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Abstract
The manipulation of matter with electromagnetic radiation is a capacity that
has been known for over a century. However, the prominence of such optical
effects only grew rapidly following the invention of optical tweezers in the
1980s. While both the original theory and the early trapping techniques are
based on the radiation force, optical tweezing uses the gradient force. This
paper aims to differentiate between these two clearly distinct types of optical
forces, which are sometimes confused in the literature. We also discuss three
completely separate forms of optical torque that can be applied to a particle,
also due to an electromagnetic field. These involve the transfer of either spin or
orbital angular momentum from the beam to the particle, depending on the
character of the light, or the often overlooked alignment effect that can act on a
cylindrical particle due to a gradient force.

Keywords: optical trap, optical tweezers, optical force, optical manipulation,
classical electrodynamics, quantum electrodynamics, photonics

(Some figures may appear in colour only in the online journal)

1. Introduction

The knowledge that matter can be manipulated by light was first put on a firm theoretical
basis in the late 19th century. Maxwell and Bartoli [1, 2] determined that light carries linear
momentum, which can be transferred to a particle—and as a result, the particle trajectory can
be altered by the presence of the light. In 1901, experimental confirmation was given by

European Journal of Physics

Eur. J. Phys. 38 (2017) 034008 (17pp) https://doi.org/10.1088/1361-6404/aa6050

Original content from this work may be used under the terms of the Creative Commons
Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the

author(s) and the title of the work, journal citation and DOI.

0143-0807/17/034008+17$33.00 © 2017 European Physical Society Printed in the UK 1

mailto:david.andrews@physics.org
https://doi.org/10.1088/1361-6404/aa6050
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6404/aa6050&domain=pdf&date_stamp=2017-03-08
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6404/aa6050&domain=pdf&date_stamp=2017-03-08
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Lebedev [3], and also by Nichols and Hull [4]. Despite this major breakthrough, it was not
until the arrival of the laser in the 1960s that production of such a radiation force with
experimentally meaningful magnitude became possible. An experiment by Ashkin was the
first to reveal that laser beams could controllably manipulate particles of matter through the
radiation force [5]. However, the associated levels of light intensity—unattainable without the
narrow beam-width of a laser—can lead to another previously unknown form of force. This is
known as the gradient force, and it is the basis for the optical tweezer technique [6].

The rapidly burgeoning research literature in this area has unfortunately become replete
with an unusual amount of confusion. There are wide variations in terminology, and classical
descriptions of theory are frequently vague or sketchy. In some instances research papers will
occasionally speak of radiation forces when they mean gradient forces, or vice-versa, or may
not even distinguish between the two different forces at all. For example, a highly cited paper
on optical pulling forces—which are clearly related to radiation forces—provide expressions
that seemingly correspond to the gradient force [7]. Such issues of confusion can arise due to
a lack of clarity over the nature of the gradient to which reference is being made. Usually,
‘gradient force’ is understood to relate to a spatially inhomogeneous intensity—but if the term
were to be applied to field gradients then any interaction involving a multipole of higher order
than the dipole would be a candidate for the term—which would then misleadingly apply to
optical beams of any structure.

It is indeed hard to avoid the conclusion that the authors of some fine experimental
studies are unsure of the mechanisms responsible for their observations. Even when such
studies are supplemented by computational simulations, these are generally based on classical
formulations that are not always appropriate, having no regard to the discrete nature of the
radiation responsible for mechanical effects. By providing an explicitly photon-based per-
spective it is the aim of this article to bring more clarity to the subject. We anticipate that this
will make it easier to explain the origins of the wide variety of forces and torques that can be
produced by light. The central aim is to differentiate between the separate forms of optical
force: (in brief) one involves the ‘push’ of the irradiated particle in the propagation direction
of the light, and the other consists of an attraction of the particle to the beam centre. The
theory behind the optical forces that act on nano- rather than micro-particles will be discussed
in the main; however, microscale systems are mentioned throughout. We hope that these
discussions will help assist the task of overriding any confusion that sometimes arises in the
literature.

First, in section 2, the attributes of the electromagnetic radiation in the free field are
presented. Here we outline, without resorting to detailed derivations, the three mechanical
quantities that could be delivered by a photon; first offering the classical representations
familiar to some readers and then the quantum equivalents. This is followed by the intro-
duction of a framework to categorise light–matter interactions, which is then used to assist the
description of the radiation and gradient forces (section 3). Section 4 then addresses optical
torque, including an analysis of the often overlooked torque that the gradient force can exert
on a cylindrical particle. This is completely separate in its influence from two other forms of
torque—corresponding to the radiation force—that relate to the spin angular momentum of
circularly polarised light or the orbital angular momentum of a twisted beam; the latter is
connected to the idea of an optical spanner [8]. Each of these torques is fully analysed, and
the paper then concludes in section 5 with a discussion.
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2. Theoretical foundation

2.1. Light in the free-field

A photon is known to convey three mechanical quantities: energy, linear momentum and
angular momentum. Energy, as a scalar, cannot contribute any sort of directionality onto a
particle as a result of light absorption—or indeed any other optical process. In contrast, the
directionality of the optical linear and angular momenta can indeed be conferred to a particle.
This is the basis for the radiation pressure that, for a beam of sufficient intensity, may produce
linear forces and angular forces (torques). The latter may also be produced via the gradient
force, as a consequence of a non-uniform beam intensity distribution that produces a local
potential energy landscape (vide infra).

Here, we introduce the key electromagnetic variables and the main equations that
quantify these features. A classical Fourier series representation can be written for the gen-
eralised position- and time-dependent electric and magnetic free-fields, E(r, t) and B(r, t)
respectively, associated with electromagnetic radiation [9],

t t t t t tE r E r E r B r B r B r, , , ; , , , , 1= + = ++ - + -( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

where each field is written as a sum of two mode-summed terms. These are known as the
positive and negative frequency parts of the fields, respectively. The signs in the superscripts
relate to spatial phase factors that feature in the explicit Fourier expansions: for example, the
term E(+)(r, t) (known as the analytic signal) is given by;

t tE r e, i e , 2
ℓ

ℓ ℓ ℓ
k ri ℓEå a=+ ⋅( ) ( ) ( )( ) ( )

where the Fourier component with index ℓ relates to a set of four numbers relating to the
wave-vector kℓ (three Cartesian components) and polarisation unit vector e ;ℓ tℓa ( ) is a normal
variable dependent on the positive form of the phase factor and ℓE is a mode constant;
E(–)(r, t) is the complex conjugate of the expression given by equation (2). The Fourier
representations of the two components of B(r, t) have a similar form. To satisfy Maxwell’s
equations, the time-dependent factor tℓa ( ) has to carry a temporal phase factor exp(–iωt).
Thus, individual modal components of the Fourier series can be regarded as representing
radiation of angular optical frequency ω=ck, propagating with a wave-vector k.

For analogous expressions in the quantum formulation, i.e. where the electric and
magnetic fields are quantised, the factor ℓa and its conjugate are promoted to operator status
—signified here, and henceforth, by the carat symbol—to obtain [10],
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where the summation is again taken over each mode (k, η), in which η labels the polarisation
state, and V is an arbitrary quantisation volume—a notional region within which the system of
interest resides. The Hermitian conjugate pair of operators â( η)(k) and â†( η)(k) signify photon
annihilation and creation, respectively, i.e. for each mode they act to reduce or increase by
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one the number of photons present in the system; the electric and magnetic polarisation
vectors of each photon, denoted by e(η)(k) and b(η)(k)=e(η)(k)×k (overbars signifying their
complex conjugates), also appear in the above expressions. In the quantum formalism, Ê(r)
and B̂(r) are not dependent on time since, in the assumed Schrödinger representation, any
time dependence is held within the state vector.

The classical Hamiltonian of the radiation field, Hrad, entails an integral of the energy
density over volume, namely [11];

H t c t rE r B r
2

, , d . 5
V

rad
0 2 2 2 3ò
e

= +(∣ ( )∣ ∣ ( )∣ ) ( )

On substitution of the quantum field operators, i.e. equations (3) and (4), into this
expression—where V again acquires the significance of a quantisation volume—the following
quantum Hamiltonian operator is determined;

H N k
1

2
, 6

k
rad

,

å w= +
h

h⎜ ⎟⎛
⎝

⎞
⎠ˆ ˆ ( ) ( )( )

where the dependence of ω on k is left implicit; N̂ (η)(k)=â†( η)(k)â( η)(k) is the number
operator, which returns the number of photons when applied to a number (Fock) state.
Moreover, for the ground state of the radiation, ½ħω represents the zero point energy,
associated with vacuum fluctuations that are present even in the absence of radiation. On
inspection of equation (6), the energy of a single photon is determined as ħω.

The classical linear momentum of the electromagnetic radiation, Prad, involves an int-
egral of the Poynting vector over V;

t tP E r B r r, , d , 7
V

rad 0
3òe= ´( ( ) ( )) ( )

while the total angular momentum of the radiation, Jrad, is proportional to an integral of the
cross product between the Poynting vector and displacement, namely;

t tJ r E r B r r, , d . 8
V

rad 0
3òe= ´ ´( ( ) ( )) ( )

With the use of simple vector identities, the latter expression can be re-written as a sum
of terms relating to the spin, Srad, and orbital angular momentum, Lrad, as signified by the
respective terms in the following;

t t E t A tJ S L E r A r r r r r, , , , d . 9
V

i irad rad rad 0
3òe= + = ´ + ´ ( )( ) ( ) ( )( ) ( ) ( )

Here, A(r, t) is the electromagnetic vector potential [12] that is related to the electric and
magnetic fields via E=–∂A/∂t–∇Φ and B=∇×A, respectively, where ∇ denotes a
differential with respect to r and Φ is the electromagnetic scalar potential. In the latter term of
equation (9), the repeated index i represents summation (also known as an Einstein
summation [13]) over any frame of Cartesian coordinates. It is notable that the form of
separation in equation (9) is not unique, since the electromagnetic vector potential is not
gauge invariant. In the Coulomb gauge [14, 15] used in this work, the decomposition of Jrad
into Srad and Lrad is achievable on the assumption that the optical beam has paraxial form—

i.e. it is subject to the same conditions as apply for the small-angle approximation in Gaussian
optics. The decomposition of total angular momentum into two terms is much more difficult
for non-paraxial beams

The quantum framework involves the following explicit mode expansion of the vector
potential:
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By inserting the field operators (3), (4) and (10) into the corresponding classical
expressions Prad, Srad and Lrad (as required) their quantum equivalents are produced.
Remarkably simple expressions for the linear and angular momenta then emerge, readily
related to photon quantities. First, it is found that;

NP k k, 11
k

rad
,

å=
h

hˆ ˆ ( ) ( )( )

in which the zero-point momentum for each mode, ½ħk, vanishes due to each k in the
summation having a matching –k (compare with the zero-point energy, which persists
because energy is solely a positive quantity). From this expression, we determine that the
linear momentum of each photon is ħk.

Next, we can observe that radiation states of pure circular polarisation are eigenstates of
the operator for quantum spin, Srad. This is consistent with an angular momentum of ±ħ per
photon with the sign determined by handedness; the vector quantity directed along k is thus
expressible as ±ħuk, where uk represents a unit vector of k. This spin feature is, therefore,
conveyed by the following;

N NS k k u , 12L R

k
krad å= -ˆ { ˆ ( ) ˆ ( )} ( )( ) ( )

with the mode summation specifically cast in terms of circular polarisations, either left- or
right-handed light as denoted by the superscript L and R. This expression indicates, as might
be expected, that the spin-angular momentum operator, Ŝrad, depends solely on the disparity
of left- and right-handed photon populations [16, 17]. Alongside this result it also emerges
that the orbital angular momentum operator, L̂rad, is most expediently expressed in terms of a
modal basis associated with a helical wavefront, such as Laguerre-Gaussian modes;

N lL k u , 13
k l p

lp krad
, , ,

å=
h

hˆ ˆ ( ) ( )( )

in which the four degrees of freedom are the magnitude of a wave-vector k, polarisation η, and
the indices l and p as integers that designate the order and degree of the corresponding
Laguerre polynomial. The former index is often known as the topological charge; the latter is
the radial index that represents the number of radial nodes, p+1, within the transverse field
distribution of the beam. In passing, it is useful to note that by casting the sum over η

explicitly in terms of a basis comprising left- and right-handed circular polarisations, we
arrive at [18];

N N lL k k u , 14
k l p

lp
L

lp
R

krad
, ,

å= +ˆ { ˆ ( ) ˆ ( )} ( )( ) ( )

which forms a neat counterpart to the spin angular momentum as given by equation (12). The
above expressions indicate that the orbital angular momentum has no connection with any
spin helicity associated with polarisation [19]. Furthermore, we can determine that a free field
photon endowed with topological charge has an orbital angular momentum of magnitude lħ.

2.2. Light–matter interactions

At this point, only the electromagnetic radiation on its own (i.e. the free field) has been
examined. We now consider a nanoscale system in which light engages with matter. A
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conventional starting point is the definition of a total Hamiltonian H ,ˆ expressed as the sum of
three parts;

H H H H , 15part rad int= + +ˆ ˆ ˆ ˆ ( )

where Ĥpart and Ĥ int are the particle and interaction Hamiltonian, respectively, and the
interaction acts as a perturbation on both particle and radiation states. Theory, based on this
perturbation, is then developed from the following general expression for the quantum matrix
element, MFI, for progression from an initial system state I∣ ⟩ to a final state F ;∣ ⟩

M F H T H I . 16FI
q

q

0
int 0 intå=

=

¥

⟨ ∣{ ˆ ( ˆ ˆ ) }∣ ⟩ ( )

Here T̂ 0, known as a resolvent operator, is given by T̂ 0≈(EI− Ĥ0)
–1, where the

unperturbed system is represented by Ĥ0=Ĥmat+Ĥ rad and EI is the energy of the initial
system state.

Figure 1. Flowchart for a nanoscale system that exhibits essential differences in
implementation of the matrix element. The different pathways of interpretation are
determined by considering any change in the quantum state of the matter and radiation;
the relevant mechanism and its measurable are then decided.
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The status and application of a matrix element as given by equation (16) differs
according to the nature of the optical process for which it is evaluated. To assist in identifying
the correct route for applications that can produce mechanical motion, a flowchart that leads
to the appropriate physical observable is presented in figure 1. By suitable use of
equation (16), all of the key electrodynamical properties can be derived, and also analytical
expressions for the observables associated with optical processes—such as rates, intensities
and forces. For example, the q=0 term delivers transition dipole moments and oscillator
strengths for absorption processes, while the q=1 term gives an explicit expression for
polarisability, as we shall see below. The importance of all these factors in the determination
of optical forces will emerge in the following.

3. Optical forces

The generation of optical forces may occur via the interaction of the electromagnetic field of
light with the charge distribution of a particle. The effect is most obvious under resonance
conditions, where a photon energy matches the difference between any two electronic energy
levels in the absorber—this is the radiation force. However, such fields may also exert
influence under non-resonance conditions that involve short-lived virtual transitions. In this
case, where the location of the particle relative to the local distribution of the light is the key, a
gradient force may result from the position-dependent energy. Here, the light–matter inter-
actions produce only transient change to the internal electronic energy of the material. In
terms of photonics, optical manipulation of neutral particles by a laser beam may, hence,
involve two completely separate mechanisms.

3.1. Radiation force

The radiation force, traditionally associated with radiation pressure, relates to the transfer of
linear momentum from the electromagnetic radiation to the particle. This can occur either
through light absorption, or a change in the direction of the light due the interaction with the
particle (non-forward scattering). The classical and quantum descriptions are now outlined,
recognising the connection between the essentially classical, macroscopic and more obviously
quantum level, nanoscopic forces associated with optical radiation.

For applications on the macroscopic scale the original Maxwell–Bartoli force is readily
used, to account for the force that light exerts onto a surface. Since an optical force can be

Figure 2. Radiation pressure, determined from the Maxwell–Bartoli expression, applied
to a surface due to (a) absorption (R=0) and (b) reflection (R=1): Pin and Pout

represent the radiation pressure due to the incident and reflected light, respectively.
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described by both energy per unit distance and momentum per unit time (from Newton’s
second law) then it follows that optical momentum can be defined as energy divided by the
speed of light. The radiation pressure, P, is the rate of change of momentum divided by the
irradiated area so that: P=Icos2θ/c, where I is the irradiance—the energy arriving at the
surface per unit time (input power) per unit area, and θ is the angle between the surface
normal and the incident radiation. This expression describes the radiation pressure acting on a
perfectly absorbing surface, which is illustrated by figure 2(a). If the surface is perfectly
reflecting, then a factor of two is included on the right-hand side of the expression; the latter is
explained by the fact that a momentum is exerted by both the incident and reflected light, as
shown by figure 2(b). In practice, the pressure delivered to a surface lies somewhere between
the two extremes, according to its reflectivity R. Hence, the general Maxwell–Bartoli
expression emerges as follows:

P R I c1 cos . 172 q= +( )( ) ( )

At the quantum level, the radiation force when nf photons are absorbed by one or more
particles is determined by multiplying the absorption rate, Γ, by the net linear momentum of
the absorbed photons, nfħk. The rate of absorption, for a given wave-vector k and polar-
isation η, can accordingly be found by application of the Fermi rule, Γ=(2πρF/ħ)|MFI|

2,
where ρF is the density of states and MFI is the matrix element determined from first-order
time-dependent perturbation theory [20]. The result emerges from the q=0 term in
equation (16) as:

M F H I n u nE r1 ; ; 0 . 18FI int m= = - - ⋅⟨ ∣ ˆ ∣ ⟩ ⟨( ) ∣ ˆ ˆ ( )∣ ⟩ ( )

At this juncture, it is appropriate to introduce the Feynman diagrammatic representation;
the diagram corresponding to equation (18) is shown in figure 3. Using Dirac bracket
notation, I n; 0=∣ ⟩ ∣ ⟩ and F n u1 ;= -∣ ⟩ ∣( ) ⟩ represent the specific initial and final system
states, respectively, decomposed into radiation and particle components: the initial state
contains n photons and the particle is in the ground state 0, and the final state (which follows
photon absorption) comprises n–1 photons and the particle in its excited state u.

Figure 3. Feynman diagram illustrating the radiation force due to single photon
absorption. The blue wavy line represents a photon of mode (k, η), the vertical line
symbolises an optical centre that begins in a ground state 0 and finishes in its excited
state α, the blue dot denotes the light–matter interaction, labelled by Hint, and time
travels upwards. Since the initial state I n; 0=∣ ⟩ ∣ ⟩ and final state F n u1 ;= -∣ ⟩ ∣( ) ⟩
differ, this diagram represents a process in which the physical observable is a rate,
delivered from the matrix element using the Fermi rule.
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The structure of equation (18) reveals that it is a change in state of the radiation field that
allows for the transfer of momentum from the irradiating light to the particle. Also appearing
in equation (18) is the explicit expression for the interaction Hamiltonian, i.e.
H E rint m= ⋅ˆ – ˆ ˆ ( ) where m̂ is the electric dipole moment operator that acts on the particle states
to produce a transition dipole moment μu0, and Ê(r) acts on the radiation states. Here, in fact,
only the Ê(+)(r) portion of equation (3) is required since it is this term that includes the photon
annihilation operator. Assuming e||μu0 and the density of states is ρF =IωV/2πcnħ2ω [21],
the radiation force is determined as;

n I

c
F

k

2
, 19u

0

0 2

e
m= f w ∣ ∣ ( )

where Iω is the irradiance per unit frequency. In cases where the incident photons are
deflected, rather than absorbed, the treatment of theory is a little more intricate and involves
second-order perturbation theory; such a treatment is presented in section 4 for a torque based
on radiation pressure.

3.2. Gradient force

At the atomic or molecular level, the gradient force involves the production of intensity-
dependent internal energy level shifts, associated with the dynamic (ac) Stark effect. In such a
case, since the level shifts depend on the intensity of the light, an effective potential energy

Figure 4. Diagrams indicating the mechanism behind each of three different kinds of
laser-induced force (shown by the arrows) acting on a nano- or micro-particle (circle)
due to a beam of laser radiation (wavy line) propagating from left to right. Red arrows
correspond to a direct transfer of momentum and yellow to an indirect force associated
with a position-dependent dynamic Stark effect. The radial distribution of laser beam
intensity is represented in blue; the beam axis (the highest intensity part of the beam) is
positioned at the top of each diagram and the intensity diminishes below: (a), (d)
involve light absorption and (b), (e) non-forward scattering, each producing a radiation
force; (c), (f) relate to the gradient force, which is always directed towards the highest
intensity region. In (f), due to the intensity profile, more light impinges the upper
portion of the microparticle than the lower part, and as a result of refraction the particle
experiences a net force upwards.
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surface is introduced whose magnitude varies with particle position—usually within the
cross-section of the trapping beam and which is, thus, related to the transverse field dis-
tribution. The gradient force is determined from the spatial derivative of the potential energy;
in consequence the particle is attracted to the high intensity part of the trapping beam. The
gradient force that acts on any transparent microparticle, by contrast, is primarily associated
with a different effect, whose mechanism is usually treated using a ray optics approach. Here,
a difference in the relative photon flux impinging on the surface of the particle closest to, and
furthest from, the beam axis produces correspondingly different rates of deflection. Effec-
tively this produces attraction to the high intensity part of the beam as momentum is trans-
ferred from the light to the particle. A complete overview, in diagrammatic form, of each type
of optical force when applied to either a nano- or micro-scale particles is given by figure 4.

In terms of classical electrodynamics, the gradient force is conventionally defined in
terms of the Lorentz force on a point dipole which, introducing a constant of proportionality
(a scalar polarisability) α, is expressed as;

t E t
t

t tF r r E r B r,
1

2
,

d

d
, , . 202a=  + ´⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( ( ) ( )) ( )

The second term relates to the Poynting vector—which can again be cast, using
equation (1), as a sum of four terms involving E(+)(r, t) and E(–)(r, t) in cross-products with
their magnetic counterparts. It then transpires that the product contributions E(+)(r, t)B(–)(r, t)
and its complex conjugate are explicitly time-independent; the two other terms carry factors
exp(±2iωt), and hence oscillate too rapidly to engage with whole-particle motion. The
‘Poynting’ term in equation (20) thus disappears, and the time-averaged optical force
(denoted below by T⟨⟩ ) becomes [22];

EF r r
2

. 212
T

a
= ⟨ ( )⟩ ⟨ ( ) ⟩ ( )

Here, the electric field is involved in a quadratic response and, therefore, we can conclude
that the gradient force is sustained in an oscillating field.

Returning to the quantum theory, contrasting to any force that relates to the radiation
pressure, the gradient force does not involve a transfer of momentum (unlike the microscale
case) since the initial and final system states are identical and, hence, the input electromagnetic
field suffers no change. Here, the position-dependent potential energy, ΔE, is evaluated as an

Figure 5. Feynman diagram illustrating the gradient force based on forward-Rayleigh
scattering, in which a photon is annihilated and another recreated into the same
radiation mode. The optical centre begins and ends in the ground state, traversing
through a short-lived virtual state r. Since the initial and final state are identical, i.e.
I F n; 0 ,= =∣ ⟩ ∣ ⟩ ∣ ⟩ this diagram represents a potential energy obtained from the real
part of the matrix element.
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expectation value (i.e. a matrix element in which the initial and final states are identical) so that
the interaction involves photon annihilation and recreation into the same radiation mode. This
mechanism is known as forward-Rayleigh (elastic) scattering, as shown in figure 5, wherein the
frequency of the trapping beam is non-resonant with any energy level transitions in the particle.

Using second-order perturbation theory, i.e. the q=1 term in equation (16), the fol-
lowing matrix element signifies the evaluation of the expectation value;

E M
I H R R H I

E E
Re Re , 22II

R I R

int intåD = =
-

⎧⎨⎩
⎫⎬⎭

⟨ ∣ ˆ ∣ ⟩⟨ ∣ ˆ ∣ ⟩ ( )

where I n; 0=∣ ⟩ ∣ ⟩ denotes both the initial and final system state and R n r1;= -∣ ⟩ ∣ ⟩ is an
intermediate system state: E is the energy of the state denoted by the subscript. It is important
to note that |R〉 involves a short-lived virtual particle state r, rather than any specific excited
state u. Moreover, H E rint m= ⋅ˆ – ˆ ˆ ( ) will invoke either term of equation (3) so that either
Ê(+)(r) or Ê(–)(r) appears in Ĥ int, depending on whether the operator acts on a photon
annihilation or creation event. It is noteworthy that Ĥ int could involve additional terms, for
example that relate to a transition magnetic dipole rather than an electric dipole, although
such contributions are very small and they are rarely considered in conventional optics;
however, a magnetic dipole interaction is vital in connection with the gradient force of
different magnitudes that acts on chiral molecules with opposite handedness [23–25]. Using a
beam irradiance (in units of W m–2) given by I=nħc2k/V, the gradient force is found as;

I

c
e eF r

r
2

. 23ij i j
0e

a w=
⎛

⎝⎜
⎞
⎠⎟( ) ( ) ( ) ¯ ( )

Here, the η and k dependences are suppressed on the unit polarisation vector e, and the
polarisability αij(ω) emerges, in a complete form, as a second rank property tensor explicitly
given by;

E E
, 24ij

r

i
r

j
r

r

j
r

i
r

r

0 0

0

0 0

0 åa w
m m

w

m m

w
=

-
+

+

⎪ ⎪
⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

( ) ( )

where E0r=E0−Er. Equation (23) is written in a concise form that again uses the Einstein
summation convention (for repeated tensor indices). In any application to three-dimensional
space, it simply means that where subscript indices i, j are used to signify x, y or z components
in a Cartesian frame of reference, the repetition of an index within a given term signifies an
implicit summation over those same three directions. For example, a scalar product Em ⋅ may
be written as μiEi and the scalar αii=tr(α). It transpires that equation (23) tallies with
equation (21) through a rotational average leading to e e trij i j R

1

3
aa w a= =⟨ ( ) ¯ ⟩ ( ) together

with the relation I=cε0|E|
2. This confirms that the derivation of optical force based on

photon optics represents the same physics as the more widely known Lorentz force.

4. Optical torque

The torque that may act upon a particle due to the application of a light beam can have three,
completely separate forms. The better known types of torque, based on the radiation force,
involve the angular momentum of the electromagnetic radiation. Here, the torque results in
either the spin of the particle on its axis due to light with spin angular momentum, or the orbit
around a central point owing to radiation with orbital angular momentum. However, there is
another form of torque based on the gradient force, which has the capacity to align a
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cylindrical particle in a certain direction within the beam. These three types of torque are
separately discussed in the following.

4.1. Torque dependent on gradient force

The torque due to the gradient force will not successfully act on a spherical particle, since the
latter relates to a polarisability tensor that is represented by a diagonal matrix with all three
components identical. This, perhaps, explains why this orientational effect is not well-known,
since the majority of optical trapping studies use spherical particles. The simplest case of a
non-spherical nanoparticle is one with cylindrical symmetry, in which the diagonal of the
polarisability matrix has one value, α||, for the axial direction, and another, α⊥, for each of the
other two axes. Here, α|| will always have the larger magnitude in a prolate ellipsoid since, in
the longer axial direction, the polarisability—which is, basically, a measure of the shift in
electron distribution to engender a dipole moment—will correspond to a larger electron shift.

Any such nanotube, sitting initially in an arbitrary angle with respect to the linearly
polarised input radiation, will experience a torque that tends to align its long axis with the
polarisation plane, at right-angles to the direction of light propagation. However, within a
laser beam with a narrow waist, a larger microscale particle with cylindrical symmetry will
align with the propagation direction of the light, to maximise engagement with the high
intensity region [26]. An expression for the nanoscale torque is given by;

E E Ei j , 25y x za at = - -^ ( )( ) ( )

where Ex, Ey and Ez are the electric field directed in the x-, y- and z-directions: i and j
respectively signify x- and y-unit vectors.

4.2. Torque due to spin angular momentum

Another form of optical torque arises when circularly polarised light, which contains spin
angular momentum, is applied to a particle (that is again, in practice, usually spherical). This
type of torque has been shown to produce an extremely quick particle rotation rate, in fact the
world’s fastest spinning man-made object is generated by such a torque—an entity so fast that
the angular acceleration at the sphere surface is a billion times that of gravity on the Earth’s
surface [27]. A torque of this form is based on the radiation force, since spin angular
momentum is transferred from the light beam to the particle. As such, instead of the transferal
of optical linear momentum to produce a force, the angular component creates a torque that
spins the particles around its axis. A formula for this torque relates to the simple expression
τ=Iα, where I and α are the moment of inertia and angular acceleration, respectively, for
this expression only. The result, based on the absorption of photons with spin angular
momentum, is remarkably similar in form to equation (19), i.e.;

n I

c

u

2
, 26uk

0

0 2

e
t m= f w ∣ ∣ ( )

where uk is the unit vector of k. (However if any significant amount of scattering occurs, in
addition to absorption, the result is diminished: retro-reflection of circular polarisation, for
example, confers precisely zero angular momentum.) It has to be emphasised that this torque
arises only for circularly polarised beams (or, by proportion, for beams of elliptical
polarisation); it is the only torque connected to the radiation force of conventional light. For
other effects to occur, helically structured beams are required, as detailed below.
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Figure 6. Transverse field distributions for five Laguerre–Gaussian modes, with their
associated intensity and phase structure. Top images display l=1 (left) and l=–1
(right) with p=0, while the lower images show l=3 with p=0, 1, 2 (left, centre,
right). White areas represent zero intensity and the hues denote the phase.

Figure 7. (a) Schematic representation for the focus of an l=5 optical vortex mode. In
the transverse plane, hue indicates the phase and brightness the intensity. The bundle of
Poynting vectors, depicted as colour-coded arrows, rotates about the beam axis by one
fifth of a circle over the space of one wavelength: (b) resolution of a local Poynting
vector into axial (z), radial (r) and azimuthal (f) components. Image (a) courtesy of
Sonja Franke-Arnold, University of Glasgow and Morgan & Claypool Publishers,
© 2016.
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4.3. Torque due to orbital angular momentum

When suitably structured, light can also deliver orbital angular momentum, whose quantised
form is designated by eigenstates and eigenvalues of the operator L̂rad. Any such eigenstate is
commonly referred to as an optical vortex, alternatively called twisted light. The key attribute
here is that the electromagnetic fields acquire a phase factor of the form exp(±ilf), where f is
the azimuthal angle around the beam axis. Generally, the topological charge, l, signifies the
number of distinct helical surfaces formed by the optical wavefront, as it winds around this
axis within the span of a wavelength. One immediate consequence is that, for l≠0, there has
to be a line of zero intensity along the axis, as a result of an indeterminate phase at the
corresponding point in the transverse plane. This feature lends its character to another name
associated with this type of beam: singular optics. Light engendered with orbital angular
momentum includes Laguerre–Gaussian, and all but the simplest forms of Bessel and
Mathieu beams [28–30]; however, in this work, we only examine the former beam type.

Typical examples of transverse field distributions for Laguerre–Gaussian modes are
presented in figure 6, which depicts the associated intensity and phase structure. Figure 7(a)
gives an impression of how the wave-vector, everywhere pointing along the normal to the
wavefront surface, effectively twists around the beam axis. Within the high-intensity rings of
such structured light, particles can be trapped and circulate around the central node (figure 8).
This orbiting behaviour was theoretically predicted [31] and then experimentally observed
[32–36] with an Laguerre–Gaussian beam (which became known as an optical spanner or
wrench) [8, 37–39]. The presence of the ‘twist’ in the optical vortex is the source of the orbital
angular momentum that, in turn, produces the torque.

This third type of optical torque is once again most often applied to spherical particles; it
can arise due to the radiation force associated with non-forward scattering, rather than light
absorption. In such a mechanism, in contrast to equation (22), the initial and final system

Figure 8. Helically phased laser beam incident on a set of microscopic particles. The
latter are trapped within the high-intensity ring of the beam (the centre of an optical
vortex beam has zero intensity, unlike Gaussian light) and orbit around the beam axis,
as indicated by the red arrow. Image courtesy of Miles Padgett, University of Glasgow
and Morgan & Claypool Publishers, © 2016.
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states are not identical, since the created and annihilated photons (with identical energy) travel
in different directions. As a result, in terms of the quantum theory, an additional radiation
mode is assigned to the system states, so that I n, 0; 0=∣ ⟩ ∣ ⟩ and F n 1 , 1; 0= -∣ ⟩ ∣( ) ⟩ for
the present case. Here, the first and second elements in each state vector denote radiation
modes relating to the annihilation and creation events, respectively, and the third element
represents the particle state. This subtle change in the initial and final system states, which
differs to forward Rayleigh scattering, may seem innocuous but it facilitates a physically
important differentiation between the radiation and gradient force.

The torque is determined by multiplying the scattering rate (found from the Fermi rule)
by the radius of the beam ring, rb, and the orbital angular momentum per photon lħukz, where
ukz is the unit vector of kz; the latter is illustrated in figure 7(b). Following a rotational-
average, assuming plane polarised input and summing over all possible polarisations for the
scattered light, the following expression is derived for the observed torque;

Ik lr

c

u

40
7 . 27b kz

3

0
2pe

a a a at = +ll mm lm lm( ) ( )

Here, the Greek indices denote the particle frame of reference for the polarisability
components (rather than the laboratory frame represented by the earlier Latin indices) and
uses the implied summation convention we encountered earlier. This result shows that the
optical response of the particle is written in terms of two material parameters, both scalars, in
which αλλαμμ represents the square of the trace of the polarisability, tr(α), and αλμαλμ is a
sum of the squares of the nine polarisability components. Larger dielectric particles may be
treated with electronic properties closer to those of a bulk material. It is appropriate, in such
cases, to engage the linear optical susceptibility rather than the polarisability tensor; the
connection between the two is explained in detail elsewhere [40]. In all situations, therefore,
there are just two scalar parameters, which together effectively determine the particle’s
propensity to acquire angular momentum about the vortex beam axis.

5. Discussion

The major aim of this article has been to explain, in a clear manner, the difference between the
radiation and gradient forces, and torques, that act on particles when irradiated by laser light.
We have presented the different physics involved in each type of force, and the foundation
equations that describe them, to assist in this process. Even in contemporary scientific lit-
erature, this distinction is sometimes blurred and misinterpreted. Despite these differences, the
radiation and gradient forces are completely necessary for the optical manipulation of par-
ticles—whether acting alone or in tandem. For example, it has been shown that the radiation
and gradient force are vital in atom cooling [41, 42] and optical lattice techniques [43],
respectively; while a combination of both are imperative for optical spanners [8]. We have
also shown that there are three distinct types of optical torque, of physically different origin.
A fuller account of these issues, extending to ‘optical binding’ effects and including exper-
imental results, is to be found in a forthcoming book [44].
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