B/RPS4B cannot recog-

nise PopP2. I co-expressed RRS1Ws-2-FLAG + RPS4Ws-2-FLAG and RRS1BWs-2-

FLAG + RPS4BWs-2-FLAG, with either GFP, AvrRps4-GFP or PopP2-GFP in

N. benthamiana. After IP with α-GFP beads, AvrRps4-GFP and PopP2-GFP

but not the negative control GFP were able to pull-down RRS1B-FLAG and

RPS4B-FLAG in a complex, likewise pulling down RRS1-FLAG and RPS4-FLAG

together (Figure 3.8B).

Collectively, the data suggest that effectors are perceived by RRS1

or RRS1B in their respective pre-formed complexes with RPS4 or RPS4B.

However, I cannot exclude that AvrRps4 or PopP2 associates with RRS1 on

its own, and promotes the recruitment of RPS4 to form amore stable hetero-

complex (likewise for RRS1B). Interestingly, after IP with effectors the signal

intensity was much stronger for RRS1 and RPS4 compared to RRS1B and
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RPS4B (Figure 3.8B), indicating the RRS1/RPS4 complex may have stronger

affinity for both effectors than the RRS1B/RPS4B complex. This result also

suggests that RRS1B/RPS4B associates in planta with AvrRps4 as strongly as

with PopP2, despite the lack of activation of the latter.

Considering the high intensity of RRS1 protein bands compared to

RPS4 after AvrRps4 and PopP2 immunoprecipitation, we (YM and SS inde-

pendently) then tested whether RRS1Ws-2 and RRS1BWs-2 alone are sufficient

for effector association. Indeed, we found that both RRS1Ws-2-GFP and

RRS1BWs-2-GFP are sufficient to Co-IP with either AvrRps4-GFP or PopP2-GFP,

but not with GFP (Figure 3.8A). Like in complex with their partner, RRS1Ws-2

also showed a stronger association with AvrRps4 or PopP2 compared to

RRS1BWs-2. Altogether, our results show that, similar to RRS1-S/RPS4[214],

protein-protein association of PopP2 with RRS1B/RPS4B complex can be

detected, but this is not sufficient for defence activation.

3.6 AvrRps4-induced defence gene expression require
either RPS4 or RPS4B

Given that two paired R genes provide resistance to a single effector, I inves-

tigated the quantitative contributions of RRS1B/RPS4B to AvrRps4-triggered

immunity compared to RRS1/RPS4 by measuring defence gene induction

using quantitative RT-PCR. Based on previous studies, I selected defence

marker genes that are specifically regulated by AvrRps4 and PopP2 in a

RRS1/RPS4-dependent manner at early stages of immunity, namely SARD1,

SID2, PAD4 and EDS5 [116]. Genotypes Ws-2, Ws-2 rps4-2, Ws-2 rps4b-1,

and Ws-2 rps4-2/rps4b-1 were infiltrated with PfPf0-1 carrying AvrRps4 or

AvrRps4-KRVYAAAA mutant. The Ws-2 mutant lines used in this section are

abbreviated as rps4-2, rps4b-1 and rps4-2/rps4b-1. Primers used to amplify

these genes, together with the expected PCR fragment sizes were listed

in Table 2.4. Six hours post-infiltration, all selected defence marker genes

compared to H₂O treatment were consistently more induced in Ws-2, rps4-

21 or rps4b-1 after infiltration with Pf Pf0-1 (AvrRps4) than with Pf Pf0-1

(AvrRps4-KRVYAAAA) (Figure 3.9). This pattern of a more pronounced fold-

induction of AvrRps4-dependent defence genes in Ws-2, rps4-21 or rps4b-1

was also consistent across the three independent biological replicates (Fig-
ure 3.10).
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Figure 3.8: RRS1B and RRS1B/RPS4B complex associate with AvrRps4 and PopP2 in planta. This Co-IP anal-

ysis shows the associations of RRS1 and RRS1B with AvrRps4 and PopP2 (A), and association of RRS1/RPS4 and

RRS1B/RPS4B complexes with AvrRps4 and PopP2 (B). All R genes were cloned from Ws-2 gDNA. The combination

of fusion proteins in each sample (C-terminal tag indicated on the right) is listed in the panel with a corresponding

number (1 to 6). Immunoblots show the presence of proteins in total extracts (Input) and after IP with α-FLAG beads

(IP-FLAG). Asterisks indicate the presence of protein bands after Co-IP. Published in [121] Fig 7, S16; experiments done

together with SS.
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Assuming that each pair functions independently, these data indicate

that RRS1B/RPS4B (in rps4-21) and RRS1/RPS4 (in rps4b-1) activate a similar

set of defence genes upon AvrRps4 recognition, and are therefore likely to

share downstream signalling mechanisms. In the single knockout mutants

tested (rps4-21 and rps4b-1), there was no consistent pattern of quantita-

tive differences between RRS1/RPS4- or RRS1B/RPS4B-dependent defence

gene induction triggered by AvrRps4. For example, RRS1/RPS4 in rps4b-1

contributes to higher induction of EDS5 and SID2, but lower induction of

SARD1 and indistinguishable induction of PAD4 compared to RRS1B/RPS4B

in rps4-21 (Figure 3.9 & Figure 3.10). This indicates that RRS1/RPS4 and

RRS1B/RPS4B activate similar sets of defence genes.

Figure 3.9: Loss of RPS4 and RPS4B completely abolishes AvrRps4-triggered defence
gene induction inWs-2. Quantitative RT-PCR showing fold-change of SARD1, SID2, EDS5

and PAD4 gene expression. Primer information see (Table 2.4) in the appendix. Transcript

levels were estimated in leaves of five week old Ws-2, Ws-2 rps4-21 and rps4b-1 single and

Ws-2 rps4-21/rps4b-1 double mutants infiltrated with either H₂O, Pf Pf0-1 secreting AvrRps4-

KRVYAAAA or AvrRps4. RNA was extracted from samples taken at 6 hpi for cDNA synthesis.

Results of quantitative RT-PCR for selected defence marker genes were first normalised to

EF1α, then calculated as log₂-scaled fold change compared to H₂O treatment. Means ± SE of

3 biological replicates per sample are given. Differences that are statistically significant are

indicated (Student’s t-test P<=0.05*, P<=0.01**, P<=0.001***). Published in [121] Fig 4

Although occasionally the presence of both RRS1/RPS4 and RRS1B/RPS4B

in Ws-2 gave a higher AvrRps4-triggered defence gene induction compared
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Figure 3.10: Loss of RPS4 and RPS4B completely abolishes AvrRps4-triggered defence gene induction inWs-
2—biological repeats. Details as for Figure 3.9. Means ± SE of 3 technical replicates per sample are given. Each

column represents an independent biological experiment (indicated by Exp. 1, 2 and 3). Published in [121] Fig S8



AvrRps4-induced defence gene expression require either RPS4 or RPS4B 83

to either rps4-21 or rps4b-1 in a single experiment (Figure 3.10), overall I
could not observe greater gene induction in Ws-2 compared to either single

mutants (Figure 3.9). I infer that RRS1/RPS4 and RRS1B/RPS4B indepen-

dently activate defence genes to a level adequate for resistance in response

to AvrRps4. As together RRS1B/RPS4B and RRS1/RPS4 do not contribute to

a greater defence gene induction and a stronger resistance, it suggests the

two pairs function redundantly for AvrRps4 resistance.

In the rps4-21/rps4b-1 double mutant, fold induction of defence genes

triggered by Pf Pf0-1 (AvrRps4) is not different to Pf Pf0-1 (AvrRps4-KRVYAAAA),

but is significantly lower than in AvrRps4-treated Ws-2 or either single

mutants (Figure 3.9 & Figure 3.10). This means AvrRps4-triggered de-

fence gene induction is fully dependent on functional RRS1B/RPS4B and/or

RRS1/RPS4, which is consisent with the loss of resistance to Pst DC3000 (Avr-

Rps4) observed in the double mutants (Figure 3.2). These data on defence

gene regulation provide a quantitative view of how the two R gene pairs

work individually for AvrRps4-triggered immunity.

3.7 Discussion

In this chapter, I have revealed functional insights into an R gene pair

RRS1B/RPS4B that resembles and is closely linked to RRS1/RPS4. RRS1B/RPS4B

confers recognition of AvrRps4 but not PopP2. Like RRS1 and RPS4, both

RRS1B and RPS4B are required for effector recognition. We found that each

of these R proteins cooperates specifically with their respective partner,

and each pair acts as a single functional unit for defence. Evidence so far

supports the presence of pre-activation heteromeric complexes formed be-

tween the paired proteins prior to effector perception. Although partners

from different pairs can also form heteromeric complexes, these inappropri-

ate pair complexes are less stable and not functional for AvrRps4 and PopP2

recognition and/or downstream signalling activation (Figure 3.3). However,

we cannot exclude that the inappropriate pair complexes observed are the

result of protein over-expression in a transient system, which might not

occur under native expression. Altogether, this indicates that despite the

similarity in motif prediction, TNL pairs evolved particular inter-molecular

specificity for function (pairing specificity).
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Conceivably, non-deleterious mutations accumulated independently in

each pair after duplication, and those that promote stronger association

and cooperation between pair partners (potentially different in each pair)

would be selected for over time, driving the specificity of pairing. In

Saucet et al 2015 [121], a probable common ancestor of both A and B pair

was uncovered in A. thaliana relatives Arabidopsis lyrata and Brassica rapa.

Furthermore, distinct orthologous pairs matching either the A pair or the B

pair were also found in A. lyrata and Capsella rubella, showing evidence of

further duplications after the divergence of A and B pair in species related

to A. thaliana [121]. This suggests that there is a selective advantage to

maintaining both pairs. One of the advantages could be that R gene pair

duplications create redundancy that might reduce the effect of purifying

selection and increase the potential for the evolution of new functions

[272, 273]. We speculate that at some point after duplication, one of the

pairs (RRS1-R/RPS4) evolved new effector recognition capacity (PopP2 or

Colletotrichum resistance), becoming functionally distinct to RRS1B/RPS4B.

Additionally, developing two or more similar recognition systems might

enable the plant to maximise protection of an important cellular complex

generally targeted by pathogen effectors [121].

TIR domain interactions are essential to build a functional effector recog-

nition complex of RRS1/RPS4, and the structural similarities to RRS1B/RPS4B

TIR domains indicate similar roles in complex assembly. These TIR domains

exhibit a level of specificity for heteromeric interactions, but not between

the paralogous pairs. For example, RRS1 and RPS4 TIR domains do not inter-

act with TIR domains from the TNLs L6 or RPP5 [115], but can associate with

RPS4B and RRS1B TIR domains respectively. Consistently, we found the TIR

domain exchanges between pairs do not impair pair function, therefore are

not responsible for the pairing specificity (Figure 3.3). It has been shown

that domains other than the TIRs also associate to help forming the pair

complex [115], one or more of which must be responsible for the pairing

specificity. Additional domain swap experiments between the pairs may

help us better understand this specificity, and this is studied in Chapter

5.

Expression of the TIR domain from RPS4 but not RRS1 triggers effector-

independent defence, indicating the role of RPS4 in defence signalling. As

co-expression of RRS1TIR suppresses RPS4TIR-triggered auto-activity (Figure
3.5), it can be proposed that RRS1 plays a regulatory role to keep RPS4
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inactive in the absence of effectors. Upon effector recognition, RRS1 may

de-repress RPS4, allowing RPS4 TIR domain to homo-oligomerise, which

mediates defence signalling. The fact that the P-loop mutation of RPS4 but

not RRS1 abolishes effector recognition [115], is evidence for the separation

of roles of RRS1 and RPS4, conceivably in effector recognition and defence

signalling respectively.

I also observed that RRS1BTIR is able to suppress RPS4TIR-triggered cell

death (Figure 3.5), and can functionally replace RRS1TIR in the RRS1(BAAA)

chimera (Figure 3.6). This indicates RRS1B may play a similar role in the

B pair complex compared to RRS1 in the A pair complex. However, to our

surprise, the presumed signalling partner RPS4B, did not show signalling

activity when its TIR domain is expressed in N. tabacum (Figure 3.5). It is

likely that either polymorphisms in RPS4BTIR compared to RPS4TIR abolish its

ability to recruit downstream signalling components essential for defence

activation, or that N. tabacum lacks the essential components required for

RPS4BTIR-triggered cell death. However, the RPS4B TIR domain is signalling

competent when swapped into RPS4(BAAA), triggering cell death after

effector recognition (Figure 3.6). It is also possible that cell death triggered

by the over-expression of TIR domains is an ectopic activation that differs

from authentic NLR immune signalling.

More generally, we still don’t fully understand the mechanism of TIR

or CC domains during defence signalling, as the N-terminal domains of

many functional TNL or CNL proteins cannot initiate effector-independent

cell death. For those N-terminal domains (TIR or CC) that can trigger cell

death (such as RPS4 TIR), homo-oligomerisation appears to be essential for

the cell death signalling. We infer that the N-terminal domains of some

plant NLRs act as protein scaffolds for immune complex assembly, and

the multimerisation of NLRs enables close proximity of their N-terminal

domains to initiate defence signalling. This model is based on the animal

inflammasomes formed of NLR multimers, which act as a platform that

enables the recruitment of components essential for signal transduction via

the NLR N-terminal domain. Thus we speculate that plants NLRs also may

form high order NLR multimers upon effector detection, resembling the

animal inflammasomes. Alternatively, if the N-terminal domains of plant

NLRs do not activate defence directly, they may play important roles during

the effector-triggered inter-domain rearrangements that are essential for

NLR activation. The exchanges of TIR or CC domains with other NLR proteins
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may give us clues about the general functional mechanism of these N-

terminal domains, as to whether they are more conserved for signalling or

more specific for inter-domain interaction.

Several TNLs have been shown to recognise an effector directly and

this direct interaction is presumed to trigger R protein activation [92, 94,

187, 214]. RRS1 alone is able to associate with effectors, and it perceives the

effector, resulting in conformational changes that activates RPS4. As RRS1B

resembles RRS1, and is also able to associate with effectors alone, we infer

it has a similar role in effector recognition. An important clue is that both

RRS1 and RRS1B carry WRKY domains in their C-termini, which are absent

in their putative common ancestor in A. lyrata or B. rapa [121]. Intriguingly,

evolutionary analysis suggests that the WRKY domain in RRS1, RRS1B and

their other orthologs share a common origin from WRKY35 [121]. WRKY

domain-containing proteins play crucial roles in regulating plant defence

[274, 275], and thus are likely to be virulence targets of pathogen effectors.

It is plausible that RRS1 or RRS1B incorporated the WRKY domain for the

perception of effectors that target the WRKY proteins. I will explore more of

this aspect in Chapter 4.

We found that the integrity of the C-terminal part of RRS1 is impor-

tant for maintaining auto-inhibition, as co-expression of the RRS1(AAAB)

chimera with RPS4 triggers effector-independent HR. RRS1B(BBBA) however,

does not trigger auto-activity when co-expressed with RPS4B. This suggests

RRS1B may act a bit differently compared to RRS1-R during activation, and

could help to explain why the B pair does not recognise PopP2. Further-

more, as PopP2 associates with both RRS1B and RRS1-S (which also does

not confer recognition of PopP2), it maybe the conformational changes trig-

gered after PopP2 association involving the C-terminal domains that defines

recognition capability. Finer domain swaps of RRS1-R and RRS1B at their C-

termini maybe able to identify the domain that specifies PopP2 recognition.

It should be noted that exon boundaries are not the best way for swapping,

as they might not reflect domain boundaries. Chapter 5 will include domain

swaps with properly defined domain boundaries. It is also possible that

the full length protein reconfiguration rather than a specific region would

define PopP2 recognition specificity, which would not be revealed by single

domain swaps.
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Even though the current understanding is that both R protein pairs

form pre-activation complexes for function, we cannot exclude that a pro-

portion of these R proteins may exist as monomers in the resting state. An

‘Equilibrium-based switch’ model was recently proposed based on a study

of flax TNLs L6 and L7 [168]. This model proposes that NLRs exist in an equi-

librium between ‘ON’ and ‘OFF’ states, and effectors bind to the ‘ON’ state

to stabilise the active conformation and shift the equilibrium towards acti-

vation [168]. We propose a possible scenario where the R proteins may exist

in an equilibrium between poised complexes and inactive monomers, and

effector perception shifts the balance towards complex formation, and may

even drive higher order oligomerisation for defence activation [276]. Effec-

tors can be perceived by monomers and complexes, because we observed

that effectors associate with the RRS1/RPS4 and RRS1B/RPS4B complexes

as well as with RRS1 and RRS1B alone (Figure 3.8). However, to prove

this model we need to find evidence in Arabidopsis showing that effector-

activated RRS1 or RRS1B forms more stable complexes with RPS4 or RPS4B

compared to the inactive ones.

To summarise, in this chapter we show that the RRS1B/RPS4B largely

resembles the RRS1/RPS4 pair structurally and functionally. However, we

also uncover within the two pairs the pairing specificity and different recog-

nition capacity for PopP2, suggesting potentially distinctive features of their

activation mechanisms. The RRS1/RPS4 and RRS1B/RPS4B gene pairs will

be further investigated in later chapters to try to unravel the molecular and

structural requirements for pairing specificity and how an interaction with

AvrRps4 or PopP2 is converted into defence activation.
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4Bacterial effector AvrRps4 is detected by RRS1
and RRS1B via their WRKY domains

Notes: Figures and results presented in this chapter include my contri-

butions to Sarris et al (2015) [58] unless stated otherwise. Copy Right

Transfer has been obtained from the publisher. Contributions by Panagiotis

F. Sarris (PS), Zane Duxbury (ZD), Sung Un Huh (SH), Cecile Segonzac (CS),

Lennart Wirthmueller (LW), Hannah Brown (HB) and Volkan Cevik (VC) are

acknowledged as appropriate.

4.1 Introduction and Chapter aim

The molecular mechanism of how the RRS1-R/RPS4 complex perceives dis-

tinct effectors (AvrRps4 and PopP2) was not well understood. PopP2 was

previously shown to interact with RRS1-R [115, 121, 214], but the interact-

ing domain of RRS1-R was not defined. However, PopP2 also interacts with

RRS1-S or RRS1B, but this interaction is insufficient to activate defence [121,

214]. PopP2 is an acetyltransferase of the YopJ-like effector family, and

its enzymatic activity is essential for its recognition [257]. The catalytically

dead mutant PopP2-C321A fails to activate defence via RRS1-R, suggesting

that PopP2 recognition may involve acetylation of RRS1-R protein by PopP2.

PopP2 and PopP2-C321A associate with both RRS1-R and RRS1-S in the

nucleus with comparable affinity [58, 115, 257].

CS and others in Sarris et al. [58] were able to detect acetylation of both

RRS1-R and RRS1-S using an anti-acetyl-lysine antibody after transient co-

expression with only the catalytically active PopP2 in N. benthamiana. Later

using mass spectrometry, ZD and others identified four PopP2-acetylated

lysine (K) residues in and nearby the WRKY domains of RRS1-R and RRS1-S,

including both lysines (K¹ and K²) in the WRK¹YGQK² motif (Figure 4.1A) [58].
Typically conserved in all WRKY transcription factors, the WRKYGQK motif

followed by a zinc-finger motif is essential for the DNA binding activity of

these WRKY proteins [277]. In Arabidopsis, more than 70% of WRKY tran-

scription factors are implicated in defence [274, 278]. Using similar methods,
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the companion paper [59] independently showed that PopP2 acetylates the

WRKYGQK motif of RRS1-R WRKY domain, but predominantly at K² (K1221 in

RRS1-R). To determine the effect of PopP2 acetylation at K¹ and K², ZD tested

the activities of RRS1-R and RRS1-S WRKYGQK acetyl-lysine mimic mutants

(WRQYGQK, WRKYGQ or WRQYGQQ) when transiently co-expressed with

RPS4 in N. tabacum leaves [58]. His results showed that acetyl-lysine mimic

alleles of RRS1-R, but not RRS1-S, trigger RPS4-dependent cell death (Fig-
ure 4.1B,C), which recapitulates PopP2-triggered defence activation [58].

Furthermore, RRS1-R mutants WRKYGQQ and WRQYGQQ show stronger

HR compared to RRS1-R WRQYGQK when co-expressed with RPS4 (Figure
4.1B), suggesting that PopP2-triggered acetylation on RRS1-R K² is more

strongly recognised [58]. These data indicate that the WRKY domain of

RRS1 is the biochemical target of PopP2.

Post docs PS and SH also demonstrated that the WRKY domain is

indispensable for RRS1 and PopP2 interaction: When they replaced the RRS1

WRKY domain by the bacterial LexA DNA-binding domain [279], which has

no known target in plant DNA, PopP2 fail to Co-IP with RRS1-R(WRKY/LexA)

or RRS1-S(WRKY/LexA) [58]. Additionally, we (SH and YM independently)

also showed that exons 6 and 7 (E67) of RRS1-R, which encodes the WRKY

and domain 6 (DOM6), is sufficient to Co-IP with PopP2 or PopP2-C321A

(Figure 4.3F) [58].

AvrRps4 recognition by RRS1/RPS4 or RRS1B/RPS4B is also not well

understood. AvrRps4 is cleaved in planta releasing a C-terminal fragment,

AvrRps4(C-term), containing residues Gly134–Gln221 that displays an anti-

parallel coiled-coil structure [243]. Mutation of the Lys135-Arg-Val-Tyr138

(KRVY)-motif to four alanine residues (AvrRps4-KRVYAAAA), or Glu187 to ala-

nine (AvrRps4-E187A), abolishes AvrRps4-triggered HR and immunity [243,

256]. In Chapter 3, I showed that AvrRps4 associates with RRS1 or RRS1B

to activate the pre-existing complexes of RRS1/RPS4 or RRS1B/RPS4B. This

chapter aims to unravel the detailed mechanism of AvrRps4 perception

by RRS1 and RRS1B. In parallel with the study of PopP2 perception [58],

this chapter will also explore the significance of the non-canonical WRKY

domain (of RRS1 and RRS1B) during effector perception and defence activa-

tion.
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Figure 4.1: PopP2 acetylation of lysines in the RRS1-RWRKY domain activates defence
(A) Acetylated lysine (K) residues in and around the WRKY domain (underlined) of RRS1-

R and RRS1-S are indicated by boxes. Acetylated Ks of RRS1 WRKY domain that are con-

served in RRS1B WRKY domain are indicated by asterisks. Acetylated Ks subjected to sub-

stitutions used in (B) and (C) are highlighted in red. (B-C) Transient assay in N. tabacum

leaves using A. tumefaciens transformation (agro-infiltration) shows the cell death activity

of acetyl-lysine mimic alleles (K to Q) of RRS1-R (C) but not RRS1-S (B) when co-expressed

with RPS4. Each leaf section was infiltrated to co-express RRS1-S mutants (K1215Q, K1219Q

and K1215Q/K1219Q) and RRS1-R mutants (K1217R, K1221R and K1217R/K1221R) with or

without RPS4. Photographs were taken 4 dpi. This was repeated three times with similar

results. Agro-infiltrations resulting in HR are bordered by a dashed line. Data for this figure

were generated by ZD and colleagues, figure panels are adapted from [58] Fig 2D,5B,6B.
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4.2 AvrRps4 associates with RRS1 WRKY domain, but
also weakly elsewhere

Given that PopP2 is detected via the RRS1-R WRKY domain, I hypothesized

that the WRKY domain might also be essential for AvrRps4 perception. I

investigated if AvrRps4 Co-IPs with exons 6 and 7 (E67) of RRS1 or RRS1B,

which encode the WRKY domain and a variable DOM6. The 55 aa WRKY

domain defined from WRKY to HNH of RRS1-R and RRS1-S are identical,

which shares 67.9% identity with the WRKY domain of RRS1B (Figure 4.2A).
RRS1-R E67 (E67-R) and RRS1B E67 (E67-B) carry longer DOM6-R and DOM6-

B, which are comprised of 104 and 135 aa respectively, whereas RRS1-

S E67 (E67-S) carries a 21 aa DOM6-S (Figure 4.2A). Co-IP experiments

verified that E67-R, E67-S (Figure 4.2B) and E67-B (Figure 4.9) are able to

associate with AvrRps4 [58]. In contrast, E67 derivatives in which the WRKY

domain was replaced by the bacterial LexA DNA binding domain, E67-

S(WRKY/LexA) and E67-R(WRKY/LexA), do not Co-IP with AvrRps4 (Figure
4.2B) [58]. These results suggest that the WRKY domains of RRS1 and RRS1B

can bind AvrRps4.

Nevertheless, SH and colleagues showed that full length RRS1-R(WRKY/LexA)

or RRS1-S(WRKY/LexA) still co-IPs with AvrRps4, indicating that theWRKY do-

main is not the only binding domain for AvrRps4 [58] (Figure 4.2C). I found
that AvrRps4 co-IPs with RRS1-R exons 1-5 (E12345), which lacks the WRKY

domain and domain 6, confirming that additional RRS1 domain(s) in E12345

associate with AvrRps4 (Figure 4.2D). It should be noted that AvrRps4 as-

sociation with E12345 is weaker compared to with E67-R (Figure 4.2D). In-
terestingly, a non-recognizable AvrRps4 mutant, AvrRps4-E187A, associates

more weakly with E67-R compared to type (WT) AvrRps4, whilst showing

comparable affinity with E12345 (Figure 4.2D). This indicates that AvrRps4

association with RRS1 WRKY domain is important to AvrRps4-triggered de-

fence.

4.3 PopP2 acetylation of RRS1-S or RRS1B WRKY domain
inhibits AvrRps4 recognition

PopP2 acetylation of key lysine residues in the RRS1 WRKY domain changes

the biochemical properties of the domain, and subsequently abolishes its

DNA binding ability [58, 59]. To elucidate the role of the WRKY domain
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Figure 4.2: AvrRps4 associates with RRS1WRKY domain, but also weakly elsewhere (A) Alignment of the amino

acid sequences encoded by exon 6 and 7 (E67) of RRS1-R, RRS1-S and RRS1B. Arrows mark the start positions of exons

6 and 7. The WRKY domain is marked by underline. The Alignment was generated by Clustal Omega. (B) Co-IP assay

shows AvrRps4-GFP completely loses interaction with E67-R(WRKY/LexA)-HF and E67-R(WRKY/LexA)-HF. (C) Co-IP
assay shows that AvrRps4-GFP interacts with full length RRS1-R(WRKY/LexA)-HF and RRS1-S(WRKY/LexA)-HF. (D) Co-

IP assay shows the association of AvrRps4-GFP or AvrRps4-E187A-GFP with the gene product exons 1-5 of RRS1-R

(E12345-HF) and E67-R-HF. HF tag is 6xHis 3xFlag. Figure panels B, C, D are adapted from [58] Fig 5C, S5C, D.
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during AvrRps4 perception, I tested whether the acetylation of RRS1-S

WRKY domain by PopP2 compromises the recognition of AvrRps4. Using

transient assays in tobacco, I showed that leaf sections co-expressing RRS1-S

and RPS4 respond only to AvrRps4, but not to PopP2, showing cell death

(Figure 4.3A). Significantly, this AvrRps4-triggered RRS1-S/RPS4 dependent

cell death is suppressed by the co-expression with PopP2, but not with

PopP2-C321A (Figure 4.3A).

In addition, I tested if delivering PopP2 interferes with disease resis-

tance to AvrRps4-carrying bacterial strains conferred by RRS1-S/RPS4 in

Arabidopsis Col-0. P. fluorescens (Pf ) Pf0-1 carrying T3SS was used to deliver

PopP2 or the PopP2-C321A mutant. Consistent with the transient assay

results as above, I demonstrated that Pf0-1 (PopP2), but not Pf0-1 (PopP2-

C321A), restores growth of Pst DC3000 (AvrRps4) to a level comparable to

Pst DC3000 (EV) + Pf0-1 (PopP2) (Figure4.3C). PopP2-C321A associates with

RRS1-S [58, 115, 257], but this association is insufficient to suppress AvrRps4

recognition and resistance. Therefore, I infer that the competition between

AvrRps4 and PopP2 for WRKY domain binding cannot explain the attenu-

ation of AvrRps4 responsiveness by PopP2, and it is likely the enzymatic

function of PopP2 (acetylation of RRS1-S) that causes the attenuation. Like-

wise, PopP2-dependent acetylation of RRS1-S compromised the resistance

in Arabidopsis Col-0 against Pst DC3000(AvrRps4).

RRS1B also associates with PopP2 (shown in Chapter 3), and both the

full-length RRS1B and the WRKY domain containing E67-B can be acetylated

by PopP2 (SH, unpublished). Therefore, we (YM and colleagues) speculate

that PopP2 acetylates similar lysine residues of RRS1BWRKY domain that are

targeted in RRS1-R and RRS1-S (Figure 4.1A). PopP2 is not recognised by

RRS1B/RPS4B [121]. Here I confirmed that RRS1B and RPS4B co-expression

shows no responsiveness to PopP2 in N. tabacum leaves (Figure 4.3B); and
Pf0-1 (PopP2) can not trigger cell death in the leaves of Arabidopsis Ws-2

rrs1-1/rps4-21 (Figure 4.3D). I hypothesised that if AvrRps4 is recognised

via the WRKY domain of RRS1B, then PopP2 acetylation of RRS1B might

attenuate AvrRps4 recognition by RRS1B/RPS4B. Indeed, tobacco transient

assay showed that AvrRps4-triggered RRS1B/RPS4B-dependent cell death

is suppressed (although not completely abolished) by PopP2, but not af-

fected by PopP2-C321A (Figure 4.3B). Consistently in Arabidopsis, Pf0-1

(AvrRps4) triggers cell death in Ws-2 rrs1-1/rps4-21, which is dependent
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Figure 4.3: PopP2 acetylation of the RRS1-S and RRS1BWRKY domain inhibits AvrRps4 recognition
(A & B) Transient assays in N. tabacum leaves using agro-infiltration show that PopP2, but not PopP2-C321A, in-

hibits AvrRps4 recognition by the RRS1-S/RPS4 complex (A) and the RRS1B/RPS4B complex (B). Each leaf section co-

expresses RRS1-S/RPS4 or RRS1B/RPS4B with individual effectors or their combinations. Photographs were taken 4

dpi. Agro-infiltrations resulting in HR are bordered by a dashed line. (C) Bacterial growth assays show that PopP2,

but not PopP2-C321A, inhibits resistance of Arabidopsis Col-0 to Pst DC3000 carrying AvrRps4. Histogram shows the

growth of Pst DC3000 carrying empty vector (EV) or AvrRps4, measured 3 dpi in Arabidopsis leaves. (Pf ) Pf0-1 carry-

ing PopP2 or PopP2-C321A were co-infiltrated with Pst DC3000 strains. Means ± SD of three replicates per sample are

given. (D) HR assays in Arabidopsis using Pf Pf0-1 to deliver effectors, show that PopP2, but not PopP2-C321A, inhibits

cell death response of Ws-2 rrs1-1/rps4-21 to AvrRps4. Leaves showing HR are indicated with asterisks. HR phenotypes

were assessed 24 hpi. (E & F) (E) Co-IP assays show PopP2-GFP, but not PopP2-C321A-GFP, inhibits AvrRps4-GFP asso-

ciation with E67-R-HF after transient co-expression in N .benthamiana. (F) Co-IP assays show PopP2-GFP and PopP2-

C321A-GFP associate with E67-R-HF after transient co-expression in N .benthamiana. Immunoblots show the presence

of proteins in total extracts (input) and after IP. Asterisks indicate the expected protein bands. There experiments were

repeated at least three times with similar results. Figure panels A, C, E, F were published in [58] Figure 4, S4E; experi-

ment for F was done by SH and YM independently.
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on AvrRps4 recognition by RRS1B/RPS4B, is suppressed by co-infiltration of

Pf0-1 (PopP2), but not by Pf0-1 (PopP2-C321A) (Figure 4.3D).

Additionally, in Ws-2, when RRS1-R/RPS4 and RRS1B/RPS4B are present,

either Pf0-1 (PopP2) or Pf0-1 (AvrRps4) can be recognised and trigger cell

death; and co-infiltration of Pf0-1 (PopP2) and Pf0-1 (AvrRps4) does not

suppress cell death (Figure 4.3D). Similarly, co-expression of PopP2 and Avr-

Rps4 triggers strong cell death in the tobacco leaf section expressing RRS1-R

and RPS4 (Figure 4.4A). These results indicate that the presence of AvrRps4

does not interfere with PopP2 recognition by RRS1-R/RPS4. Furthermore,

I tested the suppression activity of PopP2 on other R protein-mediated

effector-triggered cell death using transient assay in N. tabacum. Figure
4.4B illustrates that PopP2 does not suppress the cell death triggered by
4WRR4Col-0 recognition of 5Avr-WRR4 [280]. Likewise, post doc PS showed4 WRR4Col-0: White

Rust Resistance pro-
tein 4, a TIR-NB-LRR
from Arabidopsis
Col-0.
5 Avr-WRR4: A
candidate effector
recognised by
WRR4 identified by
Volkan Cevik from
Albugo candida race
Nc-2 (unpublished).

that PopP2 also does not suppress the cell death triggered by the recog-

nition of ATR1 by RPP1WsB [58]. Thus, I can rule out that PopP2-mediated

suppression of AvrRps4 recognition by RRS1-S/RPS4 is due to the general

HR-suppressing activity of PopP2. Altogether, I favour the hypothesis that

PopP2 acetylation of the RRS1-S or RRS1B WRKY domain causes the loss of

its affinity for AvrRps4, and thus the loss of AvrRps4 recognition.

Figure 4.4: AvrRps4 does not interfere with PopP2 recognition, and PopP2 specifi-
cally inhibits AvrRps4 recognition (A) Transient assays in N. tabacum leaves using agro-

infiltration show that AvrRps4 does not interfere the HR triggered by PopP2 recognition

via RRS1-R/RPS4. (B) Transient assays in N. tabacum leaves using agro-infiltration show that

PopP2 does not suppress the HR triggered by WRR4Col-0 recognition of Avr-WRR4. Each leaf

section was co-infiltrated to express a combination of R genes (shown on top) and effectors

(labelled left or right of each square). Photographs were taken 4 dpi. Agro-infiltrations re-

sulting in HR are bordered by a dashed line. These experiment were repeated at least three

times with similar results.
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To test this hypothesis, I investigated if PopP2 acetylation interferes

with AvrRps4 association with the RRS1 WRKY domain using Co-IP assays.

Results show that the association between E67-R and AvrRps4 is greatly

reduced in the presence of PopP2, but not in the presence of PopP2-

C321A (Figure 4.3E). PopP2 and PopP2-C321A associations with E67-R are

much weaker compared to AvrRps4, therefore are not visible in (Figure
4.3E). In an independent Co-IP with a longer exposure time, we (SH and YM

independently) are able to detect the associations of E67-R with both PopP2

and PopP2-C321A in equal affinity (Figure 4.3F). This strongly suggests that

PopP2-mediated interference is not due to competition for binding, but is

dependent on its function to acetylate. Post doc SH detected acetylation

of E67-R by PopP2, but not by mutant PopP2-C321A, using the anti-acetyl-

lysine antibody [58]. PopP2 specifically acetylates lysine residues (K¹ and K²)

in the RRS1 WRKY domain (Figure 4.1A) [58], and this acetylation blocks

AvrRps4 binding, implying that AvrRps4 directly interacts with the WRKY

domain of RRS1.

4.4 WRKY domain mutants that lose recognition of
AvrRps4 fail to interact with AvrRps4

Given that PopP2 targets K¹ and K² of the RRS1 WRK¹YGQK², we (YM and

ZD) investigated the importance of K¹ and K² during AvrRps4 recognition.

ZD showed that RRS1-S acetyl-lysine mimic (Q) substitution of either K¹

(WRQYGQK) or K² (WRKYGQQ) completely abolishes AvrRps4 responsive-

ness when co-expressed with RPS4 in tobacco leaves (Figure 4.5B) [58].

This suggests that acetylation of either K¹ or K² of the RRS1-S WRKY domain

is sufficient to deter AvrRps4 recognition, which explains the suppression of

the RRS1-S/RPS4-mediated AvrRps4 recognition by PopP2. ZD also showed

that when K¹ or K² of RRS1-R WRKYGQK was replaced with an arginine

(R), a lysine mimic that cannot be acetylated, both RRS1-R WRKYGQR and

WRRYGQK are not autoimmunewhen co-expressed with RPS4 (Figure4.5A)
[58].

Interestingly, RRS1-R WRKYGQR, but not WRRYGQK, loses the ability

to recognise AvrRps4, implying the crucial role of K² for AvrRps4 detec-

tion (Figure 4.5A) [58]. In comparison, the contribution of K¹ to AvrRps4

recognition is disrupted by a Q substitution (Figure 4.5B) but not an R

substitution (Figure 4.5A). Furthermore, I showed that PopP2 acetylation of
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Figure 4.5: WRKY Domain lysine residuesmutants that lose recognition of AvrRps4 fail to associate with Avr-
Rps4 (A-C) Transient assays in N. tabacum leaves show the AvrRps4 recognition phenotypes of RRS1-R mutants

(K1217R, K1221R) (A) and RRS1-S mutants (K1215Q, K1219Q) (B) when co-expressed with RPS4. (C) Transient as-

says show that PopP2, but not PopP2-C321A can suppress AvrRps4-triggered HR in RRS1-S (K1215Q) and RPS4 co-

expressing N. tabcum leaves. Photographs were taken 4 dpi. Agro-infiltrations resulting in HR are bordered by a

dashed line. This was repeated at least three times with similar results. (D-E) Co-IP assays show AvrRps4-GFP asso-

ciates with (E67)-R-HF, but not with E67-R(WRKYGQR)-HF or E67-R(WRKYGQQ)-HF mutants. Immunoblots show the

presence of proteins in total extracts (input) and after IP (E). Asterisks indicate expected protein bands. Data for panels

A and B were generated by ZD. Figure panels A, B, D, E are adapted from [58] Fig 5, S5.
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Figure 4.6: RRS1-S (slh1) that lose recognition of AvrRps4 fail to associate with AvrRps4
via theWRKY domain (A) Transient assays in N. tabacum leaves show that RRS1-R(slh1),

but not RRS1-S(slh1) mutant, triggers RPS4-dependent auto-activity. The RRS1-S(slh1) and

RPS4 co-expression is not able to induce AvrRps4 responsiveness. Agro-infiltrations resulting

in HR are bordered by a dashed line. Immunoblot shows equal protein expression of RRS1-

R(slh1) and RRS1-S(slh1). CBB staining shows equal loading. (B) Co-IP assay shows that slh1

mutants of both E67-R-HF and E67-S-HF lose interaction with AvrRps4-GFP. Immunoblots

show the presence of proteins in total extracts (input) and after IP. Asterisks indicate ex-

pected protein bands. Panel A was generated by PS. Figure panels were published in [58] Fig

S5.

the K² residue of RRS1-S WRKRYGQK can reduce AvrRps4 responsiveness in

RRS1-S WRKRYGQK + RPS4 combination (Figure 4.5C). These observations

suggest that recognition of AvrRps4 is sensitive to subtle changes at the K²

position of theWRK¹YGQK²motif in RRS1-R and RRS1-S. Therefore, I infer that

K² must be crucial for the WRKY domain to interact with AvrRps4. Indeed,

I co-expressed AvrRps4 with E67-R and their K² mutant variants and found

that AvrRps4 Co-IPs with E67-R but not with E67 WRKYGQR or WRKYGQQ
mutants (Figure 4.5D,E).

Furthermore, like PopP2 acetylation of the RRS1-S WRKY domain, PS

showed that RRS1-S(slh1), with a leucine insertion in the WRKY domain,

loses the ability to recognise AvrRps4 (Figure 4.6A) [58]. Unlike RRS1-

R(slh1), PS discovered that RRS1-S(slh1) does not confer RPS4-dependent
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activation of cell death after transient expression in tobacco (Figure 4.6A)
[58]. I found that both E67-R(slh1) and E67-S(slh1) fail to Co-IP with AvrRps4,

suggesting a single leucine insertion in the WRKY domain abolishes affinity

for AvrRps4 (Figure 4.6B).

In summary, the RRS1WRKY domain interacts with AvrRps4, andmutant

forms of theWRKY domain that compromise responsiveness to AvrRps4 also

compromise binding. Therefore, AvrRps4 perception must require binding

to the WRKY domain of RRS1.

4.5 WRKY domain interactions with AvrRps4 are
necessary but not sufficient for the perception of
AvrRps4

I next investigated whether AvrRps4 mutants lose the ability to be recog-

nised due to their lack of affinity with the WRKY domain of RRS1 or RRS1B.

E67-R interacts very weakly with AvrRps4-E187A, but maintains strong affin-

ity with AvrRps4-KRVYAAAA comparable to that of AvrRps4-WT in Co-IP

(Figure 4.7A & Figure 4.9). This suggests that binding to the RRS1 WRKY

domain is necessary but not sufficient for AvrRps4 recognition. I infer

that E187 is required for AvrRps4 interaction with the RRS1 WRKY domain,

whereas the KRVY motif is irrelevant for WRKY domain binding, but is

required for interacting with other components or domains required for

recognition.

Structural modelling of possible RRS1 WRKY domain and AvrRps4(C-

term) interactions places K² of RRS1 WRK¹YGQK² and E187 & E175 of AvrRps4

at the interface (Figure 4.8A). The strutural model of RRS1 WRKY domain

was predicted by Phyr2 based onWRKY1, and AvrRps4(C-term)was obtained

from the published crystal structure (PDB ID:4B6X) [243]. Like E187, the E175

is a surface exposed residue of AvrRps4 that is required for full RRS1/RPS4-

and RRS1B/RPS4B-mediated AvrRps4 responsiveness in Arabidopsis [243].

The N-terminal 20 aa of the AvrRps4(C-term) was not observed in the elec-

tron density, therefore the KRVY motif at the N-terminal end was not shown

in the crystal structure [243]. However, as the N-terminus of AvrRps4(C-

term) is at the opposite end of the predicted WRKY/AvrRps4 interface (Fig-
ure 4.8A), it is possible that the KRVY motif is involved in interactions other

than with the WRKY domain. Although AvrRps4 and AvrRps4-E187A differ
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Figure 4.7: Associations of AvrRps4mutants with theWRKY domain and the full-
length protein of RRS1-R (A) Co-IP assay shows that AvrRps4-E187A-GFP, but not AvrRps4-

KRVYAAAA-GFP, exhibits reduced association with E67-R-HF compared to AvrRps4-WT-GFP

(wild type). (B) AvrRps4-WT-GFP, AvrRps4-E187A-GFP or AvrRps4-KRVYAAAA-GFP but not

GFP Co-IP with RRS1-R-HF in the absence of RPS4-HA. Immunoblots show the presence of

proteins in total extracts (input) and after IP. Asterisks indicate expected protein bands. Fig-

ure panels were published in [58] Fig S1E, S5E.

in their interaction with the WRKY domain (Figure 4.7A & Figure 4.9), they
show similar affinity with the full-length RRS1-R (Figure 4.7B). This can be

explained by AvrRps4 and AvrRps4-E187A interacting equally with RRS1

E12345 (Figure 4.2D). I speculate that a distinct surface of AvrRps4, which is

not involved in interaction with the WRKY domain, mediates the interaction

with RRS1 E12345.

Modelling of RRS1B WRKY domain and AvrRps4(C-term) interactions

predicts a similar (but not identical) interface to that of RRS1WRKY/AvrRps4(C-

term), with K² of RRS1BWRK¹YGQK² and AvrRps4 E187 & E175 at the interface

(Figure 4.8A). This model is consistent with the observation that PopP2

acetylation of RRS1B WRKY domain suppresses AvrRps4 recognition (Fig-
ure 4.3B, D). I show that AvrRps4 also Co-IPs with RRS1B E67-B, but with

much weaker affinity compared to RRS1-R E67-R (Figure 4.9), confirming

the possible AvrRps4/RRS1B-WRKY interaction. AvrRps4 mutants’ associa-

tions with E67-B exhibit a similar pattern compared to E67-R, but with much

weaker signals overall: AvrRps4-KRVYAAAA Co-IPs strongly with E67-B, while

AvrRps4-E187A fails to associate with E67-B (Figure 4.9).
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Figure 4.8: Structural modelling of possible interactions between AvrRps4(C-term) and theWRKY domain of
RRS1-R and RRS1B Protein-protein interaction modelling by ClusPro [281–283] predicts the most possible interac-

tions between AvrRps4(C-term) and RRS1-R WRKY domain (A) and between AvrRps4 and RRS1B WRKY domain (B).
(A) shows a close up view of RRS1-R and AvrRps4 (C-term) interface. Structural models of the RRS1-R (Ws-2) WRKY do-

main (Ser1196-Thr1273), shown in orange, and RRS1BWs-2 WRKY domain (Glu1166-Thr1241), shown in yellow, were

predicted with 100% confidence by Phyr2 [284] using the crystal structure of WRKY1 with 5 β strands(PDB ID:c2aydA)

as their template. AvrRps4(C-term) structure (PDB ID:4B6X) shown in cyan was previously determined by [243]. Solid

molecular surface was presented (on the right) as well as ribbons illustrating the secondary protein structure (on the

left). Amino acids predicted at the interface were shown as sticks, with lysine (K) residues of RRS1-R or RRS1B WRKY

motif highlighted in green, and glutamic acid (E) residues of AvrRps4 highlighted in magenta.
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Figure 4.9: Associations of AvrRps4mutants with theWRKY domain and RRS1-R and
RRS1B show a similar pattern Co-IP assay shows that AvrRps4-E187A-GFP and AvrRps4-

L167S-GFP, but not AvrRps4-KRVYAAAA-GFP show reduced association with E67-R-HF and

E67-B-HF when compared to AvrRps4-WT-GFP. Immunoblots show the presence of proteins

in total extracts (input) and after IP. Asterisks indicate expected protein bands.

Sequence analysis of AvrRps4 natural variants revealed that the L167

residue is under positive selection, and L167T or L167S variants manage to

evade recognition by RRS1B/RPS4B, but not RRS1/RPS4 [243]. I validated

that Pf0-1 (AvrRps4-L167T) and Pf0-1 (AvrRps4-L167S) are only recognised

in the Arabidopsis lines with functional RRS1-R/RPS4 (Ws-2 and Ws-2 rps4b-

1), showing cell death; whereas RRS1B/RPS4B (in Ws-2 rrs1-1 and Ws-2

rps4-21) fails to show responsiveness (Figure 4.10A). Consistently, tobacco
transient assay showed that AvrRps4-L167T and AvrRps4-L167S show weak

cell death response when co-expressed with RRS1-R and RPS4, but they do

not respond to RRS1B/RPS4B (Figure 4.10B). I also established that AvrRps4-

L167T is more weakly recognised by RRS1-R/RPS4 compared to AvrRps4-

L167S in Arabidopsis and in transient assays (Figure 4.10A, B).
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Figure 4.10: AvrRps4 L167T and L167S variants are weakly recognised by RRS1-R/RPS4 and RRS1B/RPS4B
(A) HR assays in Arabidopsis show that Pf Pf0-1 carrying AvrRps4-L167T and AvrRps4-L167S trigger cell death only in

Ws-2 and Ws-2 rps4b-1, but not in Ws-2 rrs1-1 and Ws-2 rps4-21 (highlighted in the box). Pf Pf0-1 carrying AvrRps4-

WT and AvrRps4-E187A were used as positive and negative control respectively. No AvrRps4 responsiveness were

shown in Ws-2 rrs1-1/rps4b-1 and Ws-2 rps4-21/rps4b-1 double mutants. Leaves showing HR are indicated with as-

terisks, number of asterisks correlate with the strength of HR. Fractions indicate the number of leaves displaying the

shown phenotype over the total number of infiltrated leaves. HR phenotypes were assessed 24 hpi. (B-C) Transient
assays in N. tabacum leaves show that AvrRps4-L167S responsiveness positively correlates with the infiltration con-

centrations of A. tumefaciens carrying R genes. (B) When all R genes are infiltrated at equal concentrations (OD=0.4),

RRS1-R/RPS4 shows a weak HR to AvrRps4-L167S and an even weaker HR to AvrRps4-L167T; but RRS1B/RPS4B shows

no HR to AvrRps4-L167S or AvrRps4-L167T. (C) However, when RRS1-R and RPS4 are infiltrated at (OD=0.25), they lose

HR in response to AvrRps4-L167S. In contrast, RRS1B and RPS4B when infiltrated at (OD=0.5) restore the HR response

to AvrRps4-L167S. AvrRps4-WT and AvrRps4-E187A were used as positive and negative controls respectively. Pho-

tographs were taken 4 dpi. Agro-infiltrations resulting in HR are bordered by a dashed line. These experiments were

repeated twice with similar results.
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As the WRKY domain interaction is necessary for AvrRps4 perception,

I hypothesised that L167 of AvrRps4 maybe specifically required for inter-

action with the WRKY domain of RRS1B but not RRS1-R. Co-IP experiments

showed that AvrRps4-L167S fails to associate with E67-B, but maintains as-

sociation with E67-R (Figure 4.9). E67-R Co-IPs with AvrRps4-L167S more

weakly compared to AvrRps4-WT, but more strongly compared to AvrRps4-

E187A (Figure 4.9). However, I cannot exclude that the observed lack of

AvrRps4-L167S and E67-B association is due to the initial weak association

between AvrRps4-WT and E67-B. To determine whether the lack of AvrRps4-

L167S responsiveness by RRS1B/RPS4B is due to a quantitative weakening

or a qualitative loss of recognition, I increased the infiltration concentra-

tions of Agrobacterium strains carrying RRS1B and RPS4B in transient assays

to test for AvrRps4-L167S responsiveness. When both RRS1B- and RPS4B-

carrying strains were infiltrated at OD=0.5, AvrRps4-L167S triggers a weaker

cell death response compared to AvrRps4-WT (Figure 4.10C), which was

not observed when RRS1B and RPS4B were both expressed at OD=0.4 as

above in (Figure 4.10B). This demonstrated that the weaker AvrRps4-L167S

recognition by RRS1B/RPS4B can be revealed by artificially increasing the

concentration of the transiently expressed R proteins. In contrast, the lower

OD=0.25 (compared to OD=0.4 in (Figure 4.10B)) for both RRS1-R- and

RPS4-carrying strains completely suppress AvrRps4-L167S but not AvrRps4-

WT responsiveness (Figure 4.10C). These results reveal that AvrRps4-L167

is important for the interactions with the WRKY domain of both RRS1-R and

RRS1B, and mutation at L167 weakens AvrRps4/WRKY associations, there-

fore impairing its recognition by RRS1-R/RPS4 and RRS1B/RPS4B.

Altogether, the positive correlation between the recognisability ofmany

AvrRps4 variants and their affinity with the WRKY domain strongly suggest

that AvrRps4 is recognised via interacting with the WRKY domain of RRS1

and RRS1B. However, this interaction is not sufficient to activate defence,

as AvrRps4-KRVYAAAA interacts with the WRKY domain but is not recog-

nised.

4.6 AvrRps4 associates with WRKY transcription factors
involved in plant immunity

AvrRps4 interacts with theWRKY domain of RRS1 and RRS1B, and these inter-

actions are required for activation of immunity. [58, 59] showed that PopP2
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also interacts with and acetylates the WRKY domain of RRS1, the latter of

which is essential for PopP2-triggered defence. These evidence suggest that

the non-canonical WRKY domain of RRS1 might function to detect effectors

that would otherwise target the WRKY-domain containing transcription fac-

tors and impair their contribution to plant immunity. To determine whether

AvrRps4 associates with WRKY transcription factors, AvrRps4-GFP was tran-

siently co-expressed with several C-terminally HF-tagged WRKY proteins.

The WRKY proteins were selected because of their possible involvement in

plant defence. We (YM and ZD) showed that AvrRps4 Co-IPs with WRKY41,

WRKY70, WRKY33 andWRKY60 (Figure4.11A,B), but not withWRKY22 (Fig-
ure 4.11C). Previously, [16] showed that AvrRps4 interacts with WRKY41 in

Y2H, implying that AvrRps4 might interfere with WRKY transcription factors

via direct interaction. In parallel, ZD showed that PopP2-C321A-GFP Co-IPs

with all the chosen WRKY proteins and WRKY41, WRKY70 and WRKY33,

but not WRKY60 can be acetylated by PopP2 [58]. These results suggest

that both AvrRps4 and PopP2 target a subset of WRKY proteins that are

implicated in plant immunity. Therefore, we (YM and colleagues) propose

that the RRS1/RPS4 immune complex has evolved to detect effectors that

interfere with the function of WRKY transcription factors.

4.7 Discussion

4.7.1 AvrRps4 is perceived via theWRKY domain

In this chapter, I report that AvrRps4 associates with the WRKY domains

of RRS1 and RRS1B. Although AvrRps4 associates with other domains of

RRS1, its association with the WRKY domain is the trigger that is crucial

for activation of defence. PopP2 acetylation of the WRKY domains in RRS1-

S and RRS1B compromises their capacity to recognise AvrRps4 (Figure
4.3). Moreover, substitution of K² in the RRS1-S WRK¹YGQK² motif with an

acetyl-lysine mimic (Q), or with an R, abolishes AvrRps4 recognition and

WRKY domain binding, emphasising the importance of K² during effector

recognition (Figure 4.5).

Protein-protein interaction modelling predicts that K² of RRS1 or RRS1B

WRKY domain directly interacts with the E187 & E175 residues of AvrRps4

(Figure 4.8). In turn, I established that mutating E187 to alanine signifi-

cantly reduces AvrRps4’s affinity with RRS1 or RRS1B WRKY domain (Fig-
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Figure 4.11: AvrRps4 associates with several WRKY transcription factors (A-C) Co-IP assays assess the association

between AvrRps4-GFP and WRKY41-HF, WRKY70-HF, WRKY60-HF, WRKY33-HF and WRKY22-HF. Immunoblots show the

presence of proteins in total extracts (input) and after IP. Asterisks indicate expected protein bands. Figure panels A

and B were published in [58] Fig S7C, S6; experiments were done together with ZD.

ure 4.7A), explaining the loss of AvrRps4-E187A recognition. Overall, it

seems that mutations that reduce the association between AvrRps4 and the

WRKY domain, also weaken the resulting cell death responses, except for

AvrRps4-KRVYAAAA. KRVY substitutions to AAAA completely abolish Avr-

Rps4 recognition, but do not comprise WRKY domain interaction (Figure
4.7A), implying that additional properties besides WRKY domain interaction

must be required for AvrRps4 recognition. So far, I showed that various mu-

tations in AvrRps4 interfere with the recognition by RRS1/RPS4 and likewise

by RRS1B/RPS4B, indicating that similar properties of AvrRps4 are required

for its perception by both pairs.

Sohn et al. [243] suggested that L167 of AvrRps4 is specifically required

for RRS1B/RPS4B recognition but not by RRS1/RPS4, yet I have shown that

RRS1B/RPS4B can recognise AvrRps4-L167S if the R proteins are expressed at

high enough concentrations in the transient assay (Figure4.10C). Therefore,
within the limits of the transient assay, it seems that the strength of AvrRps4-

L167S responsiveness is determined by its affinity with either WRKY domain

and the concentration of the R proteins.
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4.7.2 PopP2 inhibits AvrRps4 recognition via acetylating the
WRKY domain

In parallel tomy findings that AvrRps4 is perceived by theWRKY domain, [58,

59] revealed that PopP2 also interacts with and acetylates the WRKY domain

to activate RRS1-R/RPS4-mediated defence. Together, our work unveiled a

plant immune receptor pair that detects two distinct bacterial effectors via

a WRKY domain of one receptor, while the other activates defence upon

such detection.

PopP2 directly interacts with RRS1 [214], and this interaction is depen-

dent on the WRKY domain [58], suggesting a direct PopP2/WRKY domain

interaction. Direct interaction between AvrRps4 and WRKY41 was first

reported in Y2H screens [16], and various clues imply that AvrRps4 also

directly interacts with the WRKY domains of RRS1 or RRS1B. For example,

E187 and E175, which are crucial for AvrRps4 recognition, are located at

a prominent electro-negative surface of AvrRps4 [243], and also mapped

to the predicted interface with the WRKY domain (Figure 4.8). Structural

comparison of AvrRps4 and the coiled-coil domain of PRK1 kinase (HR1b)

suggested that the negative surface of AvrRps4 might be directly involved

in protein-protein interaction: the equivalent AvrRps4 residues (E187 and

E175) on the negative surface of HR1b were shown to directly interact with

Rho GTPase (Rac1) in the HR1b/Rac1 complex [243, 285].

PopP2 acetylation of lysines (especially K²) blocks AvrRps4 perception via

the WRKY domain, strongly suggesting that AvrRps4 interact with K² of the

WRKY domain.

Although PopP2 has a weaker affinity with the WRKY domain compared

to AvrRps4 (Figure 4.3E, F), I infer that PopP2 acetylation possibly precedes

AvrRps4 binding, and is therefore able to suppress AvrRps4 recognition. This

is consistent with my observation that AvrRps4 cannot interfere with PopP2

recognition by RRS1-R/RPS4 (Figure 4.4A). Several examples demonstrated

that some pathogens, such as P. syringae [53, 286] and Blumeria graminis

[287], secrete effectors that interfere with the recognition of other effectors.

However, the suppression of AvrRps4 recognition by PopP2 is perhaps not

likely to occur naturally, because they are delivered by a root and a leaf

pathogen respectively. Therefore, I infer that rather than a collaboration

of different pathogens, PopP2 suppression of AvrRps4 recognition is likely

to be a consequence of them both targeting similar WRKY proteins, and
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thereby being perceived by a common WRKY domain of RRS1. This coinci-

dence however has proven a powerful tool to understand the mechanisms

of effector perception via an R protein domain mimicking common effector

host targets.

4.7.3 The integratedWRKY domain functions to detect
effectors

Our discovery (YM, ZD and colleagues) of AvrRps4 and PopP2 both interact-

ing with other Arabidopsis WRKY proteins implies that RRS1 and RRS1B have

evolved with a WRKY domain and thus can hijack effectors that target WRKY

transcription factors for immune suppression. In other words, the WRKY

domains of RRS1 and RRS1B act as a bait for pathogen effectors. As dis-

cussed in Chapter 3, a probable common ancestor of both RRS1 and RRS1B

lacks the WRKY domain [121], suggesting that RRS1/RPS4 and RRS1B/RPS4B

evolved from a duplication event after the integration of a WRKY domain.

These duplicated RRS1/RPS4-like proteins with an integrated WRKY domain

are maintained or have further expanded in several relatives of A. thaliana

[121], implying the evolutionary advantage of the WRKY domain fusion.

Furthermore, Sarris et al (2016) [118] highlighted the recurrent integration

of WRKY transcription factor into NLRs, which appear to have emerged in-

dependently in several lineages of plants, emphasising the significance of

WRKY proteins for plant immunity. More broadly, incorporations of such

atypical domains into NLRs are shown to be widespread in plants, and

‘hub proteins’ convergently targeted by many effectors are suggested to be

highly enriched in NLR fusions [16, 118, 119, 126].

Intriguingly, these NLRs that perceive effectors via extraneous domains

are often found to partner with a classic NB-LRR protein, which functions for

defence signalling [15, 110, 112, 126]. As with RRS1/RPS4, other examples

include the RGA4/RGA5 and Pik-1/Pik-2 gene pairs in rice, in which RGA5

and Pik-1 each incorporates a heavy metal-associated domain (HMA, also

known as RATX1) that interacts with recognised effectors [110, 112, 113].

However, these effectors have not been reported to target other HMA-

domain proteins involved in or required for disease resistance.

Hypothetically, these NLR fusion domains might have evolved from

duplication of effector targets, followed by incorporation into the NLR pro-

tein. After the fusion event, the extraneous domain may evolve exclusively
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towards effective pathogen detection, and as a consequence losing the

ancestral biochemical activity, thus becoming an ‘integrated decoy’[112]. A

frequently asked question is “Are all integrated domains of plant NLRs true

decoys?” Wu et al (2015) [120] pointed out that some integrated domains

are not necessarily decoys, as they might maintain their ancestral function

in the effector-targeted pathway as well as effector sensing.

The integratedWRKY domains of RRS1 and RRS1B preserve all the signa-

tures of a functional WRKY transcription factor (WRKYGQK and Zn2+-binding

motifs), and are shown to bind a W-box DNA element [58, 59]. How-

ever, rrs1-1/rrs1b-1 double mutants did not show enhanced susceptibility

to pathogens lacking the Avrs, and so far there is no evidence that RRS1 or

RRS1B contribute to basal defence. I hypothesise that the DNA-binding mo-

tifs of these integrated WRKY domains are required for effector detection,

and thus the retained DNA-binding activity; and as duplicates of an effector-

targeted WRKY protein, their biochemical activities are possibly dispensable

for immunity. Nevertheless, whether integrated WRKY domains of RRS1

and RRS1B are true decoys remains to be seen. In contrast, some integrated

WRKY domains in NLRs are found to have lost the conserved residues critical

for DNA binding, suggesting that they might have become ‘decoys’ [118]. It

will be interesting to see if these ‘decoy’ WRKY fusions perceive a different

groups of effectors that do not target the key DNA-binding residues.

4.7.4 Is DNA binding via theWRKY domain relevant for
RRS1/RPS4 complex activation?

If the W-box DNA binding activity of the RRS1 WRKY domain is not re-

quired for basal defence, could it be regulating AvrRps4- or PopP2-triggered

defence activation? RRS1-R (slh1), in which the leucine insertion in the

WRKY domain abolishes its DNA binding, was reported to trigger consti-

tutive defence activation in the presence of RPS4 [58, 250]. In addition,

[58, 59] showed that PopP2 acetylation of the RRS1-R WRKY domain also

disrupts DNA binding, and subsequently triggers defence. This correla-

tion between the loss of WRKY domain DNA binding and the activation of

RRS1-R/RPS4 complex, has led to the belief that the DNA binding property

of the WRKY domain is required for the activation of RRS1/RPS4. On the

contrary, DNA-binding deficient mutants RRS1-S(slh1) and RRS1-R(K¹221R or

K²R), along with PopP2-acetylated RRS1-S do not confer constitutive activa-
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tion of defence [58, 59], demonstrating that the loss of W-box DNA binding

is insufficient for defence activation.

Additionally, using electrophoreticmobility shift (EMSA) assays, postdoc

SH showed that AvrRps4 activates defence without interfering with the

DNA binding of the RRS1 WRKY domain [58]. Overall, it seems the DNA

binding status of RRS1 WRKY domain does not determine the activation

(or inactivation) of the RRS1/RPS4 complex. Therefore, I propose that it is

likely the intra- and inter-molecular changes triggered by effector detection

at the WRKY domain activate the complex, and I will explore this further in

Chapter 5.

The K² residue of the WRKY motif is located at the interface with DNA;

how then does AvrRps4 bind to K² without disrupting the DNA binding?

Some WRKY proteins form dimers [206, 275, 288, 289], and it is possible

that AvrRps4 may interact with only one molecule in a hypothetical WRKY

domain dimer of RRS1, allowing the other WRKY domain to still bind DNA.

Our attempts (LW & HB and YM) at obtaining the co-crystal structure of

AvrRps4 and the WRKY domain aim to elucidate the nature of this inter-

action. Nevertheless, we cannot exclude that AvrRps4 may only bind to

a proportion of RRS1 molecules to activate defence, leaving the unbound

molecules free to interact with DNA.

Unlike PopP2, which disrupts the DNA binding capacity of several WRKY

transcription factors [58, 59], AvrRps4 binding may interfere with WRKY

protein function by other means. I infer that AvrRps4 and PopP2 essentially

have different modes of action, and perhaps are likely to trigger defence via

the WRKY domain of RRS1 slightly differently. Comparisons of AvrRps4- and

PopP2-triggered activation will be discussed in Chapter 5.

To conclude, our data (YM and colleagues) imply a general mode of

evolution of new immune recognition capacities: NLR receptor pairs are

selected in which one member integrates a domain that enables perception

of effectors via mimicking their host targets, while the other activates

defence upon such perception.
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5De-repression of the immune receptor complex
RRS1/RPS4 by distinct effectors, AvrRps4 and
PopP2

5.1 Introduction and Chapter aim

So far, our work (YM, colleagues and collaborators) has revealed that the

paired TNLs RRS1-R and RPS4 form an immune complex to detect effectors

via an integrated WRKY domain of RRS1-R, which mimics the effector’s host

targets, WRKY transcription factors [58, 59, 115]. My work also suggests

that the paralogous TNL pair RRS1B/RPS4B operates similarly to detect the

effector AvrRps4 [121]. The next big question is “how do these immune com-

plexes convert effector recognition into defence activation?” The ‘molecular

switch’ model stresses the importance of intra-molecular reconfigurations

for NLR activation [153, 154]. In addition, by analogy with mammalian NLR

mechanisms, NLR homo- or hetero-oligomerization (via inter-molecular in-

teraction) may be an important element of plant NLR activation. Therefore,

detailed molecular studies on the changes in intra- and inter-molecular

interactions before and after effector elicitation are needed to understand

the operating mechanisms of NLRs. Specifically, this chapter will investi-

gate these molecular changes in an immune pair complex with a typical

integrated domain, which has not been attempted before.

The role of the RRS1 WRKY domain as the effector ‘sensor’ implies that

it is also the domain that initiates activation. Several mutations in the WRKY

domain (e.g. slh1, K1221Q) have been shown to constitutively activate the

RRS1-R/RPS4 immune complex [58, 59, 250]. As the DNA binding activity

of the WRKY domain is unlikely to directly activate defence (discussed in

Chapter 4), the WRKY domain may regulate immune complex activity. In

this chapter, I will look into the function of the WRKY domain in the pre-

activation state and during activation via exploring its interactions with

neighbouring domains.
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How then does the effector detection via RRS1 WRKY domain activate

RPS4? A simple hypothesis is that the WRKY domain perceives the effectors,

starting a chain of molecular changes in RRS1 to pass on the activation

signal to the executor RPS4. The mechanism of a sensor (RRS1) activating

an executor (RPS4) in an immune complex is likely to be via specific domain-

domain interactions. Consistent with this idea, the immune complexes

formed of inappropriate pairings (RRS1/RPS4B and RRS1B/RPS4) do not sup-

port effector-triggered activation, indicating that specific domain-domain

interactions between cognate pair partners are essential for activation Fig-
ure 3.3[121].

I carried out systematic domain swapping experiments between RRS1-

R and RRS1B, and between RPS4 and RPS4B in an attempt to identify

domain(s) that might determine the pair partner compatibility. Figure 5.1
illustrates the domain boundaries for swapping or deletions in this study:

the six domains of RRS1-R and RRS1B (TIR, NB-ARC, LRR, Domain 4 (DOM4),

WRKY, Domain 6 (D6)) and the four domains of RPS4 and RPS4B (TIR, NB-ARC,

LRR, C-terminal domain (CTD)) are defined with their swapping breakpoint

amino acid labelled. Ws-2 alleles of RRS1-R, RRS1B and RPS4B and Col-0

allele of RPS4 were used. When not specified, these alleles are considered

the defaults throughout this chapter. The exact domain boundaries were

chosen for cloning and swapping purposes so that the breakpoint amino

acids are identical between RRS1-R & RRS1B, and RPS4 & RPS4B, and also

are designed to minimise potential disruption of predicted structural and

functional motifs (details see 2.2.1). Using the golden gate shufflingmethod

[264–266], each single domain was cloned and together assembled into full-

length R genes with varying domain combinations according to the defined

boundaries. For simplicity, the chimeric proteins are represented with the

domains from the A pair proteins (RRS1-R and RPS4) abbreviated as “A”s,

and the domains from the B pair proteins (RRS1B and RPS4B) abbreviated

as “B”s. For example, RPS4(AAAB) represents a chimera of RPS4 TIR-NB-ARC-

LRR carrying a CTD from RPS4B. All the wild type and chimeric R proteins

in this chapter are expressed under 35S promoter and C-terminally tagged

with HF (6xHis 3xFlag). This chapter will focus on the functional analyses of

some of these domain-swapped chimeras that reveal key domain-domain

interactions involved in auto-inhibition and activation.

A remaining puzzle is that PopP2 is not recognised by RRS1-S/RPS4 and

RPS4B/RRS1B, which are fully functional to recognise AvrRps4 [121, 214]. It
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Figure 5.1: Schematic representation of RRS1-R & RRS1B and RPS4 & RPS4B domain structures. The six domains

of RRS1-RWs-2 & RRS1BWs-2 (TIR, NB-ARC, LRR, Domain 4 (DOM4), WRKY, Domain 6 (DOM6)) (A) and the four domains

of RPS4Col-0 & RPS4BWs-2 (TIR, NB-ARC, LRR, C-terminal domain (CTD)) (B) are defined. Numbers indicate the amino

acid positions for domain boundaries. Domains from the A pair proteins (RRS1-R & RPS4) are abbreviated as “A”s and

shown in solid colours; and domains from the B pair proteins (RRS1B & RPS4B) are abbreviated as “B”s and shown in

coloured stripes. RRS1-R & RRS1B are shown in red, RPS4 & RPS4 are shown in blue. Percentages indicate the amino

acid (aa) sequence identity for each domain of ‘A’ and ‘B’. The breakpoint amino acids are identical between RRS1-R &

RRS1B and RPS4 & RPS4B, which are shown in the middle as ‘Gly’ Glycine, ‘Thr’ Threonine, ‘Leu’ Leucine, ‘Lys’ Lysine,

‘His’ Histidine, and ‘Pro’ Proline. The golden gate assembly of individual domains utilises the matching 4 bp over-

hangs, in which the 3 nucleotides code for the breakpoint amino acid (highlighted bold). More details of cloning see

2.2.1.
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begs the question whether PopP2 activates the immune complex differently

from AvrRps4. The fact that PopP2 binds and acetylates the WRKY domain

of RRS1-S (and possibly RRS1B) in the same manner compared to RRS1-R

indicates that something extra is needed for PopP2 responsiveness [58, 59].

PS in Jones lab has reported that the extra C-terminal 83 aa of RRS1-R

(C83) compared to RRS1-S determines PopP2 recognition capacity, because

fusing the C83 to RRS1-S is sufficient to restore PopP2 responsiveness [58].

However it is still a mystery how the RRS1-R DOM6, especially the C83,

enables RRS1-R/RPS4 to respond to PopP2. For clarity, DOM6 of RRS1-R,

RRS1-S and RRS1B in this study are labelled as DOM6-R (104 aa), DOM6-S (21

aa) and DOM6-B (135 aa) respectively. Here I hypothesise that the extended

C-terminal domain of RRS1-R assists specific inter-domain reconfigurations

in RRS1-R that may allow PopP2 to activate the immune complex in a

distinct manner compared to AvrRps4.

In this chapter, I will investigate the possible domain-domain interac-

tions specifically involved in PopP2-triggered activation, utilising the point

mutations identified in a suppressor screen [116]. The genetic screen has

identified various mutations that suppress slh1 immunity in Arabidopsis

accession Nossen (No-0), termed the sushi (suppressor of slh1 immunity) mu-

tants, most of which are in RRS1 and RPS4 [116]. ZD and OF later helped

to expand the sushi mutant list: totalling 9 mutations in RRS1 (with 2 in

DOM4) and 38 mutations in RPS4 (with 10 in CTD), excluding early stop

codons (unpublished). These point mutations are good indicators of impor-

tant domains and residues during activation, and in combination with the

domain swap analyses, enabled more detailed insights into the functional

mechanisms of the RRS1/RPS4 immune complex.

5.2 WRKY domain of RRS1 is the key to maintain
RRS1/RPS4 auto-inhibition

To investigate the role of the WRKY domain and its neighbouring domains

(DOM4 and DOM6), I carried out sequential domain deletions from the

C-terminal end of RRS1-R, and analysed the function of the truncated RRS1-

R proteins using tobacco transient assays (Figure 5.2). Consistent with

the published data [58], I first confirmed that the C83 deletion of RRS1-R

abolishes PopP2 but not AvrRps4 recognition when co-expressed with RPS4,

phenocopying the function of RRS1-S (Figure 5.2). Similarly, RRS1-R∆D6,
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with the entire DOM6-R deleted, only shows responsiveness to AvrRps4, and

is not constitutively active (Figure 5.2). Together these data imply that the

DOM6 of RRS1-R is dispensable for AvrRps4 recognition, but is essential for

PopP2 recognition.

While RRS1-R∆D6 is fully functional for AvrRps4 perception, a further

deletion of the WRKY domain (Domain 5) results in effector-independent

constitutive HR of the RRS1-R∆D56 + RPS4 combination (Figure 5.2). Like-

wise, RRS1-S∆D56 + RPS4 is also auto-active when co-expressed in tobacco

(data not shown). Therefore the absence of the WRKY domain in RRS1 is

sufficient to activate defence, implying its role as a negative regulator of the

immune complex, contrary to the belief that theWRKY domain is involved in

downstream defence signalling. Consistently, RRS1-R WRKY domain when

swapped with either the non-related LexA DNA binding domain, or the

related RRS1B WRKY domain (56.6% aa identity) causes RPS4-dependent

auto-activity, indicating that the WRKY domain is specifically required to

keep RRS1-R inactive (Figure 5.3).

Furthermore, I showed that the auto-activity of RRS1-R∆D56 relies on

DOM4 of RRS1-R, since the further deletion of DOM4 renders RRS1-R∆D456

non-autoactive and non-responsive to any effectors (Figure5.2). The impor-

tance of DOM4 during activation is also demonstrated by the DOM4 swaps

between RRS1 and RRS1B: Both RRS1(AAABAA) + RPS4 and RRS1B(BBBABB)

+ RPS4B combinations fail to respond to effectors in tobacco transient as-

says (Figure 5.10B,F). From these results, a simple model emerges that in

the absence of the effectors, the WRKY domain is negatively regulating

DOM4 to keep RRS1 inactive, and that upon loss of that negative regulation,

DOM4 plays a role in activating the complex, likely via interactions with

RPS4.

Interestingly, the replacement of the RRS1-R C83 by the C115 of RRS1B

(forming RRS1-R(AAAAA+B)), or the exchange of the entire DOM6-R (104

aa) by DOM6-B (135 aa) (forming RRS1-R(AAAAAB)), also leads to RPS4-

dependent auto-activity (Figure 5.3). Similarly, the RRS1B chimeras with

the C-terminal amino acids swapped with RRS1-R are autoimmune when co-

expressed with RPS4B (Figure 5.13F). These data suggest that the compati-

bility of WRKY and DOM6 in RRS1 or RRS1B are also important for immune

complex auto-inhibition. Nevertheless, the deletion of C83 or DOM6-R

does not automatically de-repress RRS1-R , whilst the addition of RRS1B
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Figure 5.2: TheWRKY domain negatively regulates Domain 4 (DOM4) to keep RRS1 inactive Transient assays

in N. tabacum leaves using A. tumefaciens transformation (agro-infiltration) show that successive deletions of DOM6,

WRKY domain, and DOM4 of RRS1-R alter its function for effector responsiveness and auto-inhibition. Each leaf section

was co-infiltrated to express RPS4 and a truncated RRS1-R or a full-length RRS1-R (left of each row) in combination

with mCherry, AvrRps4:mCherry or PopP2:mCherry (top of each column). Schematic diagram shows the domain struc-

ture of the full-length RRS1-R and various truncated RRS1-R derived from successive deletions: RRS1-R∆C83, deletion

of C-terminal 83 amino acids; RRS1-R∆D6, deletion of DOM6-R (shown as D6); RRS1-R∆D56, deletion of WRKY (shown

as W) and DOM6-R; RRS1-R∆D456, deletion of DOM4, WRKY and DOM6-R. Amino acid sequences indicate the border

where the deletions terminate. Cell death pictures were taken 4 dpi. These experiments were repeated at least three

times with similar results.
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C-terminal amino acids leads to the auto-activity of RRS1-R(AAAAA+B) or

RRS1-R(AAAAAB). One possible explanation could be that an incompatible

DOM6 may interfere with WRKY domain’s negative regulation on DOM4,

and thereby triggers activation (see 5.6 for more details).

In addition, replacing the WRKY and DOM6 domain simultaneously

with the equivalent domains from RRS1B, or with the WRKY domain and C-

terminal amino acids fromWRKY41 results in auto-activity of RRS1-R(AAAABB)

and RRS1-R(AAAAW41) respectively (Figure 5.3). With their respective com-

patible C-terminal amino acids intact, it is possible that theseWRKY domains

fail to suppress DOM4 in these chimeric proteins, thus activating RRS1-R.

It should also be noted that the WRKY domains of WRKY41 and RRS1B are

functional DNA binding domains, and therefore should enable the DNA

binding of the chimeras carrying these domains similarly to RRS1-R. Yet all

of these chimeras [e.g. RRS1-R(AAAABB), RRS1-R(AAAAW41)] are able to ac-

tivate defence possibly without being dislodged from the DNA, supporting

that DNA binding activity per se (or the loss of it) does not determine the

immune complex activity.

5.3 WRKY domain associates with Domain 4 of RRS1 in
the absence of the effectors

I next investigated whether the WRKY domain associates with DOM4 of

RRS1 to suppress its activity in the pre-activation state. Co-IP experiments

showed that the DOM4 is able to associate with both the WRKY domain and

WRKY & DOM6 of RRS1-R (DOM56-R) after transient co-expression in N. ben-

thamiana leaves (Figure 5.4A). Consistently, BiFC data suggest that the N-

and C-termini of RRS1-R DOM456, i.e. DOM4 and DOM6-R, are in close prox-

imity in the absence of effectors (Figure 5.4B). It is also possible that these

BiFC signals are produced by inter-molecular interactions, meaning that the

N-terminus (DOM4) of one molecule could associate with the C-terminus

(DOM6) of another molecule. A test for DOM456-R’s ability to self-associate

may be a simple way to rule out that possibility. To clarify directional in-

teractions (head-to-head or head-to-tail), future experiments would require

testing a series of combinations of N- or C-terminally tagged DOM456 (e.g

cCFP:DOM456-R + DOM456:nVenus; cCFP:DOM456-R + nVenus:DOM456-R).

Overall, these data are consistent with the model that RRS1-R DOM456 is
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Figure 5.3: Replacement of theWRKY domain and/or Domain 6 (D6) in RRS1-R causes RPS4-dependent auto-
activity Transient assays in N. tabacum leaves using agro-infiltration shows the HR activities of chimeric RRS1-R pro-

teins in the presence of RPS4, when the RRS1 WRKY and/or DOM6 were replaced by other domains. Each leaf section

was infiltrated to express a wild type or a chimeric RRS1-R (left of each row) with or without the presence of RPS4 (indi-

cated as + or - ). Schematic diagram shows the domain structure of the wild type RRS1-R and various RRS1-R chimeras.

These RRS1-R chimeras are represented with domains from RRS1-R shown as ‘A’s, domains from RRS1B shown as ’B’s,

the bacterial LexA DNA binding domain [279] shown as ’L’ and the WRKY domain and C-terminal amino acids derived

from AtWRKY41 (123–313 aa) shown as ‘W41’. The borders for domain replacement are consistent with the definition

in Figure 5.1, except for RRS1-R(AAAAA+B) which has the RRS1-R C83 replaced by the C-terminal 115 aa from RRS1B.

Pictures were taken 5 dpi. These experiments were repeated at least three times with similar results.
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Figure 5.4: RRS1-RWRKY & DOM6 (DOM56-R) associates with DOM4 in the absence of effectors (A) The Co-

IP assay shows that both WRKY:HF and DOM56-R:HF associate with the DOM4:GFP of RRS1-R after A. tumefaciens-

mediated transient co-expression in N.benthamiana leaves. Immunoblots show the presence of proteins in total ex-

tracts (input) and after IP with α-GFP beads (IP-GFP). Asterisks indicate expected protein bands. (B) BiFC assays indi-

cate close proximity of N- and C-termini of RRS1-R domains 4,5 and 6 (DOM456-R), i.e. DOM4 and DOM6-R. DOM456-R

was N-terminally tagged with cCFP and also C-terminally tagged with either nVenus or nCerulean. When the N- and

C-termini of DOM456 are adjacent, the interaction of cCFP and nCerulean tags create CFP (blue signal), and the in-

teractions of cCFP and nVenus tags creates YFP (yellow signal). Agro-infiltration of cCFP:DOM456-R:nCerulean and

cCFP:DOM456-R:nVenus in N. benthamiana leaves show CFP and YFP signals respectively in the nuclei. The labels

on the left indicate the channel imaged. Images were recorded 48 hpi. At least three biological replicates were per-

formed showing consistent results.

kept in a closed conformation in resting state, which is likely maintained by

WRKY/DOM4 association.

The next question is whether the auto-activities of several RRS1-R WRKY

domain mutants are caused by the lack of WRKY/DOM4 associations. Using

Co-IP assays, I assessed the associations of RRS1-R DOM4 with DOM56-R car-

rying various mutations including auto-active mutations slh1 and K1221Q

(K²Q), and non-autoactive mutation K1221R (K²R)), and found that all tested

mutants of DOM56-R Co-IP with DOM4 (Figure 5.5). Compared to DOM56-

R:HF and DOM56-R(K²R):HF (lanes 1 & 3), DOM56-Rslh1:HF and DOM56-

R(K²Q):HF (lanes 2 & 4) pull down less DOM4:GFP after IP with FLAG beads,
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Figure 5.5: RRS1BWRKY & DOM6 (DOM56-B) fails to associate with DOM4 of RRS1-R
This Co-IP assay assesses the associations between DOM4:GFP (RRS1-R) and different alleles

or mutants of DOM56:HF. DOM56-R, DOM56-S and DOM56-B are WRKY & DOM6 from RRS1-

R, RRS1-S and RRS1B respectively. K²Q (K1221Q) and slh1 are mutations in the RRS1-R WRKY

domain that lead to auto-activity, and K²R (K1221R) is a mutation of RRS1-R that impairs ef-

fector responsiveness but does not lead to auto-activity. Immunoblots show the presence

of proteins in total extracts (input) and after IP with α-FLAG beads (IP-FLAG). Asterisks indi-

cate expected protein bands. Independent experiments have shown consistent results in

that auto-active variants of DOM56-R (DOM56-R(K²Q) and DOM56-R(slh1)) Co-IP with DOM4

more weakly, but are less stable compared to DOM56-R. A representative result is shown

here.
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suggesting weaker association (Figure 5.5). However, as those DOM56-R

carrying auto-active mutations are often less stable, showing less accumu-

lations in the input (lanes 2 & 4), it is difficult to compare their strength of

association (Figure 5.5). In addition, DOM56-S with an identical WRKY and a

shorter DOM6-S (21 aa) from RRS1-S, also accumulates less and Co-IPs more

weakly with DOM4 (lane 5) compared to DOM56-R (lane 1) (Figure 5.5). In
contrast, DOM56-B, consisting of WRKY domain and DOM6-B (135 aa) from

RRS1B, fails to Co-IP with DOM4 of RRS1 (lane 6) (Figure 5.5). This lack of

association between RRS1 DOM4 and DOM56-B provides an explanation for

the auto-activity of RRS1-R(AAAABB) similar to RRS1-R∆D56: As DOM56-B

fails to pose a negative regulation on RRS1-R DOM4 in RRS1-R(AAAABB), it

phenocoypies the deletion of DOM56-R in RRS1-R∆D56.

I infer that the complete dissociation of DOM4/DOM56 can trigger RRS1

activation. It is possible that the auto-active mutations in the WRKY domain

can cause a change of DOM4 and DOM56 association that is sufficient to de-

repress RRS1-R without a complete dissociation. Additionally, I found that

in trans co-expression of DOM56-R cannot suppress RRS1-R∆D56 + RPS4-

triggered HR in N. tabacum (Figure 5.6A), suggesting that proper folding of

the full-length RRS1-R is required to maintain the auto-inhibition. Similarly,

in trans co-expression of DOM4 and RRS1-R∆D456 cannot reconstitute the

auto-activity of RRS1-R∆D56 + RPS4 in N. tabacum (Figure 5.6B). These data

reveal the highly intricate connections between the domains to maintain

auto-inhibition and to activate the immune complex.

5.4 Do effectors de-repress RRS1 via disrupting WRKY
domain association with Domain 4?

In Chapter 4 I showed that AvrRps4 association with the WRKY domain of

RRS1 is required for its recognition. Co-IP data (Figure 5.7A,B) suggest that
the presence of AvrRps4 destabilizes DOM4/WRKY and DOM4/DOM56-R as-

sociations (without completely abolishing them). As a negative control, the

non-recognisable AvrRps4-E187Awithmuchweaker affinity to theWRKY do-

main shows less interference to these associations (Figure 5.7A,B). Consis-
tent results are shown using BiFC assays: Co-expression of AvrRps4:mCherry,

but not 35S:mCherry or AvrRps4-E187A:mCherry, with cCFP:D456-R:nVenus

inhibits the BiFC signal in the nuclei (Figure 5.7D). Therefore, it is likely that

AvrRps4 de-represses RRS1 via disrupting DOM4/WRKY association, and
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Figure 5.6: RRS1-R∆D56/RPS4-triggered cell death cannot be suppressed by co-
expression of DOM56-R in trans (A) Transient assays in N. tabacum leaves using agro-

infiltration show that RRS1-R∆D56 + RPS4-triggered HR (top right) cannot be suppressed

by co-expressing DOM56-R (bottom left), but can be partially suppressed by co-expressing

RRS1-R (bottom right). Pictures were taken 4 dpi. (B) Agro-infiltration in N. tabacum leaves

show that RRS1-R∆D456 + RPS4 does not trigger HR (left), and in trans co-expression of RRS1-

R DOM4 (DOM4) with RRS1-R∆D456 + RPS4 does not recover HR (right). Each leaf section

infiltrated was indicated by a white square with corresponding infiltrated samples labelled.

Pictures were taken 4 dpi. These experiments were repeated three times with similar results.
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inadequate disruption by AvrRps4-E187A may explain its lack of recogni-

tion. On the other hand, as AvrRps4-KRVYAAAA mutant associates similarly

strongly with the WRKY domain compared to the wild type (see Chapter 4),

the ability to disrupt the DOM4/WRKY association by AvrRps4-KRVYAAAA

may not be sufficient to activate defence. Preliminary results suggest that

AvrRps4-KRVYAAAA disrupts DOM4/WRKY association as much as the wild

type (data not shown).

Unlike AvrRps4, PopP2 did not show significant interference toDOM4/DOM56

association using similar assays (Co-IP and BiFC) (Figure 5.7C, E). In both

assays, the enzymatically inactive PopP2-C321A resembles PopP2, show-

ing little effect of disrupting the DOM4/DOM56 association (Figure 5.7C,
E). This suggests that the lack of PopP2-C321A recognition cannot be easily

explained by these results. It should be noted however, compared to PopP2-

C321A:mCherry and 35S:mCherry, the co-expression of PopP2:mCherry

seems to stabilise DOM56-R, resulting in more accumulation in the input

(lane 4) (Figure 5.7C) which could result in a slightly greater suppression

of DOM56-R/DOM4 associations by PopP2:mCherry. Nevertheless, DOM56-

R(K²Q), which mimics PopP2 acetylation of the WRKY reside K1221, also

does not show complete loss of affinity with DOM4 (Figure 5.5). Overall,

these data suggest that PopP2 acetylation of the WRKY domain does not

lead to disassociation of DOM4/DOM56. While AvrRps4 de-represses RRS1

via disrupting WRKY domain association with DOM4, PopP2 may activate

the immune complex slightly differently. This will be discussed further in

5.6.

5.5 De-repressed RRS1 activates RPS4 via enabling
DOM4 and CTD interaction.

Many lines of evidence suggest that RPS4 executes defence activation down-

stream of RRS1 effector sensing, and that the weak constitutive activity of

RPS4 is attenuated in the pre-activation complex by RRS1 [58, 115, 116].

Here I show that RRS1-R∆D56 requires a signalling competent RPS4 to trig-

ger cell death: The P-loop mutant RPS4(K242A) and the TIR domain mutant

RPS4(SHAA) that disrupts TIR-TIR association both fail to activate cell death

when co-expressed with RRS1-R∆D56 (Figure 5.8). In contrast, the P-loop

mutation K185A of RRS1-R∆D56 does not affect the cell death response in

the presence of a functional RPS4 (Figure 5.8). Consistent with themodel of
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Figure 5.7: AvrRps4 de-represses RRS1-R via disrupting DOM56-R association with DOM4 yet PopP2 shows
much weaker interference to DOM56-R/DOM4 association (A-C) Co-IP assays assess the effector interference

to the associations of DOM4:GFP/WRKY:HF and DOM4:GFP/DOM56-R:HF by co-expressing AvrRps4:mCherry or

PopP2:mCherry. AvrRps4:mCherry but not PopP2:mCherry shows disruption of these associations. 35S:mcherry

and effector mutants AvrRps4-E187A:mCherry and PopP2-C321A:mCherry were used as negative controls. DOM4,

WRKY and DOM56-R are from RRS1-R. Immunoblots show the presence of proteins in total extracts (input) and af-

ter IP. Asterisks indicate expected protein bands. (D-E) BiFC assays assess the effector interference to the BiFC sig-

nals of cCFP:DOM456-R:nVenus or cCFP:DOM456-R:nCerulean by transiently co-expressing AvrRps4:mCherry or

PopP2:mCherry in N. benthamiana leaves. Co-expression of AvrRps4:mCherry but not PopP2:mCherry suppresses

the BiFC signal, showing disruption of N- and C-termini associations of DOM456-R. 35S:mcherry and effector mutants

AvrRps4-E187A:mCherry and PopP2-C321A:mCherry were used as negative controls. The accumulation of the effec-

tors or controls are shown in the mCherry (RFP) channel. The labels on the left indicate the channel imaged. Images

were recorded 48 hpi. At least three biological replicates were performed showing consistent results. The functionality

of the effector proteins (or their mutant controls) were confirmed using tobacco transient assays.
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Figure 5.8: A functional P-loopmotif of RPS4, but not RRS1-R∆D56, is required for
the RRS1-R∆D56/RPS4-triggered cell death Transient assays in N. tabacum leaves using

agro-infiltration show that the RPS4 P-loop mutant, RPS4(K242A), or the TIR domain mutant,

RPS4(SHAA), fail to trigger HR when co-expressed with RRS1-R∆D56. Co-expression of RPS4

with the RRS1-R P-loop mutant, RRS1-R(K185A), triggers HR. Each leaf section infiltrated was

indicated by a white square with corresponding infiltrated samples labelled. Pictures were

taken 4 dpi. This was repeated three times with similar results.

RRS1 and RPS4 being the sensor and executor respectively, these evidence

suggest that the de-repressed RRS1 must transduce the activation signal to

RPS4 to enable defence signalling.

Figure 5.9 suggests that CTD of RPS4 is essential to sense the de-

repression of RRS1. Partial truncation of CTD (RPS4∆Exon5, with the C-

terminal 266 aa of CTD deleted), CTD swap with RPS4B [(RPS4(AAAB)],

and multiple sushi mutations in CTD (C887Y, S914F, G952E, G997E) all impair

RPS4’s ability to activate cell death in the presence of RRS1-R∆D56. Note that

these sushi mutants were generated from RPS4No-0, and wild type RPS4No-0

is functionally identical to RPS4col-0 (Figure 5.2, Figure 5.9), sharing 99.6%

identity. Interestingly, compared to C887Y and S914F, RPS4 mutations

G952E and G997E have a stronger impairment of the RPS4 + RRS1-R∆D56-

triggered HR (Figure 5.9), suggesting that G952 and G997 might be in an

important region(s) of CTD. The RPS4-dependent RRS1-R∆D56 auto-activity

is proposed to be caused by the lack of WRKY domain suppression of RRS1
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Figure 5.9: C-terminal domain (CTD) of RPS4 is essential to sense the de-repression of
RRS1 to activate defence Transient assays in N. tabacum leaves using agro-infiltration show

that changes in RPS4 CTD impair the HR activity of RPS4/RRS1-R∆D56. Each leaf section

was co-infiltrated to express RRS1-R∆D56 with a CTD variant or mutant of RPS4 (indicated

on the left). RPS4No-0 (Nossen), which shares 99.6% identity with RPS4Col-0, was used as a

positive control (row 1). HR activity was abolished when the CTD of RPS4Col-0 was partially

truncated (RPS4∆Exon5: deletion of the C-terminal 266 aa of CTD), or replaced by CTD of

RPS4B (RPS4(AAAB)). Single sushi mutations in the CTD of RPS4No-0 either reduce the HR ac-

tivity [RPS4(C887Y), RPS4(S914F)] or completely abolish the HR [RPS4(G952E), RPS4(G997E)].

Schematic diagram shows the domain structure of the wild type RPS4 and various RPS4 CTD

variants or mutants. The amino acid numbers indicate the border of CTD and where the

deletion terminates. Cell death pictures were taken 4 dpi. These experiments were repeated

at least three times with similar results.

DOM4. This would then suggest that the sensing by RPS4 CTD of the

de-repressed DOM4 is as an essential step for complex activation.

I carried out domain swap experiments to test whether matching DOM4

and CTD from the A and B pairs are required for effector-triggered activation

(Figure 5.10). As mentioned previously, DOM4 swaps between RRS1-R and

RRS1B results in no response to AvrRps4 when co-expressed with their cog-

nate pair partners (Figure 5.10B,F). Likewise, a CTD swap of RPS4B(BBBA)

co-expressed with RRS1B fails to respond to AvrRps4. These data suggest

that compatible DOM4 and CTD pairing is important for complex activation

(Figure 5.10G).
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However, RPS4(AAAB) + RRS1-R are functional to recognise AvrRps4

(Figure 5.10C), even though RPS4(AAAB) + RRS1-R∆D56 fails to trigger

auto-activity (Figure 5.9). The presence of the DOM56 in RRS1-R compared

to RRS1-R∆D56 must explain this discrepancy. It is possible that DOM56-R

is able to compensate for the incompatible DOM4-A/CTD-B via interacting

with RPS4 (will be discussed further in 5.6). On the other hand, the combi-

nations where DOM4 and CTD are from a matching pair [RRS1-R(AAABAA) +

RPS4(AAAB) and RRS1B(BBBABB) + RPS4B(BBBA)] are also non-functional for

AvrRps4 recognition (Figure 5.10D,H). This indicates that having matching

DOM4/CTD alone is not sufficient to activate defence, implying that appro-

priate reconfigurations of, and interactions between, additional domains

triggered by DOM4/CTD interaction are required for activation.

To investigate whether DOM4 and CTD associate in planta, I carried out

Co-IP assays after transiently co-expressing DOM4:GFP and CTD:HF in N.

benthamiana leaves (Figure 5.11A). I found that all DOM4 and CTD com-

binations from A and B pair associate, but did not observe a stronger

association between matching pairs (lanes 3 & 5) compared with the inap-

propriate partners (lanes 4 & 6) (Figure 5.11A). In comparison, the negative

control GUS:HF does not Co-IP with DOM4-A:GFP or DOM4-B:GFP (lanes 1 &

2) (Figure 5.11A). Therefore the lack of function of certain DOM4 and CTD

swaps cannot be simply explained by the lack of DOM4/CTD association

affinity.

Furthermore, Co-IP data in Figure 5.11B showed that DOM4 associ-

ation with CTD can be reduced by co-expressing DOM56-R, suggesting

that DOM4/DOM56-R is able to compete with DOM4/CTD association.

Conceivably, in the pre-activation immune complex, DOM56-R maintains

auto-inhibition via suppressing DOM4/CTD association. For activation, we

hypothesise that the de-repressed RRS1, with the DOM56’s negative regula-

tion on DOM4 alleviated, enables DOM4 to interact with RPS4 CTD (Figure
5.14).

5.6 Distinct DOM4/CTD interfaces may be involved in
AvrRps4- and PopP2-triggered activation

So far, my data suggest that AvrRps4 de-represses RRS1 via disrupting

DOM56 and DOM4 association, which subsequently allows DOM4 to acti-
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Figure 5.10: DOM4 and CTD compatibility is important for AvrRps4-triggered immune complex activation (A-
H) Transient assays in N. tabacum leaves using agro-infiltration show that DOM4 swaps between RRS1-R and RRS1B

(B & F) and CTD swaps between RPS4 and RPS4B (C & G) often impair the AvrRps4 responsiveness by RRS1-R/RPS4 (A)

and RRS1B/RPS4B (E). (C) shows an exception that RRS1-R + RPS4(AAAB) shows HR in the presence of AvrRps4, but

not GFP. (D) and (H) show that the combinations of chimeras RRS1-R(AAABAA) + RPS4(AAAB) and RRS1B(BBBABB)

+ RPS4B(BBBA), where DOM4 and CTD are from matching pairs do not trigger HR when co-expressed with AvrRps4.

All tested R protein pair combinations are not auto-active when co-expressed with GFP. Schematic diagram shows

the domain structure of all the combinations infiltrated, either the chimeric or wild type proteins. Chimeras are rep-

resented with domains from RRS1-R or RPS4 shown as ’A’s, domains from RRS1B or RPS4B shown as ’B’s. Cell death

pictures were taken 4 dpi. These experiments were repeated at least three times with similar results.
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Figure 5.11: DOM4 of RRS1 or RRS1B associates with CTD of RPS4 or RPS4B (A) This Co-IP assay shows the asso-

ciations of DOM4:GFP and CTD:HF from A or B pair proteins after A. tumefaciens-mediated transient co-expression in

N.benthamiana leaves. DOM4 from RRS1B and CTD from RPS4B are labelled as DOM4-B and CTD-B and highlighted

in red; DOM4 from RRS1 and CTD from RPS4 are labelled as DOM4-A and CTD-A. GUS:HF was used as a negative con-

trol. All combinations of DOM4:GFP and CTD:HF associate, but DOM4-A:GFP or DOM-B:GFP does not associate with

GUS:HF. (B) This Co-IP assay shows that the associations of DOM4-A:GFP and CTD-A:HF is reduced in the presence of

DOM56-R:HF. DOM4-A:GFP associates with each of the CTD-A:HF, WRKY:HF and DOM56-R:HF, and the association affin-

ity of DOM4-A:GFP/CTD-A:HF and DOM4-A:GFP/DOM56-R:HF were both reduced when DOM4-A:GFP, DOM56-R:HF

and CTD-A:HF were co-expressed together. Immunoblots show the presence of proteins in total extracts (input) and

after IP with α-GFP beads (IP-GFP). Asterisks indicate expected protein bands.
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vate RPS4 via DOM4/CTD association (Figure5.14). A remaining question is,

how does PopP2 de-repress RRS1-R without displacing the DOM56-R away

from DOM4? Via examining several RRS1 DOM4 and RPS4 CTD mutants

(identified in the sushi screen [116]) for their ability to recognise effectors, I

found residues that are specifically required for PopP2-triggered activation,

but not for AvrRps4-triggered activation (Figure 5.12).

When co-expressed with RPS4 in N. tabacum, RRS1-R DOM4 mutants

S983F and E1070K both show reduced PopP2 responsiveness (weak HR),

whilst responding strongly to AvrRps4 (HR) (Figure 5.12A). In addition,

RRS1-R co-expressed with RPS4(C887Y), an RPS4 CTD mutant, is functional

to recognise AvrRps4, but exhibits similar partial loss of PopP2 recognition

(weak HR) (Figure 5.12B, C). Other RPS4 CTD mutants tested (S914F, G952E,

G997E) lose the function to recognise both effectors (AvrRps4 and PopP2)

in combination with RRS1-R, suggesting that these residues are necessary

for activation triggered by either effector (Figure 5.12B).

As the DOM4(RRS1)/CTD(RPS4) interaction is important for activation,

it is intriguing that PopP2 recognition requires specific residues in DOM4

and in CTD. An attractive hypothesis is that these specific residues may

represent a distinct DOM4/CTD interaction interface that only occurs dur-

ing PopP2-triggered activation. In line with this hypothesis, the partial

PopP2 responsiveness observed in RRS1-R + RPS4(C887Y) or RRS1-R(S983F)

+ RPS4 can be completely abolished when the two mutants are combined

[RRS1-R(S983F) + RPS4(C887Y)] (Figure 5.12C). Importantly, RRS1-R(S983F)

+ RPS4(C887Y) is fully functional to recognise AvrRps4, showing strong HR,

proving that the loss of function is specific to PopP2 (Figure 5.12C). Prelim-

inary data showed a similar result for the combination of RRS1-R(E1070K) +

RPS4(C887Y). Therefore, I infer that the specific residues in DOM4 and CTD

cooperate (possibly via interaction) to enable a PopP2-triggered complex

activation distinct from AvrRps4.

Furthermore, we know that the DOM6-R of RRS1-R is specifically re-

quired for PopP2 recognition, but not for AvrRps4 recognition (Figure 5.2)
[58]. Conceivably, DOM6-R enables PopP2-triggered activation via distinct

inter-domain reconfigurations compared to those triggered by AvrRps4.

The observation that RRS1-R∆D56 + RPS4(AAAB) fails to trigger HR, whereas

RRS1-Rslh1 + RPS4(AAAB) triggers HR, suggests that DOM56-Rslh1 of RRS1-

Rslh1 enables complex activation despite the incompatible DOM4-A/CTD-B
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Figure 5.12: Interaction between specific residues in RRS1-R DOM4 and RPS4 CTD is likely required for PopP2
but not for AvrRps4 responsiveness (A) Transient assays in N. tabacum leaves using agro-infiltration show that when

co-expressed with RPS4, RRS1-R DOM4 sushi mutants S983F and E1070K partially suppress PopP2-triggered HR, but

do not affect AvrRps4-triggered HR. (B) Similar transient assays show that when co-expressed with RRS1-R, RPS4 CTD

sushi mutant C887Y partially suppresses PopP2-triggered HR, but does not affect AvrRps4-triggered HR. Other RPS4

CTD sushi mutants (S914F, G952E, G997E) abolish the responsiveness of both AvrRps4 and PopP2. (C) Transient assays
show that the partial PopP2 responsiveness in RRS1-R + RPS4(C887Y) and in RRS1-R(S983F)+ RPS4 were completely

abolished in RRS1-R(S983F) + RPS4(C887Y) (yellow square). RRS1-R(S983F) + RPS4(C887Y) still shows HR in response

to AvrRps4. Each leaf section infiltrated was indicated by a square with corresponding infiltrated samples labelled: R

proteins on top of each panel, mCherry or effectors below each square. RRS1-R + RPS4 was used as positive controls

to compare with the sushi mutants, mCherry was used as a negative control for effector responsiveness. Pictures were

taken 4 dpi. These experiments was repeated twice with similar results.
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combination (Figure 5.13A,B). This is consistent with what was described

in 5.5 that RRS1-R + RPS4(AAAB) is functional to recognise AvrRps4 (Figure
5.10C). To further investigate whether specifically the DOM6-R in DOM56-R

is enabling this activity, I compared the activities of RRS1-R(AAAABB) and

RRS1-R(AAAABA) in combination with RPS4(AAAB) using tobacco transient

assays (Figure 5.13C,D). Although both chimeras are autoimmune when

co-expressed with RPS4(AAAA) (Figure 5.3), only RRS1-R(AAAABA) triggers

HR with RPS4(AAAB) (Figure 5.13C,D), suggesting that DOM6-R might be

specifically required.

More evidence of the contribution of DOM6-R (especially C83) to acti-

vation is shown by the auto-activity of RRS1B(BBBBB+A) + RPS4B (Figure
5.13F). This chimera has replaced the C115 of RRS1B with C83 from RRS1-R.

In contrast, RRS1B∆C115 + RPS4B is not autoimmune and can recognise Avr-

Rps4 (Figure 5.13E). Similarly, RRS1-R(AAAAA+B) + RPS4 is autoactive, but

RRS1-R∆C83 + RPS4 is not (Figure 5.13G,H), showing that DOM6-B also pro-

motes activation. As postulated before, these auto-activities may be caused

by the addition of incompatible C-terminal amino acids, which could in-

terfere with the WRKY/DOM4 association essential for auto-inhibition. In

hindsight, taking into account that DOM6-R is able to compensate for

DOM4/CTD mismatching in Figure 5.13B,D, DOM6-R is likely to promote

activation via assisting or modulating DOM4/CTD association.

Considering all these data, I propose a model in which PopP2 acetyla-

tion of the WRKY domain might displace DOM6-R, which allows DOM6-R

to assist DOM4/CTD association (Figure 5.14). Alternatively, the affinity

of DOM6-R for DOM5 (WRKY) may increase when the WRKY domain is

acetylated. If DOM6-R can rebind DOM4 after PopP2 elicitation, this might

explain how PopP2 is able to de-repress RRS1 without completely dissociat-

ing DOM56 from DOM4 (Figure 5.14). Because PopP2 is likely to require a

specific DOM4/CTD interface to activate defence, the hypothesised DOM6-

R/DOM4 association could help to create this new interface. The new inter-

face is not involved in AvrRps4-triggered activation, and thus distinguishes

the activation models of the two effectors (Figure 5.14).
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Figure 5.13: DOM6 of RRS1-R contributes to immune complex activation. (A-D) Transient assays in N. tabacum

leaves using agro-infiltration show that the presence of DOM6 in RRS1-R enables functionality of the incompatible

DOM4-A/CTD-B combination. This incompatibility was shown by the lack of HR in RPS4(AAAB) + RRS1-R∆D56 (A) in

contrast to the auto-active RPS4(AAAA) + RRS1-R∆D56 (Figure 5.2). Each leaf section was co-infiltrated to express

RPS4(AAAB) with an RRS1-R mutant or chimera (indicated on the left). The numbers of amino acids in DOM6 were

labelled. (E-H) Transient assays show that when co-expressed with cognate pair partners, RRS1-R or RRS1B with amino

acids in DOM6 deleted [RRS1B∆C115, C-terminal 115aa deletion (E);RRS1-R∆C83, C-terminal 83 aa deletion (G)], do not

show auto-activity, and retain AvrRps4 responsiveness. In contrast, adding back the C-terminal amino acids from the

other pair [RRS1B(BBBBB+A), RRS1B∆C115 adds C83 from RRS1-R (F); RRS1-R(AAAAA+B), RRS1-R∆C83 adds C115 from

RRS1B (H)] causes auto-activity when co-expressed with respective partners. Schematic diagram shows the domain

structure of all the combinations infiltrated, either the chimeric or truncated proteins. WRKY domain and DOM6 are

abbreviated as WRKY and D6 respectively. Pictures were taken 4 dpi. These experiments were repeated at least three

times with similar results.
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Figure 5.14: Workingmodel of RRS1/RPS4 immune complex activation triggered by effectors AvrRps4 and
PopP2.This model summarises the probable distinct intra- and intra-molecular reconfigurations triggered by AvrRps4

and PopP2 to convert an inactive (‘OFF’) RRS1/RPS4 immune complex into an active one (‘ON’). (A)In the absence of

the effectors, the immune complex stays ‘OFF’ to avoid ectopic defence activation. This auto-inhibition requires the

RRS1 WRKY domain (WRKY) to negatively regulate DOM4, which prevents RRS1 DOM4 from activating RPS4. The

WRKY domain may also negatively regulate DOM6 (D6), an allele of which can promote activation. (B) AvrRps4 de-

represses RRS1 via binding to the WRKY domain and disrupting DOM4 and WRKY & DOM6 (D6) association. The de-

repressed RRS1 enables DOM4 to interact with RPS4 CTD, and thereby activates RPS4. (C) PopP2 de-represses RRS1-R

without completely dissociating DOM4 from WRKY & DOM6-R (D6-R). The hypothesis is that PopP2 de-represses D6-R

via acetylating the WRKY domain, which allows D6-R to rebind DOM4. This subsequently facilitates RRS1-R DOM4 to

associate with RPS4 CTD at a new interface, and thereby activates RPS4.
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5.7 Domain swaps between the A and B pair proteins
reveal additional domains important to assemble a
functional immune complex

5.7.1 NB-ARC domain of RPS4 negatively regulates its signalling
activity

In Chapter 3, I have reported that over-expression of RPS4 TIR domain,

but not RPS4B TIR domain, triggers effector-independent cell death in to-

bacco. Here I confirm that full-length RPS4, but not RPS4B, is able to acti-

vate constitutive HR when over-expressed in tobacco (Figure 5.15A). This
RPS4-triggered cell death is fully suppressed by RRS1 co-expression (Figure
5.15A). In addition, RPS4TIR-triggeredHR is also suppressed by co-expression

of RRS1TIR (Figure 3.5A). These data suggest that in a pre-activation im-

mune complex, RRS1 negatively regulates RPS4’s signalling activity to avoid

ectopic defence activation in the absence of effectors.

As the TIR domain of RPS4 is crucial for its signalling activity, it is

intriguing that RPS4(BAAA), with the RPS4 TIR domain replaced by RPS4B

TIR, fails to activate constitutive cell death (Figure 5.15A). The protein

accumulation of RPS4(BAAA) was shown in Figure 3.6C. Strikingly, when

the NB-ARC domain of RPS4 is swapped with RPS4B, RPS4(ABAA) becomes

strongly auto-active (often observed to be stronger than RPS4-triggered

HR), and this HR cannot be completely suppressed by RRS1 (Figure 5.15A).
RPS4(ABAA) resembles the activity of RPS4 TIR domain, as the RPS4TIR also

triggers strong HR which cannot be suppressed by RRS1 (Figure 5.15A).
These results imply that the NB-ARC domain of RPS4 negatively regulates its

TIR domain, contributing to RPS4 auto-inhibition. The incompatible RPS4B

NB-ARC domain of RPS4(ABAA) fails to suppress RPS4TIR, which could allow

RPS4TIR to oligomerise and activate cell death more easily. This provides

an explanation why the phenotype of RPS4(ABAA) mimics the removal of

NB-ARC-LRR-CTD from RPS4. In addition, I show that the LRR and the

CTD swap with RPS4B, forming RPS4(AABA) and RPS4(AAAB) respectively,

both impair RPS4’s ability to trigger constitutive cell death, indicating that

these domains might also contribute to RPS4 signalling (Figure 5.15A).
The capacity for accumulation of inactive chimeric proteins [RPS4(AABA),

RPS4(AAAB), RPS4(BBBA)] is shown in Figure 5.15B, indicating any lack of

signalling is not due to instability.
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Figure 5.15: Replacement of RPS4 NB-ARC domain with that of RPS4B leads to strong effector-independent
HRwhen over-expressed in N. tabacum (A) The transient assays using agro-infiltration assess the ability of RPS4

chimeras (RPS4(BAAA), RPS4(ABAA), RPS4(AABA), RPS4B(BBBA)) and RPS4B to trigger effector-independent HR when

over-expressed in N. tabacum leaves. TIR domain (1-235aa) and full-length RPS4 were used as positive controls. Over-

expression of RPS4TIR, RPS4 and RPS4(ABAA) triggers HR. Suppression of these HR by co-expressing RRS1-R at 1:1 ra-

tio in the infiltration inoculum was also assessed. Only RPS4-triggered HR was completely suppressed by RRS1-R,

RPS4(ABAA)-triggered HR was partially suppressed, and RPS4TIR-triggered HR was not affected. Schematic diagram

shows the domain structure of wild type and chimeric RPS4 proteins. Cell death pictures were taken 5 dpi. Note that

these RPS4-triggered effector-independent HR are sometimes affected by the high humidity in the growth chamber

(where most other transient HR assays were conducted), and therefore were assessed in the lab. These experiments

were repeated three times with similar results. (B) Immunoblot detection of the expression of RPS4 chimeras at 2 dpi

in N. benthamiana leaves. All chimeras used here were tagged with HF. Ponceau-S staining of the large subunit of

RuBisCo served as loading control.
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In summary, these data show that in the pre-activation complex, RPS4

is kept in a signalling inactive state by both inter- and intra-molecular inter-

actions. More specifically, RRS1 negatively regulates RPS4 in the absence

of effectors, possibly in part via forming a more stable TIR-TIR hetero-dimer

to suppress RPS4TIR activity. The NB-ARC domain of RPS4 also suppresses

RPS4 activation, likely via interacting with its TIR domain . Furthermore,

while the other domains of RPS4 (LRR and CTD) may not directly suppress

RPS4TIR, they are required for the signalling activity of full-length RPS4. I infer

that upon sensing the effector-activated RRS1, changes in LRR- and CTD-

mediated domain-domain interactions enable RPS4 de-repression.

5.7.2 NB-ARC domain of RRS1 is required for its dominant
negative suppression of auto-active RRS1 variants

RRS1 has been reported to suppress the auto-activity of RRS1-Rslh1 + RPS4

in tobacco transient assays [116]. Here I confirm that co-expression of

either RRS1-R or RRS1-S suppresses the HR triggered by RRS1-Rslh1 + RPS4

in tobacco (Figure 5.16). Similarly, RRS1-R∆D56 + RPS4 auto-activity is

partially attenuated by RRS1-R co-expression after 4 dpi (Figure 5.6A). Note

that after 3 dpi, there was still complete suppression of HR . In contrast, the

paralogous RRS1B, which shares 68.9% identity with RRS1-R, shows no such

suppression (Figure 5.16).

To investigate which domain(s) of RRS1 (but not RRS1B) enables its dom-

inant negative suppression, I tested all the non-autoactive RRS1-R chimeric

proteins with individual domains swapped with RRS1B, for their suppres-

sion of RRS1-Rslh1 + RPS4 in tobacco. Interestingly, only the NB-ARC do-

main swap [i.e. RRS1-R(ABAAAA)] completely loses the suppression activity,

while all the other single domain swaps tested [i.e. RRS1-R(BAAAAA), RRS1-

R(AABAAA), RRS1-R(AAABAA)] are able to show suppression, although not

always as strong as RRS1-R (Figure 5.16). Consistent with RRS1-R(ABAAAA),

the importance of the NB-ARC domain is also reflected by the RRS1 P-loop

mutant, RRS1-R(K185A), which fails to suppress the HR triggered by RRS1-

Rslh1 + RPS4 [116], and HR triggered by RRS1-R∆D56 + RPS4 (data not

shown). Nevertheless, RRS1B NB-ARC domain contains a functional P-loop

motif, suggesting that to explain the lack of suppression activity of RRS1-

R(ABAAAA), additional properties of the RRS1 NB-ARC domain (which are

not present in RRS1B NB-ARC domain) must be involved.
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Figure 5.16: The NB-ARC domain of RRS1-R strongly contributes to its dominant negative suppression on
RRS1-Rslh1 auto-activity. The transient assays using agro-infiltration assess the dominant negative suppression

of RRS1-Rslh1/RPS4 by non-autoactive RRS1-R chimeras [RRS1-R(BAAAAA), RRS1-R(ABAAAA), RRS1-R(AABAAA), RRS1-

R(AAABAA), RRS1B(ABBBBB)] and RRS1B when co-expressed in N. tabacum leaves. The ratio of agrobacteria strains

carrying RRS1-Rslh1, RPS4 and one RRS1 chimera (or wild type RRS1) was 1:1:1 in the infiltration inoculum. As controls,

the auto-activity triggered by RRS1-Rslh1/RPS4 is not suppressed by co-expression with GFP (HR), but completely sup-

pressed by RRS1-R and RRS1-S (no HR). Co-expression of RRS1B or RRS1B(ABBBBB) along with RRS1-R(ABAAAA) do

not show suppression, showing strong HR resembling that of RRS1-Rslh1 + RPS4 + GFP. RRS1-R(AAABAA) and RRS1-

R(AABAAA) exhibit partial suppression. Schematic diagram shows the domain structure of wild type and chimeric

RRS1 and RRS1B proteins. Cell death pictures were taken 4 dpi. Except for RRS1-R(AAABAA) (labelled as preliminary),

these experiments were repeated three times with similar results.
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One explanation could be that RPS4 preferably associates with an inac-

tive RRS1 over an auto-active variant, thus allowing the inactive RRS1/RPS4

complexes to out-compete the auto-active ones. Conceivably, this RPS4

binding preference may be determined by the properties of the RRS1 NB-

ARC domain (e.g. accessibility, affinity with RPS4). It is plausible that the

NB-ARC domain of RRS1B has a weaker affinity with RPS4, which prevents

RRS1-R(ABAAAA) to form stable complexes with RPS4, and thus impairs its

suppression activity. However, biochemical evidence is needed to support

this hypothesis, and whether this hypothesis explains the genetic recessive-

ness of slh1 and RRS1-R (for PopP2 recognition) remains to be seen.

5.8 Discussion

5.8.1 Chapter summary

How plant immune receptor complexes operate to convert effector percep-

tion into defence activation is poorly understood. In this chapter, I have

investigated the mechanisms of how effectors AvrRps4 and PopP2 activate

the RPS4/RRS1 receptor complex via targeting the integrated WRKY domain

of RRS1. Data so far suggest possible distinct intra- and inter-domain recon-

figurations involved in AvrRps4- and PopP2-triggered complex activation.

Deletion of RRS1 WRKY domain activates effector-independent cell death

in the presence of RPS4, indicating that the RRS1/RPS4 complex is likely

activated by effector-dependent alleviation of the WRKY domain’s negative

regulation. Co-IP and BiFC experiments then showed that AvrRps4 disrupts

WRKY domain association with the DOM4 of RRS1. Various data suggest

that DOM4/CTD interactions are crucial for the immune complex activation:

Domain swaps, truncations, and point mutations in DOM4 and/or CTD often

result in the loss of effector responsiveness. Therefore, I proposed that the

AvrRps4-derepressed DOM4 of RRS1 activates RPS4 via interacting with the

CTD of RPS4.

However, for PopP2-triggered activation, disassociation of DOM4/DOM56-

R was not observed, indicating an alternative activation pathway. Consis-

tent with this idea, I found specific residues in RRS1-R DOM4 and in RPS4

CTD that when mutated only suppress PopP2 recognition but not AvrRps4.

Additionally, DOM6-R of RRS1-R is also specifically required for PopP2 recog-

nition. Altogether, these data support a model where distinct DOM4/CTD
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interfaces are involved in AvrRps4- and PopP2-triggered activation, and the

latter requires the DOM6-R (Figure 5.14).

5.8.2 RRS1 DOM4may possess distinct interfacesmediating
auto-inhibition and activation.

I have reported that DOM4 of RRS1 can associate with both WRKY (RRS1)

and CTD (RPS4) using Co-IP (Figure 5.11B). Conceivably, distinct DOM4

surfaces might be involved during activation (mediated by DOM4/CTD

association) and auto-inhibition (mediated by DOM4/WRKY association). I

have shown that there are DOM4 residues that are important for activation,

probably via interacting with CTD. Firstly, RRS1-R(AAABAA) + RPS4(AAAA)

is non-functional, implying that the amino acid changes in DOM4-B (69%

sequence identify to DOM4-A) must diminish DOM4-B’s ability to activate

RPS4 CTD-A. Secondly, DOM4 mutations S983F and E1070K in RRS1-R do

not cause auto-activity when co-expressed with RPS4, but reduce PopP2

responsiveness. This suggests that these DOM4 residues (S983 and E1070)

are not required for DOM4/WRKY interaction, but instead are important for

activating RPS4 upon PopP2 perception.

RRS1 DOM4/WRKY association is important for complex auto-inhibition,

because disruption of this association either by removing the WRKY, or by

replacing RRS1-R WRKY domain with other domains (e.g. LexA, WRKY-B)

lead to effector-independent defence activation. It is likely that mutations

in DOM4 at the DOM4/WRKY interface could also lead to the loss of WRKY

interaction, and thus de-repress RRS1. However, I have yet to identify

the surface of DOM4 that is essential for this DOM4/WRKY interaction.

Interestingly, Narusaka et al (2016) recently reported that mutations of a

leucine zipper (LZ) motif in the DOM4 of RRS1-R triggers RPS4-dependent

autoimmunity in Arabidopsis and in N. benthamiana [253]. I speculate that

this auto-immunity could be a result of DOM4/WRKY disruption, that is the

LZ motif 6 of RRS1 DOM4 may be required for its interaction with the WRKY6 The LZ motif
in RRS1-R DOM4:
LRVSYDDLQEMD-
KVLFLYIASL

domain. Moreover, with some variations compared that of RRS1, an LZ

motif 7 is also found in RRS1B DOM4 [253], which perhaps associates with7 The LZ motif
in RRS1B DOM4:
LRVRYAGLQEIYKALFLY-
IAGL

DOM56-B. However, whether DOM4-B Co-IPs with DOM56-B has yet to be

tested. The lack of DOM4-A/DOM56-B association (Figure 5.5) implies the

co-evolution of DOM4 and DOM56 , resulting in specific interactions within

each pair. It would be interesting to test whether DOM4-B and DOM56-A



Discussion 143

are also unable to interact, and whether the polymorphisms in the LZ motif

in DOM4 are important for compatible interactions.

Nevertheless, as preliminary data suggest that RRS1B∆D56 + RPS4B

does not trigger cell death in tobacco, whether RRS1B is de-repressed in

the same way as RRS1 is still unclear. Alternatively, this suggests that the

removal of negative regulation in the RRS1B/RPS4B complex might not be

sufficient for activation.

5.8.3 Co-evolution of RRS1 DOM4 and RPS4 CTD

DOM4 or CTD swaps between the A and B pair proteins often result in

inactive immune complexes that cannot respond to effectors (Figure 5.10),
implying that the two domains from respective pairs co-evolved to enable

the pair partners to cooperate. The observation that DOM4 and CTD from

compatible and incompatible pairs all Co-IP (Figure 5.11) suggests that

functional DOM4/CTD interactions may require the interaction of specific

residues at their interfaces, and affinity per se is insufficient for functionality.

I hypothesise that these residuesmay have co-evolved independently in two

separate pairs, and over time the domain-domain cross-talk became specific

within each pair, resulting in domains that are not interchangeable.

By comparing the analyses of domain swaps and the sushi mutants, I

have found some indications of where these residues required for functional

DOM4/CTD interactions might be. Using tobacco transient assays, I showed

that RRS1 DOM4 residues (S983 and E1070K) may interact with residue C887

of RPS4 CTD to allow specifically the PopP2-triggered activation, as sushi

mutations in both DOM4 (S983F or E1070K) and CTD (C887Y) completely

block PopP2 responsiveness, but do not affect AvrRps4. Further experiments

such as testing HR responses to Pf0-1 (AvrRps4) and Pf0-1 (PopP2) in the

Arabidopsis stable transgenic line, Ws-2 rrs1/rrs1b expressing RRS1-R(S983F

or E1070K) and RPS4 (C887Y), would confirm the effect of these mutations

on PopP2 and AvrRps4 responsiveness.

Interestingly, S983 and E1070 of RRS1-R DOM4 are conserved in RRS1B

DOM4 (S945 and E1029), whereas the residue C887 of RPS4 CTD is changed

to Y863 at the equivalent position in RPS4B CTD, mimicking the sushi

mutation RPS4(C887Y). In addition, RPS4B also shows polymorphisms at

the positions where two other sushi mutations of RPS4 CTD (S914F and

G952E), which are C890 and E928 in RPS4B respectively. C887Y, S914F,
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G952E of RPS4 suppress (C887Y and S914F partially, G952E completely)

the HR activity of RPS4 + RRS1∆D56 (Figure 5.9), suggesting that they are

important for DOM4-A/CTD-A compatibility. Conceivably, the equivalent

amino acids changed in RPS4B CTD could be responsible for the non-

functionality of the DOM4-A/CTD-B interaction in RPS4(AAAB) + RRS1∆D56.

To test this, I could introduce mutations in CTD-B of RPS4(AAAB) to match

CTD-A, namely Y863C, C890S and E928G, to see if this recovers RPS4(AAAB)

+ RRS1∆D56-triggered HR.

Intriguingly, the homologous sequences of DOM4 and CTD are found

in other paired TNLs such as CHS3/CSA1 [130] and several other TNLs that

are arranged in a head-to-head orientation, such as At4g12010/At4g12020,

At4g19530/At4g19520, At3g51570/At3g51560 and At4g36150/At4g36140. This

pattern implies a conserved coupling of DOM4-like and CTD-like domains in

paired NLRs, which might serve as a ‘bridge’ for one partner (e.g. the sensor)

to transmit an activation signal to the other (e.g. the executor). Therefore,

DOM4/CTD interactions may be the key for the cooperative function of

many TNL pairs.

5.8.4 DOM56 of RRS1-R is necessary for auto-inhibition, but can
also promote activation via DOM6-R

Auto-activity caused by the truncation of DOM56-R implies that it negatively

regulates the immune complex, and is not necessary for downstream activa-

tion of cell death. However other evidence suggests that DOM56-R, in par-

ticular DOM6-R, plays a role during activation (Figure 5.13). The difference

between RRS1-Rslh1 and RRS1-R∆D56 in their ability to activate RPS4(AAAB),

in which the former can and the latter cannot, suggests that DOM56-Rslh1

promotes activation. However, it is puzzling given DOM56-Rslh1 can still

weakly Co-IP with DOM4 (Figure 5.5), that this DOM56-Rslh1/DOM4 asso-

ciation should partially inhibit activation. One explanation could be that

the WRKY domain suppresses DOM6-R in pre-activation state, and the de-

repressed DOM6-R of DOM56-Rslh1 is able to engage in interactions that

compensate the lack of functionality of the DOM4-A/CTD-B combination.

Consistent with this hypothesis, I showed that when co-expressed with

RPS4(AAAB), DOM6-R of the chimera RRS1-R(AAAABA), but not DOM6-B

of RRS1-R(AAAABB), enables activation. Conceivably, the DOM6-R is de-

repressed in RRS1-R(AAAABA), as WRKY-B may fail to suppress DOM6-R.
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Biochemical evidence of possible WRKY/DOM6 associations in compatible

combinations, and lack of association in incompatible combinations, is

needed to support this hypothesis. Alternatively, it is possible that DOM6-R

but not DOM6-B is able to promote this activity. A simple test for cell

death activity of RRS1-R(AAAAAB) + RPS4(AAAB) in tobacco would clarify

that.

Furthermore, I have shown evidence that suggests de-repressed DOM6

can activate the immune complexwhen it is incompatible with theWRKY do-

main. This is true for both DOM6-R and DOM6-B, because RRS1-R(AAAAAB)

and RRS1B(BBBBBA) are both auto-active when co-expressed with RPS4 and

RPS4B respectively. This auto-activity cannot be explained by the lack of

negative regulation, as deletions of the C-terminal amino acids (e.g. RRS1-

R∆D6, RRS1-R∆C83 and RRS1B∆C115) do not lead to auto-activity. Therefore,

I infer that DOM6 when not suppressed by the WRKY domain can contribute

to activation.

Intriguingly, while RRS1-R:HF and RRS1-S:HF (HF, 56 aa) are non-autoactive

and fully functional, RRS1-R or RRS1-S when fused to a C-terminal tag with

higher molecular weight, such as GFP (239 aa) and nCerulean (172 aa),

triggers auto-activity in the presence of RPS4 in tobacco (data not shown).

Conceivably, the underlying mechanisms of tag-dependent auto-activity

may resemble those of the DOM6-swapped chimeric proteins of RRS1-R

and RRS1B. This similarity is best exemplified by the auto-activities of RRS1-

S:nCerulean and RRS1-R(AAAAA+B):HF [RRS1-R(AAAAA+) is identical to RRS1-

S}, which differ only in their additional C-terminal amino acids sequences:

nCerulean (172 aa) and DOM6-B:HF (171 aa). This implies that the addi-

tional C-terminal amino acids of RRS1 may trigger activation in a sequence

independent manner, such as by imposing steric hindrance to WRKY/DOM4

association. We could test this via fusing different lengths of neutral se-

quences (such as multiple ‘NAAIRS’) to the C-terminal end of RRS1, which

may reveal a minimal length required for auto-activity [290]. Ultimately,

obtaining and then comparing functional and auto-active DOM456 crys-

tal structures, e.g. DOM456-R(AAA) and DOM456(AAB), would help us to

elucidate the role of DOM56 and DOM6 in inhibition and activation.
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5.8.5 PopP2 de-represses RRS1-R via DOM6-R-enabled
inter-domain reconfigurations

Truncation of DOM6-R from RRS1-R reveals the difference between the

AvrRps4- and PopP2-triggered immune complex activation (Figure 5.2).
DOM6-R is specifically required for PopP2 but not AvrRps4 responsiveness

by RRS1-R/RPS4. Acetylation of the WRKY domain by PopP2 somehow

de-represses DOM6-R/WRKY. Besides DOM6-R, PopP2-triggered activation

also involves specific residues in RRS1-R DOM4 and RPS4 CTD (Figure 5.12).
Combining the role of the three domains involved, I envisage that the PopP2-

derepressed DOM6-R may associate with DOM4, creating a new interface

for DOM4 to interact with RPS4 CTD (Figure 5.14). Alternatively, DOM6-R

only interacts with acetylated WRKYGQK, modulating DOM56 interactions

with DOM4.

These models are consistent with DOM6-R’s ability to enable the DOM4-

A/CTD-B functionality. The proposed DOM4/DOM6-R association after

PopP2 elicitation is consistentwith the BiFC signal observed for cCFP:DOM456-

R:nCerulean treated with PopP2 (Figure 5.7). Furthermore, this may help

to explain the lack of PopP2 responsiveness in RRS1-S/RPS4: After PopP2

acetylation of the WRKY domain of RRS1-S, the de-repressed DOM6-S (21

aa) may be too short to rebind DOM4. Future experiments should test for

BiFC signals of cCFP:DOM456-S:nCerulean with and without PopP2.

5.8.6 Interactions that assist the transition to an active RPS4

In RPS4, the NB-ARC domain was found to have the most abundant number

of missense sushi mutations, totalling 18 out of 38, indicating its importance

for RPS4 function [116]. We already know that the P-loop motif of RPS4

is required for both effector-dependent and -independent activation of

defence [115, 254]. In this chapter, I have shown that the RPS4 NB-ARC

domain may also play a negative regulatory role, as the NB-ARC exchange

results in an enhanced cell death activity of RPS4(ABAA) compared to RPS4.

Since the RPS4(ABAA) phenotype is similar to RPS4TIR-triggered cell death

in that it could not be suppressed by RRS1, I speculate that this domain

swap de-represses the RPS4 TIR domain to allow signalling activity. Thus

sequence polymorphisms in RPS4B NB-ARC may impair proper TIR/NB-ARC

association, leading to de-repression and autoactivity of RPS4(ABAA).
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For plant NLR proteins, the NB-ARC domain has been reported to reg-

ulate the signalling activity of the N-terminal domain. For example, the

NB-ARC of flax L6 (TNL) negatively regulates the L6 TIR domain-triggered

HR, as successive addition of sub-domains (i.e. NB, ARC1, ARC2) cumula-

tively reduces the HR phenotype [197]. In addition, allele-specific negative

interactions between the TIR and NB-ARC domains also prevent effector-

triggered activation of L7 [168]. Similarly, for maize Rp1 (CNL), the CC

domain-triggered HR is suppressed by its NB-ARC domain via CC/NB-ARC

interaction [165].

In contrast to the negative role of NB-ARC observed for L6 and Rp1,

the NB-ARC1 of RPP1 (TNL) seems to play a positive role [201]. It has been

shown that induced RPP1 TIR domain oligomerisation promotes effector-

independent cell death, as tagging non-autoactive RPP1WsB TIR with a self-

associating GFP leads to HR [94]. Schreiber et al. [201] recently reported

that the RPP1 TIR-oligomerisation is likely facilitated by its NB-ARC1 domain,

which can self-associate. Interestingly, it was also revealed that the ARC2

of RPP1 negatively regulates that activity, as TIR-NB-ARC1-ARC2 cannot self-

associate and is not auto-active . Thus, these recent results demonstrate

the complexity of the regulatory relationship between an NLR’s N-terminal

domain and NB-ARC domain, and that my speculation of the negative

regulatory activity of the RPS4 NB-ARC domain may be premature without

performing truncations and finer domain swaps. In particular, domain swaps

between the RPS4 and RPS4B NB, ARC1 and ARC2 sub-domains would be

valuable experiments, andmay reveal whether the NB-ARC of RPS4 operates

more similarly to L6 or RPP1.

For L6 and RPP1, the LRR domain is responsible for direct effector

perception. The LRR domain of RPS4 is not directly involved in effector

perception, as perception is via the WRKY domain of RRS1. My prelim-

inary data show that when RPS4-LRR is swapped with RPS4B, forming

RPS4(AABA), RPS4(AABA) + RRS1-R becomes non-functional for defence

activation upon effector recognition (data not shown). Additionally, the LRR

swap (RPS4(AABA)) inhibits the effector-independent cell death activity of

RPS4, and likewise for the CTD swap RPS4(AAAB). It is possible that the LRR

domain and CTD of RPS4 mediate the conformational changes leading to

RPS4 activation.
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I have identified the CTD as a domain of RPS4 that senses the activa-

tion signal from RRS1 via interacting with RRS1 DOM4. Conceivably, the

CTD/DOM4 interaction may mediate the de-repression of the RPS4 TIR do-

main by alleviating the NB-ARC negative regulation together with the LRR

domain. Also, effector-induced changes of the RRS1 and RPS4 TIR domains

oligomerisation status are important for the transition to an active RPS4

[115]. Nevertheless it is probable that other domains of RRS1 and RPS4 also

interact and take part in these immune complex reconfigurations. Thus

the detailed molecular events leading to RPS4 activation in the RRS1/RPS4

complex remain to be elucidated.
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6.1 Studying NLR function in a pair complex

Over the past decade, a new paradigm has emerged where functionally

diverged NLRs work as a pair to regulate immunity in both plants and

mammals. In human and mouse, the NLR “NAIPs” function to directly recog-

nise pathogen-derived ligands (PAMPs) and then oligomerise with NLRC4

(another NLR) to initiate defence signalling [175, 276]. The mechanisms of

the interaction between the NAIPs, specialised as ‘sensors’, and the NLRC4,

specialised to transduce immune signals, have been well studied [170, 171,

173, 291, 292]. Though many plant NLRs have been reported to cooper-

ate with another NLR for function [15, 112, 138], only a few have been

recently studied in detail as functional pairs (e.g. Rice CNL pairs RGA4/RGA5

and Pik-1/Pik-2). In collaboration with colleagues, my PhD work on the Ara-

bidopsis TNL pairs RRS1/RPS4 and RRS1B/RPS4B has provided novel insights

and has advanced the mechanistic understanding of these pairs, which will

contribute to the study of paired NLRs in the future.

A common theme of studied plant NLR pairs is the separation of roles

as sensor and executor. For RGA4/RGA5 and RRS1/RPS4 in particular, the

sensors RGA5 and RRS1 directly interact with pathogen effectors, and the

executors RGA4 and RPS4 respectively are responsible for cell death sig-

nalling [58, 59, 110, 111, 115]. The functional distinction between these

sensors and executors are demonstrated by the following. First, RPS4 and

RGA4, but not RRS1 or RGA5, can trigger effector-independent cell death

[111, 254]. Secondly, the P-loop motifs of RPS4 and RGA4 are essential

for defence activation, while those of RRS1 and RGA5 are dispensable [111,

115]. Last but not least, in contrast to RPS4 and RGA4, both RRS1 and

RGA5 have incorporated an atypical domain C-terminal to the canonical

TIR-NB-ARC-LRR and CC-NB-ARC-LRR structures (WRKY and HMA domain

respectively), which is specialised for effector detection [58, 59, 110, 112].

Given that RPS4/RRS1 and RGA4/RGA5 form pre-activation immune com-

plexes, in which RGA5 and RRS1 can suppress the auto-activity of RGA4
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and RPS4 respectively [112, 115], a popular view in the field is that the

immune complex activation is driven by the effector-triggered alleviation of

the sensors’ negative regulation on the executors (Figure 6.1A).

However, for the following reasons, I think that there aremore subtleties

than this simple model. Since the effector binding does not disrupt the sen-

sor/executor association for either RGA4/RGA5 or RRS1/RPS4 (in transient

assays in N. benthamiana), the effector-triggered defence activation must be

carried out by an immune complex. A conundrum arises that if the executor

alone is sufficient to activate defence, why doesn’t the presumed negative

regulator (the sensor) disassociate completely from the executor to allow

more efficient activation? One might argue that maintaining an immune

complex during activation could be useful for a rapid re-inhibition to avoid

harmful and unnecessary prolonged defence signalling, or perhaps to also

allow multiple rounds of activation.

In addition, by comparing the RGA4/RGA5 and the RRS1/RPS4 systems,

and also with the Pik-1/Pik-2 and RPS4B/RPS1B systems, I think that there

are more clues as to why the so called sensor and executor may activate

defence as a complex. Despite the apparent similarities of the RGA4/RGA5

and the RRS1/RPS4 systems, there might be intrinsic differences between

them. For example, the RGA4- and RPS4-mediated effector-independent cell

death are different, and I infer that the differences are either quantitative

or qualitative for the following reasons. Firstly, RGA4 is strongly auto-active

and needs RGA5 to keep it in check [111], while RPS4 is not auto-active

when expressed under its native promoter in the absence of RRS1 [254].

The evidence supporting this is that silencing of RGA5 in rice protoplasts

leads to RGA4 de-repression and cell death [111], whereas the rrs1 or

rrs1/rrs1b double knockout in Arabidopsis does manifest an auto-active

phenotype [121]. Secondly, the strong auto-activity of RGA4 correlates with

a degenerated MHD motif TYG, as mutations of RGA4 TYG to MHD lead to

the loss of effector-independent and -dependent activity [111]. However

RPS4 has a conserved MHD motif [161], and only triggers auto-activity

when over-expressed and when negative regulation is removed e.g. as

shown by RPS4(ABAA) Chapter 5. It would be interesting to test if an MHD

mutant enhances RPS4 auto-activity and whether RRS1 could (or could not)

suppress it. This would help clarify whether the conserved RPS4 MHD motif

accounts for its weaker cell death signalling compared to RGA4.
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Figure 6.1: Conceptual activationmodels of a paired NLR complex (A) One model de-

scribes that in the absence of an effector, the sensor NLR negatively regulates the executor

NLR to keep the complex inactive. Upon effector perception via the sensor NLR, the execu-

tor NLR is de-repressed, which thereby triggers defence activation. (B) An alternative model

describes that the inactive complex is maintained via various inter-and intra-molecular in-

teractions between the sensor and the executor NLR. Effector-binding to the sensor NLR

triggers immune pair complex reconfiguration that leads to defence activation. Here the

sensor NLR refers to the NLR carrying an integrated domain (yellow) that directly perceives

effectors.

Alternatively, RGA4 and RPS4 may trigger cell death with different

mechanisms, as they operate in distinct cellular compartments. RGA4 is

localised in the cytoplasm and does not re-localise into the nucleus upon

activation [111]. In contrast, RPS4-triggered cell death requires nuclear

localisation, as RPS4nls (mutation in its nuclear localisation signal) fails to

trigger HR [254]. Nevertheless, we should not exclude that a similar process

(or downstream components) could mediate cell death induction in either

the nuclear or cytoplasmic fractions.

The most striking difference is that RGA5 with the HMA domain deleted

is still able to suppress RGA4, implying that HMA is dispensable for this sup-

pression; whereas the WRKY domain of RRS1 is required for auto-inhibition,

as RRS1∆D56 without the WRKY domain triggers auto-activity with RPS4

(Chapter 5). Importantly, the auto-activity of RRS1∆D56 + RPS4 is not due
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to the lack of RPS4 suppression, as the experimental condition in which

the former was assessed does not allow the HR activity triggered by RPS4

alone. Also the further deletion of DOM4 (RRS1∆D456) with RPS4 no longer

triggers HR in the same condition (Chapter 5). An additional evidence is

that the SHAA mutation in RRS1-Rslh1, which abolishes TIR-TIR interactions,

diminishes the HR when co-expressed with RPS4 [116], implying that RRS1-

Rslh1/RPS4-triggered autoimmunity is not simply caused by the removal of

RPS4 suppression. Together these data strongly suggest that a de-repressed

RRS1 positively contributes to RPS4 defence signalling in a complex. Intrigu-

ingly, there is some evidence showing that RPS4-triggered autoimmunity

partially depends on RRS1: Arabidopsis dwarfism and constitutive defence

gene induction caused by stably over-expressing RPS4 is reduced in the

absence of RRS1 and RRS1B [293, 294]. Furthermore, unpublished data in

our lab (SH, VC, PS et al) suggest that RRS1 stabilises RPS4, and RPS4 homo-

oligomerisation requires RRS1. To conclude, from these data I infer that

there is a requirement for RPS4/RRS1 and other NLR pairs to be in a complex

to activate defence, and activation via the executor is not equivalent to the

removal of the sensors’ repression, but rather via conformational changes

of the whole complex (Figure 6.1B).

Beyond this, it is likely that not all executors can initiate cell death

response on their own. In analogy to the RPS4/RRS1 and RGA4/RGA5 pairs,

RRS1B and Pikp-1 are the sensors of their respective pairs that interact with

the effectors via their integrated WRKY and HMA domains, and RPS4B and

Pikp-2 are candidate executors that play a role in signalling. However,

unlike RGA4 and RPS4, transient over-expression of Pikp-2 or RPS4B does

not trigger constitutive cell death in Nicotiana spp., and activation requires

the co-expression of both pair partners together with the cognate effectors

[113] (Chapter 5). Therefore, for RPS4B/RRS1B and Pikp-1/Pikp-2, without

excluding that the presumed ‘executors’ may still be important for defence

signalling, activation must not be a simple de-repression. More generally,

the clear cut distinction of sensor and executor functions could be an over-

simplification for many paired NLRs. Though it is yet unclear whether all NLR

pairs form immune complexes, classifying their functions into strict ‘sensor’

and ‘executor’ could be constraining our understanding of how a probable

immune pair complex activates defence. Thus I think we should not study

the partners of the pairs independently of each other, but rather as a whole

package for their activation and signalling function in the future.
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6.2 Implications of atypical NLRs carrying additional
domains

The work in this thesis has helped to unravel the mechanism of integrated

WRKY domains as potential decoys for effector host targets. Both effectors

AvrRps4 and PopP2 target other Arabidopsis WRKY proteins possibly for

immune suppression [58, 59]. Thus it is no coincidence that they are being

perceived via the atypical WRKY domain embedded in a NLR structure

[58, 121]. We inferred that these plant NLRs have incorporated domains

mimicking the effector targets as a means to detect effectors. Similarly, the

rice RGA4/RGA5 pair functions to recognise two M. oryzae effectors via an

integrated HMA domain in RGA5 [110]. A review of these two NLR pairs

in particular has led to the advocacy of the ‘integrated decoy’ model [112].

However, as Wu et al. [120] pointed out, some domains might retain their

ancestral functions possibly to assist immunity, and thus the broader term

‘sensor domain’ is more suitable.

Following on from these discoveries, the perception is that the atypical

domains in NLRs are a potential hallmark for the sensor function. Inter-

estingly, many integrated domains are found in paired NLRs, although not

exclusively [112, 118, 119]. Typically one member has a canonical struc-

ture, and the other possesses an integrated domain. Besides the ones

already described, there are others: Arabidopsis TNLs RPP2A/RPP2B [132]

and CHS3/CSA1 [130], rice CNLs Pi5-1/Pi5-2 [125], wheat CNLs LR10/RGA2

[133], barley RGA1/Rpg5 [295] and melon Fom-1/Prv [134] (for details of

their integrated domains see Chapter 1). Why then are integrated domains

often found in pairs? I hypothesise that when multiple NLRs evolve to

function as one unit for defence activation, redundancy arises in those

duplicated domains (e.g. NB-ARC, LRR). As a consequence, in paired NLR

systems, relaxed evolutionary constraints on individual NLR domains may

provide flexibility for the integration of extra domains. This can explain the

frequent occurrences of integrated domains in paired NLRs and the subse-

quent functional specialisation of pair partners. Above I contemplated on

how integration of extraneous domains could happen; this leaves the impor-

tant questions of which domains to integrate and why are they maintained

through evolution?
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As discussed in Chapter 4, important targets for effectors could be

popular for integration. One important target for effectors might be the

WRKY TF proteins which have expanded during the evolution of higher

plants as a crucial defence regulator [275], and 70% of Arabidopsis WRKY

proteins are implicated in defence [274, 278]. The evolutionary advantage

of the WRKY domain fusion is suggested by the duplicated RRS1/RPS4-like

proteins with an integrated WRKY domain that are maintained or have

further expanded in several relatives of A. thaliana [121]. Indeed, recent

studies have highlighted the recurrent integration of WRKY domains into

NLRs, which appear to have emerged independently in several lineages of

plants [118, 119]. Besides the WRKY domain, these studies also revealed

a widespread tendency for integrated domains in plant NLR proteins, with

kinase and BED domains also among the most common [118, 119]. It is

worth noting that the elements or processes initiating the integration in the

first place could also influence the integration frequency. Intriguingly, WRKY

TF have evolutionary links with transposons such as mutator elements that

resembles the element domain of BEAF and DREF proteins [296], and such

elements could have mediated their integrations into NLRs.

More broadly, incorporations of such atypical domains might mirror the

convergent targeting of plant pathogen effectors to hub proteins so that

important nodes would be well protected [16, 45, 126]. As mentioned in

Chapter 1, an advantage for domain integration into NLRs could be to enable

the rapid acquisition of new effector recognition capacity. Additionally, the

physical fusion of the sensor domain to the NLR structure would ensure

adaptive co-evolution and genetic co-segregation allowing stability.

6.3 How does effector binding trigger NLR
activation?

In certain direct recognition systems, the affinity between the NLR sensor

domain and the effectors correlate with recognition capacity. This positive

correlation has been reported for Pikp-1/AvrPik and RGA5/AvrPia, where

either the polymorphisms in the HMA domain or the variations in the ef-

fectors affect binding and recognition [110, 113]. My work on AvrRps4

perception via the WRKY domain of RRS1 or RRS1B has revealed a similar

pattern to some degree (Chapter 4). At the predicted AvrRps4/WRKY inter-

action interface, mutating E187 to A in AvrRps4, or mutating K1221 to R or Q
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in RRS1-R significantly reduces affinity, which in turn abolishes recognition.

Also the weaker responsiveness of AvrRps4 L167 variants in RRS1/RPS4 and

RRS1B/RPS4B correlates with weaker effector/WRKY associations. However,

I showed that the lack of AvrRps4-L167S-triggered HR in RRS1B/RPS4B can

be restored by increasing the R protein concentrations expressed in tobacco

transient assays, indicating affinity is not the only limiting factor for recog-

nition. Natural variation analysis by Sohn et al. [243] has reported L167 as

the only residue under positive selection in AvrRps4. Conceivably, AvrRps4

L167 variants modulate interactions with WRKY domains such that they

evade host recognition without the trade-off in virulence and thus have

been selected for.

However, strong affinity is not always sufficient for recognition. For

example, AvrRps4-KRVYAAAA strongly associates with the WRKY domain

of RRS1 (Chapter 4), but is not recognised. In addition, both RRS1-S and

RRS1B associate with PopP2, and PopP2-C321A, but do not confer recogni-

tion (Chapter 3) [214]. By studying these systems, we have revealed there

is more to recognition than affinity per se, and therefore propose that the

NLR domains other than the sensor domain could also determine recogni-

tion capacity. In particular, the extended DOM6 of RRS1-R compared to

RRS1-S enables PopP2 recognition, even though it is not required for effec-

tor binding [58]. It is worth noting that DOM6 (amino acids C-terminal of

the WRKY domain) also represents the most polymorphic region of RRS1-R

and RRS1B, with 52% identity (Figure 5.1). Besides DOM6-R, my work sug-

gests that other residues in DOM4 (RRS1) and CTD (RPS4) also contribute

to PopP2 recognition specificity, and it is possible that RRS1B/RPS4B lacks

these domain interactions necessary for PopP2 responsiveness. I believe

these insights would be useful to help understand the mechanisms of C.

higginsianum resistance mediated by RRS1-R/RPS4, but not by RRS1-S/RPS4

or RRS1B/RPS4B [114, 253]. Our observation is not unique; TIR domain

polymorphisms between flax L6 and L7 determine their strength of resis-

tance towards flax rust carrying AvrL567, despite the TIR domains not being

required for effector interaction [168, 191]. The overall implication is that

effector binding is not the whole story; how binding triggers NLR activation

is the key.

Here I consider possible underlying mechanisms that could assist con-

version of effector binding into activation: Effector binding could (1) com-

pete with NLR domains for binding surfaces and disrupt interactions; (2)
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bridge contacts between NLR domains to stabilise interactions; (3) promote

NLR interaction with other downstream immune components; (4) stabilise

the active form of the NLR; (5) induce a change in the oligomerisation status

from an inactive NLR complex into an active one.

In the RRS1/RPS4 system, I have shown that AvrRps4 disrupts DOM4/WRKY

association, while PopP2 likely disrupts DOM6 and enables new contacts

of DOM6/DOM4/CTD for immune complex activation. Beyond this current

model, as AvrRps4 also interacts with domain(s) of RRS1 other than the

WRKY (Chapter 4), it is possible that AvrRps4 also bridges new interactions.

In hindsight, this could explain why the KRVYmotif is important, despite not

being required for WRKY domain binding. This motif might be essential for

mediating new interactions for the transition to an active complex. Alterna-

tively, the KRVY motif may be important to promote RRS1/RPS4 interaction

with other immune molecules.

Bernoux et al. [168] proposed an ‘Equilibrium-based switch’ model in

which NLRs exist in an equilibrium between ‘ON’ and ‘OFF’ states, and ef-

fectors shift the balance towards activation via binding and stabilising the

active NLR. We know that PopP2 stabilises RRS1 [214, 257], and I have seen

that co-expression of PopP2 or AvrRps4, but not their mutants, enhances

WRKY domain accumulation in planta (western data not shown). How

might such stabilisation contribute to activation? Consider an expansion

of the ‘equilibrium model’, in which there is a balance between unbound

NLR monomers and pre-activation complexes. The effector binds and sta-

bilises the complex, reducing breakdown into monomers, which shifts the

equilibrium towards active complexes. Alternatively, effector binding to a

pre-activation complex might promote the formation of higher order com-

plexes, which provide a platform for defence signalling. Effector-induced

oligomerisation has been described for the TNL tobacco N, which forms TIR-

dependent oligomers upon perception of TMV p50 protein [297]. Recently

it has been reported that RPP1 (TNL) also shows ligand (ATR1) dependent

oligomerisation [201]. On the other hand, several CNLs, exemplified by Ara-

bidopsis RPS5 and tomato Prf and MLA1 exist as oligomers in the absence

of effectors [159, 184, 298]. The effector-induced oligomerisation may be a

phenomenon more general to TNLs than CNLs, however many more exam-

ples are needed. For the NLRs that bind effectors as pre-existing complexes,

whether there are effector-inducible changes in the number of monomers

in any oligomeric complex remains to be seen.
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6.4 Does unleashing the N-terminal domain of an NLR
lead to defence activation?

The N-terminal domains of plant NLRs (CC or TIR) are perceived to be cru-

cial for defence signalling [140, 185]. As many TIR or CC domains are

sufficient for cell death induction, and their signalling activities are often

oligomerisation-dependent, parallels can be drawn between the plant and

animal NLRs in terms of their signalling mechanisms [276]. In animals,

some NLRs multimerise to form a wheel-like inflammasome structure that

imposes proximity on their N-terminal domains, creating a platform for the

recruitment of downstream signalling adaptors [170, 171, 173, 193, 194].

At the centre of the inflammasome “wheel”, the NLR N-terminal domains

bound to these adaptors can initiate nucleation, forming filaments that are

important for defence signalling [198, 199, 276, 299]. The speculation is that

the plant NLRs may form large complexes similar to the animal inflamma-

somes. How the plant NLR N-terminal domains mediate defence signalling,

and how this process is regulated before and after effector elicitation are

important unanswered questions in this field.

As discussed in Chapter 5, my data suggest that RPS4, especially the

TIR domain, is being negatively regulated by multiple interactions in the

pre-activation complex. I inferred that disruption of these possible negative

regulations could assist the transition to an active RPS4 in the immune

complex, conceivably via exposing the RPS4 TIR domain surface required

for homo-oligomerisation. One of the negative regulations could be via

the RRS1 TIR domain, which directly interacts with RPS4 TIR and can inhibit

RPS4TIR-triggered effector-independent cell death (Chapter 3). Crystal struc-

tures of RRS1 and RPS4 TIR domains revealed a common TIR-TIR interaction

interface at α-helices A and E for either homo- or hetero-dimerisation [115].

Interestingly, this interface differs from that of the L6 TIR domain homo-

dimer spanning α-helix D to α-helix E, with the two being 90° away from

each other [197]. Furthermore, additional residues required for defence

signalling have been identified on the L6 TIR domain distinct from those

at the dimerisation interface [197], suggesting that other interfaces are re-

quired for signalling. With conserved patches resembling either RPS4-like

or L6-like interfaces found in other TIR domains of plant TNLs [197, 204], we

could speculate that both interfaces are important for TIR domain-mediated

defence signalling.
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Additionally, the NLRN-terminal domains are regulated by intra-molecular

interactions. For L6, L7 (TNL) and Rp1 (CNL), the negative interactions be-

tween NB-ARC and N-terminal domains inhibit the self-association of the

latter [165, 168, 197]. In contrast, the NB-ARC1 of RPP1 promotes TIR-NB-

ARC1 to self-associate, and facilitates cell death signalling [201]. The NB-ARC

domain of RPS4 as a whole is likely to negatively regulate the TIR domain as

the NB-ARC deletion in RPS4TIR or the NB-ARC swap RPS4(ABAA) enhances

auto-activity (Chapters 3 & 5). However, future experiments need to clarify

the regulatory role of individual NB-ARC sub-domains.

Notwithstanding these data, whether all N-terminal domains directly

mediate defence signalling remains to be seen. And it is puzzling that the

N-terminal domains of many other functional TNL or CNL proteins cannot

initiate effector-independent cell death. One possible explanation is that the

properties required for cell death signalling by only an N-terminal domain

could be different from it acting within a full-length protein or in an immune

complex. Altogether, the evidence suggest that the N-terminal domains of

plant NLRs are usually closely regulated, and their activities are important

for effector-triggered defence activation.

6.5 Summary and Outlook

My work presented in this thesis aimed to tease apart the fine-tuned recog-

nition specificities between different effectors and different R gene alleles. I

have successfully demonstrated: how AvrRps4 recognition is independently

conferred by two TNL pairs; how this recognition is mediated by an inte-

grated WRKY domain; and how the immune complex is de-repressed by dis-

tinct effectors, AvrRps4 and PopP2. Studying how paired NLR proteins work

as a single immune complex was, and remains, an interesting and important

problem. I have studied the dynamic molecular interactions that convert

effector recognition to defence activation, and this will provide valuable

insights for many other cooperative NLR systems. More quantitative and de-

tailed insight will require more refined techniques. To study the changes of

intricate domain-domain interactions and to analyse affinity differences, Sur-

face Plasmon Resonance (SPR) and Fluorescence Resonance Energy Transfer

(FRET) can be useful. To understand the overall domain organisation, and to

visualise possible oligomeric changes, full-length NLR structural insights via

X-ray crystallography and high-resolution cryo-electron microscopy are cru-
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cial. Ultimately such mechanistic insights of complex auto-regulation and

activation would provide valuable knowledge for future immune receptor

engineering. The ability to design new R genes that could recognise any

pathogen effector based on its host target would underpin a revolution in

crop disease control.
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