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A Fast and Automatic Approach for Removing Artefacts
due to Immobilisation Masks in X-ray CT

Mohammad Hashem Ryalat§ Stephen Laycock§ Mark Fisher§

Abstract—Immobilisation masks are fixation devices that are used
when administering radiotherapy treatment to patients with tumours
affecting the head and neck. Radiotherapy planning X-ray Computer
Tomography (CT) data sets for these patients are captured with the
immobilisation mask fitted and manually editing the X-ray CT images
to remove artefacts due to the mask is time consuming and error prone.
This paper represents the first study that employs a fast and automatic
approach to remove image artefacts due to masks in X-ray CT images
without affecting pixel values representing tissue. Our algorithm uses
a fractional order Darwinian particle swarm optimisation of Otsu’s
method combined with morphological post-processing to classify pixels
belonging to the mask. The proposed approach is tested on five
X-ray CT data sets and achieves an average specificity of 92.01%
and sensitivity of 99.39%. We also present results demonstrating the
comparative speed-up obtained by fractional order Darwinian particle
swarm optimisation.

Index Terms—Immobilisation Mask, CT Images, Head and Neck
Cancer.

I. INTRODUCTION

Head and Neck Cancer (HNC) generally refers to a group of
different malignant tumors that develop in or around the throat,
larynx, nose, sinuses, and mouth [1]. It is the eighth most common
cancer in the UK (2014), accounting for 3% of all new cases [2] and
for about 3% of all cancers in the United States [3]. An estimated
61,760 people have developed HNC in the US within 2015 [4].

A course of Radiotherapy Treatment (RT) is typically prescribed
for patients diagnosed with HNC. RT directs high energy ionising
radiation to destroy malignant cells, but it must be accurately
targeted to limit harm to healthy cells. A typical course of ra-
diotherapy treatment for HNC is delivered in fractions over several
weeks and masks (Figure 1) are employed to ensure the patient can
be consistently repositioned for each dose fraction. X-ray CT data
used for planning HNC radiotherapy treatment contain artefacts due
to the mask (Figure 6(a)) which can make planning more difficult
and can be troublesome if images of the skull are needed. This
paper investigates an automatic approach for removing them.

Fig. 1. Immobilisation masks (left) Thermoplastic (right) Polyethylene.

Since X-ray CT data of HNC are often acquired prior to RT
many publicly available X-ray CT data sets include immobilisation
masks. Artefacts within the X-ray CT due to immobilisation masks
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are sometimes undesirable. Many segmentation of the brain, lateral
ventricles, and skull are made more complicated by artefacts due to
the mask. For example [5] and [6] need to render a reconstructed
3D CT volume of the head. Removing the mask by manually
editing individual CT image slices, is time consuming and prone to
errors particularly in the regions where the mask contacts the skin.
Development of a robust approach to automatically remove the
masks from the X-ray CT slices represents an appreciable saving
in time and avoids the possibility committing manual errors.

There are numerous studies related to the segmentation of
intra-cranial therapy relevant structures in X-ray CT images [7]–
[10] but in our knowledge none address automated segmentation
of immobilisation masks. Our automatic approach employs an
exhaustive search (optimised by fractional order Darwinian particle
swarm optimisation) for clusters of pixel values that satisfy Otsu’s
criteria [11] and are indicative of the classes ‘immobilisation mask’
and ‘background’. Morphological image processing operations are
then used to refine the labels and finally we remove the mask
using a ‘search and replace’ strategy. Although we cannot draw
direct comparisons for our values of specificity and sensitivity
from previous published work we highlight other comparative
benchmarks in section IV. The remainder of this paper is organised
as follows. Section II presents the proposed approach, section III
describes the datasets used for evaluation and presents results.
Section IV provides a discussion and section V draws conclusions.

II. MATERIALS AND METHODS

Five anonymised X-ray CT data sets have been used in this
study. The first three data sets (512x512x155, 512x512x146,
512x512x151, helical, pixel-spacing 1.367x1.367 mm, slice-
thickness 2.5 mm) were acquired at St James’s University Hos-
pital NHS Foundation Trust, Leeds, UK and the other two data
sets (512x512x130, 512x512x156, pixel-spacing 1.08x1.08 mm
0.98x0.98 mm, slice-thickness 3.14 mm) were downloaded from
the Cancer Imaging Archive (TCIA)/Head-Neck-Cetuximab [12]
[13]. The basic steps of the method are presented in Figure 2 and
described below in part-A to part-C.

Part-A

We begin with an X-ray CT image that includes an immo-
bilisation mask and then use the Fractional Order Darwinian
Particle Swarm Optimisation (FODPSO) algorithm [14] to return a
segmented image by labelling pixels in six different classes under
Otsu’s criterion [11]. Section III explains that we found using six
class labels leads to better results since all or most of the pixels
belonging to the mask are in one class.

A heuristic search (Algorithm 1) processes the pixels of the
labelled image starting from the top middle pixel until it finds
the first pixel having a different label (see Figure 3(d)). We store
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Fig. 2. The proposed approach to edit the mask automatically.

its index and value as [row index, mid column)], v mask
respectively. The value stored in v mask represents the immobil-
isation mask pixel label. The search algorithm assumes the pixel
at [row index − 1, mid column)] is a background pixel label
v bg in CT img. By matching v mask and v bg in CT img
the search algorithm finds sets of indices (M) and (B) representing
pixels labelled as ‘mask’ and ‘background’. These sets (M and B)
are further refined in the steps described in part-B.
Algorithm 1 Finding the pixels that represent the immobilisation
mask and those that represent the background pixels

1: height← height of image
2: width← width of image
3: mid col← the index of the middle column in the image
4: s← Get the segmented image.
5: for row ← 2, height do
6: if s (row, mid col) != s(1, mid col) then
7: v mask ← s (row, mid col)
8: v bg in CT img ← IMG(row − 1, mid col)
9: Break

10: end if
11: end for
12: indices of mask pixels(M)← find (s == v mask)
13: indices of bg pixels(B)← find (s == s(1, mid col))

(a) (b) (c) (d)
Fig. 3. (a) CT image; (b) Pixels of (a); (c) The segmented image after
FODPSO; (d) Pixels of (c); different value is highlighted in a red square.
Part-B

The steps described in part-A will lead, in most cases, to cor-
rectly identifying pixels of the mask itself but it also misclassifies

Fig. 4. Examples of segmented images produced after applying part-
A. The pixels that are identified as belonging to the immobilisation mask
are displayed as brightly coloured. (Adjust Contrast Matlab Image Tool is
used).

Fig. 5. Examples of segmented images produced after applying part-A.
The pixels that are identified as belonging to the background were displayed
in white. Note: Adjust Contrast Matlab Image Tool is used.

a small number of pixels located inside the skull. We render these
as brightly coloured in Figure 4. This is because the FODPSO
segmentation process groups some pixels comprising mask with
others having similar X-ray absorption located inside the skull as
one cluster. A similar problem exists with regard to background
clusters (see Figure 5).

It is clear from our experiments, illustrated in Figure 4 and
Figure 5 that the pixels misclassified by part-A are always located
inside the skull. Part-B corrects this problem by recovering the
coordinates of those pixels that form the skull and excluding these
from the group of pixels that are belonging to the immobilisation
mask. The approach comprises a sequence of operations that split
the original CT image to two clusters (i.e. foreground(head) and
background(air)) using Otsu’s method. Then it automatically flood-
fills holes that may appear inside the skull using the morphological
reconstruction operator described in [15]. After that, the pipeline
proceeds by performing an image processing operation named
erosion [16]. This will guarantee that no one of the pixels that
are really belonging to the mask will be excluded later and then
the only pixels that will be excluded are those which are exist
inside the skull. The indices of those pixels which represent the
skull will be gotten from the eroded image. Those indices will be
stored in H as the final output.

Part-C

Equations (1) and (2) are applied in part-C to exclude those
pixels which are misclassified in part-A by applying an intersection
operation between M and H in (1) and between B and H in (2).

M ′ = M − (M ∩H) (1)

B′ = B − (B ∩H) (2)

M represents the indices of those pixels which are identified as
belonging to the immobilisation mask. B represents the indices
of those pixels which are identified as background pixels. H
represents the indices of those pixels which are identified, in part-
B, as the pixels which form the area of the skull. Applying the
two equations will produce new indices M ′ and B′ where M ′

represents the indices of those pixels that are belonging to the
immobilisation mask and B′ represents the indices of those pixels
which form the background after excluding the indices of pixels
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that are exist inside the skull. The original CT image is then
updated with the value of V background on locations M ′ and B′

which means the pixels that represent the mask will be replaced by
the value of V background without affecting the values of other
pixels in the original CT image.

III. RESULTS

Figure 6(a) displays an example of one of the X-ray CT slices
from the first dataset. A previous study [17] evaluated the use of
Particle Swarm Optimisation (PSO) for medical image segmenta-
tion and demonstrated the the FODPSO algorithm delivered high
accuracy, stability and speed. We found that segmenting the image
to six different classes tends to lead to better results as this number
classifies all or most of the pixels belonging to the mask as one
class. The FODPSO algorithm delivers significant benefits in terms
of execution speed over the brute-force approach (i.e. exhaustive
search) which takes a very long time when the number of clusters
equals six. Figure 6(b) displays the image after rendering with the
corresponding pixel labels.

In Figure 6(c-e) we present the output that is generated by part-
B. The image was firstly segmented to two classes (foreground and
background) using Otsu’s method. It was then filled automatically
and eroded. Part-A and part-B of the approach produced three data
structures of indices (M , B, and H) and those indices were used
to form the final output image which is displayed in Figure 6(f).
Finally, Figure 7 illustrates the result of applying the approach to
a random selection of input X-ray CT slices.

(a) CT image (b)(FODPSO) (c)(Otsu)

(d) Filled (e) Eroded (f) Output

Fig. 6. An example of a CT slice from the first dataset.

(a) In D2 (b) Out D2 (c) In D3 (d) Out D3

(e) In D4 (f) out D4 (g) In D5 (h) Out D5

Fig. 7. One CT slice example from each dataset (Input Output).

We used the Sensitivity and the Specificity to evaluate the
proposed approach as both of them are statistical measures of the

performance of a binary classification test. We have identified the
True Positive (TP), False Positive (FP), True Negative (TN) and
False Negative(FN) in this context as:
TP: # of mask pixels correctly identified as mask.
FP: # of not-a-mask pixels incorrectly identified as mask.
TN: # of not-a-mask pixels correctly identified as not-a-mask.
FN: # of mask pixels incorrectly identified as not-a-mask.

The pixels that represent the immobilisation mask were identified
by an expert in 25 CT images (5 randomly-selected from each
dataset) and compared to the number of pixels identified by the
proposed approach. Table I displays the average values, rounded
to the whole number, of TP, FP, TN and FN for each dataset and
Table II displays the sensitivity, also called the true positive rate
(TPR), specificity (SPC) and the Number-Of-Observations (NOO)
for each dataset.

TABLE I
THE AVERAGE VALUES OF TP, FP, TN, AND FN FOR EACH DATASET

Dataset TP TN FP FN
Dataset#1 389 30,239 100 23
Dataset#2 403 30,152 154 42
Dataset#3 429 30,199 93 30
Dataset#4 1714 29,060 465 203
Dataset#5 841 45,371 148 71

TABLE II
THE VALUES OF TPR, SPC, AND NOO FOR EACH DATASET

Dataset TPR SPC NOO
Dataset#1 0.9441 0.9967 30751
Dataset#2 0.9056 0.9949 30751
Dataset#3 0.9346 0.9969 30751
Dataset#4 0.8941 0.9842 31442
Dataset#5 0.9221 0.9967 46431
Average 0.9201 0.9939 34,025

Table II shows the average value of the sensitivity (TPR) is
92.01% and the average value of the specificity (SPC) is 99.39%.
The heading ‘NOO’ in the table indicates to the number of
observations which is equivalent to the number of pixels in each
image.

Increasing the speed of the approach

Since HNC X-ray CT datasets normally comprises a large num-
ber of image slices , then applying a fast segmentation technique
will play a key role in the speed of the proposed approach. We
applied the brute-force method, PSO, Darwinian-PSO (DPSO) [17],
and the FODPSO algorithm to segment the collection of CT slices
under Otsu’s criterion (i.e. maximising the inter-class variance
between different clusters). The average time which is needed
for each dataset to be segmented by each method is displayed
in Table III. As shown in the table the FODPSO algorithm is
the fastest and for that reason it makes it a good choice for our
approach. We haven’t recorded the time required by the brute-force
method since it takes days for each dataset to be segmented using
this method.

IV. DISCUSSION

We applied our approach over five different X-ray CT data sets,
comprising a total of 738 image slices and noticed that the approach
did not work on 13 of them (<2%). Some of these represent cases
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where the heuristic search algorithm failed due to noise in the
middle column, illustrated in Figure 8-left and some are cases in
which the noise is so severe that the labels of true mask pixels is
spatially discontinuous (see Figure 8-middle). We handled the first
exception by applying the median filter over the background area
in order to remove the noise from the background area, and we
handled the second exception by changing the seeking mechanism
in Algorithm 1 by searching the segmented image horizontally and
vertically from different five start points, illustrated in Figure 8-
right.

Overall, we achieved an average specificity of 92.01% and sensi-
tivity of 99.39% compared with ground truth provided by a human
expert. Compared with other work segmenting therapy relevant
anatomical structures in X-ray CT [7]–[10] these figures appear
to be very promising and perhaps overly optimistic. However, we
observe that the mask does not contact the skin at every pixel and
there is sometimes a gap (quite desirable to achieve a comfortable
fit) since masks are hand-made from plaster of paris moulds.
We may speculate that for our application (i.e. not an embedded
anatomical structure), automatic segmentation represents an easier
task.

Fig. 8. (Left) Example of a CT image includes a noise in the middle
column (Middle) Example of a CT image has a disconnected representation
of the mask pixels (Right) Defining new start points to seek horizontally.

TABLE III
THE AVERAGE TIME (IN SEC) NEEDED FOR EACH DATASET TO BE

SEGMENTED USING PSO, DPSO AND FODPSO ALGORITHMS

Dataset # of images PSO DPSO FODPSO
Dataset#1 155 130.99 107.18 103.90
Dataset#2 146 122.84 103.65 99.29
Dataset#3 151 126.96 102.82 100.99
Dataset#4 130 109.62 90.48 87.10
Dataset#5 156 131.41 109.84 107.08

V. CONCLUSION

This paper presented an automatic approach for identifying and
removing artefacts due to immobilisation masks which normally
exist in CT data sets of patients who are undergoing radiotherapy
treatment for Head-and-Neck cancer. The presented approach ac-
cepts a CT image (in DICOM format) as an input, automatically
identifies the pixels that belong to the immobilisation mask, sets
the values of those pixels to be similar to the background value,
thereby eliminating the mask from the output image. Five different
data sets were tested to evaluate the accuracy of the approach.
Sensitivity and specificity were used as statistical measures of
the performance of the approach in this study. The evaluation
indicates that the proposed approach is robust and of practical use.
Some enhancements to speed up the process using PSO were also
presented and tested in the paper.
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