
Re-evaluation of Illuminant

Estimation Algorithms in Terms

of Reproduction Results and

Failure Cases

by

Roshanak Zakizadeh

A thesis submitted for the degree of

Doctor of Philosophy

in the

University of East Anglia

School of Computing Sciences

February 2017

c� This copy of the thesis has been supplied on condition that anyone who consults it

is understood to recognise that its copyright rests with the author and that use of any

information derived there-from must be in accordance with current UK Copyright Law.

In addition, any quotation or extract must include full attribution.



Acknowledgements

First, my sincere gratitude goes to my first supervisor, Professor Graham Fin-

layson. With his love of science, experience and great attention to detail, he has

been a true mentor and motivator during these three years. I am very glad to

know him as a researcher and a good friend. Also, I would like to thank Dr. Mark

Fisher for being on my supervisory team and always being ready to help when I

needed it. Many thanks to Professor Michael Brown who provided the opportu-

nity for me to work with him at the National University of Singapore for some

time. It was a pleasure working with him and his group. I am also thankful to Dr.

Arjan Gijsenij who kindly o↵ered his help and critique of some parts of this work.

I thank Professor Theo Gevers who kindly accepted to travel from Amesterdam

to examine my viva. Also, thank you to Professor Richard Harvey for being the

internal examiner.

I am grateful to the University of East Anglia for funding my research. Apart

from the educational experience, I enjoyed my time at the UEA a great deal.

To every member of the colour group at the UEA in past or present who has given

me good memories and a helping hand along the way. In particular, Christopher

Powell for proofreading parts of this thesis and Mike Harris whose words of wisdom

have been a great help when I was just at the beginning of this work.

To complete, I thank the constant sources of encouragement in my life. My mother,

Mina, who is the image of a successful strong woman to me. My father, Mohsen,

who is an inspiration with his joy of life. My lovely sister, Nazanin, who is the

brightest soul I know. And finally, the love of my life, Hamed, who not only has

been the source of emotional support through all these years but whose patience

and hard working attitude have been an example to me.

i



Abstract

Illuminant estimation algorithms are usually evaluated by measuring the recovery

angular error, the angle between the RGB vectors of the estimated and ground-

truth illuminants. However, this metric reports a wide range of errors for an

algorithm-scene pair viewed under multiple lights. In this thesis, a new metric,

“Reproduction Angular Error”, is introduced which is an improvement over the

old metric and enables us to evaluate the performance of the algorithms based

on the reproduced white surface by the estimated illuminant rather than the esti-

mated illuminant itself. Adopting new reproduction error is shown to both e↵ect

the overall ranking of algorithms as well as the choice of optimal parameters for

particular approaches.

A psychovisual image preference experiment is carried out to investigate whether

human observers prefer colour balanced images predicted by, respectively, the re-

production or recovery error metric. Human observers rank algorithms mostly

according to the reproduction angular error in comparison with the recovery an-

gular error.

Whether recovery or reproduction error is used, the common approach to mea-

suring algorithm performance is to calculate accurate summary statistics over a

dataset. Mean, median and percentile summary errors are often employed. How-

ever, these aggregate statistics, by definition, make it hard to predict performance

for individual images or to discover whether there are certain “hard images” where

some illuminant estimation algorithms commonly fail. Not only do we find that

such hard images exist, based only on the outputs of simple algorithms we provide

an algorithm for identifying these hard images (which can then be assessed using

more computationally complex advanced algorithms).
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The readers should notice that colour images

could look di↵erent depending on the colour cali-

bration of the printer or the device used for their

display.



Chapter 1

Introduction

Colours of a scene captured by an imaging device such as a digital camera are

subject to change due to the prevailing illumination (or illuminations). An example

of this phenomenon can be seen in Figure 1.1. In the unprocessed images in

this figure (from SFU dataset [Barnard et al., 2002c]), the Munsell colour chart

[Munsell, 1950] is captured under three di↵erent lights, from left to right: Philips

Ultralume fluorescent, Solux 4700 (which has a colour similar to daylight) and

Sylvania warm white fluorescent. We can see the white colour of the paper changes

under di↵erent illuminations. Also, some colours of the Munsell chart look more

similar depend on the light’s colour striking the chart.

(a) (b) (c)

Figure 1.1: The Munsell colour chart under: a) Philips Ultralume fluorescent,
b) Solux 4700 and c) Sylvania warm white fluorescent lights. The charts are
printed on white papers but here we see that di↵erent lights make the white
paper appears yellowish, bluish and pinkish. Colours of the chart also look
di↵erent under di↵erent illuminants. This is an example of how illuminant can

a↵ect the colours of a scene captured by the camera.

1
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Unlike the human visual system, which has a relatively constant perception of

colours, an imaging device initially lacks such a capability. In analogy to how

we see, we would like digital cameras to be colour constant. In other words, we

seek to develop computational approaches to recover the actual colour of surface

objects which for instance in the case of Figure 1.1 are the colours of Munsell chart.

Often colour constancy is posed as rerendering an image so white looks right and

this is called white balancing in photography. The first step to white balancing

is estimating the colour of illuminant. The estimate of colour is ‘divided’ out

and if the estimate is correct a white surface should look white. Apart from the

goal of creating images pleasant to the human eye with colours looking as natural

as possible, colour constancy is essential for many computer vision applications

such as image retrieval, colour reproduction and object recognition [Gevers and

Smeulders, 1999; Abdel-Hakim and Farag, 2006; Slater and Healey, 1996; Van

De Sande et al., 2010].

Over the years a variety of algorithms have been proposed to estimate the illu-

minant (We will review many of these algorithms in Chapter 2). A key concern

of this thesis is how to evaluate which - of the many - illumination estimation

algorithms works best.

The most popular way to evaluate the performance of a given algorithm for a

given scene is to calculate the angle between the two RGB vectors of true illumi-

nant of the scene and the one estimated by the algorithm[Finlayson et al., 1995].

This metric is generally known as angular error (In this thesis, it is called recovery

angular error.). The error is usually calculated for a set of images from a bench-

mark dataset and eventually a summary of statistics (such as mean or median)

is reported which decides the rank of an algorithm in comparison to other algo-

rithms. Given the diversity of the existing illuminant estimation algorithms and

the importance of removing the colour bias due to the illumination for many vision

tasks, it is essential to know whether or not we can rely on the error reported by

the used metric as well as the way the error data is analysed. Some work [Hordley
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and Finlayson, 2006; Gijsenij et al., 2009a] have also highlighted the importance

of choice of error metric and the analysis of error data.

1.1 About This Thesis

The recovery angular error metric for illuminant estimation is problematic because

it does not reflect how illuminant estimation algorithms are used. In practice the

estimated light is divided out from the image. So, we propose, it is more useful to

focus on how the reproduced image appears. This thesis addresses the problems

with the existing workflow of evaluation which includes measuring the accuracy of

the estimated illuminants and not their resulting reproduction. Further, this thesis

also examines the other drawback of evaluation workflow that an aggregate of the

error data can not quite reveal the relationship between the errors introduced by

algorithms for individual images.

The major contributions of this thesis include:

• A part of this thesis is dedicated to studying the accuracy of the widely used

angular error. We examine the angular error - or as we call it in this thesis

recovery angular error - to derive its maximum value for a given scene. We

show that for a given scene and a given illuminant estimation algorithm,

there are specific lights that result in the maximum and minimum recovery

angular errors. This analysis is based on both a set of theoretical feasible

lights and a set of real lights. In both cases, we show that the range of

recovery angular error could be very large for a given algorithm and a given

scene.

• To mitigate this problem, we propose a new angular error which we call

“Reproduction Angular Error”. The reproduction angular error mea-

sures the angle between the estimated reproduced white and ‘true’ white.
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We show the stability of reproduction angular error against changes in the

illumination.

• We study how reproduction angular error might change our judgement about

the relative performance of illuminant estimation algorithms. Di↵erent sta-

tistical tests are performed to analyse this question. We also investigate

the correlation between the two metrics: recovery and reproduction angular

errors.

• The reproduction of white is at the heart of reproduction angular error. We

generalise this idea and develop a novel framework to evaluate the accuracy

of a range of reproduced colours.

• Some prior work [Gijsenij et al., 2009a; Banic and Loncaric, 2015; Vazquez-

Corral et al., 2009] evaluate the performance of illuminant estimation algo-

rithms psychophysically. In this work also a psychophysics experiment is

conducted to study the correlation of perceptual judgements and recovery

or reproduction angular error.

• As mentioned before, a summarised evaluation of an illuminant estimation

algorithm’s performance is often reported in the form of an aggregate (such

as mean, median, etc.) over the whole benchmark dataset. However, the

relationship of these summary statistics across di↵erent methods is unclear.

The final part of this thesis investigates the relationship between the per-

formance of several algorithms and motivated by this relationship a hybrid

strategy for finding images which are commonly hard for many illuminant

estimation algorithms is proposed.
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1.1.1 Thesis Outline

The Outline of the thesis is as follows: In Chapter 2 we will review a selection of

illuminant estimation algorithms. The evaluation techniques for illuminant estima-

tion algorithms will be discussed in Chapter 3. Chapter 4 discusses a problem with

the well-known metric of illuminant estimation, recovery angular error. Specifi-

cally that for the same scene illuminated under many lights - which when the

estimated light is divided out produces the scene reproduction - results in a very

large range of recovery angular error. A new metric, Reproduction Angular Error,

is introduced and its theoretical foundation is explored. Reproduction angular er-

ror is very stable for a given algorithm and the scene viewed under multiple lights.

Chapter 5 discusses the ranking of illuminant estimation algorithms in terms of re-

covery and reproduction angular errors. We show that the ranking of algorithms

depends on the metric used. Using di↵erent statistical tests the significance of

switches between the ranking of algorithms using the two metrics is discussed in

this chapter. Also, the correlation of the two metrics is investigated in the same

chapter. An evaluation framework based on other reproduced colours rather than

only the reproduced white surface is performed in Chapter 6. In Chapter 7, a

psychophysical experiment is carried out to investigate the choice of metric and

image preference. Reproduction angular error accounts for observers’ preference.

In Chapter 8, a hybrid strategy for detecting commonly hard images for multi-

ple illuminant estimation algorithm is proposed. The final chapter, Chapter 9,

concludes the work in this thesis and shows the future avenues.



Chapter 2

Background: Image Formation &

Illuminant Estimation

2.1 Introduction

To discuss illuminant estimation it is essential to understand the foundation of im-

age formation in digital cameras. We start this chapter by giving the background

on colour image formation in Section 2.2. The rest of this chapter is organised

as follows: In Section 2.3, we discuss how the illuminant estimation problem is

formulated. In Section 2.4, the illuminant estimation algorithms based on statis-

tical information and methods are reviewed. In Section 2.5, an overview of gamut

mapping methods for colour constancy is given. Learning-based methods are dis-

cussed in Section 2.6. In Section 2.7, the works that have used a combination

of illuminant estimation algorithms or have optimised the results of one or more

algorithms are introduced. The last section will conclude the chapter.

6
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2.2 Colour Image Formation

The colour signal (e.g. [Wandell, 1987]) received by human eye is the product

of spectral power distribution (SPD) of the ambient light and surface spectral

reflectance of the object. This process is pictured in Figure 2.1. The colour signal

(Cx(�n)) in a small region of the image is defined as:

Cx(�n) = E(�n)S
x(�n), (2.1)

where E(�n) is the SPD of the ambient light and Sx(�n) is the surface reflectance

at point x, both at sample wavelength �n.

Figure 2.1: Colour signal received by the human eye (or a camera’s sensor)
from a small region of the surface.

An image captured by a digital camera (or seen by the eye) is a result of the sensor’s

(or human vision system’s) response to this colour signal. In human visual system

(illustrated in Figure 2.2), cone cells (indicated in red, green and blue colours in

Figure 2.2) are the photoreceptor cells in the retina of the eye which are sensitive

to light and are responsible for colour vision. The sensitivity of the cones is limited

to a part of the electromagnetic spectrum (approx. 400-700 nanometres (nm)).

There are three types of cone cells: S (short), M (medium) and L (long) for their

relative spectral positions of their peak sensitivities. Figure 2.3 shows the spectral
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sensitivities of the human cone cells, S, M and L . The camera sensor sensitivity

range could vary and cover more than the limited range of the human visual

system, but it is ultimately filtered to capture the colour signal within the same

range. An example of camera sensitivity functions is shown in Figure 2.4.

Figure 2.2: A close-up of the retinal cell layers. The cone cells are responsible
for colour vision (illustration is taken from [Kolb, 2012]).

Figure 2.3: Spectral sensitivities of S, M and L cones (plotted from the data
by [Stockman and Sharpe, 2000]).
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Figure 2.4: Spectral sensitivity functions of Canon 300D camera (measured
by [Jiang et al., 2013]).

Following the model of colour signal Eq. 2.1, the model of image formation is

written as:

⇢xk =

Z

!

Rk(�)C
x(�)d� k 2 {R,G,B}, (2.2)

where Rk(�) is the response function of the camera’s kth sensor and the integral is

over the visible spectrum !. ⇢xk is the response of camera’s kth sensor to the colour

signal at location x of sensor array. The sensitivity of the sensors in most digital

cameras are concentrated in the Red (long), Green (medium) and Blue (short)

parts of the visible spectrum of light. Therefore, k is denoted as R, G or B in

(Eq. 2.2). Further, using the underscore notation to denote vector quantities we

rewrite Eq. 2.2 as:
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⇢ =

Z

!

R(�)C(�)d� (2.3)

This model of image formation, despite the restrictions it imposes (e.g. surfaces

are considered to be perfect Lambertian di↵user [Lee, 1986; Shafer, 1985]), is often

used when discussing illuminant estimation. Making the role of light and surface

explicit Eq. 2.2 and Eq. 2.3:

⇢E,S
k =

Z

!

Rk(�)E(�)S(�)d� k 2 {R,G,B}. (2.4)

Here ⇢E,S
k is similar to ⇢xk in Eq. 2.2, except we have dropped the x since there is

a one-to-one relation between the scene point and colour signal. Then ⇢Sk is the

surface colour which is observed under a reference light.

2.2.1 Discrete model of Image Formation and the Finite

Basis Functions

The colour image integral (Eq. 2.4) can be written as a summation:

⇢ =
nX

i=1

E(�i)S(�i)R(�i)�� (2.5)

where �� accounts for the sampling interval (and is often set at 10nm).

For further simplification, the spectral power distribution functions and surface

spectral reflectance functions might be written as linear combinations of basis

functions.

S(�) ⇡
dSX

i=1

Si(�)si, (2.6)
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where Si(�) is the basis function and s is a vector of weights of dS dimension.

Similarly, illuminants can be modelled with a low dimension basis functions:

E(�) ⇡
dEX

j=1

Ej(�)ej (2.7)

where Ej(�) is the basis function and e is a vector of weights of dE dimensions.

The basis functions are decided by performing principal component analysis (PCA)

on reflectances and illuminants [Maloney, 1986].

Following the finite basis models of the reflectance and illumination (Eq. 2.6 and

Eq. 2.7), the image formation in Eq. 2.5 can be rewritten as a matrix transform.

A lighting matrix ⇤(E(�)) maps reflectances defined by s onto the corresponding

sensor responses ⇢ (colour observation by the sensors):

⇢ = ⇤(E(�))s (2.8)

where, ⇤(E(�)) is a 3⇥ dS matrix:

⇤(E(�))ij =

Z

!

Ri(�)E(�)Sj(�)d� (2.9)

If E(�) is written as Eq. 2.7, then the lighting matrix is dependant only on the

illuminant weighting vector e.

In the next section, we will show how the colour constancy problem is formulated

considering that only the colour observation by camera sensors (or ⇢E,S in Eq. 2.4)

is known.
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2.3 Illuminant Estimation

The aim of colour constancy is to derive an illuminant-independent colour obser-

vation (⇢S). Therefore, the task of colour constancy is formulated as:

⇢S =  (⇢E,S) (2.10)

where ⇢E,S is a colour observation dependant on the surface reflectance and il-

lumination. ⇢S is the colour of a surface under a reference (or canonical) light

(e.g. [Forsyth, 1990] or [Maloney and Wandell, 1986]). The symbol  in Eq. 2.10

represents a transform function which maps all the colours of the formed image to

the colours under reference lighting condition.

Forsyth [Forsyth, 1990] formally proved that the problem of colour constancy

is exactly solvable if and only if the transformation in Eq. 2.10 is a 3 ⇥ 3 linear

transform. So the problem summarises in solving for the nine parameters of matrix

M :

⇢S ⇡ M⇢E,S. (2.11)

Following Forsyth’s formulation of illuminant estimation, in [Finlayson et al.,

1994a] the authors demonstrate that a diagonal matrix transform su�ces as a

vehicle for illuminant estimation so long as the image RGBs are in a special basis.

Specifically:

T⇢S ⇡ D⇢E,S, (2.12)

where T is a fixed per camera 3⇥ 3 matrix.
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Actually T for many cameras is simply the identity matrix and so can be re-

moved [Barnard and Funt, 2002]. Henceforth, we simply assume:

⇢S ⇡ D⇢E,S. (2.13)

This simple formulation of image formation is useful in simplifying the illuminant

estimation problem. Suppose that ⇢W denotes the colour of a white surface (under

a white reference light). Further, let’s assume that ⇢W = [1 1 1]. The colour of

the same white surface under a second illuminant E is ⇢W,E = [d1 d2 d3]t and:

⇢W ⇡ D⇢W,E. (2.14)

Clearly D is a diagonal matrix with components [1/d1 1/d2 1/d3]. Remarkably,

this D also models the physics of image formation for arbitrary surfaces (Eq. 2.13

holds).

In abstract form illuminant estimation can be posed equivalently as i) Finding an

estimate of the illuminant colour [d1 d2 d3]t or ii)finding the diagonal matrix D

or iii) (In the gamut mapping formulation [Forsyth, 1990]) finding the diagonal

matrix D�1.

From Eq. 2.13 and assuming an illuminant estimation algorithm provides a rea-

sonable estimate of the illuminant colour ([d1 d2 d3]t) - which we divide as ⇢Est

- then we solve for ⇢S, the colour of a surface under a reference illuminant, by

dividing out:

⇢S ⇡
⇢E,S

⇢Est
, (2.15)

where the division of the vectors is component-wise. Equation (2.15) is simply

a rewriting of Eq. 2.13. Figure 2.5 shows an example of illuminant estimation.
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This is an image of an entrance to a handicraft shop in Ganjali Khan Complex in

Kerman, Iran, captured by Canon EOS 100D camera. In Figure 2.5, the top image

is the raw output by the camera with no corrections except for the gamma 1 (for

display). In the image in the bottom, the colour of the illuminant for the raw image

is estimated using a simple white balance algorithm (shades of grey [Finlayson and

Trezzi, 2004]). Then the RGB of the estimated light is divided out from the raw

image. Notice the white (19th) patch of the colour checker which is corrected (it

looks whiter) in the bottom image after the image is white balanced.

Forsyth [Forsyth, 1990] proposes colour constancy and illuminant estimation date

back to 1878 when Von Kries’s theory of chromatic adaptation [von Kries, 1878]

was established and Judd [Judd, 1940] and later Land and MacCann [Land and

McCann, 1971] associated colour constancy with it. Viewed as an algorithm,

Von Kries is based on the coe�cient rule [von Kries, 1878; West and Brill, 1982;

Worthey and Brill, 1986]. Here the gain of each colour channel is adjusted inde-

pendently to obtain the surface colour. Since then a variety of algorithms have

been proposed to achieve a constant colour captured by an imaging device as it

is observed by the human visual system. Some of the important surveys review-

ing and evaluating illuminant estimation algorithms are [Barnard et al., 2002a],

[Hordley, 2006], [Agarwal et al., 2006] and [Gijsenij et al., 2011].

Gijsenij et al. [Gijsenij et al., 2011] divide the state of art algorithms into three

categories: 1) statistical methods, 2) gamut-based methods, and 3) learning-based

methods. The following sections provide an overview of many illuminant estima-

tion algorithms. We follow the same categorisation by Gijsenij et al. [Gijsenij

et al., 2011] with an extension of a fourth category which is the combinational

and optimisation methods for illumination estimation. Although as Gijsenij et al.

1Gamma correction (also known as gamma encoding or compression) is the process of applying
a power function (usually 1/2) to the raw pixel values. Gamma correction is usually done in
digital image processing to imitate the non linear human perception of luminance. Read more
in [Plataniotis and Venetsanopoulos, 2013]
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white balanced

Figure 2.5: An entrance to a handicraft shop in Ganjali Khan Complex (Ker-
man, Iran), captured by Canon EOS 100D. An example of applying white bal-
ance to an image: The image in the top is the raw (unprocessed) camera output
and the image in the bottom is white balanced by the shades of grey [Finlayson

and Trezzi, 2004] algorithm.
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mention, this categorisation is not absolute and some algorithms (like gamut-based

techniques) might fall in more than one category.

2.4 Statistic-based Illuminant Estimation Algo-

rithms

In this section we review the illuminant estimation methods based on the statistics

of an image. These methods range from low-level statistics to high-level statistics

and from pixel-based estimation to estimations based on the derivatives of an

image.

2.4.1 MaxRGB

Incorporated in the early Retinex theory [Land et al., 1977], it is argued that the

perceived white is associated with the maximum cone signals of the human visual

system. Based on this hypothesis MaxRGB or White Patch algorithm assumes

there is a white surface (or bright red, green and blue surfaces) in the scene

that reflects the maximum brightness, which then the illuminant colour can be

recovered. MaxRGB algorithm can be formulated as:

max
x

⇢x = k⇢Est. (2.16)

The variable k represents the fact that the exact magnitude of light can never be

recovered and the maximum value of all pixels in the image is calculated separately

for each R, G and B channel:

max
x

⇢x =
⇣
max

x
R(x),max

x
G(x),max

x
B(x)

⌘
. (2.17)
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The MaxRGB algorithm does not require the maximum of the three separate

channels to be on the same location; hence, it also obtains correct estimated

illuminant when the maximum reflectance is equal for the three channels [Van

De Weijer et al., 2007a].

The MaxRGB algorithm imposes the restriction of estimating illuminant based on

only the brightest pixel per channel in the scene. If the brightest response in an

image - in all three channels - is from a yellow surface the MaxRGB algorithm

will, wrongly, infer the light colour is yellow. Other researchers have proposed

preprocessing steps which can improve the results of MaxRGB significantly. For

instance, Ebner [Ebner, 2009] uses a local mean calculation as a preprocessing

step or in [Funt and Shi, 2010] it is shown that capturing the full dynamic range

of a scene and removal of clipped pixels (using a median filter and sub-sampling

the image by bicubic interpolation as preprocessing steps) will improve the per-

formance of MaxRGB algorithm. Joze et al. [Joze et al., 2012] extend MaxRGB

hypothesis by not only considering the brightest pixel of the scene but the gamut

of bright pixels and try to study the e↵ect of bright pixels on MaxRGB and other

colour constancy algorithms.

2.4.2 Grey-world

Grey-world algorithm is one of the simplest illuminant estimation algorithms and

it is based on grey-world hypothesis [Buchsbaum, 1980] which states that the

average reflectance in a well colour balanced scene under neutral light is grey.

This means any deviation from grey is due to illumination. According to the

grey-world assumption, the illumination prevailing the scene can be estimated by

calculating the mean sensor response:

Z
⇢(x)dx ⇡ k⇢Est (2.18)
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Again, k is unknown and represents the fact that the true magnitude of light can

not be recovered.

It is clear that the grey-world hypothesis does not hold for the scenes with a

single dominant reflectance. There are alternatives to overcome the flaw of the

grey-world algorithm, such as taking preprocessing steps prior to applying the

algorithm. An example of such preprocessing steps is segmenting the image and

averaging over the segments e.g. counting the colour of each segment [Gershon

et al., 1987] - regardless of its spatial extent - which may improve the results.

2.4.3 Shades of Grey

Finlayson and Trezzi [Finlayson and Trezzi, 2004] made the interesting observa-

tion, that both grey-world and MaxRGB algorithms are instances of Minkowski

norms. They call the group of algorithms shades of grey. Shades of grey extends

the idea of grey-world algorithm by assuming that the average is calculated as a

Minkowski norm. The Minkowski norm framework is written as:

✓Z
⇢p(x)dx

◆1/p

= k⇢Est

p
. (2.19)

Notice that substituting p = 1 equates Eq. 2.19 to the grey-world algorithm and

with p ! 1 Eq. 2.19 finds the maximum value per channel of ⇢ (which is the

MaxRGB algorithm). Further by tuning the value p, one can achieve the best

possible result for a given set of images. Often p = 4 ,5, or 6 seems to work best

i.e. the best method is a compromise between MaxRGB and grey-world.

2.4.4 Grey-edge

Van de Weijer et al.’s [Van De Weijer et al., 2007a] grey-edge hypothesis is pro-

posed as an alternative to the grey-world hypothesis and it states: the average of
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the reflectance di↵erences in a scene is achromatic. The grey-edge framework is

written as:

✓Z
|
�n⇢(x)

�xn
|pdx

◆1/p

= k⇢Est

n,p,�
. (2.20)

The image can be smoothed with a Gaussian averaging filter with the standard

deviation of � pixels and then is di↵erentiated with an order n di↵erential operator.

We then take the absolute Minkowski p-norm average over the whole image.

There three important variables (n, p , �) in the grey-edge framework (Eq. 2.20):

• The spatial derivative order n which determines if the method is a grey-world

algorithm or a grey-edge algorithm. If n = 0 it means that the calculation

is carried out directly on RGB values and therefore it is the grey-world

method. Whereas, grey-edge method is based on the higher orders of spatial

derivatives n. Usually, the highest order of n is considered to be two.

• The Minkowski norm p which determines the relative contribution of the

image values or di↵erentiated values.

• The smoothing parameter � of the applied filter. For zero-order grey-world

algorithm, the Gaussian filter with the smoothing parameter � can be ap-

plied. For grey-edge algorithms, applying the filter is followed by a di↵eren-

tiation operation.

Further, Gijsenij et al. observed that di↵erent types of edges might contain various

amounts of information such as shadow, geometry, material, etc. As a result they

proposed weighted grey-edge algorithm [Gijsenij et al., 2009b, 2012] which assigned

higher weights to specific types of edges. The weighting scheme - which leads to

modest improvements in estimation performance - introduces a higher level of

complexity.
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In an attempt to further generalise Van de Weijer et al.’s work, Chakrabarti et al.

[Chakrabarti et al., 2008, 2012] employed an explicit statistical model to capture

the spatial dependencies between the pixels. This method takes a training step

where a statistical model is learned from the cropped overlapping patches from an

image observed under canonical illuminant. The model is then applied to a set

of test images. Generally speaking, the idea is to suppress the smooth portion of

data and keep the spatial high frequency components in the image.

Further, Cheng et al. [Cheng et al., 2014] investigate through multiple experiments

why the spatial domain methods actually work. They observe that large colour

di↵erences which introduce higher gradient in an image are the key to the better

(yet sometimes still false) results for illuminant estimation. On the other hand,

by cutting the image into pieces and shu✏ing the pieces they find that relying on

the content of an image to provide the colour di↵erences is not the best way for

illuminant estimation. Since, just shu✏ing the pieces and introducing artificial

gradients resulted in lower errors for spatial-based methods.

2.5 Gamut Mapping Illuminant Estimation

One of the most powerful approaches to illuminant estimation is Gamut mapping

algorithm which was first introduced by Forsyth [Forsyth, 1990]. The core idea

of gamut mapping algorithm is that the set of feasible colours under a reference

canonical illuminant is bounded by a convex canonical gamut C. The canonical

gamut is obtained by observing as many colours as possible under a canonical

illuminant (known light source) during a training phase. The gamut of the un-

known light source is assumed to be represented by the colours of the input image.

Therefore, the input gamut I is constructed from all the colours of the input im-

age. Forsyth’s algorithm follows the diagonal model of illumination change (Eq.

2.14) and solves for all the feasible mappings D from the gamut of input image

(I) to the canonical gamut (C):
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Figure 2.6: General overview of gamut mapping algorithms.

DiI 2 C. (2.21)

The feasible mappings D are all the mappings that can be applied to the gamut of

input image I and result in a gamut that completely locates inside the canonical

gamut C. Ultimately, it chooses one mapping (the one which maximises the volume

of the gamut) from all the diagonal maps as a proxy for the estimated illuminant,

i.e. it applies the chosen mapping to the image gamut to obtain an estimate of

the illuminant for the input image. The general framework of gamut mapping

algorithm is pictured in Figure 2.6.

A drawback of the gamut mapping method proposed by Forsyth is that if the

diagonal model fails (there are no maps that are feasible) the algorithm results in

a null-solution. A solution to this problem is proposed by extending the size of

the canonical gamut to find a feasible mapping [Finlayson, 1996; Barnard et al.,

2002a].

Di↵erent publications have suggested di↵erent modifications to the method. For

instance Finlayson [Finlayson, 1996] suggests computing gamut mapping in chro-

maticity space (R
B
, G
B
) to only recover the illuminant chromaticity and not its in-

tensity as it is impossible to do so. However during this transformation from 3D
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to 2D space we lose some information which impacts on the performance of this

version of gamut mapping. Nevertheless, other works [Finlayson and Hordley,

2000, 1999] have suggested to move back to 3D from 2D before selecting the best

possible mapping which improves the results.

Forsyth’s gamut mapping algorithm and most of its extended versions are based

on the pixel values. In an extension of gamut mapping algorithm, Gijsenij et al.

[Gijsenij et al., 2010] proposed using the derivative structure of the images. Gamut

mapping on derivatives can improve estimation performance.

2.6 Learning-based Illuminant Estimation

Some methods of illuminant estimation use a model that is learned based on a

training set of white-balanced images and then that model is used to estimate the

illuminant for new images. Of course on that basis, gamut mapping algorithms

can also be considered to be in this group but being very popular they are often

categorised separately. In this section some of the learning-based algorithms which

has gained more attention are reviewed.

2.6.1 Probabilistic Methods

In Bayesian colour constancy ([DZmura et al., 1995], [Brainard and Freeman,

1997], [Sapiro, 1999],[Rosenberg et al., 2003], [Gehler et al., 2008]) the variability

of reflectance and of illuminant is modelled as random variables, then the colour of

illuminant is estimated from the posterior distribution conditioned on the power of

light and surface reflectance in each channel. The formulation for Bayes Theorem

is:

P (A|B) =
P (B|A)P (A)

P (B)
(2.22)
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where P (A) is the probability of A or more specifically prior probability of A.

P (A|B) is the conditional probability of A after taking into account the new

piece of evidence B. Often referring to P (A|B) as a posterior priority. P (B|A)

is the likelihood of B happening given that A is true. In Bayesian illuminant

estimation, B is assumed to be the observed sensor responses, and A contains

parameters describing the illuminant, then P (A) is estimated with minimum cost

from P (A|B). To calculate the likelihood (P (B|A)) of the observed image data B

for a given illuminant A, a distribution for all reflectances is needed.

Colour by Correlation [Finlayson et al., 1997, 2001], another probabilistic method,

is considered to be a discrete implementation of the 2D gamut mapping with

more improvements. In Colour by Correlation the canonical gamut is replaced by

a correlation matrix which contains the probabilities of occurrence of a certain

coordinates in the rg chromaticity space (r = R/(R+G+B) and g = G/(R+G+

B), see Appendix B for the complete diagram). These are possible image colours.

In Figure 2.7 (a), the range of possible image colours (chromaticities) that can be

observed under each reference illuminant are characterised. Then, this information

is used to build a probability distribution (Figure 2.7 (b)) which gives the likelihood

of observing an image colour under each scene illuminant (in simple words, what is

the likelihood of observing an image colour under a given light?).The probability

distributions for each light form the columns of a correlation matrix (Figure 2.7

(c)). Given an input image and the calculated correlation matrix: first, it is

determined which image colours (chromaticities) are present in the image. For this

step again the histogram of chromaticities in the image is calculated (see Figure 2.7

(a)). Then, this histogram (vector of values) is correlated with each column of the

correlation matrix in Figure 2.7 (c) to obtain a probability of every considered

light source. The unknown illuminant can be estimated from this measure of

correlation. Ultimately, one light source can be selected as the scene illuminant

by the maximum likelihood of these probabilities [Finlayson et al., 2001] or using

Kullback-Leibler divergence [Rosenberg et al., 2001].



Chapter 2. Background: Image Formation & Illuminant Estimation 24

Figure 2.7: Colour by correlation algorithm: The steps in building a correla-
tion matrix (a): Characterising which image colours (chromaticites) are possible
under each reference illuminant. (b) Build a probability distribution for each
light. (c) The distributions are encoded in the columns of the matrix. (image

from [Finlayson et al., 2001]).

2.6.2 Machine learning techniques

Early research using machine learning for solving colour constancy problem used

neural networks to estimate the colour of illuminant [Funt et al., 1996; Cardei et al.,

2002]. Here the rg chromaticity diagram (like the one in Figure 2.7) is partitioned

into several bins and the inputs to the neural network are binary values indicating

the presence of a pixel in the image falling in the corresponding bin. The trained

network will then be able to estimate the chromaticity of the illuminant of an

input image. Complementary approaches apply support vector regression [Funt

and Xiong, 2004] or linear regression techniques [Agarwal et al., 2007] to the same

type of input data.

With the emergence of deep learning more developed versions of neural networks
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(e.g. [Bianco et al., 2015; Barron, 2015; lou]) have been proposed. The most re-

cent and successful of all these methods is Convolutional Colour Constancy (CCC)

method by [Barron, 2015] which treats colour constancy as a discriminative learn-

ing problem, i.e. instead of training a generative model based on high likelihoods

to white-balanced images he trains a model to distinguish between white-balanced

images and non-white-balanced images. Barron transforms the pixel’s RGB values

into a log-chromaninace space [Berwick and Lee, 1998; Hubel et al., 2007]. Where,

if I is the input image, the uv log-chrominance values of the image are defined as

Iu = log(Ig/Ir) and Iv = log(Ig/Ib). He makes the interesting observation that

scaling the colour channels of an image (generating a tinted version of the image)

induces a translation in the log-chromaticity histogram of that image. This is pic-

tured in Figure 2.8. In this figure, di↵erent tinted versions of the same image and

their log-chrominance histograms (with their axis be horizontal = u and vertical

= v) are shown. Changing the illuminant can result in a simple translation of the

log-chromaticity histogram (see second row of Figure 2.8). In Figure 2.8 the log-

chromaticity histogram of the middle image (labeled as true image) is the correct

white-balanced image. So, the algorithm would hopefully be able to discriminate

between this and the wrong tinted ones. Following this observation, Barron frames

the colour constancy problem as a discriminative learning problem and using tools

such as convolutional neural network the algorithm learns to localise a histogram

in this 2D space (to read more please refer to [Barron, 2015]). Barron’s method

shows significant improvement over the state of the art methods.

Other learning-based approaches include: Exemplar-based [Joze and Drew, 2012],

predicting chromaticity from luminance [Chakrabarti, 2015], colour constancy by

classification [Oh and Kim, 2017], a real-time neural system designed for colour

constancy [Moore et al., 1991], another method using neural network [Funt et al.,

1997], etc.

Recent attempts in solving colour constancy using machine learning techniques

have shown encouraging results. However, using machine learning as a solution to
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Figure 2.8: Log-chrominance histogram of di↵erent tinted versions of an im-
age. Barron makes the interesting observation that scaling the colour channels
of an image (generating a tinted version of the image) induces a translation in
the log-chromaticity histogram of that image. This observation enables taking
the convolutional approach to colour correction, in which the algorithm learns
to localise a histogram in this 2D space (image taken from [Barron, 2015] ).

illuminant estimation one always has to take into consideration the heavy compu-

tational burden it imposes. Also success of such techniques is very much dependant

on the diversity of the training data, i.e. the more examples seen by the method

the more accurate will be the estimated illuminant for an input image.

2.7 A Selection or Combination of Algorithms

Di↵erent Illuminant estimation algorithms can be combined to obtain good esti-

mate of illuminant (e.g. [Cardei and Funt, 1999; Finlayson, 2013; Schaefer et al.,

2005]).

In the committee-based method of [Cardei and Funt, 1999] it is shown that a

weighted average of illuminant estimates of three algorithms outperforms the indi-

vidual methods. In the following, [Cardei and Funt, 1999] calculates the weighted

average of the rg chromaticity estimates by three algorithms (A simple neural
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network approach (NN) [Funt et al., 1996], grey-world method (GW) and white

patch or MaxRGB (WP)):

[rNN gNN rGW gGW rWP gWP ] · CT
2⇥6 = [rC gC ], (2.23)

where C2⇥6 is the weighted average matrix which is optimised in a least squares

sense in the training step. Or, a non-linear combination (via a neural network

based model) of the estimates can be found.

Finlayson [Finlayson, 2013] proposed the corrected-moment illuminant estimation

algorithm. This work proposes a scheme to correct the results of moment-based

algorithms, i.e. di↵erent instantiations of Minkowski framework (see Eq. 2.19)

and grey-edge (see Eq. 2.20). The corrected-moment approach di↵ers from the

committee-based method in that it is not combining the results from two or more

illuminant estimation algorithms. Rather, it corrects the estimated illuminants of

m moments (such as 2nd or higher moments) including the cross colour channel

terms:

[⇢̂Est]t = ⇢t
m
Cm⇥3, (2.24)

where ⇢t
m
is a row vector compromising of m moments:

[E(R2)
0.5

E(G2)
0.5

E(B2)
0.5

... E(RG)0.5 E(RB)0.5 E(GB)0.5], (2.25)

and Cm⇥3 denotes a m ⇥ 3 regression matrix. The matrix C is learned through

a training phase based on a set of known illuminant and their estimates. Unlike

committee-based colour constancy, corrected-moment performs on the R, G and

B estimates of the illuminant rather than the rg chromaticity values. A signifi-

cant advantage of the corrected-moment method over the committee-based colour
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constancy is that it is exposure invariance, i.e. as the image data scales - e.g.

due to a change of exposure or light brightness - so do the moments (that is if

⇢t
m

! ↵⇢t
m

then the estimated illuminant is ↵⇢̂Est). However, to find the best

Cm⇥3 requires an iterative minimization where compensation for exposure is part

of the formulation (details can be found in [Finlayson, 2013]). Corrected-moment

algorithm while simple to use has a good performance compared to the state of

the art methods.

Instead of combining the output of multiple algorithms into a more accurate esti-

mate, the best algorithm can be selected based on the characteristic of an image.

For instance, in [Gijsenij and Gevers, 2011] the intrinsic properties of natural im-

ages are used to select the most appropriate colour constancy method for every

input image. Characteristics of natural images in terms of texture and contrast

are captured using the Weibull parameterisation which captures the distribution of

image derivatives. The Weibull statistics index the algorithm that should be used.

Others [Bianco et al., 2010; Bianco and Schettini, 2014; Wu et al., 2010; Cheng

et al., 2015c] have proposed using features other than Weibull parameterisation to

select an algorithm for illuminant estimation.

In [Bianco et al., 2008] the selection (or combination) of the best algorithms or

tuning of the algorithm is based on whether an image belongs to an indoor or

outdoor scene. Further, Lu et al. [Lu et al., 2009] uses 3D geometry models to

determine which colour constancy method to use for di↵erent geometrical regions

found in images. In another approach [Van De Weijer et al., 2007b] use of high

level visual information (semantic content) of an image is proposed as a clue for

selection of the best illuminant estimation algorithm for each content.
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2.8 Conclusion

Illuminant estimation is important as a preprocessing step for many computer vi-

sion tasks as well as being one of the major steps in camera pipeline to create colour

images free of any casts created by colour of light.There are variety of algorithms

proposed to solve the illuminant estimation. In this chapter we reviewed several

algorithms which take di↵erent approaches to illuminant estimation, from simple

statistics to more complicated techniques. We categorised them in four groups: 1)

statistical-based algorithms, 2) gamut mapping algorithms, 3) learning-based algo-

rithms and 4) selection of combination of algorithms. However, this categorisation

is not abstract and some algorithms might fall in multiple groups.

The next chapter, will discuss di↵erent methods of evaluation of illuminant esti-

mation algorithms as well as the existing bench-mark datasets in colour constancy.



Chapter 3

Background: Evaluation of

Illuminant Estimation Algorithms

3.1 Introduction

Given the large body of illuminant estimation algorithms, it is important to agree

on a framework for the evaluation and comparison of the performance of these

algorithms. Figure 3.1 shows the common workflow usually followed for evaluating

the performance of an illuminant estimation algorithm.

Most of the literature in colour constancy provide a relative comparison of the new

proposed method with the state of the art algorithms using a summary of errors

over a set of images form a benchmark dataset. Some work [Hordley and Finlayson,

2006; Gijsenij et al., 2009a] has both investigated the importance of choosing

a proper error metric for evaluating the performance of illuminant estimation

algorithms and also how the discovered errors should be analysed.

This chapter starts with an overview of the most popular benchmark datasets

used in colour constancy research (Section 3.2). In Section 3.3, di↵erent metrics

used for evaluation of the performance of illuminant estimation algorithms are

30
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Figure 3.1: General framework of performance evaluation of illuminant esti-
mation algorithms.

presented. The way the error data is often reported in the literature is discussed

in Section 3.4. The psychophysics experiments for acquiring the observers’ point

of view are introduced in Section 3.5. Also, since the new proposed methods are

always compared against the existing methods in Section 3.6 di↵erent statistical

tests performed to rank the algorithms within an acceptable significant di↵erence

are reviewed. Section 3.7 concludes the chapter.

3.2 Benchmark datasets

A benchmark dataset for colour constancy usually includes a number of images

captured under a variety of lighting conditions such as indoor and outdoor situ-

ations. Any benchmark dataset also provides the ground-truth illuminant colour

for every image. Generally, the colour of the light is defined to be the RGB of a

physical white or achromatic surface placed in a scene. Often the Macbeth colour

checker [xri] (a standard reference chart with 24 colours is used). In [Ciurea and

Funt, 2003] a grey ball is placed in every scene.
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Commonly used evaluation datasets include:

• Synthetic dataset: Barnard et al. [Barnard et al., 2002a] provide a large

corpus of 287 illuminant and 1995 surface reflectance spectra. Random selec-

tions of surfaces for a given light are numerically integrated to make RGBs.

These RGBs in turn can be used as the input to illumination estimation

algorithms. The advantage of the synthetic test method is that the data is

‘clean’. There is no image noise and the world is perfectly Lambertian.

• Hyperspectral dataset: There are a few measured hypersectral data sets

(e.g. Foster et al.’s dataset [Foster et al., 2006; Nascimento et al., 2002]).

Here again numerical integration can be used to form RGB images. An

advantage of this dataset is that the researcher explicitly knows the spectral

sensitivity of the camera under investigation.

• SFU (Simon Fraser University) dataset: This dataset [Barnard et al.,

2002c] consists of di↵erent scenes captured using Sony DXC-930 3CCD cam-

era under 11 di↵erent lights in laboratory environment. The light sources

include three fluorescent lights (Sylvania warm white, Sylvania cool white,

and Philips Ultralume), four di↵erent incandescent lights, and these four

used in conjunction with a blue filter (Roscolux 3202). The spectrum of one

of the incandescent sources (Sylvania 50MR16Q) is very similar to a regular

incandescent lamp. The other three have spectra which are similar to day-

light of three di↵erent color temperatures (Solux 3500K, Solux 4100K, Solux

4700K). When used in conjunction with the blue filter, these bulbs provide

a reasonable coverage of the range of outdoor illumination. The dataset is

captured under 11 lights. There are 321 images in total. There are 21 scenes

which are mainly Lambertian and 10 more that contain specular objects.

The correct illuminant RGB for this dataset is measured by placing a white

tile in each scene and finding the average RGB response for the tile. The

SFU images are linear (natural camera raw).
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• Greyball (videoframes) dataset:Ciurea and Funt [Ciurea and Funt, 2003]

placed a grey sphere within the field of the view of a digital camera and

produced a dataset consisting of 11000 frames of video. The grey ball is

used as a reference for calculating the groundtruth illuminant colour. Using

a grey sphere instead of the standard grey card facilitates measurement of

the variation in illumination as a function of incident angle. The greyball

images are rendered (post-the camera processing pipeline).

• Barcelona dataset: The Barcelona dataset [Vazquez-Corral et al., 2009] is

made using a Sigma Foveon D10 camera which is a DSLR camera. The major

di↵erence between this dataset and others is by calibrating the camera they

manage to recover the values for each pixel in CIE1931 XYZ coordinates.

• Gehler dataset: Perhaps the first dataset for colour constancy with typical

photography images was provided by [Gehler et al., 2008]. It contains 568

images of a variety of indoor and outdoor shots taken around Cambridge,

England by two DSLR cameras (Canon 1D with 86 images and Canon 5D

with 482 images) with all settings in auto mode. The reference for calculating

the ground-truth illuminant colour is a Macbeth colour-checker chart [xri]

located in every scene. The last six neutral patches of the colour-checker

often count as a clue for the ground-truth illuminant. However, when ap-

plying a colour constancy algorithm on the images the colour-checker needs

to be occluded to create a real photographic situation. For this purpose the

coordinates of the colour-checker is given with the dataset. Shi-Gehler [Shi

and Funt, 2010] is a linear raw 12-bit Portable Network Graphics (PNG)

version of Gehler dataset. In raw spaces all the images have a cyan tint.

Later, Lynch et al. [Lynch et al., 2013] updated the dataset by re-rendering

the raw images and allowing DCRAW 1 to apply a D65 Colour Correction

1An open-source computer program which is able to read numerous raw image formats [Co�n,
2008]
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matrix to all images. As a result the strong Cyan tint on the images is

removed but the data is still linear.

• NUS (National University of Singapore) dataset: A recent dataset

for colour constancy resembling real-life images is NUS (National University

of Singapore) [Cheng et al., 2014]. This dataset is made using eight di↵erent

cameras each captured around 217 images in average. The ground-truth

illuminant colour is recovered using the same method as [Gehler et al., 2008]

(the neutral patches Macbeth colour-checker). Again, the linear raw data is

provided using DCRAW for research purposes.

• HDR images: The high dynamic dataset by SFU [Funt and Shi, 2010]

consists of 105 scenes captured by Nikon D700 digital still camera. Each

scene is captured up to nine exposures and the raw 16-bit Portable Network

Graphics (PNG) format (lossless compression) images are created from the

NEF data using DCRAW. After aligning the base images the hdr images

were created using matlab built-in function makehdr. Every scene is cap-

tured twice, once with four GretagMacbeth mini Colorcheckers positioned

at di↵erent angles with respect to one another and once without them.

Figure 3.2 shows a couple of examples of benchmark datasets mentioned in

this section.

3.3 Evaluation metrics

Di↵erent research [Barnard et al., 2002a,b; Hordley and Finlayson, 2004, 2006;

Funt et al., 1998; Li et al., 2011] have studied the relative performance of illumi-

nant estimation algorithms and explored the existing problems in the evaluation

techniques.
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Figure 3.2: Example of di↵erent datasets: row 1- Synthesised hyperspectral
dataset [Foster et al., 2006]. row 2- SFU dataset [Barnard et al., 2002c]. row
3- Greyball dataset [Ciurea and Funt, 2003]. row 4- Shi-Gehler dataset [Gehler
et al., 2008; Shi and Funt, 2010]. row 5- NUS dataset [Cheng et al., 2014].
row 6- HDR dataset [Funt and Shi, 2010] (with and without the mini colour

checker).
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When a new illuminant estimation algorithm is proposed apart from the white-

balanced images represented in the literature, a great part of evaluation is done

by reporting the average error of the algorithm over a benchmark dataset. As

discussed before in Section 3.2, the datasets vary from real images of di↵erent

types to synthetic images. Barnard et al. [Barnard et al., 2002a,b] suggest

an empirical framework in which algorithms are tested on sets of synthetic and

real test data. In [Hordley and Finlayson, 2006] it is shown that the empirical

framework and the choice of error metric has a significant e↵ect on the judgment

of algorithms.

3.3.1 Euclidean distance

The Euclidean distance between the chromaticity vectors (r = R/(R+G+B), g =

G/(R +G+B)) is calculated as:

errEuc(c
E, cEst) =

q
(cEr � cEst

r )2 + (cEg � cEst
g )2, (3.1)

where (cEr , c
E
g ) and (cEst

r , cEst
g ) are chromaticity coordinates of true and estimated

illuminant respectively.

Some [Gijsenij et al., 2009a] have considered calculating the Euclidean distance

with taking into account the third chromaticity vector, i.e. b = B/(R +G+B):

errEuc(c
E, cEst) =

q
(cEr � cEst

r )2 + (cEg � cEst
g )2 + (cEb � cEst

b )2. (3.2)

Finally, the weighted Euclidean distance or perceptual Euclidean distance (PED)

is introduced by [Gijsenij et al., 2009a] which associates weights to di↵erent colour

channels:
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PED(cE, cEst) =
q

wR(cEr � cEst
r )2 + wG(cEg � cEst

g )2 + wB(cEb � cEst
b )2, (3.3)

where wR + wG + wB = 1. The associated weights are based on the property of

human vision system which states a deviation in one colour channel might have a

stronger e↵ect on the perceived di↵erence between two images than a deviation in

another channel.

3.3.2 Brunswick Ratio

The Brunswick Ratio [Leibowitz, 1956] also known as colour constancy index CCI

[Arend et al., 1991] is often used to measure perceptual colour constancy [Delahunt

and Brainard, 2004] and is defined as follows:

r =
||D � S||
||P � S|| , (3.4)

where D denotes the estimated light source , P a white reference light, S the true

(measured) light source (in a human vision referenced chromaticity space), and

||x� y|| the distance between x and y in a chromaticity space. Usually during the

evaluation di↵erent colour spaces can be used to compute the absolute di↵erence

between the lights. The index value is typically between zero and one.

3.3.3 Recovery Angular Error

The angular error is the most popular metric used for evaluating the performance

of illuminant estimation algorithms and it is calculated [Finlayson et al., 1995] as:
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errrecovery = cos�1(
(⇢E · ⇢Est)

k⇢Ekk⇢Estk), (3.5)

where ⇢E denotes the RGB of the actual measured light, ⇢Est denotes the RGB

estimated by an illuminant estimation algorithm and ‘.’ denotes the vector dot

product. Throughout this thesis the traditional angular error is called recovery

angular error.

The recovery angular error is widely used for evaluating the illuminant estima-

tion algorithms. However, recovery angular error (as well as Euclidean distance)

assesses only the accuracy of the estimated illuminant colour and not the qual-

ity of reproduced images. That this is a problem is illustrated in Figure 3.3.

The first row in Figure 3.3 (a) shows three images from SFU dataset [Barnard

et al., 2002c] of the same scene captured under three di↵erent illuminants (from

left to right: Philips Ultralume fluorescent, Sylvania warm white fluorescent and

Solux- 4700K+blue filter). The second row shows same images with their colours

corrected using the estimate by grey-world algorithm [Buchsbaum, 1980]. The

recovery angular error of grey-world algorithm for the three images can be see

in Figure 3.3 (b). Although recovery angular error provides a reasonable predic-

tion of the error of illuminant estimation for the three images, the range of error

from 5.5� to 9� is relatively high. Just a change in the colour of illuminant results

in a 3.5 degrees decrease in angular error for the same algorithm. Naturally while

evaluating an algorithm such a change in the error will have a significant a↵ect on

our judgment about the algorithm.

Of course it needs to be mentioned that changes in the illuminant are only due to

the exposure variances when they follow the simplest model of illuminant changes.

But in reality there could be many other changes in light, such as a shift in the

colour values [Van De Sande et al., 2010].
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(a)

(b)

Figure 3.3: An example of similar colour corrected images with varying re-
covery angular error. (a) First row: images of the same scene captured under
chromatic illuminants (from SFU Lab dataset [Barnard et al., 2002c]). Second
row: Corrected images using grey-world algorithm [Buchsbaum, 1980]. (b) The

Recovery angular errors.

An error measure for illuminant estimation algorithms needs to be ideally simple

to calculate, correlates with the human perception of colour reproduction and not

to be very sensitive to changes in the colour of illuminant. Angular error is a

simple error measure which according to [Gijsenij et al., 2009a] correlates with

human perception of the performance quality of illuminant estimation algorithms

more than other error measures. However, as it was shown in Figure 3.3, as

much as it does a reasonable evaluation of the algorithm’s performance, just a
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change in the colour of light due to the exposure variance results in a relatively

wide range of errors. An improvement to the recovery angular error is one of

the main contributions in this thesis (chapter 3 and 4). The new error measure

is less e↵ected by changes in the colour of light due to exposure. Whether the

proposed error measure is robust towards other changes in the illuminant (apart

from exposure changes) could be an avenue for future research.

3.4 Aggregate Error Values

It is common when comparing algorithms’ performance to look at the “average”

performance of the tested methods over a set of images [Hordley and Finlayson,

2006]. It is shown that the average performance in the form of mean or root mean

square - e.g. of the recovery angular error - do not give an accurate summary of the

underlying distribution of error data. Since the distribution of error data could be

skewed and mean value of data could result in poor analysis, it is argued [Hordley

and Finlayson, 2006; Gijsenij et al., 2009a] that the median and trimean are more

appropriate measures for summarising the data. The trimean of a distribution is

defined as the weighted average of the first, second, and third quantile (25%, 50%

[median] and 75%) errors. Recently, researchers have also presented a wider range

of statistics, e.g. worst 25% and best 25% errors [Cheng et al., 2014].

Whether summarising results in the form of an aggregate over the whole dataset

or analysing the distribution of data using a box plot, the relationship of these

statistics across di↵erent methods is unclear. It is also interesting to analyse the

performance of algorithms on individual images and whether there are algorithms

that commonly fail for certain outlier images. A part of this thesis (Chapter 8)

proposes a framework which enables us to detect hard images in colour constancy

(as these images are not well represented in the summary statistics).
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3.5 Perceptual analysis

3.5.1 Just Noticeable Di↵erence

Regarding the noticeable error by human observers in colour-corrected images,

Funt et al. [Funt et al., 1998] state that the minimum root mean squared Euclidean

error of the estimated chromaticity for accurate colour-based object recognition

is 0.04. In terms of angular error, a deviation of 1� with respect to the ground

truth was found to be not noticeable, while an angular error of 3� was found

noticeable but acceptable [Finlayson et al., 2005; Fredembach and Finlayson, 2008].

Further, Hordley [Hordley, 2006] derives that an angular error of 2� represents good

enough color constancy for complex images. Also, another important outcome of

experiment by Gijsenij et al. [Gijsenij et al., 2009a] is to indicate whether an

observer is sensitive to the di↵erence between the reproduction results of two

illuminant estimation algorithm. They concluded that the di↵erence in terms of

angular error between two methods A and B should be at least 0.06 ⇥ errmax to

be noticeable, where errmax = max(errA, errB). This means that for instance if

method A has an angular error of 10�, then an improvement of at least 0.6� is

necessary; otherwise the improvement will not be visible to a human observer.

They state that this finding is in line with the values for the Weber fraction

found in visual perception [Cornsweet, 1970]. Although this JND (Just Noticeable

Di↵erence) is based on their experiments on the hyperspectral data and might vary

depending on the scene content. Later, it is suggested by [Banic and Loncaric,

2015] that if the angular error is more than one, instead the natural logarithm of

the angular error be used (their suggestion is based on the Weber’s law [Thurstone,

1927] the just noticeable di↵erence increases linearly with the absolute error).
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3.5.2 Perceptual Distances

In [Gijsenij et al., 2009a, 2008], Gijsenij et al. proposed a perceptual distance for

colour constancy. First, they convert the RGB values of the colour of ground-

truth and estimated illuminants to a human vision colour space such as CIElab

(See Appendix A). After which, they compare the two illuminants. However,

the conversion between RGB to CIElab requires a few assumptions such as the

reference white point. In [Gijsenij et al., 2009a, 2008] the error measurements

and experiments are designed for the reference white point of D65 and the sRGB

colour profile [Commission et al., 1999].

In the same study [Gijsenij et al., 2009a], Gijsenij et al. also conducted a psy-

chophysics study to reveal the correlation between the human perception of white

balanced images and many distance measures including recovery angular error.

In their experiment, the observers were shown four images at once. Two identical

images at the top which are the reference images white balanced by the ground-

truth illuminant and two images at the bottom which are corrected using the

estimates of two di↵erent illuminant estimation algorithms. The observers are

then asked which of the reproduced images in the bottom row they prefer. They

compare five illuminant estimation algorithms on a set of images and score them

based on observers’ preferences. The results are then compared with di↵erent

distance measures.

Regarding recovery angular error, they concluded that the correlation between this

metric and the perception of the human observer is reasonably high. However, for

some images the correlation is very low. In a closer analysis, they find that for

these images the observers judge the results of white balance to be much worse

than indicated by the recovery angular error (meaning that human observers do

not agree with the angular error.).
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Another research proposing perceptual-based performance measurement of colour

constancy algorithm is [Vazquez-Corral et al., 2009]. Vazques et al. [Vazquez-

Corral et al., 2009] follow more or less the same pair-wise comparison method as

in [Gijsenij et al., 2009a], except in their experiment the observers are shown two

images and are asked to choose the “most natural” one. Their experiment only

involves three illuminant estimation algorithms; Grey-world, Shades of Grey and

Maxname [Vazquez-Corral et al., 2009]. Vazques et al. study results in defining a

new measure of an algorithm’s accuracy which is the angle between the perceived

white point of a scene and the estimated illuminant. The perceived white point

has to be measured from the chosen colour-corrected images of the scene during

their proposed psychophysical experiment.

3.6 Ranking and comparison of algorithms

Ultimately, we wish to develop a way to conclude that one algorithm is better

than the other. However, Hordley and Finlayson [Hordley and Finlayson, 2006]

noted that a single summary statistic - such as the mean - does not adequately

summarise the underlying distribution and further the fact that one algorithm has

a lower mean value than another does not necessarily indicate that one algorithm

is better than the other. Hordley and Finlayson [Hordley and Finlayson, 2006]

rank algorithms according to statistical significance. They hypothesise that one

algorithm is better than another and then test this hypothesis using appropriate

statistical tools and the error distributions of each algorithm over a large set of

sample images. Since the error distributions are not well described by standard

statistical distributions (e.g. a normal distribution) non-parametric tests which

are independent of the underlying distribution are more suitable for this purpose.

• Wilcoxon Signed-Ranks test: Suppose one wish to compare the relative

performance of two algorithms in terms of their median angular error. Let
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A and B be random variables representing the error in algorithm A and B’s

estimate of the scene illuminant. The Wilcoxon Sign Test[Conover, 1999]

can be used to test the hypothesis that the random variables A and B are

such that p = P (A > B) = 0.5. In other words the hypothesis says that

algorithm A and B have the same median:

H0 : p = 0.5, the medians of the two distributions are the same

An alternative hypothesis can also be defined as:

H1 : p < 0.5, algorithm A has a lower median than algorithm B.

For independent pairs (A1, B1) . . . (AN , BN) of errors for N di↵erent

images, W is denoted as the number of images for which Ai > Bi. When H0

is true, any particular observed value ofW belongs to a sampling distribution

whose mean is equal to zero (i.e. p = 0.5). We then compare W against

its critical value ! (from the Wilcoxon Signed-Ranks Table) for N samples

at ↵ significance level (e.g. ↵ = 0.05). If W > !, we can’t reject the null

hypothesis (i.e. P (W > !) � 0.05) and so it is concluded that the medians of

the two errors are the same. If P (W  !) < ↵ we reject the null hypothesis

H0 and accept the alternative hypothesis H1 at the significance level ↵.

The value of ↵ determines the probability with which the null hypothesis is

rejected when it is in fact true. So, for example if ↵ = 0.05 and the calculated

probability is 0.04 then the null hypothesis is rejected at the 0.05 significance

level. In this case we will be correct in rejecting the null hypothesis 95% of

the time. To be more sure that we are correct the significance level can be

decreased.

When N > 30 the Wilcoxon Signed-Ranks statistic follows the z distribution

(standard normal distribution). Then W is used to calculate the z score:

z =
W � N(N+1)

4q
N(N+1)(2N+1)

24

, (3.6)
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We then find the area above z if z is positive or beyond z if it is negative

(using a table of areas under the normal distribution curve). This value

shows the probability of occurrence of W (that if it is very likely to happen,

the null hypothesis will be accepted). For instance, if the area above the

calculated z is 0.0099, the value of W is likely to occur by chance with a

probability of 0.0099.

Using Wilcoxon Sign Test it is implicitly assumed that the median is a good

summary statistic for the distributions.

Introducing a new algorithm or applying a di↵erent error metric might change the

ranking of algorithms for a bechmark dataset. To study whether the change in

the ranking of algorithm is significant or not, Kendall’s test can be performed.

• Kendall’s test: Kendall test [Sprent and Smeeton, 2007; Conover, 1999].

A change in the ranking of a selection of illuminant estimation algorithms

can be considered as a permutation problem. Kendall test is a method

to compare two permutations and it correlates to the number of exchanges

needed in a bubble sort to convert one permutation to the other [Fagin et al.,

2003].

The Kendall’s test statistic T can give us a measure of correlation between

pairs of ranks. A pair of unique observations (x1, y1) and (x2, y2) are said

to be discordant if the ranks of the two elements (x1, x2) and (y1, y2) do not

agree, otherwise the pair are concordant. T is defined as:

T = C �D, (3.7)

where C is the number of concordant pairs andD is the number of discordant

pairs. If y1 = y2 while x1 6= x2 we call it a tie. In the case of a tie the pair is
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counted as 1/2 concordant and 1/2 discordant, although as it is obvious by

Eq. 3.7 this makes no di↵erence in our final Kendall’s T value.

To study the discordance in ranking of the algorithms, the Lower-Tailed

Kendall’s Test [Conover, 1999] is performed which is defined as follows:

Lower-Tailed Test

H0 : X and Y are independent.

H1 : Pairs of data tend to be discordant.

Reject null hypothesis (H0) at ↵% confidence level if T is less than its quantile

at this confidence level in the null distribution. The T quantile at di↵erent

confidence levels for n  60 can be looked up in table of the quantiles for

the Kendall’s test in [Conover, 1999]. ⇤

3.7 Conclusions

Considering the diversity of illuminant estimation algorithms, it is important to

agree on a common workflow for measuring the accuracy of algorithms and analyse

the error data to compare the algorithms on a selection of images. In this chapter

we reviewed metrics and workflows commonly used for evaluating the performance

of illuminant estimation algorithms. The most popular way of measuring the error

for an algorithm is to calculate the angle between the RGB vectors of the true and

estimated illuminant. However, with an example in Section 3.3.3 we briefly showed

how the angular error, or as it is called in this thesis “recovery angular error”, has

a weakness. Specifically that when the same image reproduction is produced that

di↵erent error is calculated.



Chapter 4

Reproduction Angular Error

The angle between the RGBs of the measured and estimated illuminant colours

- the recovery angular error - has been widely used to evaluate the performance

of illuminant estimation algorithms. However, this metric is not in line with how

illuminant estimates are used. Normally, illuminant estimates are ‘divided out’

from the image to, hopefully, provide image colours that are not confounded by

the colour of the light. However, even though the same reproduction results, the

same scene might have a large range of recovery errors. In this chapter, the scale

of the problem with the recovery error is quantified. Further, a new metric for

evaluating the performance of illuminant estimation algorithms; ‘Reproduction

Angular Error’; [Finlayson and Zakizadeh, 2014; Finlayson et al., 2016] is intro-

duced which is more in line with the application of the estimated illuminants. We

will demonstrate that the new metric shows much more stability towards changes

in the colour of illuminant compared to the recovery angular error.

47
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4.1 Introduction

To measure the performance of an illuminant estimation algorithm, usually the

RGB of the estimated light is compared with the RGB of a ground-truth measured

illuminant by calculating the angle between the two vectors. This metric is known

as angular error, or as we call it in this thesis recovery angular error. As mentioned

before in Section 3.3.3, the recovery angular error is the most common metric

used to quantify illuminant estimation error [Hordley and Finlayson, 2006; Gijsenij

et al., 2009a]. Although this metric has been previously introduced in Section 3.3.3,

its definition is repeated below (since it will be referred to very often in this

chapter):

errrecovery = cos�1(
(⇢E · ⇢Est)

k⇢Ekk⇢Estk), (4.1)

where ⇢E denotes the RGB of the actual measured light, ⇢Est denotes the RGB

estimated by an illuminant estimation algorithm and ‘.’ denotes the vector dot

product. The final error for an illuminant estimation algorithm reported, is usu-

ally an average error (e.g. mean, median, quantiles) over the whole dataset. The

algorithms are ranked according to their reported errors. Gijsenij et al. [Gijsenij

et al., 2011] have done a comprehensive study of several illuminant estimation al-

gorithms and have provided the ranking for these algorithms for many benchmark

datasets.

In this chapter, we show that recovery angular error has a fundamental weakness.

Further, we introduce a new metric for evaluating the performance of illuminant

estimation algorithms and we discuss its stability over the changes in illumination.

The organisation of this chapter is as follows: Section 4.2 discusses the problem

with the recovery angular error. In Section 4.3, the new metric for evaluating the

performance of illuminant estimation algorithms, which we call Reproduction

Angular Error, is introduced. This chapter is concluded in Section 4.4.
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4.2 The Problem with Recovery Angular Error

According to the diagonal model of illuminant change (see Eq. 2.13), changes

in the colour of light can be simulated by multiplying the R, G and B values of

the light. Interestingly, it can be noticed that the colours of an image are also

corrected following the same principle, i.e. they are divided by the colour of the

estimated illuminant to almost look as if they have been captured under the white

reference illuminant (U = [1 1 1]t). Following this observation, imagine an object

in the exact same environment being captured under di↵erent colours of light.

Now if a simple algorithm like grey-world [Buchsbaum, 1980] which estimates the

illuminant by averaging the colours of the scene is used, we are expecting the

same colour-corrected images by the algorithm regardless of the colour of light.

Although other factors such as specularity (which are often ignored while address-

ing the colour constancy problem) might a↵ect the performance of an illuminant

estimation algorithm, colour of the light (when it is the only changing element)

is not expected to have a significant a↵ect on the algorithm’s performance. The

question is whether recovery angular error is robust enough against the changes

in the colour of light. If it can provide a reasonable range of error for the same

algorithm and the same scene when only the colour of light is changing from one

image to another.

Figure 4.1, which was previously shown in Section 3.3, is a good demonstration of

this problem. In Figure 4.1, the weakness of recovery angular error in evaluating

the performance of an algorithm is illustrated. In the top row of Figure 4.1, three

images of the same scene from the SFU Lab dataset [Barnard et al., 2002c] are

shown, which were captured under di↵erent chromatic illuminations (From left

to right: solux-4700K+blue filter, Sylvania warm white fluorescent and Philips

Ultralume fluorescent). The RGB colour of the illuminant for each scene is then

estimated using the simple grey-world algorithm [Buchsbaum, 1980] and then we

divide the R, G and B values at each pixel of the image by this estimate to remove
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(a)

(b)

Figure 4.1: An example of similar colour corrected images with varying re-
covery angular error. (a) First row: images of the same scene captured under
chromatic illuminants (from SFU Lab dataset [Barnard et al., 2002c]). Second
row: Corrected images using grey-world algorithm [Buchsbaum, 1980]. (b) The

Recovery angular error.

the colour bias due to illumination. The results of ‘dividing out’ are shown in the

second row of the same figure. Notice that the reproduced images look better as

the colours of the objects are not biased by the illuminant colour. In this case

the grey-world algorithm has delivered good illuminant estimation equally for the

three images. In part (b) of Figure 4.1 we plot the recovery angular errors for the

given algorithm. Even though the output reproductions are similar the recovery

errors are quite di↵erent. The recovery errors range from 5.5 to 9.5 degrees. This
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can be very misleading and the performance of the algorithm (in this case the

grey-wrold algorithm) might be interpreted wrongly.

Figure 4.2: An example of similar colour-corrected images with varying recov-
ery angular error. First row: hyperspectral images [Foster et al., 2006] rendered
in sRGB under three lights of di↵erent temperature. Second row: the images
are white balanced using the shades of grey algorithm in hyperspectral space
before converting to sRGB (The recovery angular error can be seen on each

image).

Another example of the di↵erent range of recovery angular errors for a similar scene

and algorithm can be seen in Figure 4.2. The images in the top row of Figure 4.2

are the captured data from a hyperspectral camera [Foster et al., 2006] rendered

under three lights with di↵erent spectra, from left to right: 4000�k, 6500�k and

25000�k illuminants. To display the images, first CIE 1931 colour matching func-

tions [Wyszecki and Stiles, 1982b] are used to get the X, Y, Z values at each pixel

and then the X, Y, Z values are converted to their corresponding RGB colour

representation in sRGB (IEC61966 � 2 � 1). The light with a temperature of

6500�k is similar to daylight and falls in the central white point of the CIE 1931

chromaticity diagram (see Appendix B). Moving away from 6500�k light results in

colourfull lights like the bluish light with the temperature of 25000�k or the yel-

lowish light with the temperature of 4000�k. In the second row of the figure, the
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white-balanced images by shades of grey algorithm [Finlayson and Trezzi, 2004]

(p = 2) are shown, along with the recovery angular error of the algorithm for each

image. It can be seen in the second row of Figure 4.2 that the images reproduced

by dividing out the estimates of light made by shade of grey algorithm are exactly

the same. However, this observation is not supported by the error values reported

by recovery angular error.

With the synthetic images we have control over the factors involved in the image

formation. To bypass the e↵ects of XYZ to RGB conversion as well as the CIE

1931 colour matching functions, we performed the shades of grey algorithm and

calculated the recovery angular errors in hyperspectral space before any conver-

sions. In other words, the illuminant estimation is done on the radiance data

which is the product of the scene reflectances and the illuminant spectra. This

enables us to study the e↵ect of the lights with di↵erent spectra on the range of

recovery error for a single algorithm. It can be seen in Figure 4.2 that di↵erent

lights result in di↵erent recovery angular errors for the same image and the same

algorithm.

4.2.1 The Range of Recovery Angular Error

In this section, we address the problem of the mismatch between the recovery

angular error and the reproduced images (as illustrated in Figure 4.1 (b) and

Figure 4.2). We calculate how large and small the mismatch between recovery

errors and images reproduced can be.

Recalling the diagonal model of illumination change [von Kries, 1902] (Eq. 2.13),

where the RGB response of a device to the same surface viewed under two di↵erent

lights are related by three factors of a diagonal matrix:
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and assuming that the illuminant estimate ⇢Est can be viewed as some statistical

moment of the RGB values of an image with N pixels (towards the end of this

thesis, moments refer to statistical moments such as average, maximum, etc. which

do not change by scaling the data, similar to those in Eq. 2.25 ):

⇢Est = moment(⇢E,S1 , ⇢E,S2 , ..., ⇢E,SN ) (4.3)

The estimated illuminant for the second light E 0 based on the first light E can be

written as:

diag (d) ⇤ ⇢Est = moment(⇢E
0,S1 , ⇢E

0,S2 , ..., ⇢E
0,SN ) (4.4)

We notice again that Eq. 4.4 teaches that if two lights are related by three scaling

factors d then the statistical moment estimates shift by the same scaling factor as

well. Equation 4.4 is true for most illuminant estimation algorithms including all

that can be written in the Minkowski-framework[Finlayson and Trezzi, 2004] (see

Eq. 2.19). Considering Eq. 4.2 and Eq. 4.4, we seek the illuminants that result

in the largest and the smallest recovery angular errors.

Theorem 1. Given a white reference light (the RGB of the light is U = [1 1 1]t)

and denoting the illumination estimate made by a ‘moment type’ illuminant esti-

mation algorithm as µ = [µr µg µb]t then the illuminant that maximises recovery
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angular error is an illuminant with 0 in exactly one of the either R, G or B chan-

nels.

Proof. From the diagonal model of illumination change (Eq. 4.2) and without the

loss of generality we assume that the reference illuminant is U (if it is not, we

can map the illuminant to U using 3 scaling factors). For a given scene under the

reference light, µ is a moment type illuminant estimate. Under a second light d

and remembering Eq. 4.3 and Eq. 4.4 we have the new illuminant estimate d ⇤ µ

and the recovery angular error (Eq. 4.1) can be written as:

errrecovery(d, d⇥ µ) = cos�1(
(↵2µr + �2µg + �2µb)p

↵2 + �2 + �2
p

(↵µr)2 + (�µg)2 + (�µb)2
) (4.5)

where d = [↵ � �]. Since in illuminant estimation we are only interested in the

orientation of d, let us set ↵ = 1. Assume we are given � and � and we would like

to know whether the error varies if � is fixed and we solve for the optimal �. We

now maximise Eq. 4.5 by minimising f(�) (If the cosine of an angle is minimised

the angle is maximised):

f(�) = (
(µr + �2µg + �2µb)p

1 + �2 + �2
p

(µr)2 + (�µg)2 + (�µb)2
). (4.6)

To find the stationary points of f(�), its derivative is computed:
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f is maximised when equating Eq. 4.7 to zero. � is the common factor in all

three fractions. Therefore, � = 0 and this is true for all � including the � that

maximises Eq. 4.6. ⇤

Similarly, Theorem 1 can be proved by fixing � in Eq. 4.5) and minimising f(�)

or setting � = 1 and minimising f(↵). We have proved that the light with the

maximum recovery angular error is the one with 0 in exactly one of the three R,

G or B channels.

Lemma 1.1. Assuming ↵ = 1 and � = 0, the recovery angular function has at

most three stationary values.

Proof. Since ↵ = 1 and � = 0, f(�) is written as:

f(�) =
(µr + �2µb)p

1 + �2
p
(µr)2 + (�µb)2

. (4.8)

f(�) is again the cosine of the angle we seek to maximise. The derivative of f(�)

is calculated as:
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Setting it to zero implies:

� = ±
p
µr/µb � = 0, (4.10)

When � = 0 the angle is a global minimum (0 degrees). We know that real lights

are all positive. So
p

µr/µb is the other solution to Eq. 4.9. We apply the standard

second derivative test:

@2f

@2�
=

�(µb � µr)
2

(�2 + 1)
5
2 ·(µb

2�2 + µr
2)

5
2

(4.11)

·
�
3µb

3�6 � 5µrµb
2�4 � 2µrµb

2�2 � 3µr
2µb�

2 � 2µr
3r2 + µr

3
�

Substituting � =
p

µr/µb :

@2f(
p

µr/µb)

@2�
= (µb � µr)

2.(4µ3
r + 2µ2

rµb + 2
µ3
r

µb

), (4.12)

which is a positive value, since µr > 0 and µb > 0. Therefore, f(�) Eq. 4.8 is a

local minimum at � =
p

µr/µb and this means cos�1(f(�)) at this point is a local

maximum. ⇤
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Alternatively setting ↵ = 0 and � = 0, the above argument can be repeated which

results in respectively � =
p

µb/µg and ↵ =
p

µg/µr. Thus there are three possible

local maximums, one of which is the global maximum. One might wonder if there

are six local maximums for Eq. 4.5 (i.e. while [1 0
p
µr/µb] is a local maximum,

[
p

µb/µr 0 1] might also be a possible local maximum). That is actually true.

Lemma 1.1 can be repeated by assuming � = 1 instead of ↵ = 1, which results in

↵ =
p

µb/µr. But we have to mention that they both result in the same output

once substituted in Eq. 4.5. The same applies for [0 1
p

µg/µb] and [0
p

µb/µg 1],

as well as [
p

µg/µr 1 0] and [1
p

µr/µg 0].

Theorem 1 and consequently Lemma 1.1 follow that lights with one wavelength

set to zero (e.g. [1 0
p

µr/µb]) result in maximum recovery angular errors for a

given illuminant estimation algorithm applied on a given scene. In other words,

Theorem 1 states lights which are cyan, purple and yellow maximise the recovery

angular error. Conversely, pure red, green and blue lights result in the lowest

angular error.

4.2.2 Maximum Recovery Angular Error for Real Lights

Theorem 1 suggests lights with 1 and 0 in two channels (e.g. [1 0
p
µr/µb])

result in the maximum recovery angular error. Nevertheless, we have to take into

consideration that the majority of lights do not satisfy this property. This raises

the question of whether we can revise Theorem 1 to cover more likely illuminants.

This leads us to Theorem 2. Given that real lights are bounded to a restricted

gamut area (such as the one in Figure 4.3), Theorem 2 answers this question: for a

given set of real lights can we solve for the maximum error light? In Figure 4.3 we

plot on a rg (r = R/(R+G+B) and G = G/(R+G+B)) chromaticity diagram,

the chromaticities of the lights from the SFU Lab dataset [Barnard et al., 2002c]

(where [r,g,1-r-g] defines the corresponding RGB of the light). Notice that the

range of lights is really quite restricted and is far from allowing either pure red,
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green and blue lights or pure cyan, magenta or yellow either. Our second theorem

teaches where local maxima should lie when lights lie in a bounded region of colour

space.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2
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Figure 4.3: 2D Gamut of SFU Lab dataset’s measured illuminants [Barnard
et al., 2002c].

Theorem 2. The maximum recovery angular error for a convex combination of a

set of measured lights, belongs to a light which falls on the border of the convex set.

Proof. According to Theorem 1, for a given image and a given illuminant es-

timation algorithm, there are (when there are no restrictions on the colour of

illuminant) three possible lights that result in local error maxima (one of which

induces the overall maximum error). Further, all three local maxima have one R,

G or B equal to 0. Let us assume now that for the restricted illuminant case -

lights must lie within a convex region - that the light that induces the maximum

error does not lie on the boundary of the convex set. As a consequence this light

must be a local maximum (as we move away from the light in any direction the

error must decrease). Further because this is an interior point of the set of illu-

minants all three components, R, G and B must be non-zero. It also follows that

this illuminant must also be a local maximum even when the constraint on where

the illuminant can lie is removed. By Theorem 1 this cannot be the case because

all local maxima for the unrestricted case have one component of the RGB vector
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equal to 0. We have a contradiction and so the maximum error for a constrained

convex set of lights must be on the boundary of the set. ⇤

Theorem 2 is important as it enables us to find the light resulting in the maximum

recovery error, belonging to a set of feasible lights, by searching the boundary of

the feasible set.

4.3 Reproduction Angular Error

Here we introduce a new metric for evaluating illuminant estimation algorithms.

We call our new error measure, which is an improvement over the conventional

recovery error, Reproduction Angular Error [Finlayson and Zakizadeh, 2014;

Finlayson et al., 2016]. We prove that, reproduction angular error by design gives

the same error for the scene reproduction where the di↵erence is only in the colour

of illumination prevailing the scene. Reproduction angular error is tied to the

application of illuminant estimation which is discarding the estimated illuminant

from the scene by dividing it out from the image. Further, by design it is as simple

to compute as the legacy recovery angular error.

4.3.1 Introducing Reproduction Angular Error

According to the RGB model of image formation (Eq. 2.4) in Chapter 1, the RGB

values in the image are scaled by the same three weighting factors as the illumina-

tion changes [Finlayson, 2013]. The reproduced image after colour correction, is

the image from which the estimated illuminant is ‘divided out’, so that the colour

bias due to illumination is removed. The colour bias is removed from the images

as follows:
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⇢E,S

⇢Est
⇡ ⇢S. (4.13)

where the division of the vectors is component-wise. Considering that the colour

of a white surface under a certain illuminant would represent the colour of the

illuminant, we rewrite Eq. 4.13 for the specific example of a white surface ⇢E,W ,

where its colour is similar to the colour of the light ⇢E (i.e. ⇢E,W = ⇢E):

⇢E,W

⇢Est
⇡ U =

⇢E,W

⇢E
, U = [1 1 1]t. (4.14)

The above equation states that the colour of a white surface will be recovered as

[1 1 1]t if we knew the ground-truth illuminant ⇢E. But in reality an illuminant

estimation algorithm, in the best-case scenario, will recover only an estimate (⇢Est)

close to ⇢E which will not give us the exact white ([1 1 1]t).

Remembering that we cannot recover the absolute brightness of the light, we define

the Reproduction Angular Error [Finlayson and Zakizadeh, 2014] - our new

metric for assessing illuminant estimation algorithms - as:

errreproduction = cos�1

 
(⇢E/⇢Est).U

|(⇢E/⇢Est)|
p
(3)

!
. (4.15)

In very simple words, reproduction angular error is the angle between true white

and estimated white (white surface under unknown light mapped to reference light

using an illuminant estimate.).
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4.3.2 Stability of Reproduction Angular Error

In the last section, Figures 4.1 and 4.2 showed that for the same scene and the same

illuminant estimation algorithms di↵erent recovery angular errors can occur as a

result of change in illumination. Here reproduction angular errors are calculated

for the same set of images in Figures 4.1 and 4.2.

(a)

(b)

Figure 4.4: An example of similar colour corrected images with varying re-
covery angular error. (a) First row: images of the same scene captured under
chromatic illuminants (from SFU Lab dataset [Barnard et al., 2002c]). Second
row: Corrected images using grey-world algorithm. (b) The Recovery angular
error (conventional metric, open circles) versus the Reproduction angular error

(proposed metric, filled circles).
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In Figure 4.4 (b), the recovery angular errors are shown with open circles and repro-

duction angular errors with filled circles. There is hardly any di↵erence observed

between the corrected images in the second row of Figure 4.4 (a). Reproduction

angular errors are very in line with this observation and are much more stable

than recovery angular errors.

Figure 4.5: An example of similar colour corrected images with varying recov-
ery angular error. First row: hyperspectral images [Foster et al., 2006] rendered
in sRGB under three light of di↵erent temperature. Second row: the images are
white balanced using the shades of grey algorithm in hyperspectral space before
converting to sRGB (The recovery and reproduction angular errors (bottom

errors) can be seen on each image).

In another example, in Figure 4.5, with the images rendered from hyperspectral

data where there are no camera sensor sensitivity functions a↵ecting the pixel

values (same as Figure 4.2 ), we can see that reproduction angular error (the

bottom errors on each image) is reporting the exact same errors for shades of grey

algorithm (with p = 2, see Eq. 2.19 for more details) applied on the radiance

images generated under three illuminants with di↵erent spectra. As mentioned

before, illuminant estimation and error calculation is performed in hyperspectral

space on the radiance values at each pixel which is the result of the product of

reflectance data and illuminant spectra at each pixel.
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Having seen the visual examples of stability of reproduction angular error in the

last two figures, here we state and prove the theory of stability of reproduction

angular error.

Theorem 3. Given a single scene viewed under two lights. The reproduction

error of the estimated light by a ‘moment type’ illuminant estimation algorithm is

the same.

Proof. For a chromatic light defined with d = [↵ � �]t [see Eq. 4.2], using the fact

presented in Eq. 4.4, the reproduction angular error (Eq. 4.15) can be written as:

errreproduction = cos�1
( ↵
↵µr

+ �
�µg

+ �
�µb

)
q

( ↵
↵µr

)2 + ( �
�µg

)2 + ( �
�µb

)2
p

(3)
. (4.16)

It can be seen easily in Eq. 4.16, that the scaling factors ↵, � and � cancel. The

reproduction error is stable regardless of the colour of the light. ⇤

In Figure 4.6 (a), the two purple curves are the cumulative probability distribution

functions of the analytical maximum recovery errors ([1 0
p

µr/µb], see Lemma

1.1) for the two algorithms: gray-world [Buchsbaum, 1980] (solid line) and pixel-

based gamut mapping [Gijsenij et al., 2010] (dashed line) algorithms for 321 images

of the SFU Lab dataset.

The blue curves represent the cumulative probability functions of the maximum

recovery angular errors for an example of the real lights (see Theorem 2.) (in this

case these lights are within the convex combination of the measured illuminants

of SFU Lab dataset [Barnard et al., 2002c]). The red curves in the same figure

are the actual recovery angular errors of the estimated illuminant using the gray-

world [Buchsbaum, 1980] (solid line) and pixel-based gamut mapping [Gijsenij

et al., 2010] (dashed line) algorithms applied on the SFU Lab dataset.
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Figure 4.6: (a) Cumulative probability distribution function of analytical max-
imum recovery angular errors (in magenta), maximum error of real lights within
the convex of SFU Lab dataset’s [Barnard et al., 2002c] measured illuminants (in
blue) and the recovery angular errors of the estimated lights of 321 SFU Lab im-
ages using the two algorithms (in red). (b) Cumulative probability distribution
function of maximum reproduction angular errors [Finlayson and Zakizadeh,

2014]

In terms of the maximum angular error Figure 4.6 (a) teaches that gray-world, in

the worst case, performs about the same as gamut mapping. This is a surprising

result as gamut mapping is a much more complex algorithm and is assumed to

perform better.

In Figure 4.6 (b) we show the reproduction angular error for gray-world and pixel-

based gamut mapping. This error is stable across illumination changes. Figure 4.6

(a) informs us - what we knew - that for all lights pixel-based gamut mapping

works better than gray-world.

We note that the worst case performance is not just a mathematical curiosity,

rather with the advent of LED lights it is possible to encounter lights that might

invoke the worst case performance of recovery angular error.
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4.3.3 The Reproduction Error for a non-diagonal illumi-

nant model

The e�cacy of a diagonal model of illuminant change is strongly related to the

spectral shape of the sensors. The more bandlimited, or narrow, the sensitivities

the more applicable the diagonal model. The majority of commercial photographic

cameras have narrow band sensors and, to our knowledge, the illuminant is dis-

counted by applying the diagonal model. However, there are exceptions such as

the Sigma range of sensors where their X3 sensing technology [Hubel, 2005] re-

sults in broad sensitivities. Thus, it is an interesting question to consider whether

reproduction angular error can be applied more widely.

First we note that even when a diagonal model of illuminant change does not hold

it can often be made to hold via a change in sensor basis. With respect to this new

sensor basis [Finlayson et al., 1994b; Chong et al., 2007] the reproduction error

can be used directly.

More generally, an illuminant estimate can be used to parametrize a 3⇥ 3 correc-

tion matrix [Maloney and Wandell, 1986]. For example, given finite dimensional

approximation of light and surfaces when given estimated RGB of light ⇢Est the

function M(⇢Est) returns a 3⇥ 3 matrix which maps image colors - where the il-

luminant is ⇢Est - to a reference [1 1 1] e.g. [Wandell, 1987]. That is we substitute

wEst = M(⇢Est)⇢E into Eq. 4.15. In fact we can be more general still. In [Forsyth,

1990], Forsyth introduces the function  (⇢; ⇢Est) the meaning of which is the RGB

⇢ mapped to a reference lighting condition using the light estimation ⇢Est. Adopt-

ing this idea we can substitute wEst =  (⇢E; ⇢Est) into Eq. 4.15 and so arrive at

even more general form of reproduction error.

Reproduction error is generalized to encompass more reflectances in [Finlayson

and Zakizadeh, 2015; Cheng et al., 2015b]. Importantly, [Finlayson and Zak-

izadeh, 2015] found that simple reproduction angular error could be used as a
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proxy for calculation based on many reflectances. Chapter 6 will discuss the work

in [Finlayson and Zakizadeh, 2015].

4.4 Conclusions

The most e�cient illuminant estimation algorithm is often chosen based on its

performance over a benchmark dataset. The performance of the algorithms is often

evaluated using recovery angular error or simply angular error. In this chapter,

this widely used metric is re-studied. We argue the conventional metric can report

a huge range of errors for the same scene and algorithm pair (where the di↵erence

is only in the lighting condition under which the images are captured). That is,

even though the images reproduced by dividing out the estimated illuminant using

the same algorithm look very much the same a large range of estimation errors

are reported. One of the contributions of this thesis is to solve for the range of

recovery angular error for a given illuminant estimation algorithm and a given

scene. We show that the maximum recovery angular error is for the cyan, yellow

and magenta lights. The minimum recovery error is close to 0 for pure red, green

and blue lights (all ‘moment-type’ algorithms can produce close to zero error for

these lights). Although the same image is reproduced when the illuminant colour

bias is removed, the angular recovery error can range from 0 to 40 degrees (or

more).

In this chapter, we proposed the Reproduction Angular Error as an improve-

ment over the recovery angular error. We prove that reproduction angular error is

not very dependent on the illumination colour which prevails the scene in the sense

that the same scene and algorithm pair will generate the same image reproduction

and so the same reproduction angular error. Indeed, the new reproduction angu-

lar error is defined as the angle between a true white surface and the estimated

reproduced white when an algorithm’s estimate is used
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After all, if we wish to recognise colourful content independent of the illuminant

colour (i.e. we first remove the colour bias due to illumination by dividing out the

illuminant colour [Funt et al., 1998]) then we need to adopt the new reproduction

angular error to measure the performance. More generally, if illuminant estimates

are used to discount colour casts - this is by far the main reason for estimating the

illumination - from images due to the prevailing illuminant colour (for recognition,

tracking or navigation) then the new metric should be used.

In the next chapter we re-evaluate a large selection of illuminant estimation al-

gorithms for most well-known benchmark datasets in colour constancy. We will

study the e↵ect of using reproduction angular error on the rank order of illumi-

nant estimation algorithms, as well as the way that they are used to give optimal

performance.



Chapter 5

Rank Study of Illuminant

Estimation Algorithms

In the last chapter, we showed that the traditional recovery angular error might

introduce a wide range of error for the same algorithm applied on the same scene

when only the colour of light is changing. We discussed that this instability of

recovery angular error might lead to misjudgement about the performance of an

illuminant estimation algorithm. Further, we introduced a new metric for evalu-

ation of illuminant estimation algorithms, ‘Reproduction Angular Error’. In this

chapter, reproduction angular error is used to re-evaluate [Finlayson et al., 2016;

Zakizadeh and Finlayson, 2015] most state of the art illuminant estimation al-

gorithms for well-known benchmark datasets (including Simon Fraser University

(SFU) [Barnard et al., 2002c], Gehler-Shi [Gehler et al., 2008; Shi and Funt, 2010],

National University of Singapore (NUS) [Cheng et al., 2014], Greyball [Ciurea

and Funt, 2003] datasets and a multispectral dataset by Foster et al. [Foster et al.,

2006] ). If there are algorithms for which the results are not provided in this

chapter that is because the error data per image was not provided for public use.

When evaluating the performance of illuminant estimation algorithms, researchers

are often interested in assigning a rank order to an algorithm. Of course the rank

68
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of an algorithm could be dependent on the scene content and the type of images for

which the error of the algorithm is calculated. In this chapter, we will also study

the e↵ect of using the new metric on the rank order of the algorithms for di↵erent

datasets. Whether two algorithms’ positions in the ranking table is decided based

on a slight or significant di↵erence in their performance is also of great importance.

Here this is examined using di↵erent non-parametrical statistical tests, which are

usually run on a summary of data or the individuals to study the relation of data

across di↵erent observations. Further, we analyse the e↵ect that reproduction

angular error has on choosing the optimal parameters for tunable algorithms. Also,

the correlation of the two metrics (reproduction and recovery angular errors) and

where it happens has also been studied.

The results of re-evaluation using reproduction angular error are available on the

colour constancy website 1.

1
http://colorconstancy.com/?page_id=703

http://colorconstancy.com/?page_id=703
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5.1 Introduction

When evaluating an illuminant estimation algorithm, often a set of images is

agreed on as a benchmark dataset, arguably the most well-known colour constancy

datasets are Simon Fraser University (SFU) Lab [Barnard et al., 2002c], Gehler-Shi

colour-checker [Shi and Funt, 2010], Greyball [Ciurea and Funt, 2003] datasets and

the recent National University of Singapore (NUS) [Cheng et al., 2014] dataset (see

Section 3.2 for a summary of colour constancy datasets). The RGB of the ground-

truth illuminant of each image is also provided with each dataset. Eventually, a

summary of the error data (such as mean, median or quantiles) is reported over

the whole dataset. As mentioned in Section 3.4 whether or not such aggregates

give an accurate summary of the underlying distribution of the error data is of

some debate and di↵erent researchers prefer some over the others.

When evaluating the performance of illuminant estimation algorithms, researchers

are also interested in analysing the performance of the algorithms in relation with

each other, i.e. assigning rank orders to the algorithms. Understanding whether

or not the algorithms in the ranking table are significantly di↵erent in terms of

their performance, requires utilising appropriate statistical tests (some of which

were introduced in Section 3.6).

Gijsenij et al. [Gijsenij et al., 2011] did a comprehensive evaluation of a great

selection of illuminant estimation algorithms using recovery angular error. The

evaluation is done for multiple benchmark datasets and the results are available

online. Where the algorithms need to be tuned to perform their best, the optimal

parameters for each algorithm are also reported. Over time, the evaluation results

of some of state of the art algorithms using recovery angular error for di↵erent

datasets are added to the website.

Here we re-evaluate most of these algorithms for the following datasets: SFU Lab

[Barnard et al., 2002c], Shi colour-checker [Shi and Funt, 2010], NUS [Cheng et al.,

http://colorconstancy.com/?page_id=703


Chapter 5. Rank Study of Illuminant Estimation Algorithms 71

2014] and Grey-ball [Ciurea and Funt, 2003] datasets as well as the hyperspectral

dataset by Foster et al. [Foster et al., 2006] . The e↵ect of using the new metric,

reproduction angular error on ranking the algorithms has also been studied in

this chapter. The two non-parametric statistical tests for studying the relation

of data across di↵erent observations (Kendall rank correlation test and Wilcoxon

signed-rank test [Conover, 1999; Sprent and Smeeton, 2007]) have been used to

analyse whether the changes in the ranking of algorithms have been significant

or not. Moreover, we show that using reproduction angular error, the algorithms

(where applicable) might be tuned di↵erently. Also, considering the long time

use of recovery angular error in colour constancy research, we need to study the

correlation between the two metrics, recovery and reproduction angular errors.

Here, we investigate this correlation for di↵erent sets of images.

The organisation of this chapter is as follows: In Section 5.2, the results of re-

evaluation of illuminant estimation algorithms for di↵erent benchmark datasets

using reproduction angular error are provided. Also the e↵ect of using the new

metric in choosing the optimal parameter for tunable algorithms are discussed in

the same section. In Section 5.3, the significance of rank switches of the algorithms

when evaluated by reproduction angular error is analysed using two statistical

tests: Kendall rank correlation and Wilcoxon signed-rank tests. In Section 5.4, we

investigate the correlation of reproduction and recovery angular errors for similar

and diverse scenes.

5.2 Re-evaluation of the Algorithms by Repro-

duction Angular Error on Several Benchmark

datasets

In this section, the results of evaluation of several illuminant estimation algorithms

for well-known benchmark datasets including SFU Lab, Shi colour-checker, NUS,
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Grey-ball datasets and the hyperspectral dataset by Foster et al. [Foster et al.,

2006] using Reproduction Angular Error are given. The results are reported

in the form of a summary of error data (e.g. median) along with the optimal

parameters for each algorithm (where applicable) concluded based on both repro-

duction and recovery angular errors . For each dataset, the results of at least one

statistical moment is presented here. In each table the recovery angular errors

are also provided for comparison. We will observe that some algorithms might

be ranked di↵erently if evaluated by reproduction angular error in comparison to

recovery angular error. We will also see that in some cases the optimal parame-

ters for tunable algorithms such as grey-edge or gamut mapping might be chosen

di↵erently when selected based on the errors reported by reproduction angular

error.

5.2.1 Simon Fraser University Dataset

The SFU dataset, introduced in Section 3.2, is linear and is useful to examine the

performance of illuminant estimation algorithms assuming raw capture. Indeed,

all images captured at the sensor level are linear. When these images are shown on

a display (without additional processing) they appear dark. This is because of the

inherent non-linearity of displays and because images are processed by a camera

pipeline to make visually appealing images. Using our new metric, reproduction

angular error, in this section we are presenting the results of our evaluation for

the SFU Lab [Barnard et al., 2002c].

Table 5.1 and 5.2 contain median and 95% quantile of the recovery and reproduc-

tion angular errors for the linear SFU Lab dataset [Barnard et al., 2002c].

For each of the four test scenarios (Recovery vs Angular error for the median and

95% quantile statistic) we also show the rank of the di↵erent algorithms. We re-

mark that it is possible for two algorithms, to the precision tested, to have the
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Table 5.1: Median Recovery and Reproduction errors for several colour con-
stancy algorithms applied on SFU dataset [Barnard et al., 2002c]. The ranks
for some algorithms have changed based on the two error calculations. There

are also changes in the optimal parameters.

Recovery error Reproduction Error

Method p � Median Rank p � Median Rank

Grey-world - - 7� 11 - - 7.5� 11

MaxRGB - - 6.5� 10 - - 7.4� 10

Shades of grey 7 - 3.7� 9 7 - 3.9� 8

1st order Grey-edge 7 4 3.2� 7 14 4 3.58� 6

2nd order Grey-edge 14 10 2.7� 4 15 10 3� 4

Pixel-based gamut - 4 2.26� 2 - 4 2.8� 3

Edge-based gamut - 2 2.27� 3 - 2 2.7� 2

Inter-based gamut - 4 2.1� 1 - 3 2.5� 1

Union-based gamut - 2 3� 5 - 2 3.4� 5

Heavy tailed-
based [Chakrabarti
et al., 2012]

- - 3.5� 8 - - 4.1� 9

Weighted grey-edge 2 1 3.1� 6 2 1 3.62� 7

Table 5.2: 95% quantile Recovery and Reproduction errors for several colour
constancy algorithms applied on SFU dataset [Barnard et al., 2002c].

Recovery error Reproduction Error

Method p � 95% Rank p � 95% Rank

Grey-world - - 30.3� 11 - - 28� 11

MaxRGB - - 27.2� 10 - - 27.2� 10

Shades of grey 4 - 18.7� 9 3 - 19� 8

1st order Grey-edge 2 1 14.3� 6 2 1 15.6� 6

2nd order Grey-edge 2 2 14.2� 5 2 2 15.1� 5

Pixel-based gamut - 6 9.8� 1 - 7 11.1� 1

Edge-based gamut - 2 12.6� 3 - 2 14.3� 4

Inter-based gamut - 6 9.8� 1 - 7 11.2� 2

Union-based gamut - 3 12.8� 4 - 3 13.2� 3

Heavy tailed-based - - 15.9� 7 - - 16.6� 7

Weighted grey-edge 2 1 18� 8 2 1 19.3� 9
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same performance (according to the median of 95% quantile) and so these algo-

rithms will have the same rank. In bold and underlined we highlight the algorithms

whose ranks change. Here we compare the performance measured according to the

same statistical measure but for the recovery vs reproduction angular error. These

highlighted rank changes also include the case where two algorithms have deliv-

ered the same performance for one error metric (and are assigned the same rank)

but di↵erent for the other metric; in this case pixel-based and intersection-based

gamut mapping algorithms in Table 5.2. Later, in Section 5.4, the significance of

changes in the ranking of algorithms will be discussed. p and � in Tables 5.1 and

5.2 are the parameters which are tuned for some algorithms to give the minimum

errors. We notice, that these parameters could be chosen di↵erently based on

reproduction angular error, compared to when tuned based on recovery angular

error. This will be discussed in more detail in Section 5.4.

Looking at Table 5.1 and Table 5.2, we can conclude that using reproduction

angular error there are changes in the ranking of algorithms. Although the over-

all ranking of illuminant estimation algorithms remains the same (e.g. gamut

mapping algorithms still performing the best for the SFU dataset); local rank

switches can be still observed. For example, based on median errors, the pixel-

based gamut-mapping algorithm is better than the derivative-based counterpart

for the SFU dataset for the recovery angular error but the converse is true when

the reproduction angular error is used.

We also notice that in many cases grey-world and MaxRGB are not performing

well and when that is the case they perform poorly with a noticeable distance from

other algorithms. This is true regardless of the choice of evaluation technique and

we can see that using reproduction angular error, they are still ranked similarly

with respect to each other and the rest of algorithms.
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5.2.2 Colour-Checker Dataset (by Shi)

Colour-Checker dataset (introduced in Section 3.2) by Gehler et al. [Gehler et al.,

2008] is a wide selection of indoor and outdoor scenes captured in a real-life pho-

tographic sense. As mentioned in Section 3.2 the dataset was later reprocessed

by Shi et al. [Shi and Funt, 2010] to create almost raw images and avoid the

post-processing steps such as clipping or tone-curve. Here we re-evaluated several

illuminant estimation algorithms by reproduction angular error for the Colour-

Checker dataset by Shi.

Tables 5.3 and 5.4 report the mean and 95% quantile recovery and reproduction

angular errors for Shi-Gehler dataset.

Again, there are changes in ranking of algorithms when using reproduction an-

gular error (changes are highlighted in bold and underlined). In the case of

Colour-Checker dataset, there are few rank switches according to the mean er-

rors (Table 5.3). Whereas, looking at 95% quantile errors, we notice there are

many switches between the rank orders. The 95% quantile of images represent

those for which illuminant estimation algorithms have a very poor performance.

Whether, there is any commonality between the images for which a certain num-

ber of algorithms fail to estimate the illuminant could be interesting. This needs a

detailed investigation and is a stand alone topic, which is examined in Chapter 7.

Interestingly, we notice Exemplar-based algorithm [Joze and Drew, 2012] is out-

performing the rest of the algorithms with an almost significant error di↵erence,

even when looking at the 95% quantile error. We need to point out that there

might be other algorithms proposed during the very recent years outperforming

Exemplar-based method; however, the error data or a suitable code to reproduce

the results for those algorithms were not available to be included here.
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Table 5.3: Mean Recovery and Reproduction errors for several algorithms
applied on Shi Colour-checker dataset [Shi and Funt, 2010].

Recovery error Reproduction Error

Method p � mean Rank p � mean Rank

Grey-world - - 6.4� 14 - - 7.1� 14

MaxRGB - - 7.5� 16 - - 8.1� 16

Shades of grey 3 - 4.9� 11 3 - 5.5� 10

1st order grey-edge 1 9 5.3� 13 1 1 6.2� 13

2nd order grey-edge 1 1 5.1� 12 1 1 6.0� 12

Pixel-based gamut - 5 4.1� 7 - 5 4.7� 7

Edge-based gamut - 4 6.5� 15 - 4 7.8� 15

Bayesian - - 4.82� 10 - - 5.63� 11

Heavy-tailed based - - 3.67� 4 - - 4.42� 4

Bottom-up [Van
De Weijer et al.,
2007b]

- - 3.43� 2 - - 3.98� 2

Top-down [Van
De Weijer et al.,
2007b]

- - 3.75� 5 - - 4.29� 5

Bottom-up + Top-
down

- - 3.48� 3 - - 3.98� 2

Natural image
statistics [Gijsenij
and Gevers, 2011]

- - 4.19� 8 - - 4.83� 8

CART-based selec-
tion [Bianco et al.,
2010]

- - 4.49� 9 - - 5.16� 9

CART-based combi-
nation [Bianco et al.,
2010]

- - 3.9� 6 - - 4.53� 6

Examplar-based - - 2.89� 1 - - 3.4� 1
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Table 5.4: 95% quantile Recovery and Reproduction errors for several algo-
rithms applied on Shi Colour-checker dataset [Shi and Funt, 2010].

Recovery error Reproduction Error

Method p � 95%
quantile

Rank p � 95%
quantile

Rank

Grey-world - - 11.25� 7 - - 12.41� 6

MaxRGB - - 19.01� 18 - - 20.05� 18

Shades of grey 2 - 10.56� 5 2 - 11.97� 5

1st order grey-edge 1 1 11.33� 8 1 1 14.56� 11

2nd order grey-edge 1 1 11.01� 6 1 1 13.66� 9

Pixel-based gamut - 5 13.60� 14 - 5 15.44� 14

Edge-based gamut - 5 16.1� 16 - 5 19.93� 17

Intersection-based
gamut

- 5 13.6� 15 - 5 15.47� 15

Regression (SVR)
[Agarwal et al.,
2007]

- - 17.25� 17 - - 18.89� 16

Bayesian - - 12.60� 13 - - 15.39� 13

Heavy-tailed based - - 8.68� 2 - - 9.89� 2

Bottom-up - - 9.53� 3 - - 11.57� 4

Top-down - - 12.13� 11 - - 13.81� 10

Bottom-up + Top-
down

- - 11.55� 9 - - 13.59� 8

Natural image
statistics

- - 11.69� 10 - - 12.59� 7

CART-based selec-
tion

- - 12.49� 12 - - 14.63� 12

CART-based combi-
nation

- - 10.14� 4 - - 11.43� 3

Exemplar-based - - 6.95� 1 - - 8.23� 1

5.2.3 National University of Singapore Dataset

The recently proposed NUS datasett [Cheng et al., 2014] consists of 1736 images

from eight di↵erent cameras of indoor and outdoor scenes (see Section 3.2 for more

details).
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Tables 5.5 and 5.6 reports the max and 95% quantile errors for the Canon1D cam-

era from NUS dataset. We performed a selection of popular illuminant estimation

algorithms on all eight cameras of NUS dataset and more or less the same pattern

can be observed for all cameras, so, here we are presenting the results of one cam-

eras, Canon1D. Like other cameras in NUS dataset, there are around 220 images

captured by Canon1D camera.

Table 5.5: Maximum Recovery and Reproduction errors for several algorithms
applied on Canon1D camera from NUS dataset [Cheng et al., 2014].

Recovery error Reproduction Error

Method p � Max Rank p � Max Rank

Grey-world - - 22.37� 5 - - 24.69� 4

MaxRGB - - 39.12� 7 - - 33.76� 6

Shades of grey 5 - 14.62� 2 5 - 18.41� 3

1st order grey-edge 7 9 14.08� 1 5 3 17.35� 1

2nd order grey-edge 4 10 15.00� 3 5 4 17.91� 2

Pixel-based gamut - 0 38.60� 6 - 0 35.52� 7

Edge-based gamut - 5 21.64� 4 - 5 27.60� 5

Table 5.6: 95% quantile Recovery and Reproduction errors for several algo-
rithms applied on Canon1D camera from NUS dataset [Cheng et al., 2014].

Recovery error Reproduction Error

Method p � 95% Rank p � 95% Rank

Grey-world - - 12.78� 4 - - 16.19� 4

MaxRGB - - 17.28� 7 - - 18.14� 6

Shades of grey 5 - 9.01� 1 8 - 11.71� 2

1st order grey-edge 7 2 9.09� 2 9 2 11.50� 1

2nd order grey-edge 3 5 9.12� 3 1 2 12.09� 3

Pixel-based gamut - 0 16.64� 6 - 0 18.45� 7

Edge-based gamut - 3 13.01� 5 - 3 16.37� 5

For NUS dataset, when looking at the maximum or 95% quantile recovery and

reproduction errors, the rank order of the algorithms changes very frequently.
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5.2.4 Greyball (videoframes) dataset

Tables 5.7 and 5.8 contain median and 95% quantile recovery and reproduction

errors for Grey-ball dataset [Ciurea and Funt, 2003] which consists of 11346 images

(video frames) of a variety of indoor and outdoor scenes. Every image has a grey

sphere in view in the bottom-right of the image. The average RGB over the sphere

is taken to be the RGB of the light (read more in Section 3.2). (Inverse intensity

chromaticity space algorithm [Tan et al., 2004] is denoted as IICS in Tables 5.7

and 5.8)

Table 5.7: Median Recovery and Reproduction errors for several colour con-
stancy algorithms applied on Greyball dataset [Ciurea and Funt, 2003]. The
ranks for some algorithms have changed based on the two error calculations.

There are also changes in the optimal parameters.

Recovery error Reproduction Error

Method p � Median Rank p � Median Rank

Grey-world - - 7� 11 - - 7.6� 11

MaxRGB - - 5.3� 6 - - 5.5� 5

Shades of grey 8 - 5.28� 5 14 - 5.6� 6

1st Grey-edge 2 1 4.6� 3 2 1 4.8� 3

2nd Grey-edge 1 2 4.8� 4 1 2 5� 4

Pixel-based gamut - 2 5.67� 9 - 2 5.87� 8

Edge-based gamut - 1 5.62� 8 - 1 5.85� 7

Inter-based gamut - 6 5.7� 10 - 2 5.92� 9

IICS - - 5.6� 7 - - 6� 10
Using natural image
statistics

- - 3.9� 2 - - 4.3� 2

Exemplar-based - - 3.4� 1 - - 3.67� 1

We point out that in Table 5.8 the ranks of ‘Shades of Grey’ and ‘2nd order grey-

edge’ are the same for the 95% quantile error (they have the same rank 4) but

di↵erent when the reproduction error is used. That is although ‘shades of grey’ has

the same rank for both error measures we highlight a ranking di↵erence because

in one case there is a tie in the ranking and in the other there is no tie.
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Table 5.8: 95% quantile Recovery and Reproduction errors for several colour
constancy algorithms applied on Grey-ball dataset [Ciurea and Funt, 2003]. The
ranks for some algorithms have changed based on the two error calculations.

There are also changes in the optimal parameters.

Recovery error Reproduction Error

Method p � 95% Rank p � 95% Rank

Grey-world - - 17.9� 11 - - 20.9� 11

MaxRGB - - 17.4� 9 - - 18� 9

Shades of grey 9 - 13.8� 4 8 - 14.5� 4

1st Grey-edge 1 2 13.5� 3 1 2 14.3� 3

2nd Grey-edge 1 3 13.8� 4 1 4 14.7� 5

Pixel-based gamut - 5 17.8� 10 - 5 18.5� 10

Edge-based gamut - 3 16.2� 7 - 4 16.6� 7

Inter-based gamut - 9 16.2� 7 - 8 17� 8

IICS - - 15.2� 6 - - 16� 6
Using natural image
statistics

- - 13.2� 2 - - 13.7� 2

Exemplar-based - - 11.3� 1 - - 12.5� 1

5.2.5 Foster et al. Hyperspectral dataset

Considering that illuminant estimation is the preprocessing step to many computer

vision tasks which mostly make use of 3-band RGB images, most of our analy-

sis is done on such benchmark datasets. However, one might find the di↵erence

between recovery and reproduction angular errors on a set of multispectral data

applicable. Here we repeat the same experiment on the images from Foster et al.

dataset [Foster et al., 2006]. The dataset consists of eight scenes captured by a

progressive-scanning monochrome digital camera. The data is provided between

410 and 710 nm with 10 nm intervals. We have assumed the lighting condition to

be under 6500 k illuminant. The recovery and reproduction errors for four illumi-

nant estimation algorithms applied on six of these 31-band images are presented

in Table 5.9.

It can be seen that in the case of hyperspectral images, the ranking of algorithms

might di↵er depending on which error metric is used.
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Table 5.9: Maximum Recovery and Reproduction errors for several algorithms
applied on six scenes from Foster et al. hyperspectral dataset [Foster et al.,

2006].

Recovery error Reproduction Error

Method p � Median Rank p � Median Rank

General Grey-world 6 10 7.25� 3 7 10 6.08� 1

Shades of grey 3 - 7.85� 4 3 - 7.51� 3

1st order grey-edge 4 2 7.18� 1 1 1 7.50� 2

2nd order grey-edge 10 6 7.23� 2 1 2 7.73� 4

MaxRGB - - 12.60� 6 - - 12.99� 6

Grey-world - - 10.14� 5 - - 8.80� 5

In multispectral illuminant estimation, rather than the actual and estimated light

being three vectors they are 31-vectors. Relative to these 31 vectors the recovery

and reproduction errors are analogously defined. It can be noticed that the errors

are higher. Intuitively, this is to be expected as in 31-space there are more degrees

of freedom.
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5.2.6 The e↵ect of Reproduction Angular Error on the

Choice of Optimal Parameters

The parameters such as Mink-norm (p) in Eq. 2.19 and the parameter for the

Gaussian filter (� in Eq. 2.20) as well as in edge-based gamut mapping algorithm)

can be tuned to achieve the best performance for these algorithms; or in other

words has the lowest error on a given set of images. For instance, looking at the

median errors of an algorithm for all its possible parameters calculated over the

whole dataset, it is decided for which parameters the algorithm is more likely to

have a minimum error. An algorithm might introduce a wide range of error for the

same image with di↵erent assigned parameters. Therefore, choosing the correct

parameter and consequently the proper metric is of great importance.

The second important outcome of Tables 5.1 to 5.9 is the changes in the optimal

parameters for the algorithms. We notice the tunable parameters for an algorithm

can change if the reproduction angular error is used for evaluation of the algorithm

instead of recovery angular error.

For instance, for SFU dataset (Table 5.1) the mink-norm (p) resulting in the min-

imum median recovery angular error for 1st order grey-edge algorithm is seven.

Whereas, for the same algorithm, p = 14 results in the minimum median reproduc-

tion angular error. Or, for the maximum-error images of NUS dataset (Table 5.6),

both p and � are chosen di↵erently for the 2nd order grey-edge algorithm depend-

ing on whether they are selected based on the recovery error or the reproduction

error. Similarly, in Table 5.7, according to median recovery angular error, shades

of grey is performing best for Grey-ball dataset when the Minkowski norm [Fin-

layson and Trezzi, 2004] (p) equals eight but median reproduction angular error

reports that the best performance of shades of grey is with p = 14.

The choice of the best parameters for an algorithm can have a great impact on the

final evaluation of the algorithm and its rank in the table of illuminant estimation
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algorithms. Observing that this choice depends on the error metric used, empha-

sises the importance of which error metric is used for evaluation of the algorithms’

performance.

5.3 Rank Switches by Recovery and Reproduc-

tion Angular Error

5.3.1 Kendall’s Rank Correlation Test

To study to what extent the ranking of these algorithms has changed using our new

metric, we performed the the Kendall test [Sprent and Smeeton, 2007; Conover,

1999] for all the algorithms in Tables 5.1 to 5.9 in Section 5.2 where their ranks

changed once evaluated using reproduction angular error. Kendall’s test, as dis-

cussed in Section 3.6, is an appropriate statistical test to study whether the change

in the ranking of algorithm is significant or not.

We are interested in measuring the discordancy (or otherwise) for the algorithms

whose ranks change.The number of algorithms where the ranks change depends

both on the error measure used (i.e. median, mean, max or 95% quantile) and

the dataset (SFU Lab, Colour Checker (by Shi), NUS, Grey-ball or Foster et al.

hyperspectral).

In Tables 5.10 and 5.11, Kendall’s T is calculated for the changed rank algorithms

for SFU Lab dataset [Barnard et al., 2002c] from Tables 5.1 and 5.2. Breaking

down the calculations, in Table 5.10 (median error and for SFU lab dataset), in

total there are 12 concordant and 3 discordant pairs of ranking which result in

T = 12 � 3 = 9. This T value is then compared with its quantile, which in this

case is 13 at 99.5 % confidence level. Based on the comparison made, the null

hypothesis (H0) in the Lower-Tailed Kendall’s test is rejected and it concludes

that the pairs tend to be discordant.
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Table 5.10: Changes in ranking of algorithms for SFU Lab dataset [Barnard
et al., 2002c] (based on median errors).

Median

Method
Reproduction

Rank
Recovery
Rank

C D

Edge-based gamut 1 2 4 1

Pixel-based gamut 2 1 4 0

1nd grey-edge 3 4 2 1

Weighted grey-edge 4 3 2 0

shades of grey 5 6 0 1

Heavy tailed-based 6 5 0 0

T quantile for 6 samples at 99.5% confidence = 13 >(T = 9)

Table 5.11: Changes in ranking of algorithms for SFU Lab dataset [Barnard
et al., 2002c] (based on 95% quantile errors).

95% quantile

Method
Reproduction

Rank
Recovery
Rank

C D

Pixel-based gamut 1 1 4.5 0.5

Inter-based gamut 2 1 4 0

Union-based gamut 3 4 2 1

Edge-based gamut 4 3 2 0

shades of grey 5 6 0 1

Weighted grey-edge 6 5 0 0

T quantile for 6 samples at 99.5% confidence = 13 >(T = 10)

Similarly, Tables 5.12 and 5.13 contain the results of Kendall’s test for the Colour-

Checker dataset by Shi from Tables 5.3 and 5.5. Again, for the changed-rank

algorithms based on mean (Table 5.12) and 95% quantile (5.13) errors, Kendall’s

test results shows the switches in the ranking of algorithms are significant.

Tables 5.14 and 5.15 report the ranking performance for the NUS Canon1D dataset

[Ciurea and Funt, 2003] from Tables 5.5 and 5.6 where again we focus only on the

algorithms whose ranks change. We wish to measure how much the ranks change.

Again, the algorithms in these two tables have changed in their ranking order
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Table 5.12: Changes in ranking of algorithms for the Colour-Checker dataset
by Shi [Shi and Funt, 2010] (based on mean errors).

Mean

Method
Reproduction

Rank
Recovery
Rank

C D

Bottom-up 1 1 2.5 0.5

Bottom-up + Top-down 1 2 2 0

Bayesian 4 3 0 1

shades of grey 3 4 0 0

T quantile for 4 samples at 99.5% confidence = 6 >(T = 3)

Table 5.13: Changes in ranking of algorithms for Shi dataset [Shi and Funt,
2010] (based on 95% quantile errors).

95% quantile

Method
Reproduction

Rank
Recovery
Rank

C D

Bottom-up 1 2 8 1

CART-based combination 2 1 7 0

2nd order grey-edge 3 6 4 3

Grey-world 4 3 6 0

1st order grey-edge 5 8 2 3

Bottom-up + Top-down 6 5 3 1

Natural image statistics 7 4 3 0

Top-down 8 7 2 0

Edge-based gamut 9 10 0 1

Regression(SVR) 10 9 0 0

T quantile for 10 samples at 99.5% confidence = 27 >(T = 26)

when they were ranked using max and 95% quantile reproduction angular errors

respectively.

Tables 5.16 and 5.17 contain the same information for Grey-ball dataset [Ciurea

and Funt, 2003] from Tables 5.7 and 5.8 . Again the algorithms in these two tables

have changed in their ranking orders when they were ranked using median and 95%

quantile reproduction angular errors respectively . The tied rank algorithms (i.e.

the algorithms with the same rank given once evaluated based on 95% quantile
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Table 5.14: Changes in ranking of algorithms for Canon1D camera from NUS
dataset [Cheng et al., 2014] (based on max errors).

Max

Method
Reproduction

Rank
Recovery
Rank

C D

2nd order grey-edge 1 2 4 1

Shades of grey 2 1 4 0

Grey-world 3 4 2 1

Edge-based gamut 4 3 2 0

MaxRGB 5 6 0 1

Pixel-based gamut 6 5 0 0

T quantile for 6 samples at 99.5% confidence = 13 >(T = 9)

Table 5.15: Changes in ranking of algorithms for Canon1D camera from NUS
dataset [Cheng et al., 2014] (based on 95% quantile errors).

95% quantile

Method
Reproduction

Rank
Recovery
Rank

C D

1st order grey-edge 1 2 2 1

shades of grey 2 1 2 0

MaxRGB 3 4 0 1

Pixel-based gamut 4 3 0 0

T quantile for 4 samples at 99.5% confidence = 6 >(T = 2)

recovery angular error) from Tables 5.7 and 5.8 are also included in Tables 5.16

and 5.17.

Table 5.18 shows the Kendall test results for the changed rank algorithms in Ta-

ble 5.9 which contains the median recovery and reproduction errors for the Foster

et al. hyperspectral dataset. The discrepancy between the ranking of reproduction

versus recovery error is even more marked for the multispectral case.

It can be seen that the null hypothesis (H0) in Lower-Tailed Kendall’s test is

rejected for all pairs of algorithms in Tables 5.10 to 5.18, showing the fact that

the ranking of these algorithms using recovery and reproduction angular errors
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Table 5.16: Changes in ranking of algorithms for Grey-ball dataset [Ciurea
and Funt, 2003] (based on median errors).

Median

Method
Reproduction

Rank
Recovery
Rank

C D

MaxRGB 1 2 4 1

Shades of grey 2 1 4 0

Edge-based gamut 3 4 2 1

Pixel-based gamut 4 5 1 1

Intersection-based gamut 5 6 0 1

IICS 6 3 0 0

T quantile for 6 samples at 99.5% confidence = 13 >(T = 7)

Table 5.17: Changes in ranking of algorithms for Grey-ball dataset [Ciurea
and Funt, 2003] (based on 95% quantile errors).

95% quantile

Method
Reproduction

Rank
Recovery
Rank

C D

shades of grey 1 1 2.5 0.5

2nd grey-edge 2 1 2 0

Edge-based gamut 3 3 0.5 0.5

Intersection-based gamut 4 3 0 0

T quantile for 4 samples at 99% confidence = 6 >(T = 4)

Table 5.18: Changes in ranking of algorithms for Foster et al. hyperspectral
dataset [Foster et al., 2006] (based on median errors).

Median

Method
Reproduction

Rank
Recovery
Rank

C D

1st order grey-edge 2 1 2 1

2nd order grey-edge 4 2 0 2

General grey world 1 3 1 0

Shades of grey 3 4 0 0

T quantile for 4 samples at 99.5% confidence = 6 >(T = 0)

are strongly discordant. This implies that indeed the ranking of algorithms in

Tables 5.10 to 5.17 have changed significantly based on reproduction angular error.
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Figure 5.1: The pictorial scheme of Kendall test for the changed rank algo-
rithms in Table 5.10 [Finlayson and Zakizadeh, 2014].

A pictorial scheme of Kendall’s test in Table 5.10 is shown in Figure 5.1. It is in-

teresting to notice that according to recovery errors in this case edge-based gamut

mapping algorithm is followed immediately by weighted grey-edge. Whereas,

based on reproduction errors they are two steps apart in the ranking table.

Apart from changes observed in a coarse selection of the best algorithms applied

on the five datasets which were represented here, there are many switches in the

local ranking of algorithms (e.g. 1st grey-edge algorithm with di↵erent � and p-

norm values applied on a set of images). The same trend can be observed with

other datasets.

5.3.2 Wilcoxon Signed-Rank Test

To further study the behaviour of two metrics on individual images we performed

the Wilcoxon signed-rank test [Conover, 1999] (previously explained in Section 3.6)

which allows us to show the statistical significance of the di↵erence between two

algorithms [Hordley and Finlayson, 2006]. In the Wilcoxon sign test we can test
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the hypothesis that the median of algorithm i is significantly lower than the median

of algorithm j at some confidence level.

Here, we perform the Wilcoxon test for two of the datasets from Section 4.2:

SFU dataset and Grey-ball dataset, which based on median of the errors for the

algorithms in Table 5.10 and 5.16, Kendall’s test results showed that there is a

significant change in the ranking of algorithms. Using Wilcoxon signed-rank test,

we want to investigate whether there is a significant di↵erence between the median

of errors of those algorithms .

The Wilcoxon sign test results for the algorithms in Table 5.10 applied on SFU

dataset are shown in Table 5.19. Here, a positive value (green colour) at location

(i, j) (i being the row and j the column) indicates that the median of algorithm i

is significantly lower than the median of algorithm j at the 90% confidence level.

For such a small set of objects (SFU set has 30 objects) 90% confidence level is

reasonable. The value (�1) (red colour) indicates the opposite and a zero (yellow

colour) shows there is no significant di↵erence between the performance of two

algorithms. For example, at location (1, 3) the positive value for recovery angular

error indicates that algorithm 1. Edge-based gamut mapping has a significantly

lower error than 3. 1st grey-edge. In this case, looking at the median of recovery

angular errors in Table 5.1 for the two algorithms, the same conclusion is drawn.

As can be seen there are cases where reproduction angular error interprets the

significance of di↵erence between performance of two methods di↵erently from

recovery angular error. For instance based on recovery error there isn’t much

di↵erence between the performance of Heavy tailed-based and 1st grey-edge but

for reproduction error they are di↵erent. Or in the case of 1st order grey-edge and

weighted grey-edge methods there is a complete switch between the ranking of

two algorithms. In summary, the Wilcoxon sign test demonstrates that for images

where state of the art illuminant estimation algorithms performed reasonably the

recovery and reproduction errors ranked these algorithms di↵erently.
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Table 5.19: Wilcoxon sign test on SFU dataset for Recovery and Reproduction
errors of the algorithms in Table 5.10.
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1 0 -1 +1 +1 +1 +1 0 +1 +1 +1 +1 +1

2 +1 0 +1 +1 +1 +1 -1 0 +1 +1 +1 +1

3 -1 -1 0 -1 +1 0 -1 -1 0 +1 +1 +1

4 -1 -1 +1 0 +1 0 -1 -1 -1 0 +1 +1

5 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 0

6 -1 -1 0 0 0 0 -1 -1 -1 -1 0 0

Table 5.20: Wilcoxon sign test on Grey-ball dataset for Recovery and Repro-
duction errors of the algorithms in Table 5.16.
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1 0 -1 +1 +1 +1 +1 0 +1 +1 +1 +1 0

2 +1 0 +1 +1 +1 +1 -1 0 +1 +1 +1 +1

3 -1 -1 0 +1 +1 -1 -1 -1 0 0 +1 +1

4 -1 -1 -1 0 +1 -1 -1 -1 0 0 +1 +1

5 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 +1

6 -1 -1 +1 +1 +1 0 0 -1 -1 -1 -1 0

Table 5.20 reports the results of Wilcoxon sign-rank test for the algorithms in Ta-

ble 5.16 applied on the Grey-ball dataset. Similar to the results for SFU dataset,
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Wilcoxon test confirms the significance of the di↵erence between the algorithm’s

performance. Di↵erent colours for the same (i, j) location for recovery and repro-

duction angular errors show that for some algorithms there are switches in the

ranking.

5.4 Correlation of Recovery and Reproduction

Angular Errors

This section investigates the correlation between the two metrics, reproduction

and recovery angular errors, for each individual algorithm applied on a set of

images [Zakizadeh and Finlayson, 2015]. We consider two cases: first, where the

images are from the same scene under di↵erent illuminations; second: when the

same algorithm is applied on the images of diverse scenes. We will observe that

the correlation of the two metrics di↵er considering the two scenarios.

We have used the grey-world estimations of 11 illuminants for 30 objects in the

SFU data set to illustrate the degree of deviation of recovery errors from one

illuminant to the other for a single object. As mentioned before, in the SFU

dataset the same object is captured under 11 di↵erent lights. The box plots in

Figure 5.2 show the range of reproduction and recovery angular errors for the

30 objects in SFU dataset. It can be seen that the range of errors according to

recovery angular error (top box plot) is much wider than the range of reproduction

angular errors (bottom box plot).

We also calculate the standard deviation of the recovery error per object and

the per object standard deviation for the reproduction error. We plot (for all 30

objects) the standard deviation of recovery against reproduction standard devia-

tions in Figure 5.3. Clearly, the reproduction error is much more stable than the

recovery error.
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Figure 5.2: Box plots of recovery (top) and reproduction (bottom) angular
errors for the 30 objects in SFU dataset.

To study the correlation of recovery and reproduction angular error for the two

cases of the same and diverse scenes, two datasets are considered: 1) SFU data

set (multiple objects each being viewed under multiple lights) for a range of al-

gorithms. Our expectation here is that, recovery and reproduction errors, while

correlated, the correlation will be less for a data set where the same object is

viewed under multiple lights. 2) The Gehler-Shi colour checker data set which

comprises a wide variety of scenes viewed under a single light.
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Figure 5.3: Standard deviation of recovery and reproduction angular errors
for the 30 objects in the SFU dataset.

5.4.1 Similar Scenes with Di↵erent Illuminants

Figure 5.4 shows an example of the same object from SFU dataset being captured

under di↵erent illuminations. This is a good example of the same scene being

captured under di↵erent illuminants.

For each image in Figure 5.4, the illuminant is estimated using six algorithms (see

the first column in Table 5.21). We assess the correlation of the algorithms using

both the recovery and reproduction angular errors. In Table 5.21, we tabulate

Pearson’s r coe�cient of correlation [Sprent and Smeeton, 2007]. A correlation of

one means the errors would be proportional to one another, 0 no correlation and

-1 maximum negative correlation. Interestingly, for the six algorithms tested there

is a low correlation between the reproduction and recovery angular errors.
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Figure 5.4: Correlation of reproduction and recovery angular errors for 1st

order grey-edge (p � norm = 3, � = 3) algorithm applied on a set of images
in the SFU dataset. The number on the plot shows the Pearson’s r correlation

value between the two errors. The images are not colour corrected.

In Figure 5.4, the plot of correlation between the two errors for the 1st order

grey-edge algorithm can be seen. As you can see the error values are highly
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Table 5.21: Results of Pearson’s r correlation test for the reproduction and
recovery errors for several algorithms on a set images from SFU dataset

Algorithm Pearson’s r
1st order grey-edge (p = 3, � = 3) 0.19
2nd order grey-edge (p = 4, � = 2) 0.04
grey-world 0.55
Shades of grey (p = 6) 0.09
Edge gamut mapping (� = 7) 0.29
Pixel gamut mapping (� = 8) 0.21

uncorrelated. As expected the reproduction error is stable but for the given fairly

constant reproduction error the recovery error varies widely.

5.4.2 Diverse Scenes

To study the correlation of recovery and reproduction angular errors for the diverse

scenes Gehler-Shi dataset [Gehler et al., 2008; Shi and Funt, 2010] is used which

contains di↵erent images of indoor and outdoor situations.

In Figure 5.5 we show a few di↵erent scenes. On the right side of Figure 5.5 the

reproduction and recovery angular errors for the 1st order grey-edge algorithm for

the Gehler-Shi dataset is shown.

In Table 5.22, the Pearson’s r values are reported for a group of algorithms on

all the images of Gehler-Shi dataset. The correlation values are almost close

to one for all the algorithms. This is a significant result as it shows that on

average for typical viewing conditions the legacy recovery error can be used to rank

algorithms. The flaw in its formulation, while important and worth remedying does

not invalidate the historical development and ranking of algorithms using datasets

such as Gehler-Shi and the recovery errors. That is, the best algorithms today are

better than those of five years ago and these in turn are better than the venerable

grey-world and MaxRGB algorithms.
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Figure 5.5: Correlation of reproduction and recovery angular errors for 1st

order grey-edge (3, 3) algorithm applied on a set of images in Gehler-Shi dataset.
The number on the plot shows the Pearson’s r correlation value between the

two errors. The images are not colour corrected.

However, it is also important to note that the correlation statistic is a “broad

brush”. While the correlation analysis gives us confidence that the results in the

literature (reporting the relative performance of algorithms) are in good order;
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Table 5.22: Results of Pearson’s r correlation test for the reproduction and
recovery errors for several algorithms on all the images of Gehler-Shi dataset

Algorithm Pearson’s r
1st grey-edge (p = 3, � = 3) 0.95
2nd grey-edge (p = 5, � = 6) 0.95
grey-world 0.99
Shades of grey (p = 5) 0.98
MaxRGB 0.97
Pixel gamut mapping (� = 5) 0.99
Edge gamut mapping (� = 3) 0.96

previously, in this section we showed that there are some changes in the overall

rankings when the two error metrics are used.

5.5 Conclusions

In this chapter, we observed that reproduction angular error might rank algorithms

di↵erently from recovery angular error. That the new reproduction angular error

ranks algorithms di↵erently is a matter of considerable importance. Indeed, not

only do the absolute values change with respect to the currently used recovery

angular error, the relative di↵erences between the algorithms (the rank order of

algorithms) change as well. Especially this latter observation is an important

argument in favour of switching to the new reproduction error instead of continuing

to use the legacy recovery error.

The best ‘tuning’ parameters for di↵erent algorithms is found to depend on the

error metric used. Further, we show that the ranking of illuminant estimation

algorithms, while broadly the same for recovery or reproduction angular error,

can change for the local pairs of algorithms (e.g. pixel-based and edge-based

gamut mapping). The change in the ranks is statistically significant.



Chapter 5. Rank Study of Illuminant Estimation Algorithms 98

Further, we studied the correlation between the reproduction and recovery angular

errors for a given algorithm on images of similar and diverse scenes. We noticed

the low correlation between the errors in the case of images of the same scene

captured under di↵erent illuminations. Such a result was expected as the premise

of reproduction angular error is that it is stable to changes in the illuminant

compared to recovery angular error, which is more dependent on the illuminant.

On the other hand, we observed that when the scenes are diverse the results of

reproduction and recovery metrics for the same algorithm are very correlated.

This observation is important as it establishes that the development of illuminant

estimation algorithms is in good order. However, since we expect to capture

images of the same scene as the illumination changes, we recommend the adoption

of reproduction angular error.



Chapter 6

A Novel Framework for

Evaluation of Illuminant

Estimation Algorithms Based on

a Palette of Colours

In Chapter 4, we introduced the reproduction angular error which is the angle

between the true and the estimated reproduced white. A white surface is a good

representative of the colour of light. However, the estimated illuminant is to be

used to reproduce a range of colours in an image free of any cast caused by the

illuminant colour. To this end, in this chapter a novel framework is proposed which

measures how well a whole colour chart is reproduced [Finlayson and Zakizadeh,

2015].

99
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6.1 Introduction

The pictorial description of reproduction angular error (introduced in Chapter 4)

is shown in Figure 6.1. On the very left side of Figure 6.1 you see a white patch

simulated as if it is captured under one of the relatively chromatic lights of SFU

dataset [Barnard et al., 2002c]. The colour of the white patch is obviously a↵ected

by the blue colour of illuminantion and the result is the strong blue cast on the

white surface. The reproduction angular error (as it is shown in Figure 6.1) can

be simply defined as the angle between the RGB vector of a reproduced white

patch by the ground-truth illuminant and the one reproduced using the estimated

illuminant. In other words, the colour components of a white patch captured under

the light ⇢E are divided (component-wise) by the RE, GE and BE values of the

ground-truth (measured) light ⇢E. This results in the colour corrected white patch

with [R G B]t = [1 1 1]t (see the top row of Figure 6.1). Now, the white patch

colour is reproduced using the estimated illuminant (⇢Est = [REst GEst BEst])

which results in a colour, di↵erent from [1 1 1] (see the bottom row of Figure 6.1)

since ⇢Est is only an estimation of ⇢E. The reproduction angular error measures

the angle between the colour vectors of the two reproduced white patches C1 and

C2.

Figure 6.1: A pictorial description of reproduction angular error.
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Figure 6.2: �E for reproduced colours.

In this chapter, we seek to measure the di↵erence between a range of colours (not

just a white patch) which are reproduced by the estimated and ground-truth illu-

minants. This idea is depicted in Figure 6.2. This figure shows an orange surface

simulated as if being captured under a chromatic light. The colour of the surface is

then corrected by dividing out the ground-truth light (top row) and the estimated

light by grey-world algorithm [Buchsbaum, 1980] (bottom row). The quality of

the reproduced orange colour by the estimated light is then evaluated using the

colour di↵erence formula CIE2000 �E [Sharma et al., 2005] ( Appendix A) .

Figure 6.2 represents an idealised scenario. To calculate the �E colour di↵erence

(as it is explained in Appendix A) we require the XY Z values of colours and the

illuminant. However, most colour constancy benchmark data sets don’t provide

such information, as these data sets are aimed to provide real photographic look

images. Even if the XY Z values can be calculated (e.g. with spectral data sets

such as [Foster et al., 2006]) the ground-truth and the estimated illuminants are

only a simulation of those made by a digital camera. This is what makes the task

of evaluating an algorithm’s performance by comparing colours challenging.

In our approach we seek to generate a Macbeth colour checker as if it would appear

under the actual and the estimated illuminant. We then calculate �E for the 24
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patches.

The organisation of this chapter is as follows: In Section 6.2, the framework for

evaluation of illuminant estimation algorithms based on a palette of colours is

given. The results are discussed in Section 6.3. Section 6.4 concludes the chapter.

6.2 The Framework for Evaluation of Illuminant

Estimation Algorithms Based on a Palette

of Colours

We develop our model for the SFU dataset [Barnard et al., 2002c]. We use the

set of spectra for 24 Macbeth colour checkers patches and the 23 lights from the

SFU dataset [Barnard et al., 2002c]. For camera spectral sensitivity functions we

use the Sony-DXC-930 CCD [Barnard et al., 2002c] which is used to make the

SFU data set. SFU dataset is useful for our purpose since the spectral of the

lights under which the images were captured using Sony-DXC-930 camera are also

provided. Although, for the camera sensitivity functions any particular camera

can be used in the problem formulation.

6.2.1 Generating Synthetic Colour-Checkers for a Target

light

We adopt the standard model of image formation:

⇢k =

Z 780

380

Rk(�)E(�)S(�)d�. (6.1)

In Eq. 6.1, Rk(�) is the Sony-DXC-930 camera sensitivity functions for the three

sensors k = {R, G, B}. S(�) is the spectra of the 24 patches of Macbeth colour
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checker and E(�) is the spectra of the 23 SFU lights. The data is provided from

� = 380nm to 780nm (the visible spectrum) with 4nm intervals. We actually

calculate Eq. 6.1 as a Reimann summation. Using Eq. 6.1 and for the 23 SFU

lights we generate 24 RGBs (each for one patch of the colour checker). Figure 6.3

demonstrates di↵erent steps of the framework. The final product is shown as

K (the matrix of 23 checkers) in Figure 6.3. These 23 synthetic checker images

encapsulate our understanding of how checker appears under di↵erent lights.

In the second step, we wish to generalise this understanding so that we could,

given the RGB of any target light, synthesise the appearance of the checker for

any illuminant. Denoting the 24 ⇥ 3 RGBs for a Macbeth colour checker as M ,

we model M as a linear sum of three basis Macbeth colour checkers:

M ⇡
3X

i=1

Mimi, (6.2)

where, mi denotes a scalar weight and the optimal basis in a least-square sense

are found using Principal (Characteristic) Vector Analysis [Maloney 1986] of the

23 synthetic Macbeth checker images. Crucially, we found the best basis models

our data extremely well with the actual and 3-basis approximation being visually

almost the same in appearance (the three basis capture 99% of the variance).

Now, we place the RGB for the white reflectance in the Macbeth checker (the

19th patch) for each basis term Mi in the three columns of a calibration matrix

⌦. Denoting an RGB of a light as ⇢E, the linear combination of the columns of ⌦

defines the weights m used in Eq. 6.2:

m = ⌦�1⇢E. (6.3)

In Eq. 6.3, the illuminant vector ⇢E could be the reference light ([1 1 1]), the

ground truth light or the estimate made by an algorithm. Given m, we can
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Step1: Calculate camera sensitivity functions 
response to the reflectances from 24 patches of 
Macbeth colour-checker under 23 SFU lights 
(K[23x24x3])

Sony_DXC-930 Camera sensors 24 Macbeth patches spectra

23 SFU Lights

wavelength (nm)

23 checkers

Step2: Calculate the Characteristic Vectors  from 23 
synthesised colour-checkers PCA on K[23x24x3]

Step3: Synthesise the appearance of a Macbeth 

colour checker (M) for any illuminant 
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Figure 6.3: The general framework for generating a synthetic Macbeth colour-
checker under a target light.

calculate the appearance of the checker using Eq. 6.2. Figure 6.4 (a) shows one

input image from the SFU dataset [Barnard et al., 2002c] and Figure 6.4 (b) shows

our synthesised Macbeth for this light.
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Figure 6.4: (a) An image from SFU dataset (captured under Sylvania warm
white fluorescent light), (b) The synthetic colour checker under the ground truth

light under which (a) was taken.

Now, we wish to consider the appearance of the checker when we make an image

reproduction. That is we wish to reproduce the checker with the actual (ground-

truth) light and compare it to the checker reproduced when an illuminant estima-

tion algorithm is used to define the illuminant colour.

Figure 6.5: Synthetic colour-checkers under the estimates of the actual light
by di↵erent illuminant estimation algorithms. The synthesised colour checker

under the actual light (the last checker) is also included.

Figure 6.5 shows the synthesised colour checkers under the estimates of the same

illuminant in Figure 6.4 (a) using di↵erent illuminant estimation algorithms (for

the ease of comparison, we have also included the checker under the ground-

truth illuminant in this figure). All images are scaled so that the brightest pixel

value across the colour channels is one and a gamma of 0.5 is applied. It can be
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seen that depending on the performances by various algorithms the synthesised

colour checkers look close to or very di↵erent from the one under the ground-truth

illuminant (the last checker in Figure 6.5).

6.2.2 Modelling the Appearance of a Colour-Corrected

Checker

So far, we have focussed on explaining how we synthesise the colours of the Mac-

beth colour checker for a target light. But, we ultimately seek to model the

appearance of a checker under an actual light when it is corrected to the reference

checker using the estimated illuminant (by an algorithm).

Denoting, respectively, the checkers under the reference white light ([1 1 1]), the

actual coloured light and the estimated coloured light as M ref , Mact and M est,

the estimated reproduction, M̃ ref , is calculated as:

M̃ ref = MactT, (6.4)

and T is calculated as:

T = [M est]+M ref , (6.5)

where, [M est]+ denotes the Moore-Penrose pseudoinverse [Ben-Israel and Greville,

2003]:

[M est]+ = ([M est]t[M est])�1[M est]t (6.6)

That is, T (in Eq. 6.5) is the least-squares fit from the checker viewed under

the estimated light to the reference lighting conditions. This 3 ⇥ 3 matrix T



Chapter 6. A Novel Framework for Evaluation of Illuminant Estimation
Algorithms Based on a Palette of Colours 107

Figure 6.6: (a) The corrected checker by pixel-based gamut mapping algo-
rithm. (b) The correct reproduction of the checker (i.e. synthesised checker

under the reference white light [1 1 1] ).

is then applied (as a correction matrix) to the checker under the actual light

(Figure 6.4 (b)) to result in the corrected colour checker using the illuminant

estimate. Figure 6.6 (a) shows the corrected checker by pixel-based gamut mapping

algorithm [Gijsenij et al., 2010]. Figure 6.6 (b) is the correct reproduction of the

checker, i.e. the checker under the reference white light (⇢E = [1 1 1]) where the

colour of the white patch is equal to [1 1 1]. The checker in Figure 6.6 (a) is fairly

similar to the checker under the reference white light (Figure 6.6 (b)). In this

case, pixel-based gamut mapping algorithm does a good job colour-correcting the

checker.

6.2.3 CIElab Colour Di↵erences of the Reproduced Colours

Given the appearance of the reproduced Macbeth colour checker using the esti-

mated illuminant (M̃ ref ), we calculate the error for the ith Macbeth colour checker

patch as:

erri = kf(M̃ ref
i )� f(M ref

i )k (6.7)
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Figure 6.7: Evaluating the quality of the colours in a reproduced colour-
checker.

where f maps an RGB to CIE LAB (see Appendix A for mathematical formulation

of RGB to CIE LAB conversion). Equation (6.7) can be any colour di↵erence �E

formulae but here we use the �E2000 [Sharma et al., 2005].

Figure 6.7 is a pictorial discerption of Eq. 6.4 where a corrected colour checker

(M̃ ref ) is produced using the illuminant estimate by the pixel-based gamut map-

ping algorithm. M̃ ref is then compared with the M ref which would be the perfect

Macbeth checker under a reference white light. The average �E di↵erence in the

reproductions is 1.7.

Figure 6.8 shows the colour checker in Figure 6.4 (b) which is white balanced

using the estimates of di↵erent algorithms. The values on each checker are the the

average of �E2000 errors for the 24 patches of the checker.

6.3 Results

Here we use the 321 images from the SFU dataset [Barnard et al., 2002c]. This

data set has linear images and a variety of objects are imaged under 11 lights
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Figure 6.8: Synthetic white balanced colour-checkers by di↵erent illuminant
estimation algorithms.

(ranging from quite yellowish to very blue). All images were captured with the

SONY DXC-930. A variety of algorithms, including those listed in Table 6.1, were

tested by [Gijsenij et al., 2011]. We can thus calculate for all Macbeth colour

checker images and the overall median �E. Then according to this global median

we can rank the algorithms. In Table 6.1, we list the algorithms and record the

rank for the Recovery and Reproduction angular errors and the new calculated

median �E colour di↵erences.

While the rankings of all three metrics are almost similar it is clear that recovery

angular error ranks algorithms a little di↵erently from reproduction angular error.

Further in Chapter 5 it was shown that the rankings are statistically di↵erent.

And, this fact draws attention to the care the algorithm designer needs to take

using the appropriate metric to assess their algorithm. The reproduction angular

error assesses how well an algorithm reproduces white (i.e. when the estimated

illuminant is divided out). The framework introduced in this chapter builds on

this concept and accounts for the error for other surface colours. The ranks for

the median �E errors are identical to the reproduction angular error.
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Table 6.1: Comparison of ranking of algorithms based on reproduction angular
errors and generalised reproduction errors.

Recovery

angular error

Reproduction

angular error
�E

Method Median error Rank Median error Rank Median error Rank

Gray-World 7.00 9 7.49� 9 7.02 9

MaxRGB 6.52 8 7.44� 8 6.13 8

Heavy tailed-based 3.45 6 4.11� 7 3.74 7

Shades-of-gray

(p = 7)
3.72 7 3.94� 6 3.26 6

1st grey edge

(p = 14,� = 4)
3.21 5 3.59� 5 3.12 5

2nd grey edge

(p = 15,� = 10)
2.73 4 3.04� 4 2.88 4

pixel-based gamut

(� = 4)
2.27 2 2.83� 3 2.64 3

Edge-based gamut

(� = 2)
2.78 3 2.70� 2 2.59 2

Intersection-based

gamut (� = 3)
2.09 1 2.48� 1 2.46 1
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6.4 Conclusion

In this chapter, we extended the idea of evaluating illuminant estimation algo-

rithms based on the RGB values of a reproduced white patch (reproduction an-

gular error), to study the quality of a range of colours (specifically the 24 patches

in a Macbeth colour checker) reproduced by multiple algorithms.

We compared the reproduced colour patches by di↵erent illuminant estimation

algorithms by looking at their CIE �E2000 colour di↵erences. In most cases, our

evaluation based on reproduced colours matches the judgement we previously had

using the reproduction angular error for a reproduced white patch. Indeed com-

parison of the reproduced images is a very e�cient way of evaluation of illuminant

estimation algorithms.



Chapter 7

Psychophysical Evaluation of

Illuminant Estimation Algorithms

In Chapter 4, we, mathematically, demonstrated the stability of reproduction

angular error when it evaluates the same algorithm’s results for the same scene

(only the illumination changes from one image to another).

Further, in Chapter 5, it was shown that the rank order of some algorithms for

a benchmark dataset might switch if they are ranked using reproduction angular

error instead of recovery angular error. In this chapter, we wish to divine whether

observers judge image reproduction that correlates with reproduction angular error

and/or the legacy recovery angular error.
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7.1 Introduction

The contributions of this chapter are: first, we design a new experiment, based on

image preference, which aims to evaluate whether reproduction or recovery error

best correlates with judgements concerning the accuracy of image reproductions.

Second, the experiment is implemented taking great care - and this is a first time,

to our knowledge - to produce photographically plausible reproductions.

The chapter is organised as follows. In Section 7.2, the psychophysics experiment

and the preparation of the data used in the study is explained. In Section 7.3, the

results from the experiment are analysed. The chapter concludes in Section 7.4.

7.2 Psychophysics Experiment Set up and Data

Preparation

7.2.1 Data Preparation

The images for our experiment are from the 200 images of the Canon EOS 600D

camera from the recently created NUS dataset [Cheng et al., 2014].

In our experiment, illuminant estimates are ‘divided out’ from the raw images.

Then, in a second step we apply a camera processing pipeline (in e↵ect mod-

elling colour correction, gamut mapping and tone correction [Ramanath et al.,

2005]). The colour mapping process, i.e. mapping the raw sensor values to their

corresponding RGB outputs, has been the subject of a number of studies (e.g.

[Grossberg and Nayar, 2003, 2004; Kim and Pollefeys, 2008; Chakrabarti et al.,

2009; Xiong et al., 2012; Kim et al., 2012]). However, most of those research are

concerned with radiometric calibration, which is the process of recovering scene

radiance from image intensities. For this experiment, we are interested in creating

a camera output look for the white balanced images generated when we divide out
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Figure 7.1: The simplified in-camera colour processing pipeline (from [Lin
et al., 2012] with a little modification). A single sparse LUT has replaced

several steps in the imaging pipeline.

the camera’s estimate. Li et al. [Lin et al., 2012] suggest a calibrated (trained)

sparse 3D lookup table (LUT), also known as lattice [Garcia and Gupta, 2009],

su�ces to map the raw sensor values from a particular camera to their correspond-

ing RGB outputs. Crucially, to a good approximation, the same lattice can be

used independent of the white point [Lin et al., 2012]. Using the calibrated lattice

for a specific camera we can render white balanced images as if they have been

passed through an in-camera colour processing pipeline like the simplified model

in Figure 7.1.

Here for calibrating the lattice we have used a random selection of 50 raw images

white balanced by the ground-truth illuminants and their corresponding output

JPG images captured by Canon EOS 600D camera from the NUS dataset. We

randomly select 50000 pixels from each image to generate the lattice. The above

sampling results in 2500000 points for training the lattice. In our experiment, the

dimension of the lattice is three ( for R, G and B colour channels), the boundaries

of the grid is set to be between zero and one and the size of the grid is 35 nodes in

each dimension. So, we solve for a 35⇥ 35⇥ 35 = 42875 lattice. Figure 7.2 gives

a visual illustration of calibrating the lattice for the Canon EOS 600D camera

based on a set of NUS dataset images captured by the same camera. Where for
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Figure 7.2: Lattice calibration for the Canon EOS 600D camera from the
NUS dataset.

Figure 7.3: The application of the lattice: x is the linear combination of the
bounded points ai in the input lattice and its corresponding output point y is
the same linear combination of the bounding points bi in the output lattice.

simplicity a 9⇥ 9⇥ 9 lattice is shown.

The optimisation to derive the lattice is presented in detail in [Garcia et al., 2012].

Once the lattice is calculated, given a raw shades of grey white balanced image the

lattice is applied on each pixel of the raw images to generate its corresponding JPG

equivalent. In Figure 7.3, we show the application of the lattice. Here, a point in

an input coordinate system (e.g. raw) is presented as a linear combination of the

rectangular region in which it falls (bounded by ai). On the right of the figure we

show the output lattice (bi). The output value is the same linear combination of

the output control points.

Figure 7.4 shows a few examples of images from Canon600D camera which are
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white balanced by the shades of grey algorithm and their equivalent JPG trans-

formation by the calibrated lattice. The first row of this figure are the raw white

balanced images, the images are raised to the 0.5 gamma value to make them

visible. The second row are the results of applying the trained lookup table to the

images in the first row. The last row are the actual JPG outputs from Canon EOS

600D. Note that the images in the second row look better that those in the first.

This is important. Often illuminant estimation experiments (in computer vision

or psychophysics) use raw images. Of course the actual camera outputs (third

row) look best. This illustrates that for these images the shades of grey algorithm

does not produce a reproduction as pleasing as that delivered by the camera’s own

proprietary algorithm.

Gamma correction or applying the lattice might e↵ect the appearance of the im-

ages. However the same function is applied by the cameras after white balancing

the image, regardless of white balanced method used and it improves the appear-

ance of images.

7.2.2 Monitor

The images are presented on a high resolution professional LCD Backlit monitor

(an HP DreamColor LP2480zx) with 1920⇥ 1200 pixels resolution. The monitor

uses both a true 30-bit panel and an RGB LED backlight, providing over one

billion possible colours and a wide colour gamut.

According to ISO 3664 standards, the calibration of the monitors for the psy-

chophysics experiment is necessary. The monitor was calibrated using Spyder4Elite

[spy, accessed Sept, 2016] prior to running the experiment. The calibration was

carried out in the same environment in which the experiment would later take

place. The experimental environment is a room illuminated with a dim light

source (to avoid eye strain) provided behind the monitor to avoid glare.
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Figure 7.4: Examples of raw to JPG transformation using the calibrated
lattice: The first row are the raw white balanced images by the shades of grey
algorithm. The second row are the results of applied lattice. The last row are
the actual JPG outputs from the camera (with the camera’s properly white

balanced algorithm).

7.2.3 Observers

All observers participated in the experiment have normal colour vision and normal

to corrected-to-normal visual accuracy (all observers were asked to declare any

visual deficiency including colour blindness). At the beginning of the experiment

the observers are allowed to adapt their vision for 30 seconds by staring at a

variegated grey screen. This adaptation period is necessary to allow the observer’s

vision to adjust to the viewing conditions. There were eight observers participating

in this experiment with their age ranging from almost 25 to 65. The group of

observers contained both male and female participants.

A diagram of experimental set up is shown in Figure 7.5.
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Figure 7.5: Set up for the psychophysics experiment.

7.2.4 Experimental Procedure

An observer is shown two pairs of images on a variegated grey background(like

the one shown in Figure 7.6). The first pair contains a ground-truth (based on the

physical white point) reproduction and that produced by algorithm a estimate.

We, respectively, denote the two images in the first pair It
1 and Ia

1. A second

image pair is calculated in the same way. A ground-truth image It
2 is produced

and that for a second illuminant estimation algorithm Ib
2. Note the scene in the

first image pair is di↵erent from the second and two di↵erent illuminant estimation

algorithms are used.

Figure 7.6 shows an example from our experiment. Top left and right (Ia
1 and

Ib
2) respectively are the reproduction delivered using the edge-based and pixel-

based gamut mapping algorithms. The other images (It
1 and It

2) are the ground-

truth reproduction. The images are selected carefully. Image Ia
1 is reproduced

by the illuminant estimation algorithm a has a lower reproduction error than

image Ib
2 reproduced by algorithm b (in this example the reproduction errors are,

respectively: 3.76� < 8.73�). Conversely, the recovery angular of algorithm a for

image Ia
1 is higher than the recovery error of algorithm b for image Ib

2 (in this
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Figure 7.6: Screen setup for the experiment.

case 4.15� > 3.46�). Seven pairs of images similar to the one in Figure 7.6 are

chosen for each two algorithms.

In the experiment, the observer is then asked which image pair appears more

similar. That is does Ia
1 look closer to It

1 compared with Ib
2 and It

2 (or vice

versa). Note the observers do not know which image is corrected using the ground-

truth illuminant and which by the estimate. We are interested in whether an

observer judges Ia
1 to be closer to It

1 or Ib
2 to It

2. If the former, the reproduction

error correctly predicts image reproduction. If the latter, it is recovery error that

predicts observer’s responses. The experiment is repeated for eight observers. Each

image representation is repeated twice with the ‘a’ and ‘b’ pairs shown respectively

left and right and the converse.

We compare four illuminant estimation algorithms in this experiment: 1st grey

edge, 2nd grey-edge, shades of grey and pixel-based gamut mapping; here, denoted

as GE1, GE2, SOG and GP respectively. Each algorithm is compared with the

rest and in each pair of comparisons seven pairs of images are used. For instance,

to compare 1st grey edge and 2nd grey-edge algorithm seven pairs of images are

shown to the observers where in each pair one image is corrected by the 1st grey
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edge and the second image is white balanced by 2nd grey edge. Each pair of pairs

has the ‘swapping property’ previously described. That is pair ‘a’ compared to

‘b’ can have lower recovery error and in reverse pair ‘b’ compared to ‘a’ has lower

reproduction error.

7.3 Results and Discussion

7.3.1 Results of Chi-square Test

The Chi-square test [Conover, 1999] is a statistical test commonly used to compare

observed data with the expected data. Here, the expected data is the number of

pairs in which the image corrected by algorithm a is better than the image cor-

rected by algorithm b according to the chosen metric. For instance if according to

reproduction angular errors of the seven pairs of images, algorithm a is predicted

to be better than algorithm b then the expected value would be seven. The ob-

served value is the number of pairs where algorithm a is preferred over algorithm

b by the observer. Chi-square is the suitable measure of the “goodness to fit”

between the observed and expected values.

The chi-square test is used here to attempt to reject the null hypothesis that the

observed and the expected data won’t fit or in other words are independent.

With the expected (e) and the observed (o) values known, the Chi-square is cal-

culated as the sum of the squared di↵erence between:

�2 =
(o� e)2

e
. (7.1)

It can be seen from the above calculation that it is intuitive to conclude that a

large di↵erence between the observed and expected values will result in accepting

the null hypothesis which the independency of the two. If the observers agree with
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the results by reproduction or recovery angular error, then the di↵erence should

be small and the null hypothesis will be rejected. Clearly if �2 is zero then the

expected and observed values are exactly the same and we can immediately reject

the null hypothesis. In general, for small �2 we can reject the null hypothesis

for some criterion amount we will not be able to reject the null hypothesis. This

criterion amount is found by consulting the statistical tables.

Formally, to be able to accept or reject the null hypothesis, the calculated Chi-

square value in Eq. 7.1 should be compared against the critical chi-square value

in the corresponding table (e.g. [Conover, 1999] ). The critical value is decided

from the table of chi-square for a desired significance level (e.g. 5% or 0.05).

If calculated chi-square value is greater than the critical chi-square value the null

hypothesis is accepted and the observed and expected data will not fit. Otherwise,

the null hypothesis is rejected and observers agree with the expected data. We

have eight observers in our experiment, so the number of samples (observations)

is eight. The critical chi-square value for seven degree of freedom with p = 0.05 is

14.07

In Table 7.1, the Chi-square values for the goodness of fitness between the ob-

servers’ data and the expected values by reproduction angular error can be seen.

Here, each cell of table contains two values (x, y), where i represents the num-

ber of pairs of images for which algorithm a performs better than algorithm b

according to reproduction angular error. The value j is the observers data, which

shows the number of comparisons in which the observer has preferred algorithm

a over algorithm b. For instance in the column indicated by GE1-GE2, the 1st

grey edge algorithm is compared against the 2nd grey edge algorithm. Based on

observer 1 for all seven pairs of images GE1 is better than GE2, or observer 3 has

agreed with the GE1 superiority over GE2 only for four out of seven pairs. The

expected number of pairs where algorithm a performs better than b according to

the reproduction angular error is for all the seven pairs. However, we found that

some observers were not consistent with their choices when they were shown the
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Table 7.1: Chi-square values for comparing the results by the observers and
the reproduction angular error. Each (x, y) represents (reproduction error, ob-
server’s data). (x, y) denotes there are x pairs for which the observer made a
consistent judgement and for y (y <= x) of these pairs the observer agreed with

the error metric.

GE1-GE2 GE1-SOG GE1-GP GE2-SOG GE2-GP SOG-GP

observer 1 (7,7) (6,5) (7,4) (7,7) (7,6) (6,4)

observer 2 (3,2) (4,1) (7,7) (7,6) (6,5) (7,6)

observer 3 (7,4) (7,5) (7,6) (7,6) (7,7) (7,7)

observer 4 (5,4) (5,4) (6,5) (5,5) (4,4) (5,4)

observer 5 (6,4) (7,7) (7,6) (7,5) (6,6) (7,6)

observer 6 (7,4) (6,5) (5,5) (5,5) (6,5) (3,2)

observer 7 (6,4) (6,6) (6,4) (7,7) (7,6) (7,6)

observer 8 (4,2) (5,4) (3,3) (6,4) (7,7) (6,4)

Chi-square 5.44 3.55 2.40 1.52 0.62 2.30

same pair for the second time. If that was the case, we excluded that pair from

the calculation of Chi-square for that specific observer. An example of such occur-

rence can be seen for observer 2, who has been consistent with his choices only for

three pairs when comparing GE1 and GE2 algorithms. Since we are comparing

four algorithms: GE1, GE2, SOG and GP, there are six columns of data which is

the number of possible combinations of two out of four algorithms.

A comparison between the critical chi-square value for eight observers (which is

14.07 with the significance of p = 0.05) and the ones calculated in Table 7.1 shows

there is no reason to reject the null hypothesis that the observed and expected

values match. In other words, the observers agree with the prediction of the quality

of the reproduced images by reproduction angular error.

Table 7.2 reports the same result but for comparison of the observers’ data with

the results by recovery angular error. Notice that the name of the algorithms

in this table is switched, i.e. GE1-GE2 in Table 7.1 has changed to GE2-GE1 in

Table 7.2. The high values of Chi-square in Table 7.2 for all six pairs of algorithms

reject the null hypothesis that the observers data match recovery angular error’s

prediction.
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Table 7.2: Chi-square values for comparing the results by the observers and
the recovery angular error. Each (x, y) represents (recovery error, observer’s
data). (x, y) denotes there are x pairs for which the observer made a consistent
judgement and for y (y <= x) of these pairs the observer agreed with the error

metric.

GE2-GE1 SOG-GE1 GP-GE1 SOG-GE2 GP-GE2 GP-SOG

observer 1 (7,0) (6,1) (7,3) (7,0) (7,1) (6,2)

observer 2 (3,1) (4,3) (7,0) (7,1) (6,1) (7,1)

observer 3 (7,3) (7,2) (7,1) (7,1) (7,0) (7,0)

observer 4 (5,1) (5,1) (6,1) (5,0) (4,0) (5,1)

observer 5 (6,2) (7,0) (7,1) (7,2) (6,0) (7,1)

observer 6 (7,3) (6,1) (5,0) (5,0) (6,1) (3,1)

observer 7 (6,2) (6,0) (6,2) (7,0) (7,1) (7,1)

observer 8 (4,2) (5,1) (3,0) (6,2) (7,0) (6,2)

Chi-square 22.44 31.55 34.40 40.52 42.62 32.30

To analyse whether there is an agreement between the observers [Gijsenij et al.,

2009a; Alfvin et al., 1997] the individual di↵erence from the mean of observations

have been calculated. For each observer, the correlation coe�cient of x/y ratio by

which the observer has agreed that algorithm a is better than algorithm b with

the average of the same ratio for all the observers is computed. For all the pairs

in Table 7.1 and all the eight observers the correlation coe�cients calculated vary

from 0.7 to 0.9 with an average of 0.8. Also, the correlation coe�cient between

the x/y ratios for the individual observers range from 0.6 to 0.9. The highest

agreement between the observers was for the GE2-GP pair of algorithms and the

lowest correlation was for the GE1-GE2 pair. This is expected as the 1st and 2nd

order grey edge algorithms (GE1-GE2 ) are instances of the same algorithm and

their performances are very close in many cases which makes the choice di�cult

for the observers.

7.4 Conclusion

Evaluation of illuminant estimation algorithms using the reproduction and re-

covery angular errors (in Chapter 4) shown there are sometimes disagreements
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between the two metrics regarding the ranking of a pair of algorithms. In this

chapter, a psychophysical study was conducted to investigate with which of the

two error metrics predicted the image preference judgements made by human ob-

servers.

The results of the experiments shows that in most cases the observers agree with

the evaluation by reproduction angular error. In other words, where according

to reproduction angular error algorithm a is performing better than b, in most

cases the observers make the same choice. Although, there are cases where the

observers disagree with the reproduction angular error’s evaluation. However,

the overall statistical analysis of the results using the Chi-square test shows the

observers data highly agree with the results by reproduction angular error.

Perceptual analysis of images in terms of accuracy of reproduced colours is a di�-

cult task since it could depend on many factors other than the accuracy of colours,

such as content, etc. In digital photography the aim is not always reproducing the

colours which are colourimetrically accurate but a reproduction of preference is

sometimes more desired. To this end, in the experiment performed in this chapter,

we also aimed to create a more photographic look for the raw images by passing

them through an actual camera pipeline. This will provide the observers in the

experiment with more natural photographic-look images and makes the task of

comparison easier for them. To our knowledge, this is the first time in a psy-

chophysics experiment concerning the quality of the colour corrected images that

the images are rendered to a photographic look before the experiment.



Chapter 8

A Hybrid Strategy

for Illuminant Estimation

Targeting Hard Images

We notice that the largest switches between reproduction and recovery angular

error were not for the mean and the median errors but rather for the max and

95% quantile errors. This is particularly important result. In general for computer

vision and computational photography applications, the illuminant estimation al-

gorithms in cameras work well. When they don’t work, the failure cases that we

notice, are for the images with the high recovery and reproduction errors. Specifi-

cally, the failure cases are for 95% and max errors. It is precisely these images that

modern day illuminant estimation algorithms seek to solve the problem for and

specifically for these images that we find that the ranking of algorithms change

remarkably when reproduction angular error is compared with recovery angular

error. This motivates us to study these images not by looking at the overall error

but the individual errors to see if there exist ‘hard’ images that are challenging

for multiple methods. Our findings indicate that there are certain images that

are di�cult for fast statistical-based methods, but that can be handled with more

125
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complex learning-based approaches at a significant cost in time-complexity. This

has led us to design a hybrid method [Zakizadeh et al., 2015] that first classi-

fies an image as ‘hard’ or ‘easy’ and then uses the slower method when needed,

thus providing a balance between time-complexity and performance. In addition,

we have identified dataset images that almost no method is able to process. We

argue, however, that these images have problems with how the ground truth is

established and recommend their removal from future performance evaluation.
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8.1 Introduction

In Chapter 2, we provided an overview of several illuminant estimation algorithms.

We also classified these algorithms into di↵erent categories. However, concern-

ing the complexity of the methods they can be roughly classified into two types:

statistical-based methods and learning-based techniques. As mentioned in Chap-

ter 2, statistical-based methods (e.g. [Land et al., 1977; Buchsbaum, 1980; Van

De Weijer et al., 2007a; Finlayson and Trezzi, 2004; Gijsenij et al., 2012; Cheng

et al., 2014]) directly estimate the illumination from statistics computed from the

input image. These methods are fast and work irrespective of the type of cam-

era used. Their performance, however, is generally not as good as learning-based

methods. Learning-based methods (e.g. [Forsyth, 1990; Finlayson et al., 2001;

Gijsenij and Gevers, 2007; Gehler et al., 2008; Gijsenij et al., 2010; Chakrabarti

et al., 2012; Finlayson, 2013; Joze and Drew, 2012]) exploit the availability of train-

ing images that have labelled ground truth illumination. Learning-based methods

generally give superior results over statistical methods, but at the cost of higher

running-times and the need to be trained per camera. The selection of an il-

lumination estimation method is generally guided by the need for performance

vs. time-complexity, e.g. most onboard camera white-balance algorithms still use

statistical-based methods.

The methods of performance evaluation of illuminant estimation algorithms and

how the errors are reported for a benchmark dataset were covered in Chapter 3.

We mentioned how di↵erent aggregate performance errors, such as mean, median,

trimean and quantiles, are given over the whole dataset. The routine reporting of

these statistics provides some insight to a method’s performance across an entire

dataset. Interestingly, however, none of the prior works have examined if there is

any commonality in these statistics across the images in the dataset. For example,

it is unclear if the bottom 25% results have shared images across di↵erent methods.

This would be interesting finding as it would indicate the existence of images that
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multiple methods consistency perform poorly on. We term these images as ‘hard

images’. This lack of analysis serves as the impetus for the work in this chapter.

In this chapter, we describe an analysis on 12 leading illumination estimation al-

gorithms belonging to both statistical- and learning-based methods. In particular,

we enumerate over all combinations of five methods out of 12 to find the set of im-

ages where at least the majority (three or more) methods fail. We consider these

images to be ‘hard’ for this subset of methods. Our findings indicate that there

are, indeed, sets of hard images for di↵erent subsets (e.g. see Figure 8.1). More

importantly, these subsets can be grouped depending if their methods belong to

statistical-based or learning-based. To this end, we found that there are a number

of ‘hard’ images for the fast statistical-based methods that can be handled by more

complex learning-based approaches . This led us to develop a hybrid estimation

approach that classifies the image as hard or easy depending on the results of

the statistical-based methods. In the case an image is categorised as hard, it is

likely that the results of the simple camera on-board white balancing algorithms

are incorrect. Such hard images can be saved as raw on the camera for later

o↵-line processing by slower, but more accurate, learning-based methods, such as

the exemplar-based method [Joze and Drew, 2012]. This leads to better overall

illumination estimation performance while reducing the overall time-complexity.

Our analysis also has found that certain images in a well established benchmark

dataset are hard for all methods. On closer examination we found that these im-

ages have issues that makes establishing the ground truth di�cult and advocate

for their removal for future evaluation.

The chapter is organised as follows: In Section 8.2, we analyse the estimates

by statistical-based algorithms on Gehler-Shi dataset to see if there exist set of

images where the algorithms perform poorly on (‘Hard’ images). In Section 8.3, we

introduce the hybrid strategy for detecting hard images. Section 8.4 explains the

experiments and results. The removal of certain images which we think should be
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hard image hard image easy image

Figure 8.1: Examples of images from the Gehler-Shi dataset [Gehler et al.,
2008; Shi and Funt, 2010] considered hard and easy based on our analysis of the

performance of 12 di↵erent methods on the entire dataset.

removed from Gehler-Shi dataset is discussed in Section 8.5. Section 8.6 concludes

the chapter.

8.2 Analysing Estimates by Algorithms on a Com-

mon Dataset

Gijsenij et al. [Gijsenij et al., 2011] performed a thorough evaluation of 15 methods

on the Gehler-Shi dataset [Gehler et al., 2008; Shi and Funt, 2010]. Their work

provided results for each of these 15 methods for each image in dataset. We use

this comprehensive results for our analysis in this chapter.

From Gijsenij et al. [Gijsenij et al., 2011], we select 12 algorithms that have re-

ceived the greatest attention in the published literature. We divide them into two

groups. Statistical-based methods including: S1 = shades of grey [Finlayson and

Trezzi, 2004], S2 = grey world [Buchsbaum, 1980], S3 = 1st order grey edge [Van

De Weijer et al., 2007a], S4 = 2nd order grey edge and S5 = white-patch [Land

et al., 1977]. Learning-based methods including: L1 = exemplar-based [Joze and

Drew, 2012], L2 = color constancy using natural image statistics [Gijsenij and

Gevers, 2007], L3 = edge-based gamut, L4 = pixel-based gamut, L5 = intersection-

based gamut [Forsyth, 1990; Gijsenij et al., 2010], L6 = Bayesian method [Gehler

et al., 2008] and L7 = spatial correlation [Chakrabarti et al., 2012].
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As previously mentioned, Gijsenij et al. [Gijsenij et al., 2011] provides the complete

results (estimated illumination) by each 12 method for each image in the Gehler-

Shi dataset. This dataset contains a total of 568 images involving two cameras, a

Canon 1D (86 images) and a Canon 5D (482 images). Because the learning-based

methods are trained per-camera, we focus on the Canon 5D given that it has the

most images. This gives us a total of 482 images with 12 results, corresponding to

the associated methods S1-5 and L1-7.

Our analysis is intended to find images that are collectively hard for multiple

methods. In this case, ‘hard’ images are those where multiple methods are unable

to estimate the illumination within some error threshold. In this chapter, we use

nine degrees error as this threshold, meaning that the estimated illumination has at

least nine degrees (or more) angular di↵erence from the ground truth illumination.

Nine degrees is used as it represents a threshold that categorises typical error of

the bottom 25% for most methods as reported by Gijsenij et al. [Gijsenij et al.,

2011]. Thus, we are comparing the images that are reported to give the worse

performances for the 12 methods.

When we examine which images in the dataset that have at least nine degrees

of error for all 12 methods, we found there are only a few images (this finding

is discussed in more detail in Section 8.5). This means that there is significant

variation in the images that di↵erent methods perform poorly on. To provide a

more manageable grouping, we consider all combinations of 5 methods from the

12 total (i.e. 12 choose 5). In particular, we enumerate all five combinations of the

12 methods which gives total of 792 combinations. Among these combinations, we

are interested in those for which at least three out of five methods introduce errors

higher than our threshold. This is illustrated in Figure B.1 which shows one out

of the 792 combinations. The columns in Figure B.1 represent a unique image in

the dataset. The rows represent the five di↵erent methods tested. A white-box

means a method has failed for this particular image (i.e. produces a high error).

A black-box means the method is successful. Three or more empty boxes for a
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Combinations with most ‘hard’ images Combinations with least ‘hard’ images
Methods failed

im-
ages

Time (m) Methods failed
im-
ages

Time (m)

S2 S3 S5 L3 L7 84 1.5 L1 L2 L4 L6 L7 31 12.6
S2 S3 S5 L3 L6 80 9.8 S4 L1 L2 L5 L7 27 3.7
S2 S3 S5 L3 L4 78 1.8 S1 S4 L1 L2 L6 24 11.2
S2 S3 S4 S5 L3 73 1 S2 L1 L2 L6 L7 22 11.7

S1 S2 S3 S4 S5 69 0.36 S2 S4 L1 L2 L7 19 2.87
S1 S2 S4 S5 L4 64 1.2 S2 S4 L1 L6 L7 18 11.1

Table 8.1: The five combinations out of 12 illuminant estimation algorithms
in terms of number of images they fail for. We have highlighted the fastest (on
the left) and slowest (on the right) combinations. Running time given are per

image.

particular column represents an image where the majority of methods has failed.

This is considered a ‘hard’ image for this particular combination of methods. For

the example shown, the combination are methods (S1, S4, L1, L2, L6), and this

set results in 24 hard images.

This procedure is performed for all combinations of 5 methods out of the 12. For

each combination, we record the number of hard images per combination and sort

the list of combinations based on the number of hard images. Table 8.1 includes the

combinations with most and least ‘hard’ images. Almost all combinations with

most ‘hard’ images include three or more simple statistical-based algorithms. The

combinations with least ‘hard’ images are mostly dominated by learning-based

methods.

Each method examined has a time complexity associated with it. The work by

Gijsenij et al. [Gijsenij et al., 2011] did not report this time-complexity, how-

ever, more recent work has examined most of the same methods and reported the

running-time [Cheng et al., 2014]. The only exception is that of the exemplar-

based method (L1). For this method, we estimate its time to take approximately

twice that of the gamut-based methods based on the running-time reported by

the author [Joze, 2013]. The fastest and slowest combinations are highlighted in
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Figure 8.2: The hard images from the Gehler-Shi dataset [Gehler et al., 2008;
Shi and Funt, 2010] for the five statistical-based methods. L1-L7 rows are the

performance of the learning-based methods.

Table 8.1. The statistical-based methods in general have a much faster running-

time than the learning-based methods. For example, the highest number of hard

images is 84 that is achieved using the combination in the first row of section

‘combinations with most hard images’ in Table 8.1. This set of methods requires

roughly 1.5 minute per image to run all 5 methods. The overall run-time is mainly

attributed to the two learning-based techniques: (L3) edge-based gamut [Gijsenij

et al., 2012] and (L7) spatio spectral [Chakrabarti et al., 2012].

The fifth largest number of failure images (out of 792 combinations) is for the set

of the five statistical methods (S1-S5). This is highlighted on the left in Table 8.1.

This only requires approximately 0.36 minutes per image and is the fastest of all

the combinations. This is a very interesting finding. It shows that the statistical-

based methods tend to collectively fail on the same images in the dataset. This

means that we have a chance to examine these images to see if we can build a

classifier that can predict if an image is ‘hard’ or ’easy’ for this set of methods.

The question now is can we find a method that performs well on the hard images

for the statistical-based approaches.

Given the combination of five statistical-based methods and their associated hard

images, we examine the performance of the learning-based methods. Figure 8.2

shows the results. The diagram shows all 69 of the hard images (where at least

three or more of the learning-based methods fail). The rows below show the results
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Figure 8.3: Computational time vs. performance of illumination estimation
methods. The top plot shows the minimum angular error vs. computational
time for the 69 hard images in Figure 8.2 and the bottom plot shows the me-
dian error vs. computational time for the same images. Although some fast
algorithms such as white patch or grey world have low minimum angular errors
but their medium error is very high. Among learning-based methods which are
slower, exemplar-based has the lowest minimum and median angular error.
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of the L1-L7 learning-based methods. It is interesting to note that there are some

images considered hard for the statistical-based method that all learning-based

method are successful on. Overall, however, the L1 (exemplar-based [Joze and

Drew, 2012]) method does particularly well for the hard images, able to produce

a better result on all except a few of the images.

Figure 8.3 shows the error vs. computational time for the 69 hard images in

Figure 8.2. In the top plot the minimum angular error for the algorithms versus

the algorithms’ computational time for all the images is shown. The bottom plot

shows the median errors for the same algorithms and the same images. Although

some statistical based methods (which are fast) such as white patch algorithm have

low minimum angular errors but their median error is very high. Exemplar-based

algorithm has a very low minimum angular error (0.2�) and its median error is still

lower than all the methods. Of course learning-based methods are time consuming

and their usage is limited to a more powerful computational system.

Based on the analysis in this section, we have developed a hybrid method that first

applies the statistical based approaches. As discussed in the next section, from

this we can classify if the image is hard or easy. For images that are classified

as hard, we propose that they are saved as raw (on the camera) for later to be

processed o↵-line by learning based methods such as the exemplar-based (L1).

8.3 Hybrid Method for Targeting Hard Images

In this section, we describe our framework to classify images as hard or easy and

then process them accordingly. As discussed in Section 8.2, an image is labelled as

hard if at least three out of five simple statistical-based algorithms have an error

beyond nine degrees. Nine degrees of angular error can be a reasonable threshold

for an image to be considered hard. This can be derived by looking at most

of the 25% worst performance errors reported for several illuminant estimation
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Figure 8.4: An example of 25% worst errors reported in the literature (table
from [Gehler et al., 2008; Shi and Funt, 2010])

algorithms on a set of real images like Gehler-Shi dataset [Gehler et al., 2008; Shi

and Funt, 2010]. An example of such an evaluation table is shown in Figure 8.4.

In the table take from [Cheng et al., 2015a], we can see that the average of the 25%

worst errors (the highlighted column) of all the illuminant estimation algorithms

used in this evaluation is around nine. We label an image as easy if all five methods

succeed, i.e have an error below the threshold. We set the threshold for easy images

as eight degrees which is slightly lower than the hard images threshold. We use

these labelled images as training data to build a classifier.

8.3.1 Features and Classifier

We have experimented with several image features to be used in designing a clas-

sifier to label a new input image as either hard or easy. One feature commonly

used in learning-based colour constancy methods is the rg chromaticity values

([r, g] = [R,G]/(R + G + B)). These are typically used to compute a histogram

over the r and g values as features. We found, however, that the distribution of

the rg values had little correlation to image being labelled hard or easy. We also
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examined the chromaticity values with respect to the rg chromaticity curve of the

ground-truth illuminants (i.e. the locus of ground-truth illuminants in chromatic-

ity space). Again, we found that these had little correlation to whether an image

was labelled as hard or easy.
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Figure 8.5: The top two diagrams show the centroids of five estimated illu-
minants for hard and easy images. The bottom two diagrams are the selected
illuminants out of five estimations with median angle from the centroid. The

features for easy images form a cluster in both cases.

The lack of success with chromaticity values led us to examine features defined in

the full 3D RGB space. In particular, we looked at the mean (centroid) location

of the five estimated illuminants provided by the statistical methods (S1-S5). Fig-

ure 8.5 (top) shows the distribution of these centroid of the estimated illuminants

for a set of hard (red) and easy (blue) images from Gehler-Shi dataset. We can see
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that these form two distinct clusters of points. We also calculated the angle be-

tween each of five estimated illuminants and the centroid of the estimates. Among

five estimates we selected the one with the median angle from the centroid. The

points in the last two plots of Figure 8.5 (bottom) belong to the selected esti-

mated illuminants. While there is a discernable pattern in the data, it is not as

distinguishable as that with the the clusters of centroid.

Based on the observation in Figure 8.5, we experimented with classifiers using five

di↵erent features: 1) The centroid of the five estimated illuminants; 2) the esti-

mated illuminant selected out of the five estimates with the median angle from the

centroid; 3) feature 1 and the standard deviation of the five estimated illuminants;

4) feature 2 and the standard deviation of the five estimated illuminants; and 5)

the standard deviation of the five estimated illuminants. The features were used to

train a support vector machine (SVM) [Cortes and Vapnik, 1995] classifier based

on the implementation of Chang and Lin [Chang and Lin, 2011].

Table 8.2 shows the overall accuracy of the SVM classifier with all the features as

well as how accurate the model classifies hard and easy images. We found that

the simple centroid feature produced the best results over all the five features and

use it in our overall framework.

Feature Overall accuracy Hard image
accuracy

Easy image
accuracy

1. Centroid 93.6% 85% 96.6%
2. Median from centroid 86.7% 68.3% 94.3%
3. Standard deviation
(std)

82% 42.3% 95.9%

4. Centroid + std 89.7% 68.1% 95.9%
5. Median + std 85.4% 59.2% 94.7%

Table 8.2: Performance of the SVM classifier with di↵erent features.

Figure 8.6 shows the receiver operating characteristic curve which plots the true

positive rate (TPR = TP
TP+FN

, where TP is true positive and FN is false negative)

against the false positive rate (FPR = FP
FP+TN

, where FP is false positive and TN
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is true nagative) at various threshold settings. In this case, the curve shows the

trade-o↵ between the accuracy of the classifier in classifying hard images (rate of

images correctly classified as hard) versus the classifier’s error (probability of an

easy image being returned as a hard). The value one on the axis represents 100%

accuracy, 0.5 means 50% and so on.

Figure 8.6: The receiver operating characteristic curve which shows the trade-
o↵ between the rate of hard images being truly classified as hard and the rate

of images being falsely classified as hard.

8.3.2 Overall Procedure

The overall framework of our hybrid strategy can be seen in Figure 8.9. For a given

input image, its illumination is estimated by the five statistical-based methods

(S1-S5). The centroid (mean) of the five estimates is calculated and used with the

SVM to predict if the image is hard or easy. If the image is classified as hard, we

use a learning-based method such as the exemplar-based method [Joze and Drew,

2012] to process the image to obtain the final illumination estimate.
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If the image is classified as easy, we have five estimates to choose from. A straight-

forward option would be to use the average of these estimations. This is reported

in our experiments in the next section. However, another option is to use this

information to get a better prediction of the illuminant. In particular, the recent

‘corrected moments’ work by Finlayson [Finlayson, 2013] showed that a correction

matrix can be pre-computed using the ground-truth illuminants from the training-

data to correct the estimates of the existing simple derivative-based statistical

methods. In this case, we can use the result of the two derivative-based methods

S3 and S4 (1st grey edge and 2nd grey edge) to build the correction matrix. We

found this approach gives notably better results over using the average of the S1-S5

scores. This is also reported in the experiments in the following section.

8.4 Experiments and Results

We have tested our hybrid strategy on the Gehler-shi [Gehler et al., 2008; Shi

and Funt, 2010] dataset using di↵erent features mentioned in Section 8.3. To

generate a set of labelled data we categorise hard and easy image based on their

thresholds (here we set eight degrees for easy images and nine degrees for hard

images as explained in Section 8.2). Out of 482 images of Canon 5D from Gehler-

shi [Gehler et al., 2008; Shi and Funt, 2010] dataset, this results in 233 labelled

images. The sets of training and test images are made by 3-fold cross validation,

i.e. each fold has 155 training and 78 test images. The SVM classifier based on the

‘centroid’ feature is built on the training set and the accuracy of it is examined on

the test images. The model’s performance on this set of 78 test images showed an

accuracy of 93.6% with 85% for classifying hard images and 96.6% for classifying

easy images. Table 8.3 shows the result of the model applied on a set of unlabelled

images.

The performance of the five statistical methods (S1-S5) for all images are shown

in the first row of the Table 8.3. The L1 column shows the error of exemplar-based
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method for all images. The exemplar-based has an overall good performance for

all images but is significantly slower than the S1-S5 methods combined.

In our hybrid algorithm, we use our SVM to classify the input images. In the

first column of the proposed section of Table 8.3 the average of statistical-based

methods is used as our estimate. By excluding hard images we have avoided the

high error of S1-S5 that is obtained when applied to all images. It is interesting to

note that median of the average of S1-S5 is less than the median of the individual

methods. As previously mentioned, we also use the corrected-moment illuminant

estimation method [Finlayson, 2013] to further improve the results. This method

uses a cross validation procedure to build a correction matrix that takes the results

from the S3 and S4 estimates and refine the result based on the ground-truth illu-

minants of training data. Table 8.3 shows the (corrected) algorithm performance.

This allows us to get an additional gain on the performance of the statistical

based methods. Note that the approach in [Finlayson, 2013] still has trouble on

the hard images and the use of the exemplar-based method is significantly better

and therefore necessary for the hard images.

Our results show that this strategy of using fast statistical-based methods can give

us good performance on the easy images, while identifying the di�cult images

and passing them to a slower, but more accurate learning-based approach. While

the overall running-time is slow due to the use of the learning-based method,

our approach can reduce this by almost half while giving similar performance.

Moreover, the results for easy images can be obtained in a matter of seconds.

The list of images from Gehler-Shi dataset classified as hard are given in Ap-

pendix C.
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S1 S2 S3 S4 S5 L1 Proposed
average corrected

All 4.37� 7.04� 4.81� 4.73� 6.46� 2.4�

Easy 3.5� 6.9� 4.26� 4.7� 4.7� 2.1� 3.42� 2.4�

Hard 6� 7.04� 6.1� 4.8� 12.9� 2.91� 2.91� 2.91�

Time
(per
image)

3.4s 1.8s 6.8s 8s 1.85s 1.96m 21.9s + (1.96m per hard image)

Time
(total)

18.5m 9.8m 36.9m 43.5m 10m 10.7h 4.5h

Table 8.3: The median errors of the proposed hybrid framework treating
hard and easy images di↵erently. In comparison we show the errors of fast
statistical algorithms (S1 to S5), as well as time complexity of exemplar-based

method [Joze and Drew, 2012] (L1).

8.5 Removal of False Hard Images

As mentioned in Section 8.2 we found nine images that almost all methods failed

on from the Gehler- Shi [Gehler et al., 2008; Shi and Funt, 2010] dataset. We were

keen to see if there were some characteristics to the hard images that no method

could resolve, however, on careful inspection of these images we realise it was due

to the position of the colour chart in the scene. Figure 8.7 shows the removed

images.

In all of these images, the colour checker board that is used to provide the ground

truth illumination is placed under a di↵erent illumination than the rest of the

scene. This means the scene is lit by two di↵erent illuminations, but in the cases

of these nine images, the dominant illumination arguable does not fall on the

colour checker board. These images do not represent fair test cases and should be

removed as they introduce negative results for evaluation and are erroneously used

by learning-based methods for training. We have provided an updated version of

the Gehler-Shi [Gehler et al., 2008; Shi and Funt, 2010] which excludes these nine

images and their measured ground truth illuminations1.

1
http://colour.cmp.uea.ac.uk/datasets/GehlerFalse.html

http://colour.cmp.uea.ac.uk/datasets/GehlerFalse.html
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Figure 8.7: Images that all methods incorrectly estimate the illumination on
from the Gehler-Shi dataset [Gehler et al., 2008; Shi and Funt, 2010].

8.6 Conclusions

This chapter has analysed the performance of multiple colour constancy methods

to examine if methods fail on the same images. As far as we are aware, this is

the first work to examine the relations of the hard images across di↵erent colour

constancy methods.

Our analysis revealed that there are common ‘hard’ images for subsets of meth-

ods. One of these subsets with a large number of hard images is composed of

all fast statistical-based colour constancy methods. We also observed that there

exist some learning-based methods that give excellent performance on this set of
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hard images, but at a significant cost in running-time. Based on these observa-

tions, we proposed a hybrid method that classifies an image as hard or easy and

then processes it accordingly. This allows easy images to be processed quickly.

Easy images white-balancing could even be performed onboard the camera itself.

For the images classified as hard, learning-based methods such as the exemplar-

based method [Joze and Drew, 2012] are applied to give good results. We note

that learning-based methods will continue to improve in terms of performance

and speed. Recent work by Bianco et al. [Bianco et al., 2015] and Cheng et

al. [Cheng et al., 2015c] provided similar estimation performance to the exemplar-

based method (L1) used in our work, but at a significantly faster running-times.

These methods can be easily incorporated into our overall framework’s running

time, however, we note that learning-based methods will still need to be per-

formed o↵-line and therefore require the determination of which images are ‘hard’

and require such o↵-line processing.

Our analysis has also identified nine images in the widely used Gehler-Shi [Gehler

et al., 2008; Shi and Funt, 2010] dataset that were problematic for all 12 methods

we examined. We have found that these images have problems with how the

ground-truth is established and we recommend their removal from the dataset for

the future studies.
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Chapter 9

Conclusion and Future Research

This chapter summaries the contributions of this thesis including the analysis of

flaws by recovery angular error metric for illuminant estimation. Further a new

metric, reproduction angular error, for illuminant estimation is proposed which is

more inline with the reproduction of white balanced images. Other contributions

include a psychophysical study for relating performance metric and human ob-

server preference and finally a proposed hybrid method of illuminant estimation

for detection of images which are hard for most illuminant estimation algorithms.

Finally, the possible future research directions are discussed.

9.1 Summary

This thesis has contributed to the performance evaluation of illuminant estimation

algorithms. Considering the large body of literature in illuminant estimation and

proposal of new methods every year, the evaluation and comparison of illuminant

estimation algorithms is of great importance.

146
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Chapter 1 provided a brief background on the problem of illuminant estimation.

In Chapter 2 the background of image formation which is often used when dis-

cussing illuminant estimation is presented and a illuminant estimation algorithms

are surveyed. Existing benchmark datasets used for illuminant estimation was

presented in Chapter 3.

The number of illuminant estimation algorithms proposed over years and the fact

that the topic is still of interest to the computer vision researchers today predi-

cates the need to evaluate the performance of the algorithms. The reliability of

the most widely used metric in illuminant estimation, the recovery angular error,

was re-examined in this thesis. It was demonstrated that this metric is flawed and

so its adoption could lead to misjudgement about the performance of an algorithm

depending on the lighting condition. The same scene viewed under di↵erent lights

with the illuminant estimated with the same algorithm delivers the same repro-

duction (when the light colour is divided out) but the recovery angular error can

vary. It was shown that the range of recovery angular error is very large. For in-

stance certain lights like cyan, magenta and yellow can induce large recovery error,

but red, green and blue lights often have smaller errors. Reproduction angu-

lar error, which is an improvement of recovery angular error was proposed as a

solution to the flaw in Chapter 4. Reproduction angular error measures the angle

between the reproduced white surface by the ground-truth illuminant and the one

by the estimate of an algorithm. The performance of a wide range of illuminant

estimation algorithms were re-evaluated for di↵erent colour constancy benchmark

datasets. The results and their analysis by di↵erent statistical tests are provided

in Chapter 5. Further, the correlation between the two metrics, reproduction and

recovery angular errors, was studied for di↵erent scenes and the same scenes with

di↵erent illuminants. The analysis showed where the scenes are the same and the

illuminant di↵ers, there is hardly any correlation between the two metrics. The

correlation between the two metrics is stronger for di↵erent scenes.

Studying the state of the art on performance evaluation of illuminant estimation
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algorithms, it is felt that there is a gap for evaluation methods based on reproduced

colours rather than measuring the di↵erence between the reproduced white by the

estimated illuminant and the ground truth or the di↵erence between the estimated

and ground truth illuminants. In Chapter 6, a novel framework is introduced to

fill this gap which evaluates illuminant estimation algorithms based on a palette

of colours. The colour di↵erences between the actual and reproduced colours

are calculated using the CIE lab colour di↵erence formula. We found a strong

correlation between the errors of CIE lab and reproduction angular errors which

mean reproduction angular error can be used as a proxy.

The psychophysics study conducted in Chapter 7 demonstrated a relatively strong

correlation between the reproduction angular error and human perception. The

study was mainly set up to investigate whether the observers agree with the

switches in the ranking of an algorithms pair estimating the illuminant of a pair

of images. The experiment showed that the observers in most cases agree with the

rank order given to the pair of algorithms by reproduction angular error.

Most of research in illuminant estimation, has been focused on a summary of

statistics for performance of the algorithms over a benchmark dataset. None of

the prior works have examined if there is any commonality in these statistics across

the images in the dataset. A hybrid framework is proposed in Chapter 8 which

recognise images for which most of simple and widely-used algorithms fail. Many

recent algorithms are learning-based techniques that due to their complexity might

be suitable as an o✏ine solution rather than an on-board colour constancy method.

Using the proposed hybrid strategy, the images which require further processing

by complicated techniques can be labeled in a camera.
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9.2 Future Research

We propose the reproduction angular error is a great improvement over the mostly

used existing method (recovery angular error) and should be adopted by the com-

munity for the evaluation of illuminant estimation algorithms in the future work.

Moreover, if a new metric is used then there is potential for algorithm development

whose performance optimises that metric.

Regarding the hybrid strategy for detecting hard images, we are keen to extend

our idea to additional colour constancy datasets. Currently, we were only able

to apply this approach to the Gehler-Shi dataset as it has su�cient number of

images. More recent datasets (e.g. NUS 9-camera) have more overall images, but

fewer images per camera (only around 200 images per camera). We did attempt

to apply this approach to the older Greyball dataset [Ciurea and Funt, 2003] but

found the dataset is inappropriate given that it is low-resolution video footage

(320⇥240) and is not properly linearised. We also found that this dataset had a

large number of hard images due to improper position of the Grey-ball used for

the ground truth. This points to the need of additional datasets in the colour

constancy community and is an area which can be focused on for future work.



Appendix A

�E2000 Colour Di↵erence Formula

CIEXYZ tristimulus values of a colour is converted to its corresponding CIELab

values as:

L = 116f(Y/Y n)� 16 (A.1)

a = 500(f(X/Xn)� f(Y/Y n))

b = 200(f(Y/Y n)� f(Z/Zn))
8
>><

>>:

f(x) = x1/3 if x > .008856

f(x) = 7.787x+ 16/116 if x  .008856

Here, Xn, Yn and Zn are the CIE XYZ tristimulus values of the reference white

point.

The �E2000 colour di↵erence [Sharma et al., 2005] between the two colours L1

a1 b1 and L2 a2 b2 is calculated as:

�E00 =

r
(
�L0

kLSL

)2 + (
�C 0

kCSC

)2 + (
�H 0

kHSH

)2 +RT
�C 0

kCSC

�H 0

kHSH

(A.2)
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where kL, kC and kH are usually unity, and

�L0 = L1 � L2 (A.3)

�C 0 = C 0
1 � C 0

2 (A.4)

where C 0
1 and C 0

2 are defined as:

C 0
1 =

q
a01

2 + b21 and C 0
2 =

q
a02

2 + b22 (A.5)

and a0i is defined as:

a0i = ai +
ai
2

0

@1�

s
C

7

C
7
+ 257

1

A where C =
C1 + C2

2
(A.6)

We define �H as:

�H 0 = 2
p
C 0

1C
0
2 sin(�h0/2) (A.7)

where:

h0
1 =

8
<

:
tan�1(b1/a01) tan�1(b1/a01) � 0

tan�1(b1/a01) + 360� tan�1(b1/a01) < 0

h0
2 =

8
<

:
tan�1(b2/a02) tan�1(b2/a02) � 0

tan�1(b2/a02) + 360� tan�1(b2/a02) < 0
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H 0 =

8
<

:
(h0

1 + h0
2 + 360�)/2 |h0

1 � h0
2| > 180�

(h0
1 + h0

2)/2 |h0
1 � h0

2|  180�

Further SL, SC and SH are defined as:

SL = 1 +
0.015(L

0 � 50)2q
20 + (L

0 � 50)2
L
0
= (L1 + L2)/2 (A.8)

SC = 1 + 0.045C
0

C
0
= (C 0

1 + C 0
2)/2 (A.9)

SH = 1 + 0.015C
0
T (A.10)

where

T = 1�0.17 cos(H
0�30�)+0.24 cos(2H

0
)+0.32 cos(3H

0
+6�)�0.20 cos(4H

0�63�)

Finally:

RC = 2

vuut C
07

C
07
+ 257

(A.11)

RT = �RC sin(2�✓) (A.12)

where
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�✓ = 30 exp

8
<

:�
 
H

0 � 270�

25

!2
9
=

;

If the colour values are initially provided in RGB they need to be converted to

XYZ. To convert the values from RGB to XYZ (and vice versa) the colour profile

of the device captured (e.g. a Sony camera) or displaying (an HP monitor) the

RGB colours should be know. For instance, for an experiment involving displaying

images on a monitor, the monitor can be set to display colours with an sRGB ICC

profile [Consortium et al., 2004]. In this case, the conversion will be a mapping

between sRGB and XYZ.

Or where the calculations require mapping the RGB values captured by a camera

(eg. Sony-DXC-930) to the XYZ values, the mapping between the RGB values and

the corresponding XY Zs can be solved for so the camera sensitivity functions (if

known) be fit to theirXY Z corresponding values of the CIE 1931 Colour Matching

Functions (CMFs)[Wyszecki and Stiles, 1982a].



Appendix B

CIE 1931 Chromaticity Diagram

Figure B.1: CIE 1931 chromaticity diagram.
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Appendix C

List of Images Classified as Hard

by Hybrid method
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Table C.1: The list of images from Gehler-Shi dataset classified as hard by
the hybrid algorithm presented in Chapter 8 (all the images belong to Canon
5D camera, although the image numbers are as they appear in the dataset).

112 249 387 498

123 254 390 499

137 296 394 508

146 297 399 519

175 315 401 521

192 321 408 522

194 324 409 523

200 327 412 534

202 333 413 550

213 336 448 551

214 338 452 553

215 339 460 556

241 352 464 557

243 363 467 559

244 380 480 566

248 385 483 568
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