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Abstract  

Myzus persicae is one of the most successful insects on the planet. It is the 

world’s most pesticide-resistant insect, feeds on hundreds of plant species and acts 

as a vector for over 100 viruses. Upon perception of M. persicae feeding, plants 

activate pattern-triggered immunity (PTI), a pivotal part of which is believed to be 

calcium signalling. The aim of this thesis is to uncover the role that calcium signalling 

might be playing in the interaction between M. persicae and one of its hosts: the 

model plant Arabidopsis. 

 

Using a fluorescent calcium sensor (GCAMP3), in vivo imaging of calcium 

dynamics was performed on leaves infested with M. persicae. There is a rapid and 

highly localised calcium burst around the feeding site in the epidermal and mesophyll 

cells, making it as one of the first plant responses to aphid attack. This calcium burst 

is triggered after perception of the aphid by the defence co-receptor 

BRASSINOSTEROID INSENSITIVE-ASSOCIATED KINASE 1 (BAK1), establishing it as part of 

PTI. Calcium is released from the extracellular space into the cell by GLUTAMATE-

LIKE RECEPTORS 3.3 and 3.6 (GLR3.3 and GLR3.6), in combination with the release of 

intracellular calcium from the vacuole by TWO-PORE CHANNEL 1 (TPC1). Loss of 

BAK1, GLR3.3/GLR3.6 or TPC1 significantly attenuates the aphid-induced calcium 

burst and has an effect on the induction of anti-aphid defence responses.  

 

Downstream of the burst, CBL-INTERACTING PROTEIN KINASES 3, 9, 23 and 26 

are activated by calcium and together mediate plant resistance to aphid attack. 

Furthermore, the M. persicae effector Mp10 partially suppresses the feeding site 

calcium burst, suggesting that the aphid is manipulating this pathway as part of its 

successful colonisation of the plant. Together, the data presented in this thesis 

provide evidence for the significant involvement of calcium signalling in the plant 

response to aphid attack. 
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“No amount of experimentation can ever prove me right; a single experiment can 

prove me wrong.” - Albert Einstein 
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 Calcium Signalling 1.1

1.1.1 Calcium signalling: an overview 

There are few signalling components as ubiquitous as calcium ions (Ca2+). In 

plants, Ca2+ signals are generated by the release of Ca2+ into the cytosol, altering the 

Ca2+ concentration ([Ca2+]) and resulting in transient increases in cytosolic free Ca2+ 

([Ca2+]cyt). This release is coordinated by Ca2+-permeable membrane channels and the 

resulting change in [Ca2+]cyt is decoded by a complex network of proteins. However, 

despite its ubiquity, we are still relatively naïve about the molecular components 

that underlie Ca2+ signalling. 

High levels of Ca2+ are toxic to cells. As such, throughout evolution there has 

been selective pressure to keep [Ca2+]cyt low by active removal into the extracellular 

space and, in the case of eukaryotes, intracellular organelles. This has provided the 

context for a simple and effective signalling mechanism whereby there is a steep 

electrochemical gradient between the cytosol and its surroundings, allowing efficient 

and rapid rises in [Ca2+]cyt to be achieved [1]. These increases act in a wide range of 

plant processes, including responses to abiotic stress, pathogens and insects, as well 

as participating in the regulation of carbon dioxide sensing, symbiosis, tip growth and 

the circadian clock [1, 2]. 

1.1.2 The Ca2+ signature 

[Ca2+] increases have defined amplitudes, durations and patterns that are 

determined by the stimulus and are termed the ‘Ca2+ signature’ [3]. [Ca2+] elevations 

are often asymmetric; the rise is faster than the decline. They also show a degree of 

attenuation upon repeated application of a stimulus [4, 5]. Specificity in Ca2+ 

signalling is achieved through a combination of the Ca2+ signature and the Ca2+-

binding proteins that decode the signature. 

Part of the signature-encoded specificity is spatial. This includes localising 

[Ca2+] elevations to specific cells or tissues. For example Arabidopsis thaliana (thale 

cress - henceforth referred to as Arabidopsis) roots exposed to salt stress exhibit 

[Ca2+]cyt elevations specifically in the endodermis and cortex [6, 7]. Spatial specificity 

can also be achieved within a single cell. Rises in [Ca2+] can be observed within 

various organelles, including the nucleus ([Ca2+]nuc), endoplasmic reticulum (ER - 
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[Ca2+]ER), mitochondria ([Ca2+]mit) and chloroplast ([Ca2+]chl) (Figure 1.2). For instance, 

rises in [Ca2+]nuc can be observed in Medicargo truncatula (barrelclover) in response 

to symbionts, with different microorganisms generating different [Ca2+]nuc oscillatory 

patterns [8]. Fluxes in [Ca2+]mit have a resting baseline concentration twice that of 

[Ca2+]cyt and transient increases can be stimulated by touch, mannitol, cold and 

hydrogen peroxide. Interestingly, these signals do not reach the same amplitude as 

those seen in the cytosol [9] (Figure 1.2). [Ca2+]chl oscillations have been linked to 

circadian rhythms [10, 11]. Moreover, spatial specificity may also be introduced by 

heterogeneity in [Ca2+]cyt within a cell [4, 12, 13]. Different stimuli can induce Ca2+ 

release into the cytosol from specific locations: for example the apoplast in response 

to blue light [14], the vacuole in response to abscisic acid (ABA) [15] or the ER upon 

stimulation with inositol trisphosphate (InsP3) [16]. 

The duration of the Ca2+ signature can also introduce specificity. Differences 

in the length of [Ca2+] elevation have been found between different cell types in 

response to the same stress, as seen with osmotic stress in Arabidopsis [6]. Moreover, 

durations can vary within the same cell in response to the same stimulus. For 

example the pathogen elicitor harpin can induce long Ca2+ transients in the nucleus 

(~120 min) whilst generating shorter transients in the cytosol (~5 min) [17].  

Frequency and amplitude are also critical to encoding specificity. [Ca2+]nuc 

oscillates with a characteristic frequency during symbiosis [8], whilst artificially 

increasing the number of [Ca2+]cyt transients in guard cells can significantly alter 

stomatal aperture [3]. Furthermore, the concentration of sodium chloride (NaCl) is 

correlated with amplitude of the [Ca2+]cyt elevation in the root [18]. 

1.1.3 Energised Ca2+ transporters 

Energised Ca2+ transporters are required to maintain the strong 

electrochemical gradient between [Ca2+]cyt and its surroundings. In plants this is 

achieved through hydrolysis of adenosine triphosphate (ATP) by ATP-powered Ca2+ 

pumps or by a proton motive force generated through Ca2+/proton (H+) antiporters. 

These two forms of active transport are directed by P2-type ATPases and the Cation 

eXchange (CAX) families respectively [1, 2]. These transporters are not merely the 

background machinery required to maintain resting [Ca2+]cyt; many also have specific 

physiological functions in the plant [19]. 
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Figure 1.1: Calcium signatures in the different compartments of a plant cell. Signatures

are mediated by the influx of calcium (Ca2+) through channels (cylinders) and efflux by

active transporters (circles). The amplitude and duration of these signatures varies

between the cytosol, nucleus, mitochondria and chloroplast. Cytosolic Ca2+ oscillations

were stimulated by external Ca2+ application, nuclear oscillations were stimulated by Nod

factor application, chloroplast elevations by dark treatment and mitochondrial elevations

by touch. Adapted from McAinsh et al (2009) [#] and references within.

Figure 1.1: Ca2+ signatures in the different compartments of a plant cell. 

Signatures are mediated by the influx of Ca2+ through channels (red cylinders) and efflux by 

active transporters (yellow circles). The amplitude and duration of these signatures varies 

between the cytosol, nucleus, mitochondria and chloroplast. In this example, cytosolic Ca2+ 

oscillations were stimulated by external Ca2+ application, nuclear oscillations by Nod factor 

application, chloroplast elevations by dark treatment and mitochondrial elevations by touch. 

Adapted from McAinsh et al. [19] and references within. 
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Ca2+-specific ATPases 

Ca2+-specific P2-type ATPases can be divided into two groups based on amino 

acid sequence; the P2A/ER-TYPE Ca2+-ATPases (ECAs) and the P2B/AUTO-INHIBITED 

Ca2+-ATPases (ACAs). There are important structural differences between ATPase 

classes. First, there are differences in their Ca2+-binding membrane-localised residues 

[20, 21]. Second, the ACAs contain a calmodulin (CaM)-regulated auto-inhibitory 

domain [22]. In Arabidopsis, there are four known ECAs and ten known ACAs [23]. 

As their name suggests, ECAs are localised to the ER [24], whilst ACAs can be 

found in the plasma membrane (PM) [25] and the membranes of the ER [26] and the 

tonoplast [27]. Abolishing transcription of ECAs leads to Ca2+ and Mg2+ toxicity 

phenotypes due to disrupted sequestration of these ions [28-30]. Conversely, ACAs 

are implicated directly in signalling, during both abiotic [31-33] and biotic [21, 34] 

stress. Furthermore, the N-terminal auto-inhibitory domain allows for easy regulation 

of ACAs by other proteins during Ca2+ signalling [35]. 

CAX antiporters 

CAX antiporters are localised to the tonoplast and act primarily as cytosolic 

Ca2+ export systems to the vacuole. These antiporters use the energy flux from the 

flow of H+ ions down their thermodynamic potential into the cytosol to drive the 

active transport of Ca2+ against it’s potential in the opposite direction [36, 37]. There 

are six members in Arabidopsis, but their functions are largely unknown [38]. 

CAXs have a low affinity for Ca2+ compared to the ACAs [35, 36], leading some 

to speculate that ACAs act to fine-tune Ca2+ around the vacuole, whilst CAXs play a 

role in reducing the high [Ca2+]cyt at the end of a Ca2+ signalling event [38]. Like ACAs, 

CAXs have an N-terminal auto-inhibitory domain [39, 40] resulting in a requirement 

for additional components to activate them, such as CAX-INTERACTING PROTEIN 1 

(CXIP1) [41]. 

As with the Ca2+-ATPases, the role of CAX transporters in specific processes 

remains unclear. CAX1 transcripts are increased during cold stress, and cax1 mutants 

show increase freezing tolerance [42]. Furthermore, CAX1, CAX2, CAX3 and CAX4 are 

all induced during salt stress [43, 44]. This implies a potential role in abiotic stress 

tolerance. However, cax mutants display growth and development phenotypes typical 

of plants disrupted in Ca2+ homeostasis [45], making it difficult to differentiate 

between this and a direct role in signalling [1]. 
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1.1.4 Ca2+-permeable channels 

The two major regions of high [Ca2+] in plants are the apoplast and the 

vacuole [2], and release of Ca2+ from these locations dominates most cytosolic Ca2+ 

signatures. Extracellular Ca2+ is released into the cell through PM-localised channels, 

whilst vacuolar Ca2+ is released via tonoplast-localised channels. Electrophysiological 

and molecular characterisation has been used to identify Ca2+-permeable channels in 

both membranes and these channels can be voltage-dependent or independent. 

Electrophysiological characterisation identified the Hyperpolarisation-

Activated Ca2+ Channels (HACCs) which are activated at negative membrane 

potentials above -120mV [46], and one of their best characterised roles is during 

stomatal closure, where a hydrogen peroxide (H2O2)-dependent hyperpolarisation and 

the resultant HACC-mediated Ca2+ influx is required for the response [47, 48]. 

Conversely, Depolarisation-Activated Ca2+ Channels (DACCs) are activated at less 

negative membrane voltages, peaking in activity at around -80mV [49]. However, 

their identity and function in plants is controversial due to their inherent instability 

and potentially non-specific ion conductance [50, 51]. Nevertheless, various 

examples of DACCs have been reported [52]. In addition, there are also Voltage-

Independent Ca2+ Channels (VICCs), that are only minimally affected by membrane 

voltage, and have been implicated in various responses from sodium uptake [53] to 

pathogen defence [54].  

Molecular characterisation has mainly focused on three families of channels, 

all of which homologous to Ca2+ channels found in animals and are thought to be the 

most likely source of the genes that encode HACCs, DACCs and VICCs; the CYCLIC 

NUCLEOTIDE GATED CHANNELS (CNGCs) and the GLUTAMATE RECEPTOR-LIKE channels 

(GLRs) in the PM, and TWO-PORE CHANNEL 1 (TPC1) in the tonoplast [1, 51] (Figure 

1.2). 

 

  



7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[55] 

 

 

 

  

Figure 1.2: Structural comparison of calcium-permeable channels in plants. A) CYCLIC

NUCLEOTIDE-GATED CHANNELS (CNGCs) contain 6 transmembrane domains (S1-S6), an

extracellular pore helix (P) and C-terminal overlapping intracellular cyclic nucleotide

(CNBD, red) and calmodulin (CaMBD, yellow) binding domains. B) GLUTAMATE-LIKE

RECEPTORS (GLRs) contain three transmembrane domains (M1-3), an intracellular pore

helix (P) and two extracellular glutamate (Glu) binding sites (S1 & S2). C) TWO-PORE

CHANNEL 1 (TPC1) is composed of twelve transmembrane domains (IS1-6, IIS1-6) in two

groups (6-TM I & 6-TM II) each containing two pore domains (P1 & P2) and separated by

cytosolic EF hands (EF1 & EF2) . Adapted from Dietrich et al., (2010) [#], Chiu et al.,

(1999) [#] and Guo et al., (2015) [#].

A) CNGC B) GLR

C) TPC1

Cytosol

Apoplast

Cytosol

Vacuole

Figure 1.2: Structural comparison of Ca2+-permeable channels in plants. 

A) CNGCs contain 6 transmembrane domains (S1-S6), an extracellular pore helix (P) and C-

terminal overlapping intracellular binding domains for cyclic nucleotides (CNBD, red) and 

calmodulin (CaMBD, yellow). B) GLRs contain three transmembrane domains (M1-3), an 

intracellular pore helix (P) and two extracellular glutamate (Glu) binding sites (S1 & S2). C) 

TPC1 is composed of twelve transmembrane domains (IS1-6, IIS1-6) in two groups (6-TM I & 6-

TM II) each containing two pore domains (P1 & P2) and separated by cytosolic EF hands (EF1 & 

EF2). Adapted from Dietrich et al. [75], Chiu et al. [55] and Guo et al. [114]. 
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CNGCs 

First identified in Hordeum vulgare (barley) [56], genome sequencing has 

revealed 20 CNGCs in Arabidopsis [57]. CNGCs mostly localise to the PM [58-61] 

although recent evidence has suggested that CNGC7, CNGC8, CNGC19 and CNGC20 

localise to the tonoplast, and CNGC18 to post-golgi vesicles [62, 63]. Furthermore, 

CNGC15 from M. truncatula was recently localised to the nucleus [64]. CNGCs have 

six transmembrane domains and assemble in tetramers to form the ion pore [1] 

(Figure 1.2a). This pore is permeable to Ca2+ [60, 65], but can also be permeable to 

potassium (K+), sodium (Na+) and other monovalent ions [66, 67]. 

In animals, binding of cyclic nucleotides to Cyclic Nucleotide Gated (CNG) 

channels is required for channel activation [68, 69]. However, such binding was not 

confirmed unequivocally in plants until recently [70]. The existence of cyclic 

nucleotide-based signalling is supported by the presence of cyclic nucleotides [71, 

72] and nucleotide cyclases [73, 74] in plant cells. Furthermore, CNGCs are capable 

of binding calmodulin (CaM) [56] (Figure 1.2a) and this acts as part of a negative 

feedback system, in which Ca2+-dependent CaM binding to CNCGs inhibits cyclic 

nucleotide binding [75, 76].  

CNGCs have been heavily implicated in pathogen defence and the 

hypersensitive response, outlined in more detail in Section 1.3.3. In addition, CNGCs 

are suggested to play roles in heavy metal uptake [77], cation uptake [59, 78], pollen 

tube development [61, 79, 80], salt stress [59, 81], light signal transduction [82, 83], 

temperature sensing [70] and jasmonic acid (JA) signalling [84]. 

GLRs 

The other family of Ca2+-permeable channels at the PM that have been 

characterised at the molecular level are the GLRs. These are homologues of non-

selective ionotropic glutamate receptors (iGluRs) in animals which are involved in 

neuronal signalling [85]. There are 20 GLR homologues in Arabidopsis [86] and 

functional channels are composed of multimeric units, as discovered through the use 

of C-terminal antibodies [87]. Subunits can form homo- and hetero-multimers that 

can be composed of various GLR family members [88-90], and different GLRs are co-

expressed in the same cell to achieve this [91]. GLRs share some domains with high 

homology to iGluRs; two extracellular domains (S1 and S2) and three transmembrane 

domains (M1-3) (Figure 1.2b). S1 and S2 are hypothesised to act in ligand binding, 
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whilst domains M1-3 are involved in ion conductance [92]. As with CNGCs, the GLRs 

are not specific for Ca2+. The GLR pore region (P – Figure 1.2b) shows the least 

similarity to iGluRs [93, 94], making it difficult to infer GLR ion selectivity from 

iGluRs [92]. The study of GLR (and CNGC) selectivity has been limited by the 

difficulty in expressing them in heterologous systems [76]. This problem is starting to 

be addressed, with GLRs shown to be capable of conducting Ca2+, barium ions (Ba2+), 

Na+ and K+ [88, 91, 95, 96]. 

Very little is known about the physiological role of GLRs in plants. They have 

been suggested to act in glutamate sensing [93, 97-99], as well as during cold and 

mechanical signalling [100] and ABA signalling [101, 102]. A recent breakthrough by 

Farmer and colleagues demonstrated that GLR3.2, GLR3.3 and GLR3.6 are required 

for systemic electrical signalling in Arabidopsis upon wounding [103]. GLR3.5 also 

acts in this pathway as negative regulator [104]. Unlike the CNGCs, that have an 

intracellular ligand binding site (Figure 1.2a), the putative ligand binding site in GLRs 

is believed to be extracellular (Figure 1.2b) [105]. This potentially allows GLRs to act 

in the transduction of signals from the extracellular space, which is essential during 

systemic signalling. As a result, the function of GLRs in plants is now starting to be 

unravelled. 

TPC1 

The vacuole is the main intracellular store of Ca2+ in mature plant cells. Some 

Ca2+ is bound to chelating agents, whilst the remaining free Ca2+ is available for Ca2+ 

signalling [106]. As with the PM, little is known about the molecular identity of 

vacuolar Ca2+ channels. Although many have been characterised 

electrophysiologically [2], the only one with an established molecular identity is 

TPC1 [15], a DACC originally designated the slow-voltage (SV) channel [107].  

Ubiquitous across plants and animals, in plants TPC1 is localised to the 

tonoplast membrane [15]. TPC1 conducts Ca2+ [15, 108-111], as well as K+ and Na+ 

[112, 113]. It is a homodimer in which each monomer consists of two sets of 6 

transmembrane domains, two EF hand domains and a total of 4 pore domains (Figure 

1.2c) [114, 115]. Interestingly, these EF hand domains allow TPC1 to be activated by 

Ca2+ [112, 116], allowing for a positive feedback mechanism termed Ca2+-induced 

Ca2+release (CICR) [108]. Indeed, recent structural analysis of TPC1 revealed that the 
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conformational change required for full channel opening is dependent on Ca2+ binding 

to the EF-hand domains [114, 115]. 

Historically, CICR has been the subject of controversy, with some authors 

suggesting that the [Ca2+] required for CICR is greater than that found in vivo [113, 

117, 118]. Refinement of the CICR theory has led to reactive oxygen species (ROS) 

being added as an additional component, in which ROS act to potentiate the CICR 

systemically between cells via the apoplast [119-121]. As such, TPC1 might be acting 

to produce local hot spots of Ca2+ around the vacuole that then activate nearby TPC1 

channels and the ROS producing enzyme RESPIRATORY BURST OXIDASE HOMOLOGUE D 

(RBOHD) to potentiate systemic signals (more details in Section 1.3.6) [121]. 

A physiological role for TPC1 has been hard to identify [122], although it was 

originally characterised as playing a role in stomatal closure and germination [15]. 

However, recent evidence clearly shows a vital role for TPC1 in systemic signalling 

during stress (see Section 1.3.6) [7, 123], with the significance of TPC1 in plants is 

becoming apparent. 

Other channels 

There is electrophysiological evidence pointing to the existence of several 

more Ca2+-permeable channels in plants. In the PM, mechanosensitive channels exist 

that are thought to be permeable to Ca2+ or at least related to Ca2+ signalling [124]. 

Furthermore, it has been suggested that annexin membrane proteins might act in 

Ca2+ transport, with a Zea mays (maize) annexin preparation capable of increasing 

Ca2+ import into Arabidopsis protoplasts [125]. 

The vacuole is also thought to house additional channels [126]. These include 

a HACC named the fast vacuolar channel [112], a Ca2+-insensitive channel [122] and 

ligand-gated channels that are activated by cyclic ADP Ribose (cADPR) or inositol 

phosphates [127, 128]. In addition, Ca2+ release can be triggered from the ER by InsP3 

[16], cADPR [129] and nicotinic acid adenine dinucleotide phosphate (NAADP) [130], 

suggesting the presence of ligand-gated channels on this membrane as well. 
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1.1.5 Decoding the Ca2+ signal 

In order to translate the rise in [Ca2+] into a molecular or biochemical 

response, decoding mechanisms that directly bind Ca2+ are required. Conceptually, 

these decoders can be classified into sensor relays and sensor responders [2] (Figure 

1.3). Some of these decoders are found across eukaryotes, whilst others are plant- or 

protist-specific [131]. 

Sensor relays are proteins that bind Ca2+, often causing a conformational 

change, but that lack other functional domains or enzymatic activity. Examples 

include CaM, CaM-Like proteins (CMLs) and Calcineurin B-Like proteins (CBLs). Sensor 

responders incorporate both Ca2+ binding and functional activity, and include the Ca2+ 

-Dependent Protein Kinases (CDPK/CPKs), the Ca2+ and CaM-dependent protein 

Kinases (CCaMKs) and the CBL-interacting protein kinases (CIPKs) (Figure 1.3) [2, 

132]. 

CaMs & CMLs 

CaMs in plants share 89% identity with those found in animals [133]. There are 

seven genes in Arabidopsis that encode CaMs, but these give rise to only four protein 

isoforms [134]. As in animals, plant CaMs bind Ca2+ through a 12-amino acid loop in 

the EF hand motif, with each CaM composed of two globular domains each with a 

pair of EF hands (Figure 1.3) [135, 136]. Ca2+ binding results in a conformational 

change that allows CaMs to bind a diverse range of downstream targets. These 

include enzymes and ion channels [137, 138], as well as a specific set of CaM-binding 

transcription factors (CAMTAs) that are thought to act as one of the main 

intermediaries in signal transduction during stress [139, 140].  

CMLs are a group of 50 genes that have diverged from CaMs both genetically 

and functionally, but which share at least 16% amino acid identity with them [133]. 

CMLs have a variable number of EF hand motifs, although the majority (31/50) are 

predicted to have four in total (Figure 1.3) [133, 134]. Substitutions in the Ca2+ 

binding loop account for some of the divergence between CaMs and CMLs and this 

might have an effect on ion selectivity, affinity or the ability of CMLs to undergo 

conformational changes [134]. A meta-analysis by McCormack et al. [134] found a 

striking difference between CaM and CML expression profiles. Whilst the CMLs were 
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differentially regulated in responses to a many stimuli (including biotic, chemicals, 

hormones and light), the CaMs were remarkably unresponsive in comparison. 

CDPKs 

CDPKs, also known as CPKs, are a 34-member family in Arabidopsis capable of 

both binding Ca2+ and phosphorylating downstream proteins. CDPKs contain a 

serine/threonine kinase domain, a CaM-like domain harbouring four EF hands and an 

auto-inhibitory domain (Figure 1.3) [141]. The auto-inhibitory domain suppresses 

CDPK activity and upon Ca2+ binding a conformational change occurs in the protein 

that removes this inhibition [142]. Activation is further enhanced by auto-

phosphorylation [141]. 

 

 

 

  

Figure 1.3: Calcium decoding mechanisms in plants. Sensor responders (left) can bind

calcium and possess inherent kinase activity, whilst sensor relays (right) can bind calcium

but have no functional domains. Sensor responders relay signals through phosphorylation

of downstream targets, whilst sensor relays mediate signalling by directly interacting with

targets. Taken from Hashimoto & Kudla (2011) [#].

Figure 1.3: Ca2+ decoding mechanisms in plants. 

Sensor responders (left) can bind Ca2+ and possess inherent kinase activity, whilst sensor 

relays (right) can bind Ca2+ but have no functional domains. Sensor responders convey signals 

through phosphorylation of downstream targets, whilst sensor relays mediate signalling by 

directly interacting with targets. Taken from Hashimoto & Kudla [132]. 
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In Arabidopsis, CDPKs exhibit a diverse range of subcellular locations, from 

those that are anchored in the PM (e.g. CPK 7, CPK8), ER (e.g CPK2) or the 

peroxisome (e.g. CPK1), to those that are found soluble in the cytosol and nucleus 

(e.g. CPK3, CPK4) [143, 144]. A wide range of CDPK targets have been found in these 

locations too. Membrane-bound targets include ion channels [145], Ca2+-dependant 

ATPases [146], and ROS-producing enzymes [147]. This implies that CDPKs can act as 

part of feedback loops within signalling cascades. In the cytosol and nucleus, CDPKs 

have been shown to target transcription factors vital in ABA and gibberellin signalling 

[148-150]. 

Furthermore, the CDPK pathway has been linked to another major class of 

plant kinases, the Mitogen-Activated Protein Kinases (MAPKs). MAPK cascades are an 

essential component of stress signalling, including during plant defence (Section 

1.3.3) [151]. There appears to be crosstalk between the CDPK and MAPK networks, 

with CDPK signalling inhibiting MAPK activity [152]. Thus, CDPKs mark the entry point 

of Ca2+ into vast protein phosphorylation networks that we are only just beginning to 

unravel. 

CCAMKs 

Similar to CDPKs, CCaMKs have an auto-inhibitory domain, a kinase domain 

responsible for protein function and EF hand domains responsible for Ca2+ binding 

[141]. CCaMK activity is also regulated by auto-phosphorylation sites in the protein 

[153]. CCaMKs are plant-specific, but absent from green algae and the Brassicaceae. 

As such, the model plant Arabidopsis does not have CCaMK and this might explain 

why CCaMKs are less-well characterised than other sensor responders. Despite this, 

CCaMKs have been extensively implicated in legume symbiosis, where they act as 

convergence point for signalling between plants and both mycorrhizal fungi and 

nitrogen-fixing rhizobia [8, 154]. 

CBLs and CIPKs 

CBLs and CIPKs function in pairs to transduce Ca2+ signals [155]. The CBL acts 

as sensor relay, binding Ca2+ [156], whilst the CIPK acts as a sensor responder, 

phosphorylating downstream targets [157, 158] (Figure 1.3). CBLs directly target 

CIPKs through a conserved NAF domain in the CIPK C-terminal region [159]. This 

releases the CIPK from auto-inhibition caused by an interaction between the NAF and 
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kinase domains [160], as well as releasing CIPKs from external inhibition by protein 

phosphatases that also target the C-terminus of CIPKs [161]. 

There are 26 CIPKs and 10 CBLs in Arabidopsis [162]. For both CBLs and CIPKs, 

redundancy between closely related proteins is found in planta [163-166]. In 

addition, CBLs and CIPKs show overlapping interactions with each other in vitro, 

allowing for a possible “mix and match” of different components that might underlie 

the specificity in Ca2+ decoding [136, 167]. CBL/CIPK combinations have been 

implicated in a diverse range of responses to abiotic stress through mediation of ion 

transport (Figure 1.4). This network consists of many interconnected nodes, some of 

which act as highly connected hubs. Loss of hubs will generate measurable effects, 

whilst the loss of individual nodes might not [1]. This is supported by experimental 

data from the clade 1 CIPKs that act as a hub required for magnesium ion (Mg2+) 

sequestration (Figure 1.4) [165, 166]. 

[168] 

 

 

 

 

  

Figure 1.4: CIPKs mediate a range of plant responses. CIPKs and CBLs play a role in

various responses to abiotic stresses within a cell, generally through interactions with ion

channels and transporters. Taken from Manik et al., (2015) [#].

Figure 1.4: CIPKs mediate ABA and ion uptake, export and sequestration. 

CIPKs and CBLs regulate a range of ion channels and transporters in the PM and the tonoplast 

that govern ABA (salmon), Na2+ (green), Mg2+ (yellow) and NO3 (grey) homeostasis. Regulation 

is mediated by phosphorylation of the target channels and transporters by the CIPK. ??? 

indicates components that have not yet been identified. NRT1.1 = NITRATE TRANSPORTER 

1.1. Taken from Manik et al. [168]. 
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1.1.6 Ca2+ signalling during abiotic stress 

It is essential during times of stress that the plant is able to perceive the 

threat and react quickly, and Ca2+ signalling plays a role in both biotic (Section 1.3.3) 

and abiotic stress responses. One of the best studied models for Ca2+ signalling is the 

stomatal guard cell [13]. Guard cells exhibit stimulus-specific Ca2+ oscillations in 

response to many stimuli, including drought, cold and carbon dioxide [4, 5, 169]. 

Stomata are a useful model as their aperture is sensitive to a wide range of abiotic 

stimuli and can be readily studied in a wide range of plant species and mutant lines.   

The plant hormone ABA plays a central role in the plant response to abiotic 

stresses, including during osmotic stress [170], thermotolerance [171] and 

mechanical wounding [172, 173]. Moreover, ABA is intricately linked to Ca2+. ABA 

application can stimulate [Ca2+]cyt oscillations in guard cells [3, 174], and many of the 

same physiological responses to stress that ABA regulates are also modulated by Ca2+. 

Furthermore, many of the genes in the Ca2+ “toolkit” play a central role in ABA-

dependent responses to abiotic stress, including Ca2+ transporters [32] and Ca2+ 

decoders [175, 176]. 

In the root, cold, salt, touch and H2O2 can all induce [Ca2+]cyt increases [7]. 

Sodium chloride (NaCl) application results in large Ca2+ transients in roots [18] that 

can travel systemically to the shoots [7]. ACA10 and CAX1 are differentially regulated 

upon cold and play a role in freezing tolerance [31, 42]. Interestingly, cold-

stimulated root Ca2+ oscillations are dependent on the rate of cooling rather than the 

absolute temperature. Indeed, when the rate of cooling is sufficiently slow, no 

change in [Ca2+]cyt can be measured [177]. Touch also elicits [Ca2+]cyt increases in 

plants [178], as does wounding [123].  

Several Ca2+-permeable channels are implicated in abiotic stress responses. 

CNCCs are involved in the response to various abiotic stimuli, including lead and 

boron stress [77, 179], heat shock [70] and salt tolerance [59, 78, 81]. GLR3.4 plays a 

role in touch signalling [100], whilst GLR3.3, GLR3.4 and GLR3.6 have a clear role 

during wounding [103, 104]. TPC1 has roles in ABA-mediated germination [15], salt 

stress [7] and wounding [123]. 

There is considerable evidence linking Ca2+ decoding proteins to abiotic stress. 

CaMs and CMLs are responsive to heat, cold, salt, ABA, drought and heavy metals 

[140] whilst CDPKs have been linked to cold, salt, ABA and drought [180]. Whilst 

CDPKs appear to positively regulate ABA-dependent signalling during stress, CIPKs 
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and CBLs have been implicated in the negative regulation of such responses [181]. 

For example CBL9, CIPK3 and CIPK23 null mutants show enhanced ABA accumulation 

and ABA hypersensitivity [175, 176, 182, 183]. Furthermore, CIPK and CBLs have roles 

in the sequestration of Mg2+ [165, 166], salt tolerance [157, 184, 185], K+ homeostasis 

[163, 183, 186-188], nitrate deficiency [189] as well as during wounding, drought and 

the cold [175]. 

1.1.7 Genetically-encoded Ca2+ sensors 

Properties of Ca2+ sensors 

The only way to investigate Ca2+ signals directly is to measure them in vivo. 

Traditionally, Ca2+-selective microelectrodes have been used to achieve this [190, 

191]. More recently, bioluminescent and fluorescent sensors have become 

increasingly popular. These sensors bind Ca2+ and produce light, and have allowed un-

paralleled opportunities to study Ca2+ dynamics in both cells and whole tissues (Figure 

1.5).  

First developed in the animal field [192], many Ca2+ sensors are now being 

used in plant biology. Such sensors can either be injected into plant tissue as dyes, or 

genetically encoded. Genetically-encoded sensors have the major advantage of being 

easy to express in live tissue and localise to subcellular compartments, whilst dyes 

offer a good option for plants that cannot be transformed [193]. 

The ideal Ca2+ sensor will exhibit four key qualities: high fluorescent yield 

(brightness), sensitivity, selectivity and responsiveness [193]. The fluorescent yield of 

the fluorophores used in a Ca2+ sensor greatly affects the [Ca2+] changes they can 

report and is dependent on two factors. The first is the extinction coefficient, a 

measure of how well the fluorophore absorbs light. The second is the quantum yield, 

the amount of the absorbed energy that emitted as light [194].  

Sensitivity can be measured in terms of two properties, the dynamic range 

and affinity of the sensor [195]. Dynamic range is a ratio that expresses how many 

times brighter the Ca2+-bound sensor is relative to the Ca2+-free sensor. The affinity 

of the sensor describes the concentration range over which the sensor produces a 

measurable output and depends on the dissociation constant (Kd) of the sensor. The 

Kd represents the strength of binding between the sensor and Ca2+. Consequently, the 
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dynamic range and the affinity determine resolution of the [Ca2+] measurements that 

can be achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Selectivity is a measure of the reliability of the sensor at accurately reporting 

changes in [Ca2+]. Selectivity can be assessed by comparing the fluorescent response 

of the sensor to non-target ions. In order to bind Ca2+, CaM is often used as part of 

the sensor. However, Mg2+ can compete with Ca2+ for this site [196]. In addition, 

selectivity is liable to alterations caused by the pH, ionic strength and ionic 

composition of the system [195].  

Figure 1.5: Genetically-encoded calcium sensors. Calcium is represented as purple

circles and sensors are coloured according to their most common emission wavelength. A)

Aequorin is a bioluminescent sensor that produces light in the presence of calcium (Ca2+)

and coelenterazine. B) FRET cameleons are genetically encoded fluorescent sensors,

usually composed of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP).

FRET sensors require CFP excitation and upon binding of Ca2+ the two fluorophores are

brought into close contact and FRET occurs, exciting YFP. C) GCAMPs are genetically-

encoded fluorophore sensors composed of a circularly-permutated green fluorescent

protein (GFP). Upon binding of Ca2+ GFP becomes protonated, resulting in an increase in

fluorescence. D) GECOs are genetically-encoded fluorophore sensors based on GCAMP that

have an expanded colour range. Adapted from Koldenkova & Nagai (2013) [#].

A) Aequorin

D) GECO

B) FRET cameleon

C) GCaMP

Figure 1.5: Genetically-encoded Ca2+ sensors. 

Ca2+ is represented as purple circles and sensors are coloured according to their most common 

emission wavelength. A) Aequorin is a bioluminescent sensor that produces light in the 

presence of Ca2+ and coelenterazine. B) FRET cameleons are fluorescent sensors, typically 

composed of CFP and YFP. FRET sensors require CFP excitation and upon binding of Ca2+ the 

two fluorophores are brought into close contact and FRET occurs, exciting YFP. C) GCAMPs 

are fluorescent sensors composed of a circularly-permutated GFP molecule. Upon binding of 

Ca2+ GFP becomes protonated, resulting in an increase in fluorescence. D) GECOs are 

genetically-encoded fluorophore sensors based on GCAMP that have an expanded colour 

range. Adapted from Koldenkova & Nagai [195]. 
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The responsiveness of a sensor describes the speed at which it reports 

changes in [Ca2+]. This will be based on the sensor’s kinetic properties and is based 

on the [Ca2+] in the environment of the sensor, the Kd and the Hill coefficient of the 

sensor, where the Hill coefficient indicates the degree of cooperativity of binding of 

each subsequent Ca2+ ion. In addition, the association kinetics, the time it takes Ca2+ 

to bind the sensor at different concentrations, are also important [195]. Thus, 

responsiveness is a description of the temporal resolution one can achieve with a Ca2+ 

sensor. 

The relationship between the Hill coefficient and Kd of the sensor, and the 

[Ca2+] in the environment, is described by the Hill Equation (Equation 1.1). The Hill 

equation (Ø) describes the fraction of the sensor that is bound to Ca2+ at a given 

[Ca2+], where n = the Hill coefficient. It therefore allows one to assess the suitability 

of a given sensor at reporting [Ca2+] under different physiological conditions, for 

example by helping to predict how the brightness of a sensor will respond when the 

[Ca2+] changes, and identifying when saturation of the sensor will occur. 

 

𝛩 = [𝐶𝑎2+]𝑛/([𝐶𝑎2+]𝑛 + 𝐾𝑑)   (1.1) 

 

Various genetically-encoded Ca2+ sensors are now being used in plants and 

each has different biochemical and biophysical properties based on the attributes 

above that determines their utility in different systems. 

Aequorin 

The aequorin (AEQ) protein, isolated from Aequorea victoria (crystal jelly) 

was the first genetically-encoded Ca2+ sensor to be used in plants [192]. It is an EF 

hand-containing photoprotein that in the presence of Ca2+ acts as an oxygenase to 

excite the chemical substrate coelenterazine. As the excited coelenterazine returns 

to its ground state, it emits blue light (λ = 469 nm) (Figure 1.5a) [197]. This has been 

exploited by expressing this sensor in model organisms, including Arabidopsis, to 

allow visualisation Ca2+ dynamics [178].  

The major advantage of AEQ over traditional dyes is the comparative ease of 

use and the ability to target AEQ to specific tissue or cellular locations. Furthermore, 

since AEQ is bioluminescent, it does not require external stimulation by light (as is 

required for fluorescent sensors). This can be a major advantage as it avoids 
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chromophore bleaching and autofluorescence [198]. However, a major disadvantage 

is the requirement of coelenterazine treatment for the sensor to function, as well as 

the relatively poor signal generated by individual AEQ-expressing cells [193]. 

Additionally, there are some limitations to the quantification of [Ca2+] associated 

with the use of non-ratiometric signals. Despite this, AEQ has been successfully 

deployed to measure plant [Ca2+] changes in a range of processes, including 

temperature regulation [199], pathogen defence [200-202] salt stress [6, 203] and 

wounding [123] . 

FRET cameleons 

The first ratiometric fluorescent Ca2+ sensor to be developed was the 

cameleon, which is based on the principle of fluorescence resonance energy transfer 

(FRET) between two fluorophores. FRET occurs when fluorophores come into close 

contact, with the donor fluorophore (typically cyan fluorescent protein – CFP) 

exciting the acceptor fluorophore (typically yellow fluorescent protein – YFP). In 

addition to the fluorophores, FRET sensors contain a CaM domain, a glycylglycine 

linker and a CaM-binding M13 protein. Ca2+ binding to CaM leads to an altered 

interaction between CaM and M13 that results in a conformational change of the 

whole sensor. This conformational change brings CFP and YFP in close contact and 

allows FRET to occur (Figure 1.5b). One can then use the ratio between CFP and YFP 

fluorescence to determine the change in [Ca2+] in a cell or cellular compartment 

[204]. As the FRET ratio is directly related to Ca2+ binding, this system allows 

accurate quantification of [Ca2+]. FRET sensors offer superiority over AEQ and non-

ratiometric fluorescent dyes as they are not affected by the expression level of the 

protein [195] and they have a much greater dynamic range, allowing analysis of (sub-

)cellular Ca2+ signalling [195].  

Having been used in Arabidopsis for 17 years [174], FRET sensors are 

constantly undergoing improvements to their dynamic range, affinity, and stability in 

vivo [195]. One major breakthrough has been the use of a circularly-permutated form 

of YFP to develop yellow cameleon 3.6 (YC3.6) [205]. YC3.6 and derivatives (e.g 

YCNano-65 [206]) have been used to advance studying of cellular Ca2+ signalling, from 

the identification of new components to the discovery of long-distance signalling 

between the root and shoot [7, 121, 207]. 
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Single-fluorophore sensors 

Genetically-encoded single fluorophore (single-FP) sensors were developed 

relatively recently, and consist of circularly-permutated GFP linked to a CaM and M13 

[208, 209]. The permutated GFP is more accessible to protons outside of the protein 

and protonation is known to modulate GFP fluorescent emission [210]. Upon Ca2+ 

binding to CaM, CaM and M13 interact and this results in a water-mediated reaction 

between CaM and GFP. This reaction alters the protonation state of GFP by blocking 

solvent access and thus increases GFP florescence intensity [211]. 

Single-FP sensors have several advantages over cameleons. Firstly, they are 

easier to use as data is collected from only one fluorophore. The recording of a single 

set of measurements also allows an increase in the temporal resolution of the 

experiment [212]. Another major advantage of single-FP sensors is that they have a 

much greater dynamic range, in some cases 5-fold greater than FRET cameleons 

[195]. Moreover, single-FP sensors have in a range of emission spectra and therefore 

can be combined in cells to allow simultaneous imaging of several organelles [205, 

213]. Taken together, these advantages make single-FP sensors well suited to 

studying a dynamic system like Ca2+ signalling. 

A major disadvantage of single-FP sensors is that they cannot measure the 

precise [Ca2+] as reliably as FRET sensors. This is because it is difficult to distinguish 

changes in fluorescence that are due to the experimental variables (e.g. changes in 

pH, motion or expression level), from changes mediated by Ca2+. During FRET, the 

transfer of energy from CFP to YFP only occurs upon Ca2+ binding; other conditions 

that alter the fluorescent properties of the individual sensors are unlikely to mimic 

the opposing changes in intensity of CFP and YFP [195, 212]. 

One of the most established single-FP sensor varieties are the GCaMPs, based 

on GFP and first developed by Nakai et al. [209] (Figure 1.5c). GCAMPs have 

undergone major revisions over the last few years, including GCaMP 1.6 [214] 

GCAMP2 [215], GCAMP3 [216] and GCAMP5 [217]. Each iteration resulted in more 

stable sensors with greater dynamic ranges, higher affinities for Ca2+ and better 

signal-to-noise ratios. The GCaMPs have been used in a variety of animal systems, 

from Danio rerio (zebrafish) motor neurones [218] to Drosophila melanogaster 

(common fruit fly) neuromuscular junctions [217]. Furthermore, a new type of single-

FP sensors, the GECOs, have been developed from GCAMP3 by random mutagenesis. 
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GECOs can fluoresce in various colours to allow multi-sensor imaging within the same 

cell (Figure 1.5d) [213]. 

In plants, single-FP sensors are not yet extensively used. However, R-GECO 

was recently expressed in Arabidopsis. Comparison between R-GECO and YC3.6 found 

that in response to various stimuli, including ATP, fungal chitin and bacterial Flg22, 

R-GECO out-performed YC3.6 in terms of maximal signal change and signal-to-noise 

ratio [219]. Consequently, R-GECO can measure [Ca2+] changes not detectable with 

FRET cameleons. Thus, it is clear that single-FP sensors offer a golden opportunity to 

identify plant Ca2+ dynamics that have remained elusive until now. 

 

 Aphids 1.2

1.2.1 Aphids: an overview 

Aphid biology 

Aphids (Hemiptera: Aphididae) are one of the most successful insects on the 

planet, having colonised every continent except mainland Antarctica. Composed of 

over 4000 species, aphids feed exclusively on plant phloem sap [220]. Most aphid 

species, including biotypes of the model aphid Acyrthosiphon pisum (the pea aphid – 

Figure 1.6a), are specialists that feed on a subset of related plant species 

(monophagous or oligophagous). In the case of A. pisum, these are the legumes. 

Other species such as Myzus persicae (green peach aphid - Figure 1.6b), are highly 

successful generalists that can colonise hundreds of plant species (polyphagous). For 

example, M. persicae is capable of feeding on over 400 species from 40 different 

families [221], thought to be achieved partly through transcriptional plasticity [222]. 

The success of aphids is partly due to their asexual production of live young 

during the summer months (Figure 1.6c). During the winter, aphids undergo sexual 

reproduction, allowing for the introduction of genetic diversity (Figure 1.6c). In the 

case of M. persicae, sexual reproduction occurs on its primary hosts, trees of the 

Prunus genera, whilst the aphid becomes highly polyphagous during the asexual stage 

[221]. Despite this asexuality, large behavioural variation is observed between clones 

[223]. Indeed, in the absence of a primary host, some aphid species can survive 

exclusively asexually [224].  
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All Hemiptera harbour symbiotic microorganisms and essential to the survival 

of aphids is the obligate bacterial symbiont Buchnera aphidicola [225]. Phloem sap is 

an unbalanced source of amino acids [226] and symbionts such as B. aphidicola 

synthesise essential amino acids for the host [227-230]. Genomic analysis of A. pisum 

and B. aphidcola revealed that the machinery required for the synthesis of certain 

amino acids is shared between the two [231]. Furthermore, several amino acid 

transporters are expressed at the aphid-bacteria interface [232]. 

Aphids are predated on by a wide range of other insects, including ladybirds 

(Coleoptera: Coccinellidae) and lacewings (Neuroptera: Chrysopidae). They are also 

parasitized by various entomopathogenic fungi and several insects, including parasitic 

wasps (Hymenoptera: Braconidae) [233]. 

[234] 

 

 

 

 

  

Figure 1.6: The model aphids. A) Acyrthosiphon pisum (pea aphid) feeding on a legume.

Photo: Andrew Davis (JIC). B) Myzus persicae (green peach aphid) feeding on Arabidopsis.

Photo: Andrew Davis (JIC). C) The life cycle of M. persicae generally consists of an asexual

summer cycle on multiple hosts, followed by a sexual winter cycle on its primary host;

trees of the genus Prunus. Illustration adapted from Davidson & Lyon (1979) [#] and taken

from http://ipm.ucanr.edu/PMG/PESTNOTES/pni7404-2.html.
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Asexual stage Sexual stage

Figure 1.6: The model aphids. 

A) A. pisum feeding on a legume. Photo: Andrew Davis (JIC). B) M. persicae feeding on 

Arabidopsis. Photo: Andrew Davis (JIC). C) The life cycle of M. persicae generally consists of 

an asexual summer cycle on multiple hosts, followed by a sexual winter cycle on its primary 

host; trees of the genus Prunus. Illustration adapted from Davidson & Lyon [234] and taken 

from http://ipm.ucanr.edu/PMG/PESTNOTES/pni7404-2.html. 

http://ipm.ucanr.edu/PMG/PESTNOTES/pni7404-2.html
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M. persicae is a major plant pest 

The huge number of aphid species and the extraordinary host range of some 

of these species results in aphids presenting a serious threat to world agriculture. M. 

persicae can feed on hundreds of species, including vegetables (including potato, 

sugar beet, pea and carrots), fruits (including apple, citrus, peach and tomato) grains 

(including barley, wheat and maize) and ornamental plants (including rose and lily) 

[221, 233, 235]. Although aphid infestation reduces plant growth [236], the main 

agricultural damage resulting from aphid feeding is the transmission of plant viruses. 

M. persicae is capable of transmitting over 100 different types of viruses, including 

Potato leafroll virus and Cauliflower mosaic virus [237]. Through a combination of 

feeding and virus transmission, aphid infestation results in significant decreases in 

crop yield and quality [238-240]. 

Managing aphid populations is one of the great challenges of modern 

agriculture. One of the main forms of control is the use of chemical insecticides 

[241]. However, insecticide resistance is now a major issue [242-244]. M. persicae  

has developed resistance to 77 active ingredients [245] and at one point this was 

more than any other insect, leading to a Guinness World Record [246]. Additional 

control strategies include biological control using natural enemies [247, 248] and 

adjusting fertiliser application [249]. Genetic engineering may also offer a novel 

control strategy. For example, plants were recently created that synthesised the 

aphid alarm pheromone (E)-β-farnesene (Eβf). Whilst  Eβf  expressed in Arabidopsis 

successfully repelled M. persicae in the lab  [250], this effect was not seen with 

wheat (Triticum spp, henceforth referred to as wheat) in the field [251], which 

highlights the difficulty of translating research in the lab into successful crop 

protection strategies. 

1.2.2 Aphid feeding behaviour 

Before settling 

Before an aphid can settle, it has to choose a plant. For this to occur, a 

winged fundatrix (Figure 1.6c) must find and select a host. If a chosen host is not of 

sufficient quality the aphid might reject it [252]. Differentiating between host-

finding a host-selecting is difficult and is most likely based on a similar set of cues 
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[253]. Such cues include the visual properties of the target. For example, yellow 

traps are widely used for aphid control as aphids find this colour attractive [254]. In 

addition, odours are used in host selection. This includes both those emitted from 

plants as volatile compounds and those emitted by other aphids as pheromones [255, 

256]. Abiotic factors such as wind and temperature also affect aphid dispersal, as do 

biotic factors including predators and parasitoids [253]. 

Once a plant has been chosen, there are several barriers to establishing 

successful feeding with the aphid needing to decide where on a leaf to feed. A. 

pisum fecundity is not affected by feeding location, however there is an increased 

risk of predation when feeding near the petiole, but this does not appear to deter 

feeding from this area [257]. Stimuli such as gravity can help some species, including 

Euceraphis betulae (silver birch aphid), to orientate themselves on the underside of 

leaves [258]. Various chemical and physical features of the plant will also influence 

feeding site selection, including allelochemicals and trichomes [259]. Indeed, 

physical barriers are one of the first layers of plant defence that an insect must 

overcome to establish successful feeding [260]. 

Pathway phase 

Once settled, feeding can commence. Aphids feed from plants using needle-

like mouth parts called stylets that penetrate the plant tissue. This begins with 

probing of the upper cell layers of the leaf (epidermis and mesophyll) before long-

term feeding is established from the phloem sieve elements (SEs) (Figure 1.7) [261]. 

The cues that govern aphid behaviour as it probes the plant are largely unknown. 

The electrical penetration graph (EPG) technique pioneered by Freddy 

Tjallingii and others [262-265] has allowed detailed analyses of aphid feeding 

behaviours on plants. This technique makes the aphid part of an electrical circuit by 

attaching electrodes to the aphid and the plant host. Upon cellular penetration by 

the stylets, a voltage change can be recorded and the pattern of this change is 

dependent on the cell type. The stylets will travel through the apoplast of the plant, 

occasionally penetrating surrounding cells (Figure 1.7). EPG has revealed that cell 

punctures can occur within 10 s of the aphid beginning a probe and many punctures 

will occur in the epidermal and mesophyll cells as the aphid attempts to find the 

phloem. This behaviour is called the pathway phase [266, 267].  
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During the pathway phase, the aphid both salivates and ingests, as 

demonstrated by elegant experiments analysing virus acquisition and inoculation by 

aphids as they feed on plants [268, 269]. The aphid secretes two types of saliva into 

the plant; sheath saliva and watery saliva [270]. Sheath saliva protects the stylets as 

they move through the plant tissue [267], whilst watery saliva is secreted into plant 

tissue in order to suppress host defence responses (Figure 1.7) [271].  

Watery saliva is injected into the cells probed by the aphid during the 

pathway phase [268] and proteomic studies on the watery saliva have identified that 

it contains various proteins that are hypothesised to suppress plant defence [272-

274]. Such molecules are referred to as effectors [275]. Various putative aphid 

effectors have been discovered, often identified through aphid genes expressed in 

the salivary glands [276-278], and some can be found in the cytoplasm of cells 

adjacent to the stylet track [279]. 

 

 

  

Figure 1.7: Aphids feed from plants using specialised mouthparts called stylets. The

stylets probe epidermal, mesophyll and companion cells until establishing long-term

feeding from the phloem. The stylets are covered in sheath saliva and secrete watery

saliva, containing effector molecules that modulate host physiology, into the cells. In

legumes, aphids actively prevent phloem occlusion, hypothesised to be achieved through

the chelation of calcium ions (Ca2+). Adapted from Hogenhout & Bos (2011) [#].

Figure 1.7: Aphids feed from plants using specialised mouthparts called stylets. 

The stylets probe epidermal, mesophyll and companion cells until establishing long-term 

feeding from the SEs. The stylets are covered in sheath saliva and secrete watery saliva, 

containing effector molecules that modulate host physiology, into the cells. Phloem occlusion 

is inhibited during aphid feeding, and this is hypothesised to be achieved through the 

chelation of Ca2+. Taken   from Hogenhout & Bos [275]. 
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During incompatible interactions (non-host resistance), where an aphid is not 

capable of successfully feeding from a specific plant species, probing still occurs. 

Evidence for this includes the observation that incompatible aphids are still capable 

of transmitting viruses [280], as well as direct demonstration of feeding on non-host 

plant species by EPG [281, 282] and histochemical staining [283]. Furthermore, when 

M. persicae feeds on a susceptible genotype of peach, less probing of upper cell 

layers is observed than on a resistance variety [282]. Thus, during the pathway phase 

host suitability (such as susceptibility or resistance) is determined and this 

information is being relayed to the aphid. 

Phloem phase 

Once the aphid reaches the phloem, two distinct behaviours have been 

identified by EPG (Figure 1.8a). Upon reaching the SE, the aphid will inject watery 

saliva into the cell (E1 phase – Figure 1.8b). Subsequently, the aphid will begin 

ingesting the phloem sap (E2 phase – Figure 1.8c). These two phases are 

characteristic of phloem feeding by aphids [270, 284].  

The phloem allows continuous flow of photo-assimilates in the form of sap 

[285, 286], thus when a wound or puncture occurs in the sieve tubes the plant acts to 

seal the breach. In most angiosperms this is achieved by occlusion via phloem (P)-

proteins [287, 288] and callose production [289] that plug these gaps. In legumes this 

manifests itself as the formation of crystalline protein bodies called forisomes [290, 

291]. Forisome-dependent occlusion is activated by the presence of Ca2+ and 

inhibited by Ca2+ chelators such as ethylenediaminetetraacetate (EDTA) [287, 291]. 

Synthesis of callose might also be Ca2+-dependent [292-295], although in vivo 

evidence has been lacking thus far. In order for aphids to feed continuously from the 

phloem, occlusion must be inhibited [296] and it has been suggested that this is 

achieved by Ca2+-binding proteins present in the saliva [297] (Figure 1.7).  

An aphid might not accept the first SE it finds [267] and the degree of phloem 

feeding depends on the aphid’s compatibility with the host [298, 299]. During 

incompatible interactions, the aphid can complete the pathway phase normally but 

can exhibit difficulties in establishing ingestion (E2) once reaching the SE. This is can 

manifest itself as long E1 salivations coupled with shorter E2  ingestions or periods of 

isolated E1 behaviours [300-303]. Resistance appears to be correlated with the 
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amount of salivary excretion into the phloem [282], and therefore aphid-derived 

effectors are also likely to play a role during phloem phase feeding. 

 

 

 

  A)

B) C)

Figure 1.8: Phloem feeding involves salivation (E1) followed by ingestion (E2). A) EPG

trace showing the waveform patterns typical of E1 and E2 feeding. B) E1 involves

salivation of watery saliva into the sieve element, thought to help modulate plant

defence responses. C) E2 involves ingestion of the phloem sap. Although salivation

continues during E2 no saliva reaches the sieve element due to the bulk transport of sap

into the aphid stylets. Taken from Tjallingii (2006) [#].

Figure 1.8: Phloem feeding involves salivation (E1) followed by ingestion (E2). 

A) EPG trace showing the waveform patterns typical of E1 and E2 feeding. B) E1 involves 

salivation of watery saliva into the sieve element, thought to help modulate plant defence 

responses. C) E2 involves ingestion of the phloem sap. Although salivation continues during E2 

no saliva reaches the SE due to the bulk transport of sap into the aphid stylets. Taken from 

Tjallingii [270]. 
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 Plant defence 1.3

1.3.1 Plant defence: an overview 

Despite our relatively well informed knowledge of the ecology of aphids, the 

molecular details that underpin their huge success remain largely unknown. As with 

the continuing elucidation of Ca2+ “toolkit” in plants (Section 1.1), we are only now 

beginning to identify the mechanisms involved in the aphid colonisation of hosts and 

the plant responses required to prevent this. 

Arabidopsis has a wide selection of anti-aphid defences at its disposal. These 

include callose production [304], toxic substances such as glucosinolates [305]  and 

camalexins [306], defence hormones such as JA and salicylic acid (SA) [307, 308], as 

well as the production of natural enemy-attracting volatiles [309]. Many insects feed 

on plants by herbivory that results in large tissue damage, such as chewing insects 

like lepidopteran larvae. Consequently, there are many parallels between the plant 

response to chewing insects and wounding stress [310]. However, hemipterans are 

subtle feeders, piercing phloem cells and sucking the sap. They also establish long-

term feeding and reproduction on the same leaf, unlike chewing insects where 

feeding and reproduction are temporally separated. Thus, the hemipteran feeding 

style is more akin to plant-pathogen interactions, in which far fewer cells are 

damaged [275]. This difference in feeding style between chewing and piercing 

insects can result in the activation of different plant defence responses [311]. 

Interactions between plants and pathogens or insects can be thought of as a 

multi-stage process [312]. The plant recognises the pathogen or insect through 

conserved pathogen-associated molecular patterns (PAMPs) or herbivore-associated 

molecular patterns (HAMPs) which activate PAMP-triggered immunity (PTI) (Figure 

1.9a). Successful activation of PTI results in an incompatible interaction between the 

insect and the plant. However, in certain cases the pathogen or insect suppresses PTI 

using effector molecules, leading to a compatible interaction (Figure 1.9b). To 

counter this, it is possible for the plant to develop the capacity to recognise these 

effectors through resistance (R)-genes and activate a second wave of defences known 

as effector-triggered immunity (ETI) (Figure 1.9c). 

It is worth noting that the PTI/ETI model has some limitations. The distinction 

between PAMPs and effectors is not always clear and it can be difficult to apply the 

PTI/ETI model to mutualists and necrotrophs that use similar mechanisms of invasion 
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[313]. This led Cook et al. [313] to propose a simplified model in which the plant 

recognises general invasion patterns (IPs) by IP receptors, and invaders use effectors 

that suppress (compatible biotrophs), fail to suppress (incompatible biotrophs) or 

utilise (necrotrophs/mutualists) IP-triggered defence responses. However, the 

PTI/ETI model still remains the favoured representation of plant defence and will 

form the conceptual framework within which the present work is discussed. 

 

 

  

Figure 1.9: The three stages of molecular plant-aphid interactions. A) PAMP-triggered

immunity (PTI) is activated in a plant cell after perception of conserved pathogen-

associated molecular patterns (PAMPs) or herbivore-associated molecular patterns

(HAMPs) by pattern recognition receptors (PRRs). B) Compatible pathogens and insects

secrete effector molecules into the cell to supress PTI, often by modulating intracellular

signalling pathways. C) Effector-triggered immunity (ETI) is activated when the plant

detects effectors through resistance (R) genes, re-establishing immunity. Examples of

aphid R-genes include Mi-1 from tomato and Vat from melon. Figure taken from

Hogenhout & Bos (2011) [#].

A) PTI B) Effectors C) ETI

Figure 1.9: The three stages of molecular plant-aphid interactions. 

A) PTI is activated in a plant cell after perception of conserved PAMPs or HAMPs by pattern 

recognition receptors (PRRs). B) Compatible pathogens and insects secrete effector molecules 

into the cell to suppress PTI, often by modulating intracellular signalling pathways. C) ETI is 

activated when the plant detects effectors through R-genes, re-establishing immunity. 

Examples of aphid R-genes include Mi-1 from tomato and Vat from melon. Figure taken from 

Hogenhout & Bos [275]. 
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1.3.2 Perception of pathogens and insects 

Pathogen and insect elicitors 

Attackers are recognised by plants through pathogen- or insect-derived 

elicitors. These are slowly-evolving conserved molecular fingerprints termed PAMPs 

[312, 314], or in the case of insects HAMPs [315] (Figure 1.9). Evolution and 

diversification of PAMPs/HAMPs might contribute to developing increased virulence 

although this is not directly accounted for in the PTI/ETI model [313, 316]. Various 

PAMPs have been identified, with the two best characterised from bacteria being 

flg22 from flagellin [317] and elf18 from elongation factor EF-Tu [318]. Flg22 

perception results in many of the hallmarks of plant defence, outlined in detail in 

sections 1.3.3 and 1.3.4 [317, 319, 320]. Fungi also contain PAMPs [321], the best 

studied of which is chitin [322, 323]. 

Conversely, very few HAMPs have been identified. This is partly because 

chewing insects cause large amounts of internal damage that can itself elicit plant 

defence responses [324]. Thus, wound-induced damage represents an effective way 

for a plant to identify such insects. Plant-derived molecules produced during 

wounding that result in defence activation are termed damage-associated molecular 

patterns (DAMPs). DAMPs can include cell wall fragments [325-327], cutin monomers 

[328], and specific peptides such as the JA-responsive systemin and the Arabidopsis 

wound peptide ARABIDOPSIS THALIANA PEPTIDE 1 (PEP1) [329-331]. Despite the 

elicitation of defence by DAMPs, application of insect oral secretions (OS) to wounds 

can elicit plant responses distinct from wounding alone, which suggests there are 

additional methods of insect-specific detection. For example, applying OS to wounds 

can increase JA [332] and plant volatile [333] production.  

At the interface of DAMPs and HAMPs is inceptin. Inceptin is composed of 

fragments of the chloroplast ATP synthase, broken down in the insect gut and is 

present in the OS from Spodoptera frugiperda (fall armyworm). Inceptin activates 

defence responses in Vigna unguiculata (cowpea) including ethylene (ET) and JA 

production, as well as volatile organic compounds (VOCs) [334, 335]. However, the 

best studied class of insect HAMPs are fatty acid conjugates (FACs) [336-342]. These 

include volicitin, a lepidopteran FAC that can elicit plant defence [337, 343]. FAC-

based elicitors have also been identified in members of the order Orthoptera, such as 

Schistocerca americana (American bird grasshopper) [344]. Whilst inceptins only 
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function like PAMPs in the Fabaceae, volicitin can elicit responses across angiosperms 

[345]. In addition to FACs, other HAMPs of lepidopterans include oviposition elicitors 

[346, 347] and ß-glucosidase [348]. 

Application of whole-body aphid extract to plants can initiate defence 

responses [349]. However, the specific aphid HAMP(s) involved has remained elusive 

until recently. Chaudhary et al. [350] discovered that the GroEL chaperonin protein 

from the symbiont B. aphidicola was capable of stimulating plant defence and that 

heterologous expression of GroEL in Arabidopsis and Solanum. lycopersicum (tomato) 

significantly reduced M. persicae fecundity. To date this is the only known aphid 

HAMP. 

Plant receptors 

Several plant cell-surface pattern recognition receptors (PRRs) for PAMPs and 

DAMPs have been identified. During bacterial infection, FLAGELLIN-SENSITIVE 2 

(FLS2) directly binds flg22 [351] and activates plant defence responses [352]. 

Consequently, loss of FLS2 results in flg22-insensitivity [353]. The receptor for elf18 

has been identified as EF-Tu RECEPTOR (EFR) and loss of EFR in Arabidopsis results in 

higher susceptibility to Agrobacterium tumefaciens [354]. For DAMPs, the PEP1 

receptor has been identified in Arabidopsis and characterised as PEP1 RECEPTOR 1 

(PEPR1) [355]. Furthermore, it has been suggested that GLRs could act as DAMP 

receptors by sensing changes in amino acids levels during wounding and herbivory 

[356], although no evidence of this has been presented yet. FLS2, EFR and PEPR1 all 

belong to the receptor-like kinases (RLKs) and are capable of transducing a 

phosphorylation signal to downstream components. In plant-fungal interactions, 

PAMP receptors include CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) which mediates 

fungal chitin perception [357, 358], but not perception of aphid chitin [349]. 

The receptors for HAMPs are not yet known. The Lepidopteran HAMP volicitin 

has been demonstrated to bind the PM in Z. mays [343], suggesting that like PAMPs, 

HAMPs bind cell-surface receptors. Indeed, many of the downstream responses to 

HAMP perception are similar to those elicited by PAMPs, implying a common 

signalling mechanism. 
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BAK1 

Despite containing kinase domains capable of transducing intracellular 

signalling, many RLKs appear to require other RLKs for full function [314]. In plant 

immunity, BRI1-ASSOCIATED RECEPTOR KINASE (BAK1), a gene originally identified by 

its role in brassinosteroid signalling [359], is required for the full activation of FLS2- 

and EFR-dependant pathways [360, 361]. Within minutes of flg22 treatment in vivo, 

FLS2 and BAK1 form a complex, making this a very early event in plant defence. 

Plants lacking BAK1 still exhibit normal flg22 binding and BAK1 is not a direct PAMP 

receptor, rather a co-receptor required for full signal propagation. Furthermore BAK1 

null mutants are still capable of some defence signalling, suggesting that PAMP 

receptors are capable of some inherent signalling or that additional co-receptors 

might be present [314, 360, 361]. BAK1 is also involved HAMP-perception during PTI 

against Manduca sexta (goliath worm) [362]. and M. persicae [349]. However, the 

role of BAK1 in plant-aphid interactions is independent of known PRRs including FLS2, 

EFR or PEPR1 [349]. 

Activation of PTI 

Once a plant perceives PAMPs, HAMPs or DAMPs, PTI will be activated. PTI 

involves a multitude of processes, characterised from both the pathogen and insect 

literature. These can be divided into early and late PTI responses. The early 

responses include ion fluxes, kinase activation, and ROS production, whilst the late 

responses include hormone biosynthesis, gene transcription and secondary metabolite 

production. PTI is rapidly activated upon perception of a biotic threat, with the early 

events occurring within seconds of perception (Figure 1.10). 

 

[363] 
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Figure 1.10: Early and late events in PAMP-triggered immunity (PTI) against pathogens

and insects. Approximate timing of events indicated on the left. Arrows indicate direct

molecular connections between responses. Examples of genes, proteins and chemicals

involved in the response are given on the right. ROS = reactive oxygen species, VOC =

volatile organic compound. Based on information in Maffei et al., (2007) [#], Boller et al.,

(2009) [#], Zipfel & Robatzek (2010) [#], Wu & Baldwin (2010) [#].
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Figure 1.10: Early and late events in PTI against pathogens and insects. 

Approximate timing of events indicated on the left. Arrows indicate direct molecular 

connections between responses. Examples of proteins and chemicals involved in the response 

are given on the right. Based on information in Maffei et al. [406], Boller et al. [331], Zipfel & 

Robatzek [363] and Wu & Baldwin [310]. 
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1.3.3 Early events in PAMP-triggered immunity 

Ion fluxes and electrical signalling 

Plant stress often results in ion fluxes, ultimately causing changes in the PM 

electrical potential (Vm) [364]. Vm changes caused by biotic stresses result in changes 

in gene transcription, including those involved in defence [365]. These electrical 

signals are one of the first plant responses to pathogen and insect attack (Figure 

1.10), with Ca2+, K+, H+ and nitrate (NO3-) all potentially playing a role [366, 367]. In 

Phaseolus lunatus (lima bean), Spodoptera littoralis (African cotton leafworm) 

attack causes membrane depolarisation around the bite zone and throughout the 

attacked leaf. Wounding alone is not sufficient to generate a Vm change, application 

of OS to wounds is required [368] and the strongest elicitation occurring in response 

to live biting [369]. Interestingly, volicitin cannot induce Vm changes [369]. In Glycine 

max (soybean) membranes, OS from eight different lepidopteran species resulted in 

ion fluxes, with the activated channels responsible demonstrating a preference for 

cations over anions [370].  

In Arabidopsis, wounding alone induces Vm changes that can be detected with 

surface electrodes [103]. S. littoralis, M. persicae and Pseudomonas syringae can all 

induced Vm changes, as recorded by Bricchi et al. [365]. All three induce Vm 

depolarisations with a similar magnitude, but the timing of the peak depolarisation 

was variable between the attackers. S. littoralis induced a 35 mV depolarisation 

within 30 min, whilst M. persicae took 4 h to reach this level and P. syringae 16 h. 

This appears to reflect the amounts of cellular damage caused by each organism, and 

suggests that mechanical wounding is the primary cause of Vm changes during such 

interactions with Arabidopsis. Furthermore, Ca2+ channel blockers significantly 

reduce the Vm changes seen upon insect attack [369] and this implies that Ca2+ might 

be acting as one of the ions directly involved in Vm changes, and/or there is crosstalk 

between Ca2+ and other ions during this signalling. 
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Ca2+ elevations 

Interactions with microorganisms often involve [Ca2+] oscillations in the plant. 

However, unlike symbioses in which [Ca2+]nuc oscillatory patterns lead to a response 

[8, 64], PAMP-triggered signals generally result in transient [Ca2+]cyt elevations, the 

amplitude and duration of which are pathogen-specific. For example flg22 induces 

higher amplitude, shorter duration Ca2+ bursts relative to bacterial harpin [17]. 

Various elicitors induce [Ca2+]cyt elevations, including those from bacteria [17, 122, 

219, 371], oomycetes [17, 372] and fungi [122, 219, 373]. The role of Ca2+ in 

pathogen defence is not entirely clear, with Ca2+ elevations capable of both 

activating [374] and suppressing [375] defence. [Ca2+] changes have also been 

measured in response to chewing insects. OS can induce a transmembrane ion flux in 

cell cultures [370] and feeding by lepidopteran larvae also induces [Ca2+]cyt elevations 

in Arabidopsis that are distinct from mechanical damage or OS alone [376]. 

The Ca2+-permeable channels that mediate PTI-induced [Ca2+]cyt elevations 

have not yet been identified; however there are several promising candidates. The 

CNGC2 null-mutant defence no death 1 (dnd1) displays a strong defence phenotype, 

showing clear upregulation of the hormone SA and increased resistance to a range of 

pathogens [79, 377]. This mutant also exhibits reduced [Ca2+]cyt elevation in response 

to Pep3, but not flg22, implying it mediates Ca2+ release upon DAMP perception [378]. 

Furthermore, CNGC4 is expressed in response to pathogens and leaves of the CNGC4 

mutant hml1 develop spontaneous lesions [66]. Interestingly, both dnd1 and hml1 

have a reduced hypersensitive response (HR), a hallmark of ETI (section 1.3.5) [66, 

377]. As such, CNGC2 and CNGC4 could be forming heterotetramers to mediate the 

same defence pathway [379] and this might be ETI-specific. CNGC11 and CNGC12 

have also been implicated defence, as when combined as a chimeric protein they 

confer enhanced resistance to pathogens [374]. Evidence for GLR involvement in PTI 

is lacking, however overexpression in Arabidopsis of a putative Raphanus sativus 

(radish) GLR resulted in defence gene upregulation and increased resistance to the 

fungal pathogen Botrytis cinerea [380]. Downstream of [Ca2+] elevations, many of the 

decoders have been implicated in defence against insects and pathogens, including 

CAMTAs [381, 382], CDPKs (see below) [383, 384] and CIPKs [385]. 
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Kinase activation 

MAPKs and CDPKs play a central role in early signal transduction during PTI 

and there is considerable crosstalk between the two kinase classes. MAPKs can 

regulate CDPK transcript abundance [386], whilst CDPKs can inhibit MAPK activation 

through ET-mediated crosstalk [152]. 

In Arabidopsis, MAPK activation begins minutes after flg22 application [387] 

(Figure 1.10) in a BAK1-dependant manner [360] and modulates SA production [388], 

PTI marker gene expression [389] and the HR [390]. MAPK activation is also part of 

the defence response to fungi [354] and nematodes [391]. Moreover, MAPKs including 

the wound-induced protein kinases (WIPKs) and SA-induced protein kinases (SIPKs) 

are activated upon wounding and are required for JA production and defence gene 

induction [392-396]. Consequently, herbivory by M. sexta results in a rapid 

upregulation of the WIPKs and SIPKs that mediate JA and ROS production during this 

interaction [386], whilst silencing of MPK1 and MPK2 in S. lycopersicum results in a 

much higher susceptibility to herbivory [397]. The role of MAPKs in aphid-induced PTI 

has not been clearly elucidated, however the MAPK marker gene FLG22-INDUCED 

RECEPTOR-LIKE KINASE 1 (FRK1) is induced by whole-body extract from several aphid 

species [349] and silencing MAPKs in S. lycopersicum significantly reduces ET-

mediated resistance to Macrosiphum euphorbiae (potato aphid) [398]. 

CDPKs have also been shown to play an essential role in PTI directly 

downstream of [Ca2+] elevations. Flg22 can stimulate CDPK activity, whilst loss of 

CPK4, CPK5, CPK6 and CPK11 results in reduced defence responses and increased 

susceptibility to P. syringae [399]. In agreement with this, over-activating CDPK2 by 

removing the auto-inhibitory domain induces strong defence responses in Nicotiana 

benthamiana [152] and transcript levels of CDPKs peak significantly earlier in 

response to wounding if M. sexta OS are added [386]. Upregulation of CDPKs in 

defence is not restricted to dicots; in maize CPK11 is up-regulated upon wounding 

[400, 401]. Ten different G. max CDPKs were recently shown to be upregulated by 

infestation with the Aphis glycines (soybean aphid) [402], suggesting CDPKs might 

also play a role in plant-aphid interactions. 

CDPKs can also negatively regulate PTI. For example, CPK28 mediates 

turnover of BIK1, a plasma-membrane enzyme that mediates signalling by multiple 

RLKs [403] and the PAMP-induced Ca2+ burst in Arabidopsis [384]. Furthermore, CDPKs 

regulate other defence signals, including H2O2 production [119], SA accumulation 
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[404] and increased expression of the JA marker gene PLANT DEFENSIN 1.2 (PDF1.2) 

[405]. 

ROS production 

A detectable increase in ROS can be measured within minutes of exposure to 

PAMPs/HAMPs, with ROS acting directly as an anti-microbial substance and as a 

signalling molecule (Figure 1.10). Bacteria [316, 317, 353, 360, 371, 406], fungi [318, 

354, 360], caterpillars [407] and aphids [304, 349, 408] all elicit the production of 

ROS in plants. 

FLS2 is required for this burst in response to flg22, whilst ROS produced in 

response to elf18 is EFR-dependent [354]. Furthermore, in the case of flg22, elf26 

and aphid extract, this burst is also mediated by BAK1 [349, 360]. It is worth noting 

the ROS burst in response to aphid extract peaks 180 min post-exposure, a much 

slower response than that observed with flg22. This aphid extract-induced burst is 

also ten times lower in magnitude [349]. However, the two are not comparable as 

aphid extract contains all the proteins from the insect’s body, not just the isolated 

HAMP. Indeed, when GroEL was incubated alone with Arabidopsis leaves, the ROS 

burst was much more rapid, peaking within 14 minutes [350]. 

For both pathogens and aphids, the PM-localised enzyme RBOHD appears to be 

the source of the ROS [349, 409-411]. Furthermore, the closely related enzyme 

RBOHF is also required for pathogen-induced ROS accumulation [409, 412], and rbohD 

and rbhoF mutants show reduced resistance to M. persicae [283, 413]. Moreover, ROS 

production mediates host-compatibility, with incompatible aphids inducing greater 

ROS production than compatible species [283].  

There is a clear link between ROS production and Ca2+ signalling (Figure 1.10). 

RBOHD is Ca2+-regulated [414] and required for long-distance Ca2+ signalling [121]. 

Furthermore, RBOHC regulates Ca2+ influx during root hair expansion [415] and 

damaged-induced Ca2+ elevations are enhanced by H2O2 application [407]. 
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1.3.4 Late events in PAMP-triggered immunity 

Hormone biosynthesis 

After the initial defence signalling responses, biosynthesis of plant hormones 

occurs. The four main hormones implicated in defence are JA, SA, ABA and ET. The 

antagonism and crosstalk between them is not fully understood, and therefore a 

comprehensive understanding of their individual roles is not yet possible. 

JA is a chloroplast- and peroxisome-synthesised hormone that accumulates in 

response to wounding [392, 395, 416] and in response to herbivory by chewing 

insects, where it is detrimental to insect fitness [308, 332, 334, 335, 417-420]. It also 

accumulates in response to some microbial pathogens [421]. JA accumulation peaks 

about an hour after elicitation (Figure 1.10) [345] and inhibition of the JA pathway 

results in increased insect performance [422]. JA regulates defence-related genes 

[421, 423] and its accumulation is regulated by CDPKs [424], MAPKs [392, 393, 395, 

425] and BAK1 [362]. Despite the lack of strong differential regulation of JA-related 

genes upon aphid feeding [426, 427], high levels of JA are detrimental to aphids 

[307, 426, 428-430]. Furthermore, compatible aphids induce and repress different 

subsets of JA-related genes [304] further suggesting that regulation of JA is 

important.  

SA accumulates in response to microbial pathogens [431] and phloem-feeding 

insects [417, 426], and is vital for effective defence [79, 432]. SA-related genes are 

upregulated in response various aphid species, including Brevicoryne brassicae 

(cabbage aphid) [304], M. euphorbiae [433] and M. persicae [308]. It has been 

proposed that aphids upregulate SA and this antagonises JA-mediated defence 

signalling in order to allow successful colonisation of the plant [426, 427, 434-436]. 

However, the role of SA in anti-aphid defence remains unclear; for example M. 

persicae displays a range of contradictory fitness phenotypes on different Arabidopsis 

SA mutants [434].  

ABA is now also emerging as a biotic stress hormone, in addition to its role in 

abiotic signalling (Section 1.1.6). ABA is produced in response to wounding [172, 173] 

and aphid feeding [437] and plays a role in defence against pathogens [438]. In these 

responses it is hypothesised that ABA is also acting to antagonise JA [432, 439-441]. 

As with SA, the extract role of ABA in plant-insect interactions is still unclear, with 
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both chewing insects and aphids displaying contradictory phenotypes on different 

ABA mutants [418, 437, 442]. 

ET signalling is involved in defence against bacteria [443], fungi [318, 444], 

and chewing insects [334]. This is one of the fastest responses to PAMPs, occurring 

within 10 min and regulated by l-aminocyclopropane-1-carboxylate (ACC) synthase 

[445]. Very few ET-related genes are differentially regulated by aphid attack in 

Arabidopsis [304, 427], however Kerchev et al. [442] found that several ET response 

factors are upregulated by M. persicae infestation. It is unclear if this forms part of a 

plant defence response or aphid manipulation of the host. Likewise, the biological 

role of ET in aphid defence is unclear and has been related to both resistance [446, 

447] and susceptibility to aphids [448-450] in various plant species. 

Gene transcription 

Ions, ROS, MAPKs, CDPKs, and plant hormones all regulate gene expression 

during defence. PTI-regulated genes can be identified from those differentially 

regulated by direct PAMP/HAMP application. Flg22 application results in rapid 

differential regulation of 966 genes within 30 min (Figure 1.10) and this is reduced to 

just 6 genes if FLS2 is mutated [320]. Elf18 elicits a similar response [354] and in 

both cases the majority of genes are upregulated. In addition there is the potential 

for significant feedback, with over 40 RLKs changing in expression, as well as genes 

regulating Ca2+ (e.g. CNGC1, GLR1.1), ROS (e.g. RBOHD), hormones (e.g LOX, ACC6) 

and MAPKs (e.g. MPK17) [320]. 

Wounding and the production of DAMPs also upregulates a wide array of 

genes, especially those related to JA signalling and water stress [451, 452], as well as 

those found during PTI such as the WRKY DNA-BINDING PROTEIN3 (WRKY3) [453]. 

Indeed, many PAMPS and DAMPs regulate a similar set of genes, implying that the 

responses to these diverse stimuli converge at the point of gene transcription [331]. 

The lack of characterised HAMPs makes it difficult to identify genes directly 

involved in PTI against insects and studies performed with whole insects or their 

derivatives do not easily allow us to distinguish between PTI- and ETI-mediated 

resistance. However, GroEL upregulates several genes known to be involved in PTI 

against pathogens, including FRK1, and WRKY29 3 h post-treatment, and 

PATHOGENESIS-RELATED GENE 1 (PR1) 24 h post-treatment [350]. FRK1 and WRK29 

form part of the early signalling response to pathogens and are also upregulated 
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within 30 min of flg22 application [151], whilst PR1 is a well-characterised late-

responding PTI gene [454]. Prince et al [349] showed that M. persicae extract can 

induce further pathogen-identified PTI marker genes including CYTOCHROME P450, 

FAMILY 81 (CYP81F2), involved in glucosinolate production [305] and PHYTOALEXIN 

DEFICIENT 3 (PAD3), involved in camalexin production [455]. 

Secondary metabolites 

The successful activation of defence against insects and pathogens concludes 

in secondary metabolite biosynthesis and callose production. Callose production was 

described previously in section 1.2.2 and is a common response that prevents phloem 

nutrients from reaching pathogens [319, 456] and insects [296, 297, 457]. Secondary 

metabolites produced in defence include lignin to impede entry, toxic substances 

(e.g. flavonoids, tannins and lectins) and protease inhibitors that act against insect 

gut [458].  

Camalexin and glucosinolates are two tryptophan derivatives believed to play 

a key role in defence against insects. Camalexin biosynthesis is mediated by the 

enzyme PAD3 [455, 459] and plays role in defence against fungi [460, 461], bacteria 

[462, 463] and aphids [304, 306, 349, 464]. Glucosinolates are also part of PTI against 

pathogens [465]. Despite constitutive production of glucosinolates in many plants 

[466], a wide variety of insects from various orders stimulate increased 

glucosinolates production within a few days, and this has negative effects on insect 

fitness [467]. Furthermore, at least 120 glucosinolates have been identified across 

plant species [467], and different classes are detrimental to different insects [468]. 

In Arabidopsis, 4-methoxyindol-3-yl-methylglucosinolate (4MI3M) is induced by M. 

persicae feeding, enhancing plant resistance and its loss correlates with improved 

aphid performance [305, 437, 464, 469, 470]. 

In addition to metabolite production within tissues, plants also release VOCs 

into the surroundings. The composition of VOCs is altered by herbivory and these act 

as cues to attract the natural enemies of the attacker [348, 471, 472], as well as for 

priming defence in systemic tissue and other plants [473, 474]. Some herbivores, 

including M. persicae, can perceive VOCs and this deters them from settling on a host 

[309]. VOCs include plant hormone derivatives and in turn are regulated by 

hormones, primarily JA [475-479]. Thus, the plant uses secondary metabolites in a 

combination of direct toxicity and indirect defence to protect itself from harm. 
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1.3.5 Effector-triggered immunity 

Effectors 

In order to survive successfully on a host, microbes and insects need to 

overcome PTI. This is achieved through the use of effectors (also known as avirulence 

proteins), molecules that are secreted into plant tissue that attenuate plant defence. 

Bacteria use needle-like type III secretion systems to deliver up to 30 effectors at 

once into host cells, targeting a range of cellular processes including vesicle 

transport, protein degradation and kinase cascades [312, 480]. For example, P. 

syringae secretes AvrPto and AvrPtoB to target BAK1 [481], AvrE to target SA 

signalling [482] and HopX1 to target JA [483]. 

Eukaryotic pathogens such as fungi and oomycetes use specialised infection 

structures (haustoria) to enter plants through openings (e.g. stomata, wounds) or by 

direct penetration. Consequently, they deliver both extracellular and cytoplasmic 

effectors to suppress defence [484, 485]. The mode of action for fungal effectors is 

often through direct binding of chitin to prevent chitin perception by the plant [486-

489]. In the case of oomycetes, multiple effectors have been characterised that 

target host proteases involved in defence [490-493]. 

For chewing insects, the application of OS to wounds alters wound-induced 

defence responses and this is believed to be achieved by effectors in the salvia [451, 

472, 494, 495]. However, relatively few of these effectors have been identified. 

Glucose oxidase (GOX), one of the most abundant proteins in lepidopteran saliva 

[420] has effector properties. GOX is secreted in response to sugars [496] and acts as 

the active ingredient in OS that suppresses wound-induced defence [497]. 

Furthermore, GOX activity is higher in generalist species relative to specialists, 

implying it might have a role in adjusting to different hosts [498]. 

Aphid infestation results in the differential expression of many genes [283, 

308, 442, 499]. In the case of compatible interactions, it is likely that the expression 

of some of these genes is manipulated by the insect through effectors. The first 

aphid effector identified was C002, an A. pisum salivary protein. C002 is secreted 

into plants and is required for A. pisum survival on its host Vicia faba (fava bean). 

Furthermore, knock-down of the transcript prevents phloem feeding from being 

established [276, 500]. The M. persicae C002 homologue MpC002 can also increase 

aphid fecundity when heterologously expressed in N. benthamiana [277] or 
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Arabidopsis [501], and knock-down by RNA interference (RNAi) reduces aphid 

fecundity [502]. This is a species-specific effect, with C002 from A. pisum having no 

effect on M. persicae performance on Arabidopsis [501]. In addition, MIGRATION 

INHIBITORY FACTOR 1 (MIF1) from A. pisum saliva was recently shown to induce plant 

defences and was crucial for aphid survival and fecundity [278]. 

Several M. persicae effectors have been identified through an aphid genomic 

screen selecting for salivary-gland expression and signal sequence similarity to known 

effectors [277]. This screen identified Mp1 (PIntO1) and Mp2 (PIntO2), that can 

increase M. persicae fecundity on Arabidopsis [501] as well as Mp10, that induces 

chlorosis in N. benthamiana and suppresses flg22-elicited ROS production [277]. 

Further evidence in support of Mp10’s effector function comes from recent 

experiments showing that it can suppress aphid-extract induced ROS bursts, whilst 

reducing expression of the gene via RNAi reduces M. persicae fecundity [502]. 

Furthermore, Mp55 has been identified as an effector, with heterologous expression 

in Arabidopsis suppressing production of ROS, 4MI3M and callose, and abolishing 

expression of the effector reduces aphid fecundity [503]. Two effector candidates 

from M. euphorbiae, Me10 and Me23 were recently identified and shown to promote 

aphid fecundity; although no evidence for plant defence suppression was provided 

[504]. The plant target of aphid effectors has remained elusive. They might share 

similarity with the targets of pathogen effectors, or have a completely novel 

function. 

R-genes and ETI 

The second layer of plant defence, ETI, is activated by the plant perception 

of effectors during incompatible interactions. This perception is mediated by plant R-

genes that recognise effectors in a gene-for-gene manner [505]. Many R-gene-

effector combinations are now known [312, 506]. Detection of effectors by R-genes 

activates a second wave of defence that includes many of the same responses as PTI, 

including ion fluxes, kinase activation, ROS production, hormone biosynthesis and 

secondary metabolite production [420, 486, 507-512]. Indeed, R-genes appear to 

mediate a biphasic Ca2+ signature during ETI to incompatible pathogens [379, 509, 

513]. ETI against pathogens often results in programmed cell death (HR) that is 

designed to limit the spread of the pathogen [312].  
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The best characterised insect R-gene is Mi-1 from S. lycopersicum. Mi-1 was 

first used in the 1940s to create more resistant varieties of cultivated tomatoes [514] 

and confers resistance to nematodes [515], potato aphids [516], whiteflies [517] and 

psyllids [518]. Mi-1-mediated aphid resistance appears to be based on altered SA 

production, as the SA-responsive gene PR1 is more highly upregulated in Mi-1 lines 

[519] and knocking out SA production from Mi-1 lines abolishes resistance [398]. This 

signalling also requires SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (SERK1) 

[520]. 

Another well-established R-gene effective against aphids is Vat, a gene from 

Cucumis melo (melon) that confers resistance to Aphis gossypii (cotton aphid) [521, 

522]. Vat prevents virus transmission by both A. gossypii and M. persicae, implying 

that it inhibits successful salivation [523]. 

Other potential aphid R-genes include RESISTANCE TO ACYRTHOSIPHON PISUM 

1 (RAP1) from M. truncatula that confers resistance to A. pisum and induces an HR-

like effect around stylet penetration sites [524]. Various genes and quantitative trait 

loci that enhance aphid resistance have been identified across crop species [525], 

and isolation of the R-genes underlying these phenotypes has the potential to 

significantly enhance resistance to aphids in the field. 

1.3.6 Systemic signalling during stress 

When a stress is perceived, signals can travel from tissue of perception 

systemically throughout the plant. In response to abiotic stimuli this is termed 

systemic acquired acclimation (SAA), whilst in response to biotic threats it is termed 

systemic acquired resistance (SAR). SAR benefits the fitness of a plant [526] by 

priming defences in systemic tissue [527]. Various signals involved in SAA and SAR 

have been identified. These include hydraulic signals [528], hormones [529, 530], 

RNA [531] and peptides [532]. Furthermore, SAR responses are SA-dependent [529, 

533, 534]. An ion that has been well-demonstrated to perform this role in the 

context of abiotic signalling is Ca2+. It is hypothesised that a wave-like propagation of 

CICR-mediated [Ca2+]cyt elevations, in co-ordination with ROS and electrical signals, 

might account for the rapid systemic responses observed during SAA and SAR [535-

537] (Figure 1.11). 

Choi et al. [7] used a YCNano-65 cameleon sensor to visualise a bi-directional 

root-to-shoot Ca2+ signal in Arabidopsis upon application of salt stress. This signal 
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travelled through the root at a speed of 400 µm/s. In a separate study, the speed of 

the signal between the root and the shoot showed high variability, from 50 to 500 

µm/s [538]. Using AEQ, Kiep et al. [123] demonstrated that wounding and herbivory 

of leaves results in a long-distance leaf-to-leaf Ca2+ signal, but only if the midrib is 

wounded. The signal travelled to neighbouring leaves with direct vascular 

connections within a few min. 

However, the systemic Ca2+ signals are not driven by changes in [Ca2+] alone. 

In order to explain their speed, a ROS component must be added [121]. ROS allows 

propagation of the signal cell-to-cell through the apoplast, with localised [Ca2+]cyt 

fluxes propagating the signal within cells [119, 121, 539]. This hypothesis is outlined 

in Figure 1.11, whereby an unknown ROS-activated PM Ca2+-permeable channel and 

TPC1 mediate the [Ca2+]cyt flux, and RBOHD, which is Ca2+-activated via CPK5 [119], 

mediates ROS production in the apoplast [121]. Indeed loss of either TPC1 [7, 123] or 

RBOHD [121] significantly attenuates the systemic Ca2+ signal, and a RBOHD-

dependent systemic ROS signal has been observed in responce to wounding [413].  

Interestingly, CPK5 activity increases in response to H2O2 [119], suggesting there 

might also be positive feedback within ROS signalling, much like with CICR. 

Furthermore, the spread of Ca2+ and ROS signals within leaves are mediated by 

plasmodesmata, as the PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1) mutant pdko3 

shows significantly less Ca2+ release in response to Lepidopteran OS [540]. 

The spread of the Ca2+ signal to neighbouring leaves during wounding mirrors 

that which is seen with long-distance electrical signals. Using surface electrodes, 

Mousavi et al. [103] recorded electrical signals travelling at around 400 µm/s within 

the wounded leaf, and with speeds of up to 1500 µm/s between leaves [103]. A 

similar trend is seen with Ca2+, with midrib signals travelling up to 10 times faster 

than those in the surrounding tissue [538]. Pieris brassicae (cabbage butterfly) larvae 

were shown to induce similar systemic electrical signals. As with Ca2+, feeding from 

the midvein of the leaf was required for systemic spread [541]. Thus, the vasculature 

appears to be the primary conduit of this signal. The discrepancy between the speeds 

measured by Choi et al. [7] and Kiep et al. [123] could be due to the different 

stresses used, the different tissues examined, or because Ca2+ might not be the 

primary ion responsible for the wound-induced electrical signal. Again, systemic 

electrical signalling is dependent on plasmodesmata, as membrane depolarisation 

and K+ channel activity is almost completely abolished in the pdko3 mutant [540] 
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It is interesting that whilst long-distance Ca2+ signalling is TPC1-dependent [7, 

123], TPC1 expression has no effect on systemic electrical signalling (Edward Farmer, 

University of Lausanne, personal communication). Instead systemic electrical 

signalling is dependent on GLR3.3 and GLR3.6 [103]. However, the two signals are 

clearly linked and various Ca2+-permeable channels, including TPC1, are voltage-

gated [112, 114, 115, 542]. 

 

 

  

Figure 1.11: Calcium, reactive oxygen species (ROS) and electrical signals all

participate in systemic signalling during stress. (1) Upon stimulation by abiotic or biotic

stress, calcium is released into the cytosol from the apoplast through an unknown plasma

membrane channel, possibly the GLRs. (2) This cytosolic calcium signal activates TPC1,

which in turn releases further calcium from the vacuole, amplifying the signal. (3) The

rise in cytosolic calcium activates calcium decoders, including CDPKs and CIPKs, including

CPK5. (4) CPK5 phosphorylates RBOHD, a ROS producing enzyme in the plasma membrane.

(5) ROS is release into the apoplast, where it diffuses to activate plasma membrane

channels in adjacent cells, propagating the signal systemically. (6) During wounding,

wound-activated surface potentials (WASPs) also travel between cells as an electrical

signal. This signal is dependant on GLR3.3 and GLR3.6. Figure adapted from Steinhorst &

Kudla (2014) [#] based on data from Choi et al., (2014) [#], Dubiella et al., (2013) [#],

Evans et al., (2016) [#] and Mousavi et al (2013) [#].
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Figure 1.11: Ca2+, ROS and electrical signals all participate in systemic signalling during 

stress. 

(1) Upon stimulation by abiotic or biotic stress, Ca2+ is released into the cytosol from the 

apoplast through an unknown PM channel, possibly the GLRs. (2) This rise in [Ca2+]cyt activates 

TPC1, which in turn releases further Ca2+ from the vacuole, amplifying the signal. (3) The rise 

in [Ca2+]cyt activates Ca2+ decoders, including CDPKs and CIPKs, such as CPK5. (4) CPK5 

phosphorylates RBOHD, a ROS-producing enzyme in the PM. (5) ROS is released into the 

apoplast, where it diffuses to activate PM Ca2+-permeable channels in adjacent cells, 

propagating the Ca2+ signal systemically. (6) During wounding, wound-activated surface 

potentials (WASPs) also travel between cells as an electrical signal. This signal is dependent 

on GLR3.3 and GLR3.6. Figure adapted from Steinhorst & Kudla [535] based on data from Choi 

et al., [7], Dubiella et al. [119], Evans et al. [121] and Mousavi et al. [103]. 
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 The output of wounding and herbivory is accumulation of JA in the systemic 

tissues [543, 544] and this can occur within 30 s of wounding [545]. Indeed, JA is one 

of the best characterised systemic signals in biotic interactions. Local JA 

accumulation is dependent on LIPOXYGENASE 2 (LOX2) [544], whilst systemic 

accumulation is dependent on 12-OXO-PHYTODIENOIC ACID REDUCTASE 3 (OPR3) 

[546] and LOX6 [545]. Thus, it might be that JA or its derivatives are acting directly 

as a systemic signal in the phloem [530]. However, as the JA accumulation pattern 

overlays almost exactly the pattern of systemic electrical signals, and expression of 

the JA marker genes JASMONATE-ZIM-DOMAIN PROTEIN 10 (JAZ10) is lost when these 

electrical signals are abolished [103]. It is therefore possible that JA accumulation is 

regulated by systemic ion fluxes. It is worth noting M. persicae feeding does not 

appear to result in systemic JA production [308] and that SAR might not be occurring 

during the Arabidopsis-M. persicae interaction [431, 464].  

 

 This project 1.4

1.4.1 Aims of the project 

Aphids, including M. persicae, trigger defences in plants comparable to PTI. 

One of the first events in PTI is a Ca2+ influx into the cytosol; however the 

mechanisms underlying this are unknown. The Sanders and Miller labs (John Innes 

Centre - JIC) have uncovered several of the channels and transporters that underlie 

ion homeostasis and signalling in plants, including TPC1. The Hogenhout lab (JIC) has 

identified several components of aphid-induced PTI, including a Ca2+-dependent ROS 

burst elevation upon application of aphid extract [349]. However, an aphid-induced 

plant Ca2+ signal has yet to be demonstrated in vivo. 

Recently, rapid improvement and optimisation of genetically-encoded Ca2+ 

sensors has revolutionised our understanding of plant Ca2+ signalling. Single-FP 

sensors have not been fully exploited in plants and present a novel tool with which to 

study this phenomenon in more detail than was previously possible. The Gilroy lab 

(University of Wisconsin-Madison) has stably expressed GCAMP3 in Arabidopsis. This 

has provided a unique opportunity to measure Ca2+ signals with tissue-level resolution 

in vivo in response to aphid attack. As such, the main goal of the current work was to 
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investigate aphid-induced Ca2+ signals and characterise the molecular mechanisms 

involved if present. 

1.4.2 Overview of thesis contents 

Chapter 3: M. persicae elicits rapid BAK1-dependent Ca2+ bursts in Arabidopsis  

To establish if GCAMP3 is a viable tool for use in plant-aphid interactions, 

Arabidopsis plants expressing 35S::GCAMP3 were exposed to M. persicae. A 

repeatable and robust single-leaf assay for Ca2+ measurements during aphid feeding 

resulted in the identification of rapid [Ca2+]cyt elevations around the feeding site that 

occurred within minutes of the aphid settling. Interestingly, no systemic signals could 

be identified. This tissue-level imaging was not possible with the FRET cameleon 

YCNano-65. To correlate the Ca2+ burst with the aphid feeding behaviour, EPG was 

used on single leaves and this showed that the Ca2+ burst most likely occurs during 

the pathway phase. In agreement with these findings, a Ca2+ burst in the phloem 

could not be detected a phloem-localised version of GCAMP3. This suggests that Ca2+ 

plays a role in the early stages of the plant-aphid interaction whilst the aphid probes 

the epidermal and mesophyll cells.  

To determine if the [Ca2+]cyt elevations were elicited by damage (DAMPs) or 

directly by aphid HAMPs, 35S::GCAMP3 was crossed with the BAK1 null mutant bak1-

5. The [Ca2+]cyt elevations were not detectable in these plants, showing that they are 

elicited as a part of HAMP-triggered PTI. Furthermore, to investigate if the aphid is 

directly modulating this pathway, the assay was repeated with aphids with reduced 

expression of the effector Mp10. Such aphids elicited a slightly larger Ca2+ burst than 

the control group, indicating that the aphid is actively suppressing Ca2+ and 

supporting the hypothesis this signal is relevant to defence. 

Chapter 4: Aphid-induced Ca2+ bursts are mediated by TPC1 and GLRs 3.3 and 

3.6  

To identify the plant proteins responsible for generating the aphid-induced 

[Ca2+]cyt elevations, Arabidopsis ion channel mutants were investigated. Plants lacking 

TPC1 transcription (tpc1-2) exhibited a significantly reduced Ca2+ burst, suggesting 

that vacuolar Ca2+ is released during the plant-aphid interaction. Induction of MAPK 
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and camalexin marker genes was also compromised in the tpc1-2 mutant, suggesting 

this channel may be involved in downstream defence activation against aphids. 

EPG revealed that aphids feeding on such plants have problems with phloem 

acceptance, but that there are no significant differences in pathway behaviours. As 

such, the TPC1 phenotype is based on plant physiology and not aphid behaviour. 

Conversely, overexpression of TPC1 did not affect the [Ca2+]cyt elevations, but did 

result in an amplified ROS burst to aphid extract. Furthermore, over-activation of 

TPC1 (fou2) resulted in aberrant Ca2+ signalling and a strong defence phenotype that 

reduced M. persicae and A. pisum performance. Thus, TPC1 plays a role both in 

generating the Ca2+ burst and in plant defence.  

Small [Ca2+]cyt elevations were still observed in plants lacking TPC1. As such, it 

was hypothesised that other Ca2+ channels were also involved. Therefore [Ca2+]cyt 

elevations in the GLR double mutant glr3.3/gl3.6 were measured and demonstrated 

to be undetectable relative to untreated control leaves. This suggests that the initial 

Ca2+ release is from the extracellular environment, and this is required for aphid-

induced [Ca2+]cyt elevations. It is proposed that this then activates TPC1 to release 

further Ca2+ from the vacuole.  

Chapter 5: Investigating the role of CIPKs in plant-aphid interactions 

Finally, the role of downstream Ca2+ decoders in plant-aphid interactions was 

investigated. RNA-seq identified several Ca2+ decoders that were induced by 

infestation with the incompatible aphid A. pisum. However, in response to the 

compatible species M. persicae, many fewer genes were differentially regulated. As 

such, it appears that M. persicae is avoiding detection by the plant, including 

components of Ca2+ signalling. However, CIPK3 was differentially regulated by both 

aphid species. Therefore it is proposed that CIPK3 might play a role in host 

compatibility. However, abolishing CIPK3 transcription or constructively activating 

the protein had no effect on aphid performance. 

This finding lead to a study of redundancy between the Clade I CIPKs, 

revealing that M. persicae performance was significantly reduced on the cipk9/23 

double mutant, suggesting that CIPK9 and CIPK23 might play a role in defence against 

aphids downstream of the Ca2+ burst. Aphid performance was further reduced on the 

cipk3/9/23/26 quadruple mutant, which also exhibited greater ROS production in 
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response to aphid extract. This suggests that all four CIPKs might have a role in 

negatively regulating defence against aphids. 

1.4.3 Contributions to thesis 

All experiments in this thesis were conducted by me (T.V.) unless otherwise 

acknowledged. Several undergraduate students contributed to this work under my 

supervision. Marieta Avramova (M.A.) was a year-in-industry student from the 

University of York (UK), James Canham (J.C.) and Magda Steele (M.S.) were students 

at the University of East Anglia (UK), Peter Higgins (P.H.) was a predoctoral scientist 

at the JIC and Natasha Bilkey (N.B.) was a student at the University of Wisconsin-

Madison (USA) who undertook a summer project at the JIC. All experimental work 

performed by others and incorporated into this thesis is appropriately and fully 

acknowledged in the legends pertaining to display items (figures and tables). Further 

contributions of collaborators, including plant material and primers, are 

acknowledged in Chapter 2. 
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Chapter 2: Materials & Methods 
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 Plant maintenance 2.1

2.1.1 Arabidopsis growth conditions 

Arabidopsis plants for use in aphid performance assays (section 2.9), ROS 

burst assays (section 2.10) and RNA-seq (section 2.11) were germinated and 

maintained on Scotts Levington F2 compost (Scotts, Ipswich, UK). Seeds were 

vernalised for one week at 4-6°C before being transferred to a controlled 

environment room (CER) maintained at 22°C and with a photoperiod of 10 h light (90 

µmol m-2 s-1) and 14 h dark. Plants were grown in cell trays (each cell: base 3.5 x 3.5 

cm, top 5.5 x 5.5 cm, height 5.5 cm). Plants for the majority of assays were used at 4 

weeks post-germination (ages specified in experimental methods). 

Plants for use in microscopy (section 2.8) and single leaf EPG (section 2.9.7) 

were grown on 100 mm2 square plastic plates (R & L Slaughter  Ltd, Upminster, UK) 

on ¼ strength Murashige and Skoog (MS) medium (recipe: 1.1 g Murashige and Skoog 

medium, 7.5 g sucrose, 10 g Formedium agar, 1 L de-ionised water) [547] and 

vernalised for three days in the dark (8°C). They were then grown in a CER with a 16 

h day and 8 h night, at a constant temperature of 23°C. Plants were then used at 16-

18 days old.  

2.1.2 Arabidopsis lines  

Many of the Arabidopsis lines used in this study were kind gifts from other 

researchers. Table 2.1 provides details on those used in this study. Corresponding 

wildtype controls, Columbia-0 (Col-0) or Wassilewskija-0 (Ws-0), were also provided 

with each mutant line. 

2.1.3 Vicia faba growth conditions 

V. faba (broad bean) plants were grown in Scotts Levington F2 (Scotts) 

compost in a glasshouse with a 14 h day (90 mol m−2 s−1 at 18°C) and a 10 h night 

(15°C) photoperiod. Plants were grown in circular plastic pots (10 cm diameter, 8 cm 

depth) and covered in aluminium foil until germination had taken place. The plants 

were attached to stakes for support as they grew. 
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Table 2.1: Arabidopsis lines used in this study. 

a Arabidopsis gene identification number. b Arabidopsis background ecotype. 

Line Gene ID 
a
 Source B/G

 

b 
Reference 

35S:: 
GCAMP3 

- Masatsugu Toyota 
(University of Wisconsin, 
USA) 

Col-0 Unpublished as of Sept 
2016 

35S::YCNano-
65 

- Won-Gyu Choi (University 
of Wisconsin, USA) 

Col-0 Choi et al. [7] 

SUC2:: 
GCAMP3 

- Masatsugu Toyota 
(University of Wisconsin, 
USA) 

Col-0 Unpublished as of Sept 
2016 

bak1-5 AT4G33430 Ben Schwessinger (The 
Sainsbury Lab, Norwich) 

Col-0 Schwessinger et al. 
[548] 

35S::dsGFP - David Prince (JIC, 
Norwich) 

Col-0 Pitino et al. [549] 

35s::dsMp10 
2-5 

- David Prince (JIC, 
Norwich) 

Col-0 Unpublished as of Sept 
2016 

35S::dsMp10 
2-2 

- David Prince (JIC, 
Norwich) 

Col-0 Unpublished as of Sept 
2016 

tpc1-2 AT4G03560 Dale Sanders (JIC, 
Norwich) 

Col-0 Peiter et al. [15] 

35S:: 
GCAMP3 x 
tpc1-2 

AT4G03560 Masatsugu Toyota 
(University of Wisconsin, 
USA) 

Col-0 Unpublished as of Sept 
2016  

35S::TPC1 
5.6 

AT4G03560 Dale Sanders (JIC, 
Norwich) 

Col-0 Peiter et al. [15] 

35S:: 
GCAMP3 x 
35S::TPC1 
5.6 

AT4G03560 Masatsugu Toyota 
(University of Wisconsin, 
USA) 

Col-0 Unpublished as of Sept 
2016 

35S::TPC1 
10.21 

AT4G03560 Dale Sanders (JIC, 
Norwich) 

Col-0 Peiter et al. [15] 

fou2 AT4G03560 Aurore Lenglet (University 
of Lausanne, CHE) 

Col-0 Bonadventure et al. 
[550] 

35S:: 
GCAMP3 x 
fou2 

AT4G03560 Masatsugu Toyota 
(University of Wisconsin, 
USA) 

Col-0 Unpublished as of Sept 
2016 
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Line Gene ID 
a 

Source B/G 
b 

Reference 

aos AT5G42650  Aurore Lenglet 
(University of Lausanne, 
CHE) 

Col-0 Park et al. [551] 

fou2/aos AT4G03560 
AT5G42650  

Aurore Lenglet 
(University of Lausanne, 
CHE) 

Col-0 Bonadventure et al. 
[552] 

glr3.3/ 
glr3.6 

AT1G42540  
AT3G51480 

Edward Farmer 
(University of Lausanne, 
CHE) 

Col-0 Mousavi et al. [103] 

35S:: 
GCAMP3 x 
glr3.3/ 
glr3.6 

AT1G42540  
AT3G51480 

Masatsugu Toyota 
(University of Wisconsin, 
USA) 

Col-0 Unpublished as of Sept 
2016 

cipk3-1 AT2G26980 Girdhar Pandey 
(University of Delhi, IND) 

Ws-0 Kim et al., [175] 

cipk3-101 AT2G26980 SAIL Arabidopsis Library Col-0 SAIL_449_B12  

cipk3-102 AT2G26980 SALK Arabidopsis Library Col-0 SALK_064491  

cipk3-103 AT2G26980 SAIL Arabidopsis Library Col-0 SAIL_409_A04 
Tang et al. [165]  

cipk3-104 AT2G26980 SALK Arabidopsis Library Col-0 SALK_137779.25.20.X 

abf2 (AK218) AT1G45249 Soo Young Kim (Chonnam 
National University, KOR) 

Col-0 Kim et al. [553] 

pp2ca-1 AT3G11410 Julian Schroeder 
(University of California, 
San Diego, USA)  

Col-0 Kuhn et al. [554]  

cipk3/26 AT2G26980 
AT5G21326 

Renjie Tang (University 
of California, Berkeley, 
USA) 

Col-0 Tang et al., [165] 

cipk9/23 AT1G01140 
AT1G30270  

Renjie Tang (University 
of California, Berkeley, 
USA) 

Col-0 Tang et al. [165] 

cipk3/9/23/26 AT2G26980 
AT1G01140 
AT1G30270  
AT5G21326 

Renjie Tang (University 
of California, Berkeley, 
USA) 

Col-0 Tang et al. [165] 
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 Insect maintenance 2.2

2.2.1 M. persicae stock colony 

A stock colony of M. persicae (clone US1L, Mark Stevens, Brooms Barn) [277], 

was reared continuously on Chinese cabbage (Brasica rapa, subspecies chinensis) in  

cages (52 cm x 52 cm x 50 cm) with a 16 h day (90 µmol m-2 s-1 at 22oC) and 8 h night 

(20oC) photoperiod. 

2.2.2 Aged M. persicae 

For use in experiments M. persicae individuals of a set age were used. These 

were produced by placing 5-15 mixed instar adults from the stock colony onto four-

week old Arabidopsis (Col-0) grown in a CER with a 16 h day (90 µmol m-2 s-1 at 22°C) 

and 9 h night (20°C) photoperiod, in pots (13.5 cm diameter, 9 cm depth) and caged 

inside clear plastic tubing (10 cm x 15 cm) with a plastic lid. These adults were 

removed after 24-48 h, leaving nymphs of the same age. Once adult, these 

individuals were used in experiments (ages specified in experimental methods). 

2.2.3  A. pisum stock colony 

A stock colony of A. pisum (Rothamsted Research), was reared continuously 

on V. faba plants in cages (52 cm x 52 cm x 50 cm) with a photoperiod of 16 h day 

(90 µmol m-2 s-1 at 23°C) and 8 h night (20°C). 

2.2.4 Aged A. pisum  

Aged A. pisum were used in experiments as detailed in Prince et al. [555]. 

Briefly, 50 adults from the stock colonies were transferred to new four-week old  V. 

faba plants, grown at 22°C with a 16 h day (90 µmol m-2 s-1) and 8 h night 

photoperiod, contained in plastic pots (10 cm diameter, 8 cm depth). After 24 h, 

these adults were removed leaving a population of aged nymphs. This population was 

returned to the CER and adults were used once they were 10 days old. 
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 DNA methods 2.3

2.3.1 DNA extraction 

For genotyping, leaf DNA was extracted from plants grown in either soil or on 

MS plates (as specified in section 2.1.1). Leaves were frozen in liquid nitrogen and 

ground using disposable pellet pestles (Sigma-Aldrich, St. Louis, MO, USA) in a 1.5 ml 

Eppendorf tube. DNA extraction was performed using the QIAGEN DNAeasy plant mini 

kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 

2.3.2 Genotyping PCR 

Diagnostic genotyping polymerase chain reaction (PCR) was carried out in one 

of two ways: 

i) GoTaq Green polymerase (Promega, Madison, WI, USA) was used in 25 µL 

reactions. Each reaction contained 0.2 µL GoTaq enzyme, 4 µL of GoTaq Green 4X 

buffer, 0.5 µL 10 mM dNTPs, 0.5 µL of each primer (10 µM), 2 µL MgCl2, 12.3 µL 

distilled water and 5 µL of DNA (100 ng/µL). The primers used for genotyping are 

listed in Table 2.2. PCR was carried out in GS1 thermocycler (G-Storm, Somerton, 

UK) and the conditions used were as follows: 30 s at 96°C, followed by 35 cycles of 

30 s at 96°C, 40 s at 54°C, 90 s at 72°C, and a final cycle of 5 min at 72°C. This 

genotyping was performed to validate the TPC1, dsMp10, bak1-5 and CIPK3 lines. 

ii) Copy number analysis of the CIPK3 transgenic lines created in this study 

was performed by iDNA Genetics (Norwich, UK) allowing identification of single copy 

T1 and homozygous T2 plants. This procedure used quantitative real-time PCR (qRT-

PCR) to estimate the numbers of transgene copies in individual Arabidopsis plants, 

similar to the approach taken in H. vulgare by Bartlett et al. [556]. An amplicon from 

the hygromycin resistance gene (with a FAM reporter) and an amplicon from an 

Arabidopsis internal positive control (IPC, with a VIC reporter) were amplified 

together in a multiplex reaction (15 min denaturation,  then 40 cycles of 15 s 95°C 

and 60 s 60°C) in an ABI7900 real-time thermocycler (Thermofisher Scientific, 

Loughborough, UK). Fluorescence from the FAM and VIC fluorochromes was measured 

during each 60°C step and the cycle threshold (Ct) values obtained.  The difference 

between the Ct values for the hygromycin gene and the IPC (∆Ct) was used to allocate 

the assayed samples into groups with the same gene copy number. 
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Table 2.2: Primers used for DNA genotyping 

Gene 
name 

Primer name Sequence (5’ – 3’) Source 

BAK1 BAK1_dCAPS_F AAGAGGGCTTGCGTATTTACATGAT
CAGT 

Schwessinger et al. 
[548] 

BAK1_dCAPS_R GAGGCGAGCAAGATCAAAAG 

Mp10 Mp10-GW-F AAAAAGCAGGCTCCATGGCGCCGCA
AAAAGATGCTGTG 

Jorunn Bos (Hogenhout 
lab, JIC, UK) 

Mp10-GW-R AGAAAGCTGGGTCTTAAAATTTGAC
AACACCTTTTTTC 

TPC1 AtTPCfwd ATGGAAGACCCGTTGATTGGTAG Furuichi et al. [111] 

AtTPC1rev TTATGTGTCAGAAGTGGAACACTC 

- LBb1.3 ATTTTGCCGATTTCGGAAC Sam Mugford 

- SAIL LB2 GCTTCCTATTATATCTTCCCAAATTA
CCAATACA 

Sam Mugford 

CIPK3 cipk3-101sail F  CAGATTAGAAGAGAGATAGC Sam Mugford 

cipk3-101sail R  AGGCAGACCTCAGGAGCAACG  

CIPK3 cipk3-102salk F GGAGGACAGTTGAATTCACCAG  Sam Mugford 

cipk3-102salk R  AACAGCTTATACATGCTGTGGAC 

CIPK3 cipk3-103sail F  CAAGGACTCTGAGGTGTGGATAG Sam Mugford 

cipk3-103sail R  CAAACCATCATCTCTGCTTAGCTC  

CIPK3 cipk3-104salk F AGCGTGTAACACCGCAAGAGG Sam Mugford 

cipk3-104salk R CCTTTCGACTTCGATACTTGAACC  

GFP 
eGFP F TCTCGTTGGGGTCTTTGCTC 

Giles Oldroyd Lab, JIC, 
UK eGFP R GGCAAGCTGACCCTGAAGTT 
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2.3.3 DNA sequencing 

DNA sequencing was performed by Eurofins Genomics (Ebersberg, Germany) 

value read service. Primers used for sequencing are listed in Table 2.3. 

Table 2.3: Primers used for DNA sequencing 

Gene 
name 

Primer name Sequence (5’ – 3’) Source 

- LBb1.3 ATTTTGCCGATTTCGGAAC Sam Mugford 

- SAIL LB2 GCTTCCTATTATATCTTCCCAAATTACCAA
TACA 

Sam Mugford 

- GoldenG seqF2 ACCAGAGTGTCGTGCTCCACCAT Giles Oldroyd Lab, 
JIC, UK 

- GoldenG seqR2 GGCGGAGCCTATGGAAAAACGC Giles Oldroyd Lab, 
JIC, UK 

- GoldenG seqF3 CGCAAGAATTCAAGCTTAGC Giles Oldroyd Lab, 
JIC, UK 

CIPK3 CIPK3 qPCR F1  GCGAATGAGATCATCGAGAAG Thomas Vincent 

CIPK3 CIPK3 LV1 CDSseq  CGAGAAGATAGAAGAAGCTGC  Thomas Vincent 

CIPK3 CIPK3 101/2 RT F  GAAGAACAATTGGAGAAGGAAC Thomas Vincent 

CIPK3 CIPK3 F5 TGGCTGAACAGATTAGAAGAGAGATAG Thomas Vincent 

CIPK3 CIPK3 Seq Pro F CGACCTCTGTCTCTTCGACTCTC Thomas Vincent 

CIPK3 CIPK3 Seq Term R CACACAAAGTAGCCGGTAAAGC  Thomas Vincent 

CIPK3 CIPK3 seq gen F1  GCAGGTGATGGCAAGTAAGACG Thomas Vincent 

CIPK3 CIPK3 seq gen F2  GGTTCTCAATGATAGAGGCTATGATG Thomas Vincent 

CIPK3 CIPK3 seq gen F3  GCGTGTAACACCGCAAGAGG Thomas Vincent 
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 RNA methods 2.4

2.4.1 RNA extraction 

Leaf and aphid samples were frozen in liquid nitrogen and ground using 

disposable pellet pestles (Sigma-Aldrich) in a 1.5 ml Eppendorf tube. RNA was 

extracted using 1 ml Tri Reagent (Sigma-Aldrich) per 100 mg of tissue. 1-bromo 3-

chloropropane (Sigma-Aldrich) and isopropanol (Sigma-Aldrich) were used to 

precipitate the RNA. RNA was then treated with the RQ1 DNase (Promega). RNA 

quality was assessed by agarose gel electrophoresis and concentration was measured 

on a NanoDrop 2000 spectrophotometer (ThermoFisher Scientific).  

2.4.2 cDNA synthesis 

cDNA was synthesised in 20 µL reactions with 100-500 ng mRNA using the M-

MLV-RT Kit (Invitrogen, Carlsbad, CA, USA) with oligo-dT primers, performed 

according to the manufacturer’s instructions. 

2.4.3 RNAi silencing  

For silencing of the aphid effector Mp10, aged nymphs (section 2.2.2) were 

cultured on dsMp10 and dsGFP plants [557] for 9-11 days. Silencing of Mp10 was 

verified by qPCR with primers listed in Table 2.5 (Section 2.5.2). 
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 Real Time PCR 2.5

2.5.1 RT-PCR 

cDNA was diluted 1:10 for use in RT-PCR with GoTaq Green polymerase 

(Promega) in 25 µL reactions. Each reaction contained 4 µL of GoTaq Green 4X 

buffer, 0.5 µL 10mM dNTPs, 0.5 µL of each primer (10 µM), 2 µL MgCl2, 0.2 µL GoTaq 

enzyme, 12.3 µL distilled water, and 5 µL of cDNA. The primers used for RT-PCR are 

listed in Table 2.4. The reactions were performed in GS thermocycler (G-Storm) using 

the following programme: 30 s at 96°C, followed by 35 cycles of 30 s at 96°C, 40 s at 

54°C, 90 s at 72°C, and a final cycle of 5 min at 72°C. 

Table 2.4: Primers used for RT-PCR 

Gene 
name 

Primer name Sequence (5’ – 3’) Source 

TPC1 AtTPC1-F2 CTACCTTCATAACTCCAGACGAGAAT Bonadventure et 
al. [550] 

AtTPC1-R2 AGCCAATTCGGTTTCAAAGAGCTTT  

CIPK3 CIPK3-101/2-RT F GGAGAACCTGTTGCTCTCAAG Thomas Vincent 

CIPK3-101/2-RT R CCACACGATGTATGCAAGAGTCC  

CIPK3 CIPK3-103/4-RT F AACATGGACGATATTGATGCTG Thomas Vincent 

CIPK3-103/4-RT R CTTGAACCATATGAAGACTTGGCGC  

CIPK3 103/104-DS F GAGGCTTGAGAATGTGAAGGCTGG Thomas Vincent 

103/104-DS R CGTCCAGACTACTTGCTCC  

CIPK3 101/102-US F GAAGAACAATTGGAGAAGGAAC Thomas Vincent 

101/102-US R CTCCTCCTGTAACATACTCC 

CIPK3 gCIPK3_Pand F GGAGAACCTGTTGCTCTCAAGATTCTT Pandey et al. [176] 

gCIPK3_Pand R TTGAGGTTTCCATAGGAGTCCAATAG 

ACTIN2 ACTIN2-RTF GGAAGGATCTGTACGGTAAC Tang et al. [165] 

ACTIN2-RTR GGACCTGCCTCATCATAC 
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2.5.2 qRT-PCR 

cDNA was diluted 1:10 for qRT-PCR for use with SYBR Green JumpStart Taq 

ReadyMix (Sigma-Aldrich) in 20 µL reactions on 96-well plates (white ABgene PCR 

plate – ThermoFisher Scientific). Each reaction consisted of the following: 10 µL SYBR 

Green master mix, 5 µL cDNA, 1 µL of each primer (10 µM) and 3 µL of distilled 

water. Primers used in qRT-PCR analysis are listed in Table 2.5. All reference gene 

primers used had been previously validated by others in the Hogenhout lab (JIC, 

specific sources in Table 2.5). Reactions were combined in one or more plates, with 

each biological sample and primer combination represented in every plate. Reactions 

were carried out in a C1000TM Touch thermocycler (Biorad, Hercules, CA, USA). The 

following PCR programme was used: 3 min at 95°C, followed by 40 cycles of 30 s at 

94°C, 30 s at 60°C, 30 s at 72°C, followed by one cycle of 30 s at 50°C, followed by 

melt curve analysis (65°C to 95°C, increments of 0.5°C) with a plate read 

throughout.  

In order to calculate the expression of the genes of interest relative to the 

reference genes, the mean Ct value from 3-4 technical replicates of primer-sample 

pairs was converted into relative expression values according to the equation 

(efficiency of primer pair)-∆Ct [558]. Two reference genes were used per experiment, 

and within each biological sample the geometric mean of the reference gene Ct 

values was used to normalize between them [559]. The reference genes used in this 

study were as follows: Actin and L-27 for M. persicae and Actin and PEX4 for 

Arabidopsis (Table 2.5). Data was analysed using classical linear regression within a 

generalised linear model (GLM), assuming independent data points with a normal 

distribution and a linear relationship between the dependent and independent 

variables. Pairwise comparisons between treatments were conducted within this 

model using a t-test. Statistical analysis was conducted with Genstat v.18 (VSN 

International, Hemel Hempstead, UK). To display the data, mean expression values 

were rescaled such that the relative expression of the control group was equal to 

one.  
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Table 2.5: Primers used for qRT-PCR. 

Mp = M. persicae, At = Arabidopsis. 

Gene 
name 

Primer name Sequence (5’ – 3’) Source 

Mp10 
(Mp) 

Mp10 F GGTCGGAGCGCCGCAAAAAG David Prince (Hogenhout 
Lab) 

Mp10 R TTGGAACCCAAAACTTGGTCGATGT 

Actin 
(Mp) 

ACT2 F GGTGTCTCACACACAGTGCC Pitino et al. [549] 

ACT2 R CGGCGGTGGTGGTGAAGCTG 

L-27 
(Mp) 

L-27 F CCGAAAAGCTGTCATAATGAAGAC Pitino et al. [549] and 
Coleman [560] 

L-27 R CCGAAAAGCTGTCATAATGAAGAC 

FRK1 
(At) 

FRK1F ATCTTCGCTTGGAGCTTCTC Segonzac et al. [561] 

FRK1 R TGCAGCGCAAGGACTAGAG 

CYP81F2 
(At) 

CP81F2 F AATGGAGAGAGCAACACAATG Kettles et al. [306] 

CP81F2 F ATACTGAGCATGAGCCCTTTG 

PAD3 
(At) 

PAD3 F TGCTCCCAAGACAGACAATG Chassot et al. [562] 

PAD3 R GTTTTGGATCACGACCCATC 

Actin 
(At) 

ACT2 F GATGAGGCAGGTCCAGGAATC Czechowski et al. [563] 

ACT2 R GTTTGTCACACACAAGTGCATC 

PEX4 
(At) 

PEX4 F TGCAACCTCCTCAAGTTCG Czechowski et al. [563] 

PEX4 R CACAGACTGAAGCGTCCAAG 
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 Gene Synthesis and cloning 2.6

2.6.1 Gene synthesis 

In order to generate the CIPK3 transgenic lines used in Chapter 5, the coding 

regions, promoters and 3’ UTRs were synthesised by the GeneARTTM service from 

ThermoFisher Scientific. All synthesised modules were sequence-verified by the 

company. The sequence details for each of the modules can be found in Appendix A.  

2.6.2 Site-directed mutagenesis 

For the creation of the CIPK3 constitutive-activation lines (CIPK3T183D), site-

directed mutagenesis was performed on the genomic copy of CIPK3, previously 

synthesised by ThermoFisher Scientific (section 2.6.1).  This was performed using the 

QuikChange Lightning site-directed mutagenesis kit (Agilent Technologies, Santa 

Clara, CA, USA) according to the manufacturer’s instructions. The primers used for 

this reaction can be found in Table 2.6. Successful mutagenesis was confirmed by 

extraction of DNA from positive Escherichia coli clones and sequencing using the 

CIPK3 F5 primer (Table 2.3) 

Table 2.6: Primers used for site-directed mutagenesis 

Gene 
name 

Primer name Sequence (5’ – 3’) Source 

CIPK3 CIPK3T183D F2 CTTGCATACATCGTGTGGTGACCCAAACTACGTT
GCTCCTG 

Thomas Vincent 

CIPK3T183D 
R2 

CAGGAGCAACGTAGTTTGGGTCACCACACGATG
TATGCAAG 

 

  



63 
 

 

2.6.3 DNA sequencing 

DNA sequencing was performed by Eurofins Genomics value read service. 

Primers used for sequencing are listed in Table 2.3. 

 

2.6.4 GoldenGate cloning 

The components synthesised in Section 2.6.1 (level 0 components) were 

combined into full genetic units (level 1 components – promoter, CDS, terminator) 

according to the Golden Gate DNA assembly protocol. This protocol uses single tube 

15 µL reactions produce the level 1 units. Each reaction contained 100 ng of the level 

1 vector backbone, 100 ng of each level 0 assembly piece, 100X Bovine Serum 

Albumin (New England Biolabs, Ipswich, MA, USA), Bsa1 (New England Biolabs)  and 

NEB T4 Ligase and buffer (New England Biolabs). The assembly reaction was carried 

out in a GS1 thermocycler (G-Storm) using the following conditions: 3 min at 37°C 

and 4 min at 16°C (25 cycles), 5 min at 50°C, 5 min at 80°C [564]. These plasmids 

were cloned into Escherichia coli (section 2.6.5) and verified by sequencing (Section 

2.3.3) with the following primers: CIPK3 LV1 CDseq and eGFP (Table 2.3) 

The level 1 components were then cloned into the final level 2 constructs 

containing the plant selection marker HYG (hygromycin resistance gene) according to 

the same procedure as above, except BpiI (ThermoFisher Scientific) was also added 

to the reaction mixture. Again, these plasmids were cloned into E. coli (section 

2.6.5) verified by sequencing (Section 2.3.3) using the following primers: GoldenG 

seqF2, GoldenG seqR2, GoldenG seq F3 (Table 2.3). Details on the golden gate 

modules and vectors used in this study can be found in Appendix B. 

2.6.5 Cloning into E. coli 

For cloning of constructs into E. coli, 2 µL of the assembly reaction from 

Section 2.6.4 was transformed into 20 µL of competent bacteria (strain DH5α, 

maintained in the Sanders/Miller lab) in a single tube using the following procedure: 

20 min on ice, 30 s at 42°C and 2 min on ice. 0.5 ml of liquid Super Optimal Broth 

with Catabolite repression (SOC) medium [565] was then added and the reactions and 

left at 37°C for 1 h. They were then plated on Lysogeny broth (LB) [566, 567] agar 
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with the appropriate antibiotic.  DNA from positive colonies was extracted using the 

PureYieldTM plasmid miniprep system (Promega) used according to manufacturer’s 

instructions, and verified by sequencing using combinations of the primers detailed in 

Section 2.3.3. The mutation required to generate the CIPK3T183D lines was verified 

with CIPK3 F5 (Table 2.3). 

2.6.6 Electroporation of Agrobacterium tumefaciens 

Electro-competent Agrobacterium tumefaciens (strain GV3101::pMP90, 

maintained in the Giles Oldroyd Lab, JIC, Norwich, UK) in 50 µL aliquots were thawed 

on ice, to which 1-5 µg of plasmid DNA was added. The mixture was transferred to a 

pre-chilled electroporation cuvette (Biorad) and incubated on ice for at least 5 min. 

Electroporation was then carried out using a Gene PulserTM (Biorad) under the 

following conditions: capacitance: 25 µF, voltage: 2.4 kV, resistance: 200 Ohm, pulse 

length: 5 msec. Immediately after electroporation, 1 ml of SOC media was added to 

the cuvette and the mixture was transferred to a 15 ml falcon tube (StarLab, 

Hamburg, Germany) and incubated for 2 h at 28°C with vigorous agitation (250 rpm). 

The mixture was then plated on LB agar containing the appropriate antibiotic and 

incubated for 2-3 days at 28°C.  

2.6.7 Colony PCR 

Agrobacterium positive clones were verified by colony PCR through 

amplification of the gene of interest. This was performed in a thermocycler using 

GoTaq Green polymerase (Promega) in 20 µL reactions using under following 

conditions: 30 s at 96°C, followed by 35 cycles of 30 s at 96°C, 40 s at 54°C, 90 s at 

72°C, and a final cycle of 5 min at 72°C. Each reaction contained 0.2 µL GoTaq 

enzyme, 4 µL of GoTaq Green 4X buffer, 0.5 µL 10 mM dNTPs, 0.5 µL of each primer, 

2 µL MgCl2, and 12.3 µL distilled water. The primers used for colony PCR were CIPK3 

qPCR F1 / GG seqR2 (Table 2.3) and eGFP F / eGFP R (Table 2.2). DNA from positive 

colonies was then extracted with the PureYieldTM plasmid miniprep system (Promega) 

according to the manufacturer’s instructions, and verified by sequencing using 

combinations of the primers detailed in Table 2.3 in Section 2.3.3. 
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2.6.8 Restriction Digestion 

In addition to colony PCR and sequencing, DNA from the positive 

Agrobacterium colonies was verified by restriction digestion followed and 

visualisation by agarose gel electrophoresis containing 1% ethidium bromide. This was 

performed by incubating the constructs with EcoR1 and Xba1 or Pvu1 (Roche, Basel, 

Switzerland) at 37°C for 2-3 h. 

 Plant Transformation & Crossing 2.7

2.7.1 Floral dipping of Arabidopsis 

Arabidopsis were grown in a long day CER at a constant temperature of 22°C 

with a 16 h day (Hydrargyrum quartz iodide (HQI) lighting), 8 h night photoperiod. 

The first bolt was clipped using sharp scissors to encourage a greater amount of 

flower production. Six days after clipping, Agrobacterium containing the construct of 

interest was grown in LB medium along with kanamycin (gene of interest plasmid 

marker), Rifampicin (agrobacterium marker) and gentamycin (Ti plasmid marker). 

100 µM acetosyringone (Sigma Aldrich) was added and the culture was pelleted by 

centrifugation at 3700 g for 15 min. The pellet was then re-suspended in 250 ml of 5% 

(w/v) sucrose (ThermoFisher Scientific) and Silwett-L77 surfactant (De Sangosse, 

Cambridge, UK) was added at final concentration of 0.04% (v/v). 

Before dipping, the flowering Arabidopsis were transferred to a containment 

glasshouse with 16 h daylight (supplemental lighting provided by 600 w sodium 

lamps). The aboveground parts of the plants, including all inflorescences, were 

submerged in the Agrobacterium solution for 10 s with gentle agitation. Plants were 

then placed in autoclave bags and covered by black plastic sheeting for 24 h. After 

this period, the plants were uncovered and grown in the glasshouse, with seeds from 

the transformed plants harvested two months later. Successful T1 transformants 

were identified by resistance to hygromycin (plant selection marker) when plated on 

¼ strength MS (ingredients specified in section 2.1.1) and then transferred to soil in a 

glasshouse (16 h daylight, supplemental lighting provided by 600 w sodium lamps) 

over subsequent generations. T1 plants were assessed for single copies of the gene of 

interest and T2 plants were screened for homozygosity, using the iDNA genetics 

genotyping service (section 2.3.2). 
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2.7.2 Crossing Arabidopsis 

Crossing was conducted with 4-week old Arabidopsis plants, grown in a CER at 

a constant temperature of 22°C with a 16 h day (HQI lighting), 8 h night photoperiod. 

Two unopened buds per stalk were selected and the remaining buds were removed. 

The sepals, petals and stamens were removed from the selected buds, leaving a 

single carpel. Stamens from the other crossing partner were dissected and pollen 

transfer between the two was achieved by brushing the stamen against the carpel of 

the selected mutant. Dissections were carried out with a pair of sharp tweezers. 

Pollinated carpels were covered in 74 mm x 41 mm paper bags (Global Polythene, 

Preston, UK), sealed with tape and allowed to mature. 

After four weeks, seeds from these crosses were collected and plated on ¼ 

strength MS (ingredients specified in section 2.1.1) containing 50 µg/ml  kanamycin 

on 100 mm2 square plates (R & L Slaughter) in order to identify T1 mutants 

heterozygous for 35S::GCAMP3. These plants were then transferred to Scotts 

Levington F2 compost (Scotts), grown in a glasshouse (16 h daylight, supplemental 

lighting provided by 600 w sodium lamps) and left to self-fertilise. 

T2 plants were grown in the same conditions as the T1 generation. Single 

leaves were dissected and DNA was extracted as outlined in section 2.3.1. Plants 

were genotyped for the presence of the mutation of interest (bak1-5) using the 

BAK1_dCAPS-F and BAK1_dCAPS_R primers (Table 2.2). The subsequent amplicon was 

then cut with the restriction enzyme Rsa1 (Roche) and the restriction pattern used to 

identify plants homozygous for bak1-5 [548]. T3 plants homozygous for bak1-5 were 

then plated on ¼ strength MS (ingredients specified in section 2.1.1) on 100 mm2 

square plates (R & L Slaughter) with 50 µg/ml kanamycin to assess the 35S::GCAMP3 

copy number. Plants homozygous for 35S::GCAMP3 were screened under a Leica 

M205FA stereo microscope (Leica Microsystems, Milton Keynes, UK) to identify 

seedlings with strong GFP fluorescence. GFP was excited using a 450 nm – 490 nm 

metal halide lamp, and fluorescent emission was captured between 500 nm and 550 

nm. From this screen, the 35S::GCAMP3 x bak1-5 line with the greatest fluorescent 

yeild, homozygous for both genes, was selected for use in experiments. 
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 Microscopy 2.8

2.8.1 Plant sample preparation 

Arabidopsis expressing the Ca2+ sensor of choice were grown on MS plates as 

detailed in section 2.1.1. Leaves from these plants were then dissected using sharp 

scissors, and placed in wells of a clear 96-well MicrotitreTM plate (ThermoFisher 

Scientific) with 300 µL of distilled water, abaxial surface facing up. These plates 

were then covered in clear plastic wrap (SC Johnson & Son, Racine, WI, USA) and 

aluminium foil (Wrap Film Systems, Telford, UK) and left at room temperature 

overnight to allow the stress of the wounding to subside. Microscopy was carried out 

using these leaves the following day. 

2.8.2 Insect preparation 

Aged M. persicae colonies were created as outlined in section 2.2.2 and were 

left to mature to adulthood for 8-10 days in an 8 h day (90 µmol m-2 s-1 at 18°C) and 

16 h night (16°C) photoperiod. 

2.8.3 Fluorescence microscopy 

Analysis of the FRET from the YCNano-65 construct [7] was conducted on a 

Zeiss Lumar V12 stereo microscope (Zeiss, Oberkochen, Germany). CFP was excited 

using a 426 nm – 446 nm metal halide lamp, and YFP was excited using a 490 nm – 

510 nm metal halide lamp. Fluorescent emission was captured between 460 nm and 

500 nm (CFP) and 520 nm and 550 nm (YFP). The exposure was kept at 8 s for all 

experiments, with images taken every 30 s. Leaves were imaged in pairs, under a 

magnification of 6.4 X. Cold water treatment was performed by adding 40 µL ice-cold 

water to the leaf, whilst aphid treatment involved the transfer of one adult aphid to 

the leaf. The second leaf of the pair was left untreated as a control. The wounding 

treatment was performed by crushing the leaf with a pair of forceps. 

To visualise fluorescence from the 35S::GCAMP3 construct, a Leica M205FA 

stereo microscope (Leica Microsystems) was used. GFP was excited using a 450 nm – 

490 nm metal halide lamp, and fluorescent emission was captured between 500 nm 

and 550 nm. The exposure was kept constant within experiments (between 1 and 2.5 
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s depending on the fluorescent yield of the mutant line) and images were captured 

every 5 s with a gain of 3.5 using Leica Application Suite v3.2.0 (Leica Microsystems). 

Leaves were imaged in groups of four, two leaves per genotype, at a 7.8 X 

magnification and a focus of -127.833 mm. One adult aphid was added to a leaf of 

each genotype, with the other leaf left un-infested as a control. Images were 

captured for 50-60 min after aphid application, with the 96-well plate covered in 

cling film to prevent aphid escape. Images were exported as Tagged Image File 

Format (TIFF) files for analysis. For cold water treatments, 40 µL ice-cold water was 

added to the leaf using a pipette (Gilson, Middleton, WI, USA) and wounding 

treatments were carried out using forceps. 

2.8.4 Aphid behaviour analysis 

Aphid settling behaviour was recorded for each sample by analysing the 

microscopy images, and this was used to assess if samples were to be included in the 

fluorescent signal analysis. Ca2+ signal analysis was performed for aphids during their 

first period of settling greater than 5 min in length. Settling was defined as the aphid 

remaining stationary in one place on the leaf. Samples in which the aphid never 

settled, or settled in a location that could not be imaged, were discarded. The 

length and timing of every aphid settle was recoded for all samples. Aphid settling 

behaviour was compared using a two-way Student’s t-test between the treatments 

within Genstat v18 (VSN International). 

2.8.5  Fluorescent signal analysis 

For both 35S::YCNano-65 and 35S::GCAMP3, TIFF files were imported into Fiji 

(Image J) v1.48a (National Institutes of Health, USA) and converted into 32-bit 

images for fluorescent signal analysis. Fluorescence was analysed over time for 

various regions of interest (ROIs) using the Fiji plugin Time Series Analyser v2 

(University of California, Los Angeles, CA, USA). For aphid treatments, circular ROIs 

with a 50 pixel (0.65 mm) diameter were selected in three locations; at the feeding 

site, on the midrib systemic to the aphid feeding site, and in the tissue besides the 

midrib (‘lateral tissue’). These ROIs are demonstrated in Figure 2.1. For whole plant 

analysis, the ROIs are displayed in Figure 3.2 (Chapter 3). For cold water treatments, 

a ROI was drawn around the entire leaf.  
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To analyse the images, the raw florescence values (F) were exported into 

Microsoft Office Excel (Microsoft, Redmond, WA, USA) for further analysis. For 

35S::YCNano-65, the FRET ratio (R) was calculated according as FCFP/FYFP [568]. For 

35S::GCAMP3, normalised fluorescence values (ΔF/F) were calculated according to 

the equation ΔF/F = (F - F0)/F0, where F0 is the average baseline fluorescence 

calculated from the average of F over the first 60 frames of the recording before the 

aphid settled [219]. Samples in which the controls showed large Ca2+ bursts (ΔF/F > 

0.2) were discarded. Ca2+ signals were analysed using classical linear regression 

within a generalised linear model (GLM), assuming independent data points with a 

normal distribution and a linear relationship between the dependent and 

independent variables. Pairwise comparisons between treatments were conducted 

within this model using a t-test in Genstat v18 (VSN International). 

 

 

  

Feeding site

Systemic Midrib

Systemic Lateral Tissue

35S::GCAMP3 leaf

Water

Figure XA: Regions of interest used for GFP fluroescence analysis.

Myzus persicae

1 mm

Figure 2.1: The ROIs used in the Ca2+ signal analysis. 

Each ROI was 0.65 mm in diameter and placed relative to the head of the aphid. 
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The area of the aphid-induced Ca2+ burst was estimated using the Fiji 

freehand selection tool to draw around the maximum visible (‘recordable’ – R) burst 

and the area of this shape was calculated within Fiji. For analysis of the speed of the 

wave front, the Fiji plugin MTrackJ v 1.5.1 [569] was used. Representative videos of 

the aphid-induced Ca2+ bursts were created by converting the raw F values to heat 

maps using the NucMed_Image LUTs plugin for Fiji (J.A. Parker, IEEE.org). Time 

information was added using the Time Stamper plugin (W. Rasband, National 

Institutes of Health, USA). Area and seed data were analysed using a two-way t-test 

in Genstat v18 (VSN International), assuming a normal distribution, intendent data 

points, homogeneity of variance and a linear relationship between the dependent 

and independent variables. 

 Aphid performance assays 2.9

2.9.1 M. persicae fecundity assay 

M. persicae fecundity was assessed as previously described by Pitino et al. 

[549]. The experiment was conducted with four-week old Arabidopsis grown in 

plastic pots (13 cm diameter, 10.5 cm depth) containing Scotts Levington F2 compost 

(Scotts, Ipswitch, UK) in a CER with a 8 h day (90 µmol m-2 s-1 at 18°C) and 16 h night 

(16°C) photoperiod. Five adult aphids from the stock colony (section 2.2.1) were 

added to each plant at the beginning of the experiment, and the plant was covered 

by Jetran Tubing (13 cm diameter, 10 cm tall - Bell Packaging, Luton, UK) capped 

with a white gauze-covered lid. After 48 h all adults were removed from these plants 

(day 0). After a further 72 h (day 3), any excess nymphs were removed, to leave five 

nymphs per plant. The number of offspring produced by these aphids was counted on 

day 11 and day 14 of the experiment, as was the final number of adult aphids. In 

order to assess fecundity, the number of offspring produced on day 11 and day 14 

was summed per plant, and divided by the number of adults per plant. Six plants 

were used per treatment per experiment, and all experiments were repeated at least 

three times. Statistical analysis was performed in Genstat v18 (VSN International) 

using a classical linear regression within a GLM. The model took into account the 

experimental replicates as an additional factor, assuming independent data points 

with a Poisson distribution. 
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2.9.2 M. persicae trans-generational fecundity assay 

The experiment was conducted with four four-week old Arabidopsis, potted 

together in black plastic trays (30cm x 45cm x 5cm) containing Scotts Levington F2 

compost (Scotts, Ipswitch, UK) in a CER with an 8 h day (90 µmol m-2 s-1 at 18°C) and 

16 h night (16°C) photoperiod. A single 24 h-old nymph was added to each plant. The 

total number of offspring was then counted after four weeks. Four plants were used 

per treatment per experiment, and all experiments were repeated at least three 

times. Statistical analysis was performed in Genstat v18 (VSN International) using a 

classical linear regression within a GLM. The model took into account the 

experimental replicates as an additional factor, assuming independent data points 

with a Poisson distribution. Pairwise comparisons between treatments were 

conducted with a t-test within this model. This protocol was modified from Coleman 

et al. [560]. 

2.9.3 M. persicae choice assay 

Two four-week old Arabidopsis plants were placed in Scotts Levington F2 soil 

(Scotts, Ipswich, UK) together in a plastic pot (13.5 cm diameter, 9 cm depth). A 50 

mm diameter petri dish (R & L Slaughter) was placed between the two plants, and 30 

randomly-selected adults from the stock colony (section 2.2.1) were added to this 

dish. The plants were then covered in plastic tubing (section 2.9.1) and placed in a 

CER with an 8 h day (90 µmol m-2 s-1 at 18°C) and 16 h night (16°C) photoperiod. 

After 24 h, the number of adult aphids settled on each plant was assessed. Statistical 

analysis was performed in Genstat v18 (VSN International) using a pairwise Student’s 

t-test assuming a normal distribution of variances and independent data points. 

2.9.4 M. persicae induced resistance assay 

Arabidopsis induced resistance (IR) to M. persicae was assessed by an assay 

modified from De Vos and Jander [464] using live aphids. The experiment was 

conducted with four-week old Arabidopsis plants in plastic pots (base 3.5 x 3.5 cm, 

top 5.5 x 5.5 cm, height 5.5 cm) grown in a CER with an 8 h day (90 µmol m-2 s-1 at 

18°C) and 16 h night (16°C) photoperiod. From the stock colony 50 mixed instar 

aphids (section 2.2.1) were then added to the first fully-expanded leaf of the plant 
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and confined within a clip cage (Figure 2.2). These aphids acted as a pre-treatment 

to induce Arabidopsis defence. As a control treatment an empty clip cage was used. 

Aphids were then removed 24 h later. An 11-day old aphid (section 2.2.2) was then 

added to the leaf inside a clip cage. After 10 days, the number of nymphs produced 

by this aphid was counted. For systemic induced resistance experiments, leaves were 

numbered from oldest to youngest, and the adult aphid was added to leaf n+5, where 

n = the leaf used for pre-treatment [103]. All experiments were repeated at least 

three times. Statistical analysis was performed in Genstat v18 (VSN International) 

using a classical linear regression within a GLM. The model took into account the 

experimental replicates as an additional factor, assuming independent data points 

with a Poisson distribution. Pairwise comparisons between treatments were 

conducted with a t-test within this model. 

 

 

 

 

 

 

2.9.5 A. pisum survival assay 

Survival assays with A. pisum were carried out as described in Prince et al. 

[555]. The experiment was performed with 7-week old Arabidopsis in plastic pots 

(base 3.5 x 3.5 cm, top 5.5 x 5.5 cm, height 5.5 cm) in a CER with an 8 h day (90 

µmol m-2 s-1 at 18°C) and 16 h night (16°C) photoperiod. Five 10-day old aphids 

(section 2.2.4) were added to the youngest fully expanded leaf, contained within a 

clip cage. The number alive adults (visible movement) was counted on two to seven 

days post-treatment. When aphid survival on the wildtype plants reached 50 %, the 

Figure 2.2: A clip cage. 

Composed of a metal double prong hair clip (50 mm long), two pieces of plastic tube (10 and 

5 mm high, 2 mm thick, 25 mm diameter), two circles of felt (25 mm diameter, 4 mm across, 

1 mm thick), and two pieces of fine gauze (25 mm diameter). Scale bar = 5 mm. Figure taken 

from Prince et al [555].  



73 
 

 

percentage survival on all genotypes was averaged over the two days either side of 

this cut-off. Statistical analysis was performed in Genstat v18 (VSN International) 

using a classical linear regression within a GLM. The model took into account the 

experimental replicates as an additional factor, assuming independent data points 

with a Poisson distribution. Pairwise comparisons between treatments were 

conducted with a t-test within this model. 

2.9.6 Whole plant EPG 

EPG experiments were conducted as described by Tjallingi [263]. Adult 13-15 

day old M. persicae (section 2.2.2) were starved in a sealed petri dish for one h prior 

to the start of the experiment. These aphids were then attached to the Giga-8 EPG 

system (EPG Systems, Wageningen, Netherlands) using 12.5 µm gold wire (EPG 

Systems) and silver glue (EPG Systems) and then placed on 4-week old Arabidopsis. 

The plants were kept in plastic pots (base 3.5 x 3.5 cm, top 5.5 x 5.5 cm, height 5.5 

cm) for the entire experiment. The experiment was contained inside a Faraday cage 

to minimise electrical interference. Feeding behaviour was recorded for 8 h using 

Stylet+d (EPG Systems). Each EPG track was then analysed blind in Stylet+a (EPG 

Systems) to annotate different feeding behaviour types and durations. The timing of 

aphid settling relative to the beginning of probing was also documented.  Relevant 

EPG parameters were calculated using the Microsoft Excel spreadsheet developed by 

Dr Edgar Schliephake (Julius Kuhn Institute, Germany) [570]. Comparisons of 

behaviours between treatments were performed using a Mann-Whitney U test in R 

v3.0 (Free Software Foundation, Boston, MA, USA) assuming equal distributions of 

independent data points. 

2.9.7 Single leaf EPG  

Single-leaf EPG was performed using a modified version of the set-up 

described in section 2.9.6. Leaves were taken from plate-grown plants, grown as 

detailed in section 2.1.1 and floated in 300 µL of water in 96-well plates as described 

in section 2.8.1. A small piece of copper wire was attached to the EPG ground 

electrode, and this was inserted into the well (Figure 2.3). Nine to eleven-day old M. 

persicae were then added to these leaves and the experiment was conducted and 

analysed as outlined in section 2.9.6 above. 
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 Arabidopsis assays 2.10

2.10.1 Aphid extract collection 

Aphid extract was prepared from mixed instar stock colony aphids (Section 

2.2.1). Aphids were snap frozen in liquid nitrogen and ground to a fine powder using 

a mortar and pestle. This powder was then re-suspended in distilled water at a 

concentration of 5 mg/ml. 

2.10.2 ROS assay 

Leaf disks were taken from the two youngest fully-expanded leaves of 4-week 

old Arabidopsis using a cork borer (diameter: 4 mm), and floated in 200 µL of 

distilled water overnight in white 96-well plates (Grenier Bio-One, Kremsmünster, 

Austria). Eight leaf disks were used per treatment per experiment. Before beginning 

the experiment, the water was removed from the wells and replaced with 100 µL of 

the assay solution. This solution was composed of the following: 100 µg/ml 

horseradish peroxidase (HRP) (Sigma-Aldritch) and 21 nM of the luminol probe L-012 

(8-amino-5-chloro-7- phenylpyrido [3,4-d] pyridazine-1,4(2H,3H) dione) (Wako, 

Osaka, Japan) [571], alongside 5 mg/ml aphid extract. Control assay solutions 

Ground electrode Aphid electrode

Figure 2.3: Single leaf electrical penetration graph (EPG). Arabidopsis leaves are floated in 

300µl of water with a single aphid connected to the circuit by gold wire and silver glue 

(aphid electrode). Copper wire functions as a ground electrode, submerged in the water. 

Photo credit: P.H.

Figure 2.3: Single leaf EPG. 

Arabidopsis leaves were floated in 300 µL of water with a single aphid connected to the 

circuit by gold wire and silver glue (aphid electrode). The Copper wire functioned as a 

ground electrode, submerged in the water. Photo credit: P.H. 
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contained distilled water instead of aphid extract. After addition of the assay 

solution, the 96-well plate was placed under a Photek camera (Photek, St Leonards 

on Sea, UK) to record the luminescence generated by the reaction between H2O2 and 

L-012 [406] catalysed by HRP [349]. Luminescence data were extracted using the 

Photek built-in software and analysed in Microsoft Excel (Microsoft). Statistical 

analysis was performed in Genstat v18 (VSN International) using a classical linear 

regression within a GLM taking into account the experimental replicates as an 

additional factor, assuming independent data points with a normal distribution and a 

linear relationship between the dependent and independent variables. Pairwise 

comparisons between treatments were conducted within this model using a t-test in 

Genstat v18 (VSN International). 

2.10.3 Defence gene induction assay 

Leaf disks were taken from the two youngest fully-expended leaves of 4-week 

old plants using a cork borer (diameter: 4 mm), and floated in 200 µL of distilled 

water overnight in white 96-well plates (Grenier Bio-One). Before beginning the 

experiment, the water was removed from the wells and replaced with 100 µL of 

aphid extract (5 mg/ml) or water as a control for 1 h. Eight leaf disks were pooled 

for each biological replicate. RNA extraction (Section 2.4.1), cDNA synthesis (Section 

2.4.2) and qRT-PCR (Section 2.5.2) were then carried out on these samples. 

Statistical analysis was performed in Genstat v18 (VSN International) using a classical 

linear regression within a GLM taking into account the experimental replicates as an 

additional factor, assuming independent data points with a normal distribution and a 

linear relationship between the dependent and independent variables. Pairwise 

comparisons between treatments were conducted within this model using a t-test in 

Genstat v18 (VSN International). 

2.10.4 Germination assay 

To assess seedling germination, Arabidopsis seeds were grown on ¼ strength 

MS media (ingredients specified in section 2.1.1) in 100 mm2 square plates (R & L 

Slaughter), 100 seeds per plate. For treatment plates, 150 mM NaCl was added to the 

media. The plates were then vernalised for four days in the dark (8°C), before being 

moved to a CER with a constant temperature of 23°C with a 16 h day and 8 h night 
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photoperiod. Three days after transfer to 23°C, the number of germinated seedlings, 

defined by emergence of the radical, was assessed using a light microscope (Leica 

Microsystems). Statistical analysis was performed in Genstat v18 (VSN International) 

using a classical linear regression within a GLM taking into account the experimental 

replicates as an additional factor, assuming independent data points with a normal 

distribution and a linear relationship between the dependent and independent 

variables. Pairwise comparisons between treatments were conducted within this 

model using a t-test in Genstat v18 (VSN International). 

 RNA-seq 2.11

2.11.1 Sample preparation 

Four-week old Col-0 Arabidopsis were grown in pots as detailed in section 

2.1.1 and then transferred to a new CER for the experiment with an 8 h day (90 µmol 

m-2 s-1), 16 h night photoperiod at a constant temperature of 22°C.  Two leaves from 

each plant were then placed in a clip cage (Figure 2.2) containing either 10 mixed 

instar adult M. persicae individuals (section 2.2.1), or 10 mixed instar adult A. pisum 

individuals (section 2.2.3). Insects were left on the plants for 48 h before being 

removed and the leaves frozen in liquid nitrogen. Five plants were treated with each 

insect, with 2 clip cages per plant.  

RNA was extracted from the leaves contained within each clip cage using 

Trizol (section 2.4.1), and purified using Qiagen RNeasy with on column DNAse 

digestion (Qiagen). Illumina Truseq libraries were prepared from 1 ug RNA according 

to the manufacturer’s protocol (Illumina, San Diego, CA, USA), and sequenced on a 

HiSeq 2000 (Illumina), with 4 barcoded libraries pooled per lane. 

2.11.2 Sample analysis 

Samples were mapped to the TAIR10 transcriptome 

(TAIR10_cdna_20101214_updated.fa) using the bowtie software [572]. Counts for 

each transcript were then calculated using RSEM [573]. Differential expression was 

computed using DEseq [574]. DEseq was used to determine significant differences in 

expression between treatments, with a cut-off of a 2-fold expression change together 

with a 5% false discovery rate (adjusted p-value, padj <0.05).  
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Chapter 3: M. persicae elicits rapid 

BAK1-dependent Ca2+ bursts in 

Arabidopsis 

  3.
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 Introduction 3.1

3.1.1 YCNano-65 and GCAMP3 are highly-optimised tools for 

measuring Ca2+ 

Ca2+ sensors such as FRET cameleons and single-FP sensors revolutionised the 

analysis of Ca2+ dynamics. Cameleons are dual fluorophore molecules where the 

binding of Ca2+ results in FRET between the fluorophores (Section 1.1.7, Chapter 1). 

Blue fluorescent protein (BFP) was originally used as the donor fluorophore; however 

this was soon replaced by CFP as a result of issues with low light production and 

instability in living cells [204]. Further optimisation of cameleons resulted in sensors 

less affected by cellular pH [575, 576] and a 5-fold increase in signal strength 

through the use of circularly permutated YFP [205, 577, 578]. In addition, 

redesigning the CaM-M13 binding interface to make it more specific for Ca2+, as well 

as to reduce interference by endogenous CaM has also significantly improved 

cameleons. [579, 580]. 

Single-FP sensors are based on the discovery that specific insertions of Ca2+-

binding cassettes into GFP does not abolish florescence [578]. This allowed a 

CaM/M13 insertion in GFP to create the GCAMP range of sensors [209]. Upon Ca2+ 

binding, the CaM-M13 interaction results in ionisation of GFP and a change in 

fluorescence [211] (Section 1.1.7, Chapter 1). Such sensors typically display much 

greater signal strengths than cameleons and collecting data from a single fluorophore 

offers several technical advantages, including increased temporal resolution and 

simpler experimental design [212]. These attributes make single-FP sensors well-

suited for recording dynamic measurements. 

One important attribute of Ca2+ sensors is their dynamic range; the ratio 

between the minimum and maximum fluorescence. Whilst single-FP sensors have a 

dramatically increased dynamic range relative to traditional cameleons such as 

YC3.6, more recent cameleons such as YCNano-65 are comparable to GCAMPs (Table 

3.1). Furthermore, YCNano-65 has a lower Kd, meaning that it can produce a 

measureable fluorescent output at a lower [Ca2+] [195, 206, 216]. As such, YCNano-65 

is more sensitive to [Ca2+] (Table 3.1). Conversely, GCAMP3 offers superior 

responsiveness to changes in [Ca2+]. This is because GCAMP3 boasts a higher Hill 
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coefficient, a measure of the cooperativity of binding each subsequent Ca2+, and 

dissociation of Ca2+ from the sensor is much more rapid [195, 206, 216] (Table 3.1). 

Table 3.1 Properties of some popular genetically-encoded Ca2+ sensors. 

a D = dynamic range, ratio between the minimum and maximum fluorescence. b n = the Hill 

coefficient, the degree of cooperativity of binding of each subsequent Ca2+ ion. c T= time 

taken for one Ca2+ ion to dissociate from the sensor and at room temperature. d [Ca2+] = the 

[Ca2+] range that the sensor can report as a result of its inherent properties. Data taken from 

Koldenkova & Nagai [195]. 

Sensor D
a Kd (µM) n

b T (ms)
c [Ca

2+
]

d 

AEQ - 2.6-13 - 700 µM 
YC3.6 6.6 0.22-0.78 1.7-3.6 2940 >100 nM 

YCNano-65 14 0.06 – 1.4 1.6-1.8 3030 >10 nM 
GCAMP3 12.3 0.41-0.5 2.1-2.7 700 >100 nM 

 

3.1.2 Ca2+ signalling is important during plant-aphid interactions 

[Ca2+]cyt elevations are one of the first PTI-mediated responses to pathogen 

attack [200, 201, 219, 371, 509, 581, 582] (Section 1.3.3, Chapter 1) and several 

lines of evidence suggest that Ca2+ signalling is also relevant in plant-aphid 

interactions. Firstly, aphid extract and GroEL from the aphid symbiont B. aphidicola 

can induce ROS production [277, 349, 350]. Ca2+ lies upstream of this ROS, since the 

Ca2+ chelator EDTA significantly attenuates aphid extract-induced ROS production 

[502]. Furthermore, the aphid extract-induced ROS burst is dependent on RBOHD 

[349], a crosstalk node between ROS and Ca2+ signalling [119, 121]. 

Secondly, the vast majority of transcriptomic studies performed with aphids 

reveal a significant over-representation of Ca2+ signalling-related transcripts, most of 

which display upregulation (reviewed in [583]). In response to M. persicae, several of 

these genes are differentially regulated in Arabidopsis around 6 to 24 h post-

infestation. These gene products include five ACAs, five CDPKs and several EF-hand 

containing proteins [442]. Furthermore, Jaouannet et al. [283] found that M. 

persicae induces differential regulation of several uncharacterised EF-hand 

containing proteins at 24 h post-infestation. Examples from other plant-aphid 

interactions include M. euphorbiae that induces several Ca2+-related genes in S. 

lycopersicum [433 293], A. glycines that induces a 1.5-fold increase in several 
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Glycine max (soybean) CDPKs [402] and B. brassicae that upregulates several 

Arabidopsis Ca2+ channels, transporters and decoders within 6 h of feeding [304]. 

The third line of evidence comes from direct measurements of [Ca2+] using 

Ca2+ sensors.  Feeding by lepidopteran larvae results in [Ca2+]cyt increases measurable 

by Ca2+ dyes [369, 540], AEQ [123, 369, 370, 407], and YC3.6 [376]. It should be 

noted that chewing insects cause much larger amounts of cellular damage than M. 

persicae, and therefore the aphid-induced [Ca2+]cyt elevation is likely to exhibit 

distinct characteristics. Ren et al. [584] used Ca2+-selective microelectrodes to 

measure a significant Ca2+ flux out of the extracellular space into Nicotiana tabacum 

(tobacco) mesophyll cells after 2 h, 15 h and 5 d of incubation with M. persicae. In 

addition, both M. persicae and S. littoralis induce PM depolarisations when feeding 

[365, 369, 407], although these depolarisations appear to be independent of [Ca2+] 

elevations and based on K+ channel activity [540]. Nevertheless, [Ca2+]cyt elevations 

may be associated with changes in Vm, as seen in guard cells [48] and in response to 

lepidopteran herbivory [104, 369]. 

3.1.3 Phloem occlusion is Ca2+-dependent 

The phloem, specifically the SEs, acts as the main conduit for metabolite 

transport in the plant [285-287]. The SEs are also the location from which aphids 

establish long-term feeding [220, 284, 585]. Upon wounding, the flow of photo-

assimilates in the phloem is blocked to prevent the loss of phloem sap and the 

invasion of pathogens, a process termed occlusion [287, 456, 586, 587]. In order for 

this feeding to be successful, aphids must overcome SE occlusion.  

Occlusion is mediated by two mechanisms, including the formation of 

proteinaceous plugs by P-proteins [288, 291, 588, 589] and callose production [289, 

295, 590, 591], both of which are suggested to be Ca2+-regulated. Callose synthesis is 

regulated by Ca2+ in Arabidopsis, N. tabacum and G. max cells [293, 592, 593]. 

However, this was not observed in Daucus carota (carrot), where Ca2+ chelators have 

no effect on callose synthesis [294]. The Fabaceae have a unique set of P-proteins 

called forisomes, the dispersal of which plugs the sieve plates [290, 291]. Forisomes 

disperse upon Ca2+ application, the threshold for which is around 50 µM Ca2+, and this 

leads to occlusion [291, 594, 595].  However, the average [Ca2+] in V. faba SEs during 

a Ca2+ burst is less than 1 µM, which means forisome dispersal is probably only 
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activated in Ca2+ hotspots [596] such as around clusters of Ca2+-permeable channels 

[595]. 

Occlusion can also be triggered by electrical signals within the plant, and 

these signals are associated with the influx of Ca2+ [596]. It has been suggested that 

Ca2+ mediates occlusion during the propagation of electrical waves, however this 

conclusion was inferred using forisome dispersal as a proxy for [Ca2+] changes [597]. 

In addition, Ca2+ regulation of P-proteins outside the Fabaceae is lacking [296]. 

Nevertheless, there is a clear link between Ca2+ and the mechanisms that underlie 

occlusion. 

3.1.4 Prevention of occlusion during aphid feeding may involve 

Ca2+ 

A thin glass capillary comparable in size to an aphid stylet can induce 

occlusion [287]. This suggests that in order to feed successfully, aphids may inhibit 

occlusion. Indeed, in the A. pisum-V. faba model system aphid feeding does not 

induce forisome dispersal [598]. Moreover, leaf burning induces occlusion and alters 

aphid feeding behaviour [599, 600]. However, a direct link between occlusion and 

feeding was not established, with the change in aphid behaviour potentially a result 

of the activation of other plant defences. 

It has been proposed that aphids alter [Ca2+] in SEs in order to prevent 

occlusion (Figure 3.1). Application of aphid watery saliva to forisomes results in a 

contraction comparable to that seen with the Ca2+ chelator EDTA, indicating that 

aphid saliva may be chelating Ca2+ in order to prevent occlusion [599]. Indeed, 

watery saliva contains Ca2+-binding proteins [273, 599, 601] and is thought to be 

secreted into plant cells during the E1 phase of phloem feeding [270, 284] (Figure 

3.1). Furthermore, free Ca2+ is depleted in artificial diets whilst aphids feed (Freddy 

Tjallingii, EPG Systems, personal communication). However, no demonstration of 

Ca2+ binding or depletion in planta has yet been provided. It has also been suggested 

that aphid sheath saliva contributes to blocking Ca2+ entry by preventing Ca2+ leakage 

into cells during stylet punctures (Figure 3.1) [296], although again in vivo evidence 

of this has not been forthcoming. 

Adding further doubt to the role of aphid saliva in suppressing occlusion is the 

recent finding that aphid treatment does not reverse phloem plugging in vivo, 

despite a close proximity between the aphid stylets and forisomes [598, 602]. 
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Furthermore, the loss of key proteins required for p-protein plugging in Arabidopsis 

did not significantly alter M. persicae fecundity [588]. Indeed, the role of occlusion 

itself may be more complex than previously thought, with confocal microscopy 

revealing that aggregations of P-proteins do not necessarily alter phloem 

translocation [603]. 

 

[604] 

 

  
A) Successful Occlusion B) Inhibited Occlusion 

Figure 3.1 (B0): Aphids avoid phloem occlusion, possibly through inhibition of

plant calcium. A) Successful occlusion is a result of phloem (P)-protein plugging (P

– red) and dispersal of forisomes (DF, grey) near the sieve pore (SP) of sieve

elements (SE). Occlusion also involves callose deposition (purple, inset) by the

enzyme callose synthase (CalS). Occlusion should be induced by penetration of the

SE by the aphid stylet (white), which is hypothesised to result in calcium ion influx

from the apoplast through Ca2+ channels (green). B) The secretion of sheath saliva

(Ss – grey) and watery saliva (Ws – blue) through the salivary canal (Sc) is

hypothesised to block Ca2+-mediated occlusion, inhibiting P-proteins, condensing

forisomes (CF) and preventing callose deposition. Aphid effectors (red squares) also

supress plant defence that is activated by perception of herbivore-associated

molecular patterns (HAMPs – red triangles) and damage-associated molecular

patterns (DAMPs – red circles). CW = cell wall, CC = companion cell, ER =

endoplasmic reticulum, Nc = nutrition channel. Adapted from Will et al., (2013) [#]

Ws

Figure 3.1: Aphids avoid phloem occlusion, possibly through inhibition of plant Ca2+. 

A) Successful occlusion is a result of P-protein plugging (P – red) and dispersal of forisomes 

(DF, grey) near the sieve pore (SP) of SEs. Occlusion also involves callose deposition (purple, 

inset) by the enzyme callose synthase (CalS). Occlusion should be induced by penetration of 

the SE by the aphid stylet (white), which is hypothesised to result in Ca2+ influx from the 

apoplast through Ca2+ channels (green). B) The secretion of sheath saliva (Ss – grey) and 

watery saliva (Ws – blue) through the salivary canal (Sc) is hypothesised to block Ca2+-

mediated occlusion, inhibiting P-proteins, condensing forisomes (CF) and preventing callose 

deposition. Aphid effectors (red squares) also suppress plant defence that is activated by 

perception of HAMPs (red triangles) and DAMPs (red circles). CC = companion cell. CW = cell 

wall, Nc = nutrition channel. Adapted from Will et al. [604]. 
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3.1.5 SAR in plant-aphid interactions 

The induction of systemic defence during pathogen attack, SAR, is well 

documented (Section 1.3.6, Chapter 1) [534, 605]. Ca2+ is implicated in SAR, with 

Ca2+ acting as a systemic signal between leaves during wounding and lepidopteran 

feeding [123]. Moreover, systemic signalling in response to flg22 is mediated by CPK5 

[119]. The phloem acts as the primary conduit of systemic electrical and Ca2+ signals 

[103, 123, 606, 607], and thus it is reasonable to suggest aphids may trigger SAR. 

Infestation of Apium graveolens (celery) with M. persicae results in the 

differential regulation of various phloem transcripts [608] and M. persicae infestation 

of Arabidopsis results in the differential regulation of transcripts in systemic leaves 

from 6 to 24 h post-infestation, including Ca2+ transporters and Ca2+ binding proteins 

[442]. Feeding by M. persicae also induces the local and systemic production of SA 

[609], a key mediator of SAR. 

Supporting a role for SAR in plant-aphid interactions, B. brassicae feeding on 

Brassica oleracea (broccoli) exhibited less probing and phloem feeding after pre-

treatment with aphids on systemic leaves [610]. M. persicae feeding was also 

negatively affected by systemic aphid pre-treatment of Solanum tuberosum (potato) 

[611], although this study also found enhancement of feeding locally, contrary to the 

negative impacts of local infestation seen with other studies [349, 464, 502]. 

Furthermore, SAR induced by P. fluorescens negatively affects M. persicae fecundity 

[612]. 

However, evidence supporting a significant role for SAR in defence against 

aphids is still lacking. Pre-treatment of leaves with M. persicae leads to a significant 

reduction in performance of aphids that subsequently feed from these leaves, a 

phenomenon known as induced resistance (IR) [464]. However, M. persicae pre-

treatment does not appear to result in IR in systemic leaves of Arabidopsis [464] and 

the potential role of SAR in plant-aphid interactions is still unclear. 
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3.1.6 M. persicae induces plant defence through a BAK1-

mediated pathway 

BAK1 is a defence co-receptor that is required for full FLS2- and EFR-

mediated PTI against bacterial pathogens [360, 361] (Section 1.3.2). In Arabidopsis, 

BAK1 positively regulates both ROS production and MAPK activity during this response 

[351]. Upon perception of flg22, BAK1 forms a complex with the PAMP-binding 

receptor FLS2 [360], and this results in the phosphorylation of BOTRYTIS-INDUCED 

KINASE1 (BIK1), a protein essential for the transduction of the PTI signal [613] and 

PAMP-induced [Ca2+]cyt elevations [614]. 

BAK1 also mediates the defence response to chewing insects. Loss of BAK1 

significantly decreases JA accumulation in response to M. sexta chewing, however 

this is independent of MAPK or SA involvement [424]. This suggests that although 

BAK1 functions as a common defence signalling component, there is a degree of 

specificity in the response to different threats. In addition, the S. lycopersicum 

homologue of BIK1 acts as a positive regulator of defence against M. sexta, with RNAi 

knock-down of the gene significantly increasing plant susceptibility [615]. However 

these results may be confounded by pleiotropic growth phenotypes associated with 

silencing BAK1 [616] and to a lesser extent BIK1 [617].  

Multiple lines of evidence now suggest aphid-induced PTI is BAK1-dependent. 

M. persicae-induced ROS production, callose deposition and IR are all compromised in 

bak1-5 mutants [349, 502]. The putative HAMP GroEL also stimulates these responses 

in a BAK1-dependent manner [350]. Interestingly, FLS2 is not required for aphid-

induced PTI [349], and as such the PRR that pairs with BAK1 in plant-aphid 

interactions remains elusive. Furthermore, loss of BIK1 negatively affects M. persicae 

performance, implying it is a negative regulator of defence during this interaction 

[618], the opposite of that observed in plant-pathogen systems. Consequently, M. 

persicae induces many of the same PTI components as bacterial pathogens, however 

there are clear differences between the two, with many of the components involved 

in the aphid response yet to be identified. 
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3.1.7 M. persicae uses the effector Mp10 to suppress BAK1-

mediated plant defence 

Pathogens use effector molecules to suppress PTI, as do aphids (Section 1.3.5, 

Chapter 1). These effectors are secreted into the plant in the aphid watery saliva 

[272, 273] and thus they are introduced into plant tissues during the early stages of 

feeding [619]. The first identified aphid effector was C002 from A. pisum, which is 

secreted into the plant and is required for aphid survival and successful feeding [276, 

500]. This effector is also present in M. persicae (MpC002), with overexpression of 

MpC002 enhancing fecundity [277, 501] and reducing expression having the opposite 

effect [549, 560].  

In addition to MpC002, Mp10 has also been identified as a putative M. persicae 

effector. Mp10 is expressed in the salivary gland of M. persicae and heterologous 

overexpression of Mp10 in N. benthamiana blocks flg22-induced ROS production, 

implying a role in suppressing plant defence [277]. Interestingly, this overexpression 

also reduces aphid fecundity, possibly as a result of ETI activation [277]. Further 

confirmation of Mp10’s role as an effector comes from evidence showing that it can 

suppress aphid extract-induced ROS production in N. benthamiana and that it 

promotes aphid colonisation of Arabidopsis [502]. In addition, reducing Mp10 

expression through plant-mediated RNAi significantly reduces aphid fecundity. This 

phenotype is not observed on bak1-5 mutants, suggesting Mp10 acts through the 

suppression of BAK1-mediated signalling [502]. Furthermore, Mp10 appears to have a 

role in the suppression of Ca2+, as heterologous expression in N. benthamiana results 

in the suppression of  flg22-induced Ca2+ bursts, as measured with AEQ [502]. Finally, 

immunogold labelling studies detected Mp10 inside the cytoplasm of mesophyll cells 

adjacent to the aphid stylets, but not systemically from the feeding site [279]. Thus, 

Mp10 may have a role in the suppression of plant defence responses early in the 

aphid feeding process during the pathway phase.  

3.1.8 Aims of this chapter 

This chapter describes work investigating the role of Ca2+ in plant-aphid 

interactions using the fluorescent sensor GCAMP3. A fluorescence microscopy 

approach was developed to measure [Ca2+]cyt in vivo in real time during aphid 

feeding. The location and timing of these Ca2+ bursts were investigated using a 
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combination of phloem-localised GCAMP3 and comparisons to aphid feeding 

behaviour, measured through EPG. In addition, because Arabidopsis BAK1 and the M. 

persicae effector Mp10 are known modulators of plant PTI to aphids, the role of the 

aphid-induced rises in [Ca2+]cyt during PTI was assessed through the use of Arabidopsis 

mutant bak1-5 and dsMp10 M. persicae, which have reduced Mp10 expression levels. 

The aim was to identify and characterise an aphid-induced plant Ca2+ burst and place 

it the context of plant defence. 

3.1.9 Materials and methods 

The methods used in his chapter are detailed in Chapter 2. Information on the 

the microscopy assay can be found in Section 2.8, induced resistance in Section 

2.9.4, EPG in Section 2.9.6 and Section 2.9.7 and RNAi knockdown in Section 2.4.3. 
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 Results 3.2

3.2.1 GCAMP3 can be used to measure Ca2+ dynamics during aphid 

feeding 

 In order to assess whether GCAMP3 could be used to visualise whole-tissue 

Ca2+ signals in vivo, 35S::GCAMP3 plants were grown on MS plates and imaged under a 

stereo microscope. Upon treatment with M. persicae, a burst of GFP fluorescence 

was detectable around the feeding site (Figure 3.2, Video 3.1, Video 3.2). 

Fluorescent bursts comparable to those seen at the feeding site were not obvious in 

the midrib, nor if fluorescence was averaged across the entire leaf (Figure 3.2b). 

However, there was a gradual increase in fluorescence over time in all locations 

(Figure 3.2b) and additional areas of high fluorescence were observable in areas 

systemic to the feeding site (Video 3.1 & Video 3.2). 

3.2.2 Aphids induce rapid localised Ca2+ bursts in isolated 

Arabidopsis leaves 

Due to the high variability in Ca2+ dynamics with plate-grown plants, as well 

as infrequent aphid settling, a single-leaf microscopy assay was developed. 

35S::GCAMP3 leaves were excised 24 h before the experiment and floated in water in 

a 96-well plate (Section 2.8.1, Chapter 2). Untreated leaves showed more stable Ca2+ 

dynamics across the course of the experiment than was previously observed with 

whole plants, and a large biphasic [Ca2+]cyt elevation could be observed when they 

were treated with cold water (Figure 3.3, Video 3.3). 

Treatment of these isolated leaves with a single M. persicae individual 

resulted in a rapid increase in GFP fluorescence around the feeding site within 2 min 

of the aphid settling (Figure 3.4a and 3.4b, Video 3.4) that decreased to the level of 

the no-aphid controls after 7 min (Figure 3.4b and 3.4c). The average area of the 

Ca2+ burst was 111 µm2 and the leading wave front of this burst travelled at 5.92 

µm/s from its centre (Table 3.2). Several settling behavioural characteristics of the 

aphids were also measured (Table 3.2). 
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Figure 3.2 (B1) GCAMP3 can be used to detect aphid-induced calcium signals around the

feeding site in whole Arabidopsis plants. Normalised GFP fluorescence (∆F/F) of a

representative sample shown. A) GFP fluorescence snapshot of the adaxial surface of

35S::GCAMP3 plants being fed on by Myzus persicae. Inset: Abaxial leaf surface under bright

field showing location of aphid settling. B) Normalised GFP expression measured over time

for various regions of interest (ROIs – displayed on figure).

Figure 3.2: GCAMP3 can be used to detect M. persicae-induced Ca2+ signals around the 

feeding site in whole Arabidopsis plants. 

Normalised GFP fluorescence (∆F/F) of a representative sample shown. A) GFP fluorescence 

snapshot of the adaxial surface of 35S::GCAMP3 plants being fed on by M. persicae. Inset: 

Abaxial leaf surface under bright field showing location of aphid settling. Image brightness 

represents GFP fluorescence intensity. B) Normalised GFP expression measured over time for 

various regions of interest (ROIs - displayed on figure). 
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Figure 3.3 (B2): Cold water treatment induces a large biphasic calcium burst in

isolated 35S::GCAMP3 leaves. A) GFP fluorescence represented as a heat map

across a 2.5 min period. Representative sample shown B) Normalised GFP

fluorescence (∆F/F) was averaged across the entire leaf. Error bars represent

standard error of the mean (SEM, n=34). Grey shading indicates significant

difference between treatments (Student’s t-test within GLM at p<0.05). Experiment

conceived and designed by T.V and performed by M.A. under supervision of T.V.
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Figure 3.3: Cold water treatment induces a large biphasic Ca2+ burst in isolated 

35S::GCAMP3 leaves. 

A) GFP fluorescence represented as a heat map across a 2.5 min period. Representative 

sample shown. B) Normalised GFP fluorescence (∆F/F) was averaged across the entire leaf. 

Error bars represent standard error of the mean (SEM, n=34). Grey shading indicates 

significant difference between treatments (Student’s t-test within GLM at p<0.05). 

Experiment conceived and designed by T.V and performed by M.A. under supervision of T.V. 
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Table 3.2: Ca2+ signalling and aphid behaviour parameters during the GCAMP3 imaging.  

a 

Speed of the visible signal from the point of initiation to the furthest point of spread. 
b

 

Length of settling period used for Ca2+ signal analysis. 
c

 Length of time between the beginning 

of imaging and the first aphid settle. 

Parameter Average ( SEM) 

  Ca2+ signal 

 Speed of wave front (µm/s)
a 5.9 ( 0.6) 

Maximum area of visible burst (µm
2
) 111 ( 18) 

  Aphid Behaviour 
 Number of settles (>5 min) 2.0 (0.1) 

Total number of settles 3.8 ( 0.4) 
Time settled for imaging (min)

b 20 ( 2) 
Time until first settle (min)

c 11 ( 1) 
Percentage of total time spent settled (%) 62 (3) 

 

 

 

 

  

Figure 3.4: GCAMP3 can be used to detect M. persicae-induced Ca2+signals at the feeding 

site in isolated leaves. 

A) GFP fluorescence represented as a heat map during aphid settling. Point of settling = 0. 

Aphid location represented by a star. Representative sample shown B) Quantification of 

normalised fluorescence (∆F/F) around the feeding site from 5 min before settling to 10 min 

post-settling, displaying measurements every five seconds. C) Quantification of normalised 

fluorescence around the feeding site from 5 min before settling to 30 min post-settling, 

displaying measurements every one minute. Error bars represent SEM (n=34). Grey shading 

indicates significant difference between treatments (Student’s t-test within GLM at p<0.05).  
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3.2.3 YCNano-65 could not detect an aphid-induced Ca2+ burst 

To determine if the FRET sensor YCNano-65 [206] could be used to detect an 

aphid-induced Ca2+ signal in Arabidopsis, plants expressing this sensor were also 

analysed under a stereo microscope. Whilst wounding of the plants appeared to 

generate a FRET ratio change (Figure 3.5, Video 3.5), a detectable FRET ratio change 

was not produced in response to cold water (Figure 3.6, Video 3.6), contrary to the 

response seen with GCAMP3 (Figure 3.3, Video 3.3). Furthermore, upon aphid 

treatment no visible fluorescent bursts could be observed around the 35S::YCNano-65 

feeding site (Figure 3.7, Videos 3.7 and 3.8). 
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3 4
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5 6

Time post-wounding (mins)

Figure 3.5 (FRET1): YCNano-65 can be used to detect wound-induced calcium

signals in whole Arabidopsis plants. FRET ratio in 35S::YCNano-65 plants

represented as a heatmap across a 7 min period. Top-left leaf wounded with

forceps at time 0, with the location of the wound represented by a star.

Figure 3.5: YCNano-65 can be used to detect wound-induced Ca2+ signals in whole 

Arabidopsis plants. 

FRET ratio in 35S::YCNano-65 plants represented as a heat map across a 7 min period. Top-

left leaf wounded with forceps at time 0, with the location of the wound represented by a 

star.  
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Figure 3.6 (FRET2): 35S::YCNano-65 isolated leaves treated with ice-cold

water. FRET ratio represented as a heatmap across a 5 min period. T = treatment,

C= no treatment control. Representative sample shown (n=9).

Low [Ca2+] High [Ca2+]

Figure 3.6: 35S::YCNano-65 isolated leaves treated with ice-cold water did not show large 

changes in FRET ratio.  

FRET ratio represented as a heat map across a 5 min period. T = treatment, C= no treatment 

control. Representative sample shown (n=9). 

C
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Figure 3.7 (FRET3): 35S::YCNano-65 isolated leaves treated with M. persicae.

FRET ratio represented as a heatmap across a 6 min period. C= no aphid control, A

= aphid treatment. Aphid location represented by a star. Experiment conceived and

designed by T.V and conducted by T.V and Michael Giolai (Earlham Institute,

Norwich). Representative sample shown (n=6).

Figure 3.7: 35S::YCNano-65 isolated leaves treated with M. persicae did not exhibit 

changes in FRET ratio around the feeding site 

FRET ratio represented as a heat map across a 6 min period. C= no aphid control, A = aphid 

treatment. Aphid location represented by a star. Experiment conceived and designed by T.V 

and conducted by T.V and Michael Giolai (Earlham Institute, Norwich). Representative sample 

shown (n=6). 
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3.2.4 M. persicae does not induce systemic Ca2+ signals or SAR in 

Arabidopsis 

In order to investigate whether there was a systemic element to the aphid-

induced [Ca2+]cyt elevation, GFP fluorescence was analysed in systemic regions of the 

leaf as aphids fed (Figure 2.1, Chapter 2) in the midrib (Figure 3.8a) and in the 

lateral tissue beside the midrib (Figure 3.8b). No detectable increase in fluorescence 

was seen in either location.  

To explore the role of systemic signalling in plant-aphid interactions further, 

IR to M. persicae was assessed in local and systemic leaves. Pre-treatment of the 

local leaf with 50 live aphids successfully activated IR against subsequent M. persicae 

attack (Figure 3.9). However, this resistance did not travel systemically (Figure 3.9). 

  

Figure 3.8 (B4): Calcium bursts in response to Myzus persicae cannot be

detected systemically. Normalised GFP fluorescence (∆F/F) in 35S::GCAMP3

Arabidopsis upon Myzus persicae settling in two systemic locations. A) Midrib tissue.

B) Lateral tissue (besides midrib). Error bars represent SEM (n=34).
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Figure 3.8: Ca2+ bursts in response to M. persicae cannot be detected systemically. 

Normalised GFP fluorescence (∆F/F) in 35S::GCAMP3 Arabidopsis upon M. persicae settling in 

two systemic locations. A) Midrib tissue. B) Lateral tissue (besides midrib). Error bars 

represent SEM (n=34).  
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Figure 3.9 (B5) Induced resistance to Myzus persicae cannot be detected

systemically. Leaves were pre-treated with 50 adult M. persicae individuals to

induce resistance mechanisms. After removal of the initial infestation, the

fecundity of a single adult feeding from the pre-treated leaves was measured. Pre-

treatment with an empty clip-cage was used as a control. Error bars represent SEM

from 5 independent experiments (n= 2-6 per experiment). * indicates significant

difference between treatments (Student’s t-test within GLM at p<0.05).
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Leaf

*
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Figure 3.9: IR against M. persicae cannot be detected systemically 

Local leaves (n) were pre-treated with 50 adult M. persicae individuals to activate IR. After 

removal of the initial infestation, the fecundity of a single adult feeding from the pre-treated 

leaves was measured. Pre-treatment with an empty clip cage was used as a control. Error 

bars represent SEM of 13-20 biological replicates from 5 independent experiments. * indicates 

significant difference between treatments (Student’s t-test within GLM at p<0.05).  
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3.2.5 Aphid feeding begins rapidly upon settling and the phloem 

is not reached for several minutes 

The EPG technique was used to compare aphid feeding behaviour to the 

timing of the Ca2+ burst and aphid settling behaviour. On soil-grown whole plants, the 

first potential drop (cell puncture) in the pathway phase occurred within 31 s of 

probing and it took the aphids an average of 24 min to reach the phloem (Figure 

3.10a). Furthermore, an adapted version of the EPG technique was developed to 

assess feeding behaviour on isolated 35S::GCAMP3 leaves floating in water, in a set-

up comparable to the microscopy assay. This assay revealed that the timing of the 

pathway and phloem phases on isolated 35S::GCAMP3 leaves was comparable to soil-

grown plants, with the pathway phase lasting for 15-25 min (Figure 3.10b). In both 

assays, the pathway phase began almost instantly upon settling (Figure 3.10). 

3.2.6 Aphid-induced Ca2+ signals could not be detected in the 

phloem 

In order to assess whether a [Ca2+]cyt elevation could be detected in the 

phloem, GCAMP3 was expressed under the companion cell (CC)-specific SUCROSE-

PROTON SYMPORTER 2 (SUC2) promoter [620]. In contrast to the 35S::GCAMP3 aphid-

induced Ca2+ burst (Figure 3.11a), the phloem-specific sensor could not detect an 

aphid-induced signal, although there was a gradual increase in fluorescence over 

time that was aphid-independent (Figure 3.11b, Video 3.9). Systemic signals in the 

phloem were also not detected (Figures C1 and C2 - Appendix C).To verify whether 

the SUC2-localised GCAMP3 could produce a visible GFP readout upon stress 

treatment, wounding of SUC2::GCAMP3 plants was performed with forceps. Both 

35S:GCAMP3 and SUC2::GCAMP3 plants exhibited rapid and systemic Ca2+ signals upon 

such wounding (Figure 3.12, Video 3.10).  
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Figure 3.10 (B6): Representative EPG traces from M. persicae feeding on

Arabidopsis. A) Representative EPG trace from an aphid feeding on a whole Col-0

Arabidopsis plant. Average time until the first cell puncture and phloem phase once

feeding begun on Col-0 plants given as table (n=22). B) Representative EPG traces

from aphids feeding on isolated 35S::GCAMP3 leaves (n=6). Feeding phases

represented by coloured shading. Experiment conceived and designed by T.V and

conducted by P.H. under supervision of T.V.

A)

B)

not settled pathway phloem

Behaviour Average (±SEM) 

Time until first cell puncture 31 s (± 11)

Time until first phloem phase (E1) 24 min (±3)

Figure 3.10: Representative EPG traces from M. persicae feeding on Arabidopsis.  

A) Representative EPG trace from an aphid feeding on a whole Col-0 Arabidopsis plant. 

Average time until the first cell puncture and phloem phase once feeding begun are given 

below (n=22). B) Representative EPG traces from aphids feeding on isolated 35S::GCAMP3 

leaves (n=6). Feeding phases represented by coloured shading. Experiment conceived and 

designed by T.V and conducted by P.H. under supervision of T.V. 
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Figure 3.11 (B7) Normalised GFP fluorescence (∆F/F) around the feeding site in

35S::GCAMP3 and SUC2::GCAMP3 Arabidopsis upon Myzus persicae settling. A)

35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) SUC2::GCAMP3

control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment

vs SUC2::GCAMP3 aphid treatment. Error bars represent SEM (35S::GCAMP3 n=31,

SUC2::GCAMP3 n=34). Grey shading indicates significant difference between

treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and

designed by T.V and conducted by T.V. and M.A.

Figure 3.11: Normalised GFP fluorescence (∆F/F) around the feeding site in 35S::GCAMP3 

and SUC2::GCAMP3 Arabidopsis upon M. persicae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) SUC2::GCAMP3 control 

(no aphid treatment) vs aphid treatment. Error bars represent SEM (35S::GCAMP3 n=31, 

SUC2::GCAMP3 n=34). Grey shading indicates significant difference between treatments 

(Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V and 

conducted by T.V. and M.A. 
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  A) 35S::GCAMP3

-0.5 0 0.5 1 1.5 2

Time post-wounding (mins)

Low [Ca2+] High [Ca2+]

B) SUC2::GCAMP3

-0.5 0 0.5 1 1.5 2

Time post-wounding (mins)

Figure WOUND1: Wounding to Arabidopsis expressing GCAMP3 results in

systemic calcium signals. GFP fluorescence represented as a heatmap. Plants were

wounded at time 0 using forceps, and the location of wound is represented by a

star. A) 35S::GCAMP3. B) SUC2::GCAMP3. Representative samples shown (n=6 per

genotype). Experiment conceived and designed by T.V and conducted by M.A. under

the supervision of T.V.

Figure 3.12: Wounding to Arabidopsis expressing GCAMP3 results in systemic Ca2+ signals. 

GFP fluorescence represented as a heat map. Plants were wounded at time 0 using forceps, 

and the location of wound is represented by a star. A) 35S::GCAMP3. B) SUC2::GCAMP3. 

Representative samples shown (n=6 per genotype). Experiment conceived and designed by T.V 

and conducted by M.A. under the supervision of T.V. 
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3.2.7 Aphid-induced Ca2+ signals are significantly reduced in the 

bak1-5 mutant 

To investigate whether the aphid-induced [Ca2+]cyt elevation was linked to 

BAK1, GCAMP3 was crossed with the BAK1 null mutant bak1-5. The bak1-5 mutant 

was selected as it only displays defects in immune signalling, but not in 

brassinosteroid signalling as seen with other BAK1 mutants [548]. In 35S::GCAMP3 x 

bak1-5 plants the aphids did not induce a significant Ca2+ burst around the feeding 

site compared to the no aphid control leaves (Figure 3.13b). As such, the amplitude 

of the feeding site Ca2+ burst was significantly reduced relative to 35S::GCAMP3 

(Figure 3.13a, Figure 3.13c, Video 3.11). In samples that displayed visually 

recordable (R) GFP fluorescence changes around the feeding site, the maximal area 

of spread and the speed of the wave front were also assessed. The average area 

(Figure 3.14a) and speed (Figure 3.14b) of the signal were not significantly different 

between genotypes. Since fewer GCAMP3 x bak1-5 samples displayed recordable (R) 

Ca2+ bursts (Figure 3.14), it is possible that the feeding site Ca2+ burst is a discrete 

‘on’ or ‘off’ response, with the greater number of ‘off’ signals in the GCAMP3 x bak1-

5 line accounting for the significantly reduced amplitude of the Ca2+ burst (Figure 

3.13). To address this, the amplitude of the burst at 7 min post-settling was analysed 

for each individual sample. This revealed a continuous spread of amplitudes across 

samples, rather than discrete populations of ‘on’ or ‘off’ responses (Figure 3.15). 
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Figure 3.13: Normalised GFP fluorescence (∆F/F) around the feeding site in 35S::GCAMP3 

and 35S::GCAMP3 x bak1-5 Arabidopsis upon M. persicae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x bak1-5 

control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 

35S::GCAMP3 x bak1-5 aphid treatment. Error bars represent SEM (35S::GCAMP3 n=30, 

35S::GCAMP3 x bak1-5 n=30). Grey shading indicates significant difference between 

treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by 

T.V and conducted by T.V. and M.A.  
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Figure 3.14 (B9): Properties of the aphid-induced calcium burst around the

feeding site in 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 leaves. Comparing

properties of the calcium burst in all recordable samples (R), i.e. samples for which

is was possible to measure a value >0. A) Area of the calcium burst. B) Speed of the

calcium wave front. Letters indicate no significant difference between genotypes

(Student’s t-test p<0.05) Error bars represent SEM. Experiment conceived and

designed by T.V and conducted by T.V. and M.A.
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Figure 3.14: Properties of the M. persicae-induced Ca2+ burst around the feeding site in 

35S::GCAMP3 and 35S::GCAMP3 x bak1-5 leaves. 

Comparing properties of the Ca2+ burst in all recordable samples (R), i.e. samples in which a 

feeding site GFP burst was visible by eye. A) Area of the Ca2+ burst. B) Speed of the Ca2+ 
wave 

front. Letters indicate no significant difference between genotypes (Student’s t-test p<0.05) 

Error bars represent SEM. Experiment conceived and designed by T.V and conducted by T.V. 

and M.A.  
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3.2.8 Phloem feeding is reduced on the bak1-5 mutant 

Under the microscope, there was no difference in the settling behaviour of M. 

persicae, either in terms of the number of settles, time until the first settle or length 

of settling on the bak1-5 mutant (Figure 3.16). In addition, EPG was conducted on 

the bak1-5 mutant. Whole plant EPG was used because EPG on leaf disks has been 

shown to be less sensitive at detecting behavioural changes due to plant-mediated 

resistance [621]. Pathway behaviours were first analysed across only the first h of 

recording to identify behavioural characteristics that might be occurring during the 

time period of the microscopy assay. No differences were found between Col-0 and 

bak1-5 (Table 3.3). Total pathway behaviours were also assessed across the full 8 h 

recording, with no significant differences in the bak1-5 mutant found (Figure 3.17, 

Table 3.3). However, analysis of phloem phase behaviours revealed that the duration 

of phloem ingestion (E2) is significantly reduced on the bak1-5 mutant (Figure 3.17, 

Table 3.3 behaviour 33), whilst the minimum time to the reach first phloem phase 

was longer (Table 3.3 behaviour 36). 
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Figure 3.15 (R1): Normalised florescence (∆F/F) around the aphid feeding site

at 7 min post-settling 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 leaves. Raw

∆F/F value for each leaf sample plotted. Experiment conceived and designed by

T.V and conducted T.V. and M.A.

35S::GCAMP3 x bak1-5

35S::GCAMP3

Figure 3.15: Normalised florescence (∆F/F) around the M. persicae feeding site at 7 min 

post-settling 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 leaves. 

Raw ∆F/F value for each leaf sample plotted. Experiment conceived and designed by T.V and 

conducted T.V. and M.A. 
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Figure B10 Settling behaviour of Myzus persicae on 35S::GCAMP3 and 35S:;GCAMP3 x

bak1-5 leaves. A) Number of settles greater than 5 min in length. B) Number of settles less

than 5 min in length. C) Total number of settles. D) Time before first settle over 5 min in

length. E) Time aphid spent settled during a settling event used to measure GCAMP3

fluorescence. Error bars represent SEM (35S::GCAMP3 n=34, 35S::GCAMP3 x bak1-5 n=34).

Letters indicate no significant difference between genotypes (Student’s t-test p<0.05).

Experiment conceived and designed by T.V and conducted by T.V. and M.A.
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Figure 3.16: Settling behaviour of M. persicae on 35S::GCAMP3 and 35S::GCAMP3 x bak1-

5 leaves. 

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in 

length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) Time 

aphid spent settled during a settling event used to measure GCAMP3 fluorescence. Error bars 

represent SEM (35S::GCAMP3 n=34, 35S::GCAMP3 x bak1-5 n=34). Letters indicate no 

significant difference between genotypes (Student’s t-test p<0.05). Experiment conceived 

and designed by T.V and conducted by T.V. and M.A. 
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Table 3.3: EPG parameters for M. persicae feeding from Col-0 and bak1-5 Arabidopsis. 

Probe = feeding event, pd = potential drop (cell puncture), C = pathway phase, E1 = phloem 

salivation, E2 = phloem ingestion, sE2 = sustained E2 (>10 min), no = number. Duration 

recorded in s. P-values calculated using a Mann-Whitney U-test (Col-0 n= 24, bak1-5 n= 22). 

Experiment conceived and designed by T.V and conducted by P.H. under supervision of T.V. 

  
Col-0 bak1-5 p-value 

 
Pathway behaviours (1st h) Mean SEM Mean SEM 

 1 number of probes 8.5 1.0 9.2 1.1 0.68 

2 average probe 420 160 260 78 0.55 

3 sum of probing  1700 210 1400 200 0.43 

4 duration of 1st probe 260 150 73 30 0.34 

5 number of pd 23 3 21 3 0.73 

6 average duration of pd 5 0.1 5.1 0.1 0.45 

7 sum of pd 110 15 110 15 0.90 

8 time to 1st pd (from start of 1st probe) 38 12 110 59 0.78 

9 time to 1st pd in 1st probe with a pd 12 2 12 3 0.42 

10 no. pd per min C  1.1 0.1 1.2 0.1 0.32 

11 no. pd in 1st probe 2.1 0.7 2.8 1.3 0.84 

12 duration of the first pd 6.2 0.4 6.0 0.4 0.94 

13 mean duration of the first 5 pd 5.4 0.1 5.5 0.2 0.64 

 
Pathway behaviours (8 h) 

     
14 number of probes  29  4  31  4  0.54

15 average probe  1300  300  750  150  0.29

16 sum of probing   17000  1500  15000  1600  0.45

17 duration of 1st probe  800  680  73  29  0.18

18 number of pd  130  17  140  13  0.55

19 average duration of pd  4.9  0.1  4.8  0.0  0.72

20 sum of pd  640  83  680  64  0.53

21 time to 1st pd (from start of 1st probe)  31  11  110  59  0.87

22 time to 1st pd in 1st probe with a pd  12  1.8  12  3.3  0.42

23 no. pd per min C   0.9  0.1  1  0  0.13

24 no. pd in 1st probe  2.9  1.4  3.2  1.7  0.84

25 duration of the first pd  6.3  0.5  6.0  0.4  0.80

26 mean duration of the first 5 pd  5.4  0.1  5.4  0.2  0.85

27 time to 1st probe  300  120  650  190  0.13

 
Phloem behaviours (8 h) 

     
28 number of single E1 (without E2) periods  0.2  0.1  0.4  0.1  0.33

29 sum of E1 (sgE1 and E1)  110  22  190  50  0.21

30 sum of E2  5600  1700  4200  1500  0.92
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  Col-0  bak1-5  p-value 

 Phloem behaviours (8 h) (cont.) Mean SEM Mean SEM  

31 maximum E2 period  6400  2000  3500  1300  0.24

32 number of sustained E2 (> 10 min)  0.8  0.2  1.1  0.3  0.52

33 mean duration of sE2  8200  2600  3400  1500  0.03

34 sum of duration of sE2  5100  1600  3800  1500  0.93

35 average time to 1st E within probes  1400  190  1300  58  0.94

36 minimum time to 1st E within probes  920  200  1100  82  0.04

37 number of probes before the 1st E   12  2.8  17  3.9  0.67
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Figure B11: Average length of pathway and phloem ingestion (E2 phase)

behaviours of M. persicae feeding on Col-0 and bak1-5. Error bars represent SEM

(Col-0 n= 24, bak1-5 n= 22). * indicates a significant difference between treatments

(Mann-Whitney U-test p<0.05). Experiment conceived and designed by T.V and

conducted by P.H. under supervision of T.V.

Phloem ingestion (E2)Pathway probing

*

bak1-5Col-0

Figure 3.17: Average length of pathway and phloem ingestion (E2 phase) behaviours of M. 

persicae feeding on Col-0 and bak1-5. 

Experiment run over 8 h. Error bars represent SEM (Col-0 n= 24, bak1-5 n= 22). * indicates a 

significant difference between treatments (Mann-Whitney U-test p<0.05). Experiment 

conceived and designed by T.V and conducted by P.H. under supervision of T.V. 

 



107 
 

 

3.2.9 Reduced expression of Mp10 alters the aphid-induced Ca2+ 

signal 

In order to assess whether M. persicae attempts to suppress the Arabidopsis 

Ca2+ burst in vivo, aphids were reared on plants expressing RNAi targeted against the 

effector Mp10 (dsMp10) or GFP as a control (dsGFP). Aphids reared on dsMp10 plants 

had a 80% reduction in Mp10 expression (Figure 3.18). Feeding by both dsGFP (Figure 

3.19a) and dsMp10 (Figure 3.19b) aphids resulted in Ca2+ bursts around the feeding 

site. When compared directly, the dsMp10 elicited a slightly higher amplitude Ca2+ 

burst (Figure 3.19c, Video 3.12). No differences in the Ca2+ signal area or speed were 

detected between dsGFP and dsMp10 aphids (Figure 3.20). Aphid settling behaviour 

was also not significantly altered between the two genotypes (Figure C7, Appendix 

C). 
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Figure 3.18 (B12) Relative expression of Mp10 in dsGFP and dsMp10 aphids.

Error bars represent SEM (n=18). * indicates a significant difference between

genotypes (Student’s t-test p<0.05). Experiment conceived and designed by T.V and

conducted by M.A. under supervision of T.V.

dsMp10dsGFP

*

Figure 3.18: Relative expression of Mp10 in dsGFP and dsMp10 M. persicae. 

Error bars represent SEM (n=18). * indicates a significant difference between genotypes 

(Student’s t-test p<0.05). Experiment conceived and designed by T.V and conducted by M.A. 

under supervision of T.V. 



108 
 

 

  

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

-5 0 5 10 15 20 25 30

∆
F
/F

 

Time post-settling (min)

No Aphid dsGFP aphid

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

-5 0 5 10 15 20 25 30

∆
F
/F

 

Time post-settling (min)

No aphid dsMP10 aphid

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

-5 0 5 10 15 20 25 30

∆
F
/F

 

Time post-settling (min)

dsGFP aphid dsMP10 aphid

A)

B)

C)

p<0.05

dsMp10 aphid

dsMp10 aphid

p<0.05

p<0.05



109 
 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.19: Normalised GFP fluorescence (∆F/F) around the feeding site in 35S::GCAMP3 

Arabidopsis upon M. persicae settling. 

A) No aphid control vs dsGFP aphid treatment. B) No aphid control vs dsMp10 aphid 

treatment. C) dsGFP aphid treatment vs dsMp10 aphid treatment. Error bars represent SEM 

(dsGFP n=34, dsMpP10 n=34). Grey shading indicates significant difference between 

treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by 

T.V and conducted by T.V. and M.A. 
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Figure 3.20 (B14) Properties of the aphid-induced calcium burst around the

feeding site in 35S::GCAMP3 plants treated with dsGFP and dsMp10 aphids.

Comparing properties of the calcium burst in all recordable samples (R), i.e.

samples for which is was possible to measure a value >0. A) Area of the calcium

burst. B) Speed of the calcium wave front. Error bars represent SEM. Letters

indicate no significant difference between genotypes (Student’s t-test p<0.05).

Experiment conceived and designed by T.V and conducted by T.V. and M.A.
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Figure 3.20: Properties of the M. persicae-induced Ca2+ burst around the feeding site in 

35S::GCAMP3 plants treated with dsGFP and dsMp10 aphids. 

Comparing properties of the Ca2+ burst in all recordable samples (R), i.e. samples in which a 

feeding site GFP burst was visible by eye. A) Area of the Ca2+ burst. B) Speed of the Ca2+ wave 

front. Error bars represent SEM. Letters indicate no significant difference between genotypes 

(Student’s t-test p<0.05). Experiment conceived and designed by T.V and conducted by T.V. 

and M.A. 
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 Discussion 3.3

3.3.1 GCAMP3 allows whole-tissue imaging of Ca2+ dynamics 

during aphid attack 

Under the stereo microscope 35S::GCAMP3 emitted a strong GFP signal that 

allowed whole-tissue imaging of plant [Ca2+]cyt (Videos B1 and B2). This strong signal, 

combined with the use of a single fluorophore, allowed measurements to be taken 

once every 5 s. As such, it was possible to image in vivo with exceptional temporal 

resolution. When aphids were added to the 35S:GCAMP3 plants, small bursts of 

fluorescence were observed around the site of settling (Figure 3.2, Video 3.1), 

specifically around the head of the aphid (Video 3.2) and were attributed to aphid 

feeding.  

The [Ca2+]cyt was highly dynamic in systemic regions, with a general increase 

in fluorescence being seen over time in all tissues (Figure 3.2b). However, a clear 

aphid-induced signal was not easy to distinguish. It is possible that the [Ca2+]cyt 

changes in systemic regions were a result of plant stress caused by the microscopy 

assay. Indeed, blue light is known to induce Ca2+ signals [10, 11, 14, 622]. In addition, 

the high intensity light might have also resulted in temperature and osmotic stresses, 

both of which also induce Ca2+ signalling [6, 7, 177]. Furthermore, the difference in 

fluorescence between tissues could have been a result of variable expression of the 

GCAMP3 sensor. 

Furthermore, M. persicae did not settle regularly on the 35S::GCAMP3 plants. 

Again this may have been due to the intense blue light used to excite the sensor. 

Vision in M. persicae is governed by three photoreceptors, including one with a peak 

sensitivity of 490 nm [623], within the range of the GFP excitation light (450-490 

nm). When the aphids did settle, this was on the abaxial surface of the leaf (Video 

3.1), a common preference seen for aphids [258, 624, 625]. Thus, the aphids were 

hidden from the view of the microscopy lens, making the position and timing of 

settling events difficult to determine. 
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3.3.2 Aphids induce a rapid and highly localised burst around the 

feeding site 

In order to combat the aphid settling issues experienced on the whole plants, 

a single-leaf assay was developed. This involved the excision of 35S::GCAMP3 leaves 

the day prior to microscopy to allow wound-induced Ca2+ signals to dissipate. Single 

leaves or leaf disks have been successfully used previously for the study of both ROS 

[349] and Ca2+ [122, 538] signals. The leaves were floated in water to reduce osmotic 

stress and to prevent the escape of the aphids. To validate this assay, cold water 

treatments were used to elicit large cold-induced [Ca2+]cyt rises (Figure 3.3, Video 

3.3). These rises were biphasic and extremely rapid, making them comparable to 

established literature [6, 50, 626]. Thus, the single-leaf assay was capable of 

reporting Ca2+ elevations in response to stress.  

In response to aphids, a rapid Ca2+ burst was seen around the feeding site that 

was not observed in un-infested control leaves (Figure 3.4a, Video 3.4). This burst 

was extremely rapid, occurring within 95 s and remaining significantly above the 

control for 6 min (Figure 3.4b). The decrease in signal after 6 min was unlikely to be 

the result of fluorophore bleaching as signals were still seen in other locations on the 

leaf after this time point.  

The Phytophthora sojae PAMP Pep13 induces a change in [Ca2+]cyt within 40 s 

in Petroselinum crispum (parsley) cell cultures [371], whilst 1 µM flg22 and elf18 can 

both induce rapid [Ca2+]cyt elevations that peak within 2–3 min in Arabidopsis leaves 

[122], and 100 nM flg22 can induce [Ca2+]cyt oscillations in epidermal and stomatal 

guard cells within 5 min [219]. Furthermore, the fungal PAMP cryptogein induces 

[Ca2+]cyt elevations  in Nicotiana plumbaginifolia cells that peak at 5 min post-

treatment [372], whilst chitin induces Ca2+ bursts in Arabidopsis roots within 2 min of 

application [219]. Consequently, the M. persicae-elicited Ca2+ burst represents one of 

the most rapidly induced PAMP-triggered [Ca2+]cyt elevations documented so far.  

Unlike cold shock, the aphid feeding site burst was not biphasic and no 

further bursts were detected within 30 min of the aphid settling (Figure 3.4c). 

Biphasic signatures are common in response to PAMPs [371, 372] with the second 

sustained burst linked to successful defence induction in PTI [371] and ETI [509]. It is 

therefore possible that the single Ca2+ bursts observed in response to M. persicae may 

not fully activate defence (further discussion in Chapter 4).  
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Other parameters of the Ca2+ burst were also measured. The burst was highly 

localised and restricted to an area of 111 µm2 (Table 3.2). This is significantly 

different to the large, systemic Ca2+ signals observed in response to chewing insects 

[123]. In addition, the Ca2+ wave front travelled radially from a central point of 

initiation (Video 3.4) at around 6 µm/s (Table 3.2). This speed is significantly slower 

than the systemically-propagating Ca2+ signals seen in the roots during salt stress, or 

the electrical signals within leaves during wounding, both of which travel at around 

400 µm/s [7, 103]. The comparatively restricted area and slow speed of the aphid-

induced burst might be linked the low quantity of tissue damage caused during 

phloem feeding [296], as well as active suppression by the aphid through effectors. 

Indeed, caterpillar OS are capable of suppressing systemic Ca2+ wound signals [123]. 

Furthermore, aphid settling behaviour on 35S::GCAMP3 leaves was recorded 

(Table 3.2). On average the aphids spent around 10 min exploring the leaf before a 

successful settling event (> 5 min) was established. The aphids spent around 60% of 

the experiment settled, and the aphids used for [Ca2+]cyt measurements settled for an 

average length of 20 min. As such, the aphids were not deterred from settling on the 

isolated leaves and Ca2+ bursts occurred whilst the aphids were settled in their 

original location. 

3.3.3 YCNano-65 could not be used to detect aphid-induced Ca2+ 

signals 

The possibility of using a FRET cameleon to record aphid-induced Ca2+ signals 

was also explored. Wounding with forceps of 35S::YCNano-65 plants resulted in 

changes in the FRET ratio (Figure 3.5, Video 3.5), indicative of Ca2+ release. 

However, this fluorescence change was smaller than that observed with GCAMP3 

upon wounding (Figure 3.12 Video 3.10). Cold water application did not result in 

large FRET changes in 35S::YCNano-65 leaves (Figure 3.6, Video 3.6), unlike the large 

fluorescence changes seen with 35S::GCAMP3 (Figure 3.3, Video 3.3). Upon aphid 

application, the feeding site burst was not visible with 35S::YCNano-65 in any of the 

leaves tested (Figure 3.7, Video 3.7 and Video 3.8). Also notable was the lack of 

background [Ca2+]cyt dynamics visible with 35S::YCNano-65, indicating that these 

small background events were not detectable by YCNano-65 (Video 3.7 and Video 

3.8). Furthermore, due to the low fluorescent yield of 35S::YCNano-65 under the 

microscope, the exposure had to be increased 8-fold relative to the GCAMP3 
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experiments. Thus in summary, under the stereo microscope 35S::YCNano-65 did not 

produce large fluorescence changes detectable at the tissue level and could not 

achieve the same [Ca2+]cyt
 temporal resolution as GCAMP3.  

GCAMP3 and YCNano-65 have similar dynamic ranges (Table 3.1) [195, 206, 

213, 217] and YCNano-65 has been used successfully in plants to measure Ca2+ signals 

previously [7]. However, in the current study GCAMP3 clearly exhibited a greater 

fluorescent yield under the microscope. A probable reason for this was a technical 

limitation with the stereo microscope system used. The microscope excited and 

recorded CFP and YFP emission separately and therefore YFP was being excited by 

the microscope light source rather than by FRET from CFP. This meant that the YFP 

emission stayed constant and was independent of [Ca2+]cyt. As a result, only changes 

in CFP emission, which decreases upon Ca2+ binding due to FRET, could be used to 

measure [Ca2+]cyt. The fluorescent yield of CFP is half that of GFP [628], and 

decreases in this due to FRET are significantly harder to detect than the 12-fold 

increases in GFP fluorescence possible with GCAMP3 (Table 3.1) [195, 216]. This 

explains why in the present study YCNano-65 fluorescent yield was inferior to 

GCAMP3, reducing the resolution of the imaging and subsequently the measurement 

of aphid-induced Ca2+ signals. 

3.3.4 No evidence for systemic signalling or defence against M. 

persicae could be identified 

MeSA is a key signal in SAR to pathogens [529]. M. persicae induces SA-related 

genes [308] and SA accumulates in both local and systemic leaves within a few days 

post-treatment with numbers of M. persicae comparable to those used in the present 

study [609]. In addition, aphids prefer to settle on systemic leaves from plants naïve 

to aphids, as opposed to systemic leaves from plant pre-infested with aphids [610]. 

As such, it is reasonable to suggest that M. persicae may induce systemic defence. 

However, Ca2+ bursts were not observed distally from the feeding site, either in the 

midrib or lateral tissue (Figure 3.8). Xiong et al. [538] could still detect systemic Ca2+ 

signals within the vasculature of detached leaves in response to salt stress, and this 

suggests that systemic signals can be detected in single leaf assays if present. 

Therefore, M. persicae does not appear to elicit systemic Ca2+ signalling, unlike salt 

stress [538], lepidopteran feeding [123] and the wounding tests performed in this 

study (Figure 3.12, Video 3.10). 
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Furthermore, pre-treatment of leaves with a large number of aphids (50 

adults) resulted in IR in the treated leaf, with the performance of subsequent 

infestations of aphids significantly reduced (Figure 3.9). De Vos et al. [464] 

previously found no systemic component to IR against M. persicae. In order to 

corroborate this result, in the present study the systemic leaf was strictly defined 

based on the plant vascular system. This was because systemic electrical [103] and 

Ca2+ (Simon Gilroy, University of Wisconsin, personal communication) signals travel 

preferentially to leaves with direct vascular connections. However, even in these 

leaves systemic IR did not occur (Figure 3.9). This agrees with observations that 

glucosinolate production in response to M. persicae is also observed around feeding 

sites, and not systemically [469]. Therefore, it appears that systemic Ca2+ signalling 

and induction of systemic defence does not occur in response to M. persicae.  

The lack of a systemic Ca2+ signal and SAR might be due to the low amount of 

tissue damage caused by aphid feeding relative to other stresses such as chewing 

insects and wounding. However, SAR has been extensively documented in response to 

pathogens that cause less damage than M. persicae [534, 605, 629]. It is also possible 

that systemic signals are being actively suppressed by aphid effectors. Indeed, aphid 

saliva is capable of moving systemically between cells [630]. If this is occurring, it 

might not involve Mp10 as knocking-down transcription of Mp10 does not restore 

systemic Ca2+ signals (Figures C5 and C6 – Appendix C). Furthermore, SAR is primarily 

activated during ETI rather than during PTI, through the recognition of pathogen 

effectors [631-633]. The compatibility between M. persicae and Arabidopsis implies 

that successful ETI is not established in this interaction, and this may account for the 

lack of systemic signalling and SAR.   

3.3.5 The aphid-induced Ca2+ burst most likely occurs during 

pathway phase and cannot be detected in the phloem 

EPG revealed that on soil-grown Col-0 Arabidopsis M. persicae punctures the 

first plant cell within 31 s of feeding (Figure 3.10a). Since the Ca2+ burst was 

detectable from 95 s post-settling (Figure 3.4b), there is only 64 s between the first 

cell puncture and a signal detectable by GCAMP3. In addition, M. persicae does not 

enter phloem phase feeding until 24 min post-settling (Figure 3.10a). This is shorter 

than observed for the M. persicae-Arabidopsis interaction in other EPG studies (68 

min [634], 86 min [627], 150 min [635]), although comparisons between separate 
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studies are difficult due to the high variability of EPG-recorded behaviours in 

different experimental conditions.  

A similar feeding pattern was seen with isolated 35S::GCAMP3 leaves, with 

the earliest phloem phase occurring 13 min post-settling, and several traces showing 

no phloem feeding within the first hour (Figure 3.10b). Feeding began almost 

instantly upon settling (Figure 3.10b), demonstrating that settling is a suitable proxy 

for aphid feeding. These data, combined with the whole-plant EPG, suggest that the 

Ca2+ burst observed in response to aphids occurs during the pathway phase.  

To investigate this further, GCAMP3 was localised to the phloem, specifically 

to the CCs, using the SUC2 promoter. No feeding site Ca2+ burst was seen in response 

to M. persicae with this reporter (Figure 3.11b, Video 3.9). In order to verify that 

SUC2::GCAMP3 was capable of producing a fluorescent output under the current 

experimental conditions, wounding treatments were used as a control. Clear wound-

induced systemic Ca2+ signals could be seen travelling through the phloem in both 

35S::GCAMP3 and SUC2::GCAMP3 plants (Figure 3.12, Video 3.10), suggesting that 

SUC2::GCAMP3 was capable of reporting changes in phloem [Ca2+]cyt. However, the 

SUC2::GCAMP3 sensor suffered from drift over time independently of aphid 

treatment (Figure 3.11b). The increase CC [Ca2+]cyt over time may have been related 

to abiotic stress caused by the microscopy, as both temperature and salt can induce 

systemic Ca2+ signals [538, 636].  

Together, the timing of the burst relative to aphid feeding behaviour and the 

lack of a detectable Ca2+ burst in the phloem suggest that the feeding site [Ca2+]cyt 

elevation occurs during the pathway phase. Therefore, the signal is generated in 

epidermal and mesophyll cells probed by the aphid as it feeds [266, 267]. M. persicae 

has been shown to induce voltage changes in mesophyll cells upon feeding [365], and 

such electrical signals may be related to Ca2+. Consistent with this, pathway probing 

still occurs with incompatible aphids [281, 282], indicating that factors present in 

these cells mediate aphid acceptance of plants and thus plant defence. The 

relevance of epidermal and mesophyll cells during ETI to aphids is also being 

uncovered, with R-gene transcripts having been discovered in these cells [637]. 

It is also possible that phloem-based Ca2+ signalling may be suppressed by the 

aphids, as suggested by the occlusion literature [273, 296, 599, 601] (Section 3.1.4). 

In order to test this further it would be interesting to compare if incompatible 

aphids, or compatible aphids deficient in effector molecules, can elicit a phloem-

based [Ca2+]cyt elevations. Indeed, the lack of phloem-based Ca2+ signal, together 
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with other data, supports the hypothesis that M. persicae does not induce systemic 

signalling or defence (section 3.3.4). It is worthy of note that the SUC2 promoter 

localises GCAMP3 specifically to the CCs, whilst long term feeding by aphids occurs 

from the SEs [261], and this may partly account for the lack of a response. However, 

as there are high clusters of Ca2+ channels at the SE/CC interface [595], as well as a 

large amount of macromolecule trafficking between the two [607], it is likely that CC 

and SE Ca2+ dynamics are highly interconnected. For further investigation of SE 

[Ca2+]cyt dynamics, localisation of GCAMP3 specifically to these cells might be 

archived by expressing the sensor under a SE-specific promoter such as SUC3 [638]. 

3.3.6 BAK1 mediates the pathway phase Ca2+ burst as well as 

feeding from the phloem 

Wounding is sufficient to induce Ca2+ signalling [123, 369, 400, 401, 424] 

(Figure 3.5 and Figure 3.12) and as such it is possible that tissue damage from stylet 

probes causes the Ca2+ burst independently of PTI or ETI. However, the Ca2+ burst is 

not detectable in the bak1-5 mutant (Figure 3.13, Video 3.11), suggesting that the 

burst is generated as a part of BAK1-mediated PTI. Ca2+ acts upstream of ROS 

production mediated by RBOHD [119, 121, 639], and therefore the loss of Ca2+ in 

response to aphids in bak1-5 may explain why aphid-induced ROS is also decreased in 

this mutant [349]. Furthermore, IR to aphids is lost in bak1-5 mutants [349], 

suggesting Ca2+ may also act upstream of IR.  

Interestingly, some bak1-5 mutant samples did show a visible Ca2+ burst 

around the feeding site, allowing measurement of the area and speed of this signal to 

be calculated. Neither area nor speed were significantly altered by BAK1 expression 

(Figure 3.14). However, only samples that could be recorded by eye (‘recordable’ 

samples – R) were used for these analyses, of which there were fewer in 35S::GCAMP 

x bak1-5 compared to 35S::GCAMP3 (Figure 3.14). Consequently, it could be argued 

the Ca2+ response may be binary, divided between samples that showed a response 

and those that did not, and thus the 35S::GCAMP3 x bak1-5 phenotype (Figure 3.13) 

is the result of a greater number of non-responding samples in this genotype. 

However, as the Ca2+ burst displayed a continuous range of amplitudes across samples 

(Figure 3.15), the binary response hypothesis does not hold true. These results also 

indicate that there may be some level of aphid-induced Ca2+ release that is 

independent of BAK1. In the case of M. persicae, a BAK1-independent pathway was 
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recently discovered that is mediated by ARABIDOPSIS G-PROTEIN BETA SUBUNIT 

(AGB1) that has a role in aphid-induced ROS and camalexin production [502], and has 

yet to be teased for a role in Ca2+ signalling. 

Pathway phase feeding behaviour was not altered in the bak1-5 mutants 

(Figure 3.17, Table 3.3), implying that BAK1-mediated PTI has no or little effect on 

M. persicae during the initial feeding phase. This is contrary to Mi- and Vat-mediated 

ETI, in S. lycopersicum and C. melo respectively, both of which have an effect on 

pathway behaviours [281, 302, 640]. The lack of an effect on pathway behaviours 

during BAK1-mediated PTI might be a result of the latency between aphid perception 

and plant defence induction, which can be several hs [283, 349, 350, 442]. One might 

therefore expect it more likely that altered defence would affect phloem feeding, 

which, like plant defence, might not be initiated until hs after the first feeding event 

[627, 634, 635] (Figure 3.10). These data also suggest that the difference in the 

pathway phase Ca2+ burst is due to plant physiology and not altered aphid feeding 

behaviour. 

Surprisingly, phloem ingestion (E2) was significantly reduced in the bak1-5 

mutant. (Figure 3.17, Table 3.3 behaviour 33). Aphid fecundity is not altered in this 

mutant, despite BAK1’s role in aphid recognition and defence [349]. Thus, BAK1-

mediated immunity is most likely suppressed by M. persicae. Moreover, reducing 

expression of the aphid effector Mp10 significantly reduces aphid fecundity, most 

likely due to inadequacy at suppressing plant defence responses [277, 502]. However, 

fecundity is not compromised if these Mp10 aphids are feeding on the bak1-5 mutant 

[29], implying Mp10-mediated suppression of defence is BAK1-dependent. 

Consequently, one explanation for the resulted collected in the present study is that 

the BAK1 pathway acts as an entry point for aphid effectors into the plant defence 

network. This network is composed of several interconnected pathways (Section 1.3, 

Chapter 1) and in the bak1-5 mutant these other pathways are still active, but BAK1-

mediated suppression of the network is not. Alternatively, the aphid may perceive 

the defence status of the plant, and alterations to this may perturb normal feeding 

behaviour. Aphids are sensitive to several chemical cues in the environment and in 

the plant [255, 256, 259]. These cues can have effects on behaviour [282, 298, 627, 

641-643]. Therefore, removal of the BAK1 pathway may significantly alter such cues 

[349, 350, 362], and as result alter feeding behaviour.  
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3.3.7 The aphid effector Mp10 modulates the plant Ca2+ burst 

RNAi is a commonly-used method to decrease expression of genes in insects 

[644], including aphids [500, 549, 560, 645]. This technique was utilised in the 

present study to investigate the role of the M. persicae effector Mp10 on the plant 

Ca2+ burst. Rearing of M. persicae on Arabidopsis expressing dsRNA can result in 

around a 50% reduction in expression of aphid genes [549], including Mp10 [502]. 

Furthermore, this reduced expression can persist for up to 4 days [560]. Indeed, 

rearing aphids for Ca2+ imaging on dsMp10 plants reduced the average level of Mp10 

expression by 80% (Figure 3.18).  

Feeding by dsMp10 aphids induced slightly larger amplitude Ca2+ burst than 

the control group (dsGFP) (Figure 3.19, Video 3.12). Therefore, reduced Mp10 

expression results in a larger [Ca2+]cyt elevation, suggesting that Mp10 suppresses the 

aphid-induced Ca2+ burst in the epidermal and mesophyll cells. In accord with this 

interpretation, aphid watery saliva containing effector molecules [272-274, 276-278, 

500] is injected into plant tissues almost immediately upon aphid feeding during the 

pathway phase [268, 619]. Indeed, Mp10 was recently demonstrated to be delivered 

preferentially into the cytosol of mesophyll cells and was not detectable in the 

vasculature [279]. Furthermore, Mp10 has been shown to inhibit the flg22-mediated 

Ca2+ burst [502], clearly demonstrating that Mp10 it does have Ca2+-suppressive 

functions.  

However, the change in [Ca2+]cyt caused by reduced Mp10 expression is 

relatively subtle. This could be because the remaining Mp10 in the dsMp10 aphids 

was sufficient to suppress Ca2+. Alternatively, it suggests that Mp10 has only marginal 

effects on Ca2+ in vivo. Indeed, multiple effectors often act redundantly [646, 647] 

and thus other putative M. persicae effectors, such as MpC002 [277], Mp1 [501], Mp2 

[501] and Mp55 [503], might play a role. Although not yet tested, these effectors 

could have Ca2+-suppressive qualities, with strong suppression of Ca2+ bursts in 

Arabidopsis requiring a combination of them delivered together in the saliva. 

Nevertheless, Mp10 acts in the BAK1 pathway to suppress PTI (see section 3.3.6). and 

therefore it appears that Mp10, BAK1 and [Ca2+]cyt elevations are all connected as 

part of the same PTI pathway that is activated during aphid probing of the epidermal 

and mesophyll cells. 
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Chapter 4: Aphid-induced Ca2+ bursts 

are mediated by TPC1, GLR3.3 and 

GLR3.6 

 [] 1.

  4.
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 Introduction 4.1

4.1.1 The vacuole is a major store of intracellular Ca2+ 

The vacuole is by far the largest store of Ca2+ inside mature plant cells, 

occupying up to 90% of the total cell volume [648] and containing mM concentrations 

of Ca2+ [649-651]. This organelle is therefore a candidate source of intracellular Ca2+-

release during stress, including in response to aphids. Localisation of AEQ to the 

tonoplast indicates that cold and hyperosmotic stress can induce [Ca2+]cyt elevations 

around this membrane [652, 653] and that the second phase of the biphasic Ca2+ 

response to hypo-osmotic stress is linked to internal stores of Ca2+ [654]. In addition, 

Ca2+ release in response to flg22 is suggested to be mediated by intracellular stores, 

as inhibition of the InsP3 pathway attenuates this response [378]. In addition, there is 

evidence that the [Ca2+]cyt elevation in response to elf18 and chitin can be perturbed 

by pharmacological inhibitors of intracellular Ca2+ release [201]. Signalling may also 

be occurring within the vacuole, for example the vacuolar-localised CaM15 regulates 

the tonoplast antiporter NA+/H+ EXCHANGER 1 (NHX1) [655]. 

However, conclusive evidence for the role of vacuolar Ca2+ in signalling can 

only be obtained once the molecular identities of the tonoplast Ca2+-permeable 

channels are uncovered. Although there is evidence of voltage- and ligand-gated 

vacuolar channels that may be permeable to Ca2+, TPC1 is the only characterised 

Arabidopsis vacuolar Ca2+-permeable channel to date [15, 648] (Section 1.1.4, 

Chapter 1). 

4.1.2 TPC1 is regulated by a combination of Ca2+, ROS, kinases 

and electrical signals 

TPC1 is a tonoplast-localised [15, 112, 122] Ca2+-permeable [15, 108-111] 

channel whose activity is regulated by voltage [112, 114, 115, 542] and Ca2+ [112, 

114, 115]. In Arabidopsis TPC1 is a dimer, with each subunit housing 6 

transmembrane domains and two pore domains responsible for ion conductance [114, 

115] (Figure 1.2, Chapter 1). However, ion conductance is not restricted to Ca2+; 

TPC1 is also permeable to Na+ and K+ [112, 113]. This lack of specificity has led to 

scepticism over the role of TPC1 in Ca2+ signalling [117, 656, 657] and it has been 
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suggested that TPC1 does not significantly affect [Ca2+]cyt [122, 658]. However, 

fluorescent Ca2+ sensors can clearly visualise a TPC1-dependent [Ca2+]cyt elevation in 

Arabidopsis [7, 123]. Furthermore, TPC1 contains two Ca2+-binding EF-hand domains, 

one of which is highly selective for Ca2+ [112, 116] and binding of Ca2+ to this domain 

is required for full channel activation [114, 115]. Thus, TPC1 is linked to Ca2+ 

signalling irrespective of the channel’s ion selectivity.  

The Ca2+-dependent activation of TPC1 means this channel, along with RBOHD 

and an unknown PM Ca2+-permeable channel play a role in CICR (Figure 1.11, Chapter 

1) [119, 121, 536, 537]. This model has been validated in vivo, with the 

demonstration of a TPC1- and RBOHD-dependent systemic Ca2+ signal in Arabidopsis 

roots [7, 121, 123]  Moreover, extracellular ROS production is compromised in the 

TPC1 knock-out mutant tpc1-2 [121]. 

TPC1 has two voltage-sensing domains (VSDs), although voltage-activation of 

the channel is mediated by VSD2 alone [114, 115]. This raises the possibility of 

electrical-regulation of TPC1. As with CICR, a positive feedback mechanism might be 

involved, as TPC1 ion release might alter the electrical potential of the cell [107, 

122]. In addition, there are two phosphorylation sites close the EF-hand domains of 

TPC1, indicating there might be additional regulation by kinases [109, 115]. TPC1 

also appears to mediate MAPK activity in Oryza sativa (rice) [659]. Thus, TPC1 has 

the capacity to regulate and be regulated by Ca2+, ROS, electrical signals and kinase 

activity and the channel may represent a crosstalk node between these signalling 

pathways. 

4.1.3 TPC1 mediates Ca2+ signalling during biotic and abiotic 

stress  

The physiological role of TPC1 has been the subject of much debate. The 

Arabidopsis tpc1-2 mutant is defective in Ca2+-induced stomatal closure [15, 660] and 

ABA-induced inhibition of germination [15], although this ABA phenotype has been 

questioned [122]. Also in Arabidopsis, the endomembrane channel (and TPC1 [661]) 

inhibitor ruthenium red can significantly reduce the [Ca2+]cyt increase in response to 

oxidative stress [662] touch [663] and cold shock [664]. However, the exact target 

and mechanism of this inhibitor is not known. 

Ranf et al. [122] tested a range of possible elicitors on the tpc1-2 mutant, and 

found no involvement for the channel in ABA or CO2-mediated stomatal closure, or in 
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[Ca2+]cyt elevations in response to cold shock, NaCl, H2O2, CaCl2, flg22, elf18. 

Furthermore, expression of the SA defence marker PR1 was not altered in TPC1 

mutants, nor was flg22- or elf18- ROS production. In addition, Bonaventure et al., 

[552] could find no role for TPC1 in defence against B. cinerea. However, these 

studies investigated local application of stress. Research focused on systemic 

signalling has begun to elucidate a biological role for TPC1.  

Application of 100 mM NaCl results in a Ca2+ signal that propagates along the 

Arabidopsis root at 400 µm/s [7]. This signal is attenuated in the tpc1-2 mutant, 

where the speed is reduced to 16 µm/s [7]. Induction of various salt stress-related 

genes was also lost in the mutant, and overexpression of TPC1 resulted in more salt-

tolerant plants [7]. Moreover, wounding can induce leaf-to-leaf Ca2+ signals that can 

be visualised by AEQ, and these are also lost in the tpc1-2 mutant [123]. Supporting a 

primarily systemic role for TPC1, these signals were comparable to wildtype within 

the local (wounded) leaf. Interestingly, TPC1 protein levels are significantly 

increased upon wounding [416] whilst the mRNA levels are not [416, 550], implying 

that post-translational mechanisms may be regulating TPC1 in response to stress. 

TPC1 is ubiquitous across plant species [665], including Physcomitrella patens 

(moss) [666], N. tabacum [582], O. sativa [667] and wheat [667, 668]. Consequently, 

TPC1-mediated Ca2+ signalling is potentially relevant to many different systems. In N. 

tabacum, two TPC1 homologues have been identified, TPC1A and TPC1B, and these 

appear to mediate local Ca2+ release in response to the fungal elicitor cryptogein 

[582], SA [669] and H2O2 [670], as well as in response to sucrose [582] and hypo-

osmotic shock [670]. In O. sativa, TPC1 mediates Ca2+ influx in response to fungal 

xylanases [671]. 

4.1.4 Over-activation of TPC1 enhances jasmonic acid production 

In addition to being regulated by [Ca2+]cyt, TPC1 is also regulated by [Ca2+]vac, 

which in contrast to [Ca2+]cyt inhibits channel activation  [114, 656]. This [Ca2+]vac 

sensitivity is conferred by four negatively-charged residues on the luminal side of the 

protein [672], but can be abolished by a single substitution (aspartic acid to 

asparagine - D454N) between the IIS1-IIS2 loop (Figure 1.2, Chapter 1) [550]. Residue 

D454 forms part of a critical region for [Ca2+]vac sensitivity [114], and thus D454N 

gives rise to a gain-of-function allele named fou2 that lacks this inhibition [550, 656]. 

Consequently, the fou2 mutation results in increased TPC1 channel opening [550]. 
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The fou2 mutation also results in two-fold increase in basal JA levels and in 

LOX activity [550], placing the effect of this mutation at the very start of JA 

synthesis (Figure 4.1). As a result, a variety of stress- and JA-induced transcripts are 

upregulated in the fou2 mutant [552]. The exact link between TPC1 and JA is not 

known. Animal LOX proteins have a Ca2+ binding domain [673], and Arabidopsis LOXs 

contain similar domains [550]. Although evidence of Ca2+ binding to LOXs in plants is 

scarce (e.g. [674]), LOX activity is regulated by kinases that are themselves regulated 

by Ca2+, such as MPK3 and MPK6 [675]. Loss of JA perception by mutating 

CORONATINE INSENSITIVE 1 (COI1) [676, 677] or JA synthesis by mutating ALLENE 

OXIDE SYNTHASE (AOS) [551] (Figure 4.1) abolishes the enhanced LOX activity and 

the growth inhibition exhibited in fou2 mutants [550, 552]. Thus, the observed fou2 

phenotype is based solely on JA upregulation, and involves positive feedback 

between COI1 and AOS and LOX proteins [678, 679]. 

Loss of TPC1 does not affect [Ca2+]cyt elevations [660] or defence gene 

induction [552] elicited by methyl jasmonate (MeJA). Furthermore, abolishing 

transcription of TPC1 does not affect JA production [550], and overexpression of 

TPC1 does not mimic the fou2 phenotype [15]. Thus, TPC1 expression does not 

regulate wildtype JA production. Higher levels of Ca2+ are accumulated in the 

vacuole of fou2 mesophyll cells [656], which combined with the increased probability 

of channel opening [550] has the potential to result in a large Ca2+ efflux from the 

vacuole. Conversely, abolishing TPC1 transcription significantly reduces [Ca]vac in 

epidermal cells, but has no effect  on [Ca]vac in mesophyll cells [650]. 

There are several links between Ca2+ signalling and JA. MeJA elicits [Ca2+]cyt 

elevations in stomata [84, 680], as well as COI1-dependent cation currents [681]. 

Furthermore, MeJA-induced stomatal closure is blocked by CaM and Ca2+ channel 

inhibitors [84, 680, 682, 683] and loss of CNGC2 [84] or CPK6 [684] abolishes MeJA-

elicited [Ca2+]cyt elevations.  Moreover, in N. tabacum CDPK4 and CDPK5 are negative 

regulators of JA production [424]. These components are therefore candidates for 

crosstalk between Ca2+ and JA that may work independently of, or in combination 

with, TPC1-mediated Ca2+ signalling. 

 

[685, 686] 
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JA-Ile

Figure 4.1 (C0): The jasmonate biosynthesis pathway. The JA precursor α-linolenic acid is

converted to active jasmonate (JA-Ile) through a series of enzymatic steps in the chloroplast

(green shading), peroxisome (orange shading) and cytosol (blue shading). In the presence of

JA-Ile, nuclear JAZ (jasmonate-zim-domain) proteins are targeted for degradation by COI1.

This relieves JAZ repression of JA-responsive genes, including those involved in plant

defence. 13-HPOT = 13-hydroperoxy linolenic acid, LOX = 13-lipoxygenase, AOC = Allene

oxide cyclase, OPDA = (9S, 13S)-12-oxo-phytodienoic acid, OPR3 = OPDA reductase, OPC-8:0

= 3-oxo-2(2′-[Z]-pentenyl)cyclopentane-1-octanoic acid, OPCL1 = OPC-8:0 CoA ligase 1, JAR1

= jasmonate resistant 1. Genes relevant to the present study are boxed. Figure adapted

from Lu et al., (2014) [#] and Jimenez-Aleman et al., (2015) [#].

Chloroplast 

JAR1

COI1 JAZ Defence genes

Peroxisome

Cytosol Nucleus

Figure 4.1: The jasmonate biosynthesis pathway. 

The JA precursor α-linolenic acid is converted to active jasmonate (JA-Ile) through a series of 

enzymatic steps in the chloroplast (green shading), peroxisome (orange shading) and cytosol 

(blue shading). In the presence of JA-Ile, nuclear JAZ (jasmonate-zim-domain) proteins are 

targeted for degradation by COI1. This relieves JAZ repression of JA-responsive genes, 

including those involved in plant defence. 13-HPOT = 13-hydroperoxy linolenic acid, LOX = 13-

lipoxygenase, OPDA = (9S, 13S)-12-oxo-phytodienoic acid, OPR3 = OPDA reductase, OPC-8:0 = 

3-oxo-2(2′-[Z]-pentenyl)cyclopentane-1-octanoic acid, OPCL1 = OPC-8:0 CoA ligase 1, JAR1 = 

jasmonate resistant 1. Proteins relevant to the present study are boxed. Figure adapted from 

Lu et al.[685] and Jimenez-Aleman et al. [686]. 
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4.1.5 JA is a key component of plant defence 

JA accumulation is a well characterised response to wounding [392, 395, 416], 

herbivory [308, 332, 334, 335, 417-420] and pathogens [421, 552] (Section 1.3.4, 

Chapter 1). It is also detrimental to aphid performance [307, 426, 428, 429], and in 

agreement with this B. brasssicae fecundity is halved in the fou2 mutant [430]. 

Furthermore, the fou2 mutation results in the constitutive upregulation of several 

plant defence genes, including PDF1.2, PR1, PR4, CYP79B2, and VSP2 [430, 552] and 

shows enhanced resistance to B. cinerea [550]. Interestingly, aphid infestation rarely 

results in strong differential regulation of JA-related genes [426, 427], however it has 

been suggested that upregulation of the SA pathway by aphids [304, 308, 433] is used 

to antagonise JA signalling as a part of successful colonisation of the plant [426, 427, 

434-436]. 

4.1.6 GLR3.3 and GLR3.6 mediate wound signalling in plants 

GLRs are Ca2+-permeable channels [85, 91, 92] that are presumed to be 

localised to the PM [88, 95, 96, 105]. The Arabidopsis genome encodes 20 GLRs [83] 

and these can join in different combinations to form heteromers [84], the 

composition of which can effect biological function [99]. GLRs have an extracellular 

ligand-binding domain (Figure 1.2, Chapter 1) [104], and several amino acids 

including glutamate may act as GLR ligands [76, 92, 356], as seen with the animal 

GLR homologs, the iGluRs [82]. In accord with a physiological role for glutamate, 

glutamate application results in [Ca2+]cyt elevations [99, 100, 687] that are attenuated 

in the glr3.3 mutant [97]. Moreover, the extracellular ligand binding domain of GLRs 

suggests they are involved in the perception of stimuli from outside the cell. 

Concurring with this, GLR3.3 plays a role in [Ca2+]cyt elevations and ROS production in 

response to oligogalacturonide DAMPs and glr3.3 mutant lines exhibit compromised 

resistance to the oomycete Hyaloperonospora arabidopsidis [688]. Furthermore, 

antagonists of animal iGluRs can reduce the [Ca2+]cyt elevation induced by flg22, elf18 

and chitin in Arabidopsis [201]. 

Specific roles for GLR3.6 in plants are not well characterised, although this 

gene has been linked to primary and lateral root growth [689]. However, recent work 

has identified that GLR3.3 and GLR3.6 act together to mediate wound signalling in 

Arabidopsis. Leaf-to-leaf electrical signals in response to wounding are significantly 
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attenuated in glr3.3 and glr3.6 mutants, and this signal is completely abolished if 

both are mutated (glr3.3/3.6) [103]. These GLR-dependent signals appear to travel 

systemically in the SE [541] and are composed of a brief action potential followed by 

a GLR3.6-mediated long potential [104]. Furthermore, such wounding induces JA 

signalling, detected through increased JASMONATE-ZIM-DOMAIN PROTEIN 10 (JAZ10) 

expression. Interestingly, loss of GLR3.3 or GLR3.6 significantly reduces systemic 

JAZ10 expression, but the induction in the local leaves remains the same [103]. This 

suggests that, as with TPC1, the primary role of the GLRs might be in systemic 

signalling, acting as crosstalk nodes between electrical signals, Ca2+ and JA. 

However, it is important to note that electrical signals in the local (wounded) leaf 

were also attenuated in both GLR mutants [103]. Thus, investigations to date position 

GLR3.3 and GLR3.6 as mediators of damage-induced signals in plants. 

4.1.7 ROS and MAPKs are involved in defence against insects and 

are dependent on Ca2+ signalling 

Plant defence against aphids involves several responses, including ROS 

production [316-318, 353, 354, 360, 371, 406, 407], MAPK activation [354, 387, 391-

395] and secondary metabolite biosynthesis [296, 297, 319, 456, 457]. Incubating 

leaves with M. persicae extract results in the gradual production of H2O2 over several 

hours [349], and ROS is also produced in response to A. pisum [408] or Diuraphis 

noxia  (Russian wheat aphid) [690] infestation, as well as to GroEL application [350]. 

Furthermore, infestation of Arabidopsis with R. padi, M. cerasi, or M. persicae results 

in the upregulation of genes related to ROS signalling [283], and disrupting this 

signalling by mutating RBOHD significantly increases M. persicae performance [413] 

whilst disrupting RBOHF expression benefits all three species [283]. Conversely, 

infestation with B. brassicae leads to a decrease in the expression of ROS-related 

transcripts including RBOHD [304]. Extracellular ROS production is dependent on 

TPC1 [121], RBOHD is activated by CPK5 [119] and RBOHF is regulated by CBL1, CBL9 

and CIPK26 [691, 692], suggesting that ROS production lies downstream of Ca2+ 

signalling. However, there is feedback between the systems as ROS can also induce 

Ca2+ elevations [47, 120-122, 662]. 

MAPK activation is observed upon M. sexta herbivory [397], and is amplified 

by the presence of HAMPs in the saliva [386]. Wounding alone can also induce MAPK 

activation [390, 392, 393, 396] and this is linked to downstream JA signalling [392, 
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394, 395] and defence gene induction [393]. The role of MAPKs in plant-aphid 

interactions is less clear, although their involvement is likely given the role of PTI 

and ETI in these interactions. Indeed, silencing MAPKs in tomato significantly reduced 

resistance to M. euphorbiae [398], whilst extract from several other aphid species, 

including M. persicae and A. pisum, induces expression of the MAPK marker gene 

FRK1 [349]. FRK1 is a PTI-activated a receptor kinase whose activity is partially 

regulated by the MAPK pathway [151]. FRK1 is also significantly upregulated in plants 

heterologously expressing GroEL, further suggesting a role for this gene in PTI against 

aphids [350]. Like ROS production, MAPK activation is also dependent on Ca2+ 

signalling, as evidenced by inhibition of MAPKs by ion channel blockers [372, 693, 

694]. MAPK activation is also linked to Ca2+ signalling through interdependence on the 

CDPKs [152, 386, 695].  

4.1.8 Plant defence against insects culminates with the 

production of toxic secondary metabolites 

Indole glucosinolates and camalexin are two tryptophan-derived secondary 

metabolites that play a crucial role in plant defence against insects. The indole 

glucosinolates are synthesised from indole-3-acetaldoxime (IAOx) by CYTOCHROME 

P450, FAMILY 81, SUBFAMILY F, POLYPEPTIDE 2 (CYP81F2) (Figure 4.2), and loss of 

the CYP81F2 pathway reduces the production of the anti-aphid compound 4MI3M and 

increases susceptibility to M. persicae [305]. Interestingly, this is aphid-specific, with 

CYP81F2 expression appearing to have no effect on four lepidopteran species [305]. 

In addition, loss of enzymes upstream of IAOx synthesis, such as CYP79B2 and 

CYP79B3 (Figure 4.2) also results in plants more susceptible to aphid attack [470]. 

The plant glucosinolate response to aphids is rapid, with application of M. persicae, 

A. pisum, B. brassicae and S. avenae (English grain aphid) extract resulting in 

upregulation of CYP81F2 within an hour [349]. 

Ca2+ signalling is implicated in glucosinolate production; with the CaM-binding 

protein IQ-DOMAIN 1 (IQD1) mediating the expression of several CYPs and 

overexpression of IQD resulting in reduced M. persicae fecundity [696]. ROS are also 

implicated in this pathway, with induction of CYP81F2 significantly reduced if ROS 

production is compromised [697]. Furthermore, the production of 4MI3M is also 

dependent on MAPK signalling via MPK3 and MPK6 [698].  
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Camalexin biosynthesis from IAOx is mediated by the enzyme PAD3 (Figure 

4.2) [455, 459]. Like 4MI3M, camalexin production is detrimental to aphid 

performance, with abolition of the PAD3 transcript resulting in plants more 

susceptible to aphids [304, 306, 349]. Production of camalexin is upregulated by 

whole-body extracts from various aphids, including M. persicae [349], as well as by 

aphid saliva [464] and live feeding [304, 308]. A direct link between Ca2+ signalling 

and camalexin production has not been established, however both are important in 

plant defence against pathogens and aphids. As with 4MI3M, camalexin production in 

response to fungi is dependent on MPK3 and MPK6 in Arabidopsis [699]. 

[700] 

  

Figure 4.2 (C01): Tryptophan-derived secondary metabolites represent key

anti-insect molecules. Glucosinolates and camalexin are produced in plants

during herbivory and reduce insect fitness. Genes key in the production of each

metabolite are shown in green boxes. Adapted from Glawischnig et al., (2004) [#].

CYP79B2/3

CYP81F2 PAD3

(including 4MI3M)

Figure 4.2: Tryptophan-derived secondary metabolites represent key anti-insect 

molecules. 

Glucosinolates and camalexin are produced in plants during herbivory and reduce insect 

fitness. Proteins key in the production of each metabolite are shown in green boxes. Adapted 

from Glawischnig et al. [700]. 
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4.1.9 Aims of this chapter 

This chapter outlines experiments designed to identify the mechanisms behind 

the aphid-induced Ca2+ burst in Arabidopsis. Ca2+ signalling in plants lacking the Ca2+-

permeable channels TPC1 and GLR3.3/3.6 was investigated using the GCAMP3 sensor, 

as was the signalling in TPC1 overexpression and fou2 over-activation lines. These 

mutants were also assessed for a role in plant defence induction, including ROS 

production, MAPK activation and secondary metabolite pathways, as well as for 

altered aphid feeding behaviour and fitness. Consequently, this chapter also links the 

Ca2+ burst identified in Chapter 3 to downstream defence responses in the plant, as 

well as exploring connections between Ca2+ and other plant signalling pathways. 

4.1.10 Materials and methods 

The methods used in his chapter are detailed in Chapter 2. Information on the 

microscopy assay can be found in Section 2.8, aphid performance assays (including 

fecundity, survival, choice tests, EPG and IR) in Section 2.9, and Arabidopsis ROS and 

defence gene induction assays in Section 2.10.  
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 Results 4.2

4.2.1 TPC1 expression affects the amplitude and speed of the 

aphid-induced Ca2+ burst 

In order to assess whether TPC1 plays a role in aphid-induced Ca2+ bursts, GFP 

fluorescence in 35::GCAMP3 x tpc1-2 and 35S::GCAMP3 x 35S::TPC1 5.6 lines was 

assessed. In comparison to 35S::GCAMP3 (Figure 4.3a), the feeding site burst was 

significantly reduced (Figure 4.3c), although not abolished (Figure 4.3b), in 

35S::GCAMP3 x tpc1-2 (Video 4.1). In 35S::GCAMP3 x tpc1-2 samples that produced a 

recordable measurement (R), the area of spread and the speed of the Ca2+ burst were 

not significantly altered (Figure 4.4). As observed previously (Figure 3.15, Chapter 3), 

the Ca2+ burst in 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 lines was not the result of a 

discreet ‘on’ or ‘off’ response (Figure D1, Appendix D). In 35S::GCAMP3 x 35S::TPC1 

5.6 plants, the amplitude of the burst was not significantly different from the control 

plants (Figure 4.5, Video 4.2), nor was the area of spread (Figure 4.6a). However, the 

speed of propagation was significantly increased (Figure 4.6b). 

Analysis of systemic Ca2+ dynamics revealed that in the midrib of 35S::GCAMP3 

x tpc1-2 leaves treated with aphids, a significant rise in GFP fluorescence was 

observed relative to the un-infested control leaves (Figure D2, Appendix D). This was 

not seen in the lateral tissue (Figure D3, Appendix D). No systemic signals were seen 

in the 35S::GCAMP3 x 35S::TPC1 5.6 line (Figure D5 and D6, Appendix D). In addition, 

no differences in aphid settling behaviour were seen on either TPC1 expression 

mutant (Figure D4 and D7, Appendix D). 
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Figure 4.3: Normalised GFP fluorescence (∆F/F) around the feeding site in 35S:GCAMP3 

and 35S:GCAMP3 x tpc1-2 Arabidopsis upon M. persicae settling. 

A) 35S:GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S:GCAMP3 x tpc1-2 

control (no aphid treatment) vs aphid treatment. C) 35S:GCAMP3 aphid treatment vs 

35S:GCAMP3 x tpc1-2 aphid treatment. Bars represent SEM (35S:GCAMP3 n=27, 35S:GCAMP3 x 

tpc1-2 n=29). Grey shading indicates significant difference between treatments (Student’s t-

test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. 

and J.C. 
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Figure 4.4 (C2): Properties of the aphid-induced calcium burst around the

feeding site in 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 leaves. Comparing

properties of the calcium burst only in recordable samples (R) , i.e. samples for

which is was possible to measure a value >0. A) Area of the calcium burst. B) Speed

of the calcium wave front. Bars represent SEM. Letters indicate no significant

difference between genotypes (Student’s t-test p<0.05). Experiment conceived and

designed by T.V and conducted by T.V. and J.C.
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Figure 4.4: Properties of the M. persicae-induced Ca2+burst around the feeding site in 

35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 leaves. 

Comparing properties of the Ca2+ burst only in recordable samples (R), i.e. samples in which a 

feeding site GFP burst was visible by eye. A) Area of the Ca2+ burst. B) Speed of the Ca2+ wave 

front. Bars represent SEM. Letters indicate no significant difference between genotypes 

(Student’s t-test p<0.05). Experiment conceived and designed by T.V and conducted by T.V. 

and J.C.  
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Figure 4.5: Normalised GFP fluorescence (∆F/F) around the feeding site in 35S::GCAMP3 

and 35S::GCAMP3 x 35S::TPC1 5.6 Arabidopsis upon M. persicae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x 

35S::TPC1 5.6 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid 

treatment vs 35S::GCAMP3 x 35S::TPC1 5.6 aphid treatment. Bars represent SEM 

(35S::GCAMP3 n=30, 35S::GCAMP3 x 35S::TPC1 5.6 n=29). Grey shading indicates significant 

difference between treatments (Student’s t-test within GLM at p<0.05). Experiment 

conceived and designed by T.V and conducted by T.V. and M.A. 

A) B)

Figure 4.6 (C4): Properties of the aphid-induced calcium burst around the

feeding site in 35S::GCAMP3 and 35S::GCAMP3 x 35S::TPC1 5.6 leaves.

Comparing properties of the calcium burst in recordable samples (R) , i.e. samples

for which is was possible to measure a value >0. A) Area of the calcium burst. B)

Speed of the calcium wave front. Bars represent SEM. Letters indicate a significant

difference between genotypes (Student’s t-test p<0.05). Experiment conceived and

designed by T.V and conducted by T.V. and M.A.
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Figure 4.6: Properties of the M. persicae-induced Ca2+burst around the feeding site in 

35S::GCAMP3 and 35S::GCAMP3 x 35S::TPC1 5.6 leaves. 

Comparing properties of the Ca2+ burst in recordable samples (R), i.e. samples in which a 

feeding site GFP burst was visible by eye. A) Area of the Ca2+ burst. B) Speed of the Ca2+ wave 

front. Bars represent SEM. Letters indicate a significant difference between genotypes 

(Student’s t-test p<0.05). Experiment conceived and designed by T.V and conducted by T.V. 

and M.A.  
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4.2.2 Plant ROS production and IR is altered in 35S::TPC1 plants 

To investigate if TPC1 expression has an effect on plant defence, plant ROS 

production and IR was assessed. Application of aphid extract to leaf disks resulted in 

a ROS burst that peaked at around 200 min post-application (Figure 4.7a). This aphid 

extract-induced burst was significantly larger in 35S::TPC1 5.6 and 35S::TPC1 10.12 

lines (Figure 4.7b and C5c), but not altered in the tpc1-2 mutant (Figure 4.7d). 

Interestingly, the water controls also showed a ROS burst from 0-50 min (Figure 

4.7a), as seen previously [349]. 

IR in response to local pre-treatment with aphids occurred on Col-0 as seen 

previously (Figure B5, Chapter 3). This also occurred with the tpc1-2 mutant, but was 

compromised in the 35S::TPC1 5.6 line (Figure 4.8). 
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Figure 4.7: ROS production in Arabidopsis leaf disks upon application of M. persicae 

extract. 

A) ROS production measured as relative light units (RLU) over time in all treatments. W= 

water. AE= aphid extract. Shading represents a significant difference between aphid extract 

and water treated leaf disks (within a genotype), shared across all four genotypes (Student’s 

t-test within GLM at p<0.05).  B) ROS production in 35S::TPC1 5.6 upon application of aphid 

extract compared to Col-0. C) ROS production over time upon application of aphid extract in 

35S::TPC1 10.21 compared to Col-0. Shading represents a significant difference between 

genotypes (Student’s t-test within GLM at p<0.05) D) ROS production over time upon 

application of aphid extract in tpc1-2 compared to Col-0. Bars represent SEM of 24 biological 

replicates from 3 independent experiments. Shading represents a significant difference 

between genotypes (Student’s t-test within GLM at p<0.05).  

0

5

10

15

20

1 2 3

A
p
h
id

s 
p
e
r 

le
a
f

No pretreatment Aphid pretreatment

Col-0 tpc1-2 35S::TPC1 5.6

Figure C6: Induced resistance to Myzus persicae is lost on 35S::TPC1 5.6

Arabidopsis. Leaves were pre-treated with 50 adult M. persicae individuals to

induce resistance. After removal of the initial infestation, the fecundity of a single

adult feeding from the pre-treated leaves was measured. Pre-treatment with an

empty clip-cage was used as a control. Bars show SEM of 18 biological replicates

from 6 independent experiments. Letters indicate significant difference between

treatments (Student’s t-test within GLM at p<0.05).
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Figure 4.8: IR to M. persicae is lost on 35S::TPC1 5.6 Arabidopsis 

Leaves were pre-treated with 50 adult M. persicae individuals to activate IR. After removal of 

the initial infestation, the fecundity of a single adult feeding from the pre-treated leaves was 

measured. Pre-treatment with an empty clip-cage was used as a control. Bars show SEM of 18 

biological replicates from 6 independent experiments. Letters indicate significant difference 

between treatments (Student’s t-test within GLM at p<0.05).  
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4.2.3 TPC1 expression has an effect on aphid feeding behaviour 

To test whether Ca2+ signalling mediated by TPC1 has an effect on aphid 

feeding behaviour, EPG was conducted on the TPC1 lines. Comparing Col-0 and tpc1-

2, no differences in pathway or the majority of phloem behaviours were found (Table 

4.1). However, on the tpc1-2 mutant phloem rejection behaviour was observed. This 

constituted salivations into the SE (E1) that were not followed by ingestion (E2), 

termed single phloem salivations (Table 4.1 behaviour 29, Figure 4.9a). This 

behaviour was absent from the wildtype (Figure 4.9a), but also present on the TPC1 

overexpression line (Figure 4.9b) 

A comparison was also made between feeding behaviour of aphids on the 

tpc1-2 mutant versus the 35S::TPC1 5.6 line. Again, no differences in pathway 

behaviours or most phloem behaviours were observed (Table 4.2, Figure 4.9c). 

However, the number of phloem ingestion phases (E2) was significantly higher in 

35S::TPC1 5.6 relative to tpc1-2 (Table 4.2, behaviour 32, Figure 4.9d). Interestingly, 

the sum of E1 behaviours on 35S::TPC1 5.6 was double that of tpc1-2 (p=0.08, Table 

4.2 behaviour 29). 

 

Table 4.1: EPG data for Col-0 vs tpc1-2. 

Probe = feeding event, pd = potential drop (cell puncture), C = pathway phase, E1 = phloem 

salivation, E2 = phloem ingestion, sE2 = sustained E2 (>10 min), no = number. Duration 

recorded in s. p-values calculated using a Mann-Whitney U-test (Col-0 n= 22, tpc1-2 n= 23). 

Experiment conceived and designed by T.V and conducted by P.H. under supervision of T.V. 

  
Col-0 tpc1-2 p-value 

 
Pathway behaviours (1st h) Mean SEM Mean SEM 

 1 number of probes 6.2 0.7 6.8 0.8 0.51 

2 average probe 300 94 230 74 0.87 

3 sum of probing  1200 200 1100 170 1.00 

4 duration of 1st probe 160 110 97 35 0.76 

5 number of pd 12 2 11 2 0.75 

6 average duration of pd 6.3 0.3 6.1 0.2 0.35 

7 sum of pd 74 10 68 9 0.58 

8 time to 1st pd (from start of 1st probe) 180 111 180 110 0.85 

9 time to 1st pd in 1st probe with a pd 12 2 17 3 0.21 

10 no. pd per min C  1.0 0.1 0.9 0.1 0.35 

11 no. pd in 1st probe 2.7 1.2 1.6 0.3 0.92 
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  Col-0  tpc1-2  p-value 

 Pathway behaviours (8 h) Mean SEM Mean SEM  

12 duration of the first pd 26 2.2 25 2.7 0.73 

13 mean duration of the first 5 pd 650 82 790 174 0.83 

14 number of probes 14000 1100 13000 1000 0.55 

15 average probe 160 110 97 35 0.76 

16 sum of probing  130 13 120 11 1.00 

17 duration of 1st probe 5.8 0.1 5.9 0.1 0.73 

18 number of pd 750 70 720 66 1.00 

19 average duration of pd 180 110 180 110 0.85 

20 sum of pd 12 2.2 17 3 0.21 

21 time to 1st pd (from start of 1st probe) 0.8 0.0 0.8 0.0 0.45 

22 time to 1st pd in 1st probe with a pd 2.7 1.2 1.6 0.3 0.92 

23 no. pd per min C  6.6 0.6 7.0 0.4 0.63 

24 no. pd in 1st probe 6.5 0.3 6.3 0.2 0.36 

25 duration of the first pd 1900 400 2800 810 0.60 

26 mean duration of the first 5 pd 26 2.2 25 2.7 0.73 

27 time to 1st probe 650 82 790 174 0.83 

 
Phloem behaviours (8 h) 

     
29 number of single E1 (without E2) periods 0.0 0.0 0.2 0.1 0.05 

30 sum of E1 (sgE1 and E1) 68 13 110 26 0.34 

31 sum of E2 2000 780 2000 740 0.97 

32 maximum E2 period 1500 590 1700 660 0.78 

33 number of sustained E2 (>10 min) 0.6 0.2 0.8 0.3 0.68 

34 mean duration of sE2 2300 600 1700 370 0.35 

35 sum of duration of sE2 1600 770 1600 720 0.73 

36 average time to 1st E within probes 1700 220 1700 200 0.90 

37 minimum time to 1st E within probes 1400 220 1300 210 0.84 

38 number of probes before the 1st E  13 2.6 15 2.4 0.39 
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Table 4.2: EPG data for tpc1-2 vs 35S:TPC1 5.6. 

Probe = feeding event, pd = potential drop (cell puncture), C = pathway phase, E1 = phloem 

salivation, E2 = phloem ingestion, sE2 = sustained E2 (>10 min), no = number. Duration 

recorded in s. p-values calculated using a Mann-Whitney U-test (tpc1-2 n= 25, 35S::TPC1 5.6 

n= 30). Experiment conceived and designed by T.V and conducted by P.H. under supervision 

of T.V. 

  
tpc1-2 35S::TPC1 5.6 p-value 

 
Pathway behaviours (1st h) Mean SEM Mean SEM 

 1 number of probes 7.2 0.8 7.0 0.8 0.92 

2 average probe 350 120 350 140 0.97 

3 sum of probing  1500 200 1500 200 1.00 

4 duration of 1st probe 160 120 240 150 0.68 

5 number of pd 21 2 21 3 0.98 

6 average duration of pd 5.3 0.1 5.5 0.3 0.90 

7 sum of pd 100 12 100 15 0.97 

8 time to 1st pd (from start of 1st probe) 33 15 110 46 0.91 

9 time to 1st pd in 1st probe with a pd 13 2 10 1 0.34 

10 no. pd per min C  1.4 0.2 1.1 0.1 0.39 

11 no. pd in 1st probe 3.4 2.0 5.5 3.1 0.54 

12 duration of the first pd 6.4 0.4 6.1 0.5 0.74 

13 mean duration of the first 5 pd 5.8 0.2 5.9 0.3 0.84 

 
Pathway behaviours (8 h) 

     14 number of probes  27  3.4  26  2.5 0.86 
15 average probe  2200  970  1000  170 0.68 
16 sum of probing   17000  1200  19000  1100 0.34 
17 duration of 1st probe  1000  950  290  200 0.59 
18 number of pd  140  12  140  11 0.99 
19 average duration of pd  4.8  0.0  4.9  0.1 0.80 
20 sum of pd  690  57  700  52 0.82 
21 time to 1st pd (from start of 1st probe)  33  15  270  170 0.90 
22 time to 1st pd in 1st probe with a pd  13  2.3  9.8  1.3 0.29 
23 no. pd per min C   1  0  1  0 0.35 
24 no. pd in 1st probe  4  2.6  5.6  3 0.24 
25 duration of the first pd  6.4  0.4  6.3  0.4 0.78 
26 mean duration of the first 5 pd  5.8  0.2  5.7  0.2 0.59 
27 time to 1st probe  1100  420  720  250 0.99 
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  tpc1-2 35S::TPC1 5.6 p-value 

 
Phloem behaviours (8 h) 

     28 number of single E1 (without E2) periods  0.1  0.1  0.1  0.1 0.54 
29 sum of E1 (sgE1 and E1)  110  18  270  97 0.08 
30 sum of E2  6900  1500  8400  1400 0.33 
31 maximum E2 period  6300  1500  6200  1300 0.56 
32 number of sustained E2 (>10 min)  1  0.2  2.1  0.3  0.02

33 mean duration of sE2  6800  1500  5100  1300 0.39 
34 sum of duration of sE2  6500  1500  7700  1400 0.36 
35 average time to 1st E within probes  1400  130  1300  120 0.41 
36 minimum time to 1st E within probes  1200  160  970  120 0.14 
37 number of probes before the 1st E   13  2.1  11  2 0.59 
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Figure C7: Altered phloem phase behaviours in TPC1 expression mutants. A) Single

phloem salivations (E1 without E2) in Col-0 vs tpc1-2. Error bars represent SEM (Col-0

n= 22, tpc1-2 n= 23). B) Single phloem salivations (E1 without E2) in tpc1-2 vs

35S::TPC1 5.6. Error bars represent SEM (tpc1-2 n= 25, 35S::TPC1 5.6 n= 30). C) The

number of sustained phloem ingestions (E2 > 10 min) in Col-0 vs tpc1-2. Error bars

represent SEM (tpc1-2 n= 25, 35S::TPC1 5.6 n= 30). D) The number of sustained

phloem ingestions (E2 > 10 min) in tpc1-2 vs 35S::TPC1 5.6. Error bars represent SEM

(tpc1-2 n= 25, 35S::TPC1 5.6 n= 30). * indicates a significant difference between

treatments (p<0.05, Mann-Whitney U-test). Experiment conceived and designed by

T.V and conducted by P.H. under supervision of T.V.
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Figure 4.9: Altered M. persicae phloem phase behaviours in TPC1 expression mutants. 

A) Single phloem salivations (E1 without E2) in Col-0 vs tpc1-2. Error bars represent SEM (Col-

0 n= 22, tpc1-2 n= 23). B) Single phloem salivations (E1 without E2) in tpc1-2 vs 35S::TPC1 

5.6. Error bars represent SEM (tpc1-2 n= 25, 35S::TPC1 5.6 n= 30). C) The number of sustained 

phloem ingestions (E2 > 10 min) in Col-0 vs tpc1-2. Error bars represent SEM (tpc1-2 n= 25, 

35S::TPC1 5.6 n= 30). D) The number of sustained phloem ingestions (E2 > 10 min) in tpc1-2 vs 

35S::TPC1 5.6. Error bars represent SEM (tpc1-2 n= 25, 35S::TPC1 5.6 n= 30). * indicates a 

significant difference between treatments (p<0.05, Mann-Whitney U-test). Experiment 

conceived and designed by T.V and conducted by P.H. under supervision of T.V. 
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4.2.4 TPC1 expression has no effect on aphid fecundity, host 

choice or survival 

To assess whether TPC1 expression has an effect on aphid fitness, the 

fecundity of M. persicae was assessed on these lines. Fecundity was not altered on 

the tpc1-2 mutant (Figure 4.10a) or 35S::TPC1 5.6 (Figure 4.10b). Furthermore, when 

given a choice between the tpc1-2 mutant and 35S::TPC1 5.6, M. persicae showed no 

host preference in a choice test (Figure 4.10c). In addition, the survival of A. pisum 

was not significantly different on tpc1-2 or 35S::TPC1 5.6 (Figure 4.10d). 

4.2.5 TPC1 over-activation (fou2) results in systemic aphid-

induced Ca2+ bursts 

In order to further assess the role of TPC1 in Ca2+ signalling during plant-aphid 

interactions, the fou2 mutant was studied. The amplitude of the feeding site Ca2+ 

burst was not altered on 35S::GCAMP3 x fou2 (Figure 4.11c), although it showed 

more variability relative to its no-aphid control (Figure 4.11b) than 35S::GCAMP3 

(Figure 4.11a). The same large variability was seen in the area of the feeding site 

Ca2+ burst in 35S::GCAMP3 x fou2 (Figure 4.12a), but not in the speed of its 

propagation (Figure 4.12b). In addition, a large systemic Ca2+ burst was seen in the 

35S::GCAMP3 x fou2 line (Video 4.3) that was detectable in the lateral tissue (Figure 

4.13) but not the midrib (Figure 4.14). Aphid settling behaviour was not significantly 

altered on the 35S::GCAMP3 x fou2 line (Figure D8, Appendix D). 

4.2.6 TPC1 over-activation (fou2) significantly reduces aphid 

fecundity 

In addition to the Ca2+ assays conducted on 35S::GCAMP3 x fou2, aphid 

performance was also assessed on the fou2 mutant. M. persicae fecundity was 

significantly reduced on the fou2 line. However, this was abolished on the JA-

deficient double mutant fou2/aos (Figure 4.15a). Interestingly, A. pisum survival was 

also decreased on the fou2 mutant and even further on the fou2/aos line (Figure 

4.15b).  
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Figure C8: TPC1 expression does not affect aphid performance or host choice. A)

Myzus persicae fecundity on tpc1-2. Bars show SEM of 12 biological replicates from 3

independent experiments. Experiment conducted by Marco Pitino (Hogenhout lab). B)

Myzus persicae fecundity on 35S::TPC1 5.6. Bars show SEM of 12 biological replicates

from 3 independent experiments. Experiment conducted by Marco Pitino (Hogenhout

lab). C) Myzus persicae host choice preference between tpc1-2 and 35S::TPC1 5.6. The

percentage of the total aphid population settled on each plant after a 24-hour choice

period is displayed. Bars show SEM of 20 biological replicates from 4 independent

experiments. D) Acyrthosiphon pisum survival on TPC1 mutants. Survival was averaged

across the two days in which the control population (Col-0) decreased below 50%

survival. Bars represent SEM of 18 biological replicates from 3 independent

experiments. Letters indicate no significant difference between genotypes (Student’s t-

test p<0.05).

a a
a a

a

a

a
a

a

Figure 4.10: TPC1 expression does not affect aphid performance or host choice. 

A) M. persicae fecundity on tpc1-2. Bars show SEM of 12 biological replicates from 3 

independent experiments. Experiment conducted by Marco Pitino (Hogenhout lab). B) M. 

persicae fecundity on 35S::TPC1 5.6. Bars show SEM of 12 biological replicates from 3 

independent experiments. Experiment conducted by Marco Pitino (Hogenhout lab). C) M. 

persicae host choice preference between tpc1-2 and 35S::TPC1 5.6. The percentage of the 

total aphid population settled on each plant after a 24-hour choice period is displayed. Bars 

show SEM of 20 biological replicates from 4 independent experiments. D) A. pisum survival on 

TPC1 mutants. Survival was averaged across the two days in which the control population 

(Col-0) decreased below 50% survival. Bars represent  SEM of 18 biological replicates from 3 

independent experiments. Letters indicate no significant difference between genotypes 

(Student’s t-test within GLM, p<0.05). 



146 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

0.13

-5 0 5 10 15 20 25 30

∆
F
/F

 

Time post-settling (min)

35S:GCAMP3 control 35S:GCAMP3 aphid

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

0.13

-5 0 5 10 15 20 25 30

∆
F
/F

 

Time post-settling (min)

35S:GCAMP3 x fou2 control 35S:GCAMP3 x fou2 aphid

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

0.13

-5 0 5 10 15 20 25 30

∆
F
/F

 

Time post-settling (min)

35S:GCAMP3 aphid GCAMP3 x fou2 aphid

p<0.05

35S:GCAMP3 x fou2 control 35S::GCAMP3 x fou2 aphid

35S::GCAMP3 x fou2 aphid

A)

B)

C)

35S::GCAMP3 aphid35S::GCAMP3 control

35S::GCAMP3 aphid

p<0.05



147 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.11: Normalised GFP fluorescence (∆F/F) around the feeding site in 35S:GCAMP3 

and 35S:GCAMP3 x fou2 Arabidopsis upon M. persicae settling. 

A) 35S:GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S:GCAMP3 x fou2 

control (no aphid treatment) vs aphid treatment. C) 35S:GCAMP3 aphid treatment vs 

35S:GCAMP3 x fou2 aphid treatment. Bars represent SEM (35S:GCAMP3 n=28, 35S:GCAMP3 x 

fou2 n=25). Grey shading indicates significant difference between treatments (Student’s t-

test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. 

and M.A. 
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Figure C10: Properties of the aphid-induced calcium burst around the feeding

site in 35S::GCAMP3 and 35S::GCAMP3 x fou2 leaves. Comparing properties of the

calcium burst in recordable samples (R), i.e. samples for which is was possible to

measure a value >0. A) Area of the calcium burst. B) Speed of the calcium wave

front. Bars represent SEM. Letters indicate no significant difference between

genotypes (Student’s t-test p<0.05). Experiment conceived and designed by T.V and

conducted by T.V. and M.A.
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Figure 4.12: Properties of the M. persicae-induced Ca2+ burst around the feeding site in 

35S::GCAMP3 and 35S::GCAMP3 x fou2 leaves 

Comparing properties of the Ca2+ burst in recordable samples (R), i.e. samples in which a 

feeding site GFP burst was visible by eye. A) Area of the Ca2+ burst. B) Speed of the Ca2+ wave 

front. Bars represent SEM. Letters indicate no significant difference between genotypes 

(Student’s t-test p<0.05). Experiment conceived and designed by T.V and conducted by T.V. 

and M.A. 
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Figure 4.13: Normalised GFP fluorescence (∆F/F) in the lateral tissue, systemic to the 

feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x fou2 Arabidopsis upon M. persciae 

settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x fou2 

control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 

35S::GCAMP3 x fou2 aphid treatment. Bars represent SEM (35S::GCAMP3 n=28, 35S::GCAMP3 x 

fou2 n=25). Grey shading indicates significant difference between treatments (Student’s t-

test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. 

and M.A. 
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Figure 4.14: Normalised GFP fluorescence (∆F/F) in the midrib, systemic to the feeding 

site, in 35S::GCAMP3 and 35S::GCAMP3 x fou2 Arabidopsis upon M. persicae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x fou2 

control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 

35S::GCAMP3 x fou2 aphid treatment. Bars represent SEM (35S::GCAMP3 n=28, 35S::GCAMP3 x 

fou2 n=25). Grey shading indicates significant difference between treatments (Student’s t-

test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. 

and M.A. 
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Figure C13: The fou2 mutation significantly decreases aphid performance. A)

Myzus persicae fecundity on fou2. Bars show SEM of 16 biological replicates from 4

independent experiments. B) A. pisum survival. Survival was averaged across the

two days in which the control population (Col-0) decreased below 50% survival. Bars

represent SEM of 18 biological replicates from 3 independent experiments. Letters

indicate significant differences between genotypes (Student’s t-test within GLM).
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Figure 4.15: The fou2 mutation significantly decreases aphid performance. 

A) M. persicae fecundity on fou2. Bars show SEM of 16 biological replicates from 4 

independent experiments. B) A. pisum survival. Survival was averaged across the two days in 

which the control population (Col-0) decreased below 50% survival. Bars represent SEM of 18 

biological replicates from 3 independent experiments. Letters indicate significant differences 

between genotypes (Student’s t-test within GLM, p<0.05). 
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4.2.7 Aphid-induced Ca2+ bursts are abolished in the glr3.3/3.6 

double mutant 

Since the Ca2+ burst was not completely abolished on the tpc1-2 mutant 

(Figure 4.3b), further Ca2+-permeable channels were also investigated with respect to 

a possible role in producing the Ca2+ burst. This work focused on GLR3.3 and GLR3.6. 

Indeed, unlike the 35S::GCAMP3 line (Figure 4.16a), on the GLR double mutant 

35S::GCAMP3 x glr3.3/3.6 no feeding site Ca2+ burst was detectable relative to the 

untreated controls (Figure 4.16b, Figure 4.16c Video 4.4). Furthermore, in the three 

35S::GCAMP3 x glr3.3/3.6 samples that did display a recordable burst (R), there was 

a high variation in signal propagation speeds (Figure 4.17). As seen previously, these 

three samples did not represent a discrete group of responding samples (Figure D9, 

Appendix D). Interestingly, systemic aphid-induced signals could be detected in the 

35S::GCAMP3 line in the midrib (Figure D10, Appendix D) and the lateral tissue 

(Figure D11, Appendix D) that were not observed in the 35S::GCAMP3 x glr3.3/3.6 

line. Aphid settling behaviour was not altered by the glr3.3/3.6 mutation (Figure 

D12, Appendix D). Investigating the role of extracellular Ca2+ was also attempted 

through incubation of the leaves with EDTA or Lanthanide ions (La3+), however these 

inhibitors had strong negative effects on both the leaf viability and aphid 

performance, making the assay not feasible. 

4.2.8 Aphid fecundity and plant ROS production are not altered in 

the glr3.3/3.6 double mutant 

In order to assess if the GLR mutations also resulted in a plant defence or 

aphid performance phenotype, a plant ROS assay and M. persicae fecundity assay 

were performed with the glr3.3/3.6 double mutant. In response to aphid extract, 

whilst ROS production was significantly reduced in the bak1-5 mutant, no significant 

effect on ROS production was seen for glr3.3/3.6 (Figure 4.18a). M. persicae 

fecundity was also not altered (Figure 4.18b). 
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Figure 4.16: Normalised GFP fluorescence (∆F/F) around the feeding site in 35S::GCAMP3 

and 35S::GCAMP3 x glr3.3/glr3.6 Arabidopsis upon M. persicae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x 

glr3.3/glr3.6 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid 

treatment vs 35S::GCAMP3 x glr3.3/glr3.6 aphid treatment. Bars represent SEM (35S::GCAMP3 

n=34, 35S::GCAMP3 x glr3.3/glr3.6 n=37). Grey shading indicates significant difference 

between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and 

designed by T.V and conducted by T.V. and M.A. 
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Figure C15: Properties of the aphid-induced calcium burst around the feeding

site in 35S::GCAMP3 and 35S::GCAMP3 x glr3.3/3.6 leaves. Comparing properties

of the calcium burst in recordable samples (R) , i.e. samples for which is was

possible to measure a value >0. A) Area of the calcium burst. B) Speed of the

calcium wave front. Letters indicate no significant difference between genotypes

(Student’s t-test p<0.05). Experiment conceived and designed by T.V and conducted

by T.V. and M.A.
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Figure 4.17: Properties of the M. pericae-induced Ca2+ burst around the feeding site in 

35S::GCAMP3 and 35S::GCAMP3 x glr3.3/3.6 leaves. 

Comparing properties of the Ca2+ burst in recordable samples (R), i.e. samples in which a 

feeding site GFP burst was visible by eye. A) Area of the Ca2+ burst. B) Speed of the Ca2+ wave 

front. Letters indicate no significant difference between genotypes (Student’s t-test p<0.05). 

Experiment conceived and designed by T.V and conducted by T.V. and M.A. 
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Figure 4.18 (C16): ROS production and susceptibility to M. persicae is not altered

on the glr3.3/glr3.6 double mutant. A) ROS production in Col-0, bak1-5 and

glr3.3/glr3.6 leaf disks upon application of M. persicae extract. ROS measured as

relative light units (RLU). Error bars represent SEM of 24 biological replicates from

from 3 independent experiments. Shading indicates significant difference between

Col-0 and bak1-5 (Student’s t-test within GLM at p<0.05). Experiment conducted by

T.V. and M.A. B) Myzus persicae fecundity on glr3.3/3.6 Bars show SEM of 24

biological replicates from 4 independent experiments. Letters indicate no significant

difference between genotypes (Student’s t-test p<0.05). Experiment conceived and

designed by T.V and conducted by T.V. and M.S.
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Figure 4.18: ROS production and susceptibility to M. persicae is not altered on the 

glr3.3/glr3.6 double mutant. 

A) ROS production in Col-0, bak1-5 and glr3.3/glr3.6 leaf disks upon application of M. 

persicae extract. ROS measured as relative light units (RLU). Error bars represent SEM of 24 

biological replicates from from 3 independent experiments. Shading indicates significant 

difference between Col-0 and bak1-5 (Student’s t-test within GLM at p<0.05). Experiment 

conceived and designed by T.V and conducted by T.V. and M.A. B) M. persicae fecundity on 

glr3.3/3.6 Bars show SEM of 24 biological replicates from 4 independent experiments. Letters 

indicate no significant difference between genotypes (Student’s t-test p<0.05). Experiment 

conceived and designed by T.V and conducted by T.V. and M.S. 
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4.2.9 Induction of FRK1, CYP81F2 and PAD3 is altered in the 

bak1-5, tpc1-2 and fou2/aos mutants 

To assess whether Ca2+ signalling has an effect on plant defence downstream 

of the initial perception by BAK1, the expression of three defence markers (FRK1, 

CYP81F2 and PAD3) in the bak1-5, tpc1-2 and glr3.3/3.6 lines in response to aphid 

extract was investigated. Incubation of leaf disks with aphid extract for 1 h strongly 

induced expression of FRK1, CYP81F2 and PAD3 relative to water-incubated controls 

(Figure 4.19). Induction of FRK1 was reduced in the tpc1-2 mutant but was not 

significantly altered in bak1-5 or glr3.3/3.6 mutants (Figure 4.19a). CYP81F2 

induction was reduced in the bak1-5 mutant but not in the other lines (Figure 4.19b), 

whilst PAD3 expression was significantly attenuated in both bak1-5 and tpc1-2 

mutants (Figure 4.19c). 

The same assay was repeated with the aos and fou2/aos mutants to assess the 

effect of JA and JA-independent TPC1 over-activation on these pathways (Figure 

4.20). Application of aphid extract induced FRK1 expression in all genotypes, with no 

significant difference detected between them (Figure 4.20a). CYP81F2 induction by 

aphid-extract was the same as wildtype in the aos mutant, but was compromised in 

the fou2/aos mutant (Figure 4.20b). PAD3 expression was induced by aphid extract 

to the same level in all three genotypes (Figure 4.20c). 
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Figure 4.19 (C17): Defence gene induction in Col-0, bak1-5, tpc1-2 and glr3.3/3.6 leaf

disks incubated with M. persicae extract (aphid extract) for 1 hour. Expression relative to

water-treated Col-0 leaf disks. A) Relative FRK1 expression. B) Relative CYP81F2 expression.

C) Relative PAD3 expression. Bars show SEM of 9 biological replicates from from 3

independent experiments. Letters indicate significant differences between treatments

(Student's t-probabilities calculated within GLM at P <0.05). Experiment conceived and

designed by T.V and conducted by N.B. under supervision of T.V.
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Figure 4.19: Defence gene induction in Col-0, bak1-5, tpc1-2 and glr3.3/3.6 leaf disks 

incubated with M. persicae extract (aphid extract) for 1 h. 

Expression relative to water-treated Col-0 leaf disks. A) Relative FRK1 expression. B) Relative 

CYP81F2 expression. C) Relative PAD3 expression. Bars show SEM of 9 biological replicates 

from from 3 independent experiments. Different letters indicate averages that are 

significantly different from one another (Student's t-probabilities calculated within GLM at P 

<0.05). Experiment conceived and designed by T.V and conducted by N.B. under supervision 

of T.V. 
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Figure 4.20 (C18): Defence gene induction in Col-0, aos and fou2/aos Arabidopsis leaf

disks incubated with M. persicae extract (GPA extract) for 1 hour. Expression relative to

water-treated Col-0 leaf disks. A) Relative FRK1 expression. B) Relative CYP81F2 expression.

C) Relative PAD3 expression. Bars show SEM of 9 biological replicates from 3 independent

experiments. Letters indicate significant differences between treatments (Student's t-

probabilities calculated within GLM at P <0.05). Experiment conceived and designed by T.V

and conducted by N.B. under supervision of T.V.
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Figure 4.20: Defence gene induction in Col-0, aos and fou2/aos Arabidopsis leaf disks 

incubated with M. persicae extract (aphid extract) for 1 h. 

Expression relative to water-treated Col-0 leaf disks. A) Relative FRK1 expression. B) Relative 

CYP81F2 expression. C) Relative PAD3 expression. Bars show SEM of 9 biological replicates 

from 3 independent experiments. Different letters indicate averages that are significantly 

different from one another (Student's t-probabilities calculated within GLM at P <0.05). 

Experiment conceived and designed by T.V and conducted by N.B. under supervision of T.V. 
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 Discussion  4.3

4.3.1 Aphid feeding results in vacuolar Ca2+ release mediated by 

TPC1 

The Ca2+ burst around the feeding site was significantly reduced in the tpc1-2 

mutant (Figure 4.3, Video 4.1), showing that vacuolar Ca2+ release via TPC1 is 

involved in this signal. Previously, the role of intracellular Ca2+ in plant defence has 

been inferred indirectly through the use of pharmacological inhibitors [201, 378] and 

wounding has been show to stimulate systemic TPC1-mediated Ca2+ release [123]. 

Indeed, TPC1’s role appears to be mainly in systemic signalling [7, 121, 123], a 

phenomenon that appears to be less important in relation to M. persicae attack. 

Examples of systemic signalling in response to aphids were observed in the present 

chapter; however this was not a consistent response and occurred in the minority of 

cases (Figure D3, D10, D11, Appendix D). 

Furthermore, local application of the bacterial PAMPs flg22 and elf18 can 

induce Ca2+ bursts detectable by AEQ that are not altered in the tpc1-2 mutant [122]. 

Therefore, the role of TPC1 might be aphid-specific. It is also possible that the 

enhanced sensitivity of GCAMP3 compared to AEQ may also have contributed to the 

detection of the aphid TPC1 phenotype, as single-FP sensors allow measurements of 

PAMP-induced Ca2+ signals that were not previously detectable [219].  

Overexpression of TPC1 did not significantly alter the feeding site Ca2+ burst 

(Figure 4.5c, Video 4.2), suggesting that wildtype levels of TPC1 are sufficient to 

generate the maximal signal. There does appear to be an increase in [Ca2+]cyt after 25 

min in 35S::GCAMP3 x 35S::TPC5.6 that was not observed in the wildtype (Figure 

4.5c) that may represent a second burst as a result of overexpressing TPC1. However, 

this burst was not aphid-specific as only the initial Ca2+ burst in 35S::GCAMP3 x 

35S::TPC1 5.6 was significantly higher than the no-aphid control (Figure 4.5b).  

TPC1 expression had no effect on the spread of the Ca2+ burst within the leaf 

(Figure 4.4a). However, overexpression of TPC1 did increase the speed of the aphid-

induced Ca2+ wave front by a third, from 4 µm/s to 6µm/s (Figure 4.4b). This is very 

similar to the proportional increase in Ca2+ signal speed in response to salt-stress 

when TPC1 is overexpressed, which increases from 400 µm/s in Col-0 to 680 µm/s in 

35S::TPC1 [7]. Interestingly, in tpc1-2 plants that did exhibit a measurable Ca2+ signal 
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in response to aphids, the speed of the signal was unchanged (Figure 4.4b), 

suggesting that TPC1 is not required for the propagation of the signal, but is capable 

of enhancing it. Indeed, it is hypothesised that TPC1 acts in CICR to propagate Ca2+ 

signals cell to cell [7, 121, 537, 539], and a similar mechanism might be applicable in 

the plant-aphid context. As with bak1-5 (Figure B9, Chapter 3)  production of visible 

Ca2+ bursts around the feeding site of some 35S::GCAMP3 x tpc1-2 plants (Figure 

4.17) suggests that there is some TPC1-independent signalling occurring.  

The role of TPC1 in the aphid-induced Ca2+ burst further supports the 

hypothesis that this burst occurs in the epidermal and mesophyll cell layers, as 

mature SEs do not contain vacuoles [701]. Arabidopsis spongy mesophyll cells 

represent a large pool of stored Ca2+ available for signalling, with higher [Ca]vac than 

most other cell types [651, 702] and [Ca]vac in tpc1-2 mesophyll cells is not 

significantly altered [650]. Consequently, the reduced Ca2+ burst in the tpc1-2 

mutant is not related to reduced vacuolar storage of Ca2+.  

4.3.2 TPC1 expression alters ROS production, MAPK activity and 

camalexin biosynthesis during plant-aphid interactions 

ROS production is a hallmark of PTI, including against aphids. Incubating 

Arabidopsis leaf disks with M. persicae extract resulted in a burst of H2O2 that peaked 

at around 200 min post-application and was significantly higher than disks incubated 

with water (Figure 4.7a). This fits well with the ROS response to aphid extract seen 

previously [349]. The water-incubated leaf disks did display a high level of initial ROS 

(Figure 4.7a), which has also been seen previously [349]. This is likely a result of the 

wounding required to harvest the leaf disks [413], but may also suggest that aphid 

extract is capable of suppressing this burst. Loss of the TPC1 transcript had no effect 

on ROS production in response to aphid extract (Figure 4.7d). This agrees with 

previous work showing that ROS production in response to plant hormones (ABA and 

MeJA [660]) and bacteria (elf18 and P. syringae [122]) are also not altered in tpc1-2 

mutant leaves. However, TPC1 is required for ROS production in roots in response to 

salt stress [121], and heterologous expression of AtTPC1 in N. tabacum BY-2 cells 

showed that H2O2-induced [Ca2+]cyt elevations may also involve TPC1 [670]. 

Furthermore, plant redox status might influence TPC1 activity [703]. Thus, although 

the function of TPC1 is interconnected with ROS production, the biological relevance 

of this might be limited to specific tissues and/or systemic signalling. 
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Interestingly, overexpression of TPC1 resulted in a larger ROS burst in both 

the 35S::TPC1 lines tested (Figure 4.7b and c), despite TPC1 not being required for 

aphid extract-induced ROS production (Figure 4.7d). It is also aphid-extract specific, 

as no difference in ROS production was observed in the 35S::TPC1 lines treated with 

water (Figure 4.7a). A similar increase in ROS production in response to a fungal 

elicitor can be achieved in O. sativa by overexpressing OsTPC1 [659], although a 

comparable result cannot be achieved by overexpressing TPC1 in Arabidopsis during 

bacterial infection [122]. TPC1 overexpression has no effect on the feeding site Ca2+ 

burst during aphid attack (Figure 4.5), although it is worth noting that Ca2+ was not 

analysed in response to aphid extract nor over several hours, as was conducted for 

ROS. Given the considerable positive feedback between Ca2+, TPC1 and ROS [119, 

121, 691, 692] it is not surprising that overexpression of TPC1 could result in 

enhanced ROS accumulation in response to stress. 

In addition to ROS production, defence marker gene induction after aphid 

extract application was also assed. FRK1 is a marker gene for early defence signalling 

[151] and the MAPK pathway [201, 394]. Incubation of leaf disks with aphid extract 

for 1 h resulted in significant upregulation of this gene in Col-0 plants (Figure 4.19a) 

as seen previously [349]. However, this induction was compromised in the tpc1-2 

mutant (Figure 4.19a), suggesting that TPC1 and intracellular Ca2+ signalling may be 

required for full MAPK activation during plant-aphid interactions. Indeed, MAPK 

activation in response to the fungal elicitor xylanase is significantly reduced in O. 

sativa if OsTPC1 transcription is abolished [659]. Furthermore, MAPK activation in P. 

crispum in response to Phytophthora sojae is promoted by ion fluxes [693] and 

pharmacological inhibition of Ca2+ flux decreases MAPK activation in response to 

oomycetes [694] and fungi [372]. 

 Loss of the TPC1 transcript also significantly attenuated aphid-induced PAD3 

induction (Figure 4.19c), suggesting that TPC1 might also play a role in camalexin 

biosynthesis. Conversely, TPC1 expression has no effect on CYP81F2 and therefore 

the glucosinolate pathway (Figure 4.19b). A connection between Ca2+ and camalexin 

production has not been established to the authors knowledge, however camalexin 

production in response to fungi is MAPK-dependent [704], and given the considerable 

involvement of MAPKs in PTI [354, 360, 387-391] it is possible the altered MAPK 

activation in tpc1-2 may result in altered PAD3 induction. Furthermore, in cultured 

O. sativa cells phytoalexin accumulation is suppressed if OsTPC1 transcription is 

abolished [671]. Given the anti-aphid role of camalexin [304, 306, 349], the data 
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collected in the present study suggest the TPC1 expression might have an effect on 

the final toxicity status of the plant.  

4.3.3 TPC1 promotes phloem feeding but has no effect on most 

aphid feeding behaviours 

The vast majority of aphid feeding behaviours were not altered in the TPC1 

expression mutants (Table 4.1, Table 4.2). This included all pathway behaviours, 

again demonstrating that the aphid-induced Ca2+ burst is not related to altered 

feeding behaviour. Interestingly, aphids on the tpc1-2 mutant exhibited a behaviour 

not seen on the wildtype: instances of single phloem salivations (E1) not followed by 

phloem ingestion (E2). Such behaviour suggests that the aphid cannot successfully 

establish feeding, despite the potential release of effectors into the phloem [282, 

297, 705], and is often observed during incompatible interactions [300-303]. Such 

problems with phloem acceptance are sometimes the result of R-gene recognition 

and ETI [281, 640, 706]. However, single phloem salivations were also observed in 

the 35S::TPC1 5.6 line (Figure 4.9b), suggesting that any perturbation in TPC1 

expression alters this behaviour. Furthermore, this behaviour was also seen in the 

wildtype plants during the BAK1 EPG experiment (Table B2, behaviour 28, Chapter 

3). Consequently, the significance of this behaviour is likely to be small. 

The number of sustained (>10 min) phloem ingestions was significantly higher 

on 35S::TPC1 5.6. These data imply that despite the potential role of Ca2+ and TPC1 

in activation of plant defence, TPC1 expression may be beneficial to the aphid. This 

unexpected result is similar to that observed with the bak1-5 mutant, where loss of 

BAK1 appeared to be beneficial to phloem feeding (Figure 3.17, Chapter 3). Both 

BAK1 and TPC1 are required for the aphid-induced Ca2+ burst, and might even act in 

the same pathway. As such, it is conceivable that the hypothesis outlined in Chapter 

3 (Section 3.3.6), whereby the aphid is monitoring or suppressing the plant defence 

network via this pathway, might also involve TPC1. A result of this might be that 

disruption of this pathway (e.g. loss of BAK1 or TPC1) is detrimental to M. persicae, 

whilst enhancement (e.g. overexpression of TPC1) is beneficial. It remains to be 

tested whether TPC1 lies within the BAK1 pathway, or whether effectors such as 

Mp10 are acting in a TPC1-dependent manner.  

Alternatively, Ca2+ signalling via TPC1 could be a negative regulator of plant 

defence against aphids. Indeed, loss of the PM Ca2+ channel CNGC2 leads to 
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constitutive defence activation [79, 377]. However, this is contrary to the tpc1-2 and 

35S::TPC1 phenotypes outlined in Section 4.3.2, where TPC1 expression appears to 

promote defence activation. It could also be argued that the EPG data show that 

TPC1 expression has very little effect on aphid feeding, consistent with the lack of an 

effect on aphid fecundity (Figure 4.10a and b). The total and average time spent 

feeding from the phloem was the same in all lines despite the altered number of 

occurrences (Table 4.1 and Table 4.2 behaviours 30, 31, 33 and 34). This hypothesis 

is further strengthened by the lack of a difference in basal resistance to aphids seen 

on the TPC1 expression lines (Section 4.3.4– see below).  

4.3.4 TPC1 expression affects IR but not basal resistance to 

aphids 

Despite the role of TPC1 in aphid-induced Ca2+ bursts (Section 4.3.1) and 

defence induction in response to aphid extract (Section 4.3.2), TPC1 expression has 

little effect on aphid performance. M. persicae fecundity was not significantly 

altered on the tpc1-2 (Figure 4.10a) or 35S::TPC1 5.6 (Figure 4.10b) lines, and the 

aphids showed no host preference for plants based on TPC1 expression (Figure 

4.10c). Therefore, the altered defence signalling mediated by TPC1 had no effect on 

basal resistance to aphids. M. persicae is compatible with Arabidopsis, feeding 

successfully from the plant, and this compatibility is most likely mediated by 

effectors [276, 277, 500-502, 549, 560]. Thus, during the M. persicae-Arabidopsis 

interaction plant defence is already suppressed, and therefore experiential 

disruption of defence signalling will most likely have little effect. Indeed, despite 

BAK1’s role in perception of aphids, abolishing BAK1 transcription has no effect on M. 

persicae fecundity [349]. This might also explain the lack of a strong feeding 

behaviour phenotype on the tpc1-2 mutant (Section 4.3.3). 

To counter this issue, the performance of an incompatible aphid, A. pisum, 

was also assessed on the TPC1 expression lines. Use of incompatible aphids can help 

identify components of non-host resistance in Arabidopsis. For example, the 

incompatible species R. padi induces a larger plant ROS burst than M. persicae [283].  

A. pisum extract application to Arabidopsis leaf disks results in induction of FRK1, 

CYP81F2 and PAD3 comparable to M. persicae extract [349], however A. pisum 

cannot survive on Arabidopsis [555]. This survival is increased significantly on the 

bak1-5 mutant, although the aphid still remains incompatible [349]. Thus non-host 
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resistance is partly regulated by BAK1. To test if the same was true for TPC1, the 

same survival assay was conducted on the tpc1-2 and 35S::TPC1 5.6 lines. However, 

no difference in A. pisum survival was observed (Figure 4.10d). This suggests that 

signalling mediated by TPC1 is not significantly regulating successful plant defence 

against non-host aphids. Alternatively, it is conceivable that like M. persicae, A. 

pisum is capable of suppressing Ca2+ signalling successfully and non-host resistance 

against this species might be Ca2+-independent. 

Since basal resistance to aphids was not altered on the TPC1 expression lines, 

IR to M. persicae was also investigated. Previous exposure to a pest can lead to 

priming of plant defence against future challenge [527, 534, 629, 632]. This is the 

case for both pathogens [438, 526, 533, 634] and insects [464, 473, 474, 707], with 

the IR capable of being very broad-spectrum [431]. IR to M. persicae extract is 

dependent on aphid-perception by BAK1 [349]. Furthermore, the camalexin 

biosynthesis pathway is also required for successful IR against M. persicae, as 

abolishing transcription of CYP79B2/CYP79B3 or PAD3 also abolishes IR [349]. Pre-

treatment of leaves with 50 M. persicae adults resulted in IR in Col-0 local leaves 

(Figure 4.8) as seen previously (Figure 3.9, Chapter 3 [464]). The IR in tpc1-2 mutants 

was equal to wildtype (Figure 4.8), demonstrating that Ca2+ signalling via TPC1 is not 

required for IR to M. persicae. However, overexpression of TPC1 abolished IR (Figure 

4.8). This agrees with the hypothesis outlined in Section 4.3.3; that TPC1 expression 

is beneficial to the aphid. This appears to be independent of the increased ROS 

production in the 35S::TPC1 lines (Figure 4.7b and Figure 4.7c). It might be that TPC1 

overexpression has an effect on other signalling pathways important in IR, such as JA 

[473, 474, 529, 530, 708-710], however the lack detectable phenotypes in 35S::TPC1 

plants, combined with the lack of knowledge surrounding the mechanism that 

regulates IR against aphids, mean that further experiments are required to 

investigate this phenomenon.   
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4.3.5 Over-activating TPC1 significantly alters the plant Ca2+ 

signal 

Over-activation of TPC1 by the fou2 mutation did not significantly affect the 

amplitude of the feeding site Ca2+ burst (Figure 4.11c), however the burst exhibited 

greater variability (Figure 4.11b) than the wildtype (Figure 4.12a). Unlike 

overexpression of TPC1, over-activation did not affect the speed of the signal (Figure 

4.12b). However, large systemic aphid-induced signals were detected in 

35S::GCAMP3 x fou2 lateral tissue (Figure 4.13c, Video 4.3). Thus, whilst TPC1 

abundance affects the speed of signal propagation (Figure 4.6b, [7]), alterations to 

ion channel activity result in systemic signalling in response M. persicae. This fits 

with the theory that TPC1 regulation during stress is mainly post-transcriptional 

[416]. 

Ions including Ca2+ are thought to underlie systemic stress signalling in plants 

[7, 103, 121, 123]. Thus, if M. persicae is suppressing systemic Ca2+ release as part of 

its successful colonisation of the plant, then over-activation of TPC1 might counter-

act this. To test this hypothesis, it would be interesting to investigate whether a non-

adapted aphid such as A. pisum induces systemic Ca2+ bursts in Arabidopsis. In 

addition, it is worth noting that the JA-dependent phenotype of fou2 does not occur 

within the first 2 weeks of growth, with LOX activity and physical appearance 

comparable to wildtype plants during this period [550]. Therefore, despite JA’s role 

in systemic signalling, [530, 543-546] the Ca2+ phenotype observed in the 9-11 day old 

35S::GCAMP3 seedlings used in the present study is likely to be independent of JA 

and might represent the first non-JA fou2 phenotype. 

4.3.6 Over-activating TPC1 enhances plant resistance to M. 

persicae through a JA-dependent mechanism  

Over-activation of TPC1 resulted in a significant negative effect on M. 

persicae fecundity (Figure 4.15a). This phenotype was due to the upregulated JA 

production in the fou2 mutant [550], as fecundity was rescued on the fou2/aos 

double mutant (Figure 4.15a). The fou2 mutation has been shown to reduce 

fecundity of the Brassicaceae specialist aphid B. brassicae [430], although the role of 

JA was not explicitly investigated through use of the fou2/aos line. This fou2 

phenotype agrees with evidence in the literature suggesting that JA is detrimental to 
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aphids. LOX2 transcription is increased 2-fold by M. persicae infestation [499] and M. 

persicae fecundity is significantly reduced on the JA-overproduction mutant cev1. 

Furthermore, application of MeJA to wildtype plants also reduces aphid performance 

[307, 429]. The fou2 mutation induces several defence-related transcripts in a JA-

dependent manner [552], and this results in constitutive defence activation [430, 

550]. It is therefore not surprising that M. persicae performance is compromised on 

this mutant. Interestingly, despite the significant reduction in B. brassicae fecundity 

observed on the fou2 mutant, the feeding behaviour of this aphid is not altered 

[430], casting doubt on the use of feeding behaviour as a measure of aphid success. 

Contrary to the fou2 phenotype, abolition of JA signalling in the coi1 mutant 

appears to increase M. persicae and B. brassicae fecundity [307]. However, 

abolishing AOS transcription had no effect on M. persicae fecundity in the current 

study (Figure 4.15a), nor on the fecundity of B. brassicae [430], despite the number 

of defence-related transcripts that are compromised in the aos mutant. The disparity 

between the coi1 and aos phenotypes may be due to an additional mutation in the 

coi1-6 mutant line used by Ellis et al., [307] that alters callose production [711], a 

key anti-aphid defence [430]. Indeed, rearing M. persicae a COI1 mutant free of this 

pleiotropic effect (coi1-35) or the jar1 mutant (Figure 4.1) [712] results in no effect 

on aphid fecundity [306]. These results suggest either that JA biosynthesis is not one 

of the main determinants of M. persicae success, or that M. persicae successfully 

downregulates JA in wildtype plants to a level comparable to the aos mutant.  

4.3.7 Induction of MAPKs, camalexin and glucosinolates by M. 

persicae is independent of JA 

FRK1 induction in response to M. persicae extract was not significantly altered 

on the aos or fou2/aos lines (Figure 4.20a), indicating that neither JA nor JA-

independent TPC1 over-activation have an effect on MAPK activation in response to 

M. persicae.  MAPK activation lies upstream of JA production in response to wounding 

[392] and herbivory [397], and the results of the present study indicate that during 

plant-aphid interactions there is not significant feedback on MAPKs by JA signalling. 

Again this could be because of the relatively low induction of JA signalling by aphids, 

or the suppression of this pathway by the insect. It is also worth noting that FRK1 

induction is only a marker for the MAPK pathway, MAPK activation itself in response 

to M. persicae was not tested. 
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Aphid extract-induced expression of PAD3 was also not altered in the aos or 

fou2/aos lines (Figure 4.20c), suggesting that camalexin production is JA-

independent and not affected by JA-independent TPC1 over-activation. This is 

interesting given the role of TPC1 expression in PAD3 induction (Figure 4.19c), and 

implies that if camalexin production is partially TPC1-dependent, it might already be 

at its maximal level in wildtype plants. Camalexin production in response to the 

fungus B. cinerea is dependent on JA and compromised in aos, coi1 and aos/coi1 

mutants, and PAD3 induction is also lower in coi1 [713]. However, whilst JA may play 

a role in the accumulation of camalexin in some defence contexts, this does not 

appear to be the case in the M. persicae-Arabidopsis interaction. 

CYP81F2 expression was also not compromised in the aos mutant (Figure 

4.20b), suggesting glucosinolate production in response to aphids is also JA-

independent. This agrees with work by Mewis et al. [428], who observed that the 

levels of aliphatic and indolyl glucosinolates induced by M. persicae are not altered 

in the coi1 mutant. However, CYP81F2 induction was significantly attenuated in the 

fou2/aos line (Figure 4.20b). This implies that TPC1 over-activation, independently 

of JA, is capable of suppressing this response, despite TPC1 itself not being required 

for glucosinolate production (Figure 17b). Consequently, it could be hypothesised 

that increasing ion flux through TPC1 might have an effect on JA-independent 

pathways upstream of glucosinolate production, potentially involving those based on 

Ca2+ [696], ROS [697] and MAPKs [698]. 

4.3.8 TPC1 over-activation reduces A. pisum survival 

independently of JA 

To test the role of TPC1 activity and JA in non-host resistance, survival of the 

Arabidopsis-incompatible species A. pisum was assessed on the fou2 and aos lines. As 

with the compatible generalist M. persicae (Section 4.3.6) and the compatible 

specialist B. brassicae [430], over-activation of TPC1 by the fou2 mutation 

significantly reduced A. pisum performance, whilst abolition of JA production (aos) 

had no effect (Figure 4.15b). Thus, although JA plays a role in non-host resistance to 

microbial pathogens [714-717], the same may not be true for aphids. Further 

highlighting the independence of A. pisum performance and JA, aphid survival was 

also compromised on fou2/aos (Figure 4.15b), suggesting that the reduction in 

survival mediated by fou2 is JA-independent. Interestingly, this reduction in survival 
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is greater than the reduction observed on the fou2 single mutant. This implies that 

JA may be beneficial to the aphid when there is increased ion flux through TPC1. 

In summary, over-activation of TPC1 increases Arabidopsis resistance against 

this aphid species - another gain-of-function role for the fou2 mutation. Altered ion 

flux through TPC1 could be affecting various pathways related to non-host 

resistance, including Ca2+ [718], ROS [719-721], MAPKs [722], and SA [721, 723, 724] 

and ET [725], all of which have an effect on defence. Dissection of the mechanism by 

which fou2 mediates non-host resistance will involve specific analysis of these 

pathways in response to A. pisum on the fou2 and fou2/aos lines. 

4.3.9 GLR3.3 and GLR3.6 mediate extracellular Ca2+ release 

during aphid feeding 

An aphid-induced Ca2+ burst is still detectable in the tpc1-2 mutant relative to 

untreated control leaves (Figure 4.3b), which implies that an additional mechanism 

of Ca2+ release is involved. Extracellular Ca2+ represents a large pool of Ca2+ in plants, 

with release into the cytosol mediated by CNGCs and GLRs [1, 2]. Since GLR3.3 and 

GLR3.6 have been implicated in the response to herbivory [103, 541], their role in 

plant-aphid interactions was addressed. Abolishing transcription of both GLRs in the 

35S::GCAMP3 x glr3.3/glr3.6 line abolished the aphid-induced Ca2+ burst (Figure 

4.16b). This suggests that TPC1-mediated Ca2+ release in response to aphids lies 

downstream of extracellular Ca2+ influx, and is dependent on GLR3.3 and GLR3.6. 

This agrees with work showing TPC1 is activated by increased [Ca2+]cyt [112, 114, 115] 

and its suggested role in CICR [119, 121, 536, 537]. The data presented by the 

current study points to the GLRs as potential mediators of the extracellular Ca2+ 

influx during this process. Both GLR3.3 and GLR3.6 are good candidates for having a 

role in CICR, as like TPC1 they mediate systemic signalling in response to wounding 

[103, 104] and the PM channels involved in CICR still unknown. 

An influx of Ca2+ from the extracellular space occurs during plant-pathogen 

interactions [371, 373] that can blocked by PM-channel inhibitors [17, 54, 372]. Ren 

et al. [584] measured net Ca2+ flux in the extracellular space of N. tabacum leaf disks 

after M. persicae feeding using Ca2+-selective microelectrodes. They found that there 

was a net Ca2+ influx into cells pre-treated with aphids verses non-treated leaf disks, 

agreeing with the finding of the present study that extracellular Ca2+ influx is 

involved in this interaction. 
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In addition to its role in wound-induced signalling, GLR3.3 also mediates DAMP 

perception [688], and it is therefore tempting to speculate that damage caused by 

aphid probing, including the release of glutamate, may activate a GLR-mediated Ca2+ 

burst. However, the loss of a feeding site Ca2+ burst distinguishable from untreated 

control leaves in the 35S::GCAMP3 x glr3.3/3.6 line mirrors the phenotype in the 

35S::GCAMP3 x bak1-5 line (Figure 3.13, Chapter 3). This implies that aphid 

perception and PTI activation by BAK1 also lies upstream of TPC1-mediated Ca2+ 

release. The loss of the Ca2+ signal in both the glr3.3/3.6 and bak1-5 mutants 

suggests that they do not function in independent pathways and that BAK1 might lie 

upstream of [Ca2+]cyt elevations and GLR activation. Thus, aphid-induced Ca2+ release 

is most likely stimulated by aphid HAMP perception. GLRs have been previously 

implicated in PAMP perception, with iGluR inhibitors attenuating flg22- elg18- and 

chitin-induced [Ca2+]cyt elevations [201]. Furthermore, it is possible that glutamate 

itself is released from cells in response to PAMPs or HAMPs. The fungal PAMP 

cryptogein induces an extracellular rise in glutamate that is driven by exocytosis, 

demonstrated through the use of the exocytosis inhibitors brefeldin A and 

cytochalasin [726]. Moreover, these inhibitors also block the [Ca2+]cyt elevation in 

response to the PAMP [726], suggesting that glutamate release from the cell is 

downstream of PAMP perception [92]. This might provide a mechanism by which 

BAK1-mediated aphid HAMP perception could stimulate GLR activation; however to 

the author’s knowledge no direct link between BAK1 and GLRs or glutamate has yet 

been established in the literature.  

4.3.10 GLR3.3/3.6 expression has no effect on plant defence 

responses or aphid fecundity 

ROS production (Figure 4.18a) and induction of FRK1 (Figure 4.19a), CYP81F2 

(Figure 4.19b) and PAD3 (Figure 4.19c) in response to aphid extract was unaltered in 

the glr3.3/3.6 mutant. Therefore the GLR-mediated Ca2+ burst to aphid feeding 

might not have an effect on downstream defence induction. Nevertheless, ROS 

production in response to M. persicae extract can be blocked by PM Ca2+ channel 

inhibitors [502], implying extracellular Ca2+ entry does play a role. These unidentified 

channels may also generate the BAK1/GLR/TPC1 independent Ca2+ signals that can be 

observed in some samples upon aphid feeding (Figure 3.14, Chapter 3, Figure 4.4, 

Figure 4.17). 
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GLR3.3 is involved in DAMP-elicited ROS production and transcription of 

RBOHD and the defence marker PR1 [688]. Whilst extracellular Ca2+ has been 

implicated in the plant response to fungal attack [372], cryptogein-elicited ROS 

production is not affected by iGluR antagonists that abolish cryptogein-elicited 

[Ca2+]cyt elevations [726]. Thus, GLR involvement in ROS production may be DAMP-

specific. Conversely, aphid extract, which contains HAMPs, but will not elicit DAMP 

production, induces BAK1-mediated ROS production (Figure 4.18a, [349]) and is 

therefore HAMP-specific. This agrees with the hypothesis that plant defence against 

aphids is based on HAMP not DAMP perception. This can only be demonstrated 

unequivocally once ROS production in response to live aphid feeding has been 

assessed in GLR and DAMP perception mutants. 

FRK1 induction in response to flg22, elf18 and chitin can be attenuated by 

iGluR antagonists [201], suggesting that GLRs might play a role in MAPK activation 

during anti-microbial defence. However, the specific GLRs involved were not 

identified, and the results of the present study indicate that GLR3.3 and GLR3.6 are 

not involved in aphid-induced MAPK activation. The successful induction of PAD3 and 

CYP81F2 in the glr3.3/glr3.6 mutant suggests that secondary metabolite production 

is not altered by the aphid-induced Ca2+ burst. Indeed, a sustained Ca2+ burst is 

required for phytoalexin production in response to pathogens [371], whilst the aphid-

induced Ca2+ burst appears to be more transient. The results of the present study 

also imply that intracellular Ca2+ release mediated by TPC1 plays a role in FRK1 and 

PAD3 induction (Figure 4.19a and 4.19c), but extracellular Ca2+ entry via through 

GLRs does not.  

In addition, M. persicae fecundity was unaltered on glr3.3/glr3.6 (Figure 

4.18b). The glr3.3 mutant is more susceptible to biotrophic pathogens than 

necrotrophic pathogens, and defence against biotrophs is believed to be mediated by 

SA [688]. Thus one might expect SA signalling and therefore M. persicae fecundity to 

be compromised in the glr3.3 mutant. However, as this is not the case these results 

further emphasise that the M. persicae-elicited GLR/TPC1-mediated Ca2+ burst 

characterised in this study does not affect aphid fitness. Again, this is not surprising 

given that Arabidopsis is a compatible host and suggests that plant susceptibility to 

M. persicae cannot be further increased by loss of the Ca2+ signal. 
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4.3.11 BAK1 is involved in phytoalexin production in response to 

aphids 

Analysis of the defence gene induction in the bak1-5 mutant also presented 

some interesting findings. Firstly, FRK1 induction after 1 h was not attenuated in this 

mutant, which suggests MAPK activation in response to M. persicae is independent of 

BAK1, whilst being modulated downstream in defence by TPC1 (Figure 4.19a). This is 

contrary to the observation that FRK1 induction is BAK1-dependent in response to a 

range of bacterial PAMPs [481]. However, it is in agreement with experiments 

showing that fungal and oomycete PAMPs induce FRK1 independently of BAK1 [481] 

and that caterpillar-induced MAPK activation in N. tabacum is also independent of 

BAK1 [362]. Interestingly, live M. persicae feeding induces a downregulation of FRK1 

after 5 h [365], suggesting that over time the initial induction of FRK1 is suppressed 

by compatible aphid species. This difference might be the result of using of live 

feeding as opposed to aphid extract. Indeed, B. brassicae extract induces CYP81F2 

expression [349], whilst infestation with live B. brassicae actually reduces 

glucosinolate levels in leaves [304]. 

PAD3 and CYP81F2 induction was attenuated on the bak1-5 mutant (Figure 

4.19b and 4.19c). This is contrary to the previous observation that PAD3 induction in 

response to M. persicae extract is unaltered in the bak1-5 mutant [349, 502]. 

However, in the current study PAD3 expression in response to aphid extract in the 

bak1-5 mutant was still 30-fold higher relative to the mock-treated controls (Figure 

4.19c), and therefore there is clearly still some level of PAD3 induction occurring. 

However, these findings do suggest a role for the BAK1 pathway in phytoalexin 

production in response to aphids. In agreement with this, glucosinolate production as 

a result of nematode feeding is BAK1-dependent [727], with use of the bak1-5 

mutant in both that study and the current one demonstrating that this phenotype is 

not related to brassinosteroid regulation of glucosinolates [728]. Furthermore, the 

wildtype level of CYP81F2 induction in the tpc1-2 and glr3.3/glr3.6 mutants (Figure 

4.19b) suggests that the BAK1-mediated regulation of glucosinolates is independent 

of Ca2+ signalling. 

The difference in the dependency of Ca2+ release and defence gene induction 

on the GLRs, TPC1 and BAK1 could also be a result of the different systems used to 

study them. The Ca2+ bursts were characterised in response to live aphid feeding, 

whilst ROS and defence gene induction was assessed in relation to aphid extract 
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application. Thus, the two were addressing slightly different questions. It will be 

interesting to see how live aphid feeding modulates defence in the mutants 

characterised in this study. 
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Chapter 5: Investigating the role of 

CIPKs in plant-aphid interactions 
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 Introduction 5.1

5.1.1 CIPKs act downstream of Ca2+ release 

Downstream of Ca2+ release, several different families of proteins are 

responsible for sensing the rise in [Ca2+]cyt and translating it into a physiologically-

relevant signal. Amongst these are the CIPKs (reviewed in [167]). In order to 

investigate whether Ca2+ acts as a signal in plant-aphid interactions, an RNA-seq 

screen conducted in the Hogenhout lab (JIC) to identify aphid-responsive genes 

implicated in Ca2+ signalling. Many differentially regulated transcripts were detected 

upon infestation with aphids, and this included CIPK3. There are five splice variants 

of CIPK3 (Figure 5.1) and CIPK3.2 was of particular interest because expression was 

regulated in opposite directions depending on the species of aphid feeding on the 

plant. 

CIPKs are a group of serine/threonine protein kinases that specifically 

interact with the CBLs through the CIPK NAF domain [159] (Figure 5.1). An 

interaction between the NAF domain and the kinase activation domain render CIPKs 

auto-inhibitory, with phosphorylation and/or CBL binding required to relieve this 

[160]. CBLs have no inherent activity of their own [136, 155, 167]. As a result, CBLs 

and CIPKs work as partners, with CBLs acting as the Ca2+-sensing half of the 

partnership [156] and the CIPK transducing this signal through phosphorylation of 

target proteins [157, 158]. CBLs and CIPKs are inherently promiscuous and can act 

together in a variety of partnerships, giving rise to a wide range of responses [729] 

and functional redundancy [164-166]. Currently, CIPK3 has been demonstrated to 

interact physically with CBL2, CBL3 and CBL9 [165, 166, 176].  

5.1.2 CIPK3 functions in the ABA-mediated plant response to 

stress 

The function of CIPK3 has only been studied by a handful of groups. The first 

reported role of CIPK3 was in response to abiotic stress (including cold, drought and 

salt) as well as wounding, which result in accumulation of the CIPK3 transcript [175]. 

Furthermore, seedlings of the Arabidopsis mutant cipk3-1, which has abolished CIPK3 

expression, exhibit reduced germination under osmotic stress, and showed reduced 
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expression of the abiotic stress markers KINASE 1 (KIN1), KIN2 and RESPONSIVE TO 

DESICCATION 29A (RD29A) [175, 176].  

There is considerable evidence that CIPK3 acts in the ABA pathway. Seedlings 

of cipk3-1 mutants are hypersensitive to high levels of ABA, a plant hormone critical 

for many plant stress responses. The ABA synthesis inhibitor norflurazon can rescue 

the cipk3-1 osmotic stress phenotype, demonstrating that this phenotype is ABA-

dependent [175]. Furthermore, expression of ABA REPRESSOR 1 (ABR1) is significantly 

reduced in cipk3-1 mutants [730] and there appears to be a direct interaction 

between CIPK3 and ABF2 [731], a protein involved in the activation of ABA-inducible 

genes [732]. The ABA pathway is not only common to abiotic stresses, but also may 

play a role during wounding [172, 173] and pathogen defence [432, 439, 440] . Thus, 

like Ca2+, ABA acts a common signalling molecule connecting a range of plant stress 

responses.  

In ABA-induced stomatal closure, there are Ca2+-independent components 

mediated by OPEN STOMATA 1 (OST1) and a Ca2+-dependent pathway mediated by 

CDPKs including Ca2+-DEPENDENT PROTEIN KINASE 6 (CPK6) (Figure 5.1) [733]. 

Furthermore, ABA stimulates [Ca2+]cyt elevations in guard cells [47, 48, 734-738], 

thought to be mediated through a priming of Ca2+ channel and decoders [169] . As a 

result, there is a close association between the ABA and Ca2+ signalling pathways. 

The cipk3-1 phenotype implies that CIPK3 is a negative regulator of ABA 

accumulation (Figure 5.2), suggesting CIPK3 may act as another protein involved in 

crosstalk between ABA and Ca2+. However, the link between Ca2+ and ABA in non-

stomatal cells during biotic interactions is still unclear. 

CIPKs are characterised by several domains, including the NAF domain (see 

above) and a protein phosphatase interacting (PPI) domain, responsible for binding 

type 2c protein phosphatases (PP2Cs) [739] (Figure 5.1). PP2Cs have been suggested 

to act as inhibitors of CIPKs, with CBLs hypothesised to bind PP2Cs in order to 

inactivate them and rescue CIPK activity [161]. PP2Cs are both negative regulators of 

ABA [740, 741] and negatively regulated by ABA [742]. This places PP2Cs as additional 

components in the CIPK-CBL network, and provides another link between this 

network and ABA signalling (Figure 5.2). 
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CIPK3

Ca2+

Figure E2: The Arabidopsis abscisic acid (ABA) pathway has calcium-

independent and calcium-dependent components. ABA is perceived by

PYRABACTIN RESISTANCE 1/REGULATORY COMPONENTS OF ABA RECEPTORS

(PYR/RCARs) that inhibit TYPE 2C PROTEIN PHOSPHATASES (PP2Cs). This relieves

PP2C repression of OST1 and promotes ABA-mediated responses, independently of

Ca2+. Ca2+ activates CPK6 that in turn activates ABA-mediated responses. ABA-

mediated responses are partially governed by SLOW ANION CHANNEL-ASSOCIATED

1 (SLAC1), a channel required for stomatal closure. CIPK3 is also activated by Ca2+

and acts as a negative regulator of ABA accumulation. PP2Cs are hypothesised to

inhibit CPK6 and CIPK3, but there is no direct experimental evidence for this

(represented by a ?). Adapted from Laanemets et al., (2013) [#].
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Figure E1: CIPK3 domains and gene models. Exons (solid boxes) and introns

(lines) of the full length gene (CIPK3.3) are indicated. AD = kinase activation

domain. NAF = NAF domain, required for interaction with CALCINEURIN B-LIKE

PROTEINS (CBLs). PPI = protein phosphatase interaction domain, required for

interaction with TYPE 2C PROTEIN PHOSPHATASES (PP2Cs). An additional 18

nucleotides in CIPK3.2 (denoted by *) lead to a premature stop codon. Adapted

from Kim et al., 2003 [#].

*

Figure 5.1: CIPK3 domains and gene models. 

Exons (solid boxes) and introns (lines) of the full length gene (CIPK3.3) are indicated. AD = 

kinase activation domain. NAF = NAF domain, required for interaction with CBLs. PPI = 

protein phosphatase interaction domain, required for interaction with PP2Cs. An additional 18 

nucleotides in CIPK3.2 (denoted by *) lead to a premature stop codon. Adapted from Kim et 

al. [175]. 

Figure 5.2: The Arabidopsis ABA pathway has Ca2+-independent and Ca2+-dependent 

components. 

ABA is perceived by PYRABACTIN RESISTANCE 1/REGULATORY COMPONENTS OF ABA 

RECEPTORS (PYR/RCARs) that inhibit PP2Cs. This relieves PP2C repression of OST1 and 

promotes ABA-mediated responses, independently of Ca
2+

. In addition, Ca
2+

 activates CPK6 

that in turn activates ABA-mediated responses. In both cases the responses are partially 

governed by SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1). CIPK3 acts as a negative regulator 

of ABA accumulation. PP2Cs are hypothesised to inhibit CPK6 and CIPK3, but there is no direct 

experimental evidence for this (represented by a ?). Adapted from Laanemets et al. [733]. 
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5.1.3 ABA is implicated in the plant response to aphid attack 

ABA, along with several other phytohormones, is believed to act in the 

regulation of plant-aphid interactions. It is hypothesised that in a compatible 

interaction such as M. persicae and Arabidopsis, the aphid induces an increase in ABA 

and SA that antagonises JA, a hormone known to have a detrimental effect on aphids 

[307, 427, 428, 435, 743]. Supporting this, M. persicae infestation causes an 

accumulation of ABA [437], and M. persicae fecundity is lower on the ABA synthesis 

mutants ABA DEFICIENT 1 (aba1) [437] and aba2 [442]. Furthermore, M. persicae 

avoids aba1 and aba2 as hosts if given a choice [437]. 

Conversely, ABA has been suggested to promote JA production via the JA 

signalling transcription factor JASMONATE INSENSITIVE 1 (JIN1) [744]. In addition, 

abolishing transcription of the ABA signalling repressor and CIPK-interacting protein 

ABA INSENSITIVE 1 (ABI1) results in lower M. persicae fecundity, and disrupting the 

ABA signalling network through mutation of ABI4 increases M. persicae fecundity 

[442]. It is also worth noting that ABA is involved in production of ROS [745, 746] and 

the deposition of callose [747], both of which are part of the plant defence response 

to aphids [349]. 

Consequently, the role of ABA in plant-aphid interactions is far from clear. 

Indeed, ABA signalling-related genes are both activated and repressed by aphid 

infestation [442, 748]. Furthermore, it may be that ABA plays a different role in 

compatible vs incompatible plant-aphid interactions, with further exploration into 

what contributes to non-host resistance in plant-aphid interactions still required 

[749]. 

5.1.4 CIPK3 may act independently of ABA 

CIPK3 might also play a role in the response to stress independently of ABA. 

Indeed, in Arabidopsis there is an ABA-independent salt stress response mediated 

through DRE-BINDING PROTEIN 2A (DREB2A) [750-752]. Furthermore, RD29A, a cold 

stress marker gene known to be ABA-independent [753] exhibits altered expression in 

cipk3-1 [175]. It is therefore possible that CIPK3 acts as cross talk node between 

Ca2+, ABA-dependent, and ABA-independent pathways [175]. 
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5.1.5 CIPK3 is part of a four-member family of CIPKs 

Phylogenetically, CIPK3 lies within clade I of the CIPK family, along with 

CIPK9, CIPK23 and CIPK26 (Figure 5.3), which together act in the regulation of Mg2+ 

sequestration (Figure 1.4, Chapter 1) [165, 166]. These genes act redundantly in this 

response, as only in double, triple and quadruple mutants can a phenotype be 

observed [165, 166]. Additionally, all four proteins interact with CBL2 and CBL3, 

which recruits them to the tonoplast membrane [165]. As a result, the role of CIPK3 

may be closely associated with that of CIPK9, CIPK23 and CIPK26.  

Individually, these clade I CIPKs are involved in a multitude of plant 

processes.  CIPK9 and CIPK23 have been implicated in potassium homeostasis and 

drought tolerance [183, 187, 754]. CIPK23 is also thought to act in nitrogen sensing 

[189]. CIPK26 has been implicated in ABA signalling through interactions with ABI1, 

ABI2 and ABI5 [166, 755] as well as in ROS production [691, 692]. The interplay and 

inter-dependence between CIPKs in these processes is still being unravelled. 

  

Figure E3: Phylogenetic grouping of the are 26 CIPKs in Arabidopsis based on

amino acid sequence. Neighbour-joining tree was built using the MEGA6 toolkit.

Bootstrap values of 1,000 replicates are shown on each branch point of the tree.

Taken from Tang et al., (2015) [#].

Figure 5.3: Phylogenetic grouping of the 26 CIPKs in Arabidopsis based on amino acid 

sequence. 

CIPK3, 9, 23 and 26 form a monophyletic CIPK group named clade I. Taken from Tang et al. 

[165]. 
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5.1.6 Aims of this chapter 

This chapter will outline work investigating the downstream components of 

Ca2+ signalling in plant-aphid interactions, specifically the role of CIPK3 and related 

genes CIPK9, CIPK23 and CIPK26. This investigation was conducted using a 

combination of aphid performance and plant physiological assays. The aim was to 

complement the work that characterised an aphid-induced Ca2+ burst in Arabidopsis 

(Chapters 3 and 4) by investigating the biological relevance of Ca2+ decoding 

mechanisms in defence against aphids. 

5.1.7 Materials and methods 

The methods used in his chapter are detailed in Chapter 2. Information on the 

RNAseq can be found in Section 2.11, gene synthesis and cloning in Section 2.6, aphid 

performance assays (including fecundity, survival, choice tests) in Section 2.9, and 

Arabidopsis ROS and germination assays in Section 2.10. 
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 Results 5.2

5.2.1 CIPK3.2 is differentially expressed in response to feeding by 

different aphid species 

RNA-seq was conducted on aphid-infested Arabidopsis leaves (accession: Col-

0) in order to identify genes that were differentially regulated upon aphid attack. 

These leaves were not detached from the plant, as in Chapters 3 & 4, so as to avoid 

confounding factors associated with wounding. Two species of aphid were used, A. 

pisum and M. persicae. This screen identified several aphid-responsive genes that are 

involved in Ca2+ signalling. After treatment with A. pisum, expression of various 

putative cation-permeable channels was altered 48 h post-infestation. These 

included CNGCs and GLRs, the majority of which were significantly upregulated in 

response to A. pisum (Table 5.1). Several downstream components of the Ca2+ 

network were also revealed to be responsive to A. pisum infestation, including CIPKs, 

CDPKs and CaM-related proteins (Table 5.1). Conversely, M. persicae infestation 

results in differential expression of far fewer genes, however the proportion of those 

related to Ca2+ signalling was similar to A. pisum (Figure 5.4). Only one channel, 

CNGC12, and one downstream component of the Ca2+ signal, CIPK3, were 

differentially expressed in response to M. persicae (Table 5.1).  

CIPK3 was of particular interest because out of the 33,603 genes analysed, 

CIPK3 splice variant 2 (CIPK3.2) was the only gene that showed an opposite 

expression pattern in response to the two aphid species. Upon application of A. 

pisum, CIPK3.2 was significantly downregulated, as was CIPK3.3. Conversely, 

treatment with M. persicae resulted in a significant upregulation of CIPK3.2 (Figure 

5.5). CIPK3.2 differs from the full-length gene (CIPK3.3) as a result of an additional 

18 nucleotides in exon 11, resulting in a frame shift that creates a premature stop 

codon. This results in CIPK3.2 having a truncated C-terminal region relative to 

CIPK3.3 (Figure 5.1).  
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Table 5.1: Differential expression of Ca2+ signalling-related transcripts in response to infestation with two species of aphid (M. persicae and A. pisum) 

for 48 h. 

a

 Arabidopsis gene identification number. 
b

 Expression ratios were calculated in comparison to uninfested plants (empty cages). Numbers reported represent 

genes that were significantly differentially expressed (two-fold change, padj<0.05). ns = non-significant. 
c

 Database annotation of the protein product as 

listed on The Arabidopsis Information Resource (TAIR). Experiment conceived and conducted by Sam Mugford (Hogenhout Lab, JIC). Table compiled by T.V 

. 

AGI
a Expression ratio relative to 

control plant
b 

TAIR annotation
c 

 A. pisum M. persicae 

AT5G15410.1 0.42 ns DND1, ATCNGC2, CNGC2 | Cyclic nucleotide-regulated ion channel family protein 
AT2G46430.2 1.71 ns ATCNGC3, CNGC3, CNGC3.C | cyclic nucleotide gated channel 3 
AT2G46450.2 2.71 ns CNGC12 | cyclic nucleotide-gated channel 12  
AT2G46450.3 ns 0.40 CNGC12 | cyclic nucleotide-gated channel 12 

    AT1G05200.2 2.03 ns ATGLR3.4, GLR3.4, GLUR3 | glutamate receptor 3.4 
AT2G32390.1 5.75 ns ATGLR3.5, GLR3.5, GLR6 | glutamate receptor  3.5 
AT4G35290.2 2.73 ns GLUR2, GLR3.2, ATGLR3.2, ATGLUR2 | glutamate receptor 2 

    AT5G57110.1 0.23 ns ACA8, AT-ACA8 | autoinhibited Ca2+ -ATPase, isoform 8  

    AT2G26980.2 0.14 5.69 CIPK3 | CBL-interacting protein kinase 3 
AT2G26980.3 0.14 ns CIPK3 | CBL-interacting protein kinase 3 
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Table 5.1 (cont.)  

AGI
a Expression ratio relative to 

control plant
b 

TAIR annotation
c 

 A. pisum M. persicae 

AT3G23000.1 2.40 ns CIPK7, SnRK3.10, PKS7, ATSRPK1, ATSR2 | CBL-interacting protein kinase 7 
AT5G45820.1 3.21 ns CIPK20, SnRK3.6, PKS18 | CBL-interacting protein kinase 20 
AT4G14580.1 0.25 ns CIPK4, SnRK3.3 | CBL-interacting protein kinase 4 
AT5G10930.1 14.0 ns CIPK5, SnRK3.24 | CBL-interacting protein kinase 5 
AT5G01810.1 0.14 ns CIPK15, ATPK10, PKS3, SNRK3.1, SIP2 | CBL-interacting protein kinase 15 

    AT5G04870.1 0.38 ns CPK1, ATCPK1 | Ca2+-dependent protein kinase 1 
AT2G17290.1 0.41 ns CPK6, ATCDPK3, ATCPK6 | Ca2+-dependent protein kinase family protein 6 
AT1G74740.1 0.47 ns CPK30, CDPK1A, ATCPK30 | Ca2+-dependent protein kinase 30 

    

AT2G41110.1 0.27 ns CAM2, ATCAL5 | calmodulin 2  
AT2G22300.2 0.49 ns CAMTA3, SR1 | signal responsive 1 
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M. persicae

Figure 5.4 (E4): Total genes differentially regulated upon infestation with

two species of aphid for 48 hours (M. persicae or A. pisum). Number of Ca2+

signalling-related genes differentially regulated is reported in square brackets as

a proportion of the total genes differentially regulated by each species. DEseq

was used to determine differential expression between controls and aphid-

treated samples, with a 5% false discovery rate (padj<0.05) and >two-fold

change (n=10). Experiment conceived and conducted by Sam Mugford

(Hogenhout Lab, JIC). Figure compiled by T.V.

2512,477

A. pisum

[0.007%] [0.006%]

39

Figure 5.4: Total genes differentially regulated upon infestation with two species of aphid 

(M. persicae or A. pisum) for 48 h. 

Number of Ca
2+

 signalling-related genes differentially regulated is reported in square brackets 

as a proportion of the total genes differentially regulated by each species. DEseq was used to 

determine differential expression between controls and aphid-treated samples, with a 5% 

false discovery rate (padj<0.05) and >two-fold change (n=10). Experiment conceived and 

conducted by Sam Mugford (Hogenhout Lab, JIC). Figure compiled by T.V. 
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Figure E5: Absolute gene expression of CIPK3 splice variants in response to 

treatment with M. persicae, A. pisum or an empty cage (control). Expression 

is represented as the log to the base 10 of the reads per kilobase of transcript 

per million mapped reads (RPKM), as detected by RNA-seq. DEseq was used to 

determine differential expression between controls and aphid treatments 

(asterisks), with a 5% false discovery rate (padj<0.05) and >two-fold change 

(n=10). Error bars show SEM. Experiment conceived and conducted by Sam 

Mugford (Hogenhout Lab, JIC). Figure compiled by T.V.

Figure 5.5: Absolute gene expression of CIPK3 splice variants in response to treatment 

with M. persicae, A. pisum or an empty clip cage (control). 

Expression is represented as the log to the base 10 of the reads per kilobase of transcript per 

million mapped reads (RPKM), as detected by RNA-seq. DEseq was used to determine 

differential expression between controls and aphid treatments (asterisks), with a 5% false 

discovery rate (padj<0.05) and >two-fold change (n=10). Error bars show SEM. Experiment 

conceived and conducted by Sam Mugford (Hogenhout Lab, JIC). Figure compiled by T.V. 
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5.2.2 Aphid performance and plant ROS production is not altered 

on cipk3-1  

In order to determine the biological relevance of altered CIPK3 expression, 

CIPK3(.2) expression was assessed in relation to beneficial or detrimental effects on 

either aphid species.  For this, the cipk3-1 null mutant [175, 176] was used in aphid 

performance assays. In addition, the cipk3-1 mutant was complemented with a full-

length genomic version of CIPK3 (Figure 5.6a). However, M. persicae fecundity was 

not altered on these lines (Figure 5.6b). In addition, the cipk3-1 mutant was 

complemented with the coding sequence of CIPK3.2 (Figure 5.7a), in order to 

produce plants expressing only this splice variant. Again, M. persicae fecundity was 

not altered on these lines (Figure 5.7b).  

To examine more subtle effects on fecundity, the trans-generational 

fecundity of M. persicae was analysed over a four-week period [560]. Again, no 

difference on the cipk3-1 mutant was observed (Figure 5.8a). In addition, no host 

preference was found for cipk3-1 over the wildtype (Figure 5.8b). To assess whether 

CIPK3 expression had an effect on downstream defences elicited by M. persicae, ROS 

production in response to aphid extract was assessed on the mutant. No difference in 

the aphid extract-elicited burst could be detected (Figure 5.8c). 

As infestation with A. pisum resulted in significant decreases in CIPK3.2 and 

CIPK3.3 expression (Figure 5.5), the performance of this species on cipk3-1 was also 

investigated. No difference in A. pisum survival was found between cipk3-1 and 

wildtype (Figure 5.8d). 
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Figure E6: M. persicae fecundity on cipk3-1 and cipk3-1 complementation lines. A)

cipk3-1 complemented with a genomic copy of CIPK3. ACTIN2 expression was used as a

control. Primers: ACTIN2-RT and gCIPK3_Pand (Table 2.4). B) Myzus persicae fecundity

over 14 days on cipk3-1 and complemented lines. L= line. Letters indicate no significant

different between genotypes (Student’s t-test within GLM at p<0.05). Error bars show SEM

from 5 independent experiments (n=4-6 per experiment).
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Figure 5.6: M. persicae fecundity is not altered on cipk3-1 and cipk3-1 complementation 

lines. 

A) cipk3-1 complemented with a genomic copy of CIPK3 expressed under its native promoter. 

ACTIN2 expression was used as a control. Primers: ACTIN2-RT and gCIPK3_Pand (Table 2.4). B) 

M. persicae fecundity over 14 days on cipk3-1 and complemented lines. L= line. Letters 

indicate no significant different between genotypes (Student’s t-test within GLM at p<0.05). 

Error bars show SEM of 24 biological replicates from 4 independent experiments. 

 



188 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACTIN2

CIPK3
W

s-
0

ci
p
k
3
-1

/
C
IP

K
3
.2

L
1

ci
p
k
3
-1

/
C
IP

K
3
.2

L
2

ci
p
k
3
-1

/
C
IP

K
3
.2

L
3

N
e
g
a
ti

v
e
 c

o
n
tr

o
l

ci
p
k
3
-1

ci
p
k
3
-1

/
G

F
P

A)

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

N
y
m

p
h
s 

p
e
r 

a
d
u
lt

 

ci
p
k
3
-1

/
C
IP

K
3
.2

L
1

ci
p
k
3
-1

/
C
IP

K
3
.2

L
2

ci
p
k
3
-1

/
C
IP

K
3
.2

L
3

ci
p
k
3
-1

/
G

F
P

ci
p
k
3
-1

W
s-

0

B)

Figure 5.7 (E7): M. persicae fecundity on CIPK3.2 complementation lines. A) cipk3-1

complemented with the coding sequence of CIPK3.2. ACTIN2 expression was used as a

control. Primers: ACTIN2-RT and gCIPK3_Pand (Table 2.4). B) Myzus persicae fecundity

over 14 days on CIPK3.2 complemented lines. L= line. Letters indicate no significant

different between genotypes (Student’s t-test within GLM at p<0.05). Error bars show SEM

from 3 independent experiments (n=6 per experiment).
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Figure 5.7: M. persicae fecundity is not altered on CIPK3.2 complementation lines. 

A) cipk3-1 complemented with the coding sequence of CIPK3.2. ACTIN2 expression was used 

as a control. Primers: ACTIN2-RT and gCIPK3_Pand (Table 2.4). B) M. persicae fecundity over 

14 days on CIPK3.2 complemented lines. L= line. Letters indicate no significant different 

between genotypes (Student’s t-test within GLM at p<0.05). Error bars show SEM of 18 

biological replicates from 3 independent experiments. 



189 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.8: Aphid performance, host choice and plant ROS production are not altered on 

the cipk3-1 mutant. 

A) Trans-generational fecundity of M. persicae. Total aphid population per plant after 4 

weeks is displayed. Error bars show SEM of 24 biological replicates from 4 independent 

experiments. B) M. persicae host choice. The percentage of the total aphid population settled 

on each plant after a 24-hour choice period is displayed. Error bars show SEM of 24 biological 

replicates from 4 independent experiments. C) ROS production (RLU) over time in response to 

M. persicae extract. Error bars show SEM of 24 biological replicates from 3 independent 

experiments. D) A. pisum survival. Survival was averaged across the two days in which the 

control population (Ws-0) decreased below 50% survival. Error bars show SEM of 18 biological 

replicates from 3 independent experiments. Letters indicate no significant difference 

between genotypes (Student’s t-test within GLM at p<0.05).  
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Figure 5.8 (E8): Aphid performance , host choice and plant ROS production were  not 

altered on the cipk3-1 mutant. A) Trans-generational fecundity of M. persicae. Total aphid 
population per plant after 4 weeks is displayed. Error bars show SEM of 24 biological replicates from 4 
independent experiments. B) M. persicae host choice. The percentage of the total aphid population 
settled on each plant after a 24-hour choice period is displayed. Error bars show SEM of 24 biological 
replicates from 4 independent experiments. C) ROS production (RLU) over time in response to M. 
persicae extract. Error bars show SEM of 24 biological replicates from 3 independent experiments. D) 
A. pisum survival. Survival was averaged across the two days in which the control population (Ws-0) 
decreased below 50% survival. Error bars show SEM of 18 biological replicates from 3 independent 
experiments. Letters indicate no significant difference between genotypes (Student’s t-test within 
GLM at p<0.05). 
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5.2.3 Constitutive activation of CIPK3 had no effect on M. 

persicae fecundity 

In order to test whether CIPK3 activity had an effect on aphid performance, 

the cipk3-1 mutant was complemented with a constitutively-active version of the 

enzyme (CIPK3T183D). By mutating a Threonine residue (Thr183) to an Aspartate 

(Asp183) a 9-fold increase in kinase activity can be achieved [756]. The mutated 

version of CIPK3 was transformed into the cipk3-1 mutant by agro-infiltration (Figure 

5.9a). Out of the three independent CIPK3T183D lines generated, only cipk3-

1/CIPK3T183D line 3 showed a significant reduction in M. persicae fecundity (Figure 

5.9b). However, the cipk3-1/CIPK3 line 3 plants were severely stunted (Figure 5.9c) 

and this was not seen in the other two lines. 
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Figure 5.9 (E9): Constitutive activation of CIPK3 (CIPK3T183D ). A) RT-PCR of 

CIPK3T183D lines. L = line. ACTIN 2 was used as a control. Primers: ACTIN2-RT and 

gCIPK3_Pand (Table 2.4). B) Myzus persicae fecundity over 14 days on CIPK3T183D lines. 

Error bars show SEM of 18 biological replicates from 3 independent experiments. Letters 

indicate a significant difference between genotypes (Student’s t-test within GLM at 

p<0.05). C) cipk3-1/ CIPK3T183D L3 displays severe growth phenotype. L= line.
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Figure 5.9: Constitutive activation of CIPK3 (CIPK3T183D) did not have a consistent effect 

on M. persicae fecundity 

A) RT-PCR of CIPK3T183D lines. L = line. ACTIN 2 was used as a control. Primers: ACTIN2-RT 

and gCIPK3_Pand (Table 2.4). B) M. persicae fecundity over 14 days on CIPK3T183D lines. 

Error bars show SEM of 18 biological replicates from 3 independent experiments. Letters 

indicate a significant difference between genotypes (Student’s t-test within GLM at p<0.05). 

C) cipk3-1/ CIPK3T183D L3 displays a severe growth phenotype. L= line. 
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5.2.4 Aphid performance is not altered on an alternative CIPK3 

mutant, cipk3-103 

The established mutant cipk3-1 was identified in the Wassilewskija (Ws) 

Arabidopsis ecotype [175]. However, the transcriptomic screen presented in section 

5.2.1 was conducted with the Columbia (Col-0) ecotype. Thus, for consistency aphid 

performance was tested on a cipk3 null mutant in the Col-0 background. Several 

candidates were identified from the SALK and SAIL libraries, based on T-DNA 

insertions within CIPK3. These were named cipk3-101 (SAIL_449_B12), cipk3-102 

(SALK_064491), cipk3-103 (SAIL_409_A04) and cipk3-104 (SALK_137779.25.20.X) and 

the position of the insertion was identified through sequencing with Lbb1.3, SAIL LB2 

and CIPK3-specific primers (Table 2.3) (Figure 5.10a). 

In order to assess whether the candidate mutants lacked transcription of 

CIPK3, RT-PCR was conducted on plants homozygous for the insertions, using primers 

specific to different regions along the gene (Figure 5.10a). Of these, cipk3-103 and 

cipk3-104 lacked transcription around the insertion site but not at other locations, 

whilst cipk3-102 lacked all transcription downstream of the T-DNA insertion (Figure 

5.10b). cipk3-101 had no detectible alteration in CIPK3 transcription (Figure 5.10b). 

From this it was concluded that the cipk3-102, cipk3-103 and cipk3-104 mutants 

cannot produce a full-length transcript. 

These candidate mutants were assessed in a phenotypic assay, based on the 

reduced germination seen in cipk3-1 during osmotic stress [175, 176]. However, when 

grown on media containing 150 mM NaCl, none exhibited reduced germination as 

seen for cipk3-1 (Figure 5.11). Surprisingly, one candidate, cipk3-104, exhibited 

increased germination (Figure 5.11).  

Nevertheless, from the identified CIPK3 mutants, cipk3-103 was selected for 

screening aphid performance as this was the only candidate with a T-DNA insertion in 

an exon (Figure 5.10a). This mutant has been subsequently published by Tang et al. 

[165]. However, as with the cipk3-1 mutant, neither M. persicae fecundity (Figure 

5.12a) nor A. pisum survival (Figure 5.12b) was altered on cipk3-103.  

 

 

 

 

 

https://www.arabidopsis.org/servlets/TairObject?type=species_variant&id=382
javascript:showFeatureID(%20'1005380929',%20'polymorphism'%20)
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Figure E10: Identifying CIPK3 t-DNA insertion mutants. A) Scheme of the Arabidopsis

CIPK3 gene. Exons (solid boxes) and introns (lines) are indicated. The position of the

original Ws-0 insertion is shown (cipk3-1), along with the position of the Col-0 insertions

identified in this study. Coloured boxes indicate the position of the amplicons generated

by different primer pairs used to genotype the insertion mutants (red = 101/102-US, green

= 101/102-RT, blue = 103/104-RT and purple = 101/102-DS, details in Table 2.4). Adapted

from Kim et al., 2003. B) RT-PCR of CIPK3 insertion mutants using CIPK3-specific primers,

and TPC1 as a control gene (AtTPC1-F2 & R2, Table 2.4). Full gel provided in Appenedix??
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Figure 5.10: Identifying CIPK3 T-DNA insertion mutants in the Col-0 ecotype 

A) Scheme of the Arabidopsis CIPK3 gene. Exons (solid boxes) and introns (lines) are 

indicated. The position of the original Ws-0 insertion is shown (cipk3-1), along with the 

position of the Col-0 insertions identified through DNA sequencing using CIPK3-specific 

primers (Table 2.3). Coloured boxes indicate the position of the amplicons generated by 

different primer pairs used to genotype the insertion mutants (red = 101/102-US, green = 

101/102-RT, blue = 103/104-RT and purple = 101/102-DS, details in Table 2.4). Adapted from 

Kim et al [175]. B) RT-PCR of CIPK3 insertion mutants using the CIPK3-specific primers, and 

TPC1 as a control gene (AtTPC1-F2 & R2, Table 2.4). Full gel provided in Figure E1 (Appendix 

E). 
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Figure 5.11 (E11): Germination success of 3-day old Arabidopsis CIPK3 candidate

mutants on salt-stressed media. Number of germinated seedlings on ¼ strength MS medium

(control) and ¼ MS medium supplemented with 150mM NaCl. Error bars show SEM of 9

biological replicates from 3 independent experiments. Letters indicate significant

differences (Student’s t-probabilities calculated within GLM at p<0.05). Experiment

conceived and designed by T.V and conducted by J.C. under supervision of T.V.
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Figure 5.11: Germination success of 3-day old Arabidopsis CIPK3 candidate mutants on 

salt-stressed media. 

Number of germinated seedlings on ¼ strength MS medium (control) and ¼ strength MS 

medium supplemented with 150 mM NaCl. Error bars show SEM of 9 biological replicates from 

3 independent experiments. Letters indicate significant differences (Student’s t-probabilities 

calculated within GLM at p<0.05). Experiment conceived and designed by T.V and conducted 

by J.C. under supervision of T.V. 
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5.2.5 Abolishing transcription of a combination of clade I CIPKs 

negatively affects aphid fecundity  

The possible roles of other genes in the CIPK3 pathway on plant-aphid 

interactions was also investigated. M. persicae fecundity was assessed on null 

mutants of ABF2 and PP2CA, and was not significantly different to wildtype in either 

case (Figure 5.13a). Furthermore, in order to determine whether CIPK3 acts 

redundantly with other closely-related CIPKs, M. persicae fecundity on Arabidopsis 

mutants lacking a combination of CIPK3, CIPK9, CIPK23 and CIPK26 was assessed. 

Mutation of CIPK26 in addition to CIPK3 had no effect on aphid fecundity. However, 

on plants lacking both CIPK9 and CIPK23 transcription, M. persicae fecundity was 

significantly reduced. In the quadruple mutant cipk3/9/23/26 this negative effect on 

fecundity was even stronger (Figure 5.13b).  

 

Figure 3.12 (E12): Aphid performance is not altered on cipk3-103. A)

Myzus persicae fecundity over 14 days. Error bars show SEM from 3

independent experiments (n=4-6 per experiment). B) Acyrthosiphon pisum

survival. Survival is averaged over the two days in which the control

population (Ws-0) decreased below 50% survival. Letters indicate no

significant differences between genotypes (Student’s t-test within GLM at

p<0.05). Error bars show SEM from 3 independent experiments (n=6 per

experiment).
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Figure 5.12: Aphid performance is not altered on cipk3-103. 

A) M. persicae fecundity over 14 days. Error bars show SEM of 18 biological replicates from 3 

independent experiments. B) A. pisum survival. Survival is averaged over the two days in 

which the control population (Ws-0) decreased below 50% survival. Letters indicate no 

significant differences between genotypes (Student’s t-test within GLM at p<0.05). Error bars 

show SEM of 18 biological replicates from 3 independent experiments. 
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Figure 5.13 (E13): M. persicae fecundity on CIPK3-related mutants. Fecundity assessed

after a 14-day period. A) Putative genes downstream of CIPK3. Error bars show SEM of 24

biological replicates from 4 independent experiments. Experiment conceived and designed

by T.V conducted by T.V. and M.S. B) Other Clade I CIPKs. Letters indicate a significant

difference between genotypes (Student’s t-test within GLM at p<0.05). Error bars show SEM

of 18 biological replicates from 3 independent experiments.
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Figure 5.13: M. persicae fecundity on CIPK3-related mutants. 

Fecundity assessed after a 14-day period. A) Putative genes downstream of CIPK3. Error bars 

show SEM of 24 biological replicates from 4 independent experiments. Experiment conceived 

and designed by T.V conducted by T.V. and M.S. B) Other Clade I CIPKs. Letters indicate a 

significant difference between genotypes (Student’s t-test within GLM at p<0.05). Error bars 

show SEM of 19 biological replicates from 3 independent experiments. 
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5.2.6 Abolishing transcription of all four clade I CIPKs significantly 

increases ROS production in response to M. persicae 

As a result of the altered aphid fecundity on the clade I CIPK mutants, the 

plant defence response to aphids was investigated. M. persicae extract-elicited ROS 

was significantly reduced on bak1-5, as previously demonstrated (Chapter 3, Figure 

C16b). However, it was not altered on cipk3-103 (Figure 5.14c), agreeing with the 

results obtained with cipk3-1 (Section 5.2.2). ROS was also unaltered on the cipk3/26 

(Figure 5.14d) or cipk9/23 (Figure 5.14e) mutants. However, on the cipk3/9/23/26 

quadruple mutant, aphid extract elicited a significantly larger ROS burst relative to 

wildtype (Figure 5.14f). 
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Figure 5.14: ROS production in response to M. persicae extract in clade I CIPK3 mutants. 

A) ROS production measured as relative light units (RLU) over time in all treatments. B) ROS 

production in cipk3-103 compared to Col-0. C) ROS production in cipk3/26 compared to Col-0. 

D) ROS production in cipk9/23 compared to Col-0. E) ROS production in cipk3/9/23/26 

compared to Col-0. Bars represent SEM of 24 biological replicates from 3 independent 

experiments. Shading represents a significant difference between genotypes (Student’s t-test 

within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by M.A. 

under supervision of T.V. 
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 Discussion 5.3

5.3.1 A. pisum infestation alters the expression of several Ca2+-

related genes in Arabidopsis 

Aphid feeding alters the expression of a variety of plant genes, including 

several related to Ca2+ signalling (Table 5.1). Feeding by A. pisum, a legume 

specialist incompatible with Arabidopsis [221], resulted in an expression change for 

several Ca2+-related genes. This included CNGC2, a cAMP-activated channel [757] 

capable of conducting various ions including Ca2+ [65, 67]. The CNGC2 mutant dnd1 

exhibits constitutive defence activation, including constitutively high SA production 

and expression of pathogenesis-related genes [377]. Hence, CNGC2 may act as 

negative regulator of defence, with the downregulation in response to A. pisum 

suggesting it may also act in defence against aphids. Conversely, CNGC3 and CNGC12 

were upregulated by A. pisum infestation. A specific role for CNGC3 in defence has 

not been established [59], however CNGC12 acts as a positive regulator of defence 

against the mould Hyaloperonospora parasitica [374]. Three GLRs were also 

upregulated by A. pisum, including GLR3.5, a gene recently linked to systemic wound 

signalling [104].    

The expression of various downstream Ca2+ sensors was also altered upon A. 

pisum infestation. This included downregulation of CDPK1, a positive regulator of SA 

[404] and CDPK6, which has been linked to defence through its modulation of ABA 

(Figure 5.2) [758], MeJA [684] and ET [444]. In addition, A. pisum feeding resulted in 

downregulation of CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3) 

which mediates the plant general stress response  through modulation of SA/JA 

crosstalk [381, 759, 760], including during insect attack [382]. Together, these 

results highlight various links between Ca2+ signalling and the plant response to 

infestation with A. pisum. 
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5.3.2 CIPK3 is one of the few Arabidopsis Ca2+ signalling genes 

responsive to M. persicae 

In response to M. persicae, far fewer genes were differentially regulated 

compared to A. pisum (Figure 5.4). This agrees with previous work showing that M. 

persicae effects a very small number of Arabidopsis transcripts [464, 761], and 

suggests that during this interaction M. persicae avoids or actively suppresses 

detection. Despite this, Ca2+ signalling-related genes are often over-represented in 

response to phloem-feeding insects, however most of these studies investigated 

significantly longer periods of infestation than the 48 h used in the present study 

[583]. 

Differentially-regulated transcripts after 48 h of M. persicae infestation 

included CNGC12 and CIPK3, which both responded in an opposite direction to when 

plants were infested with A. pisum (Table 5.1). This was especially interesting given 

the opposing compatibilities of these species on Arabidopsis. Consequently, it may be 

that these genes are related to the response of a plant to hosts vs non-hosts. Since 

this chapter is focused on investigating the downstream components of the Ca2+ burst 

characterised in Chapters 3 and 4, CIPK3 was explored further. In addition, other 

groups have also observed that feeding by M. persicae results in an upregulation of 

CIPK3 [308], as does infiltration with M. persicae saliva [464]. Moreover, the 

specialist B. brassicae also induces an upregulation of the CIPK3 transcript [304]. 

5.3.3 CIPK3 expression alone is not sufficient to alter the plant 

defence response to aphids 

Aphids, including both M. persicae and A. pisum, will probe non-host plants 

before determining compatibility [762-764]. Therefore, the plant responses that 

mediate this compatibility are most likely responsive to aphid probing and occur 

during or after the Ca2+ burst characterised in Chapters 3 and 4. As probing by the 

incompatible species A. pisum resulted in downregulation of CIPK3.2 and CIPK3.3 

(Figure 5.5), this might represent part of the basal plant defence response. 

Conversely, the upregulation of CIPK3.2 during M. persicae feeding might represent a 

direct manipulation of the plant by the aphid to allow sucessful colonisation. CIPK3 

appears to be negative regulator of ABA [175] (Figure 5.2) and although evidence for 

ABA’s role in aphid defence is contradictory, it clearly plays a role in these 
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interactions [442, 748]. Consequently, differential regulation of CIPK3.2 and CIPK3.3 

might be a result of the modulation of ABA signalling during aphid feeding.  

The fitness of M. persicae on cipk3-1 was assessed in a fecundity assay, with 

no effect on knocking out CIPK3 observed (Figure 5.6). However, as a successful 

generalist adapted to Arabidopsis, the effect of abolishing expression of a single gene 

on M. persicae fecundity might be relatively subtle. Indeed, rearing M. persicae on 

mutant lines over multiple generations can produce fecundity phenotypes not seen 

with single generations, for example whilst aphid fecundity was not altered over a 2-

week period on the cyp81f2 mutant [306], it was significantly reduced on cyp81f2 

mutants after 6.5 weeks [305]. However, the trans-generational fecundity of M. 

persicae was not altered on the cipk3-1 mutant (Figure 5.8a), although this assay was 

only carried out over 4 weeks. Furthermore, plant defence status can also modulate 

host choice [259], but CIPK3 had no effect on this behaviour (Figure 5.8b). 

The production of ROS is a key part of the plant defence response to M. 

persicae [349, 413] and this production is closely linked to Ca2+ signals [121, 414, 

415]. Based on this evidence, ROS production in the cipk3-1 mutant in response to 

aphids was assessed. Application of aphid extract to Arabidopsis leaf disks results in 

the gradual production of ROS over a period of hours, peaking around 150-250 

minutes post-application [349], and this finding was repeated in the present work 

(Figure 5.8c). However, ROS production in response to aphid extract was not altered 

in the cipk3-1 mutant (Figure 5.8c), in accord with the unaltered aphid performance 

on this mutant. 

As a compatible host of M. persicae, scope for further reductions in plant 

defence may be restricted, given that host defences are likely to already be 

suppressed. Indeed, this was implied by the small number of genes differentially 

regulated by M. persicae (Figure 5.4). As such, non-host resistance was assessed 

using A. pisum survival [555]. However, the cipk3-1 mutant had no effect on this 

species either (Figure 5.8d). 

For completeness, an additional CIPK3 mutant was identified, cipk3-103, in 

the Col-0 background as was used for the RNA-seq experiment. The cipk3-103 mutant 

lacked wildtype transcription of CIPK3 (Figure 5.10), but again this had no effect on 

M. persicae or A. pisum performance (Figure 5.12), or the plant ROS response to 

aphid extract (Figure 5.14c). Interestingly, this mutant did not show the established 

osmotic stress hypersensitivity found with cipk3-1 (Figure 5.11) [175]. The cipk3-103 

insertion is at the C-terminal end of the protein (Figure 5.10a), after the NAF and PPI 
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domains (Figure 5.1). In addition, upstream transcription of CIPK3 still occurred in 

the cipk3-103 mutant (Figure 5.10b) and therefore in the remote possibility that a 

functional protein was produced [765], it would hypothetically contain all the key 

CIPK functional domains. Alternatively, it may be that a wildtype CIPK3 protein was 

still produced in cipk3-103, or that salt tolerance mediated by CIPK3 is ecotype-

dependent.  

Unexpectedly, cipk3-104 showed increased tolerance to salt (Figure 5.11). 

The cipk3-104 t-DNA insertion is within the PPI domain, and thus if a functional 

protein was produced it may be disrupted specifically in its interactions with protein 

phosphatases [161, 739] which may affect the plants response to abiotic stress [740-

742]. However, as with the cipk3-103 the more likely situation is that there is an 

ecotype-specific effect occurring, or a background mutation present in the cipk3-104 

line. 

5.3.4 A truncated version of CIPK3, CIPK3.2, had no effect on 

aphid performance 

It was hypothesised that there may be functional relevance relating to the C-

terminal truncated product produced by CIPK3.2 (Figure 5.1). Although this 

truncation does not affect the PPI domain [739], alterations in the C-terminal end of 

CIPK6 result in altered interactions with PP2CA [161]. Thus, CIPK3.2 may encode a 

functionally distinct product compared to the full-length gene. In order to test if 

CIPK3.2 alone played a role in plant-aphid interactions, this CIPK3 variant was 

expressed in the absence of the other four (Figure 5.7a). However, this had no effect 

on M. persicae fecundity (Figure 5.7b). 

5.3.5 Constitutive activation of CIPK3 had no effect on aphid 

performance 

The possibility that the kinase activity of CIPK3 had an effect on plant-aphid 

interactions was also tested. Constitutive activation of protein kinases can be 

achieved by mutating conserved residues in the activation domain, as has been 

exploited previously with SOS2/CIPK24 [766-768] and CIPK3 [176, 756]. Constitutive 

activation of CIPK3 has been shown to rescue the ABA and osmotic hypersensitivity of 

cbl9 plants [176]. However, the ability of CIPK3T183D to alter or rescue the cipk3-1 
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phenotype was not tested. The constitutively-active version (CIPK3T183D) was 

transformed into the cipk3-1 mutant (Figure 5.9a), however CIPK3T183D had no 

consistent effect on M. persicae fecundity (Figure 5.9b). One line, cipk3-

1/CIPK3T183D line 3 did show reduced fecundity (Figure 5.9b), however this line also 

exhibited a severe growth impairment phenotype (Figure 5.9c). Interestingly, this 

type of phenotype is often a feature of constitutive defence activation as a result of 

trade-off between the growth and defence [769-771]. However, since this phenotype 

was only observed in one of the three lines, was concluded that it is CIPK3-

independent, most probably the result of a pleotropic effect(s) generated by the 

transgenic insertion.  

5.3.6 Altered CIPK3 expression might be irrelevant to plant-aphid 

interactions 

Taken together, the results gathered in this chapter appear to rule out a 

singular role for CIPK3 in plant-aphid interactions. The differential CIPK3 

transcriptional responses to the two aphid species relative to the empty clip cage 

control (Figure 5.5) suggests that this change in expression is being mediated 

specifically by aphid feeding, rather than as an artefact of the experimental design. 

This response might be a non-specific effect, not relevant to plant defence, 

generated by other changes in the plant upon aphid treatment. Alternatively, it 

might be that although CIPK3 has no direct effect on aphids, changes in CIPK3 

expression are the result of upstream events in the defence response against these 

insects. CIPK3 is wound-responsive [175] and thus might be induced by the damage 

caused by stylet penetration, especially if this damage produces a rise in [Ca2+]cyt 

[123]. Indeed, ABA is implicated in plant-aphid interactions [437, 442], and 

application of 100 µM ABA can induce CIPK3 expression [175]. However, based on the 

present work showing CIPK3 expression and activity have no effect on aphid 

performance or plant ROS production, it is not possible to differentiate between 

these hypotheses.  

Indeed, despite induction of CIPK3 during drought, no physiological effect of 

this stress can be seen adult cipk3-1 mutant plants [175]. It is also worthy of note 

that the established cipk3-1 seedling phenotype in the presence of ABA or salt was 

not observed in adult plants [176]. As a result, the role of CIPK3 in stress responses 

might be primarily during early development. 
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5.3.7 CIPK9 and CIPK23 have a significant effect on aphid 

performance that might be mediated by plant nutrient 

homeostasis 

CIPK3 might act redundantly in plant-aphid interactions, as occurs with Mg2+ 

stress [165, 166]. In order to assess this hypothesis, aphid performance on 

Arabidopsis mutants of additional genes related to the CIPK3 pathway was assessed. 

Neither ABF2 nor PP2CA expression appeared to have an effect on M. persicae 

performance (Figure 5.13a), ruling out a role for these ABA-signalling genes in 

successful defence against M. persicae. Loss of CIPK26 transcription had no effect on 

M. persicae fecundity (Figure 5.13b) or on aphid-induced ROS production (Figure 

5.14d), despite its role in the regulation of RBOHF [692]. However, a significant 

effect on M. persicae fecundity was observed on cipk9/23 and cipk3/9/23/26 plants 

(Figure 5.13b). This implies that CIPK9 and/or CIPK23 might play a direct role in 

plant defence against aphids, and that all four CIPKs might be acting with some 

redundancy in this response. Moreover, this is the first demonstration to the author’s 

knowledge of a role for Arabidopsis CIPKs in biotic stress, although CIPKs in other 

species have been linked to PTI against fungi [385] and ETI against P. syringae [772]. 

CIPK23 acts in nitrogen homeostasis in Arabidopsis, phosphorylating NITROGEN 

TRANSPORTER 1.1 (NRT1.1) during low nitrogen conditions to modulate nitrogen 

sensing and uptake [189]. Plant nitrogen is key to the nutritional content of the 

plant, and although few studies have explicitly investigated the role of nitrogen in 

plant-aphid interactions, it is clear that the nutritional quality of the host has an 

effect on insect performance [773-776] and more widely on plant defence [777]. 

Increased amounts of essential amino acids in the phloem results in a higher 

assimilation of such amino acids by M. persicae [778], and R. padi reproduction is 

decreased on H. vulgare grown in nitrogen-deficient soil [779]. It has therefore been 

speculated that plant nitrogen status is a contributing factor to aphid performance 

[780] In addition, CIPK23 has a role in K+ uptake in roots, and loss of this protein 

leads to ABA hypersensitivity and drought tolerant plants as a result of reduced 

transpiration [183]. Moreover, CBL1 and CBL9 are required for CIPK23 action, 

presumably by localising the protein to the PM [183], where it activates K+ 

TRANSPORTER 1 (AKT1) to enhance K+ uptake into the cell [163, 186]. 

The only reported singular role for CIPK9 so far is also in K+ homeostasis. 

However, there is conflicting evidence regarding this role, with the same cipk9 
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mutant showing both increased tolerance to low K+, as well as hypersensitivity to K+ 

[182, 754]. CIPK9 is recruited to the tonoplast by CBL3 [165], and cannot interact 

with AKT1 [754], implying it might act in a separate pathway. It might be that CIPK9 

is involved in vacuolar K+ sequestration, as it for Mg2+ [165, 166].  

Furthermore, ROS production in response to aphid extract was not altered on 

the cipk9/23 double mutant (Figure 5.14e). Taken together, these results suggest 

there might be a link between the potassium status of the plant and aphid 

performance, and that this may be independent of PTI. Most evidence so far points to 

potassium deficiency as being beneficial to aphids [781-784], potentially by 

increasing the plant nitrogen availability in the shoots [784, 785]. Although this 

hypothesis agrees with the reduced aphid fecundity on cipk9/23 (Figure 5.13b), 

without dissection of the individual roles played by CIPK9 and CIPK23 in plant 

resistance to aphids, it is impossible to attribute their individual roles in nitrogen or 

potassium homeostasis to this reduced fecundity.  

5.3.8 The clade I CIPKs act as a hub to negatively regulate plant 

defence 

M. persicae fecundity was reduced beyond that observed on cipk9/23 when 

feeding on the cipk3/9/23/26 mutant, implying that there may be additional 

redundancy in this system, as seen for Mg2+ homeostasis [165, 166]. Furthermore, 

aphid extract-induced ROS production was greater in this mutant (Figure 5.14f). ROS 

forms a key part of PTI against pathogens and aphids [331, 349, 360, 413] and the 

increased ROS production in the cipk3/9/23/26 mutant might be partially responsible 

for the enhanced aphid resistance of this mutant. CIPK26 has been implicated in ROS 

signalling through a direct interaction with RESPIRATORY BURST OXIDASE HOMOLOG F 

(RBOHF) [691, 692]. However, since aphid extract-induced ROS production was higher 

in the cipk3/9/23/26 mutant, and not significantly altered in the cipk3/26 mutant, 

positive regulation of RBOHF by CIPK26 does not appear to be occurring in this 

context. The role of CIPKs in biotic stress are unexplored in Arabidopsis. However, 

there is a precedent for negative regulation of ROS by CIPKs in wheat, where 

overexpression of CIPK29 reduces accumulation of H2O2 [786]. Conversely, 

heterologous expression of S. lycopersicum CIPK6 in N. benthamiana leaves results in 

the accumulation of ROS [772]. 
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Since the enhanced aphid resistance and increased ROS production is the 

result of abolishing all four CIPKs, it appears that these proteins act as a hub to 

negatively regulate defence. This agrees with observations of these CIPKs acting as a 

hub to regulate Mg2+ sequestration [165, 166] and that Ca2+ signalling can suppress 

defence as well as activate it [375]. However, necrotic lesions, reminiscent of HR, 

can be observed on cipk3/9/23/26 leaves [165, 166], suggesting a possible role for 

these CIPKs in ETI, as seen for CIPK6 in S. lycopersicum [772]. Loss of Ca2+-ATPases 

can result in similar HR lesions in Arabidopsis [787], implicating disrupted ion 

homeostasis in this phenotype. 

However, the author cannot exclude pleiotropic effects in the cipk3/9/23/26 

mutant from affecting aphid performance. The growth phenotype of this mutant 

[165, 166] may be a result of such effects, or due to enhanced defence activation 

[769-771]. Reduced early growth can impact aphid populations [236], however a 

dwarfing phenotype per se does not affect M. persicae fecundity [306]. The ABA 

sensitivity of this mutant is similar to that of the wild type [166], implying that 

altered ABA signalling is probably not the cause of the cipk9/23 and cipk3/9/23/26 

phenotypes. 

Nevertheless, it is clear that the clade I CIPKs modulate a range of plant 

responses. It is impossible to dissect their exact role in plant-aphid interactions 

without first identifying the individual role of each of these genes and how they may 

combine to effect aphid performance. To that end, the suite of double and triple 

mutants presented by Mogami et al. [166] represent a highly useful tool for further 

investigations. In this chapter evidence has been presented that rules out a unilateral 

role for CIPK3 in plant-aphid interactions. However, it has also been demonstrated 

that CIPK3, in combination with its close homologues CIPK9, CIPK23 and CIPK26, may 

play a role in mediating aphid success on plants. Consequently, these CIPKs might act 

as vital components, downstream of the Ca2+ signal, in the plant response to M. 

persicae.  
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Chapter 6: General Discussion 
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 Summary of research findings 6.1

The proposed role of Ca2+ signalling in plant-aphid interactions, as 

investigated in the current study, is outlined in Figure 6.1.  
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Figure 6.1: Proposed role of Ca2+ signalling during the M. persicae-Arabidopsis interaction 

(1) Aphids probe epidermal and mesophyll cell layers within a minute of feeding (Chapter 3). 

(2) An aphid-induced Ca2+ burst can be detected around the feeding site within a few minutes 

of settling (Chapter 3). (3) This Ca2+ burst is restricted to the feeding site and cannot be 

detected systemically (Chapter 3). (4) BAK1 and an unknown PRR perceive aphid HAMPs, 

resulting in aphid-induced Ca2+ bursts (Chapter 3). (5) Perception of aphid HAMPs by BAK1 

leads to activation of GLR3.3/GLR3.6, potentially through the intracellular release of 

glutamate [726]. (6) GLR3.3/GLR3.6 mediate extracellular Ca
2+

 influx into the cell within 

minutes of the aphid settling (Chapters 4). (7) The increase in [Ca
2+

]
cyt

 results in activation of 

TPC1 [112, 114, 115]. (8) TPC1 mediates release of intracellular Ca
2+

 from the vacuole into 

the cytosol in response to M. persicae (Chapter 4). (9) The rise in [Ca
2+

]
cyt

 mediated by TPC1 

contributes to camalexin production via PAD3 (Chapter 4). (10) The rise in [Ca2+]
cyt

 mediated 

by TPC1 contributes to MAPK activation (Chapter 4). (11) The rise in [Ca
2+

]
cyt

 mediated by 

GLR3.3, GLR3.6 and TPC1 results extracellular ROS production most likely through activation 

of RBOHD and RBOHF [283,349] (Chapter 4). (12) Ca
2+

 binds CBL2, 3 and 9, leading to 

activation of CIPK3, 9, 23 and 26 which negatively regulate defence, partially through 

suppression of ROS (Chapter 5). (13) Accumulation of JA is detrimental to aphids, but is not 

required for effective defence against M. persicae or A. pisum (Chapter 4). (14) Glucosinolate 

production is mediated through a TPC1/GLR-independent pathway that involves a 

contribution from BAK1 (Chapter 4). (15) M. persicae suppresses Arabidopsis defence 

responses using effectors, including Mp10 that partially suppresses the Ca2+ burst (Chapter 3). 

Ca2+ represented by blue circles. Aphid image taken from Hogenhout and Bos [275]. 
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6.1.1 M. persicae elicits a rapid, localised Ca2+ burst in the upper 

cell layers of Arabidopsis 

This study identified a rapid Ca2+ burst in Arabidopsis around the feeding site 

of M. persicae. Recordings from the EPG show that penetration of the epidermal and 

mesophyll cells layers occurred within a minute of feeding, whilst the microscopy 

assay demonstrated that a [Ca2+]cyt elevation, distinguishable at the tissue level, 

occurred within 2 min of settling (Chapter 3). This burst occurred as single transient 

release of Ca2+, unlike the sustained biphasic or oscillatory signatures produced by 

other stresses such as cold shock [50, 626, 652] DAMPs [371] or PAMPs [17, 219]. The 

rise in [Ca2+]cyt also appeared to be restricted to the region of the feeding site (Figure 

6.1) (Chapters 3 & 4), with small signals bring detected systemically on occasion but 

not reliably (Appendices C & D). 

The variability in systemic signalling in response to M. persicae might be a 

result of the variability in the number of neighbouring cells the aphid stylets 

penetrate on their way to the phloem. In addition, the systemic ROIs were defined 

relative to the aphid and therefore represented a different location on the leaf for 

each sample (Chapter 2). As such, optimisation of the Ca2+ analysis is required to 

investigate systemic signalling further. The absence of reliable systemic signals puts 

the aphid-induced Ca2+ burst in sharp contrast to other abiotic [7, 538] and biotic 

[103, 123] stresses. For systemic Ca2+ signals to occur it is assumed that [Ca2+]cyt or 

ROS concentration in the apoplast must reach a threshold value in order to 

successfully activate subsequent components in the chain [121] and cellular 

penetrations by the M. persicae stylets might not cause enough damage [296] to 

reach this threshold. Alternatively, the insect may be actively suppressing systemic 

Ca2+ signals [123, 502]. The use of isolated leaves for the assay might also have had 

an effect on systemic signalling, although systemic Ca2+ signals [538] and defence 

activation against aphids [469] have been observed previously in isolated leaves. The 

absence of a consistent systemic signal agrees with the lack of SAR observed in 

response to M. persicae (Chapter 3, [308, 464]). Systemic signals could be re-

constituted by over-activation of TPC1 (Chapter 4), a channel already implicated in 

systemic signalling during salt stress and wounding [7, 123]. 

The timing and area of the burst indicated that the Ca2+ release measured in 

35S::GCAMP3 occurred primarily in the epidermal and mesophyll cell layers. Indeed, 

aphid feeding from the phloem does not usually occur within the same time-frame, 
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and whilst localisation of GCAMP3 to phloem could detect signals in response to 

wounding, aphid-induced signals could not be detected in this tissue (Chapter 3). The 

aphid-induced Ca2+ signals propagate relatively slowly, around 100-fold slower 

compared to other stresses [7, 536, 538], which is likely to be related to the lack of 

phloem and systemic components involved in the signal [103, 123, 538]. However, 

the speed of the aphid-induced burst is comparable to rates of Ca2+ wave propagation 

in cultured animal cells and tissues [788]. Furthermore, the partial requirement for 

vacuolar Ca2+ release for this burst (Chapter 4) makes a SE-elicited signal less likely 

given the lack of vacuoles in these cells [701]. This separates the characterised Ca2+ 

burst from phloem-based resistance mechanisms such as occlusion, and agrees with 

work showing that resistance to phloem feeders is also mediated by factors in the 

mesophyll [637, 789]. 

6.1.2 BAK1, GLR3.3, GLR3.6 and TPC1 mediate Ca2+ release in 

response to M. persicae 

The feeding site burst is dependent on BAK1, with complete abolition of the 

signal in the bak1-5 mutant (Chapter 3). BAK1’s role early in PTI against aphids [349, 

350] suggests this co-receptor is one of the first molecular components involved in 

the generation of the Ca2+ burst, along with an as-yet uncharacterised HAMP receptor 

[277]. The involvement of PTI in this response suggests this is not a damage-

meditated response as seen with chewing insects such as Lepidoptera [123]. This is 

not surprising given the effort aphids invest in minimising wounding, for example 

through the use of gelling saliva to plug damage sites [270, 271, 789]. It would be 

interesting to analyse Ca2+ dynamics response to wounding by a stylet-mimic, such as 

a thin glass capillary [287], in order to dissect the potential role of wounding in this 

response.  

The perception of the aphid via BAK1 leads to an influx of Ca2+ from the 

apoplast and from intracellular stores. The extracellular component is mediated by 

GLR3.3 and GLR3.6, with a vacuole-derived contribution from TPC1 (Chapter 4). The 

complete abolition of the signal in the glr3.3/3.6 mutant and a small but reduced 

signal in the tpc1-2 mutant implies that extracellular Ca2+ release lies upstream of 

intracellular release.  

The abolition of Ca2+ burst in bak1-5 and glr3.3/glr3.6 mutants implies 

GLR3.3/3.6 and BAK1 lie in the same pathway (Chapters 3 & 4). The link between 
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BAK1 perception and GLR opening is unclear. Glutamate is proposed to be a ligand of 

the GLRs [76, 92, 356], and can function as a physiological signal in plants that 

generates a GLR-mediated Ca2+ burst [97, 99, 100, 687]. Furthermore, release of 

glutamate into the extracellular space is facilitated by exocytosis downstream of 

cryptogein perception, implying this amino acid may function in PTI [726]. It is 

therefore possible that PTI-triggered release of glutamate into the apoplast binds the 

extracellular ligand-binding domain of GLR3.3/GLR3.6 and elicits a Ca2+ burst. 

Alternatively, activation of the GLRs may occur independently of glutamate, and 

involves one of the other BAK1-regulated signalling pathways. Given the promiscuity 

of BAK1 during plant defence [360, 361], and the wide range of potential GLR 

agonists and antagonists [92], it is difficult to select a specific signalling pathway for 

investigation. However, a good place to start would be to check if glutamate-elicited 

Ca2+ signals still occur in the bak1-5 mutant. 

TPC1 also mediates Ca2+ release in response to M. persicae (Chapter 4) and 

these results add to the growing amount of literature implicating this channel and 

vacuolar Ca2+ as components involved in the plant response to stress [7, 121, 123]. A 

small [Ca2+]cyt elevation can be seen in the tpc1-2 mutant, suggesting that GLR-

facilitated Ca2+ entry is still occurring, and that TPC1 is required to amplify this 

signal. Indeed, TPC1 is Ca2+-activated [112, 114, 115], can be regulated by CaMs 

[790-792] and has a hypothesised role in CICR [7, 121, 537, 539], allowing for a model 

whereby GLR-mediated Ca2+ influx leads to TPC1 channel opening and a second 

release of Ca2+ (Figure 6.1). It is also possible that GLR or BAK1-mediated signalling 

activates TPC1 independently of Ca2+. TPC1 activity can also be modulated by 

phosphorylation status [109, 114, 115, 793] and owing to the considerable role of 

protein kinases and phosphatases in PTI, it is possible that TPC1 opening is mediated 

by these pathways. Furthermore, CIPKs are known to regulate ion channels [161, 163, 

167, 186, 794], and the tonoplast-localisation of CIPKs 3, 9, 23 and 26 by CBL2 and 

CBL3 [165] do not exclude CIPK-based regulation of TPC1 as a possibility.  

6.1.3 Activation of plant defence is modulated by BAK1 and Ca2+ 

signalling 

To prove that Ca2+ is a physiologically relevant signal in plant-aphid 

interactions, at least two lines of evidence need to be demonstrated. Firstly, loss of 

the signal should result in an alteration of the downstream response, and secondly 
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Ca2+-sensitive elements should be present in the system [795]. Loss of BAK1 is already 

established to be beneficial to aphids [349], and in this study it was linked to having 

a role in camalexin and glucosinolate production during plant-aphid interactions 

(Chapter 4). However, this is not direct evidence of a role for Ca2+ in this system. 

Abolition of TPC1 expression attenuated the expression of marker genes 

implicated in MAPK activation (FRK1) and camalexin biosynthesis (PAD3) in response 

to aphid extract, suggesting a role for Ca2+ signalling in these processes (Chapter 4) 

(Figure 6.1). This defence gene induction was GLR-independent, whilst loss of TPC1 

or GLR3.3/3.6 did not result in a significant effect on aphid-induced ROS production 

(Chapter 4). This suggests that the activation of these pathways is distinct from the 

Ca2+ burst measured with GCAMP3. This might be a result of using aphid extract for 

these assays as opposed to live insects. As a result, it will be interesting to measure 

marker gene expression and ROS production in mutant leaves infested with live 

aphids. Nevertheless, overexpression of TPC1 and loss of CIPK3/9/23/26 resulted in 

significant effects on aphid-elicited ROS production and aphid performance (Chapters 

4 & 5), implicating Ca2+ in aphid-elicited ROS production and fitting with observations 

of substantial interplay between Ca2+, TPC1 and ROS [119, 121, 691, 692]. 

Furthermore, the timing of defence marker induction in the mutants was not 

explored and might be affected by Ca2+ signalling. 

Several Ca2+-sensitive elements are present in Arabidopsis during aphid 

attack. Of the genes that directly bind or allow transport of Ca2+, only CNGC12 and 

CIPK3 were differentially regulated after 48 h of M. persicae infestation (Chapter 5). 

However, several genes with an established role in plant-aphid interactions have 

connections to Ca2+ signalling, including the MAPKs [152, 372, 386, 693-695] and 

those involved in ROS production (e.g. RBOHD [119, 349, 350]). Furthermore, loss of 

the Ca2+ decoders CIPK9 and CIPK23 significantly reduced M. persicae fecundity, and 

fecundity was even further reduced on the cipk3/9/23/26 quadruple mutant 

(Chapter 5). The CIPKs have been linked to regulation of PTI responses in O. sativa 

[385] wheat [786], and tomato [772], but this is the first reported role for 

Arabidopsis CIPKs in biotic interactions to the author’s knowledge. The alterations in 

plant and aphid responses upon loss of the aphid-induced Ca2+ burst, in combination 

with the modulation of several Ca2+-sensitive elements during this interaction, 

provides supports the hypothesis that the Ca2+ burst is acting as a physiologically 

relevant signal in plant-aphid interactions. 
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6.1.4 M. persicae suppresses BAK1-mediated PTI and Ca2+ 

signalling  

Despite the role of GLR3.3/GLR3.6 and TPC1 in the aphid-induced Ca2+ burst, 

M. persicae fecundity on tpc1-2 or glr3.3/3.6 mutants was unaffected (Chapter 4). 

The same is seen with the bak1-5 mutant [349], suggesting that PTI elicited by M. 

persicae has a limited effect on the aphid. This is not surprising given compatibility 

of M. persicae with Arabidopsis, which implies that basal immunity in this plant 

species is not sufficient to affect aphid performance. As a result, further reductions 

in this defence by attenuation of the Ca2+ signal might have a limited effect. 

However, this assumes that Ca2+ signalling is a positive regulator of defence against 

aphids, and the increased aphid resistance observed in the cipk3/9/23/26 mutant 

(Chapter 5) suggests that this is not necessarily the case.  

Small effects on aphid feeding behaviour were observed in the BAK1 and TPC1 

mutants (Chapters 3 & 4). In both cases pathway behaviour was unaffected, 

demonstrating that there is latency between BAK1-mediated Ca2+ signalling, defence 

activation and an effect on aphid feeding. Indeed, secondary metabolite production 

is not induced for several hours or even days post-feeding [78, 159]. Surprisingly, loss 

of BAK1 or TPC1 expression disturbed phloem feeding, whilst TPC1 overexpression 

enhanced it. Whilst this fits with established literature showing that the main effects 

of plant defence are experienced by aphids when they are feeding from the phloem 

[301, 796, 797], it appears to contradict the hypothesis that BAK1-mediated Ca2+ 

signalling forms a part of PTI. However, the feeding phenotypes are relatively subtle, 

only occurring as differences in single behaviours that are not consistent between 

EPG experiments. Consequently, it is hypothesised that M. persicae targets BAK1-

mediated Ca2+ signalling during its successful colonisation of the plant and loss of this 

pathway disturbs the aphid manipulation of its host, resulting in feeding disruption.  

M. persicae uses a suite of effectors to suppress plant defence [275, 501], and 

this might explain the relatively small number of Arabidopsis genes differentially 

regulated by M. persicae attack (Chapter 5). These effectors include Mp10 that acts 

in the BAK1 pathway [277, 502]. Mp10 is capable of partially suppressing the feeding 

site Ca2+ burst (Chapter 3), as well as flg22-elicited Ca2+ bursts [502]. Thus, Mp10 has 

a role in the BAK1 Ca2+ signalling pathway. Indeed, Mp10 is delivered preferentially 

into the mesophyll tissue [279], the very location of the feeding site Ca2+ burst. 

Therefore, it is possible that BAK1/GLR/TPC1 pathway is one that M. persicae 
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monitors and manipulates in order to modulate the plant defence network (Figure 

6.1). In order to test this hypothesis, analysis of the feeding behaviour of dsMp10 

aphids on the bak1-5 mutant should be conducted. Reducing expression of C002 in A. 

pisum results in a considerable increase in pathway phase probing and almost 

complete loss of phloem feeding [276], highlighting the role of the epidermal and 

mesophyll cells in PTI and effector function and agreeing with the role of these 

processes in phloem acceptance. One might also predict the fecundity penalty 

suffered by dsMp10 M. persicae on Col-0 will be abolished on tpc1-2 and glr3.3/3.6 

mutants, as seen on the bak1-5 mutant [502], if Mp10 is required to manipulate this 

Ca2+ signalling pathway. 

It is also important to consider that other M. persicae effectors might be 

modulating BAK1-mediated Ca2+ signalling. It is possible that effectors are delivered 

into the apoplast, along with the watery [619] or sheath [267] saliva. Recent results 

from the Hogenhout lab indicate that Mp1 [501] is associated with aphid salivary 

sheath [279] and it reasonable to suggest such apoplast effectors might target 

extracellular Ca2+ influx. The involvement of other effectors in the suppression of 

Ca2+ signalling would explain the relatively subtle effects of reducing expression of 

Mp10 alone (Chapter 3), and therefore testing the role of these other effectors, or 

combinations of them, on the Ca2+ signal could potentially identify additional 

components involved in the suppression of defence. Furthermore, it would also be 

intriguing to use aphid extract from effector knock-down aphids in ROS and defence 

gene assays to test the role of effectors in these defence responses.  

 Open questions 6.2

6.2.1 The role of Ca2+ signalling in non-host resistance 

The lack of a significant M. persicae fitness penalty on the mutants 

investigated in this study is suggested to be the result of using an aphid species 

compatible with Arabidopsis. This implies that exploring the role of Ca2+ signalling in 

incompatible interactions, where it might play a role in non-host resistance, would 

be informative. Indeed, A. pisum has a greater survival rate on bak1-5 mutants [349], 

suggesting the BAK1 pathway contributes to non-host resistance. However, the aphids 

still cannot complete their life cycle on this mutant, demonstrating that BAK1-

independent pathways are also at play during plant defence against aphids.  
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One might predict that disturbance of Ca2+ signalling could result in enhanced 

susceptibility to incompatible insects. Several Arabidopsis Ca2+-binding proteins and 

channels are differentially regulated by A. pisum infestation (Chapter 5), implying 

that such signalling may play a role in resistance to this aphid. Non-host resistance to 

P. syringae can be affected by altered plant Ca2+ dynamics [798] and the same may 

true in aphid resistance. Incompatible aphid species might also induce larger feeding 

site Ca2+ bursts, or even systemic signals and it will be revealing to analyse Ca2+ 

dynamics in response to A. pisum using GCAMP3. This analysis might also reveal if 

Arabidopsis resistance to this species is mediated by PTI or ETI, given the biphasic 

nature of Ca2+ signal one might expect during ETI [379, 509, 513]. 

Abolition of TPC1 transcription alone is not sufficient to alter A. pisum 

survival on Arabidopsis (Chapter 4). However, Ca2+ signalling mediated by other 

genes, including the GLRs, is still occurring in the tpc1-2 mutant (Chapter 4). It will 

therefore be informative to study the survival of A. pisum on the glr3.3/3.6 mutant 

to fully investigate the role of the feeding site Ca2+ burst in non-host resistance. 

In combination with this, analysis of the downstream Arabidopsis defence 

response will also be enlightening. Arabidopsis ROS production is greater in response 

to the incompatible aphid R. padi [283], and the same may be true for A. pisum. This 

could be analysed in the existing aphid extract-based assay (Chapters 4 & 5) or to 

make it more comparable to the Ca2+ assay, live ROS imaging could be attempted in 

vivo during aphid feeding using a fluorescent redox probe such as roGFP [799-801]. 

Interestingly, FRK1, CYP81F2 and PAD3 induction is comparable between M. persicae 

and A. pisum when aphid extract is applied to leaf disks for 1 h [349], however the 

same might not be true for live aphid infestation of a leaf.  

6.2.2 The role of other Ca2+ stores and Ca2+-related genes in 

plant-aphid interactions 

The aphid-elicited [Ca2+]cyt elevation documented in this study is an early 

event in the plant-aphid interaction, however M. persicae and other aphids can feed 

from a plant for hours (Chapter 3 & 4) or even days [270]. Ca2+ signalling may still be 

playing a role during this time, and this may involve additional proteins and/or pools 

of Ca2+ not investigated in this study.  

Whole tissue imaging does not necessarily reflect signalling at the single cell 

level [802], and thus in the future confocal microscopy might help to uncover the 
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characteristics of the signal at the subcellular level. Direct targeting of fluorescent 

Ca2+ sensors to the vacuole has been underutilised [648], but tonoplast-localised Ca2+ 

sensors may provide finer detail on the dynamics of Ca2+ release from this 

compartment. This could be attempted with existing FRET sensors such as TP-D3cpv 

[803], or new ratiometric single-FP sensors such as GEM-GECO1 [213]. The same is 

true for other subcellular compartments, including the nucleus and the ER. Indeed, 

nuclear-localised CaM-binding protein IQD1 positively regulates defence against M. 

persicae [696], suggesting that Ca2+ in this compartment also plays a role in plant-

aphid interactions. Concurrent imaging of several cellular compartments could also 

be achieved using the GECO suite of Single-FP sensors. Furthermore, fluorescence 

sensors have been incorporated within transporters to allow analysis of ion flux in 

yeast [804], and a similar method could be developed in plants to analyse transporter 

or channel activity in vivo.  

Aphid-induced Ca2+ bursts are observable in some bak1-5 and glr3.3/3.6 

samples but once the data were compiled the rarity of these Ca2+ bursts made it 

impossible to distinguish such events from the no-aphid controls (Chapter 3 & 4). 

These bursts might be mediated by additional Ca2+-permeable channels, candidates 

of which include CNGC2, which already has an established defence phenotype [79, 

84, 377] and CNGC17, which is co-expressed in vivo and interacts in vitro with BAK1 

[805]. Furthermore, analysis of Ca2+ signalling in the pepr1/2 mutant may reveal a 

role for DAMPs in the aphid-elicited Ca2+ burst [757]. Consequently, transformation of 

GCAMP3 into additional mutants may uncover additional regulators of the signal.  

The role of Ca2+ export systems and decoders in this interaction should also be 

considered. Ca2+-ATPases in have been implicated in altered Ca2+ signatures during 

cryptogein-elicited PTI in N. tabacum [798] and loss of ACA4 or ACA11 in Arabidopsis 

leads to HR-like symptoms [787]. Furthermore, in addition to the CIPKs (Chapter 5), 

CDPKs and CMLs are also differentially regulated during aphid attack [134, 402]. 

6.2.3 The role of other ions in plant-aphid interactions 

None of the characterised Ca2+-permeable channels in plants are specific for 

Ca2+. This includes the GLRs and TPC1, which are also permeable to Na+ and K+ [88, 

95, 96, 112, 113]. As a result, other ions may contribute to the observed GLR and 

TPC1 phenotypes. Furthermore, Ca2+ signalling is interlinked with electrical signals 

and both have been observed to follow similar patterns of spread in response to 
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wounding [103, 104, 123], with the wound-induced electrical signal, thought to be 

based on K+ channel activity [540]. Furthermore, TPC1 is voltage activated [114, 115] 

and is regulated by Na+ and Mg2+ concentrations inside the vacuole [658]. Conversely, 

Ca2+ can also regulate K+ channel activity [1, 806], demonstrating the level of 

interplay between Ca2+ and electrical signalling pathways. Indeed, the changes in 

tonoplast voltage in the fou2 mutant may have activated additional ion channels that 

might have contributed to the aberrant signalling seen in this mutant (Chapter 4). 

In addition, the K+ [182, 183, 754] and Mg2+ [165, 166] homeostasis genes 

CIPK9 and CIPK23 negatively regulate defence against M. persicae (Chapter 5). This 

provides a link between ion homeostasis and aphid performance. Moreover, M. 

persicae elicits a membrane depolarisation in infested leaves that can be detected by 

intracellular electrodes [365]. Taken together, these data suggest that K+ might play 

an important role in plant-aphid interactions. However, it will be important to 

decipher the difference between altered host nutritional quality and altered plant 

defence.   

6.2.4 The role of plant hormones in plant-aphid interactions 

Loss of JA biosynthesis has no effect on M. persicae performance or plant 

defence gene induction, suggesting that this hormone is not responsible for 

defending Arabidopsis against M. persicae (Chapter 4). This agrees with a body of 

evidence suggesting that JA does not play a significant role in plant-aphid 

interactions [306, 430], in accord with the relatively low number of differentially 

regulated JA-related genes caused by aphid infestation [426, 427]. This result is in 

sharp contrast to the plant response to chewing insects such as Lepidoptera, which 

relies heavily on JA-mediated wound signalling [308, 332, 334, 335, 417-420], 

hypothetically regulated by BAK1 [362]. It has been argued that SA-upregulation 

during aphid infestation [304, 308, 433] might antagonise JA production in order to 

increase plant susceptibility [426, 427, 434-436], whilst the increased aphid 

resistance seen on the fou2 mutant (Chapter 4) clearly shows that JA is detrimental 

to M. persicae. Therefore, whilst basal levels of JA have no effect on aphids, it might 

be that aphids induce an increased level of JA that reduces aphid performance. This 

effect would be masked during compatible interactions by effectors that suppress 

defence but during incompatible interactions an increase in JA might represent a 

factor contributing to successful resistance. However, this hypothesis is not 



221 
 

 

supported by the results collected in the present study, with JA biosynthesis having 

no effect on A. pisum survival on Arabidopsis (Chapter 4). 

ABA has also been implicated in plant-aphid interactions, with accumulation 

of this hormone occurring upon M. persicae feeding [437]. ABA and JA are highly 

interlinked, with JA-upregulation in the fou2 mutant dependent on ABA biosynthesis 

[552] and both JA and ABA being regulated by the PP2Cs [740, 741, 807]. It is not 

clear whether ABA is beneficial or detrimental to aphids, with conflicting reports on 

the matter [437, 442]. However, ABA is related to Ca2+ signalling and forms a possible 

link between links TPC1 and CIPK3, with both tpc1-2 and cipk3-1 mutants showing 

ABA hypersensitivity phenotypes [15, 175]. Furthermore, BAK1 directly interacts with 

and modulates OST1 and ABI1 during the regulation of ABA-induced stomatal closure 

[808], a pathway implicated in ROS production via RBOHF [809]. As a result, it is 

possible that ABA may play a role in PTI against aphids. 

 Implications of the research findings 6.3

The work outlined in this thesis contributes significantly to our understanding 

of the role of Ca2+ signalling in plant-aphid interactions. The molecular mechanisms 

that underlie defence against phloem-feeding insects are less well characterised than 

those of plant pathogens, which is surprising given that such insects can cause large 

amounts of damage to crop species around the world. The traditionally ecological 

understanding of plant-aphid interactions is now being complemented with molecular 

characterisation, to which the current study offers a significant contribution. 

The role of TPC1 in plants has been a controversial issue, however the present 

work adds to the growing body of evidence in support of TPC1’s role in Ca2+ 

signalling. Moreover, the role of Ca2+ signalling in plant defence against pathogens is 

well-established but lacks mechanistic detail. Given the common mechanisms utilised 

by plants to protect themselves from various biotic threats, including signalling via 

BAK1, it is possible that the work included in this thesis can inform the wider plant 

defence field. 

The vast host range and ecological success of aphids such as M. persicae make 

them a huge threat to world agriculture [238-240]. In order to breed crops more 

resistant to aphids, the plant mechanisms that limit aphid success must be 

elucidated. One of the largest impact aphids have on agriculture is through their 

transmission of plant viruses during feeding. The work in this thesis has demonstrated 
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that one of the first plant responses to aphid probing is Ca2+ signalling, and therefore 

further investigation of such signalling may offer opportunities to disturb aphid 

feeding and virus transmission. 

Consequently, the findings of this work enhance our fundamental 

understanding of Ca2+ signalling in plant defence against aphids and contribute to a 

growing collection of literature that might one day offer practical solutions for crop 

protection. 
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Appendix A: Synthesised genetic 

units 
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pL0M-SC-gCIPK3-73016 

CACTCTGTGGTCTCAAATGATGTTGATCCCCAACAAAAAATTAAGGTTCTTTTTTGCTTTTTAAATAAGT

AATATATATATATATATATATATATATATATATATATATATAAGATTGAGATATTCTCTGTCTTGCTTCTT

CTTTACCCTTTTCTTGTTTCCAATCAAATCCTCTAAAGTTTCGTTCTTTGTTCTAAGTTTTCTGAAGGAGT

GATATTTGTTTGTGGTGTGGTTAGAGAAATGAATCGGAGACAGCAAGTGAAACGTAGAGTAGGTAAATA

TGAAGTTGGAAGAACAATTGGAGAAGGAACGTTTGCTAAAGTTAAGTTTGCTAGAAACTCTGAAACTGG

AGAACCTGTTGCTCTCAAGATTCTTGATAAAGAGAAAGTTCTCAAGCATAAAATGGCTGAACAGGTTTTT

GTTATTATTGAATTATGGATACTCTGCTTTCGCATTGCGGTTTTTTATCGGTTGATTTTGATCTTGCTTG

TGTTTTTTTGTTGAATTTTACAGATTAGAAGAGAGATAGCTACTATGAAGTTGATAAAACATCCAAATGT

TGTTCAATTATATGAGGTAATTAACACTTCTTTAGATAAATGTGTTATTTGATTATGTACTATGTACTTG

GAAATTACTTACTTCGAAATTGTACTGGTTGTTGTTGTTGCAGGTGATGGCAAGTAAGACGAAAATATT

TATCATCTTGGAGTATGTTACAGGAGGAGAACTCTTTGATAAGATTGTAAGTTAGTTACCACAATTATAA

ATGGTTGTGATTCTGTGATGTCACATTATAGTTGTGAAATCTGATAGTGATAACTTATGAATGAAGGTA

AATGATGGGCGGATGAAAGAAGATGAGGCGCGGAGATATTTCCAACAGCTTATACATGCTGTGGACTAC

TGTCATAGCAGAGGGGTCTACCATAGAGATCTCAAGGTACATACATTGTTTTTATAGATGGTAGGACTG

AAACATGGTATATTGATAGAGAAGTTACCTATGCATATATTATGTGCAGTAAGCCAGTAATTGACTATTG

TAATGTGATTTTGCAGCCTGAAAATTTACTATTGGACTCCTATGGAAACCTCAAGATCTCAGATTTTGGA

TTAAGTGCTTTGTCCCAACAAGTCAGGGTAATGACCATCTGTTTCCATAAGTATTTTACTGTTCCAAGAA

GTGGTTTCATTTTTCCTAAGAACTTACGGATTTTGTTGTCAAAAATTATATACATATATCTATTCTTAAAC

ATGGTTTATATGCTTGGGGATATCAGGATGATGGACTCTTGCATACATCGTGTGGAACACCAAACTACG

TTGCTCCTGAGGTCTGCCTAAAACAAACATGATTTCTTTATATCTTATAATATTATCCTTTCATTTTACGT

CTTTATAACCGACATCTTTGCGGGTTTTAGGTTCTCAATGATAGAGGCTATGATGGAGCAACAGCTGAC

ATGTGGTCATGCGGTGTTGTACTCTATGTCCTGCTTGCAGGTTACTTACCTTTTGATGATTCTAATCTAA

TGAATCTTTATAAAAAAGTGAGCAACTCTTTTCTAAAATTCTCTCTTTTAGATGGAATCTTCCAGCAATGC

TTGTTTTAGGATTTTTATAACTCCCTTTCGGCATTTTTGTGGTTTGGTGCAGATATCATCTGGTGAATTC

AACTGTCCTCCGTGGCTCTCACTCGGAGCCATGAAACTCATCACTAGAATCTTAGATCCGAATCCGATGA

CTGTAAGTAATTTTTACATGCTCATATACCCCTCTAAATAAAAGGCATTTACTTGTCCACAACTGTTGGA

GCGAAAAGCTGTCCATTGCTAAGAATTTTCACACAAACATGAACTTTATGGCTTTTAAAAACCCTTGAGA

GTTGAGTAATGAGCTCTATATTCCTTCCTTTGCACCATGATTTATTGTACTACTCAACCATGTTTTCCATT

TTTCCAGCACAAAAGGGCTGGAGAAAAAAAGTTGAGGAACCTGTGTTATGCATAATAACATGTACAACT

CTATCTGCTTCATCTCTCATTTCATTGCACAGTTTCTGATTGTTCCCTTGTTTTTGGCAAAAATCAACCAC

TAGTTCTTGGTTAAGCATACTAATCGAATAAACATGTCTTTTGATTACCGGAGAATGAGGATCCTAAACA

CTCACTATTATTTAGATTGTTTGTTTCCTATGCAATTTGAAGAAACTGAGTTGATTTGGTTTTGTGTCAG

CGTGTAACACCGCAAGAGGTTTTCGAAGATGAATGGTTCAAGAAAGATTACAAGCCACCTGTTTTCGAG

GAGAGGGATGATTCAAACATGGACGATATTGATGCTGTTTTCAAGGACTCTGAGGTGTGGATAGTTTTT

CTTCTTCTTTTTCATTTTTTCTTAACAAGAGCATCACATAACGCATGTGATGATCATATACAGGAACATCT

TGTTACTGAGAAGAGAGAAGAACAGCCAGCGGCGATCAATGCCTTCGAGATCATTTCAATGTCAAGGGG

ACTTAACCTAGAGAATCTGTTTGATCCAGAACAGGTTTGTGTTCTGTTCCTATAAAAGACTGGCTCTCCT

GTCTCCATATTCTGAGATCGGAATATTTTATTTTGAAAACAGGAATTTAAGAGGGAAACAAGGATAACAT
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TGAGAGGAGGCGCGAATGAGATCATCGAGAAGATAGAAGAAGCTGCAAAGCCTCTCGGTTTCGATGTT

CAAAAGAAGAACTACAAGGTTAGTGAAAACTCTGTAACGGAAATGAAATGAAATGAAAAGAATCAATAAC

TAAAGACGTCGTAGTACATTACTTGAAATCAGATGAGGCTTGAGAATGTGAAGGCTGGAAGAAAGGGGA

ATCTCAATGTAGCGACAGAGGTATGTTATATGAGACTGGACATTCAAGAAAGTGTTGGTGATGGTTTAT

TGAATCAGTGTGTTTTTTGTTTGTATGGTGTGACAACAAGCAGATATTCCAAGTAGCGCCAAGTCTCCA

TATGGTTCAAGTATCGAAGTCGAAAGGAGACACTCTCGAATTTCACAAGGTAAGTCAAATAGCTTGGTT

TCGACTATATGATAGGGTAATTAACTGGTTTATGAGCTAAGCAGAGATGATGGTTTGTTTGCAGTTCTA

TAAGAAGCTCTCTAATTCTCTGGAGCAAGTAGTCTGGACGAATAACGAAGTTAAGAAAGAAACAGCAAA

GTGAGCTTTGAGACCACGAAGTG 

 

pL0M-SC-cCIPK3sv2-73017 

CACTCTGTGGTCTCAAATGATGAATCGGAGACAGCAAGTGAAACGTAGAGTAGGTAAATATGAAGTTGG

AAGAACAATTGGAGAAGGAACGTTTGCTAAAGTTAAGTTTGCTAGAAACTCTGAAACTGGAGAACCTGT

TGCTCTCAAGATTCTTGATAAAGAGAAAGTTCTCAAGCATAAAATGGCTGAACAGATTAGAAGAGAGATA

GCTACTATGAAGTTGATAAAACATCCAAATGTTGTTCAATTATATGAGGTGATGGCAAGTAAGACGAAAA

TATTTATCATCTTGGAGTATGTTACAGGAGGAGAACTCTTTGATAAGATTGTAAATGATGGGCGGATGA

AAGAAGATGAGGCGCGGAGATATTTCCAACAGCTTATACATGCTGTGGACTACTGTCATAGCAGAGGGG

TCTACCATAGAGATCTCAAGCCTGAAAATTTACTATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT

TGGATTAAGTGCTTTGTCCCAACAAGTCAGGGATGATGGACTCTTGCATACATCGTGTGGAACACCAAA

CTACGTTGCTCCTGAGGTTCTCAATGATAGAGGCTATGATGGAGCAACAGCTGACATGTGGTCATGCGG

TGTTGTACTCTATGTCCTGCTTGCAGGTTACTTACCTTTTGATGATTCTAATCTAATGAATCTTTATAAA

AAAATATCATCTGGTGAATTCAACTGTCCTCCGTGGCTCTCACTCGGAGCCATGAAACTCATCACTAGAA

TCTTAGATCCGAATCCGATGACTCGTGTAACACCGCAAGAGGTTTTCGAAGATGAATGGTTCAAGAAAG

ATTACAAGCCACCTGTTTTCGAGGAGAGGGATGATTCAAACATGGACGATATTGATGCTGTTTTCAAGG

ACTCTGAGGAACATCTTGTTACTGAGAAGAGAGAAGAACAGCCAGCGGCGATCAATGCCTTCGAGATCA

TTTCAATGTCAAGGGGACTTAACCTAGAGAATCTGTTTGATCCAGAACAGGAATTTAAGAGGGAAACAA

GGATAACATTGAGAGGAGGCGCGAATGAGATCATCGAGAAGATAGAAGAAGCTGCAAAGCCTCTCGGT

TTCGATGTTCAAAAGAAGAACTACAAGTACATTACTTGAGCTTTGAGACCACGAAGT 

 

pL0M-SC-cCIPK3sv3-73018 

CACTCTGTGGTCTCAAATGATGAATCGGAGACAGCAAGTGAAACGTAGAGTAGGTAAATATGAAGTTGG

AAGAACAATTGGAGAAGGAACGTTTGCTAAAGTTAAGTTTGCTAGAAACTCTGAAACTGGAGAACCTGT

TGCTCTCAAGATTCTTGATAAAGAGAAAGTTCTCAAGCATAAAATGGCTGAACAGATTAGAAGAGAGATA

GCTACTATGAAGTTGATAAAACATCCAAATGTTGTTCAATTATATGAGGTGATGGCAAGTAAGACGAAAA

TATTTATCATCTTGGAGTATGTTACAGGAGGAGAACTCTTTGATAAGATTGTAAATGATGGGCGGATGA

AAGAAGATGAGGCGCGGAGATATTTCCAACAGCTTATACATGCTGTGGACTACTGTCATAGCAGAGGGG

TCTACCATAGAGATCTCAAGCCTGAAAATTTACTATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT

TGGATTAAGTGCTTTGTCCCAACAAGTCAGGGATGATGGACTCTTGCATACATCGTGTGGAACACCAAA
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CTACGTTGCTCCTGAGGTTCTCAATGATAGAGGCTATGATGGAGCAACAGCTGACATGTGGTCATGCGG

TGTTGTACTCTATGTCCTGCTTGCAGGTTACTTACCTTTTGATGATTCTAATCTAATGAATCTTTATAAA

AAAATATCATCTGGTGAATTCAACTGTCCTCCGTGGCTCTCACTTGGAGCCATGAAACTCATCACTAGAA

TCTTAGATCCGAATCCGATGACTCGTGTAACACCGCAAGAGGTTTTCGAAGATGAATGGTTCAAGAAAG

ATTACAAGCCACCTGTTTTCGAGGAGAGGGATGATTCAAACATGGACGATATTGATGCTGTTTTCAAGG

ACTCTGAGGAACATCTTGTTACTGAGAAGAGAGAAGAACAGCCAGCGGCGATCAATGCCTTCGAGATCA

TTTCAATGTCAAGGGGACTTAACCTAGAGAATCTGTTTGATCCAGAACAGGAATTTAAGAGGGAAACAA

GGATAACATTGAGAGGAGGCGCGAATGAGATCATCGAGAAGATAGAAGAAGCTGCAAAGCCTCTCGGT

TTCGATGTTCAAAAGAAGAACTACAAGATGAGGCTTGAGAATGTGAAGGCTGGAAGAAAGGGGAATCTC

AATGTAGCGACAGAGATATTCCAAGTAGCGCCAAGTCTCCATATGGTTCAAGTATCGAAGTCGAAAGGA

GACACTCTCGAATTTCACAAGTTCTATAAGAAGCTCTCTAATTCTCTGGAGCAAGTAGTCTGGACGAATA

ACGAAGTTAAGAAAGAAACAGCAAAGTGAGCTTTGAGACCACGAAGTG 

 

pL0M-T-CIPK3sv2-73019 

CACTCTGTGGTCTCAGCTTAATCAGATGAGGCTTGAGAATGTGAAGGCTGGAAGAAAGGGGAATCTCAA

TGTAGCGACAGAGATATTCCAAGTAGCGCCAAGTCATCATATGGTTCAAGTATCGAAGTCGAAAGGAGA

CACTCTCGAATTTCACAAGTTCTATAAGAAGCTCTCTAATTCTCTGGAGCAAGTAGTCTGGACGAATAAC

GAAGTTAAGAAAGAAACAGCAAAGTGATGTATGAGAGTTTTCTTTTGGGACAATTCTTGCTTTCTTTGT

GTATAAGAGCTTTTTTGCTTTACCGGCTACTTTGTGTGGATGATGAGAAAGGGAGTGGGATTGGTTTTG

TGTAAAAGAAAGGTGTAAATATGAACTGCATTACTCGATAAGGTGCTGCGATGCCAGTTATAAAGTCAT

ATCAAAGCTTGTTGGCTAAAAGTTTGAAAATGCCTCATTGCTCTATTTGTTATTCTGTGCCGGCGAAATT

TGTCTCGTTTCAAAAAAACTATCTGATCCGTTTTGTCTTTTCTTTTACAACTTGAAGATGGAACGTATCA

AAAATGTCATGATCGAAGGACTGCCTATTTCCACTCATAAGGAATTCAGTAACCTTACTATGACGGTTTC

AGATCATTATGATAGCTTCATGTCCATCCTGAAGTTATAAGTTTTTAGGGCTTTTCATTTTATATTTACTT

ATTCTTATTTATGTAAGTTAAGATTTTGTTTTGAGAAGCACCATGATTCAAAGATTTTAGTTTAAAATCAC

GCTTGAGACCACGAAGTG 

 

pL0M-T-CIPK3sv3-73020 

CACTCTGTGGTCTCAGCTTTGTATGAGAGTTTTCTTTTGGGACAATTCTTGCTTTCTTTGTGTATAAGAG

CTTTTTTGCTTTACCGGCTACTTTGTGTGGATGATGAGAAAGGGAGTGGGATTGGTTTTGTGTAAAAGA

AAGGTGTAAATATGAACTGCATTACTCGATAAGGTGCTGCGATGCCAGTTATAAAGTCATATCAAAGCTT

GTTGGCTAAAAGTTTGAAAATGCCTCATTGCTCTATTTGTTATTCTGTGCCGGCGAAATTTGTCTCGTTT

CAAAAAAACTATCTGATCCGTTTTGTCTTTTCTTTTACAACTTGAAGATGGAACGTATCAAAAATGTCAT

GATCGAAGGACTGCCTATTTCCACTCATAAGGAATTCAGTAACCTTACTATGACGGTTTCAGATCATTAT

GATAGCTTCATGTCCATCCTGAAGTTATAAGTTTTTAGGGCTTTTCATTTTATATTTACTTATTCTTATTT

ATGTAAGTTAAGATTTTGTTTTGAGAAGCACCATGATTCAAAGATTTTAGTTTAAAATCACGCTTGAGAC

CACGAAGTG 
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pL0M-PU-CIPK3-73021 

CACTCTGTGGTCTCAGGAGCTTGGAAACCTCTCTTTTGGATAGATTTTGTGATTTGGCGTTGATTCTTT

GTGGATTATCTGTTTCTCTTCACATAGCTGGATTTGATGGAGTTTATAAACCACTTCAATGCCAAGAAAA

AGGATTTGAAACTTTTCTTCATTCTCATTTTTAAAATTGATTTCTTAACTTTGCAGCAACTAGATAGTAAT

TGCAAGCGATGGGTGATATGCACCGGAACTCTTACAAATAACGTGGATGTCTTTTTCGAGTAAGGTTAC

GACTATGAATATTAAAAGTGAAACAAATCTGAACAAGAAAATTAGGTTCGAATAATTTAATTAGCTTTTA

ATTTGTCAATCTTTCTGGATCTTTGCTTGTTGTTACACACTGGCCAGTGGGCCAGTTGCCACTGATTAAA

TTTTATAATAACCATTCAACTCAAAGTAAACTCTGCACTATAACTCTCATATATCAAATGTCAGTCAAGTT

GAGACTGTTAAAGCGAAGCTGCATAAAATGTGTTTGTCCATATAAAAATTGAACATTATTATATATAAAA

ATACAAACTTATCTGGTGGTATACCATCTAGATTAGATCCTAGTATTGTCCTTTTTTTTTTACAACAGATT

AGTATCTTTTACATGTTCAATCTTTTGTGGATGACAAAATTACTTAAATCGAAAAATCTTGTTAGTTATT

GTCACTATCAGTAAGTCAATAAACAAACATTCATCACAAAAACAAAAAAACAAAATCTTCACTAGTCACAA

CAAAATTCGCCCCAATTCTTTGATCCATTAAAAAAAACTAATATTATCATTTTTAATCATTATTATTTCAG

AATTGTTTGGCAAAAATAATTCAACATTAAAAAAAGAAATTTAATATCAAAATAAAATAAAAGAAAAGAAA

AGAGAAAACAGATCCGAATTGAGTTCATCATCTTAAAACTTTGAAATCGGTTACTGTGCCTTTTTTTTTT

TTTTTTTTTTTAGTGGTTACAAGTTACAAAACTCAAAAAAAGACCAAAGACAGCAATTAATTTTTGTTTCT

TTCTGTTCTAAGGATCTTTGTCTGCTACTGAAACTCCTTAAAGCAAAACTGTAACTTCTCACCAAAAACG

AATTTTTCCAACAAAAATTTAATAATCAAAATAAATCTTCTTCTTCTTCTTCATCGTTTATCACGACCTCT

GTCTCTTCGACTCTCTCAAAAGCCATTTTAAATCTCTCTCTTTCTCACTCAATCTCTCTGTAGCTATCAGA

TCTTCTCTTAATGTGAGACCACGAAGTG 

 

pL0M-T-gCIPK3-73032 

CACTCTGTGGTCTCAGCTTTGTATGAGAGTTTTCTTTTGGGACAATTCTTGCTTTCTTTGTGTATAAGAG

CTTTTTTGCTTTACCGGCTACTTTGTGTGGATGATGAGAAAGGGAGTGGGATTGGTTTTGTGTAAAAGA

AAGGTGTAAATATGAACTGCATTACTCGATAAGGTGCTGCGATGCCAGTTATAAAGTCATATCAAAGCTT

GTTGGCTAAAAGTTTGAAAATGCCTCATTGCTCTATTTGTTATTCTGTGCCGGCGAAATTTGTCTCGTTT

CAAAAAAACTATCTGATCCGTTTTGTCTTTTCTTTTACAACTTGAAGATGGAACGTATCAAAAATGTCAT

GATCGAAGGACTGCCTATTTCCACTCATAAGGAATTCAGTAACCTTACTATGACGGTTTCAGATCATTAT

GATAGCTTCATGTCCATCCTGAAGTTATAAGTTTTTAGGGCTTTTCATTTTATATTTACTTATTCTTATTT

ATGTAAGTTAAGATTTTGTTTTGAGAAGCACCATGATTCAAAGATTTTAGTTTAAAATCATGGCAACTAG

TTGGTGCTCTTAAGATGATCTCATCTTCCCTCTTCTGCCTTTCAGGAATTGTCTTGCCCAATTTGGGACT

TTAATTACCATTATTATAGCTAGGAACTATGGTTAACTATTTGATGATTTTATAATTGTCATTAGTTTAGT

TACAAGTTTGTAACCAAACTGTTTTTTTTTTTTTGTTTTTTTAATTGAAAATTCTTTGATGTAAGTTCCAA

AAATGACATGATAGTGTAGAAGAAATAGATGATAAGTAGATTGCGAACTTTGCTTAGTTATCCTCTTTCA

TGTTTTAATGACTGAATATTGGCAATTTTTAACTTTGTAATTTATTTTCCCATGGAATAACCAAACAAAAA

TTAAACCAACTCTACGGATATTATAACCGTTTAGGATGAGCTCGATTGGTGTAGAACATATAAGTGGACT

TACACTTTTTGTGAGCCAGTCATATTTTGTTATGTGAACTTCTAAGTGAGAAAGGTTCGAAGCATGCGA

ATCCATTGTTTTGATGTTAGATGTTTTGGGAGATGCATTCAATAAAGAAGCCTTCTTGATAAACAGAGAT

CCTTGTGAGTTTTGATGTTAGGCTTTAAACGTTCAACATCATTACAGCACCCGTTTTGTTTTGTCTTTTC
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TTTTTACGATGAAGATCCTTTTGACACACAAAATAAATAAAATATTGAAGGAAGTTCCAAAAATGACATG

GATAGTCATGAAATTAATAGTCACAAATGGTTTCTTCTTCTTATTCTTCGTCTAATCTTTTAAGTCTTGAT

GAAGAAACAGATGATGGTATATTGTGAACTAATATATGGAATAAACAAAATGTTGACTGTCACACATGAA

TTTAAATTGTTATGGATTTATATCTACGAAACCAAAAGGGTGAATATCACATATGGATTAAGTTTGTCTT

AGATATCTATACAATGAAGTTTAATATATTTTAGCTCTTCTTGTCATCGTGTGTTTTTCTTTTACTTTCTT

ATAAATTTTTTTGGGTACATACAACGATATATGTGTTTTGTTGATCAATAAAAAGTTCACCTTATCTCGT

AGAGAACTAATCGAGTGATGGACGGCGTTTGTTATTTAATTTGTGGTTGAAATTTATCATCTACATGACT

ACATCATCTACAATACGCTTGAGACCACGAAGTG 
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Appendix B: Golden Gate modules 

and vectors 
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Table B1: Level 0 Golden Gate modules. 

ENSA ID ENSA Standard name Description 

73016 pL0M-SC-gCIPK3-73016 
CIPK3 Genomic sequence 

73017 pL0M-SC-cCIPK3sv2-73017 CIPK3 SV2 CDS 

73018 pL0M-SC-cCIPK3sv3-73018 CIPK3 SV3 CDS 

73019 pL0M-T-CIPK3sv2-73019 CIPK3 SV2 3'UTR 

73020 pL0M-T-CIPk3sv3-73020 CIPK3 SV3 3'UTR 

73021 pL0M-PU-CIPK3-73021 CIPK3 native promoter  

73032 pL0M-T-gCIPK3-73032 Genomic CIPK3 3'UTR 

15058 pLOM-PU-p35S(short)-15058 35S promoter 

41414 pL0M-T-35S-1-41414 35S terminator 

15112 pL0M-SC-eGFP-15112 eGFP CDS 
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Table B2: Golden Gate level 2 modules. 

  

ENSA ID 
ENSA Standard 

Name 
Backbone P/PU S/SC/SC1 T 

73029 

pL1M-

pCIPK3::gCIPK3-

73029 

pL1V-R2-

47811 

pL0M-PU-

CIPK3-73021 

pL0M-SC-

gCIPK3-

73016 

pL0M-T-

gCIPK3-

73032 

73024 
pL1M-p35S::gCIPK3-

73024 

pL1V-R2-

47811 

pLOM-PU-

p35S(short)-

15058 

pL0M-SC-

gCIPK3-

73016 

pL0M-T-

35S-1-

41414 

73025 

pL1M-

pCIPK3::cCIPK3sv2-

73025 

pL1V-R2-

47811 

pL0M-PU-

CIPK3-73021 

pL0M-SC-

cCIPK3sv2-

73017 

pL0M-T-

CIPK3sv2-

73019 

73026 

pL1M-

pCIPK3::cCIPK3sv3-

73026 

pL1V-R2-

47811 

pL0M-PU-

CIPK3-73021 

pL0M-SC-

cCIPK3sv3-

73018 

pL0M-T-

CIPK3sv3-

73020 

73027 

pL1M-

p35S::cCIPK3sv2-

73027 

pL1V-R2-

47811 

pLOM-PU-

p35S(short)-

15058 

pL0M-SC-

cCIPK3sv2-

73017 

pL0M-T-

35S-1-

41414 

73028 

pL1M-

p35S::cCIPK3sv3-

73028 

pL1V-R2-

47811 

pLOM-PU-

p35S(short)-

15058 

pL0M-SC-

cCIPK3sv3-

73018 

pL0M-T-

35S-1-

41414 

73033 pL1M-pCIPK3::GFP-

73033 

pL1V-R2-

47811 

pL0M-PU-

CIPK3-73021 

pL0M-SC-

eGFP-

15112 

pL0M-T-

gCIPK3-

73032 
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Table B3: GoldenGate Level 2 modules. 

ENSA 

ID 

ENSA Standard 

name 

Backbone 

vector 
Position 1 Position 2 Position 3 

73034 

pL2B-

CIPK3::CIPK3-

73034 

pL2V-HYG-

15027 

HYG 

pL1M-

pCIPK3::gCIPK3-

73029 

pL1M-ELE-2-

41744 

73035 
pL2B-35S::CIPK3-

73035 

pL2V-HYG-

15027 

HYG 

pL1M-

p35S::gCIPK3-

73024 

pL1M-ELE-2-

41744 

73036 

pL2B-

CIPK3::CIPK3sv2-

73036 

pL2V-HYG-

15027 

HYG 

pL1M-

pCIPK3::cCIPK3sv2

-73025 

pL1M-ELE-2-

41744 

73037 

pL2B-

CIPK3::CIPK3sv3-

73037 

pL2V-HYG-

15027 

HYG 

pL1M-

pCIPK3::cCIPK3sv3

-73026 

pL1M-ELE-2-

41744 

73038 

pL2B-

35S::CIPK3sv2-

73038 

pL2V-HYG-

15027 

HYG 

pL1M-

p35S::cCIPK3sv2-

73027 

pL1M-ELE-2-

41744 

73039 

pL2B-

35S::CIPK3sv3-

73039 

pL2V-HYG-

15027 

HYG 

pL1M-

p35S::cCIPK3sv3-

73028 

pL1M-ELE-2-

41744 

73040 
pL2B-CIPK3::GFP-

73040 

pL2V-HYG-

15027 

HYG 
pL1M-

pCIPK3::GFP-73033 

pL1M-ELE-2-

41744 

 

 

 

http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC15027
http://project.ensa.ac.uk/databases/constructs/EC41744
http://project.ensa.ac.uk/databases/constructs/EC41744


233 
 

 

Appendix C: Chapter 3 supplemental 

figures 

 

  



234 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

-5 0 5 10 15 20 25 30

∆
F
/F

 

Time post-settling (min)

35S:GCAMP3 control 35S:GCAMP3 aphid

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

-5 0 5 10 15 20 25 30

∆
F
/F

 

Time post-settling (min)

SUC2:GCAMP3 control SUC2:GCAMP3 aphid

p<0.05

A)

B)

35S::GCAMP3 aphid35S::GCAMP3 control

SUC2::GCAMP3 control SUC2::GCAMP3 aphid

Figure C1: Normalised GFP fluorescence (∆F/F) in the midrib, systemic to the

feeding site, in 35S::GCAMP3 and SUC2::GCAMP3 Arabidopsis upon Myzus

persicae settling. A) 35S::GCAMP3 control (no aphid treatment) vs aphid

treatment. B) SUC2::GCAMP3 control (no aphid treatment) vs aphid treatment. C)

35S::GCAMP3 aphid treatment vs SUC2::GCAMP3 aphid treatment. Error bars

represent SEM (35S::GCAMP3 n=31, SUC2::GCAMP3 n=34). Grey shading indicates

significant difference between treatments (Student’s t-test within GLM at p<0.05).

Experiment conceived and designed by T.V. and conducted by T.V. and M.A.

Figure C1: Normalised GFP fluorescence (∆F/F) in the midrib, systemic to the feeding site, 

in 35S::GCAMP3 and SUC2::GCAMP3 Arabidopsis upon M. persicae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) SUC2::GCAMP3 control 

(no aphid treatment) vs aphid treatment. Error bars represent SEM (35S::GCAMP3 n=31, 

SUC2::GCAMP3 n=34). Grey shading indicates significant difference between treatments 

(Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and 

conducted by T.V. and M.A. 
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Figure C2: Normalised GFP fluorescence (∆F/F) in the lateral tissue, systemic to

the feeding site, in 35S::GCAMP3 and SUC2::GCAMP3 Arabidopsis upon Myzus

persicae settling. A) 35S::GCAMP3 control (no aphid treatment) vs aphid

treatment. B) SUC2::GCAMP3 control (no aphid treatment) vs aphid treatment. C)

35S::GCAMP3 aphid treatment vs SUC2::GCAMP3 aphid treatment. Error bars

represent SEM (35S::GCAMP3 n=31, SUC2::GCAMP3 n=34). Grey shading indicates

significant difference between treatments (Student’s t-test within GLM at p<0.05).

Experiment conceived and designed by T.V. and conducted by T.V. and M.A.

Figure C2: Normalised GFP fluorescence (∆F/F) in the lateral tissue, systemic to the 

feeding site, in 35S::GCAMP3 and SUC2::GCAMP3 Arabidopsis upon M. persicae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) SUC2::GCAMP3 control 

(no aphid treatment) vs aphid treatment. Error bars represent SEM (35S::GCAMP3 n=31, 

SUC2::GCAMP3 n=34). Grey shading indicates significant difference between treatments 

(Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and 

conducted by T.V. and M.A. 
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Figure C3: Normalised GFP fluorescence (∆F/F) in the midrib, systemic to the feeding site, 

in 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 Arabidopsis upon M. persicae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x bak1-5 

control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 

35S::GCAMP3 x bak1-5 aphid treatment. Bars represent SEM (35S::GCAMP3 n=30, 35S::GCAMP3 

x bak1-5 n=30).  Experiment conceived and designed by T.V. and conducted by T.V. and M.A. 
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Figure C4: Normalised GFP fluorescence (∆F/F) in the lateral tissue, systemic to the 

feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 Arabidopsis upon M. persciae 

settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x bak1-5 

control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 

35S::GCAMP3 x bak1-5 aphid treatment. Bars represent SEM (35S::GCAMP3 n=30, 35S::GCAMP3 

x bak1-5 n=30). Experiment conceived and designed by T.V. and conducted by T.V. and M.A. 
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Figure C5: Normalised GFP fluorescence (∆F/F) around the midrib, systemic to the feeding 

site, in 35S::GCAMP3 Arabidopsis upon M. persicae settling. 

A) No aphid control vs dsGFP aphid treatment. B) No aphid control vs dsMp10 aphid 

treatment. C) dsGFP aphid treatment vs dsMp10 aphid treatment. Bars represent SEM (dsGFP 

n=34, dsMp10 n=34). Grey shading indicates significant difference between treatments 

(Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and 

conducted by T.V. and M.A. 
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Figure C6: Normalised GFP fluorescence (∆F/F) around the lateral tissue, systemic to the 

feeding site, in 35S::GCAMP3 Arabidopsis upon M. persicae settling. 

A) No aphid control vs dsGFP aphid treatment. B) No aphid control vs dsMp10 aphid 

treatment. C) dsGFP aphid treatment vs dsMp10 aphid treatment. Bars represent SEM (dsGFP 

n=34, dsMp10 n=34). Grey shading indicates significant difference between treatments 

(Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and 

conducted by T.V. and M.A.  



244 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0

0.5

1

1.5

2

2.5

1 2

N
u
m

b
e
r 

o
f 

se
tt

le
s 

(>
5
m

in
)

0

0.5

1

1.5

2

2.5

1 2

N
u
m

b
e
r 

o
f 

se
tt

le
s 

(<
5
m

in
)

0

1

2

3

4

1 2

T
o
ta

l 
N

u
m

b
e
r 

o
f 

se
tt

le
s

0

1

2

3

4

5

6

7

8

9

10

1 2

T
im

e
 u

n
ti

l 
fi

rs
t 

se
tt

le
 (

m
in

)

0

5

10

15

20

25

30

35

1 2

T
im

e
 s

e
tt

le
d
 f

o
r 

im
a
g
in

g
 (

m
in

)

A) B) C)

D)

d
sG

F
P

d
sM

p
1
0

d
sG

F
P

d
sM

p
1
0

d
sG

F
P

d
sM

p
1
0

d
sG

F
P

d
sM

p
1
0

d
sG

F
P

d
sM

p
1
0

E)

Figure C7: Settling behaviour of dsGFP and dsMp10 Myzus persicae on

35S::GCAMP3 leaves. A) Number of settles greater than 5 minutes in length. B)

Number of settles less than 5 minutes in length. C) Total number of settles. D)

Time before first settle over 5 minutes in length. E) Time aphid spent settled

during a settling event used to measure GCAMP3 fluorescence. Bars represent  SE

(dsGFP n=34, dsMp10 n=34). Experiment conceived and designed by T.V. and

conducted by T.V. and M.A.

Figure C7: Settling behaviour of dsGFP and dsMp10 M. persicae on 35S::GCAMP3 leaves. 

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in 

length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) Time 

aphid spent settled during a settling event used to measure GCAMP3 fluorescence. Bars 

represent SEM (dsGFP n=34, dsMp10 n=34). Experiment conceived and designed by T.V. and 

conducted by T.V. and M.A. 
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Figure D3: Normalised florescence (∆F/F) around the aphid feeding site at 7

mins post-settling in 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 leaves. Raw ∆F/F

value for each leaf sample plotted. Experiment conceived and designed by T.V.

and conducted by T.V. and J.C..

35S::GCAMP3 x tpc1-2

35S::GCAMP3

Figure D1: Normalised florescence (∆F/F) around the M. persicae feeding site at 7 mins 

post-settling in 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 leaves. 

Raw ∆F/F value for each leaf sample plotted. Experiment conceived and designed by T.V. and 

conducted by T.V. and J.C. 
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Figure D2: Normalised GFP fluorescence (∆F/F) in the midrib, systemic to the feeding site, 

in 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 Arabidopsis upon M. persicae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x tpc1-2 

control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 

35S::GCAMP3 x tpc1-2 aphid treatment. Bars represent SEM (35S::GCAMP3 n=27, 35S::GCAMP3 

x tpc1-2 n=29). Grey shading indicates significant difference between treatments (Student’s 

t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and conducted by 

T.V. and J.C. 
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Figure D3: Normalised GFP fluorescence (∆F/F) in the lateral tissue, systemic to the 

feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 Arabidopsis upon M. persicae 

settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x tpc1-2 

control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 

35S::GCAMP3 x tpc1-2 aphid treatment. Bars represent SEM (35S::GCAMP3 n=27, 35S::GCAMP3 

x tpc1-2 n=29). Grey shading indicates significant difference between treatments (Student’s 

t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and conducted by 

T.V. and J.C. 



251 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

1 2

N
u
m

b
e
r 

o
f 

se
tt

le
s 

(>
5
m

in
)

0

0.5

1

1.5

2

2.5

1 2
N

u
m

b
e
r 

o
f 

se
tt

le
s 

(<
5
m

in
)

0

1

2

3

4

1 2

T
o
ta

l 
N

u
m

b
e
r 

o
f 

se
tt

le
s

0

1

2

3

4

5

6

7

1 2

T
im

e
 u

n
ti

l 
fi

rs
t 

se
tt

le
 (

m
in

)

0

5

10

15

20

25

30

35

1 2

T
im

e
 s

e
tt

le
d
 f

o
r 

im
a
g
in

g
 (

m
in

)

A) B) C)

3
5
S
::

G
C
A
M

P
3

3
5
S
::

G
C
A
M

P
3

x
 

tp
c1

-2

3
5
S
::

G
C
A
M

P
3

3
5
S
::

G
C
A
M

P
3

x
 

tp
c1

-2

3
5
S
::

G
C
A
M

P
3

3
5
S
::

G
C
A
M

P
3

x
 

tp
c1

-2

3
5
S
::

G
C
A
M

P
3

3
5
S
::

G
C
A
M

P
3

x
 

tp
c1

-2

3
5
S
::

G
C
A
M

P
3

3
5
S
::

G
C
A
M

P
3

x
 

tp
c1

-2

E)

Figure D4: Settling behaviour of Myzus persicae on 35S::GCAMP3 and

35S::GCAMP3 x tpc1-2 leaves. A) Number of settles greater than 5 minutes in

length. B) Number of settles less than 5 minutes in length. C) Total number of

settles. D) Time before first settle over 5 minutes in length. E) Time aphid spent

settled during a settling event used to measure GCAMP3 fluorescence. Bars

represent SEM (35S::GCAMP3 n=28, 35S::GCAMP3 x tpc1-2 n=29). Experiment

conceived and designed by T.V. and conducted by T.V. and J.C.

D)

Figure D4: Settling behaviour of M. persicae on 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 

leaves. 

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in 

length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) Time 

aphid spent settled during a settling event used to measure GCAMP3 fluorescence. Bars 

represent SEM (35S::GCAMP3 n=28, 35S::GCAMP3 x tpc1-2 n=29). Experiment conceived and 

designed by T.V. and conducted by T.V. and J.C. 
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Figure D5: Normalised GFP fluorescence (∆F/F) in the midrib, systemic to the feeding site, 

in 35S::GCAMP3 and 35S::GCAMP3 x 35S::TPC1 5.6 Arabidopsis upon M. persicae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x 

35S::TPC1 5.6 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid 

treatment vs 35S::GCAMP3 x 35S::TPC1 5.6 aphid treatment. Bars represent SEM 

(35S::GCAMP3 n=30, 35S::GCAMP3 x 35S::TPC1 5.6 n=29). Experiment conceived and designed 

by T.V. and conducted by T.V. and M.A. 
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Figure D6: Normalised GFP fluorescence (∆F/F) in the lateral tissue, systemic to the 

feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x 35S::TPC1 5.6 Arabidopsis upon M. 

persicae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x 

35S::TPC1 5.6 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid 

treatment vs 35S::GCAMP3 x 35S::TPC1 5.6 aphid treatment. Bars represent SEM 

(35S::GCAMP3 n=30, 35S::GCAMP3 x 35S::TPC1 5.6 n=29). Experiment conceived and designed 

by T.V. and conducted by T.V. and M.A. 
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Figure D7: Settling behaviour of Myzus persicae on 35S::GCAMP3 and

35S::GCAMP3 x 35S::TPC1 5.6 leaves. A) Number of settles greater than 5 minutes

in length. B) Number of settles less than 5 minutes in length. C) Total number of

settles. D) Time before first settle over 5 minutes in length. E) Time aphid spent

settled during a settling event used to measure GCAMP3 fluorescence. Bars

represent SEM (35S::GCAMP3 n=30, 35S::GCAMP3 x 35S::TPC1 5.6 n=29). Experiment

conceived and designed by T.V. and conducted by T.V. and J.C.
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Figure D7: Settling behaviour of M. persicae on 35S::GCAMP3 and 35S::GCAMP3 x 

35S::TPC1 5.6 leaves. 

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in 

length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) Time 

aphid spent settled during a settling event used to measure GCAMP3 fluorescence. Bars 

represent SEM (35S::GCAMP3 n=30, 35S::GCAMP3 x 35S::TPC1 5.6 n=29). Experiment 

conceived and designed by T.V. and conducted by T.V. and J.C. 
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Figure D8: Settling behaviour of M. persicae on 35S::GCAMP3 and 35S::GCAMP3

x fou2 leaves. A) Number of settles greater than 5 minutes in length. B) Number of

settles less than 5 minutes in length. C) Total number of settles. D) Time before

first settle over 5 minutes in length. E) Time aphid spent settled during a settling

event used to measure GCAMP3 fluorescence. Bars represent SEM (35S::GCAMP3

n=28, 35S::GCAMP3 x fou2 n=26). Experiment conceived and designed by T.V. and

conducted by T.V. and M.A.

D)

Figure D8: Settling behaviour of M. persicae on 35S::GCAMP3 and 35S::GCAMP3 x fou2 

leaves. 

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in 

length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) Time 

aphid spent settled during a settling event used to measure GCAMP3 fluorescence. Bars 

represent SEM (35S::GCAMP3 n=28, 35S::GCAMP3 x fou2 n=26). Experiment conceived and 

designed by T.V. and conducted by T.V. and M.A. 
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Figure D11: Normalised florescence (∆F/F) around the aphid feeding site at 7

mins post-settling in 35S::GCAMP3 and 35S::GCAMP3 x glr3.3/3.6 leaves. Raw

∆F/F value for each leaf sample plotted. Experiment conceived and designed by

T.V. and conducted by T.V. and M.A.
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Figure D9: Normalised florescence (∆F/F) around the M. persicae feeding site at 7 mins 

post-settling in 35S::GCAMP3 and 35S::GCAMP3 x glr3.3/3.6 leaves.  

Raw ∆F/F value for each leaf sample plotted. Experiment conceived and designed by T.V. and 

conducted by T.V. and M.A.  
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Figure D10: Normalised GFP fluorescence (∆F/F) in the midrib, systemic to the feeding 

site, in 35S::GCAMP3 and 35S::GCAMP3 x glr3.3/glr3.6 Arabidopsis upon M. persicae 

settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x 

glr3.3/glr3.6 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid 

treatment vs 35S::GCAMP3 x glr3.3/glr3.6 aphid treatment. Bars represent SEM (35S::GCAMP3 

n=34, 35S::GCAMP3 x glr3.3/glr3.6 n=37). Grey shading indicates significant difference 

between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and 

designed by T.V. and conducted by T.V. and M.A. 
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Figure D11: Normalised GFP fluorescence (∆F/F) in the lateral tissue, systemic to the 

feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x glr3.3/glr3.6 Arabidopsis upon M. 

persciae settling. 

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x 

glr3.3/glr3.6 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid 

treatment vs 35S::GCAMP3 x glr3.3/glr3.6 aphid treatment. Bars represent SEM (35S::GCAMP3 

n=34, 35S::GCAMP3 x glr3.3/glr3.6 n=37). Grey shading indicates significant difference 

between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and 

designed by T.V. and conducted by T.V. and M.A. 
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Figure YY Settling behaviour of Myzus persicae on 35S::GCAMP3 and

35S::GCAMP3 x 35S::TPC1 5.6 leaves.
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Figure D12: Settling behaviour of M. persicae on 35S::GCAMP3 and

35S::GCAMP3 x glr3.3/3.6 leaves. A) Number of settles greater than 5 minutes in

length. B) Number of settles less than 5 minutes in length. C) Total number of

settles. D) Time before first settle over 5 minutes in length. E) Time aphid spent

settled during a settling event used to measure GCAMP3 fluorescence. Bars

represent SEM (35S::GCAMP3 n=33, 35S::GCAMP3 x glr3.3/3.6 n=33). Experiment

conceived and designed by T.V. and conducted by T.V. and M.A.

D)

Figure D12: Settling behaviour of M. persicae on 35S::GCAMP3 and 35S::GCAMP3 x 

glr3.3/3.6 leaves. 

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in 

length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) 

Time aphid spent settled during a settling event used to measure GCAMP3 fluorescence. 

Bars represent SEM (35S::GCAMP3 n=33, 35S::GCAMP3 x glr3.3/3.6 n=33). Experiment 

conceived and designed by T.V. and conducted by T.V. and M.A. 
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Figure E1: Full gel of CIPK3 candiate mutant RT-PCR. PCR conducted using

CIPK3-specific primers, and TPC1 as a control gene (AtTPC1-F2 & R2, Table 2.4).

Figure E1: Full electrophoresis gel of CIPK3 candidate mutant RT-PCR 

PCR conducted using CIPK3-specific primers, and TPC1 as a control gene (AtTPC1-F2 & R2, 

Table 2.4). 
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