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ABSTRACT 

	

A	major	 limitation	to	plant	growth	 is	 the	restricted	access	 to	nutrients	 in	 the	soil.	To	

improve	nutrient	acquisition,	 the	majority	of	 land	plants	enter	a	beneficial	 symbiosis	

with	arbuscular	mycorrhizal	(AM)	fungi.	The	accommodation	of	fungal	hyphae	in	roots	

requires	 the	 extensive	 transcriptional	 reprogramming	 of	 host	 cells.	 Several	 GRAS‐

domain	proteins,	including	NSP1	(NODULATION	SIGNALLING	PATHWAY	1),	NSP2,	and	

RAM1	 (REQUIRED	 FOR	 ARBUSCULAR	 MYCORRHIZATION	 1),	 have	 emerged	 as	

important	transcriptional	regulators	during	mycorrhization.	Interaction	studies	suggest	

that	these	proteins	form	multicomponent	complexes,	raising	the	question	whether	they	

regulate	similar	or	different	mycorrhizal	processes.	Here,	the	functions	of	NSP1,	NSP2	

and	 RAM1	 during	 AM	 development	 were	 investigated	 by	 detailed	 phenotypic	 and	

transcriptional	analyses	of	the	corresponding	loss‐of‐function	mutants.		

Global	 gene	 expression	 profiling	 of	 nsp1‐1	 revealed	 that	 NSP1	 is	 required	 for	 the	

expression	 of	 a	 large	 number	 of	 genes	 involved	 in	 strigolactone	 and	 gibberellin	

biosynthesis	at	the	pre‐contact	stage	of	AM	development.	Strigolactones	are	known	to	

attract	 the	 fungus	 to	 the	 root.	 In	 line	 with	 this,	 the	 quantification	 of	 mycorrhizal	

structures	 showed	 a	 delay	 in	 mycorrhization	 in	 nsp1‐1.	 Transcriptional	 profiling	

confirmed	 that	 the	 expression	 of	 the	 majority	 of	 mycorrhizal‐induced	 genes	 was	

delayed,	but	not	abolished	in	nsp1‐1,	suggesting	that	NSP1	only	has	a	minor	role	in	the	

transcriptional	regulation	once	the	contact	between	the	fungus	and	the	roots	has	been	

established.	Unlike	NSP1,	RAM1	plays	a	critical	role	in	the	transcriptional	regulation	at	

later	 stages	 of	 AM	 symbiosis.	 Mycorrhization	 was	 strongly	 impaired	 in	 ram1‐1,	 and	

transcriptional	profiling	revealed	 that	RAM1	 is	essential	 for	 the	expression	of	several	

genes	 involved	 in	 arbuscule	 development	 and	 the	 nutrient	 exchange	 between	 the	

symbionts.	 Meanwhile,	 the	 exact	 function	 of	 NSP2	 remains	 unclear,	 as	 no	 effect	 on	

mycorrhization	was	observed	in	nsp2‐2	under	the	conditions	tested	here.	These	findings	

suggest	 that	NSP1,	NSP2	 and	RAM1	 play	 largely	 different	 roles	 in	 the	 transcriptional	

regulation	during	AM	development.		
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CHAPTER	1 

General introduction 

	

	

	

	

	

1.1 Symbioses between plants and microbes 

1.1.1 The arbuscular mycorrhizal symbiosis 

Plants	have	developed	many	sophisticated	strategies	 to	ensure	access	 to	nutrients	 in	

their	environment.	One	successful	approach	to	efficiently	acquire	essential	macro‐	and	

micronutrients	 is	 by	 entering	mutually	 beneficial	 symbioses	with	 soil	microbes.	 The	

oldest	and	most	commonly	established	symbiosis	in	plants	is	the	arbuscular	mycorrhizal	

(AM)	symbiosis,	which	is	formed	by	80‐90%	of	all	land	plant	species	with	fungi	of	the	

phylum	 Glomeromycota	 (Smith	 and	 Read,	 2008).	 In	 the	 AM	 symbiosis,	 the	 obligate	

biotrophic	fungus	receives	fixed	carbon	from	the	plant	and	in	return	delivers	water	and	

mineral	nutrients	 from	the	soil	 to	 the	roots	 (Smith	and	Smith,	2011).	Mycorrhization	

greatly	improves	the	nutrient	status	of	the	plant,	and	there	is	evidence	for	substantial	

amounts	of	phosphate,	nitrogen,	and	sulphur	being	transported	to	mycorrhized	roots	

(Tanaka	and	Yano,	2005;	Leigh	et	al.,	2009;	Allen	and	Shachar‐Hill	2009;	Casieri	et	al.,	

2012).	Phosphate	in	particular	is	required	in	large	quantities	by	the	plant	and,	together	
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with	nitrogen,	is	often	a	limiting	nutrient	for	plant	growth	(Agren	et	al.,	2012).	Similarly,	

large	amounts	of	fixed	carbon	are	transported	from	the	plant	to	the	fungus.	It	has	been	

estimated	 that	 up	 to	 20%	 of	 the	 plant	 photosynthesis	 products	 are	 consumed	 by	

mycorrhizal	fungi	(Bago	et	al.,	2000).	Thus,	the	AM	symbiosis	plays	a	key	role	in	plant	

nutrition	and	the	global	carbon	cycle	(Harrison,	2005).	

During	 AM	 development,	 fungal	 hyphae	 colonize	 plant	 roots	 and	 form	 an	 intimate	

association	 with	 host	 cells	 by	 penetrating	 the	 cell	 lumen	 and	 developing	 highly	

branched,	tree‐like	structures	called	arbuscules.	Each	hyphal	branch	is	surrounded	by	a	

plant‐derived	membrane,	which	excludes	the	fungal	hyphae	from	the	plant	cytoplasm.	

Arbuscules	 are	 thought	 to	be	 the	 site	 of	 nutrient	 transfer	between	 the	plant	 and	 the	

fungus	 and	 therefore	 play	 a	 critical	 role	 in	 AM	 symbiosis	 (Harrison,	 2012).	 Fossil	

evidence	from	the	Rhynie	chert	in	Scotland	shows	that	arbuscules	were	already	present	

in	some	of	 the	earliest	 land	plants,	and	 it	has	been	proposed	that	 the	symbiosis	with	

mycorrhizal	fungi	was	instrumental	in	enabling	plants	to	colonize	land	450	million	years	

ago	(Remy	et	al.,	1994;	Parniske,	2008;	Humphreys	et	al.,	2010).	In	line	with	this,	several	

key	 components	 of	 the	 signalling	 pathway	 required	 for	 the	 establishment	 of	 AM	

symbiosis	were	found	to	be	conserved	in	charophytes,	the	closest	living	relatives	to	the	

algal	ancestors	of	land	plants,	suggesting	that	land	plant	ancestors	were	pre‐adapted	for	

AM	symbiosis	(Delaux	et	al.,	2015).	Thus,	the	ability	to	enter	a	symbiosis	with	arbuscular	

mycorrhizal	fungi	is	likely	to	have	emerged	once	very	early	during	the	evolution	of	land	

plants	and	has	since	been	retained	in	most	land	plant	lineages	(Parniske,	2008).	Some	

exceptions	 exist,	 including	 the	 model	 plant	 Arabidopsis	 thaliana	 and	 most	 other	

members	of	 the	Brassicales,	which	have	 lost	 the	ability	 to	 establish	a	 symbiosis	with	

mycorrhizal	fungi,	and	this	correlates	with	the	loss	of	AM‐specific	genes	in	these	non‐

host	species	(Delaux	et	al.,	2014).		

	

1.1.2 The root‐nodule symbiosis 

A	more	recently	evolved	symbiosis	that	has	been	studied	extensively	in	the	past	decades	

is	the	association	of	plants	of	the	orders	Fabales,	Fagales,	Cucurbitales,	and	Rosales	with	

nitrogen‐fixing	bacteria	of	the	family	Rhizobiacea	or	the	genus	Frankia.	This	symbiosis	

is	commonly	known	as	the	root‐nodule	symbiosis,	and	a	key	feature	of	this	association	

is	the	de	novo	formation	of	unique	root	organs	called	nodules,	which	accommodate	the	

bacterial	symbiont	and	provide	a	low‐oxygen	environment	for	efficient	nitrogen	fixation	
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(Oldroyd	and	Downie,	2004).	In	this	process,	the	bacterial	enzyme	nitrogenase	converts	

atmospheric	nitrogen	 into	 ammonium,	which	 can	be	used	by	 the	plant	 as	 a	 nitrogen	

source.	 In	 return,	 the	 plant	 delivers	 fixed	 carbon,	 mostly	 in	 the	 form	 of	 malate	 and	

succinate,	to	the	nitrogen‐fixing	bacteria	(Prell	and	Poole,	2006).		

In	 most	 legumes,	 including	 the	 two	 model	 species	 Medicago	 truncatula	 and	 Lotus	

japonicus,	the	infection	of	root	cells	by	rhizobia	is	initiated	by	the	attachment	of	bacteria	

to	growing	root	hairs.	The	bacterial	cells	are	entrapped	within	an	infection	pocket	by	

root	hair	curling,	and	an	infection	thread	is	formed	that	guides	the	dividing	bacteria	to	

the	base	of	the	root	hair	cell	and	into	the	cortical	layers	of	the	root.	Simultaneous	to	the	

formation	of	infection	threads	in	root	hairs,	cortical	cells	start	to	divide	to	initiate	the	

formation	of	nodules,	which	are	infected	and	inhabited	by	the	bacteria.	Similar	to	the	

fungal	hyphae	in	the	AM	symbiosis,	the	bacterial	cells	are	always	surrounded	by	a	plant‐

derived	membrane,	excluding	them	from	the	cytoplasm	of	the	plant	cell	(Oldroyd	and	

Downie,	2004).	

Based	on	fossil	evidence,	the	evolution	of	the	root‐nodule	symbiosis	has	been	dated	back	

to	 65	 million	 years	 ago,	 and	 it	 is	 thought	 that	 nodulation	 evolved	 several	 times	

independently	in	members	of	the	Fabales,	Fagales,	Cucurbitales,	and	Rosales	(Kistner	and	

Parniske,	2002).	There	are	several	striking	commonalities	between	the	AM	symbiosis	

and	the	root‐nodule	symbiosis.	Although	the	end	results	of	the	infection	of	plant	roots	

by	the	two	symbionts	are	very	different,	the	infection	process	itself	requires	many	of	the	

same	developmental	 and	 signalling	 processes	 (Kistner	 and	Parniske,	 2002;	 Parniske,	

2008).	Based	on	these	observations,	it	has	been	proposed	that	the	root‐nodule	symbiosis	

evolved	by	recruiting	the	symbiotic	programme	required	for	AM	symbiosis	(Parniske,	

2008;	Oldroyd,	2013).	

	

1.2 The establishment of AM symbiosis in plant roots 

AM	development	is	initiated	by	the	reciprocal	exchange	of	signalling	molecules	between	

the	 plant	 and	mycorrhizal	 fungi	 in	 the	 soil,	 and	 is	 followed	 by	 the	 growth	 of	 fungal	

hyphae	towards	the	root,	where	they	attach	to	the	root	epidermis	by	forming	specialised	

attachment	 structures	 called	 hyphopodia.	 After	 the	 entry	 of	 fungal	 hyphae	 through	

epidermal	 cells	 into	 the	 underlying	 root	 cell	 layers,	 there	 are	 two	 different	 types	 of	

fungal	 colonization	 strategies,	 although	 intermediate	 forms	 of	 these	 strategies	 often	
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occur	 (Dickson,	2004).	The	Arum‐type	 colonization	 involves	 the	 spreading	of	hyphae	

between	cortical	cells	before	they	penetrate	an	inner	cortical	cell	to	form	a	terminally	

differentiated	 arbuscule.	 In	 the	 Paris‐type	 colonization,	 hyphae	 spread	 through	

intracellular	passage	of	cortical	cells,	where	hyphal	coils	or	arbuscules	are	formed.	The	

colonization	of	roots	by	Glomus	species	is	also	accompanied	by	the	appearance	of	lipid‐

rich	vesicles	in	the	apoplast	of	plant	roots,	which	have	been	proposed	to	serve	as	energy	

storage	units	for	the	fungus	(Dickson,	2004).	

The	 colonization	 of	 plant	 roots	 by	 fungal	 hyphae	 is	 a	 complex	 and	 tightly	 controlled	

process.	Until	recently,	no	genetic	tools	for	AM	fungi	were	available,	and	thus	very	little	

is	known	about	the	fungal	molecular	mechanisms	that	orchestrate	the	development	of	

mycorrhizal	 infection	 structures	 inside	 plant	 roots.	 On	 the	 host	 plant	 side,	 however,	

research	 in	 recent	 years	 has	 unveiled	 many	 of	 the	 signalling	 and	 cellular	 processes	

involved	 in	 the	 accommodation	 of	 the	 fungus	 (Parniske,	 2004;	 Oldroyd	 et	 al.,	 2009;	

Harrison,	2012;	Gutjahr	and	Parniske,	2013).	These	findings	support	the	idea	that	the	

plant	cells	actively	guide	fungal	colonization	of	the	root	(Parniske,	2004;	Oldroyd	et	al.,	

2009).		

	

1.2.1 Exchange of diffusible signals at the pre‐symbiotic stage of AM symbiosis 

The	 first	 stage	 of	 AM	 development	 involves	 the	 exchange	 of	 diffusible	 signalling	

molecules	between	the	two	symbiotic	partners	prior	to	their	physical	contact,	a	process	

that	enables	the	mutual	recognition	of	the	plant	and	the	fungus	(Gutjahr	and	Parniske,	

2013;	Nadal	and	Paszkowski,	2013;	Bonfante	and	Genre,	2015).	Plant‐derived	signals	

induce	fungal	spore	germination	and	hyphal	branching,	thereby	attracting	fungal	hyphae	

to	 the	 roots.	 In	 return,	 mycorrhizal	 fungi	 release	 signalling	 molecules	 that	 induce	 a	

symbiotic	response	in	plant	roots.	This	reciprocal	signal	exchange	plays	an	important	

role	at	the	pre‐contact	stage	of	the	symbiosis,	but	is	likely	to	also	take	place	during	the	

intraradical	colonization	by	mycorrhizal	fungi.	

	

1.2.1.1  Plant‐derived signals 

Under	nutrient‐starved	conditions,	in	particular	when	phosphorus	levels	in	the	soil	are	

limiting,	 plant	 roots	 synthesise	 and	 release	 strigolactones	 into	 the	 rhizosphere	

(Yoneyama	et	al.,	2007;	López‐Ráez	and	Bouwmeester	2008;	Liu	et	al.,	2011;	Foo	et	al.,	
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2013).	These	plant	hormones	were	originally	discovered	due	to	their	ability	to	induce	

seed	germination	of	parasitic	plants	of	the	genus	Striga	(Cook	et	al.,	1966).	It	was	only	

much	later	that	strigolactones	were	also	found	to	induce	spore	germination	and	hyphal	

branching	of	AM	fungi	(Akiyama	et	al.,	2005;	Besserer	et	al.,	2006).	Strigolactones	trigger	

multiple	 responses	 in	 mycorrhizal	 fungi,	 including	 the	 activation	 of	 the	 oxidative	

metabolism,	the	division	of	mitochondria,	and	the	release	of	 fungal‐derived	symbiotic	

signalling	molecules	(Besserer	et	al.,	2006,	2008;	Genre	et	al.,	2013;	Tsuzuki	et	al.,	2016).	

Strigolactones	are	rapidly	hydrolysed	once	released	into	the	rhizosphere	(Akiyama	and	

Hayashi,	2006),	and	it	is	thought	that	the	resulting	steep	concentration	gradient	provides	

a	positional	cue	for	AM	fungi	(Nadal	and	Paszkowski,	2013;	Ruyter‐Spira	et	al.,	2013).	It	

is	 currently	unclear	how	strigolactones	are	perceived	by	AM	 fungi,	however,	 live‐cell	

imaging	showed	that	strigolactones	induce	rapid	and	transient	changes	in	intracellular	

calcium	 levels	 in	 fungal	hyphae,	 suggesting	 that	calcium	signalling	plays	a	role	 in	 the	

perception	of	strigolactones	by	mycorrhizal	fungi	(Moscatiello	et	al.,	2014).	In	addition	

to	 their	 role	 in	 inducing	 hyphal	 growth	 of	 various	 fungi,	 strigolactones	 also	 play	

important	roles	as	endogenous	plant	hormones	in	the	regulation	of	plant	development,	

including	root	and	shoot	architecture	(Al‐Babili	and	Bouwmeester,	2015).		

Strigolactones	are	derived	 from	carotenoid	precursors,	and	several	genes	 involved	 in	

strigolactone	biosynthesis	have	been	identified	(Al‐Babili	and	Bowmeester,	2015).	For	

example,	an	iron‐binding	protein	encoded	by	D27	(DWARF27)	and	the	two	carotenoid	

cleavage	dioxygenases	CCD7	and	CCD8	have	been	found	to	be	required	for	the	late	steps	

of	strigolactone	biosynthesis	(Schwartz	et	al.,	2004;	Alder	et	al.,	2012).	 In	accordance	

with	a	role	of	strigolactones	in	AM	symbiosis,	silencing	of	CCD7	 in	tomato	results	in	a	

reduction	of	mycorrhizal	colonization	(Koltai	et	al.,	2010).	Similarly,	the	strigolactone‐

deficient	ccd8	mutant	of	Pisum	sativum	is	impaired	in	AM	symbiosis	(Gomez‐Roldan	et	

al.,	2008).	To	act	on	AM	fungi	in	the	rhizosphere,	strigolactones	have	to	be	exuded	after	

their	biosynthesis	in	root	tissues.	The	ABC	(ATP‐binding	cassette)	transporter	PDR1	in	

Petunia	hybrida	was	shown	to	be	required	for	the	export	of	strigolactones	from	root	cells	

(Kretzschmar	 et	 al.,	 2012).	 In	 pdr1	 loss‐of‐function	 mutants,	 the	 strigolactone	

orobanchol	is	not	released	from	roots	and	colonization	levels	by	mycorrhizal	fungi	are	

reduced,	confirming	that	the	exudation	of	strigolactones	plays	an	important	role	in	the	

establishment	of	AM	symbiosis.	

In	addition	to	strigolactones,	two	hydroxy	fatty	acids	from	carrot	root	exudates	are	able	

to	induce	hyphal	branching	of	the	AM	fungus	Gigaspora	gigantea	(Nagahashi	and	Douds,	
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2011).	 Furthermore,	 flavonoids	 have	 been	 proposed	 to	 stimulate	 hyphal	 growth	 of	

mycorrhizal	 fungi	(Bécard	et	al.,	1992).	However,	these	secondary	metabolites	do	not	

appear	to	be	essential	for	the	successful	establishment	of	the	symbiosis,	as	maize	plants	

deficient	in	flavonoid	production	do	not	show	a	reduction	in	fungal	colonization	(Bécard	

et	al.,	1995).	

Besides	the	hyphal	growth‐inducing	compounds	described	above,	cutin	monomers	have	

been	proposed	to	act	as	plant‐derived	signalling	molecules	to	the	fungus	to	promote	the	

formation	 of	 hyphopodia	 (Wang	 et	 al.,	 2012).	 RAM2	 (REQUIRED	 FOR	 ARBUSCULAR	

MYCORRHIZATION	 2),	 a	 glycerol‐3‐phosphate	 acyltransferase	 involved	 in	 cutin	

biosynthesis,	was	found	to	be	required	for	hyphopodium	formation.	In	line	with	this,	the	

external	application	of	cutin	monomers	restores	the	formation	of	hyphopodia	in	ram2	

roots	(Wang	et	al.,	2012).	It	is	currently	unclear	whether	these	cutin	monomers	solely	

have	a	signalling	function,	similar	to	strigolactones	and	shorter	chain	hydroxy	fatty	acids	

exuded	by	carrot	roots,	or	whether	they	also	play	a	structural	or	nutritional	role	for	the	

fungus.	

	

1.2.1.2  Fungal‐derived signals 

Following	 the	 perception	 of	 plant‐derived	 strigolactones,	 AM	 fungi	 release	 signalling	

molecules	that	are	recognised	by	the	plant	as	symbiotic	cues.	Exudates	from	germinated	

spores	of	AM	fungi	have	been	found	to	induce	a	number	of	different	responses	in	plant	

roots,	 including	the	induction	of	extensive	gene	expression	changes,	the	promotion	of	

root	 branching,	 the	 accumulation	 of	 starch,	 and	 the	 activation	 of	 rapid,	 nuclear‐

associated	calcium	oscillations	in	root	cells	(Kosuta	et	al.,	2003,	2008;	Oláh	et	al.,	2005;	

Navazio	et	al.,	2007;	Kuhn	et	al.,	2010;	Chabaud	et	al.,	2011;	Maillet	et	al.,	2011;	Bonfante	

and	Genre,	2015).	These	cellular,	metabolic,	and	developmental	changes	in	response	to	

diffusible	 fungal	signals	are	 thought	 to	prime	plant	cells	 for	 their	colonization	by	AM	

fungi.	For	a	long	time,	the	identity	of	these	so‐called	Myc‐factors	was	unknown.	In	an	

effort	to	purify	the	fungal‐derived	symbiotic	signalling	molecules,	a	mixture	of	sulphated	

and	non‐sulphated	lipochitooligosaccharides	(S‐LCOs	and	NS‐LCOs)	were	identified	that	

are	 able	 to	 induce	 the	 expression	 of	 the	 symbiotic	 gene	ENOD11	 and	 stimulate	 root	

branching	(Maillet	et	al.,	2011).	These	signalling	molecules	are	surprisingly	similar	 in	

their	structure	to	Nod	factors,	signalling	molecules	that	are	produced	and	released	by	

rhizobial	bacteria.	Both	S‐LCOs	and	NS‐LCOs	were	recently	shown	to	activate	symbiotic	

calcium	oscillations	 in	M.	 truncatula	 and	L.	 japonicus	 root	 epidermal	 cells	 (Sun	et	 al.,	
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2015).	In	addition	to	LCOs,	AM	fungi	produce	short‐chain	chitooligosaccharides	(COs)	

that	 were	 proposed	 to	 also	 be	 potential	 signalling	 molecules	 (Genre	 et	 al.,	 2013).	

Accordingly,	 it	 was	 found	 that	 short‐chain	 COs	 induce	 sustained	 nuclear	 calcium	

oscillations	in	root	epidermal	cells	of	several	plant	species	(Genre	et	al.,	2013;	Sun	et	al.,	

2015).	Notably,	short‐chain	COs	and	Myc‐LCOs	seem	to	trigger	a	calcium	response	only	

in	L.	japonicus	and	rice	atrichoblasts,	but	not	in	trichoblasts,	even	though	fungal	hyphae	

do	 induce	calcium	spiking	 in	 trichoblasts.	Only	when	COs	and	Myc‐LCOs	were	mixed,	

calcium	spiking	was	observed	in	rice	trichoblasts	(Sun	et	al.,	2015).	Thus,	the	individual	

fungal‐derived	signalling	molecules	seem	to	differ	 in	 their	ability	 to	elicit	a	symbiotic	

response,	depending	on	their	concentration,	 the	host	plant	species,	 the	root	cell	 type,	

and	their	combination	with	other	fungal	signals	(Sun	et	al.,	2015).	

	

1.2.2  Fungal infection of epidermal root cells 

The	 exchange	 of	 signalling	 molecules	 at	 the	 pre‐contact	 stage	 of	 AM	 symbiosis	 is	

followed	by	the	attachment	of	fungal	hyphae	to	the	epidermal	cells	of	plant	roots,	where	

the	hyphal	tips	differentiate	to	form	hyphopodia,	before	the	hyphae	enter	the	root.	The	

penetration	of	a	plant	cell	by	 fungal	hyphae	 involves	a	drastic	rearrangement	of	host	

cytoskeletal	structures	and	the	remodelling	of	organelles.	These	cellular	changes	were	

described	 in	 detail	 by	 Genre	 and	 colleagues,	 who	 studied	 the	 dynamics	 of	 the	 ER,	

microfilaments,	and	microtubules	during	hyphal	entry	of	epidermal	cells	using	live	cell	

microscopy	(Genre	et	al.,	2005).	Upon	fungal	attachment	to	an	epidermal	cell,	the	cell	

nucleus	rapidly	moves	to	the	site	of	hyphal	contact	before	migrating	across	the	cell	to	

the	 opposite	 side.	 Simultaneous	 to	 the	 nuclear	 movement	 away	 from	 the	 fungal	

attachment	 site,	 a	 highly	 specialised	 tunnel‐like	 cellular	 structure	 called	 the	 pre‐

penetration	apparatus	(PPA)	is	formed	(Genre	et	al.,	2005).	PPA	formation	is	achieved	

by	accumulation	of	a	dense	network	of	ER	cisternae,	actin	filaments,	and	microtubules.	

After	the	PPA	has	finished	assembling	and	spans	the	whole	width	of	the	cell,	the	fungal	

hypha	enters	the	cell	lumen	through	this	pre‐formed	cytoplasmic	bridge,	which	guides	

hyphal	growth	across	the	cell	on	a	pre‐defined	path	(Genre	et	al.,	2005).	Thus,	plant	cells	

actively	 prepare	 for	 their	 penetration	 by	 the	 fungus	 and	 guide	 the	 growth	 of	 fungal	

hyphae	through	the	cell	lumen.		



Chapter 1 – General introduction 
	

19	
	

1.2.3  Arbuscule development in inner cortical cells 

After	the	successful	entry	of	fungal	hyphae	through	the	epidermal	cell	layer,	they	spread	

inside	the	plant	roots	until	they	reach	the	inner	cortex,	where	arbuscules	are	formed.	

Although	 the	 fungus	 penetrates	 the	 cell	 wall	 to	 enter	 cortical	 cells,	 the	 host	 plasma	

membrane	does	not	 rupture.	 Instead,	 it	 expands	 to	envelop	 the	hyphal	branches	and	

forms	the	so	called	periarbuscular	membrane	(PAM),	which	separates	the	fungal	hyphae	

from	the	host	cytoplasm	(Figure	1.1,	Remy	et	al.,	1994;	Harrison,	2005).	Live	cell	imaging	

of	 the	 arbuscule	 and	 the	 surrounding	membrane	 has	 led	 to	 the	 identification	 of	 two	

different	 PAM	 domains,	which	 are	 defined	 based	 on	 their	 location	 and	 their	 protein	

composition	(Pumplin	and	Harrison,	2009).	The	trunk	domain	of	the	PAM	surrounds	the	

broad	 arbuscule	 trunk	 and	 contains	 proteins	 that	 are	 also	 present	 in	 the	 plasma	

membrane,	whereas	the	branch	domain	of	the	PAM	envelops	the	fine	hyphal	branches	

of	 the	arbuscule	and	harbours	a	 specialized	set	of	proteins	 that	mediate	 the	nutrient	

exchange	between	 the	plant	 and	 the	 fungus	 (Pumplin	 and	Harrison,	 2009).	The	 area	

between	the	PAM	and	the	fungal	hyphae	has	been	named	the	periarbuscular	space	(PAS)	

and	contains	amorphously	structured	plant	cell‐wall	material,	which	is	in	direct	contact	

with	the	fungal	cell	walls	surrounding	the	hyphae	(Balestrini	and	Bonfante,	2014).	The	

process	of	extensive	branching	of	the	fungal	hyphae	during	arbuscule	development	and	

the	simultaneous	expansion	of	 the	host	membrane	significantly	 increases	 the	contact	

surface	area	between	the	plant	and	the	fungus.	This	places	arbuscules	in	an	ideal	position	

to	mediate	the	efficient	exchange	of	nutrients	between	the	symbiotic	partners	(Parniske,	

2008;	Harrison,	2012;	Balestrini	and	Bonfante,	2014).	

Similar	 to	 the	 hyphal	 colonization	 of	 the	 epidermis,	 arbuscule	 development	 in	 inner	

cortical	cells	also	involves	the	fungal	penetration	of	the	cell	 lumen.	 It	 is	therefore	not	

surprising	that	analogous	cellular	rearrangements,	including	nuclear	migration	and	PPA	

formation,	 are	 observed	 during	 the	 early	 steps	 of	 arbuscule	 formation	 (Genre	 et	 al.,	

2008).	In	the	Arum‐type	colonization,	however,	the	fungal	hyphae	do	not	cross	the	inner	

cortical	cells	entirely	as	they	do	in	epidermal	and	outer	cortical	cells,	but	grow	towards	

the	 centre	 of	 the	 cell	 to	 terminally	 differentiate	 into	 arbuscules	 by	 extensive	

dichotomous	branching.	To	achieve	this,	the	nucleus	positions	itself	at	the	centre	of	the	

inner	cortical	cell,	where	the	PPA	connects	 it	with	 the	site	of	hyphal	contact	 to	allow	

hyphal	 growth	 and	 the	 formation	 of	 the	 broad	 arbuscule	 trunk.	 ER‐rich	 cytoplasm	

aggregates	at	spatially	restricted	sites	along	the	initial	arbuscule	trunk,	and	it	has	been	
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proposed	that	these	sites	of	aggregation	determine	where	lateral	branches	emerge	to	

form	 the	 branch	 domain	 of	 the	 arbuscule	 (Genre	 et	 al.,	 2008).	 After	 completion	 of	

arbuscule	 development,	 the	 cytoskeleton	 reorganizes	 to	 connect	 the	 fine	 arbuscule	

branches	(Genre	and	Bonfante,	1998;	Genre	et	al.,	2008).	In	addition,	components	of	the	

secretion	 pathway,	 including	 golgi	 stacks,	 trans‐golgi	 networks	 and	 multivesicular	

bodies,	accumulate	around	arbuscular	hyphae	(Genre	et	al.,	2008;	Pumplin	and	Harrison,	

2009).	

The	extensive	branching	of	hyphae	during	arbuscule	development	 is	accompanied	by	

the	formation	of	the	plant‐derived	PAM,	a	process	that	has	been	proposed	to	involve	the	

de	novo	synthesis	of	membranes	(Toth	and	Miller,	1984;	Pumplin	and	Harrison,	2009).	

In	 addition,	 PAM‐localised	 proteins,	 such	 as	 the	 phosphate	 transporters,	 have	 to	 be	

secreted	and	incorporated	into	the	new	membrane	to	achieve	the	specialised	membrane	

composition	 required	 for	 nutrient	 exchange	with	 the	 fungus	 (Alexander	 et	 al.,	 1989;	

Gianinazzi‐Pearson,	1996;	Harrison	et	al.,	2002).	The	accumulation	of	the	ER,	golgi	stacks	

and	the	trans‐golgi	network	around	the	arbuscule	branches	during	arbuscule	formation	

suggests	that	the	exocytotic	pathway	plays	a	significant	role	in	arbuscule	development	

(Genre	et	al.,	2012).	Several	studies	have	provided	further	evidence	for	the	importance	

of	exocytosis	during	the	formation	of	the	PAM.	Using	an	RNA	silencing	approach,	Ivanov	

and	 colleagues	 have	 demonstrated	 that	 two	 members	 of	 the	 exocytotic	 vesicle‐

associated	 membrane	 proteins	 (VAMPs),	 the	 two	 v‐SNARE	 proteins	 VAMP721d	 and	

VAMP721e,	 localize	 to	 the	 PAM	 and	 are	 indispensable	 for	 the	 proper	 formation	 of	

arbuscules	(Ivanov	et	al.,	2012).	Consistent	with	this,	the	t‐SNARE	protein	SYP132A	has	

recently	been	shown	to	be	important	for	PAM	development	(Pan	et	al.,	2016).	Moreover,	

the	exocyst	complex,	which	is	an	important	component	of	vesicle	trafficking,	has	been	

proposed	 to	 be	 involved	 in	 arbuscule	 development	 based	 on	 its	 localization	 around	

developing	arbuscule	branches	(Genre	2012).	In	accordance	with	this,	a	recent	study	by	

Zhang	and	colleagues	has	found	that	the	EXO70I	subunit	of	the	exocyst	is	required	for	

mycorrhization.	Plants	 carrying	 a	mutation	 in	EXO70I	are	not	 able	 to	 form	 the	 finely	

branched	 hyphae	 in	 the	 branch	 domain	 of	 arbuscules,	 resulting	 in	 an	 early	 arrest	 of	

arbuscule	 development	 and	 in	 their	 premature	 degeneration	 (Zhang	 et	 al.,	 2015).	 In	

addition,	EXO70I	was	shown	to	be	required	for	the	efficient	incorporation	of	two	ABCG	

transporters,	STR	and	STR2,	into	the	PAM	(Zangh	et	al.,	2010;	Gutjahr	et	al.,	2012;	Zhang	

et	al.,	2015).	It	is	conceivable	that	EXO70I	also	functions	in	the	incorporation	of	other	

PAM‐localized	proteins	 and/or	 the	 deposition	 and	 expansion	 of	 the	PAM	around	 the	
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branch	domain;	however,	 this	remains	 to	be	 investigated.	 Interestingly,	 several	other	

EXO70s	 are	 transcriptionally	 induced	 in	 cells	harbouring	arbuscules,	 and	 it	has	been	

hypothesised	that	arbuscule	formation	might	depend	on	the	concerted	action	of	multiple	

EXO70	 subunits	 potentially	 active	 at	 different	 stages	 during	 arbuscule	 development	

(Zhang	et	al.,	2015).		

EXO70I	was	found	to	partially	co‐localize	and	physically	interact	with	a	plant‐specific	

protein	 called	 VAPYRIN	 (Zhang	 et	 al.,	 2015).	 In	M.	 truncatula	 and	P.	 hybrida	 plants,	

VAPYRIN	is	required	for	the	epidermal	penetration	by	the	fungus.	Although	hyphopodia	

are	formed	in	vapyrin	mutant	and	knockdown	plants,	the	fungus	only	rarely	is	able	to	

enter	the	root.	When	it	does,	the	hyphae	manage	to	spread	within	the	root	and	reach	

inner	cortical	cells,	but	arbuscule	formation	is	abolished	at	very	early	stages,	revealing	a	

fundamental	role	of	VAPYRIN	for	the	intracellular	accommodation	of	AM	fungi	(Reddy	et	

al.,	 2007;	 Feddermann	 et	 al.,	 2010;	 Pumplin	 et	 al.,	 2010;	 Murray	 et	 al.,	 2011).	 The	

VAPYRIN	 protein	 contains	 two	 different	 domains,	 an	 amino‐terminal	 major	 sperm	

protein	(MSP)	domain	that	 is	also	present	 in	VAMP‐associated	proteins	 (VAPs)	and	a	

carboxy‐terminal	 ankyrin	 domain.	 Both	 domains	 have	 been	 predicted	 to	 mediate	

protein‐protein	 interactions	 (Feddermann	 et	 al.,	 2010;	 Pumplin	 et	 al.,	 2010).	 The	

VAPYRIN	protein	is	present	in	the	cytoplasm	as	small	puncta,	and	it	has	been	proposed	

that	 this	 punctuate	 pattern	 stems	 from	 the	 association	 of	 VAPYRIN	 with	 vesicles,	

potentially	originating	from	the	vacuole	(Feddermann	et	al.,	2010;	Pumplin	et	al.,	2010).	

The	 localization	 and	 the	 domain	 structure	 of	 VAPYRIN	 suggest	 that	 it	 might	 have	 a	

structural	role	in	the	rearrangement	of	cell	cytoplasm	and/or	the	formation	of	the	PAM	

during	hyphal	colonization	(Feddermann	et	al.,	2010;	Pumplin	et	al.,	2010);	however,	

until	recently	no	exact	function	could	be	attributed	to	this	important	protein.	The	finding	

that	VAPYRIN	physically	interacts	with	EXO70I	to	potentially	recruit	EXO70I	to	the	PAM	

substantiates	the	hypothesis	that	VAPYRIN	acts	as	a	scaffold	protein	during	arbuscule	

development.		

In	 recent	 years,	 evidence	 has	 accumulated	 that	 supports	 a	 fundamental	 role	 of	

exocytosis	for	PAM	formation	and	the	deposition	of	proteins	around	arbuscule	branches.	

In	an	elegant	study,	Pumplin	and	co‐workers	have	found	an	additional	mechanism	that	

orchestrates	protein	deposition	into	the	PAM.	By	expressing	plasma‐membrane	or	PAM‐

localized	 proteins	 under	 promoters	 that	 are	 induced	 at	 different	 stages	 of	 arbuscule	

development,	 it	 was	 shown	 that	 the	 temporal	 expression	 of	 these	 genes	 determines	

whether	they	are	incorporated	into	the	plasma	membrane,	the	membrane	around	the	
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arbuscule	trunk,	or	the	membrane	around	the	fine	branches	(Pumplin	et	al,	2012).	These	

findings	 imply	 that	 the	 proper	 deposition	 of	 proteins	 into	 the	 different	 arbuscule	

domains	 requires	 not	 only	 the	 secretion	 pathway,	 but	 also	 the	 precise	 temporal	

regulation	of	gene	expression	and	is	mediated	by	a	redirection	of	exocytosis	to	the	PAM	

during	different	stages	of	arbuscule	development	(Pumplin	et	al.,	2012).	

	

1.2.4  Senescence and collapse of arbuscules 

After	having	reached	the	mature	state,	arbuscules	typically	only	have	a	very	short	life	

span	of	about	2	to	8	days	before	they	rapidly	collapse	(Toth	and	Miller	1984;	Alexander	

et	 al.,	 1989,	 Kobae	 and	 Hata	 2010).	 In	 a	 functional	 symbiosis,	 the	 degeneration	 of	

arbuscules	 is	 accompanied	 by	 recolonization	 of	 the	 root	 and	 formation	 of	 new	

arbuscules,	 resulting	 in	 simultaneous	 cycles	 of	 arbuscule	 formation	 and	degradation.	

Signs	 of	 degenerating	 arbuscules	 include	 the	 rapid	 shrinkage	 of	 the	 highly	 branched	

fungal	 hyphae,	 followed	by	 the	 degeneration	 of	 the	PAM	and	PAM‐localized	proteins	

(Kobae	 et	 al.,	 2010).	 Several	 host	 cellular	 changes	 have	 been	 found	 to	 accompany	

arbuscule	collapse.	Most	Golgi	vesicles	were	shown	to	redistribute	to	the	periphery	of	

the	cell,	while	the	accumulation	of	the	ER	around	the	arbuscule	branches	that	is	observed	

during	 arbuscule	 formation	 is	 also	maintained	 in	 cells	with	 degenerating	 arbuscules	

(Pumplin	and	Harrison,	2009).	Peroxisomes	accumulate	around	collapsing	arbuscules	

and	 stay	 closely	 associated	 with	 arbuscule	 branches	 (Pumplin	 and	 Harrison,	 2009),	

possibly	 assisting	 in	 the	 active	 breakdown	 of	 lipids.	 Alternatively,	 it	 has	 been	

hypothesised	that	peroxisomes	might	be	important	to	protect	the	host	plant	cell	from	

potential	 damage	 by	 sequestering	 reactive	 oxygen	 species	 (Pumplin	 and	 Harrison,	

2009).	Together,	these	observations	propose	that	arbuscule	degeneration	is	a	regulated,	

active	 process	 ensuring	 that	 the	 host	 cells	 remain	 alive	 during	 and	 after	 arbuscule	

collapse	to	be	recolonized	later	on.		

It	is	currently	unclear	why	arbuscules	are	recycled	so	quickly	in	mycorrhized	roots,	as	

the	 degradation	 and	 formation	 of	 new	 arbuscules	 is	 a	 very	 costly	 process	 for	 both	

symbiotic	partners.	Interestingly,	plants	that	carry	a	mutation	in	the	transporters	that	

mediate	 phosphate	 uptake	 across	 the	 PAM	 show	 a	 premature	 degeneration	 of	

arbuscules	 (Javot	et	al.,	2007;	Yang	et	al.,	2012).	Based	on	 these	 findings,	 it	has	been	

proposed	that	phosphate	not	only	serves	as	a	nutrient,	but	also	acts	as	a	signal	to	plant	

cells	to	maintain	AM	symbiosis	(Yang	and	Paszkowski,	2011).	Thus,	the	rapid	recycling	
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of	 arbuscules	might	provide	a	means	of	 control	 that	 is	 exerted	by	 the	plant	over	 the	

fungus,	resulting	in	the	degeneration	of	arbuscules	that	do	not	provide	enough	nutrients	

(Parniske,	2008).	

	

1.3 Nutrient exchange between plants and mycorrhizal fungi 

The	 main	 function	 of	 the	 AM	 symbiosis	 is	 the	 exchange	 of	 nutrients	 between	 the	

symbiotic	 partners,	 where	 the	 plant	 delivers	 photosynthetically	 fixed	 carbon	 to	 the	

fungus,	while	receiving	water	and	mineral	nutrients	taken	up	by	fungal	hyphae	from	the	

soil.	In	addition	to	enhancing	nutrient	uptake,	the	AM	symbiosis	has	also	been	described	

to	 increase	 the	 resistance	 of	 plants	 against	 some	 pathogens,	 although	 it	 is	 unclear	

whether	this	induced	resistance	is	due	to	the	improved	nutrient	status	and	thus	overall	

improved	plant	fitness,	or	due	to	the	activation	of	specific	defence	responses	(Cordier	et	

al.,	1998;	Liu	et	al.,	2007;	Campos‐Soriano	et	al.,	2012).	The	availability	of	nutrients	in	

the	soil	strongly	affects	the	extent	of	fungal	colonization	in	plant	roots	(Carbonnel	and	

Gutjahr,	 2014).	 Split	 root	 experiments	 have	 shown	 that	 high	 levels	 of	 phosphate	

suppress	 AM	 development,	 even	 when	 only	 half	 of	 the	 root	 system	 is	 treated	 with	

phosphate,	 indicating	 that	 systemic	 signals	 are	 involved	 in	 the	 phosphate‐mediated	

inhibition	 of	 mycorrhization	 (Breuillin	 et	 al.,	 2010;	 Balzergue	 et	 al.,	 2011).	 The	

suppression	of	fungal	colonization	under	high	nutrient	conditions	might	be	a	mechanism	

by	which	 the	 plant	minimizes	 the	 amount	 of	 fixed	 carbon	 that	 is	 transported	 to	 the	

fungus	to	ensure	that	the	costs	of	AM	symbiosis	do	not	outweigh	the	benefits	(Gutjahr	

and	 Parniske,	 2013).	 However,	 the	 exact	 molecular	 processes	 that	 underlie	 the	

regulation	 of	 AM	development	 by	 nutrients	 are	 not	well	 understood	 (Carbonnel	 and	

Gutjahr,	2014).		

	

1.3.1  Nutrient transfer from the fungus to the plant 

In	mycorrhized	roots,	the	fungi	benefit	the	host	plant	by	facilitating	the	uptake	of	water	

and	several	essential	mineral	nutrients,	including	phosphate,	ammonium,	and	sulphate,	

from	the	soil.	The	thin	extraradical	fungal	mycelium	is	able	to	reach	and	mineralize	soil	

nutrients	 much	 more	 efficiently	 than	 plant	 roots,	 and	 mycorrhization	 significantly	

improves	 the	 nutrient	 status	 of	 the	 plant	 (Smith	 and	 Smith,	 2011).	 High	 affinity	
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phosphate	and	ammonium	transporters	have	been	identified	that	are	expressed	in	the	

extraradical	fungal	hyphae	and	are	likely	to	be	involved	in	nutrient	uptake	from	the	soil	

to	 the	 fungus	 (Ames	 et	 al.,	 1983;	 Harrison	 and	 van	 Buuren,	 1995;	 Pao	 et	 al.,	 1998;	

Maldonado‐Mendoza	 et	 al.,	 2001;	 Benedetto	 et	 al.,	 2005;	 Govindarajulu	 et	 al.,	 2005;	

Lopez‐Pedrosa	et	al.,	2006;	Fiorilli	et	al.,	2013).	After	uptake	into	the	fungal	mycelium,	

phosphate	and	nitrogen	are	transported	in	the	form	of	polyphosphates	and	arginine	to	

the	 arbuscules,	 where	 they	 are	 released	 into	 the	 PAS	 as	 phosphate	 and	 ammonium,	

respectively	(Ezawa	et	al.,	2002;	Govindarajulu	et	al.,	2005;	Tanaka	and	Yano,	2005;	Cruz	

et	al.,	2007;	Hijikata	et	al.,	2010).	It	is	currently	unclear	whether	the	release	of	nutrients	

from	 the	 fungus	 into	 the	 PAS	 is	 a	 passive	 process	 or	 is	 actively	mediated	 by	 as	 yet	

unidentified	fungal	transporters.		

The	plant	phosphate	transporters	that	mediate	the	uptake	of	phosphate	across	the	PAM	

have	 been	 studied	 extensively	 and	 are	 well	 characterized	 in	 several	 plant	 species,	

including	M.	 truncatula,	 potato,	 and	 rice	 (Rausch	 et	 al.,	 2001,	 Harrison	 et	 al.,	 2002;	

Paszkowski	et	al.,	2002;	Nagy	et	al.,	2005;	Maeda	et	al.,	2006;	Javot	et	al.,	2007;	Yang	and	

Paszkowski,	 2011;	 Tamura	 et	 al.,	 2012;	 Yang	 et	 al.,	 2012;	 Xie	 et	 al.,	 2013;	 Breuillin‐

Sessoms	et	al.,	2015).	They	belong	to	the	family	of	phosphate	transporter	1	(Pht1)	proton	

symporters	and	many	of	them	were	shown	to	complement	yeast	phosphate	transport	

mutants,	 confirming	 that	 they	 are	 indeed	 able	 to	 transport	phosphate	 (Rausch	 et	 al.,	

2001;	Harrison	et	al.,	2002;	Paszkowski	et	al.,	2002;	Tamura	et	al.,	2012;	Xie	et	al.,	2013).	

The	 M.	 truncatula	 PT4	 transporter	 and	 its	 homologs	 in	 rice	 and	 soybean	 localize	

specifically	 to	 the	 branch	 domain	 of	 the	 PAM	 (Harrison	 et	 al.,	 2002;	 Pumplin	 and	

Harrison,	2009;	Kobae	and	Hata,	2010;	Tamura	et	al.,	2012).	Furthermore,	it	was	shown	

that	MtPT4	is	essential	for	phosphate	transfer	from	the	fungus	to	the	plant	as	well	as	for	

the	 maintenance	 of	 a	 functional	 AM	 symbiosis,	 as	 arbuscules	 in	 mutant	 plants	

degenerate	prematurely	and	the	symbiosis	is	aborted	(Javot	et	al.,	2007).	Interestingly,	

the	 mycorrhizal	 phenotype	 of	 Mtpt4	 mutants	 can	 be	 suppressed	 by	 low	 nitrogen	

conditions	(Javot	et	al.,	2011).	Based	on	these	findings,	it	has	been	hypothesised	that	not	

only	 phosphate,	 but	 also	 nitrogen	 transfer	 to	 the	 plant	 acts	 as	 a	 signal	 to	 support	

arbuscule	survival	and	maintain	the	symbiosis	with	AM	fungi	(Javot	et	al.,	2011).	

Although	phosphate	is	thought	to	be	the	most	important	mineral	nutrient	transported	

in	 AM	 symbiosis,	 there	 is	 also	 evidence	 for	 substantial	 amounts	 of	 nitrogen	 being	

transferred	to	mycorrhized	roots	(Tanaka	and	Yano,	2005;	Leigh	et	al.,	2009).	Labelling	

studies	 suggest	 that	 nitrogen	 is	 transported	 to	 the	 plant	 in	 the	 form	 of	 ammonium	
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(Govindarajulu	 et	 al.,	 2005;	Cruz	 et	 al.,	 2007).	 Consistent	with	 this,	 plant	 ammonium	

transporters	 have	 been	 identified	 that	 are	 transcriptionally	 induced	 in	 mycorrhized	

roots	of	several	plant	species	(Gomez	et	al.,	2009;	Guether	et	al.,	2009;	Kobae	et	al.,	2010;	

Koegel	et	al.,	2013;	Breuillin‐Sessoms	et	al.,	2015).	Similar	to	the	phosphate	transporters,	

ammonium	transporters	 localize	to	the	periarbuscular	membrane,	 further	supporting	

the	concept	of	the	arbuscule	being	the	main	site	of	nutrient	transfer	to	the	plant	(Kobae	

et	al.,	2010;	Koegel	et	al.,	2013;	Breuillin‐Sessoms	et	al.,	2015).		

In	a	recent	study,	the	M.	truncatula	ammonium	transporter	2	family	protein	AMT2‐3	was	

found	 to	 be	 required	 for	 the	 suppression	 of	 premature	 arbuscule	 degeneration	 in	

nitrogen‐deprived	Mtpt4	 mutant	 roots	 (Breuillin‐Sessoms	 et	 al.,	 2015).	 Remarkably,	

AMT2‐3	is	not	able	to	complement	a	yeast	ammonium	transport	mutant	and	is	therefore	

unlikely	to	transport	ammonium	across	the	PAM.	Instead,	AMT2‐3	has	been	speculated	

to	 have	 a	 signalling	 function	 to	 inform	 the	 plant	 about	 the	 nutrient	 status	 and	

accordingly	 regulate	 arbuscule	 maintenance.	 Similarly,	 the	 mycorrhizal‐induced	 rice	

phosphate	transporter	PT13	was	suggested	to	function	in	sensing	phosphate	levels,	as	

PT13	does	not	seem	to	be	able	to	transport	phosphate,	but	is	still	required	for	proper	

arbuscule	development	 (Yang	 et	 al.,	 2012).	Together,	 these	 findings	 indicate	 that	 the	

arbuscule	not	only	is	the	site	of	nutrient	transfer,	but	might	also	provide	a	platform	for	

symbiotic	signalling	to	maintain	AM	symbiosis	in	the	root	(Javot	et	al.,	2007;	Oldroyd	et	

al.,	2009;	Yang	and	Paszkowski,	2011;	Yang	et	al.,	2012;	Breuillin‐Sessoms	et	al.,	2015).	

The	active	 transport	of	nutrients	 across	a	plant	membrane	 requires	 energy,	which	 is	

usually	 provided	 by	 an	 electrochemical	 gradient	 generated	 via	 proton	 transfer.	 In	

tobacco	and	M.	truncatula	roots,	a	proton	ATPase	has	been	identified	that	is	expressed	

specifically	in	arbuscule‐containing	cells	(Gianinazzi‐Pearson	et	al.,	2000;	Krajinski	et	al.,	

2002).	Two	recent	studies	provide	further	details	on	the	function	of	 these	symbiosis‐

induced	proton	pumps	(Krajinksi	et	al.,	2014;	Wang	et	al.,	2014).	M.	truncatula	and	rice	

plants	mutated	in	the	proton	ATPase	HA1	display	underdeveloped	arbuscules	and	are	

impaired	 in	 the	 symbiotic	 transfer	 of	 phosphate	 to	 the	 plant.	 Furthermore,	

overexpression	 of	HA1	 confirmed	 that	 it	 functions	 as	 a	 proton	 pump	 and	 is	 able	 to	

increase	the	negative	potential	of	membranes	(Wang	et	al.,	2014).	These	results	imply	

that	proton	ATPases	are	required	to	energize	the	PAM	by	forming	an	electrochemical	

potential,	which	in	turn	drives	symbiotic	nutrient	exchange	across	the	PAM	(Krajinksi	et	

al.,	2014;	Wang	et	al.,	2014).		
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1.3.2  Nutrient transfer from the plant to the fungus 

In	 exchange	 for	 obtaining	 water	 and	 mineral	 nutrients,	 plants	 transfer	

photosynthetically	fixed	carbon	to	AM	fungi,	which	are	obligate	biotrophs	and	therefore	

depend	entirely	on	the	plant	for	a	carbon	source	(Ho	and	Trappe,	1973;	Shachar‐Hill	et	

al.,	 1995;	 Parniske,	 2008).	 It	 is	 thought	 that	 up	 to	 20%	 of	 plant	 photosynthates	 are	

allocated	to	the	fungus	(Bago	et	al.,	2000).	The	carbon	sink	strength	of	roots	is	greatly	

increased	upon	mycorrhization,	resulting	in	the	redirection	of	photoassimilates	towards	

mycorrhized	 roots	 and	 a	 significant	 accumulation	 of	 sugars	 and	 lipids	 (Wright	 et	 al.,	

1998).	 Consistent	with	 this,	 sucrose	 cleaving	 enzymes	 such	 as	 sucrose	 synthase	 and	

invertases	are	transcriptionally	upregulated	during	AM	symbiosis,	and	knockdown	or	

loss	of	these	enzymes	leads	to	impaired	fungal	colonization	and	arbuscule	development	

in	clover,	 tobacco,	M.	 truncatula	 and	 tomato	(Blee	and	Anderson,	1998;	Wright	et	al.,	

1998;	Hohnjec	et	al.,	2003;	Schaarschmidt	et	al.,	2006;	Baier	et	al.,	2010).	Furthermore,	

the	 mycorrhizal‐induced	 sugar	 transporter	Mtst1	 was	 found	 to	 be	 expressed	 in	M.	

truncatula	root	tissues	colonized	by	AM	fungi.	It	has	been	proposed	that	this	transporter	

functions	in	supplying	the	increased	demand	of	mycorrhized	root	cells	for	sugars	and/or	

in	providing	the	fungus	directly	with	hexoses	(Harrison,	1996).		

Several	 radiolabelling	 studies	 have	 investigated	 in	 which	 form	 fixed	 carbon	 is	

transferred	to	and	taken	up	by	the	fungus.	These	studies	suggest	that	hexoses,	and	in	

particular	glucose,	can	be	taken	up	by	intraradical	hyphae,	but	not	by	fungal	spores	or	

extraradical	hyphae	(Shachar‐Hill	et	al,	1995;	Solaiman	and	Saito,	1997;	Pfeffer	et	al.,	

1999;	Bago	et	al.,	2000;	Douds	et	al.,	2000).	The	preferential	use	of	glucose	over	sucrose	

by	the	fungus	emphasizes	the	importance	of	apoplastic	invertases	and	sucrose	synthase	

in	 mycorrhized	 roots	 and	 proposes	 cleaved	 sucrose	 as	 a	 possible	 source	 of	

carbohydrates	 delivered	 to	 the	 fungus	 (Helber	 et	 al.,	 2011).	 The	 identification	 and	

characterization	of	the	mycorrhizal‐induced	high‐affinity	monosaccharide	transporter	

MST2	 from	 the	 AM	 fungus	 Rhizophagus	 irregularis	 has	 further	 advanced	 our	

understanding	 of	 carbon	 transfer	 in	 AM	 symbiosis	 (Helber	 et	 al.,	 2011).	

Complementation	of	a	yeast	transport	mutant	confirmed	that	MST2	is	able	to	transport	

monosaccharides	such	as	glucose,	mannose,	and	fructose.	Interestingly,	MST2	was	also	

found	 to	efficiently	 transport	plant	cell	wall	monosaccharides,	 suggesting	 that	 sugars	

from	the	host	cell	wall,	possibly	originating	from	the	PAS,	might	serve	as	an	additional	

source	of	carbohydrates	for	the	fungus	(Helber	et	al.,	2011).	The	expression	pattern	of	
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MST2	 indicates	 that	 sugar	 uptake	 takes	 place	 in	 arbuscules	 and	 possibly	 also	 in	

intraradical	hyphae,	as	transcripts	were	shown	to	be	present	in	both	fungal	structures	

(Helber	et	al.,	2011).		

After	 sugars	 are	 taken	 up	 into	 the	 intraradical	mycelium,	 they	 are	 incorporated	 into	

glycogen	 and	 the	 disaccharide	 trehalose,	 and	 these	 compounds	 are	 exported	 to	 the	

extraradical	mycelium	(Shachar‐Hill	et	al.,	1995;	Pfeffer	et	al.,	1996).	The	main	carbon	

storage	form	of	AM	fungi,	however,	are	triacylglycerols	(TAGs),	which	constitute	up	to	

70%	of	the	dry	weight	of	some	fungal	species	(Beilby	and	Kidby,	1980).	Large	amounts	

of	 lipid	 droplets	 are	 present	 in	 all	 fungal	 structures,	 including	 arbuscules,	 hyphae,	

vesicles,	and	spores,	where	lipids	are	essential	in	providing	energy	for	germination	and	

hyphal	growth	(Bago	et	al.,	2002).	Considering	the	importance	of	lipids	for	AM	fungi,	it	

is	surprising	that	extraradical	hyphae	and	fungal	spores	do	not	seem	to	be	capable	of	de	

novo	fatty	acid	synthesis,	as	has	been	suggested	based	on	radiolabelling	studies	(Pfeffer	

et	al.,	1999;	Trépanier	et	al.,	2005).	It	has	been	proposed	that	de	novo	fungal	fatty	acid	

synthesis	takes	place	exclusively	in	intraradical	hyphae	in	the	root	compartment,	where	

the	expression	of	 fungal	 fatty	acid	synthase	genes	might	be	 induced	(Trépanier	et	al.,	

2005).	However,	 a	 recent	 study	 investigating	 lipid	biosynthesis	and	metabolism	 in	R.	

irregularis	did	not	find	a	gene	encoding	for	a	de	novo	fatty	acid	synthase	in	the	genome	

of	 this	 fungus,	 implying	 that	 the	 fungus	 might	 lack	 the	 ability	 of	 de	 novo	 fatty	 acid	

synthesis	entirely,	even	when	associated	with	roots	(Tisserant	et	al,	2013;	Wewer	et	al.,	

2014).	Based	on	these	findings,	it	has	been	hypothesised	that	the	plant	provides	reduced	

carbon	not	only	in	the	form	of	sugars,	but	also	in	the	form	of	lipids	(Wewer	et	al.,	2014).			

	

1.4 The common symbiosis signalling pathway 

The	successful	establishment	of	AM	symbiosis	in	roots	has	long	been	known	to	require	

the	activation	of	a	chain	of	signalling	events	resulting	in	the	extensive	transcriptional	

reprogramming	of	host	cells	and	the	promotion	of	mycorrhizal	colonization.	The	core	to	

this	signalling	process	is	required	for	both	the	symbiosis	with	AM	fungi	and	the	root‐

nodule	symbiosis,	and	has	therefore	become	known	as	the	common	symbiosis	signalling	

pathway	 (CSSP	 or	 common	 Sym	 pathway;	 Kistner	 and	 Parniske,	 2002).	 A	 central	

component	 of	 the	 common	 Sym	 pathway	 is	 the	 induction	 of	 perinuclear	 calcium	

oscillations	in	the	host	cell	in	response	to	the	recognition	of	symbiotic	signals,	such	as	



Chapter 1 – General introduction 
	

28	
	

Myc	 factors	 from	 AM	 fungi	 and	 Nod	 factors	 released	 by	 rhizobial	 bacteria.	 This	

characteristic	 calcium	 response	 is	 believed	 to	 activate	 the	 calcium‐	 and	 calmodulin‐

dependent	 serine/threonine	 protein	 kinase	 CCaMK	 and	 this	 in	 turn	 triggers	 the	

transcriptional	 changes	 downstream	 of	 the	 Sym	 pathway	 (Oldroyd,	 2013).	 Plants	

carrying	mutations	in	components	of	the	common	Sym	pathway	are	typically	unable	to	

enter	a	successful	symbiosis	with	AM	fungi	or	rhizobial	bacteria	(Catoira	et	al.,	2000;	

Kistner	 et	 al.,	 2005),	 highlighting	 the	 crucial	 role	 of	 this	 signalling	 pathway	 for	 the	

establishment	of	these	symbioses.		

High‐frequency	calcium	oscillations	are	induced	by	diffusible	fungal	signals	in	root	cells	

prior	 to	 the	direct	 contact	between	 fungal	hyphae	and	 the	root	 (described	 in	Section	

1.2.1.2),	indicating	that	the	common	SYM	pathway	is	involved	in	the	regulation	of	AM	

establishment	already	at	pre‐symbiotic	 stages	of	 the	symbiosis.	Furthermore,	 several	

components	of	the	common	SYM	pathway	were	shown	to	be	required	for	PPA	formation	

in	epidermal	cells	(Genre	et	al.,	2005).	Interestingly,	calcium	spiking	profiles	were	also	

found	to	change	with	the	progressive	colonization	of	the	root	by	mycorrhizal	fungi.	Low‐

frequency	calcium	oscillations	occur	in	outer	cortical	cells	prior	to	infection,	whereas	the	

cell	 entry	 by	 fungal	 hyphae	 is	 associated	 with	 a	 transient	 switch	 to	 high‐frequency	

calcium	spiking	(Sieberer	et	al.,	2012).	In	addition,	several	members	of	the	SYM	pathway	

were	 suggested	 to	 play	 a	 role	 in	 arbuscule	 development	 based	 on	 their	 arbuscular	

phenotype	(Kistner	et	al.,	2005).	Thus,	the	common	Sym	pathway	appears	to	be	crucial	

for	the	regulation	of	AM	establishment	not	only	before,	but	also	during	the	infection	by	

AM	fungi.	

	

1.4.1  Recognition of symbiotic signals at the plasma membrane of host cells 

The	receptors	that	recognize	rhizobial‐derived	Nod	factors	at	the	plasma	membrane	of	

root	cells	are	relatively	well	characterized.	Two	LysM	(lysin	motif)	receptor‐like	kinases	

called	 NFR5	 (Nod	 factor	 receptor	 5)	 and	 NFR1	 in	 L.	 japonicus	 and	 NFP	 (Nod	 factor	

perception)	and	LYK3	(LysM	domain‐containing	receptor‐like	kinase	3)	in	M.	truncatula	

were	 found	 to	 be	 required	 for	 Nod	 factor	 induced	 calcium	 spiking	 and	 are	 able	 to	

physically	interact	with	Nod	factors,	providing	evidence	that	these	proteins	act	as	the	

direct	receptors	of	Nod	factors	(Wais	et	al.,	2000;	Ben	Amor	et	al.,	2003;	Smit	et	al.,	2007;	

Broghammer	et	al.,	2012).		
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In	M.	truncatula,	NFP	was	shown	to	also	be	involved	in	the	Myc‐LCO	induced	formation	

of	lateral	roots	(Maillet	et	al.,	2011),	suggesting	a	role	for	this	receptor	in	mycorrhizal	

signalling.	While	nfp	mutants	 in	M.	truncatula	and	other	 legumes	do	not	appear	to	be	

impaired	in	mycorrhization	(Radutoiu	et	al.,	2003;	Arrighi	et	al.,	2006;	Indrasumunar	et	

al.,	2010;	Zhang	et	al.,	2015),	RNA	silencing	of	NFP	in	the	non‐legume	plants	Parasponia	

andersonii	and	Solanum	 lycopersicum	leads	to	a	reduction	in	fungal	colonization	and	a	

defect	 in	 arbuscule	 formation	 (Op	 den	 Camp	 et	 al.,	 2011;	 Buendia	 et	 al.,	 2016).	 In	

legumes,	the	gene	encoding	for	NFP	has	been	duplicated,	and	the	resulting	paralog	might	

act	 redundantly	 during	 AM	 symbiosis,	 perhaps	 explaining	 the	 lack	 of	 a	 mycorrhizal	

phenotype	in	legume	nfp	mutants	(Op	den	Camp	et	al.,	2011).	In	addition	to	NFR5/NFP	

in	non‐leguminous	species,	NFR1	in	L.	japonicus	and	its	homologs	LYK3	in	M.	truncatula	

and	 CERK1	 in	 rice	 were	 found	 to	 also	 play	 a	 role	 in	 AM	 development,	 as	 the	

corresponding	 loss‐of‐function	 mutants	 display	 reduced	 levels	 of	 mycorrhizal	

colonization	 (Miyata	 et	 al.,	 2014;	 Zhang	 et	 al.,	 2015).	 OsCERK1	 has	 previously	 been	

shown	to	be	involved	in	the	immune	response	to	chitin	(Shimizu	et	al.,	2010).	Based	on	

these	findings,	it	has	been	proposed	that	CERK1	acts	as	a	common	receptor	for	symbiotic	

and	immune	signalling	(Miyata	et	al.,	2014;	Zhang	et	al.,	2015).	It	is	currently	unclear	

how	the	LysM	receptor‐like	kinases	work	together	to	recognize	the	range	of	different	

signalling	molecules	 released	 by	mycorrhizal	 fungi,	 and	 how	 this	 recognition	 differs	

from	Nod	factor	recognition	and	immune	signalling.	

In	 addition	 to	 the	 LysM	 receptor‐like	 kinases,	 another	 plasma‐membrane	 localised	

protein	 called	 SYMRK	 (SYMBIOSIS	 RECEPTOR	 KINASE)	 in	 L.	 japonicus	 and	 DMI2	

(DOESN’T	MAKE	 INFECTIONS	2)	 in	M.	 truncatula	was	 found	 to	 be	 required	 for	 both	

mycorrhization	and	nodulation	(Endre	et	al.,	2002;	Stracke	et	al.,	2002;	Wais	et	al.,	2000).	

SYMRK/DMI2	encodes	an	LRR	(leucine‐rich	repeat)	receptor‐like	kinase	and	has	been	

proposed	to	act	as	a	co‐receptor	of	the	Nod‐	and	Myc‐factor	receptors	during	symbiosis	

signalling	(Oldroyd,	2013).	However,	the	exact	function	of	this	protein	remains	elusive.		

	

1.4.2  Generation of symbiotic calcium oscillations in the nucleus 

Calcium	 spiking	 in	 response	 to	 the	 recognition	 of	 fungal	 and	 rhizobial	 signals	 at	 the	

plasma	membrane	is	predominantly	associated	with	the	perinuclear	region	of	the	cell.	

The	incoming	signal	therefore	has	to	be	transduced	to	the	nucleus	to	activate	the	nuclear	

calcium	spiking	machinery.	Several	candidates	that	could	be	involved	in	the	production	
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of	 secondary	 messengers	 or	 activation	 of	 signalling	 cascades	 have	 been	 proposed,	

including	 a	 mevalonate	 synthase	 (HMGR1;	 Kevei	 et	 al.,	 2007),	 and	 a	 plant	 mitogen‐

activated	protein	kinase	kinase	(MAPKK;	Chen	et	al.,	2012).	Both	proteins	were	found	to	

interact	with	SYMRK/DMI2	and	to	promote	rhizobial	associations	(Kevei	et	al.,	2007;	

Chen	et	al.,	2012).	In	a	recent	study,	HMGR1	has	further	been	shown	to	be	required	for	

the	induction	of	calcium	spiking	in	response	to	rhizobial	and	mycorrhizal	signals	and	to	

act	 downstream	 of	 NFP,	 but	 upstream	 of	 the	 nuclear	 calcium	 spiking	 machinery	

(Venkateshwaran	 et	 al.,	 2015).	 Interestingly,	 mevalonate,	 the	 product	 of	 HMGR1,	

appears	to	be	sufficient	to	activate	calcium	oscillations	in	root	epidermal	cells	of	several	

species,	 further	 supporting	 a	 role	 of	 this	 secondary	messenger	 in	 the	 common	 SYM	

pathway	(Venkateshwaran	et	al.,	2015).		

For	a	long	time,	the	identity	of	the	channel	that	is	responsible	for	the	release	of	calcium	

during	calcium	spiking	 in	response	 to	symbiotic	 signals	has	been	elusive.	However,	a	

recent	study	by	Charpentier	and	colleagues	has	shown	that	three	members	of	the	cyclic	

nucleotide‐gated	channels	(CNGCs),	CNGC15a,	b,	and	c,	are	required	for	the	generation	

of	symbiotic	calcium	oscillations	in	the	nucleus	(Charpentier	et	al.,	2016).	Plants	carrying	

mutations	in	these	channels	display	a	reduced	number	of	nodules	and	are	impaired	in	

AM	 symbiosis.	 Yeast	 complementation	 studies	 and	 the	 expression	 of	 the	 symbiotic	

CNGCs	in	Xenopus	laevis	oocytes	further	showed	that	these	channels	are	permeable	to	

calcium.	Consistent	with	their	role	in	nuclear	calcium	spiking,	CNGC15a,	b,	and	c	localize	

to	the	nuclear	envelope.	Interestingly,	the	three	CNGC15s	were	found	to	form	a	complex	

with	the	ion	channel	DMI1	in	M.	truncatula	(Charpentier	et	al.,	2016).	Like	the	symbiotic	

calcium	 channel,	 DMI1	 and	 its	 homologs	 POLLUX	 and	 CASTOR	 in	 L.	 japonicus	 are	

localized	to	the	nuclear	membrane	and	are	indispensable	for	the	induction	of	calcium	

spiking	(Ané	et	al.,	2004;	Peiter	et	al.,	2007;	Charpentier	et	al.,	2008;	Capoen	et	al.,	2011).	

These	 ion	 channels	were	 found	 to	be	preferentially	permeable	 to	potassium,	making	

them	unlikely	to	be	directly	 involved	in	the	release	of	calcium	during	calcium	spiking	

(Charpentier	 et	 al.,	 2008).	 Instead,	 mathematical	 modelling	 and	 yeast	 expression	

analyses	 suggest	 that	DMI1/POLLUX	and	CASTOR	might	modulate	 the	 activity	 of	 the	

calcium	channel	 (Peiter	 et	 al.,	 2007;	Granqvist	 et	 al.,	 2012;	 Charpentier	 et	 al.,	 2016).	

Furthermore,	potassium	movement	through	DMI1/POLLUX	and	CASTOR	could	serve	to	

counter‐balance	the	calcium	ions	released	from	the	lumen	of	the	nuclear	envelope	and	

the	ER,	the	proposed	symbiotic	calcium	stores	(Peiter	et	al.,	2007;	Capoen	et	al.,	2011;	

Oldroyd,	2013).	
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In	addition	to	the	calcium	and	potassium	channels,	a	calcium	ATPase,	MCA8,	was	shown	

to	be	part	of	the	nuclear	machinery	required	for	calcium	spiking	(Capoen	et	al.,	2011).	

This	calcium	pump	localizes	to	the	nuclear	envelope	and	has	been	proposed	to	function	

in	 the	re‐uptake	of	 released	nuclear	calcium	 ions	 (Capoen	et	al.,	2011).	Furthermore,	

three	 members	 of	 the	 nuclear	 pore	 complex	 in	 L.	 japonicus,	 NUCLEOPORIN85,	

NUCLEOPORIN133,	 and	 the	 scaffold	 nucleoporin	 NENA,	 are	 necessary	 for	 symbiotic	

calcium	oscillations	(Kanamori	et	al.,	2006;	Saito	et	al.,	2007;	Groth	et	al.,	2010).	While	

the	exact	role	of	the	nuclear	pore	complex	in	the	generation	of	calcium	spiking	remains	

unclear,	it	has	been	hypothesised	that	the	complex	might	be	involved	in	the	transport	of	

proteins	 required	 for	 calcium	 spiking	 to	 the	 nuclear	 envelope	 or	 in	 providing	

permeability	for	putative	secondary	messengers	(Groth	et	al.,	2010).		

	

1.4.3  Perception and decoding of symbiotic calcium oscillations 

M.	truncatula	DMI3	has	been	identified	as	a	candidate	protein	for	decoding	symbiotic	

calcium	spiking.	Plants	mutated	in	this	gene	are	unable	to	form	a	symbiosis	with	either	

mycorrhizal	 fungi	 or	 rhizobial	 bacteria,	 yet	 the	 induction	 of	 calcium	 spiking	 is	 not	

affected	 (Catoira	 et	 al.,	 2000;	Wais	 et	 al.,	 2000).	 This	 has	 placed	 DMI3	 immediately	

downstream	of	calcium	spiking.	The	DMI3	gene	encodes	a	protein	belonging	to	the	plant‐

specific	class	of	CCaMKs	(Lévy	et	al.,	2004;	Mitra	et	al.,	2004).	This	class	of	proteins	has	

a	unique	structure	that	allows	them	to	bind	calcium	in	two	different	ways.	In	addition	to	

having	a	calmodulin‐binding	(CaM)	domain	next	to	an	amino‐terminal	serine/threonine	

kinase	 domain,	 plant	 CCaMKs	 also	 possess	 three	 calcium‐binding	 EF	 hands	 at	 their	

carboxyl	terminus.	These	features	enable	CCaMK	to	be	regulated	by	both	calcium	bound	

to	calmodulin	and	free	calcium.	It	has	been	proposed	that	during	symbiosis	signalling,	

the	 nuclear‐localized	 CCaMK	 is	 able	 to	 decode	 calcium	 oscillations	 by	 undergoing	 a	

calcium	dependent	two	step	activation	(Lévy	et	al.,	2004).	The	generation	of	truncated	

versions	 of	 CCaMK	 and	 the	 introduction	 of	 point	 mutations	 has	 provided	 detailed	

information	on	the	regulatory	functions	of	the	different	domains	and	suggests	that	the	

regulation	of	this	kinase	is	very	complex,	requiring	both	positive	and	negative	regulatory	

mechanisms	to	allow	a	fully	functional	infection	by	the	symbiont	(Gleason	et	al.,	2006;	

Tirichine	et	al.,	2006;	Hayashi	et	al.,	2010;	Liao	et	al.,	2012;	Shimoda	et	al.,	2012;	Miller	

et	al.,	2013;	Routray	et	al.,	2013).	The	threonine	residue	271	located	in	the	kinase	domain	

of	M.	truncatula	CCaMK	(corresponding	to	threonine	residue	265	in	L.	 japonicus)	was	
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found	to	be	autophosphorylated	upon	calcium	binding	via	the	EF	hands	and	to	play	a	

crucial	 role	 in	 the	 regulation	 of	 the	 protein,	 as	 mutating	 this	 residue	 leads	 to	 the	

autoactivation	of	CCaMK	(Gleason	et	al.,	2006;	Tirichine	et	al.,	2006;	Miller	et	al.,	2013).	

Consistent	with	these	findings,	it	was	shown	that	deletion	or	mutation	of	the	EF	hands	

results	in	an	autoactive	form	of	CCaMK	(Miller	et	al.,	2013).	Based	on	these	observations,	

it	has	been	suggested	that	calcium‐induced	autophosphorylation	of	Thr‐271	negatively	

regulates	the	kinase	activity	by	stabilizing	an	inactive	conformation	of	CCaMK	(Miller	et	

al.,	2013).	By	contrast,	binding	of	a	CaM/calcium	complex	to	the	CaM	binding	domain	

blocks	 Thr‐271	 phosphorylation	 and	 induces	 a	 conformational	 change,	 thereby	

activating	 CCaMK	 (Takezawa	 et	 al.,	 1996;	 Miller	 et	 al.,	 2013).	 Interestingly,	

autophosphorylation	of	Thr‐271	not	only	inactivates	the	kinase,	but	also	primes	CCaMK	

for	activation	by	increasing	its	affinity	for	CaM	(Sathyanarayanan	et	al.,	2001).	This	is	

particularly	intriguing	with	regard	to	a	study	showing	that	basal	intracellular	calcium	

levels	are	sufficient	for	the	binding	of	calcium	to	the	EF	hands,	whereas	higher	calcium	

concentrations	 are	 required	 for	 the	 binding	 of	 a	 CaM/calcium	 complex	 to	 the	 CaM	

binding	domain	(Swainsbury	et	al.,	2012).	Together,	these	findings	provide	a	model	for	

activation	of	CCaMK	during	calcium	spiking,	where	basal	levels	of	calcium	inhibit	CCaMK	

activity	 by	 calcium‐induced	 autophosphorylation	 of	 Thr‐271/265,	 while	 elevated	

calcium	concentrations	activate	CCaMK	for	target	phosphorylation	by	binding	of	CaM	to	

the	CaM	binding	domain	(Miller	et	al.,	2013).	Two	recent	studies	have	provided	evidence	

for	additional	negative	regulation	of	CCaMK	through	two	phosphorylation	sites	in	the	

CaM	 binding	 domain	 (Liao	 et	 al.,	 2012;	 Routray	 et	 al.,	 2013).	 The	 inhibitory	 role	 of	

autophosphorylated	residues	in	the	CaM	binding	domain	reveals	a	possible	mechanism	

for	the	shutdown	of	CCaMK	after	the	kinase	has	been	activated	by	calcium	spiking	(Liao	

et	al.,	2012;	Routray	et	al.,	2013).		

Autoactive	CCaMK	is	able	to	trigger	spontaneous	nodule	formation	in	M.	truncatula	and	

L.	japonicus	roots	even	in	the	absence	of	rhizobia	or	external	rhizobial	signals	(Gleason	

et	al.,	2006;	Tirichine	et	al.,	2006).	Intriguingly,	a	more	recent	study	found	that	gain‐of‐

function	CCaMK	not	only	induces	the	rhizobial	signalling	pathway,	but	also	triggers	the	

formation	 of	 host	 pre‐infection	 structures	 required	 for	 the	 establishment	 of	 AM	

associations	 (Takeda	 et	 al.,	 2012).	 In	 addition,	 gain‐of‐function	 CCaMK	was	 found	 to	

activate	 the	 expression	 of	 genes	 that	 are	 induced	 early	 during	 nodulation	 and	

mycorrhization	(Gleason	et	al.,	2006;	Takeda	et	al.,	2012).	Mutant	analyses	showed	that	

autoactive	CCaMK	 is	able	 to	 fully	restore	 the	symbiosis	phenotype	of	 loss‐of‐function	
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mutations	in	common	Sym	pathway	genes	upstream	of	CCaMK	(Hayashi	et	al.,	2012).	

These	results	highlight	the	central	role	of	calcium	spiking	and	its	decoder	CCaMK	and	

imply	that	the	primary	role	of	symbiotic	calcium	oscillations	is	the	activation	of	CCaMK	

(Hayashi	et	al.,	2010;	Madsen	et	al.,	2010).	

	

1.4.4  Transcriptional regulators downstream of CCaMK 

The	main	output	of	the	common	Sym	pathway	is	the	transcriptional	reprogramming	of	

host	 cells.	 The	 establishment	 of	 root	 symbioses	 requires	 extensive	 changes	 in	 gene	

expression	to	ensure	the	proper	accommodation	of	the	symbiotic	partners,	and	during	

both	 mycorrhization	 and	 nodulation,	 hundreds	 of	 genes	 have	 been	 found	 to	 be	

differentially	expressed	(Journet	et	al.,	2001;	Liu	et	al.,	2003;	Wulf	et	al.,	2003;	Manthey	

et	al.,	2004;	Mitra	et	al.,	2004;	Weidmann	et	al.,	2004;	Hohnjec	et	al.,	2005;	Krajinski	and	

Frenzel,	2007;	Küster	et	al.,	2007,	Benedito	et	al.,	2008;	Gutjahr	et	al.,	2008;	Gomez	et	al.,	

2009;	Hogekamp	et	al.,	2011;	Czaja	et	al.,	2012;	Breakspear	et	al.,	2014;	Roux	et	al.,	2014;	

Camps	et	al.,	2015;	Handa	et	al.,	2015;	Hohnjec	et	al.,	2015).		

Although	the	same	signalling	pathway	is	activated	upon	recognition	of	mycorrhizal	fungi	

and	 rhizobia,	 specificity	 in	 symbiosis	 signalling	 is	maintained,	 resulting	 in	 either	 the	

promotion	 of	 fungal	 colonization	 or	 the	 formation	 of	 nodules.	 The	 developmental	

similarities	and	differences	of	both	symbioses	are	reflected	in	the	transcription	patterns	

of	 host	 cells,	 with	mycorrhization	 and	 nodulation	 inducing	 both	 common	 as	well	 as	

specific	sets	of	genes	(Manthey	and	Krajinski	2004;	Hohnjec	et	al.,	2005;	Küster	et	al.,	

2007).	 A	 study	 investigating	 the	 gene	 expression	 patterns	 of	M.	 truncatula	 roots	 in	

response	to	individual	Nod	factors	and	Myc	factors	found	that	all	individual	LCOs	tested	

(Nod	 factors,	S‐LCOs,	NS‐LCOs,	and	a	mix	of	S‐LCOs	and	NS‐LCOs)	are	able	 to	 trigger	

specific	 transcriptional	 changes	 in	 addition	 to	 activating	 a	 common	 set	 of	 genes,	

suggesting	that	the	plant	is	capable	of	discriminating	between	these	individual	signalling	

molecules,	even	though	the	structures	of	some	of	these	signals	are	extremely	similar,	and	

many	of	the	same	receptors	appear	to	be	involved	in	their	recognition	(Wais	et	al.,	2000;	

Ben	Amor	et	al.,	2003;	Smit	et	al.,	2007;	Broghammer	et	al.,	2012;	Czaja	et	al.,	2012;	Op	

den	Camp	et	al.,	2011;	Miyata	et	al.,	2014;	Zhang	et	al.,	2015).	

The	majority	 of	 transcriptional	 changes	 require	 signalling	 through	 the	 common	 Sym	

pathway,	as	gene	induction	upon	mycorrhization	and	nodulation	is	dramatically	reduced	
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by	loss‐of‐function	mutations	in	Sym	pathway	components	(Kistner	et	al.,	2005;	Takeda	

et	 al.,	 2011;	 Czaja	 et	 al.,	 2012).	 The	 importance	 of	 the	 common	 Sym	 pathway	 in	

symbiosis‐induced	 gene	 expression	 is	 further	 highlighted	 by	 the	 observation	 that	

autoactive	 CCaMK	 is	 able	 to	 trigger	 the	 induction	 of	 a	 number	 of	 symbiotic	 genes	

(Gleason	et	 al.,	 2006;	Takeda	et	 al.,	 2012).	Meanwhile,	 several	 studies	have	provided	

evidence	 for	 Sym	 pathway‐independent	 gene	 induction,	 indicating	 that	 parallel	

signalling	pathways	must	act	during	symbiosis	(Kosuta	et	al.,	2003;	Siciliano	et	al.,	2007;	

Gutjahr	et	al.,	2008;	Kuhn	et	al.,	2010).	It	is	likely	that	these	parallel	signalling	pathways	

contribute	 to	 the	 observed	 specificity	 in	 the	 transcriptional	 response	 to	mycorrhizal	

fungi	and	rhizobia.	A	recent	study	has	identified	some	components	of	a	putative	parallel	

signalling	 pathway	 required	 for	 the	 establishment	 of	 AM	 symbiosis.	 This	 pathway	

involves	the	rice	receptor	DWARF14LIKE	(D14L),	which	has	been	shown	to	be	essential	

for	 the	 recognition	 of	 mycorrhizal	 fungi	 at	 the	 pre‐symbiotic	 stage	 of	 the	 symbiosis	

(Gutjahr	et	al.,	2015).	Fungal	colonization	and	the	transcriptional	changes	in	response	to	

germinated	 spore	 exudates	 of	 AM	 fungi	 are	 almost	 completely	 abolished	 in	 a	 d14l	

deletion	mutant.	D14L	is	known	to	act	together	with	the	F‐box	protein	MAX2/DWARF3	

(D3;	Nelson	et	al.,	2011),	and	consistent	with	this,	the	rice	d3	mutant	was	found	to	be	

strongly	impaired	in	mycorrhization	(Gutjahr	et	al.,	2015).	The	ligand	that	is	bound	by	

D14L	 in	 the	 context	 of	 AM	 symbiosis	 is	 currently	 unknown,	 and	 it	 remains	 to	 be	

investigated	whether	there	is	a	crosstalk	between	this	D14L	pathway	and	components	

of	the	common	Sym	pathway.	

A	large	number	of	transcriptional	regulators	have	been	identified	that	are	involved	in	

the	 transcriptional	 reprogramming	 during	 AM	 development	 and	 act	 downstream	 of	

calcium	spiking	and	decoding	by	CCaMK.	A	key	transcription	factor	is	a	nuclear	coiled‐

coil	protein	called	IPD3	(INTERACTING	PROTEIN	OF	DMI3)	in	M.	truncatula	(CYCLOPS	

in	 L.	 japonicus),	 which	 is	 required	 for	 the	 successful	 establishment	 of	 both	 the	

mycorrhizal	and	the	root‐nodule	symbiosis	(Messinese	et	al.,	2007;	Yano	et	al.,	2008).	In	

addition,	 the	 family	 of	 the	 GRAS‐domain	 proteins	 have	 emerged	 as	 important	

transcriptional	 regulators,	 particularly	 during	 the	 establishment	 of	 AM	 symbiosis,	

although	some	of	these	proteins	are	also	involved	in	regulating	gene	expression	during	

nodulation.	
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1.4.4.1  IPD3/CYCLOPS 

Genetic	screens	and	interaction	studies	have	identified	IPD3/CYCLOPS	as	an	interaction	

partner	and	phosphorylation	substrate	of	CCaMK	(Messinese	et	al.,	2007;	Yano	et	 al.,	

2008).	 IPD3/CYCLOPS	 is	 essential	 for	 the	development	of	both	 the	AM	and	 the	 root‐

nodule	symbiosis,	but	similar	to	CCaMK,	it	is	not	required	for	the	induction	of	symbiotic	

calcium	oscillations	(Kistner	et	al.,	2005;	Miwa	et	al.,	2006).	In	L.	japonicus,	mutations	in	

this	gene	result	in	an	impaired	intracellular	infection	by	AM	fungi,	with	fungal	hyphae	

showing	 abnormal	 swelling	 in	 the	 epidermis	 and	 cortex	 and	 a	 failure	 to	 develop	

arbuscules	 in	 the	 cortex	 (Yano	 et	 al.,	 2008).	 In	 addition,	 CYCLOPS	 was	 found	 to	 be	

important	 for	 infection	 thread	 formation	 during	 root	 nodule	 symbiosis.	 While	 M.	

truncatula	IPD3	also	plays	a	role	in	infection	thread	progression	during	nodulation,	the	

phenotype	 of	 ipd3	 mutants	 is	 much	 weaker	 for	 nodule	 organogenesis	 and	 AM	

development	 than	 L.	 japonicus	 cyclops	 mutants,	 perhaps	 implying	 a	 degree	 of	

redundancy	for	this	gene	function	in	M.	truncatula	(Horváth	et	al.,	2011;	Ovchinnikova	

et	al.,	2011).	An	orthologue	of	IPD3	has	also	been	identified	in	rice,	where	it	was	found	

to	be	required	for	mycorrhization	(Chen	et	al.,	2008;	Gutjahr	et	al.,	2008).	

For	a	long	time,	the	exact	role	of	CYCLOPS	during	symbiosis	signalling	was	not	known;	

however,	a	recent	study	by	Singh	and	colleagues	has	shed	light	on	the	function	of	this	

protein.	 It	 has	 been	 shown	 that	 CYCLOPS	 is	 able	 to	 directly	 bind	DNA	 and	 acts	 as	 a	

transcription	 factor	 to	 induce	 the	 expression	 of	 NIN	 (NODULE	 INCEPTION),	 a	 gene	

playing	a	key	role	in	nodulation	(Schauser	et	al.,	1999;	Singh	et	al.,	2014).	CCaMK	was	

found	to	phosphorylate	two	serine	residues	of	CYCLOPS,	resulting	in	the	activation	of	

CYCLOPS	 (Singh	 et	 al.,	 2014).	 Intriguingly,	 phosphomimetic	 replacement	 of	 the	 two	

serine	residues	results	in	a	gain‐of‐function	version	of	CYCLOPS	(CYCLOPS‐DD)	that	is	

able	to	trigger	not	only	NIN	expression,	but	also	spontaneous	nodule	formation	in	the	

absence	 of	 rhizobia	 similar	 to	 autoactive	 CCaMK	 (Singh	 et	 al.,	 2014).	 In	 addition	 to	

regulating	NIN,	 CYCLOPS	 has	 recently	 been	 found	 to	 also	 induce	 the	 expression	 of	 a	

GRAS‐domain	protein	called	RAM1	(REQUIRED	FOR	ARBUSCULAR	MYCORRHIZATION	1),	

which	 itself	 acts	 as	 a	 transcriptional	 regulator	 and	 is	 specifically	 involved	 in	 AM	

symbiosis	(Gobbato	et	al.,	2012;	Pimprikar	et	al.,	2016).	The	overexpression	of	RAM1	in	

cyclops	 mutants	 restores	 the	 arbuscular	 defect,	 further	 confirming	 that	 RAM1	 acts	

downstream	of	CYCLOPS	 (Pimprikar	 et	 al.,	 2016).	These	 results	provide	a	direct	 link	

between	the	activation	of	CCaMK	by	symbiotic	calcium	oscillations	and	the	downstream	

induction	of	gene	expression	by	CCaMK‐regulated	transcription	factors.	
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1.4.4.2  GRAS‐domain proteins 

GRAS‐domain	 proteins	 belong	 to	 a	 large	 family	 of	 plant‐specific	 proteins	 that	 are	

characterized	by	the	presence	of	a	conserved	GRAS	domain	at	their	C‐terminus	(Bolle,	

2004).	 The	 GRAS	 domain	 consists	 of	 several	 motifs,	 namely	 two	 leucine‐rich	 repeat	

motifs	(LHRI	and	LHRII),	a	VHIID	motif,	a	PFYRE	motif,	and	a	SAW	motif	(all	termed	after	

the	most	 conserved	 amino	 acid	 residues	 present	 in	 these	motifs).	 In	 contrast	 to	 the	

relatively	well	conserved	C‐terminus,	the	N‐terminus	of	GRAS‐domain	proteins	is	highly	

variable.	GRAS‐domain	proteins	were	named	after	 the	 first	 three	members	 identified	

(GAI,	 RGA	 and	 SCR)	 and	 function	 in	 a	 range	 of	 different	 plant	 processes,	 including	

gibberellic	 acid	 signalling,	 root	 and	 shoot	 development,	 abiotic	 stress,	 and	 light	

signalling	(Bolle,	2004).		

Two	 members	 of	 the	 GRAS‐domain	 protein	 family	 in	 legumes,	 NSP1	 (NODULATION	

SIGNALLING	 PATHWAY	 1)	 and	 NSP2,	 play	 an	 essential	 role	 in	 symbiosis	 signalling	

(Catoira	et	al.,	2000;	Wais	et	al.,	2000;	Oldroyd	and	Long	2003;	Kaló	et	al.,	2005;	Smit	et	

al.,	2005).	Both	the	nsp1	and	the	nsp2	mutant	are	unable	to	form	infection	threads	and	

nodules	and	have	a	dramatically	reduced	capability	to	induce	symbiotic	gene	expression	

(Catoira	et	al.,	2000),	however,	they	are	not	affected	in	the	induction	of	calcium	spiking	

(Wais	 et	 al.,	 2000;	 Oldroyd	 and	 Long	 2003).	 NSP1	 and	 NSP2	 were	 shown	 to	 act	 as	

transcription	factors	through	the	formation	of	a	heteromeric	complex	that	induces	the	

expression	of	early	nodulation	genes	such	as	ENOD11,	ERN1	and	NIN	(Hirsch	et	al.,	2009;	

Cerri	et	al.,	2012).	In	vitro	DNA	binding	studies	demonstrated	that	the	two	LHR	motifs	in	

NSP1	are	 involved	 in	 the	direct	binding	of	 this	protein	 to	 the	promoter	sequences	of	

symbiotic	genes	(Hirsch	et	al.,	2009).	Importantly,	NSP1	was	found	to	require	NSP2	to	

be	 able	 to	 bind	 to	 these	 target	 promoters	 in	 vivo	 (Hirsch	 et	 al.,	 2009),	 and	 only	 the	

complex	 of	 NSP1	 and	 NSP2,	 but	 not	 NSP1	 by	 itself,	 was	 reported	 to	 induce	 gene	

expression	in	a	transient	reporter	system	in	Nicotiana	benthamiana	(Cerri	et	al.,	2012).	

In	line	with	this,	introducing	a	point	mutation	in	NSP2	that	reduces	the	interaction	with	

NSP1	also	leads	to	a	reduction	in	nodule	number,	further	highlighting	the	importance	of	

the	NSP1‐NSP2	complex	formation	for	the	root‐nodule	symbiosis	(Hirsch	et	al.,	2009).		

Notably,	NSP1	and	NSP2	seem	to	be	functionally	conserved	in	non‐legumes,	because	the	

rice	 homologs	 OsNSP1	 and	 OsNSP2	 are	 able	 to	 fully	 complement	 the	 nodulation	

phenotype	 of	 the	 corresponding	 L.	 japonicus	 mutants	 (Yokota	 et	 al.,	 2010).	 More	

recently,	it	has	been	discovered	that	NSP1	and	NSP2	also	play	a	role	in	mycorrhization;	

nsp1	and	nsp2	single	mutants	as	well	as	nsp1nsp2	double	mutants	show	decreased	levels	
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of	 mycorrhizal	 colonization	 when	 inoculated	 with	 a	 weak	 mycorrhizal	 inoculum,	

although	arbuscule	development	appears	normal	(Liu	et	al.,	2011;	Maillet	et	al.,	2011;	

Delaux	et	al.,	2013).	In	M.	truncatula	and	rice,	both	NSP	genes	were	found	to	be	required	

for	the	expression	of	D27,	a	gene	involved	in	strigolactone	biosynthesis	(Liu	et	al.,	2011).	

As	mutations	in	strigolactone	biosynthesis	genes	in	tomato	and	pea	similarly	reduce	the	

level	of	root	mycorrhization	(Gomez‐Roldan	et	al.,	2008;	Koltai	et	al.,	2010),	it	has	been	

proposed	that	NSP1	and	NSP2	regulate	AM	development	at	 least	partly	through	their	

direct	control	of	strigolactone	 levels	 (Liu	et	al.,	2011).	 Interestingly,	 the	regulation	of	

strigolactone	biosynthesis	by	NSP1	and	NSP2	seems	to	be	independent	of	the	common	

Sym	 pathway,	 indicating	 that	 NSP1	 and	 NSP2	 might	 be	 activated	 by	 an	 alternative	

signalling	pathway	 (Liu	 et	 al.,	 2011).	Recent	 studies	have	 also	provided	 evidence	 for	

more	direct	roles	of	NSP1	and	NSP2	in	Myc	factor	signalling,	with	NSP2	being	involved	

in	NS‐LCO	induced	lateral	root	growth	(Maillet	et	al.,	2011),	and	NSP1	being	required	for	

the	induction	of	three	mycorrhizal	genes	in	response	to	NS‐LCOs	(Delaux	et	al.,	2013).		

The	 first	 transcription	 factor	 that	 was	 found	 to	 function	 specifically	 in	 mycorrhizal	

signalling	was	RAM1	 (Gobbato	et	 al.,	 2012).	RAM1	 is	 a	member	of	 the	GRAS‐domain	

protein	 family	 and	 shows	 a	 strong	 transcriptional	 induction	 in	 mycorrhized	 roots	

(Gobbato	et	al.,	2012,	2013).	Plants	mutated	in	RAM1	display	severely	reduced	levels	of	

fungal	 colonization	with	 a	 decreased	 number	 of	 hyphopodia	 at	 the	 root	 surface	 and	

small,	undeveloped	arbuscules	in	the	cortex	(Gobbato	et	al.,	2012;	Gobbato	et	al.,	2013).	

Similar	to	NSP2,	RAM1	was	found	to	be	essential	for	Myc‐LCO	induced	root	branching	

(Maillet	et	al.,	2011;	Gobbato	et	al.,	2012).	However,	RAM1	is	not	required	for	Nod	factor	

induced	gene	expression	and	lateral	root	growth,	suggesting	that	RAM1	acts	specifically	

in	mycorrhizal	signalling.	The	only	confirmed	direct	target	gene	of	RAM1	to	date	is	the	

glycerol‐3‐phosphate	acyltransferase	RAM2,	which	has	been	proposed	to	be	involved	in	

the	biosynthesis	of	cutin	monomers	that	act	as	signalling	molecules	to	the	fungus	and	

promote	the	formation	of	hyphopodia	at	the	root	surface	(Wang	et	al.,	2012;	described	

in	Section	1.2.1.1).	Two	recent	studies	have	suggested	that	RAM1	is	also	involved	in	the	

regulation	 of	 several	 genes	 important	 for	 arbuscule	 development,	 including	 STR	 and	

EXO70I,	but	it	is	not	yet	clear	whether	these	genes	are	directly	or	indirectly	regulated	by	

RAM1	 (Rich	 et	 al.,	 2015;	 Park	 et	 al.,	 2015).	 Using	 bimolecular	 fluorescence	

complementation	assays,	RAM1	was	 shown	 to	be	able	 to	 form	a	 complex	with	NSP2.	

Based	on	these	findings,	it	was	proposed	that	analogous	to	the	NSP1‐NSP2	complex	in	
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nodulation,	RAM1	and	NSP2	act	together	to	regulate	the	expression	of	mycorrhizal	genes	

(Gobbato	et	al.,	2012).		

Recent	results	from	a	study	in	L.	japonicus	indicate	that	another	GRAS‐domain	protein	

called	RAD1	(REQUIRED	FOR	ARBUSCULE	DEVELOPMENT	1)	 is	 important	 for	 fungal	

colonization	and	arbuscule	development	(Xue	et	al.,	2015).	Due	to	the	high	occurrence	

of	degenerated	arbuscules	in	rad1	mutants,	it	has	been	suggested	that	RAD1	is	required	

for	 maintaining	 the	 mycorrhizal	 symbiosis	 (Park	 et	 al.,	 2015;	 Xue	 et	 al.,	 2015).	

Interestingly,	 RAD1	 is	 able	 to	 form	 a	 complex	with	 RAM1	 and	NSP2	 in	 vivo	 and	 has	

therefore	been	proposed	to	contribute	to	the	regulation	of	mycorrhizal	genes	such	as	

RAM2	(Xue	et	al.,	2015).		

A	 number	 of	 additional	 GRAS‐domain	 proteins	 were	 found	 to	 be	 involved	 in	

mycorrhization.	Amongst	them	are	the	DELLA	proteins,	originally	discovered	for	their	

function	as	repressors	in	gibberellic	acid	signalling.	Studies	in	A.	thaliana	and	rice	have	

shown	that	DELLAs	interact	with	and	inhibit	a	range	of	different	transcription	factors	

(Gao	et	al.,	2011).	Upon	perception	of	gibberellic	acid,	DELLA	proteins	are	targeted	for	

degradation,	which	relieves	the	repression	on	their	interaction	partners	and	allows	for	

the	induction	of	changes	in	gene	expression.	In	M.	truncatula	and	rice,	DELLA	proteins	

were	 found	 to	be	 required	 for	 arbuscule	 formation	during	AM	symbiosis,	 but	do	not	

appear	to	be	involved	in	the	formation	of	hyphopodia	(Floss	et	al.,	2013;	Yu	et	al.,	2014).	

In	 accordance	with	 the	 antagonizing	 function	 of	 DELLAs	 and	 gibberellic	 acid,	 it	 was	

shown	that	while	DELLA	proteins	play	a	positive	regulatory	role	 in	AM	development,	

exogenously	 applied	 gibberellic	 acid	 represses	 fungal	 colonization	 and	 arbuscule	

formation.	In	addition,	mutants	deficient	in	gibberellic	acid	display	increased	levels	of	

mycorrhization	in	pea,	M.	truncatula	and	rice	(Floss	et	al.,	2013;	Foo	et	al.,	2013;	Yu	et	

al.,	2014).	Meanwhile,	it	has	also	been	reported	that	gibberellic	acid	accumulates	in	roots	

during	mycorrhization,	suggesting	that	gibberellic	acid	has	both	negative	and	positive	

effects	 on	 the	 colonization	 of	 host	 roots	 by	 AM	 fungi	 (Takeda	 et	 al.,	 2015).	 DELLA	

proteins	 have	 recently	 been	 proposed	 to	 act	 upstream	 of	 RAM1,	 as	 the	 ectopic	

overexpression	of	RAM1	is	sufficient	to	restore	arbuscule	formation	in	roots	treated	with	

gibberellic	acids	(Pimprikar	et	al.,	2016).	In	line	with	this	observation,	it	was	found	that	

DELLA	proteins	are	able	to	form	a	complex	with	CCaMK	and	CYCLOPS	to	enhance	the	

transcriptional	 induction	 of	 RAM1	 (Pimprikar	 et	 al.,	 2016).	 Furthermore,	 the	

overexpression	 of	 a	 constitutively	 active	 DELLA	 protein	 leads	 to	 the	 transcriptional	

induction	of	RAM1	in	the	absence	of	mycorrhizal	fungi	(Park	et	al.,	2015).	These	findings	
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suggest	that	the	expression	of	RAM1	is	regulated	by	both	symbiotic	signalling	through	

CCaMK	and	CYCLOPS	and	gibberellic	acid	signalling	through	the	DELLA	proteins.	

A	 study	 in	 rice	 identified	DIP1	 (DELLA	 INTERACTING	 PROTEIN	 1)	 as	 an	 interaction	

partner	of	the	single	rice	DELLA	protein	SLR1	(Yu	et	al.,	2014).	DIP1	is	also	a	member	of	

the	GRAS‐domain	protein	family	and	RNAi	knockdown	of	this	gene	results	in	a	decrease	

in	mycorrhizal	colonization	(Yu	et	al.,	2014).	 Interestingly,	DIP1	was	 found	 to	 form	a	

complex	with	rice	and	M.	truncatula	RAM1,	while	RAM1	itself	does	not	directly	interact	

with	DELLA	proteins	(Yu	et	al.,	2014).	These	observations	reveal	a	possible	physical	link	

between	the	NSP2/RAD1/RAM1	complexes	and	the	DELLA	proteins.		

A	 GRAS‐domain	 protein	 called	 MIG1	 (MYCORRHIZA‐INDUCED	 GRAS	 1)	 has	 recently	

been	 found	to	regulate	radial	cell	expansion	 in	 the	cortex	 to	enable	proper	arbuscule	

formation	 in	 M.	 truncatula	 roots	 (Heck	 et	 al.,	 2016).	 Consequently,	 arbuscule	

development	 is	 impaired	when	MIG1	 is	 transcriptionally	 silenced.	 Intriguingly,	MIG1	

appears	 to	 be	 able	 to	 interact	with	 DELLA1,	 and	 it	 has	 been	 proposed	 that	 a	MIG1‐

DELLA1	 complex	 regulates	 root	 development	 to	 accommodate	 the	 fungal	 infection	

structures	during	AM	symbiosis	 (Heck	et	al.,	2016).	MIG1	belongs	 to	a	novel	clade	of	

GRAS‐domain	proteins	that	is	absent	in	the	non‐host	A.	thaliana,	and	several	members	

of	 this	 clade	 are	 transcriptionally	 upregulated	 during	 mycorrhizal	 colonization,	

suggesting	that	additional	GRAS‐domain	proteins	could	play	a	role	in	AM	development	

(Heck	et	al.,	2016).	

The	 characterisation	 of	 plants	 carrying	 mutations	 in	 the	 DELLAs	 show	 that	 these	

proteins	not	only	act	during	the	establishment	of	AM	symbiosis,	but	are	also	required	for	

infection	 thread	 formation	 and	 nodule	 development	 in	 the	 symbiosis	 with	 rhizobial	

bacteria	(Jin	et	al.,	2016;	Fonouni‐Farde	et	al.,	2016).	Interestingly,	DELLA	proteins	were	

shown	 to	 interact	with	NSP2	 and	 enhance	 the	 induction	 of	ERN1	 by	 the	NSP1‐NSP2	

complex	in	a	transactivation	assay	in	A.	thaliana	protoplasts	(Jin	et	al.,	2015;	Fonouni‐

Farde	et	al.,	2016).	Thus,	DELLAs	appear	to	be	involved	in	several	transcription	factor	

complexes	 that	 regulate	 gene	 expression	 during	 the	 establishment	 of	 both	

mycorrhization	and	nodulation.	

Together,	 these	 findings	 show	 that	 a	 large	 number	 of	 GRAS‐domain	 proteins	 are	

required	 for	 the	 establishment	 of	 the	 AM	 association,	 and	 all	 of	 them	 form	

multicomponent	complexes	with	other	members	of	the	GRAS‐domain	protein	family.	In	

the	root‐nodule	symbiosis,	the	complex	formation	of	NSP1	and	NSP2	has	been	shown	to	
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be	 essential	 for	 the	 upregulation	 of	 rhizobial‐responsive	 genes	 such	 as	 ERN1	 and	

ENOD11	(Hirsch	et	al.,	2009;	Cerri	et	al.,	2012).	It	is	likely	that	in	a	similar	way,	complex	

formation	 is	 a	 pre‐requisite	 for	 the	 function	 of	 GRAS‐domain	 proteins	 during	

mycorrhization,	 and	 that	 different	 complexes	 function	 during	 different	 stages	 of	

mycorrhization	 to	 achieve	 the	 required	 stage	 and	 cell	 type‐specific	 transcriptional	

reprogramming	 of	 host	 cells	 (Figure	 1.2).	 However,	 all	 of	 the	 protein‐protein	

interactions	 described	 above	 were	 tested	 in	 heterologous	 systems,	 and	 not	 in	 M.	

truncatula	roots.	Thus,	more	research	is	required	to	investigate	the	relevance	of	complex	

formation	for	the	activity	of	different	GRAS‐domain	proteins	under	symbiotic	conditions	

and	in	different	tissues	and	cell	types.	

	

1.4.4.3  Other transcription factors involved in mycorrhization 

Gene	expression	analyses	of	mycorrhized	plants	and	roots	treated	with	Myc	factors	have	

led	 to	 the	 identification	 of	 a	 large	 number	 of	 putative	 transcription	 factors	 that	 are	

induced	 upon	 colonization	 by	 AM	 fungi	 and	 might	 play	 a	 role	 in	 the	 regulation	 of	

mycorrhizal	 genes.	 Amongst	 these	 are	 proteins	 belonging	 to	 a	 range	 of	 different	

transcription	factor	classes,	including	CCAAT‐binding,	MYB,	AP2/ERF,	WRKY,	and	ARF	

domain	transcription	factors	(Gomez	et	al.,	2009;	Hogekamp	et	al.,	2011;	Gaude	et	al.,	

2012;	Schaarschmidt	et	al.,	2013;	Xue	et	al.,	2015).	These	findings	suggest	that	numerous	

transcriptional	 regulators	 are	 involved	 in	 the	 reprogramming	 of	 host	 cells	 during	

mycorrhization.	However,	how	and	at	which	stages	these	putative	transcription	factors	

function	in	symbiosis	signalling	and	whether	they	are	specific	to	mycorrhization	or	are	

also	involved	in	nodulation	remains	elusive.			
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1.5  Research objectives 

Research	in	recent	years	has	uncovered	a	critical	role	for	members	of	the	GRAS‐domain	

protein	family	in	the	transcriptional	reprogramming	of	roots	during	the	establishment	

of	the	symbiosis	between	plants	and	AM	fungi.	Many	of	these	transcription	factors	were	

found	to	form	multicomponent	protein	complexes.	For	example,	NSP1	and	NSP2	have	

previously	been	shown	to	physically	interact,	and	this	complex	formation	appears	to	be	

crucial	for	the	establishment	of	the	root‐nodule	symbiosis	with	rhizobia.	NSP2	was	also	

found	to	interact	with	RAM1,	a	transcription	factor	that	is	specifically	involved	in	AM	

symbiosis.	These	findings	raise	the	question	whether	these	three	GRAS‐domain	proteins	

regulate	the	same	or	different	sets	of	genes	during	AM	development.	

The	aim	of	this	project	was	to	characterise	the	functions	of	NSP1,	NSP2	and	RAM1	in	the	

transcriptional	 regulation	 of	 roots	 during	 mycorrhization	 to	 gain	 insights	 into	 the	

mycorrhizal	processes	that	are	regulated	by	these	transcription	factors.	In	order	to	get	

a	better	understanding	of	the	developmental	stages	during	which	NSP1,	NSP2,	and	RAM1	

are	active,	 the	mycorrhizal	phenotypes	of	 the	corresponding	 loss‐of‐function	mutants	

were	 assessed	 in	 detail	 in	 a	 time	 course	 experiment	 (Chapter	 2).	 The	 roles	 of	 these	

transcription	 factors	 in	 the	 regulation	 of	 global	 gene	 expression	 were	 examined	 by	

transcriptional	profiling	of	wild‐type	plants	and	loss‐of‐function	mutants	at	several	time	

points	during	mycorrhization.	In	addition,	the	functions	of	NSP1,	NSP2,	and	RAM1	in	the	

regulation	 of	 gene	 expression	 in	 the	 absence	 of	mycorrhizal	 fungi	were	 investigated	

(Chapter	3).	This	approach	led	to	the	identification	of	a	large	number	of	novel	candidates	

for	genes	that	might	be	under	the	direct	or	indirect	control	of	the	GRAS‐domain	proteins.	

An	in‐depth	functional	analysis	of	these	potential	target	genes	was	performed	to	gain	

further	insights	into	the	mycorrhizal	processes	that	are	regulated	by	NSP1,	NSP2,	and	

RAM1.	In	addition,	several	tools	were	developed	to	investigate	whether	these	putative	

target	genes	are	directly	or	indirectly	regulated	by	the	GRAS‐domain	proteins	(Chapter	

4	and	5).	
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Figure	1.1:	Arbuscules	are	the	site	of	nutrient	exchange	between	the	plant	and	the	fungus	during	
AM	symbiosis.	Fungal	hyphae	form	extensively	branched	structures	called	arbuscules	 in	 inner	
cortical	 cells	of	plant	 roots.	Arbuscules	 consist	of	 a	broad	arbuscule	 trunk	and	 fine	arbuscule	
branches.	 The	 fungal	 hyphae	 are	 surrounded	 by	 a	 plant	membrane	 called	 the	 periarbuscular	
membrane	 (PAM).	 The	 area	 between	 the	 PAM	 and	 the	 fungal	 hyphae	 has	 been	 named	 the	
periarbuscular	space	(PAS)	and	contains	amorphously	structured	plant	cell‐wall	material.	The	
fungus	 delivers	 mineral	 nutrients	 such	 as	 phosphate,	 ammonium,	 and	 sulphate	 to	 the	 plant.	
Within	fungal	hyphae,	phosphate	and	ammonium	are	transported	in	the	form	of	poly‐phosphates	
(poly‐P)	and	arginine,	respectively.	In	M.	truncatula,	the	PAM‐localised	protein	PT4	is	required	
for	phosphate	(Pi)	transport	to	the	plant.	Ammonium	transporters	of	the	AMT2	family	are	likely	
to	be	involved	in	the	transport	of	ammonium	(NH4+)	across	the	PAM.	The	proton	(H+)‐ATPase	
HA1	is	thought	to	be	involved	in	producing	a	proton	gradient	across	the	PAM	to	provide	energy	
for	the	uptake	of	nutrients.	In	return	for	receiving	mineral	nutrients,	plants	provide	the	fungus	
with	 fixed	 carbon	 in	 the	 form	 of	 sugars.	 The	 fungal	 sugar	 transporter	MST2	 is	 expressed	 in	
arbuscule	containing	cells	and	is	likely	to	be	involved	in	the	uptake	of	sugars	from	the	PAS.	In	
addition	 to	 sugars,	 lipids	have	been	proposed	 to	be	delivered	 to	 fungal	hyphae,	 however,	 the	
transporters	involved	in	this	process	have	not	been	identified	yet.	
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Figure	 1.2:	 The	 common	 Sym	 pathway	 and	 downstream	 transcription	 factors	 mediate	 the	
transcriptional	reprogramming	of	roots	during	different	stages	of	AM	development.	Plant	roots	
release	 strigolactones,	 which	 induce	 arbuscular	 mycorrhizal	 (AM)	 spore	 germination	 and	
branching.	The	transcription	factors	NSP1	and	NSP2	are	required	for	strigolactone	production.	
In	 turn,	AM	fungi	 release	signalling	molecules	called	Myc	 factors.	These	are	 recognized	at	 the	
plasma	membrane	by	NFR1	and	potentially	NFR5,	both	of	which	 interact	with	SYMRK.	Three	
members	of	the	cyclic	nucleotide‐gated	channels	CNGC15s,	the	potassium	channels	CASTOR	and	
POLLUX,	the	calcium	ATPase	MCA8,	NUP85,	NUP133,	and	the	nucleoporin	NENA	are	involved	in	
the	 generation	 of	 calcium	 spiking.	 The	 calcium	 response	 is	 decoded	 by	 CCaMK,	 which	
phosphorylates	and	thereby	activates	the	transcription	factor	CYCLOPS.	RAM1	is	required	at	the	
stage	 of	 hyphopodium	 formation	 at	 the	 root	 epidermis.	 CYCLOPS	 is	 important	 during	 the	
spreading	of	intraradical	hyphae	in	the	cortex.	RAM1,	RAD1,	DIP1,	MIG1,	DELLAs	and	CYCLOPS	
are	required	for	arbuscule	development	in	the	inner	cortex	of	the	root	(adapted	from	Luginbuehl	
and	Oldroyd,	2016).	
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CHAPTER 2 

Comparative analysis of mycorrhizal colonization in the GRAS 

protein mutants ram1‐1, nsp1‐1, and nsp2‐2 

	

	

	

	

	

2.1  Introduction 

AM	development	is	initiated	by	plant	roots	releasing	strigolactones,	which	induce	fungal	

spore	germination	and	branching	of	hyphae,	thus	directing	fungal	growth	towards	the	

roots	(Akiyama	et	al.,	2005;	Besserer	et	al.,	2006).	Upon	contact	of	the	hyphae	with	the	

root	epidermis,	the	fungus	forms	attachment	structures	called	hyphopodia.	In	a	highly	

regulated	 process,	 the	 hyphae	 enter	 epidermal	 cells	 and	 spread	 within	 the	 root	 to	

eventually	form	arbuscules	in	the	inner	cortex,	where	nutrients	are	exchanged	between	

the	 two	 symbionts	 (Harrison,	 2012).	 The	 colonization	 of	 roots	 by	Glomus	 species	 is	

accompanied	by	 the	 appearance	 of	 lipid‐rich	 vesicles,	which	 serve	 as	 energy	 storage	

units	for	the	fungus	(Dickson,	2004).	With	the	development	of	extraradical	mycelia	and	

the	formation	of	new	spores,	the	fungal	life	cycle	is	completed.	

In	 recent	 years,	 forward	 and	 reverse	 genetic	 approaches	 have	 identified	many	 plant	

genes	involved	in	the	development	and	regulation	of	mycorrhization.	Mutations	in	these	
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genes	lead	to	an	impaired	or	altered	colonization	by	the	fungus,	and	the	nature	of	the	

resulting	 phenotype	 is	 typically	 indicative	 of	 the	 function	 of	 the	 gene	 carrying	 the	

mutation.	 For	 example,	 mycorrhization	 is	 generally	 blocked	 at	 very	 early	 stages	 in	

common	SYM	pathway	mutants	such	as	dmi3	(Catoira	et	al.,	2000).	By	contrast,	the	loss	

of	function	of	the	symbiotic	phosphate	transporter	PT4	in	M.	truncatula	does	not	affect	

the	initiation	and	early	stages	of	the	symbiosis,	but	leads	to	the	premature	senescence	of	

arbuscules	(Javot	et	al.,	2007).		

RAM1	was	first	discovered	to	be	involved	in	mycorrhization	based	on	the	phenotype	of	

a	deletion	mutant	in	M.	truncatula	(Gobbato	et	al.,	2012).	Fungal	colonization	in	the	ram1	

mutant	 is	 almost	 entirely	 absent	 and	 the	 number	 of	 hyphopodia	 strongly	 reduced	

compared	to	the	wild	type.	In	addition,	a	weaker	mutant	allele	of	RAM1	displays	small,	

undeveloped	arbuscules	in	instances	where	colonization	of	the	inner	cortex	is	successful,	

suggesting	 that	 RAM1	 plays	 a	 role	 in	 arbuscule	 formation	 (Gobatto	 et	 al.,	 2013).	

Importantly,	 all	 of	 these	 observations	 were	 made	 at	 late	 time	 points	 during	

mycorrhization,	when	the	symbiosis	was	already	fully	established	in	wild‐type	plants.	It	

is	therefore	unclear	whether	ram1	also	shows	defects	in	mycorrhization	at	earlier	time	

points,	when	fungal	colonization	is	initiated.	

NSP1	and	NSP2	were	initially	thought	to	specifically	function	in	Nod	factor	signalling	and	

nodulation,	 as	 the	 respective	 mutants	 did	 not	 show	 a	 defect	 in	 fungal	 colonization	

(Catoira	et	al.,	2000;	Wais	et	al.,	2000;	Oldroyd	and	Long,	2003;	Kaló	et	al.,	2005;	Smit	et	

al.,	2005,	Murakami	et	al.,	2006;	Heckmann	et	al.,	2006).	It	was	only	later	that	these	two	

proteins	were	found	to	play	a	role	in	mycorrhization,	when	weak	mycorrhizal	inocula	

were	used	to	assess	the	phenotypes	of	the	respective	mutants.	Both	nsp1	and	nsp2	show	

a	 reduction	 in	 total	 fungal	 colonization	 at	 late	 time	 points	 (Maillet	 et	 al.,	 2011;	

Lauressergues	et	al.,	2012;	Delaux	et	al.,	2013).	However,	early	time	points	have	not	been	

analysed	in	these	mutants,	and	no	detailed	analyses	of	the	individual	infection	structures	

have	been	reported.	

The	aim	of	 the	research	presented	 in	 this	chapter	was	 to	 investigate	 the	mycorrhizal	

phenotypes	of	the	GRAS	protein	mutants	ram1‐1,	nsp1‐1	and	nsp2‐2	in	detail	to	gain	a	

better	understanding	of	the	developmental	stages	and	processes	that	might	be	regulated	

by	these	transcription	factors.	In	order	to	be	able	to	compare	the	observed	phenotypes,	

the	different	mutants	were	tested	in	parallel	using	the	same	fungal	inoculum	and	growth	

conditions,	 as	 these	 factors	 strongly	 influence	 the	 efficiency	 and	 dynamics	 of	 fungal	

colonization.	Taking	into	account	that	the	phenotype	of	a	mutant	often	depends	on	the	
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time	point	at	which	mycorrhization	is	assessed,	the	characterisation	of	the	phenotypes	

was	extended	to	include	not	only	late,	but	also	early	and	intermediate	time	points.	

	

2.2  Results 

2.2.1  ram1‐1  is  transiently  colonized  by  AM  fungi  and  unable  to  form  fully 

developed arbuscules at any time point during AM establishment 

To	 assess	 the	 phenotypes	 of	 the	 GRAS	 protein	 mutants,	 fungal	 infection	 structures	

(hyphopodia,	intraradical	hyphae,	arbuscules,	and	vesicles)	were	quantified	in	wild‐type	

and	mutant	plants	in	a	mycorrhizal	time	course	experiment	at	8	days	post	inoculation	

(dpi),	 13	 dpi	 and	 27	 dpi	 (Figure	 2.1).	 At	 the	 earliest	 time	 point,	 the	 first	 signs	 of	

colonization	were	visible	 in	wild‐type	roots,	with	hyphopodia	being	 the	predominant	

infection	structure,	and	relatively	few	arbuscules	or	vesicles	being	present.	At	13	dpi,	

fungal	colonization	in	wild‐type	roots	was	only	slightly	more	advanced,	while	at	27	dpi,	

arbuscules	were	present	in	the	majority	of	the	root	segments	tested	and	the	symbiosis	

with	the	fungus	was	fully	established.		

Compared	 to	 the	 wild	 type,	 ram1‐1	 showed	 a	 slight,	 but	 not	 statistically	 significant	

reduction	 of	 hyphopodia	 at	 8	 dpi	 (Figure	 2.1).	 The	 quantification	 of	 fungal	 infection	

structures	in	ram1‐1	was	repeated	multiple	times	for	very	early	time	points,	and	a	slight	

reduction	 in	 the	 number	 of	 hyphopodia	 was	 always	 visible,	 although	 the	 statistical	

significance	was	variable,	suggesting	that	hyphopodia	formation	is	only	weakly	affected	

in	ram1‐1	at	early	time	points	(Figure	2.2).	The	reduction	in	the	number	of	hyphopodia	

was	more	pronounced	and	significant	at	13	dpi	and	27	dpi	(Figure	2.1).	Interestingly,	the	

percentage	 of	 hyphopodia	 decreased	 between	 13	 dpi	 and	 27	 dpi	 in	 ram1‐1,	 while	 it	

increased	in	the	wild	type.	The	same	trend	was	also	visible	for	the	number	of	vesicles,	

suggesting	 that	 fungal	 colonization	 in	 ram1‐1	 is	 gradually	 lost	 at	 later	 time	 points.	

Strikingly,	ram1‐1	roots	did	not	seem	to	form	arbuscules	at	any	of	the	tested	time	points.	

To	investigate	this	further,	roots	of	all	three	time	points	were	stained	with	Alexa	Fluor	

488	wheat	germ	agglutinin	(WGA),	and	the	appearance	of	fungal	infection	structures	was	

observed	 under	 the	 fluorescence	microscope	 (Figure	 2.3,	 2.4,	 and	 2.5).	 This	 analysis	

revealed	that	ram1‐1	was	not	able	to	form	fully	developed	arbuscules	as	they	occur	in	

wild‐type	plants.	Instead,	small,	undeveloped	arbuscules	were	present	in	cortical	cells.	

These	 tiny	 arbuscules	 resembled	 thick,	 intraradical	 hyphae	when	 roots	were	 stained	
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with	ink	and	were	therefore	quantified	as	such,	resulting	in	the	significant	increase	in	

abundance	of	intraradical	hyphae	in	ram1‐1	compared	to	the	wild	type	at	13	dpi	(Figure	

2.1).	Taken	together,	 the	presence	of	hyphopodia,	 intraradical	hyphae	and	vesicles	 in	

ram1‐1,	 particularly	 at	 earlier	 time	 points,	 suggests	 that	 the	 mutant	 is	 transiently	

colonized	by	mycorrhizal	fungi.	However,	the	observed	decrease	in	mycorrhization	at	

27	 dpi	 indicates	 that	 the	 symbiosis	 is	 not	 maintained,	 leading	 to	 a	 loss	 of	 fungal	

colonization	at	later	time	points.	

Next,	 I	 investigated	 whether	 the	 ram1‐1	 mutant	 phenotype,	 specifically	 arbuscule	

development	and	low	colonization	levels	at	late	time	points,	could	be	complemented	by	

inoculation	with	 a	 strong	 nurse	 plant	 inoculum.	 At	 32	 dpi,	 the	wild	 type	 exhibited	 a	

fungal	colonization	level	of	around	85	%,	while	ram1‐1	was	only	slightly	less	colonized	

(70%),	indicating	that	the	presence	of	nurse	plants	allows	the	symbiosis	in	ram1‐1	roots	

to	be	maintained	even	at	 late	time	points	(Figure	2.6).	However,	arbuscule	 formation	

was	 still	 impaired	 in	 the	 mutant	 and	 could	 not	 be	 complemented	 by	 nurse	 plants,	

suggesting	that	RAM1	plays	a	direct	role	in	the	regulation	of	arbuscule	development.	

	

2.2.2  Fungal colonization in nsp1‐1 is reduced at both early and late time points 

during mycorrhization 

The	abundance	of	most	 fungal	 infection	structures,	 including	hyphopodia,	arbuscules,	

and	vesicles,	was	reduced	in	nsp1‐1	by	approximately	50%	at	8	dpi	compared	to	the	wild	

type	(Figure	2.1).	This	trend	continued	at	13	dpi,	although	the	reduction	was	slightly	less	

pronounced,	 and	 persisted	 at	 27	 dpi.	 Interestingly,	 even	 though	 the	 extent	 of	

colonization	 was	 reduced	 in	 nsp1‐1	 roots,	 the	 fungal	 infection	 structures,	 including	

arbuscules,	 appeared	 normal	 at	 all	 three	 time	 points	 when	 assessed	 under	 the	

microscope,	suggesting	that	the	development	of	mycorrhizal	structures	is	not	impaired	

in	nsp1‐1	 (Figure	 2.3,	 2.4,	 and	 2.5).	 Consistent	with	 this,	 the	 abundance	 of	 all	 fungal	

infection	structures	increased	over	time	in	nsp1‐1	at	a	similar	rate	as	in	the	wild	type.	

These	 results	 indicate	 that	NSP1	 is	 not	 required	 for	 the	 normal	 development	 of	 the	

symbiosis	within	the	root.	Instead,	the	colonization	pattern	suggests	that	the	onset	of	

fungal	colonization	 in	nsp1‐1	might	be	delayed,	while	colonization	proceeds	normally	

once	the	fungus	is	inside	the	root.		
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2.2.3  Mycorrhization in nsp2‐2  is not impaired at any of the time points tested 

but might be affected at later time points 

Unlike	 ram1‐1	 and	 nsp1‐1,	 nsp2‐2	 did	 not	 show	 any	 quantitative	 or	 qualitative	

differences	 in	mycorrhization	compared	 to	 the	wild	 type	under	 the	conditions	 tested	

here.	No	significant	reduction	in	the	abundance	of	mycorrhizal	structures	was	observed	

in	nsp2‐2	roots	at	any	of	the	assessed	time	points	(Figure	2.1),	and	the	fungal	infection	

structures	 appeared	 normal	 under	 the	 fluorescence	microscope	 (Figure	 2.3,	 2.4,	 and	

2.5).	 Interestingly,	 the	 number	 of	 arbuscules	 and	 vesicles	 did	 show	 a	 slight	 trend	

towards	 a	 reduction	 compared	 to	 the	 wild	 type	 at	 27	 dpi	 (Figure	 2.1).	 While	 this	

difference	was	not	statistically	significant,	it	seems	possible	that	NSP2	might	play	a	role	

at	later	time	points	during	mycorrhization,	and	it	would	be	interesting	to	test	whether	

fungal	colonization	is	reduced	in	nsp2‐2	at	time	points	later	than	27	dpi.	

	

2.3  Discussion 

In	 this	 chapter,	 the	 functions	 of	 RAM1,	 NSP1	 and	 NSP2	 in	 AM	 development	 were	

investigated	by	assessing	the	mycorrhizal	phenotypes	of	the	respective	mutants	in	detail	

in	 a	 time	 course	 experiment.	 While	 both	 ram1‐1	 and	 nsp1‐1	 displayed	 a	 significant	

reduction	 in	 mycorrhizal	 colonization,	 the	 analysis	 also	 revealed	 key	 differences	

between	the	mutant	phenotypes.		

The	findings	of	a	previous	study	showed	that	the	deletion	of	the	gene	encoding	for	RAM1	

in	M.	 truncatula	 causes	 very	 low	 levels	 of	 mycorrhization	 and	 a	 drastically	 reduced	

number	of	hyphopodia	at	6	weeks	after	inoculation	with	fungal	spores	(Gobbato	et	al.,	

2012).	The	results	presented	here	indicate	that	at	earlier	time	points,	the	fungus	is	able	

to	transiently	colonize	ram1‐1,	with	the	number	of	hyphopodia	and	vesicles	being	only	

slightly	reduced	in	the	mutant	compared	to	the	wild	type.	At	late	time	points,	the	level	of	

mycorrhization	 was	 strongly	 impaired	 in	 ram1‐1.	 Recent	 studies	 assessing	 the	

phenotype	of	ram1	mutants	in	P.	hybrida,	L.	japonicus	and	M.	truncatula	confirm	these	

findings	(Park	et	al.,	2015;	Rich	et	al.,	2015;	Xue	et	al.,	2015;	Pimprikar	et	al.,	2016).	The	

loss	of	fungal	colonization	at	later	time	points	is	likely	caused	by	the	inability	of	ram1‐1	

to	 form	 fully	 developed	 arbuscules,	 a	 defect	 that	was	 also	 observed	 in	weaker	 ram1	

mutant	alleles	in	M.	truncatula	and	in	P.	hybrida	and	L.	japonicus	ram1	mutants	(Gobbato	

et	al.,	2013;	Park	et	al.,	2015;	Rich	et	al.,	2015;	Xue	et	al.,	2015;	Pimprikar	et	al.,	2016).	
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Inoculation	of	ram1‐1	with	a	nurse	plant	inoculum	showed	that	although	the	reduction	

of	fungal	colonization	at	late	time	points	was	almost	fully	complemented	by	the	presence	

of	nurse	plants,	arbuscule	development	was	not	rescued.	Together,	the	results	presented	

in	 this	 chapter	 and	 the	 recently	 published	work	 in	 other	 species	 imply	 that	RAM1	 is	

essential	for	arbuscule	development	in	inner	cortical	cells,	but	is	not	absolutely	required	

for	initial	entry	and	spreading	of	fungal	hyphae	within	the	roots.	

The	nsp1‐1	mutant	showed	a	very	different	mycorrhizal	phenotype	compared	to	ram1‐

1.	While	a	reduction	in	mycorrhizal	 infection	structures	was	observed	in	nsp1‐1	at	all	

three	 time	 points	 tested,	 the	 development	 of	 fungal	 structures	was	 not	 affected	 and	

colonization	 inside	 the	 roots	 proceeded	 normally.	 These	 findings	 indicate	 that	NSP1	

plays	a	role	at	very	early	stages	of	AM	symbiosis,	but	is	not	required	for	the	spreading	

and	 normal	 development	 of	mycorrhizae	within	 the	 root.	 NSP1	 has	 previously	 been	

shown	to	regulate	the	expression	of	the	strigolactone	biosynthesis	gene	D27	under	low	

phosphate	 conditions	 in	 M.	 truncatula	 and	 rice,	 resulting	 in	 the	 complete	 lack	 of	

strigolactones	 in	 nsp1	 root	 exudates	 (Liu	 et	 al.,	 2011).	 Considering	 the	 role	 of	

strigolactones	in	the	induction	of	AM	fungal	spore	germination	and	hyphal	branching	

(Akiyama	et	al.,	2005;	Besserer	et	al.,	2006),	 it	seems	 likely	 that	 the	delayed	onset	of	

mycorrhization	 in	 nsp1‐1	 observed	 here	 is,	 at	 least	 partly,	 caused	 by	 the	 lack	 of	

strigolactones	released	into	the	rhizosphere.	L.	japonicus	nsp1	mutants	similarly	show	a	

decreased	 level	 of	 mycorrhization	 at	 early	 time	 points,	 and	 this	 correlates	 with	 a	

reduction	in	D27	expression	(Takeda	et	al.,	2013).	Interestingly,	Takeda	and	colleagues	

found	that	while	the	external	 treatment	of	L.	 japonicus	nsp1	roots	with	strigolactones	

increases	 the	 level	 of	 mycorrhization,	 it	 does	 not	 fully	 complement	 the	mycorrhizal	

phenotype,	suggesting	that	NSP1	must	also	regulate	other	plant	processes	important	for	

the	establishment	of	the	symbiosis	(Takeda	et	al.,	2013).		

Surprisingly,	no	significant	difference	in	mycorrhization	was	observed	in	nsp2‐2	under	

the	conditions	tested	here.	This	 is	 in	contrast	with	two	earlier	studies,	which	found	a	

significant	reduction	of	fungal	colonization	in	the	nsp2	mutant	compared	to	the	wild	type	

(Maillet	et	al.,	2011;	Lauressergues	et	al.,	2012).	It	is	possible	that	the	fungal	inoculum	

used	in	this	study	was	too	strong	to	observe	a	phenotype,	and	that	a	weaker	inoculum	is	

required	to	see	a	mycorrhizal	defect	in	the	nsp2	mutant.	The	severity	of	the	mycorrhizal	

phenotype	of	nsp1	has	previously	been	shown	to	depend	on	the	amount	of	spores	used	

to	inoculate	the	plants.	A	decrease	in	mycorrhization	was	only	visible	when	plants	were	

inoculated	with	a	low	number	of	spores	(Delaux	et	al.,	2013).	The	same	might	also	apply	
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to	the	nsp2	mutant.	Alternatively,	a	reduction	in	fungal	colonization	in	nsp2	might	only	

be	 visible	 at	 very	 late	 time	 points	 during	 the	 symbiosis.	 Although	 not	 statistically	

significant,	 a	 small	 reduction	 in	 the	number	of	arbuscules	and	vesicles	was	visible	 in	

nsp2‐2	 at	 27	 dpi.	 This	 reduction	might	 become	more	 pronounced	 at	 even	 later	 time	

points,	however,	this	hypothesis	has	not	been	tested	here.		

NSP1	and	NSP2	are	known	to	form	a	protein	complex,	and	this	interaction	is	required	

for	the	activation	of	target	genes	and	the	establishment	of	the	root	nodule	symbiosis	with	

rhizobial	bacteria	(Hirsch	et	al.,	2006;	Cerri	et	al.,	2012).	Based	on	these	findings	and	the	

observation	that	the	phenotypes	of	the	nsp1	and	nsp2	mutants	in	nodulation	are	very	

similar,	 it	 has	 been	proposed	 that	NSP1	 and	NSP2	 act	 together	 to	 regulate	 the	 same	

processes	in	nodulation	(Kaló	et	al.,	2005;	Smit	et	al.,	2005;	Hirsch	et	al.,	2009).	However,	

it	is	unclear	whether	these	two	transcription	factors	also	carry	out	the	same	functions	in	

mycorrhization.	Here,	I	found	that	nsp1‐1	is	impaired	in	fungal	colonization,	while	nsp2‐

2	does	not	have	a	mycorrhizal	phenotype	under	the	conditions	and	at	the	time	points	

tested.	Considering	that	the	identical	fungal	inoculum	and	growth	conditions	were	used	

to	assess	the	phenotypes,	this	observation	implies	that	NSP1	and	NSP2	have	different	

roles	 in	 mycorrhization.	 The	 regulation	 of	 strigolactone	 biosynthesis	 provides	 one	

example	of	a	pathway	that	has	been	 found	to	be	differentially	regulated	by	NSP1	and	

NSP2	(Liu	et	al.,	2013).	Although	the	expression	of	the	strigolactone	biosynthesis	gene	

D27	 is	 reduced	 in	both	nsp1	 and	nsp2,	 this	 reduction	 is	weaker	 and	not	 sufficient	 to	

prevent	the	production	of	strigolactones	in	nsp2	(Liu	et	al.,	2013).	Instead,	exudates	of	

nsp2	 mutant	 roots	 contain	 higher	 levels	 of	 the	 strigolactone	 orobanchol,	 while	 the	

mutant	 seems	 to	 be	 blocked	 in	 the	 conversion	 of	 this	 substrate	 into	 other	 forms	 of	

strigolactones	(Liu	et	al.,	2013).	This	difference	in	strigolactone	biosynthesis	in	nsp1	and	

nsp2	 could	 be	 one	 possible	 reason	 for	 the	 difference	 between	 the	 mycorrhizal	

phenotypes	observed	here.	

In	 summary,	 the	 comparative	 analysis	 of	 mycorrhizal	 phenotypes	 presented	 here	

provides	evidence	that	RAM1,	NSP1	and	NSP2	are	involved	in	the	regulation	of	different	

mycorrhizal	processes.	While	RAM1	appears	to	be	important	at	early	and	late	time	points	

during	mycorrhization,	and	in	particular	for	arbuscule	formation	and	the	maintenance	

of	 fungal	colonization,	NSP1	seems	to	play	a	role	in	the	initiation	of	AM	development.	

Meanwhile,	no	effect	on	mycorrhization	was	observed	in	nsp2‐2	under	the	conditions	

tested	here,	and	the	role	of	NSP2	in	mycorrhization	remains	unclear.	
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Figure	2.1:	Quantification	of	 fungal	 infection	structures	 in	wild‐type	(wt),	ram1‐1,	nsp1‐1	and	
nsp2‐2	roots.	The	occurrence	of	hyphopodia,	intraradical	hyphae	(int.	hyphae),	arbuscules,	and	
vesicles	 in	 ink‐stained	 root	 pieces	 is	 shown	 as	 percentage	 of	 the	 total	 number	 of	 root	 pieces	
assessed.	Fungal	infection	structures	were	quantified	at	8	dpi	(A),	13	dpi	(B),	and	27	dpi	(C).	Bars	
represent	 the	 average	of	 at	 least	12	biological	 replicates	±	 SEM.	Asterisks	 indicate	 significant	
differences	between	the	wild	type	and	the	mutant	lines	in	each	group	of	infection	type	(Student’s	
t‐test;	*,	P	<	0.05;	**,	P	<	0.01;	***,	P	<	0.001).	
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Figure	2.2:	Quantification	of	fungal	infection	structures	in	wild‐type	(wt)	and	ram1‐1	roots.	The	
occurrence	 of	 hyphopodia,	 intraradical	 hyphae	 (int.	 hyphae),	 arbuscules,	 and	 vesicles	 in	 ink‐
stained	root	pieces	is	shown	as	percentage	of	the	total	number	of	root	pieces	assessed.	Fungal	
infection	structures	were	quantified	at	9	dpi	(A)	and	at	13	dpi	(B).	Bars	represent	the	average	of	
12	biological	replicates	±	SEM.	Asterisks	indicate	significant	differences	between	the	wild	type	
and	ram1‐1	in	each	group	of	infection	type	(Student’s	t‐test;	*,	P	<	0.05;	**,	P	<	0.01;	***,	P	<	0.001).	
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Figure	2.3:	Appearance	of	fungal	infection	structures	in	wild‐type	(wt),	ram1‐1,	nsp1‐1	and	nsp2‐
2	roots	at	8	dpi.	Colonized	wild‐type	(A,	B),	ram1‐1	(C,	D),	nsp1‐1	(E,	F)	and	nsp2‐2	(G,	H)	roots	
were	stained	with	Alexa	Fluor	488	WGA.	Bright	field	(A,	C,	E,	G)	and	respective	green	fluorescence	
(B,	D,	F,	H)	images	are	shown.	Arrowheads	indicate	fully	developed	arbuscules.	Circles	indicate	
intraradical	hyphae.	Scale	bar	=	100	µm.	
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Figure	2.4:	Appearance	of	fungal	infection	structures	in	wild‐type	(wt),	ram1‐1,	nsp1‐1	and	nsp2‐
2	roots	at	13	dpi.	Colonized	wild‐type	(A,	B),	ram1‐1	(C,	D),	nsp1‐1	(E,	F)	and	nsp2‐2	(G,	H)	roots	
were	stained	with	Alexa	Fluor	488	WGA.	Bright	field	(A,	C,	E,	G)	and	respective	green	fluorescence	
(B,	D,	F,	H)	images	are	shown.	Arrowheads	indicate	fully	developed	arbuscules.	Asterisks	indicate	
underdeveloped	arbuscules.	Scale	bar	=	100	µm.	
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Figure	2.5:	Appearance	of	fungal	infection	structures	in	wild‐type	(wt),	ram1‐1,	nsp1‐1	and	nsp2‐
2	roots	at	27	dpi.	Colonized	wild‐type	(A,	B),	ram1‐1	(C,	D),	nsp1‐1	(E,	F)	and	nsp2‐2	(G,	H)	roots	
were	stained	with	Alexa	Fluor	488	WGA.	Bright	field	(A,	C,	E,	G)	and	respective	green	fluorescence	
(B,	D,	F,	H)	images	are	shown.	Arrowheads	indicate	fully	developed	arbuscules.	Asterisks	indicate	
underdeveloped	arbuscules.	Scale	bar	=	100	µm.	
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Figure	2.6:	Total	colonization	levels	and	appearance	of	arbuscules	in	wild‐type	(wt)	and	ram1‐1	
roots	grown	with	nurse	plant	 inoculum.	 (A)	The	occurrence	of	 fungal	 infection	structures	 (%	
colonization)	in	ink‐stained	root	pieces	is	shown	as	percentage	of	the	total	number	of	root	pieces	
assessed	at	32	dpi.	Bars	represent	the	average	of	two	biological	replicates.	Bright	field	images	of	
ink‐stained	 wild‐type	 roots	 (B)	 and	 ram1‐1	 roots	 (C)	 are	 shown.	 Arrowheads	 indicate	 fully	
developed	arbuscules.	Asterisks	indicate	underdeveloped	arbuscules.	Scale	bar	=	25	µm.	
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CHAPTER 3 

Ascertaining the role of NSP1, NSP2, and RAM1 in the regulation 

of global gene expression during AM development	

	

	

	

	

	

3.1  Introduction 

Extensive	 gene	 expression	 analyses	 have	 been	 carried	 out	 in	 the	 past	 few	 years	 to	

investigate	the	transcriptional	reprogramming	of	plant	roots	during	AM	development.	

To	date,	hundreds	of	mycorrhization‐induced	genes	have	been	identified,	reflecting	the	

complex	developmental	changes	that	occur	in	the	root	during	the	colonization	by	AM	

fungi	(Liu	et	al.,	2003;	Wulf	et	al.,	2003;	Manthey	et	al.,	2004;	Weidmann	et	al.,	2004;	

Hohnjec	et	al.,	2005;	Krajinski	and	Frenzel,	2007;	Küster	et	al.,	2007,	Gutjahr	et	al.,	2008;	

Gomez	et	al.,	2009;	Hogekamp	et	al.,	2011;	Czaja	et	al.,	2012,	Handa	et	al.,	2015).	These	

studies	 have	 uncovered	 transcriptional	 changes	 in	 genes	 involved	 in	 a	 number	 of	

different	 cellular	 processes,	 including	 defence	 responses,	 primary	 and	 secondary	

metabolism,	 nutrient	 transfer	 across	 membranes,	 cell	 wall	 and	 cell	 membrane	

modifications,	 and	 signal	 transduction	 (Krajinski	 et	 al.,	 2002;	 Liu	 et	 al.,	 2003;	

Brechenmacher	et	al.,	2004;	Manthey	et	al.,	2004;	Güimil	et	al.,	2005;	Hohnjec	et	al.,	2005;	
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Küster	 et	 al.,	 2007).	 For	 example,	 some	 of	 the	 most	 highly	 induced	 genes	 during	

mycorrhization	 are	 plant	 lectins,	 phosphate	 and	 ammonium	 transporters,	 proteases,	

and	transcription	factors	(Kistner	et	al.,	2005,	Frenzel	et	al.,	2006;	Takeda	et	al.,	2009;	

Hogekamp	et	al.,	2011).	 In	addition	 to	 the	analysis	of	whole	mycorrhized	roots,	gene	

expression	 changes	 have	 also	 been	 studied	 in	 specific	 cell	 types,	 such	 as	 arbuscule‐

containing	cells,	using	laser	capture	microdissection	(Hogekamp	et	al.,	2011;	Gaude	et	

al.,	 2012;	 Hogekamp	 and	 Küster,	 2013).	 Moreover,	 the	 transcriptional	 response	 to	

diffusible	fungal	signals	was	profiled	to	investigate	the	induction	of	mycorrhizal	genes	

at	 the	pre‐contact	stage	of	 the	symbiosis	(Kosuta	et	al.,	2003;	Weidmann	et	al.,	2004,	

Siciliano	et	al.,	2007;	Kuhn	et	al.,	2010;	Czaja	et	al.,	2012;	Camps	et	al.,	2015;	Hohnjec	et	

al.,	 2015).	 These	 studies	 have	 provided	 detailed	 information	 on	 the	 transcriptional	

changes	 that	 take	 place	 during	 different	 developmental	 stages	 of	 AM	 symbiosis.	 By	

contrast,	 relatively	 little	 is	 known	 about	 the	 transcriptional	 regulators	 that	 mediate	

these	specific	changes	in	gene	expression	during	mycorrhization.	Studies	investigating	

the	 functions	 of	 GRAS‐domain	 proteins	 and	 other	 transcription	 factors	 such	 as	

IPD3/CYCLOPS	have	been	limited	to	the	analysis	of	only	a	few	potential	target	genes	at	

late	time	points	during	AM	development	(Liu	et	al.,	2011;	Gobbato	et	al.,	2012;	Delaux	et	

al.,	2013;	Park	et	al.,	2015;	Pimprikar	et	al.,	2016).	These	analyses	have	resulted	in	the	

identification	 of	 only	 a	 handful	 of	 confirmed	 direct	 target	 genes	 regulated	 by	 these	

transcription	factors	during	fungal	colonization.	Thus,	specific	knowledge	about	the	role	

of	mycorrhizal	transcription	factors	in	the	regulation	of	global	gene	expression	during	

different	stages	of	AM	development	is	currently	lacking.	

The	aim	of	the	work	presented	in	this	chapter	was	to	analyse	the	global	gene	expression	

changes	during	mycorrhizal	colonization	and	investigate	the	functions	of	RAM1,	NSP1,	

and	NSP2	in	this	process.	To	gain	insights	into	how	gene	expression	in	mycorrhized	roots	

changes	over	the	time	course	of	infection	and	to	investigate	potential	differences	in	the	

roles	of	the	GRAS‐domain	proteins	at	different	stages	of	fungal	colonization,	global	gene	

expression	profiling	was	performed	at	early,	intermediate	and	late	time	points	during	

mycorrhization.	In	addition,	the	roles	of	RAM1,	NSP1	and	NSP2	at	pre‐symbiotic	stages	

were	 investigated	 by	 comparing	 global	 gene	 expression	 in	 roots	 grown	 without	

mycorrhizal	 fungi.	 These	 transcriptional	 analyses	 were	 further	 used	 to	 infer	

commonalities	 and	differences	 in	 the	 functions	of	RAM1,	NSP1,	 and	NSP2	 before	 and	

during	mycorrhization.	
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3.2  Results 

3.2.1  Experimental design 

To	identify	genes	that	are	differentially	expressed	during	AM	symbiosis	and	under	non‐

symbiotic	 conditions,	wild‐type,	ram1‐1,	nsp1‐1	 and	nsp2‐2	 plants	were	grown	under	

low	phosphate	 conditions	 and	 in	 the	presence	 or	 absence	 of	AM	 fungal	 inoculum.	 In	

addition,	plants	were	supplied	with	high	levels	of	nitrate	to	suppress	the	formation	of	

nodules,	as	the	presence	of	rhizobia	in	the	fungal	inoculum	could	not	be	excluded.	The	

total	RNA	of	4	biological	replicates	(each	containing	the	pooled	roots	of	five	individual	

plants)	for	each	treatment	and	genotype	was	obtained	at	8	dpi,	13	dpi	and	27	dpi.	For	

each	 time	 point,	 the	 colonization	 levels	 in	 three	 wild‐type	 plants	 were	 assessed	 by	

staining	 roots	 with	 ink	 before	 proceeding	 with	 the	 harvesting	 of	 the	 roots	 for	 RNA	

extraction.	At	8	dpi,	up	to	10	infection	events	per	root	system	were	visible.	At	13	dpi,	

total	levels	of	fungal	colonization	in	stained	roots	were	between	12%	and	17%,	and	at	

27	dpi,	these	levels	increased	to	70%.	Thus,	fungal	colonization	levels	at	the	tested	time	

points	were	comparable	to	the	levels	observed	in	wild‐type	roots	at	the	same	time	points	

in	Chapter	2.	In	addition,	roots	were	examined	for	the	presence	of	nodules.	Only	very	

few	 individual	 roots	were	 found	 that	 occasionally	 showed	 small,	white	 nodules,	 and	

these	roots	were	removed	before	harvesting	the	remaining	roots.	

To	validate	the	experimental	set	up,	the	expression	levels	of	PT4	were	quantified	in	each	

RNA	 sample	 by	 performing	 qRT‐PCR	 (Figure	 3.1).	 This	 gene	 encodes	 a	 phosphate	

transporter	that	localizes	to	the	periarbuscular	membrane	and	is	commonly	used	as	a	

marker	for	the	extent	of	fungal	colonization	in	roots	(Harrison	et	al.,	2002;	Pumplin	and	

Harrison,	2009).	PT4	was	highly	expressed	in	mycorrhized	root	samples	of	wild‐type,	

nsp1‐1	 and	 nsp2‐2	 plants.	 Furthermore,	 expression	 levels	 increased	 in	 mycorrhized	

roots	over	 the	 time	 course	of	 fungal	 colonization.	By	 contrast,	 only	very	 low	 relative	

expression	levels	were	detected	in	non‐mycorrhized	root	samples	of	all	genotypes	and	

in	mycorrhized	root	samples	of	ram1‐1.	The	low	expression	levels	of	PT4	in	mycorrhized	

ram1‐1	 roots	are	consistent	with	 the	 inability	of	 these	plants	 to	 form	fully	developed	

arbuscules	at	any	time	point	during	colonization	(Chapter	2).		

To	quantify	global	gene	expression,	RNA	sequencing	(RNA‐seq)	was	performed	by	IMGM	

laboratories	(Martinsried,	Germany).	The	reads	obtained	by	sequencing	were	mapped	

against	 the	most	 recent	 version	 of	 the	M.	 truncatula	 genome	 (Mtv4.0).	 Differentially	
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expressed	genes	(DEGs)	were	identified	by	pair‐wise	comparisons	of	expression	levels	

(total	 exon	 reads)	 between	 mycorrhized	 and	 non‐mycorrhized	 roots	 of	 the	 same	

genotype	 or	 between	 non‐mycorrhized	 roots	 of	 different	 genotypes	 at	 the	

corresponding	 time	 points	 (Figure	 3.2).	 For	 further	 analyses,	 only	 DEGs	 with	 a	 fold	

change	larger	than	1.5	and	a	false	discovery	rate	(FDR)‐corrected	p‐value	smaller	than	

0.05	were	considered.	

	

3.2.2  Genes differentially expressed in mycorrhized versus non‐mycorrhized wild‐

type roots include many known mycorrhizal genes 

To	 test	 whether	 known	 mycorrhizal	 genes	 were	 identified	 using	 RNA‐seq	 with	 the	

experimental	 set	 up	 used	 here,	 I	 first	 analysed	 the	 genes	 that	 were	 found	 to	 be	

differentially	expressed	during	mycorrhization	in	wild‐type	roots.	Comparing	the	levels	

of	gene	expression	in	mycorrhized	versus	non‐mycorrhized	wild‐type	roots	resulted	in	

the	identification	of	421,	1056,	and	1475	genes	that	were	significantly	upregulated	by	

more	than	1.5	fold	at	8	dpi,	13	dpi,	and	27	dpi,	respectively	(Figure	3.3	A).	This	increase	

in	the	number	of	mycorrhizal‐induced	genes	over	time	is	consistent	with	the	observed	

increase	in	fungal	colonization.	The	majority	(346/421)	of	the	genes	that	were	induced	

in	mycorrhized	roots	at	8	dpi	also	showed	an	increased	expression	at	13	dpi	and	27	dpi	

(Figure	3.3	B).	Similarly,	most	(854/1056)	of	the	genes	whose	expression	was	induced	

at	13	dpi	were	also	upregulated	at	27	dpi.	Consequently,	only	a	small	proportion	of	the	

mycorrhizal‐induced	genes	showed	an	increased	expression	at	only	8	dpi	or	13	dpi	and	

were	not	induced	at	any	other	time	point.	

Compared	to	the	mycorrhizal‐induced	genes,	a	considerably	smaller	number	of	genes,	

namely	40,	100,	and	118	genes	at	8	dpi,	13	dpi	and	27	dpi,	respectively,	were	significantly	

downregulated	 in	wild‐type	 roots	 upon	mycorrhization	 (Figure	 3.3	 A).	 Furthermore,	

these	downregulated	genes	showed	very	little	overlap	between	the	tested	time	points,	

with	only	2	genes	being	common	to	all	three	time	points	(Figure	3.3	B).		

The	 differentially	 expressed	 genes	 identified	 in	 wild‐type	 roots	 during	 fungal	

colonization	included	many	genes	that	had	previously	been	described	to	play	a	role	in	

mycorrhization	 (Table	 3.1).	 Consistent	 with	 the	 qRT‐PCR	 results	 (Figure	 3.1),	 the	

phosphate	 transporter	 PT4	 was	 one	 of	 the	 most	 highly	 upregulated	 genes	 in	

mycorrhized	roots.	In	addition,	several	other	genes	previously	described	to	be	involved	

in	arbuscule	development	and	function	were	found	to	be	induced	during	the	mycorrhizal	
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time	 course,	 including	 the	 ammonium	 transporters	 AMT2‐3,	 AMT2‐4	 and	 AMT2‐5	

(Breuillin‐Sessoms	et	al.,	2015),	the	two	ABCG	transporters	STR	and	STR2	(Zangh	et	al.,	

2010;	Gutjahr	et	al.,	2012),	the	exocyst	subunit	EXO70I	(Zangh	et	al.,	2015),	the	proton	

ATPase	HA1	(Krajinski	et	al.,	2014;	Wang	et	al.,	2014),	the	GRAS‐domain	protein	RAD1	

(Xue	 et	 al.,	 2015),	 and	 the	 glycerol‐3‐phosphate	 acyltransferase	 RAM2	 (Wang	 et	 al.,	

2012).	These	genes	generally	showed	an	increase	in	induction	over	time,	consistent	with	

the	expected	increase	in	the	number	of	arbuscules	at	later	time	points.	By	contrast,	the	

ankyrin‐repeat	protein	VAPYRIN	 displayed	a	 consistent	 induction	of	6	 to	7	 fold	 at	 all	

three	 time	points	 (Table	 3.1).	 In	 accordance	with	 this,	VAPYRIN	 has	 previously	 been	

demonstrated	to	be	required	for	the	successful	penetration	of	cells	by	fungal	hyphae,	a	

process	 that	 takes	 place	 at	 early	 as	 well	 as	 later	 time	 points	 during	 the	 symbiosis	

(Feddermann	et	al.,	2010;	Pumplin	et	al.,	2010;	Murray	et	al.,	2011).	Interestingly,	some	

genes	were	found	whose	induction	was	high	at	early	time	points	but	decreased	at	later	

time	points.	This	group	of	genes	included	the	CCAAT‐box	transcription	factors	Cbf1,	Cbf2,	

and	Cbf3.	Cbf1	and	Cbf2	have	previously	been	shown	to	be	expressed	in	epidermal	and	

cortical	cells	during	mycorrhization,	while	Cbf3	has	been	proposed	to	be	predominantly	

active	 in	 epidermal	 cells	 at	 stages	 prior	 to	 the	 direct	 contact	 with	 fungal	 hyphae	

(Hogekamp	et	al.,	2011;	Hogekamp	and	Küster,	2013).		

Changes	in	gene	expression	during	mycorrhization	were	also	observed	for	RAM1,	NSP1,	

and	NSP2	 (Table	 3.1).	RAM1	 showed	 a	 very	 strong	 and	 significant	 induction	 in	 gene	

expression	in	wild‐type	roots,	with	the	highest	fold	change	(>2000)	being	found	at	13	

dpi.	By	 contrast,	 only	 a	weak	upregulation	of	 approximately	2	 fold	was	observed	 for	

NSP1	at	all	three	time	points.	Meanwhile,	NSP2	showed	a	weak	transcriptional	induction	

at	13	dpi	and	27	dpi,	but	was	not	significantly	induced	at	8	dpi.	

Due	to	the	potential	presence	of	rhizobial	bacteria	in	the	mycorrhizal	inoculum	used,	the	

expression	levels	of	genes	that	are	known	to	be	highly	upregulated	during	nodulation	

were	assessed	to	exclude	the	possibility	that	the	observed	gene	expression	changes	were	

caused	 by	 rhizobia	 rather	 than	 mycorrhizal	 fungi.	 No	 significant	 difference	 in	 gene	

expression	was	observed	for	the	nodulation	markers	NIN	(Schauser	et	al.,	1999)	and	NPL	

(NODULE	PECTATE	LYASE;	Xie	et	al.,	2012),	two	strongly	induced	genes	during	the	root	

nodule	 symbiosis.	 These	 findings	 confirm	 that	 potential	 changes	 in	 gene	 expression	

caused	by	rhizobial	bacteria	were	too	diluted	to	be	detectable.	
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Table	3.1:	Fold	changes	of	previously	described	mycorrhizal	genes	in	mycorrhized	versus	non‐
mycorrhized	 wild‐type	 roots.	 ‘N.s.’	 depicts	 a	 statistically	 non‐significant	 fold	 change.	 FDR‐
corrected	p‐value	<	0.05	for	all	fold	changes	shown.		

    Fold change 

Mtv4.0 ID  Annotation  8 dpi  13 dpi  27 dpi 

Medtr6g027840  Ankyrin‐repeat protein Vapyrin  6  7  6 

Medtr2g081600  CCAAT box transcription factor Cbf1  46  17  n.s. 

Medtr2g081630  CCAAT box transcription factor Cbf2  36  17  n.s. 

Medtr8g091720  CCAAT box transcription factor Cbf3  9  8  n.s. 

Medtr1g017910  Exocyst subunit EXO70I  2  13  18 

Medtr8g107450  ABCG transporter STR  3  33  70 

Medtr5g030910  ABCG transporter STR2  7  205  364 

Medtr5g011320  Subtilisin‐like serine protease SbtM1  11  60  136 

Medtr8g006790  Proton ATPase HA1  78  953  1552 

Medtr1g040500  Glycerol‐3‐phosphate acyltransferase RAM2  4  39  72 

Medtr8g074750  Ammonium transporter AMT2‐3  n.s.  72  55 

Medtr7g115050  Ammonium transporter AMT2‐4  15  365  1043 

Medtr1g036410  Ammonium transporter AMT2‐5  242  7735  3979 

Medtr1g028600  Phosphate transporter PT4  1298  22666  12472 

Medtr4g104020  GRAS‐domain protein RAD1  40  238  697 

Medtr7g027190  GRAS‐domain protein RAM1  161  2412  1508 

Medtr8g020840  GRAS‐domain protein NSP1  1.7  2  1.6 

Medtr3g072710  GRAS‐domain protein NSP2  n.s.  1.8  1.6 

	

	

3.2.3  RAM1 is required for mycorrhizal gene induction at both early and late time 

points during mycorrhization 

To	investigate	the	role	of	RAM1	in	the	regulation	of	global	gene	expression	at	different	

time	 points	 during	 mycorrhization,	 the	 transcriptional	 changes	 during	 fungal	

colonization	 identified	 in	wild‐type	 roots	were	 compared	 to	 the	 changes	observed	 in	

ram1‐1	 roots.	Due	 to	 the	considerably	 lower	number	of	mycorrhizal‐repressed	genes	
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identified	in	wild‐type	roots	and	their	limited	overlap	between	the	different	time	points,	

only	genes	 that	were	upregulated	during	mycorrhization	were	taken	 into	account	 for	

further	analyses.			

In	ram1‐1,	607,	811,	and	865	genes	showed	a	significantly	increased	expression	with	a	

fold	change	higher	than	1.5	in	mycorrhized	versus	non‐mycorrhized	roots	at	8	dpi,	13	

dpi,	and	27	dpi,	respectively	(Figure	3.3	A).	Comparing	the	mycorrhizal‐induced	genes	

identified	in	the	wild	type	at	8	dpi	to	the	genes	induced	in	ram1‐1	at	the	same	time	point	

revealed	109	genes	whose	 induction	was	abolished	 in	ram1‐1.	Thus,	 the	 induction	of	

27%	(109/421)	of	all	upregulated	genes	in	the	wild	type	at	8	dpi	were	dependent	on	

RAM1	(Figure	3.4	A).	The	same	comparisons	for	the	two	later	time	points	showed	that	

the	proportion	of	RAM1‐dependent	genes	increased	to	50%	(530/1056)	at	13	dpi	and	

reached	59%	(874/1475)	at	27	dpi,	suggesting	that	the	loss	of	RAM1	function	strongly	

affects	 global	 gene	 expression,	 particularly	 during	 the	 late	 stages	 of	 mycorrhization	

(Figure	3.5).		

The	comparison	of	mycorrhizal‐induced	genes	in	the	wild	type	and	ram1‐1	revealed	a	

number	of	genes	whose	induction	was	dependent	on	RAM1	at	specific	time	points.	These	

RAM1‐dependent	 genes	 likely	 include	 direct	 targets	 of	 RAM1,	 but	might	 also	 include	

genes	that	are	only	indirectly	regulated	by	this	transcription	 factor.	To	identify	genes	

that	 are	more	 likely	 to	 be	 directly	 regulated	 by	 RAM1	during	mycorrhization,	 I	 next	

looked	for	genes	whose	induction	was	consistently	dependent	on	RAM1	at	all	three	time	

points	tested.	To	this	end,	the	RAM1‐dependent	genes	from	each	time	point	identified	

above	(1092	genes	in	total)	were	clustered	based	on	their	expression	pattern	in	ram1‐1	

roots	over	the	whole	mycorrhizal	time	course	(Figure	3.6	A).	Out	of	these	1092	genes,	

the	 cluster	 analysis	 identified	 a	 set	of	768	genes	 (70%)	 that	 showed	no	 induction	 in	

ram1‐1	 at	 any	 of	 the	 three	 time	 points	 tested.	 To	 further	 investigate	 at	 which	 time	

point(s)	during	mycorrhization	these	768	RAM1‐dependent	genes	were	induced	in	wild‐

type	roots,	the	extent	of	overlap	in	gene	induction	across	the	time	course	was	assessed.	

This	analysis	revealed	that	the	majority	of	genes	that	were	consistently	dependent	on	

RAM1	were	upregulated	in	the	wild	type	at	all	three	time	points	or	were	induced	at	both	

13	 dpi	 and	 27	 dpi	 (Figure	 3.6	 B).	 By	 contrast,	 fewer	 RAM1‐dependent	 genes	 were	

specifically	induced	at	just	one	time	point,	i.e.	at	8	dpi	or	13	dpi,	during	AM	development.	

These	 results	 indicate	 that	 RAM1	 is	 involved	 in	 the	 regulation	 of	 a	 large	 set	 of	

mycorrhizal	genes	that	are	induced	at	both	early	and	late	time	points	in	the	wild	type.	

The	 remaining	 30%	 (306/1029)	 of	 the	 genes	 analysed	 by	 clustering	 displayed	 an	
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abolished	upregulation	at	some,	but	not	all	three	time	points	in	ram1‐1,	suggesting	that	

the	 transcriptional	 regulation	 of	 these	 genes	 during	 mycorrhization	 might	 only	 be	

indirectly	dependent	on	RAM1	(Figure	3.6	A).		

	

3.2.4  nsp1‐1  shows  a  delay  in  the  induction  of  gene  expression  during 

mycorrhization   

In	nsp1‐1,	416,	669	and	1467	genes	showed	a	significant	induction	of	more	than	1.5	fold	

upon	 fungal	 colonization	 at	 8	 dpi,	 13	 dpi,	 and	 27	 dpi,	 respectively	 (Figure	 3.3	 A).	

Comparing	the	mycorrhizal‐induced	genes	in	the	wild	type	to	the	genes	induced	in	nsp1‐

1	revealed	that	the	induction	of	45%	(189/421)	of	all	genes	upregulated	in	the	wild	type	

at	8	dpi	was	dependent	on	NSP1	(Figure	3.4	B).	The	proportion	of	NSP1‐dependent	genes	

increased	to	48%	(510/1056)	at	13	dpi,	but	was	reduced	to	28%	at	27	dpi	(411/1475).	

These	findings	suggest	that	NSP1	 is	predominantly	 involved	 in	the	regulation	of	gene	

expression	during	the	early	time	points	of	mycorrhization,	but	has	a	less	important	role	

at	later	stages	(Figure	3.5).		

To	identify	genes	whose	induction	during	mycorrhization	was	consistently	dependent	

on	NSP1	at	all	three	time	points	and	might	therefore	be	under	the	direct	control	of	NSP1,	

the	NSP1‐dependent	 genes	 from	each	 time	point	 (938	 genes	 in	 total)	were	 clustered	

based	 on	 their	 expression	 pattern	 in	 nsp1‐1	 roots	 over	 the	 whole	 mycorrhizal	 time	

course.	 Surprisingly,	 only	 56%	 (527/938)	 of	 all	 NSP1‐dependent	 genes	 showed	 a	

complete	lack	of	induction	at	all	three	time	points	in	nsp1‐1	(Figure	3.7	A).	Moreover,	

comparing	the	expression	pattern	of	these	527	NSP1‐dependent	genes	across	the	three	

time	 points	 in	 wild‐type	 roots	 revealed	 that	 the	 majority	 (299/527)	 of	 the	 NSP1‐

dependent	 genes	 were	 induced	 in	 the	 wild	 type	 only	 at	 27	 dpi	 (Figure	 3.7	 B).	 The	

remaining	44%	(411/938)	of	the	genes	analysed	by	clustering	were	dependent	on	NSP1	

at	only	one	or	two,	but	not	all	three	time	points	during	fungal	colonization.	Notably,	the	

majority	of	the	genes	whose	upregulation	was	dependent	on	NSP1	at	8	dpi	(72%)	or	13	

dpi	(58%)	were	induced	at	later	time	points	in	nsp1‐1	roots.	In	summary,	these	results	

suggest	that	the	majority	of	the	genes	upregulated	at	early	time	points	in	the	wild	type	

were	delayed	but	not	consistently	abolished	in	their	induction	in	nsp1‐1.	Meanwhile,	the	

majority	of	the	genes	that	were	consistently	dependent	on	NSP1	were	only	induced	at	

late	time	points	in	the	wild	type.		

	



Chapter  3  –  Ascertaining  the  role  of  NSP1,  NSP2,  and  RAM1  in  the  regulation  of  global  gene 
expression during AM development 

	

65	
	

3.2.5  Global  changes  in  gene  expression  upon  mycorrhization  are  altered  at 

intermediate and late time points in nsp2‐2  

In	nsp2‐2,	652,	828,	and	1166	genes	showed	a	significantly	increased	expression	with	a	

fold	change	of	more	than	1.5	in	mycorrhized	versus	non‐mycorrhized	roots	at	8	dpi,	13	

dpi,	and	27	dpi,	respectively	(Figure	3.3	A).	Comparing	the	mycorrhizal‐induced	genes	

in	the	wild	type	to	the	genes	induced	in	nsp2‐2	revealed	that	only	9%	(39/421)	of	all	

genes	induced	at	8	dpi	in	the	wild	type	were	dependent	on	NSP2	(Figure	3.4	C).	At	13	

dpi,	32%	(348/1056)	of	the	mycorrhizal‐induced	genes	lacked	induction	in	nsp2‐2,	and	

this	proportion	increased	to	34%	(510/1475)	at	27	dpi	(Figure	3.4	C).	These	findings	

suggest	that	NSP2	might	play	a	role	in	the	regulation	of	gene	expression	at	later	stages	

during	AM	development	(Figure	3.5).		

To	identify	genes	whose	induction	during	mycorrhization	was	consistently	dependent	

on	NSP2,	 the	NSP2‐dependent	 genes	 from	 each	 time	point	 (792	 genes	 in	 total)	were	

clustered	based	on	their	expression	pattern	in	nsp2‐2	roots	over	the	whole	mycorrhizal	

time	course.	This	analysis	identified	517	genes	out	of	792	(65%)	whose	induction	was	

dependent	 on	 NSP2	 at	 all	 three	 time	 points	 (Figure	 3.8	 A).	 Only	 4	 of	 the	 genes	

consistently	dependent	on	NSP2	displayed	an	increased	expression	in	the	wild	type	at	

all	three	time	points,	while	most	genes	were	upregulated	at	13	dpi	and/or	27	dpi	(Figure	

3.8	B).		

	

3.2.6  RAM1,  NSP1,  and  NSP2  have  partially  overlapping  functions  in  the 

regulation of gene expression during fungal colonization 

After	identifying	genes	that	might	be	under	the	direct	control	of	RAM1,	NSP1,	and	NSP2	

during	mycorrhization,	 I	 next	 investigated	whether	 these	 three	 transcription	 factors	

target	specific	or	overlapping	sets	of	genes	during	fungal	colonization.	To	this	end,	the	

degree	of	overlap	between	the	genes	that	were	consistently	dependent	on	RAM1,	NSP1	

or	NSP2	at	all	three	time	points	during	mycorrhization	was	determined	(Figure	3.9).	This	

analysis	revealed	184	genes	whose	induction	was	dependent	on	all	three	transcription	

factors.	 Meanwhile,	 a	 number	 of	 transcription	 factor‐specific	 target	 genes	 were	

identified.	The	largest	number	of	specific	target	genes	was	found	for	RAM1,	which	was	

required	for	the	upregulation	of	456	genes	(out	of	768	RAM1‐dependent	genes)	that	did	

not	appear	to	be	affected	in	either	nsp1‐1	or	nsp2‐2.	By	contrast,	a	lower	proportion	of	
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specific	potential	target	genes	were	identified	for	NSP1	and	NSP2,	with	only	81	genes	out	

of	 527	 genes	 being	 specifically	 dependent	 on	NSP1,	 and	 69	 genes	 out	 of	 517	 being	

specifically	dependent	on	NSP2.	Furthermore,	a	considerable	overlap	(199	genes)	was	

found	between	the	genes	that	were	dependent	on	NSP1	and	NSP2.	Together,	these	data	

suggest	 that	RAM1,	NSP1	 and	NSP2	might	have	partially	overlapping	 functions	 in	 the	

transcriptional	regulation	during	AM	development,	while	also	regulating	specific	sets	of	

target	genes.	

	

3.2.7  RAM1, NSP1, and NSP2 are  involved  in the regulation of gene expression 

under non‐symbiotic conditions 

The	 establishment	 of	 AM	 symbiosis	 involves	 the	 exchange	 of	 a	 variety	 of	 signalling	

molecules	before	the	first	physical	contact	takes	place	between	the	roots	and	the	fungal	

hyphae.	To	investigate	whether	RAM1,	NSP1	and	NSP2	could	play	a	role	in	the	regulation	

of	 gene	 expression	 at	 the	 pre‐contact	 stage	 of	 AM	 symbiosis,	 global	 gene	 expression	

levels	in	non‐mycorrhized	ram1‐1,	nsp1‐1,	and	nsp2‐2	roots	were	compared	to	the	gene	

expression	levels	in	non‐mycorrhized	wild‐type	roots	at	8	dpi,	13	dpi	and	27	dpi.		

This	comparison	identified	20,	326,	and	15	genes	that	were	significantly	downregulated	

and	31,	111,	and	14	genes	that	were	significantly	induced	by	more	than	1.5	fold	in	non‐

colonized	ram1‐1	roots	at	8	dpi,	13	dpi	and	27	dpi,	respectively	(Figure	3.10	A).	From	

these	genes,	11	were	differentially	expressed	at	all	three	time	points.	(Figure	3.10	B).	

Comparatively	more	 genes	were	 differentially	 expressed	 in	nsp1‐1	 and	nsp2‐2	 under	

non‐symbiotic	conditions.	 In	nsp1‐1	roots,	115,	237,	and	284	genes	were	significantly	

downregulated,	while	258,	426,	and	575	genes	were	significantly	upregulated	at	8	dpi,	

13	dpi	 and	27	dpi,	 respectively	 (Figure	3.10	A).	 Comparing	 these	genes	between	 the	

different	time	points	showed	that	194	genes	were	differentially	expressed	in	nsp1‐1	at	

all	 three	 time	 points	 (Figure	 3.10	 B).	 Finally,	 the	 largest	 number	 of	 differentially	

expressed	genes	were	identified	in	non‐mycorrhized	nsp2‐2	roots,	with	142,	321,	and	

395	genes	being	significantly	repressed	and	374,	338,	and	917	genes	being	significantly	

upregulated	by	more	than	1.5	fold	at	8	dpi,	13	dpi	and	27	dpi,	respectively	(Figure	3.10	

A).	Furthermore,	193	of	these	genes	were	differentially	expressed	at	all	three	time	points	

in	nsp2‐2	 roots	 (Figure	 3.10	B).	 These	 results	 suggest	 that	NSP1	 and	NSP2,	 and	 to	 a	

smaller	extent	RAM1,	directly	or	indirectly	regulate	a	number	of	genes	under	non‐	or	

pre‐symbiotic	conditions.	
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Comparing	the	genes	that	were	consistently	differentially	expressed	in	ram1‐1,	nsp1‐1,	

and	nsp2‐2	 roots	 at	 all	 three	 time	points	 in	 the	 absence	of	mycorrhizal	 fungi	 further	

revealed	that	most	of	these	genes	were	specifically	dependent	on	either	RAM1,	NSP1,	or	

NSP2,	 indicating	 that	 there	 is	 very	 little	 overlap	 in	 the	 functions	 of	 these	 three	

transcription	 factors	 in	 the	 transcriptional	 regulation	 of	 roots	 under	 non‐	 or	 pre‐

symbiotic	conditions	(Figure	3.11).		

	

3.3  Discussion 

In	 this	 chapter,	 the	 roles	 of	RAM1,	NSP1,	 and	NSP2	 in	 the	 regulation	 of	 global	 gene	

expression	before	and	during	mycorrhizal	colonization	were	investigated	by	profiling	

and	 comparing	 the	 transcriptomes	 of	 the	 corresponding	 loss‐of‐function	 mutants	 at	

different	time	points	during	AM	development.	

A	number	of	studies	have	previously	investigated	the	transcriptional	changes	that	take	

place	 in	 roots	 during	 AM	 symbiosis	 and	 have	 identified	 hundreds	 of	 genes	 that	 are	

differentially	 expressed	 (Liu	 et	 al.,	 2003;	 Wulf	 et	 al.,	 2003;	 Manthey	 et	 al.,	 2004;	

Weidmann	et	al.,	2004;	Hohnjec	et	al.,	2005;	Krajinski	and	Frenzel,	2007;	Küster	et	al.,	

2007,	Gutjahr	et	al.,	2008;	Gomez	et	al.,	2009;	Hogekamp	et	al.,	2011;	Czaja	et	al.,	2012,	

Handa	et	al.,	2015).	Many	of	these	genes	were	also	significantly	induced	in	mycorrhized	

wild‐type	roots	in	this	study,	confirming	that	the	experimental	set	up	used	here	is	suited	

to	 identify	 differentially	 expressed	 genes	 during	 mycorrhization.	 Comparing	 the	

expression	of	these	mycorrhizal‐induced	genes	in	wild‐type	roots	over	the	whole	time	

course	further	showed	that	the	majority	of	the	genes	that	were	upregulated	at	a	specific	

time	point	were	also	induced	at	all	later	time	points.	This	is	not	surprising,	considering	

that	all	fungal	infection	structures,	including	hyphopodia,	arbuscules	and	vesicles,	were	

already	present	in	wild‐type	roots	grown	under	the	same	conditions	at	8	dpi,	with	the	

main	 difference	 at	 later	 time	 points	 being	 the	 increased	 quantity	 of	 these	 structures	

(Chapter	 2).	 In	 accordance	 with	 this,	 genes	 involved	 in	 arbuscule	 development	 and	

function,	such	as	EXO70I	and	STR	(Zangh	et	al.,	2010;	Gutjahr	et	al.,	2012;	Zangh	et	al.,	

2015),	were	generally	induced	at	the	earliest	time	point	already,	and	showed	a	further	

increase	in	their	fold	change	at	later	time	points.	Meanwhile,	several	genes,	including	the	

transcription	 factor	 Cbf3	 (Hogekamp	 and	 Küster,	 2013),	 had	 a	 time‐point	 specific	

induction	and	might	therefore	have	functions	that	are	required	only	at	certain	stages	of	

mycorrhization.	
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A	comparison	of	 the	mycorrhizal‐induced	genes	between	wild‐type	and	ram1‐1	roots	

showed	that	RAM1	was	required	for	the	induction	of	approximately	a	third	of	all	genes	

that	were	induced	in	the	wild	type	at	8	dpi.	This	suggests	that	RAM1	is	involved	in	the	

regulation	of	a	number	of	genes	at	the	early	stages	of	AM	symbiosis.	In	line	with	this,	a	

recent	 study	 has	 investigated	 the	 transcriptional	 response	 of	 wild‐type	 plants	 and	

several	symbiotic	mutants	to	exogenously	applied	Myc‐LCOs	and	has	found	that	RAM1	

is	required	for	the	regulation	of	many	of	the	genes	that	are	induced	upon	recognition	of	

these	 early	 signalling	 molecules	 (Hohnjec	 et	 al.,	 2015).	 At	 later	 time	 points,	 the	

proportion	 of	 RAM1‐dependent	 genes	 increased	 to	 almost	 60%,	 consistent	 with	 the	

drastically	reduced	levels	of	mycorrhization	observed	in	ram1‐1	roots	at	late	time	points	

(Chapter	 2).	 Considering	 the	pattern	of	 fungal	 colonization	 in	 ram1‐1	 roots,	 it	 seems	

likely	that	the	lack	of	gene	induction	observed	in	the	mutant	at	late	time	points	is	partly	

caused	by	the	loss	of	fungal	infection	and	is	not	necessarily	a	direct	consequence	of	the	

absence	of	 the	 transcriptional	activity	of	RAM1.	Thus,	only	a	subset	of	 the	genes	 that	

were	 dependent	 on	RAM1	 at	 27	 dpi	 are	 expected	 to	 be	 directly	 regulated	 by	 RAM1.	

Indeed,	several	genes	that	showed	no	induction	at	27	dpi	were	upregulated	in	ram1‐1	at	

early	 time	points,	 indicating	 that	 these	 genes	 are	only	 indirectly	 regulated	by	RAM1.	

Nevertheless,	a	large	number	of	genes	were	identified	whose	induction	was	consistently	

dependent	on	RAM1	at	all	 three	time	points,	and	these	genes	are	good	candidates	for	

potential	direct	targets	of	RAM1	during	AM	development.	Furthermore,	many	of	these	

genes	were	upregulated	during	two	or	all	three	time	points	in	the	wild	type,	suggesting	

that	RAM1	regulates	a	core	set	of	mycorrhizal	genes	that	play	a	role	at	both	early	and	late	

stages	of	AM	symbiosis.		

Unlike	in	ram1‐1,	the	mycorrhizal	phenotype	of	nsp1‐1	is	relatively	subtle.	Compared	to	

the	wild	type,	nsp1‐1	only	showed	a	small	reduction	in	the	quantity	of	fungal	infection	

structures	 throughout	 the	 mycorrhizal	 time	 course,	 while	 the	 development	 of	 these	

infection	structures	was	not	 impaired	(Chapter	2).	 It	was	therefore	surprising	to	 find	

that	 the	 induction	of	 almost	half	 of	 all	mycorrhizal‐induced	genes	was	dependent	on	

NSP1	at	early	time	points.	At	27	dpi,	the	proportion	of	NSP1‐dependent	genes	decreased	

considerably,	 an	 observation	 that	might	 suggest	 that	NSP1	 is	mainly	 involved	 in	 the	

regulation	 of	 genes	 during	 the	 early	 time	 points	 of	 AM	 development.	 However,	 the	

majority	 of	 these	 early	NSP1‐dependent	 genes	were	upregulated	 at	 later	 time	points	

during	mycorrhization	in	nsp1‐1	and	are	therefore	likely	to	be	only	indirectly	regulated	

by	NSP1.	 Furthermore,	 the	 genes	 that	 were	 consistently	 dependent	 on	NSP1	 during	

fungal	colonization	were	predominantly	induced	at	27	dpi	in	wild‐type	roots,	and	it	is	
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possible	 that	at	 least	some	of	 these	genes	might	show	an	upregulation	at	 time	points	

later	 than	27	dpi	 in	nsp1‐1	 roots.	These	observations	suggest	 that	 the	 transcriptional	

induction	 of	 a	 large	 proportion	 of	 mycorrhizal	 genes	 is	 delayed	 in	 nsp1‐1,	 but	 not	

completely	 abolished.	 This	 delay	 in	 gene	 induction	 is	 in	 accordance	 with	 the	 slight	

reduction	 in	 fungal	 colonization	 observed	 at	 all	 three	 time	 points	 in	 nsp1‐1	 roots	

(Chapter	 2).	 Meanwhile,	 only	 a	 small	 number	 of	 the	 genes	 induced	 at	 early	 or	

intermediate	time	points	in	wild‐type	roots	were	found	to	be	consistently	dependent	on	

NSP1,	 suggesting	 that	NSP1	 only	 plays	 a	minor	 role	 in	 the	 transcriptional	 regulation	

during	fungal	colonization.	

Consistent	 with	 the	 observation	 that	 the	 colonization	 levels	 in	 nsp2‐2	 did	 not	 differ	

significantly	from	wild‐type	levels	at	8	dpi	(Chapter	2),	only	very	few	genes	were	found	

to	be	dependent	on	NSP2	for	their	induction	upon	fungal	colonization	at	the	earliest	time	

point.	However,	the	proportion	of	NSP2‐dependent	genes	increased	at	13	dpi	and	27	dpi,	

suggesting	 that	NSP2	might	be	 involved	 in	regulating	mycorrhizal	gene	expression	at	

later	 time	 points	 during	 AM	 symbiosis.	 Although	 not	 statistically	 significant,	 nsp2‐2	

showed	a	slight	reduction	in	the	number	of	arbuscules	and	vesicles	at	27	dpi	(Chapter	

2),	 which	might	 be	 the	 result	 of	 the	 lack	 of	 induction	 of	 the	NSP2‐dependent	 genes	

identified	here.	

In	summary,	 the	results	of	 the	 transcriptomic	profiling	of	mycorrhized	roots	 indicate	

that	 the	 three	GRAS‐domain	proteins	 play	 largely	 different	 roles	 in	 the	 regulation	 of	

global	 gene	 expression	 during	 AM	 development.	 RAM1,	NSP1,	 and	NSP2	 themselves	

appear	to	be	transcriptionally	regulated	during	mycorrhization,	and	consistent	with	the	

proposed	differences	 in	 the	 functions	of	 these	 transcription	 factors,	 differences	were	

also	 found	 in	 the	 levels	 of	 transcriptional	 induction	 of	 these	 genes	 during	 fungal	

colonization.	RAM1	 expression	 was	 highly	 induced	 throughout	 the	mycorrhizal	 time	

course,	consistent	with	the	strong	upregulation	that	has	previously	been	described	in	

several	other	studies	(Gobbato	et	al.,	2012;	Park	et	al.,	2015;	Rich	et	al.,	2015;	Xue	et	al.,	

2015).	By	contrast,	NSP1	and	NSP2	only	showed	a	very	subtle	induction	of	around	1.5	to	

2	fold.	Delaux	and	colleagues	have	reported	a	similar	2‐fold	induction	in	mycorrhized	

roots	 for	NSP1	 (Delaux	 et	 al.,	 2013).	 The	 slight	 increase	 in	NSP2	 expression	 during	

mycorrhization	 observed	 here	 is	 in	 accordance	with	 the	weak	 upregulation	 of	NSP2	

described	 in	 the	gene	expression	atlas	of	M.	 truncatula	 (http://mtgea.noble.org/v2/).	

Meanwhile,	the	expression	of	NSP2	has	also	been	described	to	decrease	during	fungal	

colonization	through	the	action	of	a	microRNA	that	targets	NSP2	transcripts	specifically	
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in	the	root	elongation	zone,	thereby	preventing	an	over‐colonization	by	AM	fungi	in	this	

area	of	the	root	(Lauressergues	et	al.,	2012).		

Comparing	 the	mycorrhizal‐induced	 genes	 in	 the	wild	 type	 to	 the	 ones	 in	 the	GRAS‐

domain	protein	mutants	not	only	identified	genes	with	a	lack	of	induction	in	the	mutants,	

but	also	revealed	a	number	of	genes	that	were	upregulated	in	the	mutants	while	showing	

no	increase	in	expression	in	the	wild	type.	The	induction	of	these	genes	might	be	directly	

or	 indirectly	 repressed	during	mycorrhization	by	 the	GRAS‐domain	proteins	 in	wild‐

type	roots,	and	the	lack	of	repression	of	these	genes	in	the	mutant	backgrounds	might	

contribute	to	the	mycorrhizal	phenotypes	described	in	Chapter	2.	

The	comparison	of	global	gene	expression	in	non‐mycorrhized	roots	revealed	that	the	

loss	of	GRAS‐domain	proteins	also	affects	the	expression	of	a	number	of	genes	under	

non‐symbiotic	 conditions.	 Interestingly,	 a	 comparable	 number	 of	 both	 up‐	 and	

downregulated	genes	were	observed	 in	 the	mutants,	again	suggesting	that	 the	GRAS‐

proteins	might	act	as	both	transcriptional	activators	and	repressors.	It	is	likely	that	some	

of	the	genes	regulated	by	the	GRAS‐domain	proteins	under	non‐symbiotic	conditions	are	

involved	in	the	pre‐symbiotic	stage	of	the	AM	symbiosis.	One	example	of	such	a	gene	is	

the	strigolactone	biosynthesis	gene	D27,	which	was	shown	to	be	upregulated	in	roots	

grown	under	low	phosphate	or	nitrogen	conditions	in	the	absence	of	mycorrhizal	fungi,	

and	this	induction	was	found	to	depend	on	NSP1	and,	to	some	extent,	on	NSP2	(Liu	et	al.,	

2011).	Meanwhile,	the	GRAS‐domain	proteins	might	also	play	a	role	in	the	regulation	of	

genes	 that	do	not	have	a	direct	 function	 in	 symbiosis.	This	hypothesis	 is	particularly	

attractive	for	NSP1	and	NSP2,	which	are	conserved	even	in	plants	that	are	not	able	to	

form	 symbioses	 with	 AM	 fungi	 or	 rhizobial	 bacteria,	 including	 members	 of	 the	

Brassicales	such	as	A.	thaliana	(Delaux	et	al.,	2013;	Delaux	et	al.,	2014).		

In	conclusion,	work	presented	in	this	chapter	has	identified	a	number	of	genes	that	are	

likely	to	be	directly	or	indirectly	regulated	by	RAM1,	NSP1,	and	NSP2	before	and	during	

AM	 symbiosis.	 Investigating	 gene	 expression	 over	 several	 time	 points	 during	

mycorrhization	has	proven	particularly	useful	to	further	limit	the	list	of	potential	target	

genes.		This	approach	has	revealed	genes	whose	induction	was	consistently	dependent	

on	RAM1,	NSP1,	 and/or	NSP2	 and	are	 therefore	good	candidates	 for	direct	 targets	of	

these	 transcription	 factors.	 Furthermore,	 the	 time	 course	 has	 also	 allowed	 the	

identification	 of	 genes	 whose	 expression	 is	 likely	 to	 be	 only	 indirectly	 regulated	 by	

RAM1,	NSP1,	and	NSP2	during	mycorrhization,	 including	genes	whose	expression	was	

delayed	but	not	entirely	abolished	in	nsp1‐1,	and	genes	that	were	dependent	on	RAM1	at	
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late,	but	not	at	early	time	points.	At	the	same	time,	a	very	stringent	fold	change	cut‐off	

was	 used	 to	 identify	 genes	 as	 potential	 targets	 in	 this	 study,	 as	 only	 genes	 whose	

induction	was	completely	abolished	in	the	GRAS	protein	mutants	were	considered	to	be	

good	candidates.	However,	many	genes	also	showed	a	reduced	or	increased	induction	

during	fungal	colonization	in	ram1‐1,	nsp1‐1,	and	nsp2‐2	compared	to	the	wild	type.	It	is	

possible	 that	 this	 group	 of	 genes	 also	 includes	 direct	 targets	 of	 the	 GRAS‐domain	

proteins,	 but	 their	 expression	 might	 be	 regulated	 by	 several	 different	 transcription	

factors	that	could	be	partially	redundant	in	their	function.	Thus,	the	approach	described	

here	 is	 unlikely	 to	 identify	 all	 the	 genes	 targeted	 by	 RAM1,	 NSP1,	 and	 NSP2	 during	

mycorrhization.	 Nevertheless,	 global	 gene	 expression	 profiling	 has	 provided	 a	 large	

number	of	novel	potential	targets	of	the	GRAS‐domain	proteins.	The	in‐depth	functional	

analysis	 of	 these	 candidates	 and	 their	 transcriptional	 regulation	 before	 and	 during	

mycorrhization	is	described	in	the	following	chapters.	 	
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Figure	3.1:	 Quantification	 of	PT4	 expression	measured	 by	 qRT‐PCR	 in	 non‐mycorrhized	 and	
mycorrhized	wild‐type	(wt),	ram1‐1,	nsp1‐1,	and	nsp2‐2	roots	at	8	dpi,	13	dpi,	and	27	dpi.	The	
expression	levels	were	normalized	to	Ubiquitin	expression.	Bars	represent	means	of	4	biological	
replicates	 ±	 SEM.	 Asterisks	 indicate	 significant	 differences	 between	 expression	 levels	 in	
mycorrhized	and	non‐mycorrhized	roots	of	the	same	genotype	at	the	corresponding	time	point	
(ANOVA,	post	hoc	Tukey,	*,	P	<	0.05;	**,	P	<	0.01;	***,	P	<	0.001,	n.s.,	P	>	0.05).	
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Figure	3.2:	Identification	of	differentially	expressed	genes	(DEGs)	by	pair‐wise	comparisons	of	
expression	 levels.	 To	 identify	DEGs	 over	 the	 time	 course	 of	 fungal	 infection,	 gene	 expression	
levels	 in	 non‐mycorrhized	 (non‐myc.)	 roots	were	 compared	 to	 the	 gene	 expression	 levels	 in	
mycorrhized	(myc.)	roots	of	the	same	genotype	(wild	type	(wt),	ram1‐1,	nsp1‐1	or	nsp2‐2)	and	at	
the	 same	 time	 point	 (comparisons	 indicated	 by	 red	 arrows).	 To	 identify	 DEGs	 under	 non‐
symbiotic	 conditions,	 the	 gene	 expression	 levels	 in	 non‐mycorrhized	 wild‐type	 roots	 were	
compared	to	the	gene	expression	levels	in	non‐mycorrhized	mutant	roots	at	the	same	time	point	
(comparisons	indicated	by	green	arrows).	
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Figure	3.3:	Overview	of	significantly	up‐	and	downregulated	genes	in	mycorrhized	versus	non‐
mycorrhized	roots.	(A)	Number	of	differentially	expressed	genes	(DEGs)	during	mycorrhization	
in	wild‐type	(wt),	ram1‐1,	nsp1‐1,	and	nsp2‐2	roots	at	8	dpi,	13	dpi	and	27	dpi.	(B)	Venn	diagrams	
showing	the	extent	of	overlap	of	significantly	upregulated	genes	(left)	and	downregulated	genes	
(right)	at	8	dpi,	13	dpi,	and	27	dpi	in	wild‐type	roots.	Only	DEGs	with	a	fold	change	of	more	than	
1.5	and	an	FDR‐corrected	p‐value	smaller	than	0.05	are	shown.	
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Figure	3.4:	Comparison	of	mycorrhizal‐induced	genes	in	wild‐type	(wt)	and	ram1‐1,	nsp1‐1,	and	
nsp2‐2	 roots.	 Proportional	 Venn	 diagrams	 showing	 the	 extent	 of	 overlap	 of	 genes	 induced	 in	
mycorrhized	versus	non‐mycorrhized	wild‐type	and	ram1‐1	(A),	wild‐type	and	nsp1‐1	(B),	and	
wild‐type	and	nsp2‐2	(C)	roots	at	8	dpi,	13	dpi,	and	27	dpi.	The	numbers	in	brackets	indicate	the	
proportion	of	genes	that	were	induced	in	the	wild	type	but	not	in	the	respective	mutants	relative	
to	the	total	number	of	genes	induced	in	the	wild	type	at	a	specific	time	point.	Significantly	induced	
genes	with	a	fold	change	of	more	than	1.5	and	an	FDR‐corrected	p‐value	smaller	than	0.05	are	
shown.	
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Figure	3.5:	Overview	of	the	fold	changes	of	mycorrhizal‐induced	genes	in	wild‐type	(wt),	ram1‐
1,	nsp1‐1,	and	nsp2‐2	roots	at	8	dpi,	13	dpi,	and	27	dpi.	Heat	maps	showing	the	relative	log2	fold	
changes	of	genes	that	were	significantly	induced	in	the	wild	type.	The	relative	log2	fold	changes	
of	the	same	genes	in	the	different	mutant	backgrounds	are	shown	in	each	row.	Genes	are	ordered	
according	to	their	fold	changes	(FC)	in	wild‐type	roots	as	indicated	by	the	arrow.		
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Figure	3.6:	Overview	of	genes	whose	induction	during	mycorrhization	was	dependent	on	RAM1.	
(A)	 Heat	 map	 showing	 the	 relative	 log2	 fold	 changes	 (FC)	 of	 genes	 that	 were	 induced	 in	
mycorrhized	versus	non‐mycorrhized	wild‐type	(wt)	roots	at	8	dpi,	13	dpi,	and/or	27	dpi	and	
were	dependent	on	RAM1	 for	 their	 induction	during	at	 least	one	of	 these	 time	points.	Cluster	
analysis	performed	using	the	analysis	tool	GENE‐E	showed	that	out	of	1092	genes	analysed	in	
total,	768	were	not	induced	in	ram1‐1	upon	mycorrhization	at	any	of	the	three	time	points	tested.	
(B)	Venn	diagram	showing	the	extent	of	overlap	of	the	expression	of	the	768	RAM1‐dependent	
genes	identified	in	(A)	at	8	dpi,	13	dpi,	and	27	dpi	in	wild‐type	roots.	Significantly	induced	genes	
with	a	fold	change	of	more	than	1.5	and	an	FDR‐corrected	p‐value	smaller	than	0.05	are	shown.	
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Figure	3.7:	Overview	of	genes	whose	induction	during	mycorrhization	was	dependent	on	NSP1.	
(A)	 Heat	 map	 showing	 the	 relative	 log2	 fold	 changes	 (FC)	 of	 genes	 that	 were	 induced	 in	
mycorrhized	versus	non‐mycorrhized	wild‐type	(wt)	roots	at	8	dpi,	13	dpi,	and/or	27	dpi	and	
were	dependent	on	NSP1	 for	 their	 induction	during	 at	 least	 one	of	 these	 time	points.	 Cluster	
analysis	performed	using	the	analysis	tool	GENE‐E	showed	that	out	of	938	genes	analysed	in	total,	
527	were	not	induced	in	nsp1‐1	upon	mycorrhization	at	any	of	the	three	time	points	tested.	(B)	
Venn	diagram	showing	the	overlap	of	the	expression	of	the	527	NSP1‐dependent	genes	identified	
in	(A)	at	8	dpi,	13	dpi,	and	27	dpi	in	wild‐type	roots.	Significantly	induced	genes	with	a	fold	change	
of	more	than	1.5	and	an	FDR‐corrected	p‐value	smaller	than	0.05	are	shown.	
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Figure	3.8:	Overview	of	genes	whose	induction	during	mycorrhization	was	dependent	on	NSP2.	
(A)	 Heat	 map	 showing	 the	 relative	 log2	 fold	 changes	 (FC)	 of	 genes	 that	 were	 induced	 in	
mycorrhized	versus	non‐mycorrhized	wild‐type	(wt)	roots	at	8	dpi,	13	dpi,	and/or	27	dpi	and	
were	dependent	on	NSP2	 for	 their	 induction	during	 at	 least	 one	of	 these	 time	points.	 Cluster	
analysis	performed	using	the	analysis	tool	GENE‐E	showed	that	out	of	792	genes	analysed	in	total,	
517	were	 not	 induced	 in	nsp2‐2	 upon	mycorrhization	 at	 any	 of	 the	 three	 time	 points	 tested.										
(B)	Venn	 diagram	 showing	 the	 overlap	 of	 the	 expression	 of	 the	 792	NSP2‐dependent	 genes	
identified	in	(A)	at	8	dpi,	13	dpi,	and	27	dpi	in	wild‐type	roots.	Significantly	induced	genes	with	a	
fold	change	of	more	than	1.5	and	an	FDR‐corrected	p‐value	smaller	than	0.05	are	shown.		
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Figure	3.9:	Venn	diagram	showing	the	extent	of	overlap	of	potential	target	genes	of	RAM1,	NSP1	
and	NSP2	during	AM	development.	Only	genes	whose	expression	was	consistently	dependent	on	
RAM1,	NSP1	or	NSP2	at	all	three	time	points	during	mycorrhization	were	included	in	the	analysis.	
Significantly	induced	genes	with	a	fold	change	of	more	than	1.5	and	an	FDR‐corrected	p‐value	
smaller	than	0.05	are	shown.		
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Figure	3.10:	 Overview	 of	 differentially	 expressed	 genes	 (DEGs)	 in	 non‐mycorrhized	 ram1‐1,	
nsp1‐1,	or	nsp2‐2	roots	compared	to	non‐mycorrhized	wild‐type	(wt)	roots.	(A)	Number	of	DEGs	
in	mutant	versus	wild‐type	roots	at	8	dpi,	13	dpi	and	27	dpi.	(B)	Venn	diagrams	showing	the	
extent	of	overlap	of	DEGs	in	mutant	versus	wild‐type	roots	at	8	dpi,	13	dpi,	and	27	dpi.	DEGs	with	
a	fold	change	of	more	than	1.5	and	an	FDR‐corrected	p‐value	smaller	than	0.05	are	shown.	
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Figure	3.11:	Venn	diagram	showing	 the	extent	of	overlap	of	potential	 target	 genes	of	RAM1,	
NSP1,	and	NSP2	under	non‐symbiotic	conditions.	Only	genes	whose	expression	was	consistently	
dependent	on	RAM1,	NSP1	or	NSP2	at	all	three	time	points	tested	were	included	in	the	analysis.	
Significantly	induced	genes	with	a	fold	change	of	more	than	1.5	and	an	FDR‐corrected	p‐value	
smaller	than	0.05	are	shown.		
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CHAPTER 4 

Mycorrhizal processes regulated by NSP1 and NSP2 

	

	

	

	

	

4.1  Introduction 

NSP1	and	NSP2	have	only	recently	been	discovered	to	play	a	role	in	AM	development,	as	

both	 mutants	 were	 found	 to	 show	 reduced	 levels	 of	 mycorrhizal	 colonization	 when	

inoculated	with	a	weak	fungal	inoculum	(Liu	et	al.,	2011;	Maillet	et	al.,	2011;	Delaux	et	

al.,	2013;	Takeda	et	al.,	2013).	In	accordance	with	this,	a	slight	reduction	in	the	level	of	

mycorrhization	was	 observed	 in	nsp1‐1	 at	 both	 early	 and	 late	 time	points	 under	 the	

conditions	 tested	 here.	 Meanwhile,	 fungal	 colonization	 within	 the	 roots	 proceeded	

normally	(Chapter	2).	These	findings	suggest	that	the	onset	of	mycorrhization	is	delayed	

in	nsp1‐1	compared	to	the	wild	type.	The	transcriptional	profile	of	mycorrhized	nsp1‐1	

roots	further	supports	this	hypothesis,	with	the	induction	of	the	majority	of	mycorrhizal‐

induced	genes	being	delayed,	but	not	completely	abolished	in	nsp1‐1.	By	contrast,	a	large	

number	of	genes	were	differentially	expressed	in	nsp1‐1	in	the	absence	of	mycorrhizal	

fungi	(Chapter	3).		

To	 date,	 the	 only	 gene	 that	 is	 known	 to	 be	 regulated	 by	 NSP1	 in	 the	 context	 of	 AM	

symbiosis	 is	 the	 strigolactone	 biosynthesis	 gene	 D27,	 whose	 expression	 is	 strongly	
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reduced	 in	nsp1	 roots	under	phosphate‐starved	 conditions,	 resulting	 in	 the	 complete	

lack	 of	 strigolactones	 in	nsp1	 root	 exudates	 (Liu	 et	 al.,	 2011).	 It	 is	 currently	 unclear	

whether	NSP1	only	 targets	D27,	 or	whether	 it	 also	 regulates	other	genes	 involved	 in	

strigolactone	 biosynthesis.	 Furthermore,	 even	 though	 the	 role	 of	 strigolactones	 in	

attracting	fungal	hyphae	during	the	pre‐contact	stage	of	AM	symbiosis	is	relatively	well	

understood,	 it	 is	 not	 known	 whether	 these	 plant	 hormones	 also	 affect	 fungal	

colonization	 inside	 the	 roots,	 and	 if	 so,	 whether	 NSP1	 is	 required	 for	 strigolactone	

production	at	later	stages	of	the	symbiosis	as	well	as	at	pre‐symbiotic	stages.		

The	 role	 of	NSP2	 in	mycorrhization	 is	 less	well	 understood.	 Although	 a	 reduction	 in	

fungal	 colonization	 has	 previously	 been	 reported	 in	nsp2	 roots	 (Maillet	 et	 al.,	 2011;	

Lauressergues	et	al.,	2012),	no	effect	on	mycorrhization	was	observed	in	nsp2‐2	under	

the	conditions	tested	here,	indicating	that	NSP2	might	be	required	for	AM	development	

only	under	certain	conditions	(Chapter	2).	Nonetheless,	a	considerable	number	of	genes	

were	 found	 to	be	dependent	on	NSP2	 at	 late	 time	points	during	AM	development.	 In	

addition,	many	genes	were	differentially	expressed	in	nsp2‐2	roots	under	non‐symbiotic	

conditions	(Chapter	3).		Similar	to	NSP1,	NSP2	has	been	proposed	to	be	involved	in	the	

regulation	 of	 D27,	 however,	 nsp2‐2	 root	 exudates	 contain	 high	 levels	 of	 some	

strigolactone	variants	(Liu	et	al.,	2011).	Thus,	the	exact	role	of	NSP2	in	the	regulation	of	

strigolactone	biosynthesis	remains	unclear.	It	is	currently	not	known	whether	NSP2	has	

additional	 roles	 in	 the	 transcriptional	 regulation	 during	 the	 establishment	 of	 AM	

symbiosis,	and	whether	these	potential	roles	differ	from	the	ones	of	NSP1.	

The	 transcriptional	 profiling	 described	 in	 Chapter	 3	 has	 provided	 a	 large	 number	 of	

novel	candidates	for	potential	target	genes	of	NSP1	and	NSP2	before	and	during	fungal	

colonization.	To	gain	further	insights	into	the	mycorrhizal	processes	that	are	regulated	

by	these	two	transcription	factors,	an	in‐depth	functional	analysis	of	the	genes	that	were	

dependent	on	NSP1	and	NSP2	for	their	expression	before	and	during	AM	symbiosis	was	

performed.	In	addition,	this	chapter	also	describes	the	development	of	tools	that	can	be	

used	 to	 investigate	 whether	 these	 potential	 target	 genes	 are	 directly	 or	 indirectly	

regulated	by	NSP1	and	NSP2.	
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4.2  Results 

4.2.1  NSP1  is  required  for  the  expression  of  many  genes  involved  in  the 

biosynthesis of strigolactones and gibberellins in the absence of AM fungi 

As	NSP1	has	previously	been	described	 to	have	a	role	 in	 the	pre‐contact	 stage	of	AM	

development,	 I	 first	 investigated	 the	 functions	 of	 the	 genes	 that	 were	 differentially	

expressed	 in	 nsp1‐1	 grown	 under	 low	 phosphate	 conditions	 and	 in	 the	 absence	 of	

mycorrhizal	 fungi.	 Global	 gene	 expression	 profiling	 has	 identified	 a	 large	 number	 of	

genes	that	were	significantly	up‐	or	downregulated	in	nsp1‐1	compared	to	the	wild	type.	

Comparing	the	expression	pattern	of	these	genes	across	the	whole	time	course	revealed	

194	genes	that	were	differentially	expressed	at	all	three	time	points	tested,	and	were	

therefore	 considered	 to	 be	 the	 most	 promising	 candidates	 for	 genes	 that	 might	 be	

directly	regulated	by	NSP1	(Chapter	3,	Figure	3.10).		

To	gain	further	insights	into	the	functions	of	these	genes,	a	singular	enrichment	analysis	

of	gene	annotation	(GO)	terms	was	performed	with	the	whole	M.	truncatula	genome	as	

background	using	the	web‐based	tool	Agrigo	(http://bioinfo.cau.edu.cn/agriGO/).	This	

analysis	identified	several	enriched	GO	terms	that	were	associated	with	isoprenoid	and	

lipid	 metabolism,	 suggesting	 that	 NSP1	 is	 involved	 in	 the	 regulation	 of	 metabolic	

pathways	 (Figure	 4.1	 A).	 To	 investigate	 the	 potential	 functions	 of	 the	 differentially	

expressed	 genes	 in	 more	 detail,	 a	 BLAST	 search	 with	 the	 corresponding	 protein	

sequences	was	conducted	against	the	A.	thaliana	proteome,	and	the	function	of	the	best	

hit	 in	A.	 thaliana	 for	 each	 gene	was	 further	 analysed.	 As	 expected,	 the	 strigolactone	

biosynthesis	 gene	D27	was	 strongly	downregulated	 in	non‐mycorrhized	nsp1‐1	 roots	

compared	to	the	wild	type,	consistent	with	the	findings	of	Liu	and	colleagues	(Liu	et	al.,	

2011;	 Table	 4.1).	 In	 addition,	 transcript	 levels	 of	 several	 carotenoid	 cleavage	

dioxygenases	(CCDs)	were	significantly	reduced	in	nsp1‐1,	including	CCD7	and	CCD8,	two	

enzymes	required	 for	 the	 late	 steps	of	 strigolactone	biosynthesis	 (Alder	et	al.,	2012).	

Surprisingly,	 a	 large	 number	 of	 genes	 that	 have	 been	 proposed	 to	 be	 involved	 in	

isoprenoid	 biosynthesis	 were	 also	 significantly	 reduced	 in	 non‐mycorrhized	 nsp1‐1	

roots	 (seven	 genes	 in	 total,	 including	 genes	 encoding	 1‐deoxy‐xylulose‐5‐phosphate	

synthase	(DXS),	1‐deoxy‐xylulose‐5‐phosphate	reductoisomerase	(DXR),	4‐hydroxy‐3‐

methylbut‐2‐enyl	 diphosphate	 reductase	 (HDR),	 and	 geranylgeranyl	 pyrophosphate	

synthase	(GGPS)).	Furthermore,	several	genes	with	a	function	in	carotenoid	biosynthesis	

showed	a	significant	downregulation	in	nsp1‐1	roots	(ten	genes	in	total,	including	genes	
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encoding	 phytoene	 synthase	 (PSY),	 phytoene	 dehydrogenase	 (PDS),	 zeta‐carotene	

isomerase	(Z‐ISO),	and	zeta‐carotene	desaturase	(ZDS)).	In	addition,	a	homolog	of	the	

cauliflower	Orange	gene,	which	is	involved	in	promoting	the	formation	of	carotenoid‐

accumulating	chromoplasts	(Lu	et	al.,	2006),	displayed	a	reduced	expression	in	nsp1‐1	

at	all	three	time	points	tested.	Isoprenoids	are	the	precursors	of	carotenoids,	from	which	

strigolactones	 are	 derived	 (Al‐Babili	 and	 Bouwmeester,	 2015;	 Figure	 4.2).	 Together,	

these	 results	 suggest	 that	under	 low	phosphate	 conditions	and	 in	 the	absence	of	AM	

fungi,	 NSP1	 is	 involved	 in	 the	 regulation	 of	 several	 biosynthetic	 pathways	 that	

participate	in	the	production	of	strigolactones.		

Among	 the	group	of	differentially	expressed	genes	 in	nsp1‐1	 roots	were	a	number	of	

genes	that	are	 involved	 in	the	biosynthesis	of	gibberellins,	which	are	plant	hormones	

that	 are	 derived	 from	 the	 isoprenoid	 intermediate	 geranyl	 geranyl	 pyrophosphate	

(GGDP;	Hedden	and	Thomas,	2012;	Figure	4.2).	The	transcript	 levels	of	several	genes	

involved	 in	 the	 early	 steps	 of	 gibberellin	 biosynthesis,	 including	 genes	 encoding	

homologs	of	 copalyl	diphosphate	 synthase	 (CPS),	 ent‐kaurene	oxidase	 (KO),	 and	ent‐

karenoic	acid	oxidase	(KAO2),	were	significantly	reduced	in	nsp1‐1	roots	compared	to	

the	wild	type	at	all	 three	time	points	tested	(Table	4.1).	Meanwhile,	 two	homologs	of	

gibberelin‐20‐oxidase	and	one	homolog	of	 gibberellin‐3‐oxidase	 showed	a	 significant	

transcriptional	 induction	 in	 nsp1‐1	 across	 the	 whole	 time	 course.	 In	 A.	 thaliana,	

gibberellin‐20‐oxidases	 and	 gibberellin‐3‐oxidase‐1	 have	 been	 shown	 to	 be	

transcriptionally	upregulated	as	part	of	a	feedback	regulation	when	gibberellin	levels	in	

plants	 are	 low	 (Mitchum	 et	 al.,	 2006;	 Rieu	 et	 al.,	 2008;	 Hedden	 and	 Thomas,	 2012).		

Overall,	 these	 findings	 suggest	 that	NSP1	 is	 involved	 in	 the	 regulation	 of	 gibberellin	

production	in	roots	under	non‐symbiotic	conditions,	possibly	through	the	direct	control	

of	early	gibberellin	biosynthesis	genes.	

Notably,	 many	 of	 the	 genes	 involved	 in	 isoprenoid,	 carotenoid,	 strigolactone	 and	

gibberellin	biosynthesis	that	were	found	to	be	differentially	expressed	in	nsp1‐1	roots	in	

the	 absence	 of	 mycorrhizal	 fungi	 were	 significantly	 upregulated	 in	 wild‐type	 roots	

during	fungal	colonization	(Table	4.1,	genes	shown	in	blue).	These	results	indicate	that	

strigolactones	 and	 gibberellins	 might	 not	 only	 play	 a	 role	 under	 pre‐symbiotic	

conditions,	but	might	also	be	important	at	later	stages	of	mycorrhization.	
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Table	4.1:	List	of	genes	that	were	differentially	expressed	in	nsp1‐1	roots	compared	to	the	wild	type	at	all	three	time	points	tested	in	the	absence	of	mycorrhizal	fungi.	
Fold	changes	of	transcript	levels	in	non‐mycorrhized	nsp1‐1	roots	versus	non‐mycorrhized	wild‐type	roots	are	given.	FDR‐corrected	p‐value	<	0.05	for	all	fold	changes	
shown.	Genes	that	were	significantly	induced	upon	mycorrhization	by	more	than	1.5	fold	and	during	at	least	one	time	point	in	the	wild	type	are	indicated	in	blue.		
	

      Fold change in nsp1‐1 

Mtv4.0 ID  Annotation  ID and description of best BLAST hit in A. thaliana (TAIR)  8 dpi  13 dpi  27 dpi 

Isoprenoid biosynthesis         

Medtr8g068265  1‐deoxy‐xylulose‐5‐phosphate synthase   AT4G15560 (1‐deoxyxylulose 5‐phosphate synthase)  ‐3.0  ‐6.3  ‐8.7 

Medtr8g068300  1‐deoxy‐xylulose‐5‐phosphate synthase   AT4G15560 (1‐deoxyxylulose 5‐phosphate synthase,)  ‐18.8  ‐23.9  ‐33.7 

Medtr4g106870  1‐deoxy‐xylulose 5‐phosphate reductoisomerase   AT5G62790 (1‐deoxy‐xylulose 5‐phosphate reductoisomerase)  ‐1.9  ‐2.3  ‐3.0 

Medtr3g437340  4‐diphosphocytidyl‐2‐methyl‐erythritol kinase   AT2G26930 (4‐(cytidine 5'‐phospho)‐2‐methyl‐erithritol kinase)  ‐2.1  ‐2.5  ‐3.0 

Medtr2g094160  4‐hydroxy‐3‐methylbut‐2‐enyl diphosphate 
synthase  

AT5G60600 (4‐hydroxy‐3‐methylbut‐2‐enyl diphosphate synthase)  ‐1.7  ‐2.3  ‐2.4 

Medtr4g069030  4‐hydroxy‐3‐methylbut‐2‐enyl diphosphate 
reductase  

AT4G34350 (4‐hydroxy‐3‐methylbut‐2‐enyl diphosphate reductase)  ‐1.7  ‐2.0  ‐2.1 

Medtr5g019460  geranylgeranyl pyrophosphate synthase   AT4G36810 (geranylgeranyl pyrophosphate synthase) 
 

‐127  ‐201  ‐193 

Carotenoid and strigolactone biosynthesis         

Medtr3g083630  squalene/phytoene synthase   AT5G17230 (phytoene synthase)  ‐114  ‐445  ‐665 

Medtr3g084830  phytoene dehydrogenase/chromoplastic protein   AT4G14210 (phytoene desaturase)  ‐1.8  ‐2.0  ‐2.3 

Medtr3g084850  phytoene dehydrogenase/chromoplastic protein   AT4G14210 (phytoene desaturase)  ‐1.9  ‐1.9  ‐2.3 

Medtr8g097190  15‐cis‐zeta‐carotene isomerase   AT1G10830 (15‐cis‐zeta‐carotene isomerase)  ‐3.6  ‐4.5  ‐5.8 

Medtr1g081290  zeta‐carotene desaturase   AT3G04870 (zeta‐carotene desaturase)  ‐1.8  ‐2.4  ‐2.9 

Medtr2g086700  capsanthin/capsorubin synthase  AT3G10230 (lycopene β‐cyclase)  n.s.  ‐1.5  ‐1.8 

Medtr1g054965  carotenoid isomerase   AT1G06820 (carotenoid isomerase)  ‐5.6  ‐5.6  ‐5.2 

      continued overleaf 
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Table	4.1:	continued.	

      Fold change in nsp1‐1 

Mtv4.0 ID  Annotation  ID and description of best BLAST hit in A. thaliana (TAIR)  8 dpi  13 dpi  27 dpi 

Medtr3g104560  cytochrome P450 family protein   AT2G26170 (member of the CYP711A cytochrome P450 family)  ‐3.3  ‐3.6  ‐3.9 

Medtr7g079440  cytochrome P450 family monooxygenase   AT1G31800 (protein with β‐ring carotenoid hydroxylase activity)  ‐4.1  ‐5.0  ‐5.9 

Medtr1g471050  beta‐carotene isomerase D27   AT1G03055 (unknown protein)  ‐15.4  ‐23.3  ‐38.2 

Medtr7g045370  carotenoid cleavage dioxygenase CCD7   AT2G44990 (carotenoid cleavage dioxygenase CCD7)  ‐2.2  ‐2.5  ‐2.8 

Medtr3g109610  carotenoid cleavage dioxygenase CCD8  AT4G32810 (carotenoid cleavage dioxygenase CCD8)  ‐2.9  ‐5.8  ‐7.4 

Medtr7g063800  carotenoid cleavage dioxygenase   AT4G32810 (carotenoid cleavage dioxygenase CCD8)  ‐6.3  ‐12.9  ‐18.4 

Medtr8g037315  carotenoid cleavage dioxygenase CCD1  AT3G63520 (9‐cis‐epoxycarotenoid dioxygenase)  ‐1.7  ‐2.1  ‐2.3 

Medtr3g110195  retinal pigment epithelial membrane protein   AT3G63520 (9‐cis‐epoxycarotenoid dioxygenase)  ‐2.8  ‐3.1  ‐4.6 

Medtr4g035650  chaperone dnaJ‐like protein   AT5G61670 (encodes a close homolog of the Cauliflower Orange 
protein) 

‐2.2  ‐2.4  ‐3.2 

Gibberellic acid biosynthesis         

Medtr7g011663  copalyldiphosphate synthase   AT4G02780 (copalyl pyrophosphate synthase)  ‐43.6  ‐52.9  ‐59.5 

Medtr7g011730  copalyldiphosphate synthase   AT4G02780 (copalyl pyrophosphate synthase)  ‐15.8  ‐7.1  ‐4.7 

Medtr7g011770  copalyldiphosphate synthase   AT4G02780 (copalyl pyrophosphate synthase)  ‐8.5  ‐7.5  ‐9.0 

Medtr2g105360  ent‐kaurenoic acid oxidase   AT5G25900 (ent‐kaurene oxidase)  ‐2.8  ‐3.6  ‐4.7 

Medtr0045s0080  cytochrome P450 family 90 protein   AT2G32440 (ent‐kaurenoic acid hydroxylase)  ‐18.0  ‐6.0  ‐9.7 

Medtr0045s0070  cytochrome P450 family 90 protein   AT2G32440 (ent‐kaurenoic acid hydroxylase)  ‐448  ‐795  ‐302 

Medtr0045s0060  cytochrome P450 family 90 protein   AT2G32440 (ent‐kaurenoic acid hydroxylase)  ‐268  ‐126  ‐64.3 

Medtr1g102070  gibberellin 20‐oxidase   AT5G51810 (gibberellin 20‐oxidase)  5.8  4.6  3.8 

Medtr6g464620  gibberellin 20‐oxidase   AT4G25420 (gibberellin 20‐oxidase)  2.1  2.2  3.6 

Medtr2g102570  gibberellin 2‐beta‐dioxygenase   AT1G15550 (gibberellin‐3‐oxidase‐1)  1.8  1.6  1.9 
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4.2.2  NSP1  is  required  for  the  induction  of  a  subset  of  genes  involved  in 

strigolactone and gibberellin biosynthesis during mycorrhizal colonization 

Next,	the	role	of	NSP1	in	the	transcriptional	reprogramming	during	fungal	colonization	

was	investigated.	To	this	end,	the	functions	of	the	genes	that	were	dependent	on	NSP1	

for	their	induction	upon	mycorrhization	were	analysed	in	more	detail.	To	limit	the	list	of	

potential	target	genes	of	NSP1,	only	genes	that	showed	a	dependence	on	NSP1	for	their	

upregulation	 across	 all	 three	 time	points	were	 considered	 to	 be	 good	 candidates	 for	

direct	targets	and	were	included	in	the	analyses.		

A	 singular	GO	 term	enrichment	 analysis	with	 these	NSP1‐dependent	 genes	using	 the	

whole	M.	truncatula	genome	as	background	revealed	that	similar	to	the	proposed	target	

genes	of	NSP1	under	non‐symbiotic	conditions,	the	potential	target	genes	of	NSP1	during	

mycorrhization	were	associated	with	 isoprenoid	and	 lipid	metabolism	(Figure	4.1	B).	

Indeed,	 several	 of	 the	 genes	 involved	 in	 strigolactone	 and	 gibberellin	 biosynthesis	

described	above	were	 found	 to	be	 among	 the	NSP1‐dependent	 genes	 induced	during	

mycorrhization,	 including	 two	 genes	 encoding	 enzymes	 from	 the	 isoprenoid	

biosynthesis	 pathway	 (DXS	 and	 4‐hydroxy‐3‐methylbut‐2‐enyl	 diphosphate	 synthase	

(HDS)),	 six	 genes	 encoding	 enzymes	 involved	 in	 carotenoid	 and	 strigolactone	

biosynthesis	(Z‐ISO,	ZDS,	a	homolog	of	lycopene	β‐cyclase,	CCD8,	the	closest	homolog	of	

CCD8,	and	the	homolog	of	the	cauliflower	Orange	gene),	and	three	genes	required	for	

gibberellic	acid	biosynthesis	(KO,	KAO2,	and	GA20ox;	Table	4.2).		

Interestingly,	many	 of	 the	 remaining	 genes	 involved	 in	 strigolactone	 and	 gibberellin	

biosynthesis	that	were	identified	to	be	downregulated	in	nsp1‐1	under	non‐symbiotic	

conditions,	 including	D27,	 showed	a	significant	 induction	 in	nsp1‐1	 roots	upon	 fungal	

colonization.	These	findings	suggest	that	other	transcription	factors	must	be	involved	in	

the	transcriptional	upregulation	of	these	genes	during	mycorrhization.	Together,	these	

results	indicate	that	NSP1	is	required	for	the	regulation	of	only	a	subset	of	genes	required	

for	 strigolactone	 and	 gibberellin	 biosynthesis	 during	mycorrhizal	 colonization	 of	 the	

roots.	
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Table	4.2:	List	of	mycorrhizal	genes	whose	induction	was	consistently	dependent	on	NSP1	across	the	whole	time	course	of	fungal	colonization.	Fold	changes	of	
transcript	 levels	 in	 mycorrhized	 versus	 non‐mycorrhized	 wild‐type	 roots	 are	 given.	 FDR‐corrected	 p‐value	 <	 0.05	 for	 all	 fold	 changes	 shown.	 ‘N.s.’	 depicts	 a	
statistically	non‐significant	fold	change.	
	

      Fold change in the wild type 

Mtv4.0 ID  Annotation  ID and description of best BLAST hit in A. thaliana (TAIR)  8 dpi  13 dpi  27 dpi 

Isoprenoid biosynthesis         

Medtr8g068300  1‐deoxy‐D‐xylulose‐5‐phosphate synthase   AT4G15560 (1‐deoxyxylulose 5‐phosphate synthase)   2.7  2.3  1.7 

Medtr2g094160  4‐hydroxy‐3‐methylbut‐2‐enyl diphosphate synthase   AT5G60600 (4‐hydroxy‐3‐methylbut‐2‐enyl diphosphate 
synthase) 

1.6  1.7  1.8 

Carotenoid and strigolactone biosynthesis         

Medtr8g097190  15‐cis‐zeta‐carotene isomerase   AT1G10830 (15‐cis‐zeta‐carotene isomerase)  1.5  1.6  1.6 

Medtr1g081290  zeta‐carotene desaturase   AT3G04870 (zeta‐carotene desaturase)  n.s.  1.5  1.5 

Medtr2g086700  capsanthin/capsorubin synthase  AT3G10230 (lycopene β‐cyclase)  n.s.  1.6  1.5 

Medtr3g109610  carotenoid cleavage dioxygenase CCD8   AT4G32810 (carotenoid cleavage dioxygenase CCD8)  2.0  2.1  2.0 

Medtr7g063800  carotenoid cleavage dioxygenase   AT4G32810 (carotenoid cleavage dioxygenase CCD8)  1.9  2.0  n.s. 

Medtr4g035650  chaperone dnaJ‐like protein   AT5G61670 (encodes a close homolog of the Cauliflower 
Orange protein) 

1.6  1.7  n.s. 

Gibberellic acid biosynthesis         

Medtr2g105360  cytochrome P450 family ent‐kaurenoic acid oxidase   AT5G25900 (ent‐kaurene oxidase, cytochrome p450)  1.9  2.0  1.6 

Medtr0045s0060  cytochrome P450 family 90 protein   AT2G32440 (ent‐kaurenoic acid hydroxylase KAO2)  1.9  1.8  n.s. 

Medtr1g102070  gibberellin 20‐oxidase   AT5G51810 (gibberellin 20‐oxidase)  1.9  2.3  2.1 
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To	confirm	the	results	obtained	by	RNA‐seq,	the	expression	levels	of	nine	of	the	NSP1‐

dependent	genes	were	quantified	in	wild‐type,	nsp1‐1,	nsp2‐2,	and	ram1‐1	roots	using	

qRT‐PCR	(Figures	4.3,	4.4,	and	4.5).	In	general,	a	very	good	overlap	was	found	between	

the	results	obtained	by	RNA‐seq	and	qRT‐PCR,	with	only	very	few	discrepancies	in	the	

statistical	power	of	the	observed	differences	between	treatments	and	genotypes.		

These	analyses	further	revealed	that	the	majority	of	the	genes	that	were	dependent	on	

NSP1	before	or	during	mycorrhization,	in	particular	the	genes	involved	in	strigolactone	

and	 gibberellin	 biosynthesis,	were	 not	 differentially	 expressed	 in	 ram1‐1	 and	nsp2‐2	

roots	(Figures	4.3,	4.4,	and	4.5).	Surprisingly,	D27	also	belonged	to	this	group	of	genes,	

with	expression	levels	that	were	unaltered	in	nsp2‐2	roots	compared	to	the	wild	type	

under	non‐symbiotic	and	symbiotic	conditions	(Figure	4.4	A).	One	exception	to	this	was	

the	 closest	 homolog	 of	 CCD8	 (Medtr7g063800),	 whose	 expression	 was	 drastically	

reduced	 not	 only	 in	 nsp1‐1,	 but	 also	 in	 nsp2‐2	 roots	 under	 both	 non‐symbiotic	 and	

symbiotic	 conditions	 (Figure	 4.4	 C),	 indicating	 that	 NSP2	 is	 involved	 in	 the	

transcriptional	regulation	of	this	gene	in	the	absence	of	mycorrhizal	fungi	and	during	

AM	development.		

	

4.2.3  NSP2 might be involved in the regulation of defence and stress responses 

under non‐symbiotic conditions 

Although	 no	 mycorrhizal	 phenotype	 was	 observed	 for	 nsp2‐2	 under	 the	 conditions	

tested	here,	global	gene	expression	profiling	identified	a	large	number	of	genes	whose	

expression	was	dependent	on	NSP2	under	non‐symbiotic	conditions	and	during	the	late	

stages	 of	 AM	 development.	 Specifically,	 193	 genes	 were	 identified	 that	 were	

differentially	 expressed	 in	 nsp2‐2	 roots	 at	 all	 three	 time	 points	 in	 the	 absence	 of	

mycorrhizal	 fungi	(Chapter	3,	Figure	3.9).	To	investigate	the	biological	processes	that	

might	 be	 regulated	 by	 NSP2	 under	 non‐symbiotic	 conditions,	 a	 singular	 GO	 term	

enrichment	analysis	of	these	genes	was	performed,	revealing	several	enriched	GO	terms	

associated	 with	 defence	 responses,	 signal	 transduction,	 and	 the	 response	 to	 stress	

(Figure	4.6	A).	Conducting	a	BLAST	search	with	the	corresponding	protein	sequences	

against	the	A.	thaliana	proteome	confirmed	the	presence	of	a	number	of	genes	involved	

in	defence	and	stress	responses	in	the	group	of	up‐	and	downregulated	genes	in	nsp2‐2	

roots.	
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In	addition,	 the	 functions	of	 the	genes	 that	were	consistently	dependent	on	NSP2	 for	

their	 induction	 during	 mycorrhization	 were	 investigated	 to	 gain	 insights	 into	 the	

mycorrhizal	processes	that	might	be	regulated	by	NSP2.	A	GO	term	enrichment	analysis	

with	these	NSP2‐dependent	genes	revealed	several	enriched	GO	terms	associated	with	

protein	 modification	 and	metabolism	 (Figure	 4.6	 B).	 As	NSP2	 appeared	 to	 have	 the	

biggest	impact	on	gene	expression	at	late	time	points	during	mycorrhization,	the	NSP2‐

dependent	genes	that	were	upregulated	in	wild‐type	roots	at	all	three	time	points	(four	

genes),	at	13	dpi	and	27	dpi	(69	genes),	and	at	27	dpi	(328	genes;	Chapter	3,	Figure	3.8)	

were	 further	analysed	by	conducting	a	BLAST	search	with	 the	corresponding	protein	

sequences	against	the	A.	thaliana	proteome.	However,	the	analysis	of	the	best	hits	did	

not	reveal	any	obvious	mycorrhizal	processes	that	might	be	regulated	by	NSP2	during	

AM	development	and	could	explain	the	slight,	but	not	statistically	significant	reduction	

in	fungal	infection	structures	observed	in	nsp2‐2	roots	at	27	dpi	(Chapter	2).		

		

4.2.4  A complex of NSP1 and NSP2 induces the expression of D27 in a transient 

assay in N. benthamiana 

Global	gene	expression	profiling	has	revealed	a	number	of	genes	that	might	be	directly	

or	indirectly	regulated	by	the	GRAS‐domain	proteins	in	the	absence	of	mycorrhizal	fungi	

and	during	AM	development.	Using	a	transient	expression	system	in	N.	benthamiana,	it	

had	previously	been	demonstrated	that	NSP1,	when	co‐expressed	with	NSP2,	is	able	to	

activate	gene	expression	from	the	promoters	of	Nod	factor‐inducible	genes	such	as	ERN1	

and	ENOD11	(Cerri	et	al.,	2012).	Thus,	a	similar	transactivation	system	was	developed	

to	 test	 the	ability	of	 the	GRAS‐domain	proteins	 to	directly	 regulate	 the	expression	of	

genes	 identified	 by	 transcriptional	 profiling	 described	 above.	 To	 this	 end,	 the	 GRAS‐

domain	proteins	were	constitutively	expressed	in	N.	benthamiana	leaves	together	with	

the	firefly	LUCIFERASE	(LUC)	gene	fused	to	promoter	sequences	of	known	and	potential	

direct	 target	 genes.	 The	 ability	 of	 transcription	 factors	 to	 activate	 reporter	 gene	

expression	 from	 a	 specific	 promoter	 sequence	 was	 determined	 by	 enzymatic	

quantification	of	the	LUC	activity	in	transformed	leaf	tissues.	To	account	for	variability	

in	 the	 efficiency	 of	 transformation	 and	 protein	 extraction,	 the	 LUC	 activity	 was	

normalized	 against	 the	 activity	 of	 β‐glucuronidase	 (GUS),	 which	 was	 constitutively	

expressed	in	the	same	transformation	vector	(Figure	4.7	A).		
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The	 conditions	 for	 transient	 transformation,	 protein	 extraction,	 and	 enzyme	 activity	

assays	were	optimised	using	an	expression	vector	containing	NSP1	or	NSP2	alone	or	in	

combination	and	the	LUC	gene	under	the	control	of	the	ENOD11	promoter,	which	had	

previously	 been	 shown	 to	 be	 bound	 and	 activated	 by	 a	 complex	 of	 NSP1	 and	 NSP2	

(Hirsch	et	al.,	2009;	Cerri	et	al.,	2012).	The	same	expression	vector	containing	all	 the	

components	 but	 lacking	 the	 genes	 encoding	 the	 transcription	 factors	 served	 as	 a	

negative	 control.	 No	 induction	 of	 LUC	 activity	 was	 observed	 when	 expressing	NSP1	

alone,	while	 a	 small,	 but	 statistically	 significant	 induction	was	 seen	when	expressing	

NSP2	(Figure	4.7	B).	The	expression	of	both	NSP1	and	NSP2	together	resulted	in	a	very	

strong	induction	of	LUC	activity,	suggesting	that	the	complex	of	NSP1	and	NSP2	is	able	

to	 activate	 gene	 expression	 from	 the	 ENOD11	 promoter	 more	 efficiently	 than	 the	

individual	transcription	factors	alone.	These	results	are	consistent	with	the	findings	of	

Cerri	 and	 colleagues	 (Cerri	 et	 al.,	 2012)	 and	 confirm	 that	 the	 transactivation	 assay	

developed	here	 is	 suited	 to	measure	 the	 ability	 of	 individual	 transcription	 factors	 or	

transcription	factor	complexes	to	activate	gene	expression.	

Next,	I	investigated	whether	NSP1	is	able	to	activate	the	expression	of	the	strigolactone	

biosynthesis	 gene	D27,	which	 showed	 a	 strongly	 reduced	 expression	 in	nsp1‐1	 roots	

compared	 to	 the	 wild	 type	 under	 low	 phosphate	 conditions	 and	 in	 the	 absence	 of	

mycorrhizal	 fungi	 (Liu	 et	 al.,	 2011,	 results	 presented	 here).	 The	 expression	 of	NSP1	

together	with	LUC	under	the	control	of	the	3	kb	long	D27	promoter	did	not	result	in	the	

induction	 of	 LUC	 activity,	 suggesting	 that	 NSP1	 alone	 is	 not	 able	 to	 activate	 D27	

expression	(Figure	4.7	D).	By	contrast,	the	expression	of	NSP1	together	with	NSP2	led	to	

a	strong	induction	of	LUC	activity.	When	expressing	NSP2	alone,	a	small	induction	of	LUC	

activity	was	observed,	however,	this	induction	was	much	weaker	than	the	one	caused	by	

the	 complex	 of	NSP1	 and	NSP2	 (Figure	 4.7	D).	 Similar	 findings	were	 obtained	when	

testing	the	activation	of	LUC	under	the	control	of	the	1	kb	long	D27	promoter,	suggesting	

that	the	first	1	kb	upstream	of	the	start	codon	of	D27	is	sufficient	for	the	activation	by	a	

complex	of	NSP1	and	NSP2	(Figure	4.7	E).	This	is	consistent	with	in	vitro	binding	studies	

showing	that	NSP1	is	able	to	associate	with	the	same	region	of	the	D27	promoter	(Liu	et	

al.,	2011).	Together,	these	findings	suggest	that	NSP1,	when	co‐expressed	with	NSP2,	is	

able	 to	 activate	 gene	 expression	 from	 the	 D27	 promoter	 in	 a	 transient	 assay	 in	 N.	

benthamiana	leaves.	By	contrast,	no	induction	of	LUC	activity	was	seen	when	expressing	

NSP1	and	NSP2	with	the	LUC	gene	under	the	control	of	the	promoter	of	Medtr3g080840,	

a	close	homolog	of	MtD27	(Figure	4.7	C;	Liu	et	al.,	2011).	These	results	demonstrate	that	



Chapter 4 – Mycorrhizal processes regulated by NSP1 and NSP2 

 

94	
	

the	activation	of	the	D27	promoter	by	NSP1	and	NSP2	observed	in	the	transactivation	

assay	is	specific.		

	

4.2.5  Generation of M. truncatula  lines stably expressing GFP‐tagged NSP1 and 

NSP2 for the identification of genome‐wide DNA‐binding sites 

While	the	transactivation	assay	in	N.	benthamiana	provides	a	useful	tool	to	measure	the	

ability	of	the	GRAS‐domain	proteins	to	induce	gene	expression	via	individual	promoter	

sequences,	it	is	less	well	suited	to	test	very	large	numbers	of	different	promoters	and	

combinations	 of	 transcription	 factors.	 Furthermore,	 as	 a	 heterologous	 system,	 the	

conditions	 for	 the	 regulation	 of	 gene	 expression	 are	 likely	 to	 be	 different	 in	 N.	

benthamiana	leaves	from	the	conditions	in	M.	truncatula	roots	during	symbiosis.	Thus,	

M.	 truncatula	 lines	 stably	 expressing	GFP‐tagged	NSP1	 (generated	 by	 Jian	 Feng)	 and	

NSP2	were	generated	to	identify	the	genome‐wide	binding	sites	of	these	transcription	

factors	 by	 performing	 chromatin‐immunoprecipitation	 assays	 followed	 by	 Illumina	

deep	sequencing	(ChIP‐seq).	To	ensure	the	functionality	of	the	GFP‐fusion	proteins,	the	

stably	 transformed	 M.	 truncatula	 plants	 expressing	 GFP‐NSP1	 or	 NSP2‐GFP	 in	 the	

corresponding	mutant	backgrounds	were	 tested	 for	 their	 ability	 to	 form	a	 functional	

symbiosis	with	 rhizobial	 bacteria.	 Plants	 carrying	 a	mutation	 in	NSP1	 or	NSP2	 have	

previously	been	shown	to	be	unable	to	form	pink	nodules	(Kaló	et	al.,	2005;	Smit	et	al.,	

2005).	The	expression	of	GFP‐NSP1	under	the	control	of	the	endogenous	NSP1	promoter	

in	the	nsp1‐1	mutant	background	restored	the	ability	of	the	roots	to	form	pink	nodules,	

confirming	that	the	GFP‐fusion	protein	is	functional	(Figure	4.8,	courtesy	of	Jian	Feng).	

By	 contrast,	 the	 expression	 of	NSP2‐GFP	 under	 the	 control	 of	 the	 endogenous	NSP2	

promoter	did	not	result	in	the	formation	of	pink	nodules	in	the	corresponding	mutant	

background	(data	not	shown).	Therefore,	the	constitutively	active	Ubiquitin	promoter	

was	used	to	overexpress	NSP2‐GFP	in	the	nsp2‐2	mutant.	This	construct	complemented	

the	 nsp2	 nodulation	 phenotype,	 suggesting	 that	 the	 NSP2‐GFP	 fusion	 protein	 is	

functional	(Figure	4.9).	

To	test	experimental	procedures	for	ChIP	and	identify	DNA	binding	sites	that	can	serve	

as	positive	controls	for	future	ChIP‐seq	experiments,	ChIP‐qPCR	assays	were	performed	

with	 GFP‐NSP1	 expressing	 lines	 grown	 under	 low	 phosphate	 conditions	 and	 in	 the	

absence	of	mycorrhizal	 fungi.	As	several	 lines	of	evidence	suggest	that	D27	 is	directly	

bound	 by	 NSP1	 under	 these	 conditions	 (Liu	 et	 al.,	 2011;	 work	 presented	 here),	 the	
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promoter	sequence	of	this	gene	was	used	as	a	positive	control	for	ChIP‐qPCR	assays.	To	

test	whether	the	promoter	sequence	of	D27	was	enriched	after	immunoprecipitation	of	

GFP‐NSP1‐DNA	complexes	using	α‐GFP	antibodies,	qPCR	analysis	was	performed	with	

primer	pairs	that	amplify	regions	within	or	outside	of	the	1	kb	promoter	sequence	that	

had	previously	been	found	to	be	bound	by	NSP1	in	vitro	(Liu	et	al.,	2011;	Figure	4.10	A).	

Preliminary	results	showed	no	enrichment	of	D27	promoter	sequences	when	using	lines	

stably	expressing	GFP‐NSP1	compared	to	untransformed	wild‐type	plants	(Figure	4.10	

B).	These	results	might	suggest	that	the	promoter	sequence	of	D27	is	not	directly	bound	

by	NSP1.	However,	due	to	 time	 limitations,	 the	entire	ChIP‐qPCR	assay	could	only	be	

performed	once,	and	it	is	likely	that	the	experimental	conditions	need	to	be	optimised	to	

be	able	to	detect	binding	of	NSP1	to	the	D27	promoter.	

	

4.3  Discussion 

Here,	the	biological	processes	that	are	controlled	by	NSP1	and	NSP2	during	mycorrhizal	

colonization	 and	 under	 non‐symbiotic	 conditions	were	 investigated	 by	 analysing	 the	

functions	of	the	potential	target	genes	of	these	two	transcription	factors	identified	by	

transcriptomic	profiling.	These	analyses	have	revealed	an	important	role	for	NSP1	in	the	

regulation	of	strigolactone	and	gibberellin	biosynthesis	 in	the	absence	of	mycorrhizal	

fungi	and	partly	during	fungal	colonization	of	the	roots.		

The	function	of	strigolactones	at	the	pre‐symbiotic	stage	of	AM	symbiosis	is	relatively	

well	 understood.	 Under	 low	 nutrient	 conditions,	 the	 production	 of	 strigolactones	 is	

induced	by	the	transcriptional	upregulation	of	genes	encoding	key	biosynthetic	enzymes	

such	as	D27	(Liu	et	al.,	2012).	After	release	into	the	rhizosphere,	these	hormones	act	as	

signalling	 molecules	 to	 mycorrhizal	 fungi,	 inducing	 spore	 germination	 and	 hyphal	

branching	and	thereby	directing	fungal	growth	towards	the	roots.	NSP1	has	previously	

been	shown	to	be	required	for	the	upregulation	of	D27	under	phosphate	starvation	(Liu	

et	al.,	2011).	Consistent	with	these	findings,	the	expression	levels	of	D27	and	the	two	

carotenoid	 cleavage	 dioxygenases	CCD7	 and	CCD8,	which	 have	 been	 proposed	 to	 act	

downstream	of	D27	to	produce	the	immediate	strigolactone	precursor	carlactone,	were	

strongly	reduced	in	nsp1‐1.	These	results	confirm	that	NSP1	plays	an	important	role	in	

the	regulation	of	strigolactone	biosynthesis	at	 the	pre‐contact	stage	of	AM	symbiosis.	

Surprisingly,	the	transcriptional	downregulation	was	not	just	limited	to	genes	involved	

in	the	late	steps	of	strigolactone	biosynthesis,	but	included	many	genes	involved	in	the	
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biosynthesis	of	isoprenoids	and	carotenoids,	from	which	strigolactones	are	derived.	The	

key	steps	in	isoprenoid	biosynthesis	are	mediated	by	the	enzymes	DXS,	DXR,	and	HDR	

(Cazzonelli	and	Pogson,	2010;	Figure	4.2),	all	of	which	were	transcriptionally	dependent	

on	NSP1.	Moreover,	the	putative	homolog	of	PSY,	the	most	important	regulatory	enzyme	

in	carotenoid	biosynthesis	(Cazzonelli	and	Pogson,	2010),	belonged	to	the	most	strongly	

downregulated	 genes	 in	 nsp1‐1.	 These	 findings	 suggest	 that	 NSP1	 might	 not	 only	

regulate	genes	 involved	 in	 the	 late	steps	of	strigolactone	biosynthesis,	but	might	also	

directly	control	several	other	key	genes	in	isoprenoid	and	carotenoid	biosynthesis	under	

pre‐symbiotic	 conditions.	 Alternatively,	 the	 lack	 of	 D27	 expression	 in	 nsp1‐1	 roots	

during	phosphate	starvation	and	the	resulting	block	in	strigolactone	production	might	

indirectly	reduce	the	transcript	levels	of	genes	acting	upstream	and	downstream	of	D27	

through	 feedback	 regulation	 mediated	 by	 other	 transcriptional	 regulators.	 The	

transactivation	assay	 in	N.	benthamiana	 leaves	 and	ChIP‐seq	assays	with	 lines	 stably	

expressing	GFP‐tagged	NSP1	provide	useful	tools	for	future	research	investigating	which	

of	these	genes	are	bound	and	thus	directly	regulated	by	NSP1.	

The	 observation	 that	 NSP1,	 when	 co‐expressed	 with	 NSP2,	 is	 able	 to	 induce	 the	

expression	of	the	LUC	reporter	gene	from	the	D27	promoter	in	the	transactivation	assay	

suggests	that	D27	is	indeed	a	direct	target	of	NSP1,	consistent	with	in	vitro	DNA	binding	

studies	reporting	that	NSP1	is	able	to	directly	bind	to	the	D27	promoter	sequence	(Liu	

et	 al.,	 2011).	 The	 observed	 lack	 of	pD27‐LUC	 induction	when	 expressing	NSP1	 alone	

further	 indicates	 that	 similar	 to	 the	 activation	 of	 the	 rhizobial‐induced	 promoters	

pENOD11	and	pERN1,	NSP1	requires	NSP2	to	be	able	to	activate	gene	expression	from	

the	D27	 promoter.	 This	 is	 in	 line	with	 findings	 of	 a	 previous	 study	 showing	 that	 the	

expression	levels	of	D27	are	significantly	reduced,	although	not	completely	abolished,	

under	phosphate‐limiting	conditions	in	nsp2	roots	(Liu	et	al.,	2011).	Thus,	it	is	surprising	

that	no	such	reduction	in	D27	transcript	levels	was	observed	in	the	nsp2‐2	mutant	under	

the	conditions	tested	here.	One	reason	for	this	discrepancy	could	be	the	high	nitrogen	

conditions	under	which	plants	were	grown	for	global	gene	expression	profiling	(Chapter	

3.2.1).	 Liu	 and	 colleagues	 have	 previously	 shown	 that	 the	 expression	 of	 D27	 in	M.	

truncatula	 not	 only	 depends	 on	 phosphate,	 but	 also	 on	 nitrogen	 levels,	 with	 D27	

expression	 being	 induced	 under	 nitrogen	 starvation	 (Liu	 et	 al.,	 2011).	 The	 lack	 of	 a	

reduction	in	D27	expression	in	nsp2‐2	roots	observed	here	implies	that	there	is	some	

level	of	redundancy	regarding	the	function	of	NSP2	in	the	regulation	of	D27	expression,	

at	least	under	some	conditions.	Other	transcription	factors	might	be	able	to	interact	with	

NSP1	to	activate	D27	expression.	A	recent	study	has	identified	the	novel	GRAS‐domain	
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protein	 MIG1	 as	 an	 interaction	 partner	 of	 NSP1	 and	 DELLA1	 (Heck	 et	 al.,	 2016).	

Furthermore,	 the	M.	 truncatula	 genome	 encodes	 a	 large	number	 of	 additional	GRAS‐

domain	proteins,	 including	a	close	homolog	of	NSP2	(Lauressergues	et	al.,	2012).	It	 is	

possible	that	one	or	several	of	these	GRAS‐domain	proteins	are	able	to	form	an	active	

transcription	factor	complex	with	NSP1	under	non‐symbiotic	conditions	to	control	the	

expression	of	D27,	a	hypothesis	that	could	be	tested	using	the	transactivation	assay	in	N.	

benthamiana	leaves.	

Interestingly,	 although	 the	 expression	 levels	 of	most	 genes	 involved	 in	 strigolactone	

biosynthesis	were	not	affected	in	nsp2‐2,	the	transcript	levels	of	the	closest	homolog	of	

CCD8	were	drastically	reduced.	The	M.	truncatula	genome	encodes	two	copies	of	CCD8	

(Medtr3g109610,	which	has	previously	been	described	as	CCD8,	and	Medtr7g063800,	

the	closest	homolog),	both	of	which	were	shown	to	be	transcriptionally	induced	during	

phosphate	starvation	(van	Zeijl	et	al.,	2015).	Although	the	relative	expression	levels	of	

Medtr7g063800	are	generally	lower	than	the	ones	of	Medtr3g109610	(van	Zeijl	et	al.,	

2015),	 this	 does	 not	 exclude	 the	 possibility	 that	 both	 genes	 have	 a	 function	 in	

strigolactone	biosynthesis.	Strigolactone	levels	in	nsp2	root	exudates	differ	significantly	

from	the	wild	type.	While	the	strigolactone	variant	orobanchol	accumulates	to	very	high	

levels	in	the	nsp2	mutant,	the	orobanchol	derivative	didehydro‐orobanchol	is	completely	

absent	 in	nsp2	 root	 exudates	 (Liu	 et	 al.,	 2011).	 Based	 on	 these	 findings,	 it	 has	 been	

proposed	 that	 NSP2	 is	 required	 for	 the	 expression	 of	 an	 enzyme	 involved	 in	 the	

production	of	didehydro‐orobanchol	(Liu	et	al.,	2011),	and	it	would	be	interesting	to	test	

whether	the	homolog	of	CCD8	could	fulfil	such	a	function.		

Overall,	the	results	of	previous	studies	and	global	gene	expression	profiling	described	

here	 indicate	 that	 NSP1	 and	 NSP2	 have	 different	 roles	 in	 regulating	 strigolactone	

production	 at	 the	 pre‐symbiotic	 stage	 of	 AM	 symbiosis.	 Importantly,	 the	 amounts	 of	

different	 strigolactone	 variants	 were	 found	 to	 differ	 significantly	 between	 the	 two	

mutants,	 with	 orobanchol	 being	 completely	 absent	 in	 nsp1	 root	 exudates,	 but	

accumulating	in	nsp2	roots	(Liu	et	al.,	2011).	Interestingly,	orobanchol	has	been	shown	

to	 be	 able	 to	 induce	 hyphal	 branching	 of	 germinating	 fungal	 spores	 (Akiyama	 et	 al.,	

2010).	 It	 is	 therefore	 perhaps	 not	 surprising	 that	 nsp2‐2	 appears	 to	 have	 a	 weaker	

mycorrhizal	 phenotype	 than	nsp1‐1,	 especially	when	 assuming	 that	 the	nsp1	mutant	

phenotype	is	at	least	partly	caused	by	the	complete	lack	of	strigolactones	in	nsp1	root	

exudates	 at	 pre‐symbiotic	 stages.	 The	 results	 obtained	 here	 suggest	 that	 NSP2	 is	

involved	 in	 regulating	 only	 a	 subset	 of	 genes	 that	 function	 in	 the	 biosynthesis	 of	
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strigolactones	under	 low	phosphate	 conditions,	 and	 the	 regulation	of	 these	 genes	by	

NSP2	might	depend	on	the	exact	growth	conditions,	including	the	availability	of	different	

nutrients	in	the	rhizosphere.	

Global	gene	expression	profiling	of	non‐mycorrhized	and	mycorrhized	roots	has	further	

revealed	 that	 many	 genes	 involved	 in	 isoprenoid,	 carotenoid	 and	 strigolactone	

biosynthesis	were	transcriptionally	induced	during	mycorrhization	in	wild‐type	roots.	

The	 genes	 encoding	 the	 two	 isoprenoid	 enzymes	 DXS	 and	 DXR	 and	 the	 carotenoid	

enzymes	 ZDS	 and	 PDS	 have	 previously	 been	 found	 to	 be	 upregulated	 upon	 fungal	

colonization	in	M.	truncatula	and	Nicotiana	tabacum	(Fester	et	al.,	2002;	Walter	et	al.,	

2002;	Lohse	et	al.,	2005).	In	line	with	this,	a	recent	study	has	shown	that	the	levels	of	

strigolactones	 increase	 in	mycorrhized	 tomato	roots	 (López‐Ráez	et	 al.,	 2015).	These	

findings	suggest	that	strigolactones	are	not	only	important	at	the	pre‐symbiotic	stage	of	

AM	development,	but	might	also	play	a	role	at	 later	stages	during	the	colonization	of	

roots	 by	 AM	 fungi.	 While	 the	 role	 of	 strigolactones	 at	 the	 pre‐contact	 stage	 of	 AM	

symbiosis	 is	 well	 characterised,	 the	 potential	 role	 of	 strigolactones	 during	 fungal	

colonization	 is	 less	 clear.	 It	 is	 possible	 that	 strigolactones	 guide	 fungal	 colonization	

within	roots	by	acting	as	signalling	molecules	to	the	fungus,	similar	to	their	role	in	the	

rhizosphere.	It	is	also	conceivable	that	strigolactones	act	as	endogenous	plant	hormones	

on	the	root	to	regulate	host	processes	during	AM	development.	However,	a	mutation	in	

the	strigolactone‐receptor	D14	 in	rice	does	not	result	in	a	decrease	in	mycorrhization	

(Yoshida	et	al.,	2012;	Gutjahr	et	al.,	2015),	suggesting	that	during	fungal	colonization	of	

the	 roots,	 strigolactones	 primarily	 act	 on	 the	 fungus.	At	 late	 stages	 of	 the	 symbiosis,	

strigolactone	production	has	been	found	to	decrease	in	several	plant	species,	and	it	has	

been	hypothesised	 that	 this	 reduction	 in	 strigolactone	 levels	 serves	 to	prevent	 over‐

colonization	of	the	roots	by	AM	fungi	(Fernández‐Aparicio	et	al.,	2010;	López‐Ráez	et	al.,	

2011;	Aroca	et	al.,	2013;	López‐Ráez	et	al.,	2015).	 In	addition	to	strigolactones,	other	

carotenoid	cleavage	products,	including	C13	α‐ionol	and	C14	mycorradicin	derivatives,	

were	found	to	accumulate	in	mycorrhized	roots	of	many	plant	species	at	late	stages	of	

the	 symbiosis,	 although	 the	 functions	 of	 these	 compounds	 in	 AM	 development	 are	

currently	 unknown	 (Walter	 et	 al.,	 2007).	 Thus,	 the	 upregulation	 of	 isoprenoid	 and	

carotenoid	 biosynthesis	 genes	 in	 mycorrhized	 roots	 observed	 here	 might	 promote	

strigolactone	 biosynthesis	 at	 early	 and	 intermediate	 time	 points,	 while	 at	 late	 time	

points,	the	products	of	these	pathways	might	serve	as	precursors	for	mycorradicin	and	

α‐ionol	derivatives.	
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Only	 a	 few	 of	 the	 genes	 involved	 in	 strigolactone	 biosynthesis	 showed	 an	 abolished	

induction	 in	 nsp1‐1	 during	 mycorrhization,	 suggesting	 that	 NSP1	 is	 involved	 in	 the	

regulation	of	only	a	subset	of	these	biosynthesis	genes	during	fungal	colonization	of	the	

roots.	By	contrast,	the	majority	of	the	genes	induced	in	the	wild	type,	including	PSY	and	

D27,	 did	 not	 require	 NSP1	 for	 their	 upregulation	 during	 mycorrhizal	 colonization.	

Promoter‐GUS	studies	 indicate	that	D27	 is	expressed	 in	arbuscule‐harbouring	cells	of	

mycorrhized	roots,	and	this	expression	is	not	abolished	in	an	nsp1	mutant	background	

(Bruno	 Guillotin	 and	 Guillaume	 Bécard,	 personal	 communication).	 In	 L.	 japonicus,	 a	

similar	NSP1‐independent	 induction	 of	D27	 in	mycorrhized	 roots	 has	 been	 reported	

(Nagae	et	al.,	2014).	Together,	these	results	suggest	that	other	transcription	factors	must	

be	involved	in	the	transcriptional	regulation	of	these	strigolactone	biosynthesis	genes	

during	 AM	 development.	 In	 addition,	 these	 findings	 imply	 that	 strigolactone	

biosynthesis	is	differentially	regulated	before	and	during	mycorrhization.		

Research	in	recent	years	has	uncovered	an	important	role	for	strigolactones	not	only	in	

the	establishment	of	AM	symbiosis,	but	also	in	many	other	aspects	of	plant	development,	

including	shoot	branching	and	root	development	(Al‐Babili	and	Bouwmeester,	2015).	

Considering	 that	 strigolactones	 are	 not	 detectable	 in	 nsp1	 root	 exudates,	 one	would	

expect	 that	 the	 nsp1	 mutant	 also	 shows	 other	 signs	 of	 strigolactone	 deficiency.	

Surprisingly,	however,	the	M.	truncatula	nsp1	mutant	does	not	display	changes	in	shoot	

architecture	(Liu	et	al.,	2011).	Furthermore,	 the	quantification	of	 lateral	root	number	

and	root	length	in	nsp1	plants	only	revealed	a	very	mild	effect	of	the	loss	of	NSP1	on	root	

architecture	 (Bruno	 Guillotin	 and	 Guillaume	 Bécard,	 personal	 communication).	 The	

observation	 that	many	 strigolactone	biosynthesis	 genes	appear	 to	be	 induced	during	

mycorrhization	even	in	the	absence	of	NSP1	suggests	that	strigolactone	production	in	

nsp1‐1	 plants	 does	 take	 place	 under	 some	 conditions.	 Alternative	 pathways	 must	

contribute	to	the	control	of	strigolactone	biosynthesis,	which	might	explain	the	lack	of	a	

broader	strigolactone	phenotype	in	the	nsp1	mutant.	It	would	be	interesting	to	quantify	

strigolactone	levels	not	only	in	nsp1‐1	root	exudates,	but	also	in	other	plant	tissues	such	

as	shoots	to	investigate	whether	strigolactones	are	produced	elsewhere	in	the	mutant.	

In	 addition	 to	 the	 function	 of	 NSP1	 in	 the	 control	 of	 strigolactone	 production,	

transcriptomic	profiling	has	also	revealed	a	role	for	NSP1	in	the	regulation	of	gibberellin	

biosynthesis	 under	 non‐symbiotic	 conditions.	 Gibberellins,	 just	 like	 carotenoids	 and	

strigolactones,	 are	 derived	 from	 the	 isoprenoid	 intermediate	 GGDP.	 The	 reduced	

expression	levels	of	isoprenoid	and	gibberellin	biosynthesis	genes	are	likely	to	result	in	
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low	 levels	 of	 gibberellins	 in	 nsp1‐1	 roots.	 This	 hypothesis	 is	 supported	 by	 the	

observation	 that	 transcript	 levels	 of	 late	 gibberellin	 biosynthesis	 genes	 such	 as	

gibberellin‐20	 oxidase	 and	 gibberellin‐3	 oxidase	 were	 upregulated	 in	 nsp1‐1.	 In	 A.	

thaliana,	 these	 genes	 have	 previously	 been	 shown	 to	 be	 regulated	 by	 a	 feedback	

mechanism,	with	low	levels	of	gibberellins	causing	the	upregulation	of	two	gibberellin‐

20	 oxidases	 and	 one	 gibberellin‐3	 oxidase	 (Mitchum	 et	 al.,	 2006;	 Rieu	 et	 al.,	 2008;	

Hedden	 and	 Thomas,	 2012).	 The	 quantification	 of	 gibberellin	 levels	 in	nsp1‐1	 plants	

would	clarify	whether	the	decreased	expression	of	early	gibberellin	biosynthesis	genes	

indeed	results	in	reduced	levels	of	this	plant	hormone.	If	this	is	the	case,	one	would	also	

expect	the	nsp1‐1	mutant	to	show	other	signs	of	gibberellin	deficiency,	such	as	a	decrease	

in	the	efficiency	of	seed	germination.	

Similar	 to	 the	 genes	 involved	 in	 strigolactone	 biosynthesis,	 several	 genes	 that	 are	

required	 for	 gibberellin	 biosynthesis	 were	 induced	 in	 wild‐type	 roots	 during	 fungal	

colonization.	This	is	consistent	with	previous	studies	showing	that	gibberellin	levels	and	

the	 expression	 of	 gibberellin	 biosynthesis	 genes	 increase	 in	mycorrhized	 roots	 in	M.	

truncatula	and	L.	japonicus	(Gomez	et	al.,	2009;	Guether	et	al.,	2009;	Ortu	et	al.,	2012;	

Takeda	et	 al.,	 2015).	 In	nsp1‐1	roots,	 the	 induction	of	 genes	encoding	KO,	KAO2,	and	

gibberellin‐20	 oxidase	 was	 abolished,	 suggesting	 that	NSP1	 is	 also	 required	 for	 the	

regulation	of	a	subset	of	gibberellin	biosynthesis	genes	during	AM	development.	

Several	studies	have	investigated	the	role	of	gibberellins	in	arbuscular	mycorrhization,	

revealing	that	gibberellins	have	both	positive	and	negative	effects	on	the	establishment	

of	the	symbiosis.	Exogenously	applied	gibberellic	acid	suppresses	mycorrhization,	and	

mutants	deficient	in	gibberellic	acid	show	increased	numbers	of	arbuscules,	indicating	

that	 high	 levels	 of	 gibberellins	 play	 a	 negative	 role	 in	 fungal	 infection	 and	 arbuscule	

development	(Floss	et	al.,	2013;	Foo	et	al.,	2013;	Yu	et	al.,	2014).	In	accordance	with	this,	

DELLA	proteins,	which	are	targeted	for	degradation	upon	perception	of	gibberellic	acid,	

are	required	for	normal	arbuscule	development	(Floss	et	al.,	2013;	Foo	et	al.,	2013;	Yu	

et	al.,	2014).	Meanwhile,	gibberellin	levels	and	the	expression	of	gibberellin	biosynthesis	

genes	increase	upon	fungal	colonization,	suggesting	that	a	certain	level	of	gibberellins	is	

required	for	AM	development	(Gomez	et	al.,	2009;	Guether	et	al.,	2009;	Ortu	et	al.,	2012;	

Takeda	et	al.,	2015,	results	presented	here).	Thus,	the	right	balance	of	gibberellin	levels	

appears	 to	be	 crucial	 for	 the	proper	 establishment	of	 a	 functional	AM	symbiosis	 and	

likely	 requires	 the	 precise	 regulation	 of	 the	 expression	 of	 genes	 involved	 in	 the	

biosynthetic	pathway.	The	observation	that	the	expression	of	many	of	the	genes	involved	
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in	 gibberellin	 biosynthesis	 depends	 on	 NSP1	 suggests	 that	 NSP1	 contributes	 to	

maintaining	the	right	levels	of	gibberellins	in	roots.	It	is	conceivable	that	the	reduction	

in	 mycorrhizal	 colonization	 observed	 in	 nsp1‐1	 is	 not	 only	 caused	 by	 a	 lack	 of	

strigolactone	production,	but	also	by	decreased	gibberellin	levels,	particularly	at	the	pre‐

symbiotic	stages.	Interestingly,	the	external	application	of	strigolactones	does	not	fully	

rescue	the	decreased	levels	of	mycorrhization	in	the	L.	japonicus	nsp1	mutant,	indicating	

that	NSP1	must	 regulate	 other	processes	 that	play	a	 role	 in	 the	establishment	of	AM	

symbiosis	(Takeda	et	al.,	2011).	If	a	lack	of	both	strigolactone	and	gibberellin	production	

causes	the	reduced	levels	of	mycorrhization	in	nsp1‐1	roots,	the	combined	application	of	

both	plant	hormones	should	result	in	a	full	complementation	of	the	phenotype.	

To	summarise,	global	gene	expression	profiling	has	revealed	important	roles	of	NSP1	in	

the	 regulation	 of	 hormone	 biosynthesis	 at	 pre‐symbiotic	 stages	 and	 partially	 during	

mycorrhizal	 colonization	of	 roots.	The	results	obtained	here	suggest	 that	NSP1	 is	not	

only	 required	 for	 strigolactone	 production,	 but	 also	 plays	 a	 role	 in	 the	 regulation	 of	

gibberellin	 biosynthesis.	 Meanwhile,	 the	 role	 of	 NSP2	 in	 mycorrhization	 remains	

unclear.	 NSP2	 appears	 to	 have	 a	 different	 role	 than	 NSP1	 in	 the	 regulation	 of	

strigolactone	production,	and	the	unaltered	expression	levels	of	gibberellin	biosynthesis	

genes	 further	 suggest	 that	 unlike	 NSP1,	 NSP2	 is	 not	 required	 for	 the	 regulation	 of	

gibberellin	 levels	 in	roots.	GO	term	analysis	 indicates	 that	NSP2	might	be	 involved	 in	

regulating	defence	and	stress	responses	under	non‐symbiotic	conditions.	Moreover,	the	

expression	of	a	considerable	number	of	genes	appears	to	be	dependent	on	NSP2	during	

the	later	stages	of	the	AM	symbiosis.	However,	as	no	consistent	reduction	in	mycorrhizal	

colonization	was	observed	in	nsp2‐2	roots,	it	is	currently	unclear	whether	the	differential	

expression	of	these	genes	plays	a	role	in	AM	development.	Different	conditions,	such	as	

using	a	weaker	 fungal	 inoculum	or	growing	plants	with	 low	nitrogen	 levels,	might	be	

required	for	transcriptional	profiling	and	the	assessment	of	a	mycorrhizal	phenotype	in	

order	to	uncover	the	role	of	NSP2	in	AM	symbiosis.		
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Figure	4.1:	 Gene	 ontology	 (GO)	 analysis	 of	NSP1‐dependent	 genes.	 Significantly	 enriched	GO	
terms	 of	 genes	 differentially	 expressed	 in	 non‐mycorrhized	 nsp1‐1	 roots	 compared	 to	 non‐
mycorrhized	wild‐type	 roots	 (A)	 and	 genes	 that	were	 found	 to	 be	 consistently	dependent	on	
NSP1	for	their	induction	during	mycorrhization	(B)	are	shown.	Singular	enrichment	analysis	was	
performed	 using	 Agrigo	 (http://bioinfo.cau.edu.cn/agriGO/index.php)	 and	 the	 whole	 M.	
truncatula	genome	as	background.	Significantly	enriched	terms	of	biological	processes	with	an	
FDR‐corrected	p‐value	<0.05	are	shown.	
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Figure	4.2:	Overview	of	gibberellin	and	strigolactone	biosynthesis	pathways.	Enzymes	involved	
in	isoprenoid,	carotenoid,	strigolactone,	and	gibberellin	biosynthesis	are	shown	in	blue,	orange,	
purple,	and	green,	respectively.	Arrowheads	next	to	the	enzymes	indicate	significant	up‐	or	down‐
regulation	in	nsp1‐1	roots	by	>	1.5	fold	under	non‐symbiotic	conditions.	GAP,	glyceraldehyde	3‐
phosphate,	 DXS,	 1‐deoxyxylulose	 5‐phosphate	 synthase,	 DXP,	 1‐deoxy‐xylulose‐5‐phosphate,	
DXR,	1‐deoxy‐xylulose‐5‐phosphate	reducto‐isomerase,	MEP,	2‐methyl‐erythritol‐4‐phosphate,	
CMS,	 4‐diphosphocytidyl‐2‐methyl‐erythritol	 synthase,	 CMK,	 4‐diphosphocytidyl‐2‐methyl‐
erythritol	 kinase,	MCS,	 2‐methyl‐erythritol	 2,4‐cyclodiphosphate	 synthase,	 HDS,	 4‐hydroxy‐3‐
methylbut‐2‐enyl	diphosphate	synthase,	HMBPP,	1‐hydroxy‐2‐methyl‐2‐butenyl	4‐diphosphate,	
HDR,	 4‐hydroxy‐3‐methylbut‐2‐enyl	 diphosphate	 reductase,	 IPP,	 isopentenyl	 diphosphate,	
DMAPP,	 dimethylallyl	 diphosphate,	 GGPS,	 geranylgeranyl	 pyrophosphate	 synthase,	 GGDP,	
geranylgeranyl	 pyrophosphate,	 CPS,	 copalyl	 pyrophosphate	 synthase,	 ent‐CDP,	 ent‐copalyl	
diphosphate,	 KS,	 ent‐kaurene	 synthase	 KO,	 ent‐kaurene	 oxidase,	 KAO,	 ent‐kaurenoic	 acid	
oxidase,	GA,	 gibberellin,	 GA20ox,	 gibberellin	 20‐oxidase,	GA3ox,	 gibberellin	 3‐oxidase,	GA2ox,	
gibberellin	2‐oxidase,	PSY,	phytoene	synthase,	PDS,	phytoene	desaturase,	Z‐ISO,	zeta‐carotene	
isomerase,	ZDS,	zeta‐carotene	desaturase,	CRTISO,	carotene	cis‐trans	isomerase,	LCYB,	lycopene	
β‐cyclase,	D27,	DWARF27,	CCD7,	carotenoid	cleavage	dioxygenase	7,	CCD8,	carotenoid	cleavage	
dioxygenase	8,	CO,	carlactone	oxidase,	OS,	orobanchol	synthase,	ABA,	abscisic	acid	(modified	after	
Cazzonelli	and	Pogson,	2010;	Hedden	and	Thomas,	2012;	Al‐Babili	and	Bouwmeester,	2015).	
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Figure	4.3:	Quantification	of	 transcript	 levels	of	genes	 involved	 in	 isoprenoid	and	carotenoid	
biosynthesis	 in	non‐mycorrhized	and	mycorrhized	wild‐type	 (wt),	ram1‐1,	nsp1‐1,	 and	nsp2‐2	
roots	at	8	dpi,	13	dpi,	and	27	dpi.	Expression	levels	of	the	M.	truncatula	homologs	of	HDS	(A),	
GGPS	(B),	and	Z‐ISO	(C)	are	shown.	Expression	levels	were	measured	by	qRT‐PCR	and	normalized	
to	Ubiquitin	expression.	Bars	represent	means	of	4	biological	replicates	±	SEM.	Asterisks	indicate	
significant	differences	in	expression	levels	(ANOVA,	post	hoc	Tukey,	*,	P	<	0.05;	**,	P	<	0.01;	***,	
P	<	0.001,	n.s.,	P	>	0.05).	
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Figure	4.4:	Quantification	of	transcript	levels	of	genes	involved	in	strigolactone	biosynthesis	in	
non‐mycorrhized	and	mycorrhized	wild‐type	(wt),	ram1‐1,	nsp1‐1,	and	nsp2‐2	roots	at	8	dpi,	13	
dpi,	and	27	dpi.	Expression	levels	of	the	M.	truncatula	genes	D27	(A),	CCD8	(B),	and	the	closest	
homolog	of	CCD8	(C)	are	shown.	Expression	levels	were	measured	by	qRT‐PCR	and	normalized	
to	Ubiquitin	expression.	Bars	represent	means	of	4	biological	replicates	±	SEM.	Asterisks	indicate	
significant	differences	in	expression	levels	(ANOVA,	post	hoc	Tukey,	*,	P	<	0.05;	**,	P	<	0.01;	***,	
P	<	0.001,	n.s.,	P	>	0.05).	
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Figure	4.5:	Quantification	of	transcript	levels	of	genes	involved	in	strigolactone	and	gibberellin	
biosynthesis	 in	non‐mycorrhized	and	mycorrhized	wild‐type	 (wt),	ram1‐1,	nsp1‐1,	 and	nsp2‐2	
roots	at	8	dpi,	13	dpi,	and	27	dpi.	Expression	levels	of	the	M.	truncatula	homologs	of	CCD7	(A),	KO	
(B),	and	GA20ox	(C)	are	shown.	Expression	levels	were	measured	by	qRT‐PCR	and	normalized	to	
Ubiquitin	expression.	Bars	represent	means	of	4	biological	replicates	±	SEM.	Asterisks	indicate	
significant	differences	in	expression	levels	(ANOVA;	*,	P	<	0.05;	**,	P	<	0.01;	***,	P	<	0.001,	n.s.,	P	
>	0.05).																																																			
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Figure	4.6:	 Gene	 ontology	 (GO)	 analysis	 of	NSP2‐dependent	 genes.	 Significantly	 enriched	GO	
terms	 of	 genes	 differentially	 expressed	 in	 non‐mycorrhized	 nsp2‐2	 roots	 compared	 to	 non‐
mycorrhized	wild‐type	 roots	 (A)	 and	 genes	 that	were	 found	 to	 be	 consistently	dependent	on	
NSP2	for	their	induction	during	mycorrhization	(B)	are	shown.	Singular	enrichment	analysis	was	
performed	 using	 Agrigo	 (http://bioinfo.cau.edu.cn/agriGO/index.php)	 and	 the	 whole	 M.	
truncatula	genome	as	background.	Significantly	enriched	terms	of	biological	processes	with	an	
FDR‐corrected	p‐value	<0.05	are	shown.	
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Figure	4.7:	Transactivation	assay	with	NSP1	and	NSP2	in	N.	benthamiana	leaves.	(A)	Design	of	
expression	vectors	used	to	measure	the	transactivation	of	LUCIFERASE	(LUC)	under	the	control	
of	 different	 promoters	 by	 individual	 transcription	 factors	 (TFs)	 or	 a	 combination	 of	 different	
transcription	factors.	The	transactivation	of	pENOD11::LUC	(B),	pMedtr3g080840::LUC	(C),	and	
LUC	under	the	control	of	the	3	kilobase	(kb)	long	D27	promoter	(D)	or	under	the	control	of	the	1	
kb	 long	D27	promoter	(E)	by	NSP1,	NSP2	or	a	combination	of	the	two	transcription	factors	 is	
shown.	LUC	activities	were	normalised	against	the	β‐glucuronidase	(GUS)	activities	in	the	same	
leaf	 discs.	 The	 same	 expression	 vectors	 containing	 all	 the	 components	 except	 for	 the	 genes	
encoding	 the	 transcription	 factors	 served	 as	 negative	 controls.	 Bars	 represent	 means	 of	 3	
biological	replicates	±	SEM.	Different	letters	indicate	different	statistical	groups	(ANOVA,	post	hoc	
Tukey,	P	<	0.05).	pUBI,	LjUbiquitin	promoter,	p35S,	Cauliflower	mosaic	virus	35S	promoter,	pNOS,	
Nopaline	synthase	promoter.	
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Figure	 4.8:	 Complementation	 of	 the	 nsp1‐1	 mutant	 phenotype	 by	 stable	 expression	 of	
pNSP1::eGFP‐NSP1.	 (A)	Pink	nodules	were	present	 in	wild	 type	 (wt)	 and	nsp1‐1	 plants	 stably	
expressing	the	eGFP‐NSP1	fusion	protein	(#1‐5,	#2‐10,	#3‐6),	but	absent	in	the	untransformed	
nsp1‐1	mutant.	(B)	Quantification	of	nodule	numbers	in	the	wild	type,	the	untransformed	nsp1‐1	
mutant,	and	nsp1‐1	plants	stably	expressing	the	eGFP‐NSP1	fusion	protein	(#1‐5,	#2‐10,	#3‐6).	
Figure	courtesy	of	Jian	Feng.	
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Figure	 4.9:	 Complementation	 of	 the	 nsp2‐2	 mutant	 phenotype	 by	 stable	 expression	 of	
pUBI::NSP2‐eGFP.	 (A)	 Pink	 nodules	 were	 present	 in	 wild	 type	 (wt)	 and	 nsp2‐2	 plants	 stably	
expressing	the	NSP2‐eGFP	fusion	protein,	but	absent	in	the	untransformed	nsp2‐2	mutant.	(B)	
Quantification	of	nodule	numbers	in	the	wild	type,	the	untransformed	nsp2‐2	mutant,	and	nsp2‐2	
plants	stably	expressing	 the	NSP2‐eGFP	fusion	protein.	Bars	represent	means	of	10	biological	
replicates	±	SEM.	Asterisks	indicate	significant	differences	in	nodule	numbers	(Student’s	t‐test;	*,	
P	<	0.05;	**,	P	<	0.01;	***,	P	<	0.001).	Scale	bar	=	2	mm.	
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Figure	4.10:	Chromatin‐immunoprecipitation	(ChIP)	assay	followed	by	quantitative	PCR	(qPCR)	
in	M.	truncatula	lines	stably	expressing	pNSP1::GFP‐NSP1.	(A)	Binding	sites	of	primers	used	for	
qPCR	 following	 ChIP	 in	 the	 promoter	 region	 of	 the	 strigolactone	 biosynthesis	 gene	D27	 are	
shown.	NSP1	is	expected	to	bind	within	the	first	1000	bp	upstream	of	the	start	codon	(ATG).	(B)	
ChIP‐qPCR	using	α‐GFP	antibodies	and	the	primer	pairs	 indicated	 in	(A).	ChIP	was	performed	
with	stable	lines	expressing	GFP‐NSP1	(light	grey)	and	untransformed	wild	type	(wt)	plants	(dark	
grey)	 that	 served	 as	 negative	 control.	 No	 enrichment	 compared	 to	 the	 negative	 control	 was	
observed	 in	 any	 of	 the	 promoter	 regions	 tested	 when	 using	 the	 M.	 truncatula	 line	 stably	
expressing	 GFP‐NSP1.	 One	 biological	 replicate	 is	 shown.	 Bars	 represent	 the	 means	 of	 three	
technical	replicates	of	the	qPCR.	
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CHAPTER 5 

Mycorrhizal processes regulated by RAM1 

	

	

	

	

	

5.1  Introduction 

Plants	carrying	a	mutation	in	RAM1	show	a	severe	defect	in	AM	development	(Gobbato	

et	 al.,	 2012;	 Park	 et	 al.,	 2015;	 Rich	 et	 al.,	 2015;	 Pimprikar	 et	 al.,	 2016;	 Chapter	 2).	

Analysing	 the	mycorrhizal	 phenotype	 at	 different	 time	 points	 during	mycorrhization	

revealed	that	while	ram1‐1	roots	were	transiently	colonized	by	AM	fungi	at	early	time	

points,	mycorrhizal	infection	structures	were	almost	entirely	absent	at	late	time	points.	

Strikingly,	no	fully	developed	arbuscules	were	formed	in	ram1‐1	roots	at	any	of	the	time	

points	 tested.	Global	 gene	expression	profiling	has	provided	 further	 insights	 into	 the	

transcriptional	changes	that	take	place	in	ram1‐1	roots	and	has	revealed	a	large	number	

of	genes	that	are	dependent	on	RAM1	for	their	induction	during	mycorrhization	(Chapter	

3),	 consistent	with	 the	drastic	 reduction	 in	mycorrhizal	 colonization	observed	 in	 the	

mutant.	

To	 date,	 the	 only	 gene	 that	 is	 known	 to	 be	 directly	 regulated	 by	 RAM1	 during	 AM	

development	 is	RAM2,	 a	 glycerol‐3‐phosphate	 acyl	 transferase	 (GPAT;	Gobbato	et	 al.,	

2012;	Wang	et	al.,	2012).	Plants	with	a	loss	of	RAM2	function	are	unable	to	establish	a	
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functional	 symbiosis	 with	 AM	 fungi.	 The	 number	 of	 hyphopodia	 at	 the	 epidermis	 is	

strongly	reduced,	and	in	cases	where	fungal	hyphae	are	able	to	reach	the	inner	cortex,	

small,	defective	arbuscules	are	formed,	suggesting	that	RAM2	plays	a	role	both	at	early	

stages	of	the	symbiosis	and	in	arbuscule	formation.	Interestingly,	A.	thaliana	GPAT6,	an	

enzyme	 required	 for	 cutin	 biosynthesis,	 is	 able	 to	 restore	 mycorrhization	 in	 the	M.	

truncatula	 ram2	mutant	when	 expressed	 under	 the	RAM2	 promoter.	 Based	 on	 these	

findings,	it	has	been	concluded	that	RAM2	similarly	is	involved	in	the	production	of	cutin.	

In	accordance	with	this,	the	external	addition	of	cutin	monomers	is	sufficient	to	allow	

hyphopodia	formation	in	ram2	roots,	and	it	has	been	proposed	that	cutin	monomers	act	

as	signalling	molecules	to	the	fungus	to	promote	AM	development	(Wang	et	al.,	2012).	

In	 a	 recent	 study,	RAM1	 has	 also	 been	 shown	 to	 be	 required	 for	 the	 transcriptional	

induction	 of	 several	 other	 genes	 involved	 in	 AM	 development,	 including	 the	 GRAS‐

domain	protein	RAD1,	the	ABCG	transporter	STR,	and	the	exocyst	subunit	EXO70I	(Zhang	

et	al.,	2010;	Park	et	al.,	2015;	Zhang	et	al.,	2015;	Xie	et	al.,	2015).	As	these	genes	play	a	

role	in	arbuscule	development,	it	has	been	proposed	that	RAM1	controls	at	least	part	of	

the	gene	expression	programme	that	governs	arbuscule	formation	(Park	et	al.,	2015).	

However,	 evidence	 for	 the	 direct	 regulation	 of	 these	 genes	 by	 RAM1,	 for	 example	

through	binding	studies,	is	currently	lacking.	

Previous	attempts	 to	 identify	genes	 that	are	regulated	by	RAM1	have	been	 limited	to	

examining	 the	 expression	 of	 known	mycorrhizal‐induced	 genes	 in	 the	wild	 type	 and	

mutant	background.	This	targeted	approach	has	resulted	in	the	identification	of	only	a	

few	potential	RAM1	targets.	Global	gene	expression	profiling	of	non‐mycorrhized	and	

mycorrhized	roots	performed	here	has	provided	a	large	number	of	novel	candidates	for	

genes	that	might	be	directly	regulated	by	RAM1.	The	aim	of	the	research	presented	in	

this	chapter	was	to	investigate	the	mycorrhizal	processes	that	are	regulated	by	RAM1	by	

performing	an	in‐depth	functional	analysis	of	the	genes	that	were	found	to	be	dependent	

on	RAM1	for	their	induction	during	mycorrhization.	From	these	analyses,	several	new	

candidates	 for	 mycorrhization	 emerged,	 including	 three	 AP2‐domain	 proteins	 with	

homology	 to	A.	 thaliana	WRINKLED	 transcription	 factors	and	 two	ABCG	 transporters	

with	 a	 putative	 role	 in	 lipid	 secretion.	 The	 role	 of	 these	 genes	 during	 mycorrhizal	

colonization	 was	 investigated	 by	 examining	 their	 spatial	 expression	 patterns	 in	

mycorrhized	roots.	Furthermore,	plants	carrying	TNT1	insertions	in	one	of	the	putative	

lipid	 transporters	 were	 characterised	 for	 fungal	 colonization	 in	 a	 mycorrhizal	 time	

course.	 In	 addition,	 this	 chapter	 also	 describes	 several	 approaches	 used	 to	 validate	

whether	the	identified	potential	target	genes	are	directly	regulated	by	RAM1.	
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5.2  Results 

5.2.1  RAM1 is required for the transcriptional upregulation of genes involved in 

the nutrient exchange during AM symbiosis  

Unlike	in	nsp1‐1	and	nsp2‐2,	global	gene	expression	profiling	of	non‐mycorrhized	ram1‐

1	 roots	 identified	 only	 a	 very	 small	 number	 of	 genes	 that	 were	 consistently	 up‐	 or	

downregulated	 in	 the	 absence	 of	 mycorrhizal	 fungi	 at	 all	 three	 time	 points	 tested	

(Chapter	3,	Figure	3.10,	Table	A5).	Investigating	the	potential	functions	of	these	genes	

did	not	reveal	any	obvious	biological	processes	they	might	be	involved	in.	Thus,	RAM1	

appears	 to	 have	 only	 a	 minor	 role	 in	 the	 regulation	 of	 gene	 expression	 under	 non‐

symbiotic	conditions.	Therefore,	further	investigations	into	the	biological	processes	that	

might	be	regulated	by	RAM1	focused	on	analysing	the	functions	of	the	genes	that	were	

found	to	be	dependent	on	RAM1	during	AM	development.		

Comparing	 the	mycorrhizal‐induced	genes	 in	wild‐type	roots	 to	 the	genes	 induced	 in	

ram1‐1	roots	led	to	the	identification	of	768	genes	whose	upregulation	was	consistently	

dependent	on	RAM1	over	the	whole	time	course	of	fungal	colonization	(Chapter	3,	Figure	

3.6).	 These	 genes	 likely	 include	 direct	 transcriptional	 targets	 of	 RAM1	 and	 were	

therefore	further	investigated	regarding	their	potential	functions	in	AM	development.	

First,	 a	 singular	 GO	 term	 enrichment	 analysis	 of	 the	 RAM1‐dependent	 genes	 was	

performed	with	the	whole	M.	truncatula	genome	as	background	using	the	analysis	tool	

Agrigo	 (http://bioinfo.cau.edu.cn/agriGO/).	 Several	 significantly	 enriched	 GO	 terms	

were	identified,	including	terms	associated	with	lipid	and	carbohydrate	metabolism	as	

well	as	transport	across	membranes	(Figure	5.1).	To	further	investigate	the	functions	of	

the	 individual	potential	 target	genes,	a	BLAST	search	with	 the	corresponding	protein	

sequences	was	conducted	against	the	proteome	of	A.	thaliana	and	the	functions	of	the	

best	hits	were	analysed	in	more	detail.		

In	accordance	with	the	results	of	the	GO	term	analysis,	several	genes	that	are	known	or	

are	likely	to	be	required	for	the	nutrient	transport	across	the	periarbuscular	membrane	

were	 found	 to	 be	 among	 the	 genes	 whose	 upregulation	 upon	 mycorrhization	 was	

dependent	on	RAM1	(Table	5.1).	The	phosphate	transporter	PT4,	which	was	shown	to	

mediate	the	uptake	of	phosphate	across	the	periarbuscular	membrane	(Harrison	et	al.,	

2002),	belonged	to	the	most	strongly	induced	genes	in	mycorrhized	wild‐type	roots,	but	

was	not	significantly	upregulated	in	ram1‐1,	consistent	with	the	qPCR	results	described	

in	Chapter	3	(Figure	3.1).	Similarly,	the	two	AMT2	family	ammonium	transporters	AMT2‐
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3	and	AMT2‐5	lacked	induction	in	mycorrhized	ram1‐1	roots.	Both	genes	have	previously	

been	shown	to	be	induced	during	AM	symbiosis	(Breuillin‐Sessoms	et	al.,	2015).	AMT2‐

3	was	found	to	be	required	for	the	suppression	of	premature	arbuscule	degeneration	in	

nitrogen‐deprived	 pt4	 mutant	 roots	 and	 has	 been	 speculated	 to	 have	 a	 signalling	

function	to	inform	the	plant	about	the	nutrient	status	(Breuillin‐Sessoms	et	al.,	2015).	

AMT2‐5	 is	 less	well	 characterised,	 and	 it	 is	 currently	unknown	whether	 the	 encoded	

protein	localises	to	the	periarbuscular	membrane	and	is	required	for	the	transport	of	

ammonium	from	the	fungus	to	the	plant	(Breuillin‐Sessoms	et	al.,	2015).	Interestingly,	

the	induction	of	AMT2‐4,	the	third	member	of	the	M.	truncatula	AMT2	family	that	has	

been	shown	to	be	transcriptionally	induced	during	mycorrhization	(Breuillin‐Sessoms	

et	al.,	2015),	did	not	appear	to	be	directly	dependent	on	RAM1,	as	the	fold	changes	in	

gene	expression	were	comparable	in	wild‐type	and	ram1‐1	roots	at	8	dpi	and	13	dpi,	and	

were	only	reduced	in	the	mutant	at	27	dpi	(Table	A1).	Together,	these	results	suggest	

that	RAM1	is	involved	in	the	transcriptional	regulation	of	the	phosphate	transporter	PT4	

and	a	subset	of	the	mycorrhizal‐induced	AMT2	family	ammonium	transporters	during	

AM	development.		

Several	 genes	 involved	 in	 sugar	 metabolism	 and	 transport	 were	 also	 found	 to	 be	

dependent	on	RAM1	 for	 their	 transcriptional	 induction	during	mycorrhization	 (Table	

5.1).	Among	these	genes	were	a	number	of	genes	encoding	enzymes	that	catalyse	the	late	

steps	 of	 glycolysis,	 including	 a	 glyceraldehyde‐3‐phosphate‐dehydrogenase,	 three	

subunits	 of	 pyruvate	 kinase,	 and	 a	 subunit	 of	 the	 pyruvate	 dehydrogenase	 complex.	

Furthermore,	four	putative	sugar	transporters	lacked	transcriptional	induction	in	ram1‐

1.	 The	 bidirectional	 transporter	SWEET1b	 showed	 a	 relatively	 strong	 transcriptional	

upregulation	in	wild‐type	roots	at	13	dpi	and	27	dpi,	but	was	not	significantly	induced	

at	any	time	point	in	ram1‐1.	Analysing	the	expression	of	this	gene	in	the	M.	truncatula	

gene	 expression	 atlas	 (http://mtgea.noble.org/v3/)	 revealed	 that	 SWEET1b	 is	 most	

strongly	induced	in	arbuscule‐containing	cells.	A	recent	study	into	the	family	of	SWEET	

sugar	transporters	in	potato	has	proposed	that	these	transporters	might	be	involved	in	

providing	 sugars	 to	 the	 fungus,	 consistent	 with	 the	 expression	 of	 some	 of	 the	

transporters	 in	arbuscule‐containing	 cells	 (Manck‐Götzenberger	 and	Requena,	2016).	

Together,	these	findings	suggest	that	RAM1	is	involved	in	the	regulation	of	several	genes	

required	for	the	late	steps	of	glycolysis	and	the	transport	of	sugars	across	membranes.	

	



 

116 
	

Table	5.1:	List	of	mycorrhizal	genes	whose	induction	was	consistently	dependent	on	RAM1	across	the	whole	time	course	during	fungal	colonization.	Fold	changes	of	
genes	in	mycorrhized	versus	non‐mycorrhized	wild‐type	roots	are	given.	FDR‐corrected	p‐value	<	0.05	for	all	fold	changes	shown.	‘N.s.’	depicts	a	statistically	non‐
significant	fold	change.	
	

      Fold change in the wild type 

Mtv4.0 ID  Annotation  ID and description of best BLAST hit in A. thaliana (TAIR)  8 dpi  13 dpi  27 dpi 

Phosphate and ammonium transport         

Medtr1g028600  high affinity inorganic phosphate transporter PT4  AT5G43370, encodes a phosphate transporter Pht1‐2  1298  22666  12472 

Medtr8g074750  ammonium transporter 1 protein AMT2‐3  AT2G38290, encodes a high‐affinity ammonium transporter  n.s.  72  55 

Medtr1g036410  ammonium transporter 1 protein AMT2‐5  AT2G38290, encodes a high‐affinity ammonium transporter 
 

242  7735  3979 

Sugar metabolism and transport         

Medtr3g089125  bidirectional sugar transporter SWEET1b  AT1G21460, nodulin MtN3 family protein  n.s.  91.7  47.2 

Medtr4g131800  glucose 6‐phosphate/phosphate translocator 1   AT1G61810, beta‐glucosidase 45  n.s.  2.4  4.3 

Medtr4g090600  polyol/monosaccharide transporter 1   AT1G11260, encodes a H+/hexose cotransporter  n.s.  2.4  11.1 

Medtr8g077890  polyol/monosaccharide transporter 1   AT2G18480,  major  facilitator  superfamily  protein  with  sugar‐

hydrogen symporter activity 

n.s.  35.5  87.5 

Medtr6g022630  glyceraldehyde‐3‐phosphate dehydrogenase   AT1G13440, glyceraldehyde‐3‐phosphate dehydrogenase C2  n.s.  n.s.  26.9 

Medtr6g034195  pyruvate kinase family protein   AT5G52920, chloroplast pyruvate kinase beta subunit  n.s.  n.s.  1.8 

Medtr1g105965  pyruvate kinase family protein   AT3G22960, chloroplast pyruvate kinase alpha subunit  n.s.  1.7  3.0 

Medtr1g076540  pyruvate kinase family protein   AT3G22960, chloroplast pyruvate kinase alpha subunit  n.s.  n.s.  1.5 

Medtr8g024310  pyruvate dehydrogenase E1 component  AT1G01090, pyruvate dehydrogenase E1 alpha subunit  n.s.  n.s.  2.2 

    continued overleaf 
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Table	5.1:	continued.	

      Fold change in the wild type 

Mtv4.0 ID  Annotation  ID and description of best BLAST hit in A. thaliana (TAIR)  8 dpi  13 dpi  27 dpi 

Lipid biosynthesis and secretion         

Medtr7g009410  AP2 domain transcription factor   AT3G54320, WRINKLED1   37.2  513  732 

Medtr6g011490  AP2 domain transcription factor   AT3G54320, WRINKLED1  5.9  72.1  127 

Medtr8g468920  AP2‐like ethylene‐responsive transcription factor   AT3G54320, WRINKLED1  85.5  1053  1152 

Medtr1g040500  glycerol‐3‐phosphate acyltransferase RAM2  AT2G38110, glycerol‐3‐phosphate acyltransferase   4.0  39.3  71.9 

Medtr1g109110  palmitoyl‐acyl carrier thioesterase FatM   AT1G08510, acyl‐acyl carrier protein thioesterase  13.1  171  166 

Medtr4g093845  white‐brown‐complex ABC transporter   AT1G17840, ABC transporter required for cutin transport   39.7  209  2495 

Medtr4g094090  white‐brown‐complex ABC transporter   AT1G17840, ABC transporter required for cutin transport  n.s.  2.1  n.s. 

Medtr6g021915  glycerol‐3‐phosphate dehydrogenase, NAD   AT5G40610,  NAD‐dependent  glycerol‐3‐phosphate  dehydro‐

genase family protein 

n.s.  1.7  3.7 

Medtr4g043650  glycerol‐3‐phosphate dehydrogenase   AT2G41540,  NAD‐dependent  glycerol‐3‐phosphate  dehydro‐

genase family protein 

n.s.  n.s.  1.7 

Medtr6g015020  biotin carboxyl carrier acetyl‐CoA carboxylase   AT5G16390, biotin carboxyl‐carrier subunit of the multi‐enzyme 

plastidial acetyl‐coenzyme A carboxylase complex 

n.s.  1.7  2.9 

Medtr3g073820  acetyl‐CoA carboxylase   AT1G36160, encodes an acetyl‐CoA carboxylase  n.s.  26.7  84.3 

Medtr5g084950  triacylglycerol lipase‐like protein   AT5G14180, Myzus persicae‐induced lipase 1   n.s.  2.3  3.3 

Medtr7g081050  triacylglycerol lipase‐like protein   AT5G14180, Myzus persicae‐induced lipase 1  n.s.  299  2612 

      continued overleaf 
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Table	5.1:	continued.	

      Fold change in the wild type 

Mtv4.0 ID  Annotation  ID and description of best BLAST hit in A. thaliana (TAIR)  8 dpi  13 dpi  27 dpi 

Medtr7g117280  triacylglycerol lipase   AT3G61680, alpha/beta‐hydrolase with triglyceride lipase activity  n.s.  3.0  5.4 

Medtr8g074560  GDSL‐like lipase/acylhydrolase   AT5G55050, GDSL‐like lipase/acylhydrolase superfamily protein  49.1  511  1981 

Medtr1g030220  GDSL‐like lipase/acylhydrolase   AT3G26430, GDSL‐like Lipase/Acylhydrolase  n.s.  n.s.  3.2 

Medtr4g077180  lipid transfer protein   AT4G33550, lipid‐transfer protein  288  7122  2412 

Medtr4g076150  lipid transfer protein   AT4G33550, lipid‐transfer protein  n.s.  426  973 

Medtr5g081780  polyketide cyclase/dehydrase and lipid transporter   AT2G25770, polyketide cyclase/dehydrase and lipid transporter  49.0  328  1239 

Medtr3g079190  neutral/alkaline non‐lysosomal ceramidase   AT2G38010, neutral/alkaline non‐lysosomal ceramidase  319  4894  6947 

Medtr8g094740  fatty acid amide hydrolase‐like protein   AT5G64440, fatty acid amide hydrolase  n.s.  1.7  2.0 

Medtr2g010180  fatty acid amide hydrolase‐like protein   AT5G64440, fatty acid amide hydrolase  n.s.  n.s.  1.6 

Medtr1g103110  acetyltransferase (GNAT) domain protein   AT2G32020, acyl‐CoA N‐acyltransferase  n.s.  n.s.  2.8 

Medtr1g077930  alpha/beta‐hydrolase superfamily protein   AT1G64670,  alpha‐beta  hydrolase  BODYGUARD,  required  for 

normal cuticle formation 

n.s.  1.7  1.9 
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In	 line	with	 the	 GO	 term	 analysis,	 the	 largest	 group	 of	 genes	 that	were	 consistently	

dependent	on	RAM1	during	mycorrhization	were	associated	with	lipid	biosynthesis	and	

putative	 lipid	 secretion	 (Table	 5.1).	 Consistent	 with	 previous	 findings,	 the	

transcriptional	 induction	 of	 the	 glycerol‐3‐phosphate	 acyltransferase	 RAM2	 was	

completely	abolished	in	ram1‐1	roots	at	all	three	time	points	tested	(Gobbato	et	al.,	2012;	

Park	et	al.,	2015;	Rich	et	al,	2015).	Furthermore,	 the	expression	of	 the	palmitoyl‐acyl	

carrier	 thioesterase	 FatM,	 a	 gene	 that	 has	 recently	 been	 found	 to	 be	 evolutionarily	

conserved	 in	 AM‐forming	 species,	 was	 dependent	 on	 RAM1	 (Bravo	 et	 al.,	 2016).	 In	

addition,	 a	 number	 of	 other	 genes	 involved	 in	 lipid	 metabolism,	 including	 several	

putative	triacylglycerol	lipases,	GDSL‐like	lipases,	and	a	non‐lysosomal	ceramidase	were	

found	to	be	among	the	potential	RAM1	targets.	In	addition	to	the	genes	involved	in	lipid	

metabolism,	 three	AP2‐domain	 transcription	 factors	 showed	 a	 strong	 transcriptional	

upregulation	 during	 fungal	 colonization	 in	 the	 wild	 type,	 while	 their	 induction	 was	

completely	 abolished	 in	 ram1‐1.	 Conducting	 a	 BLAST	 search	with	 the	 corresponding	

protein	 sequences	 against	 the	A.	 thaliana	 proteome	 revealed	 that	 these	 proteins	 are	

homologs	of	 the	A.	 thaliana	WRINKLED	 (WRI)	 transcription	 factors,	which	have	been	

shown	to	be	required	for	the	transcriptional	regulation	of	late	glycolytic	and	early	fatty	

acid	biosynthesis	genes	involved	in	the	production	of	triacylglycerols	in	seeds	and	cutin	

in	floral	tissues	(Baud	et	al.,	2007;	Baud	et	al.,	2009;	To	et	al.,	2012).	The	target	genes	of	

the	A.	 thaliana	WRI	 transcription	 factors	 include	 several	 subunits	of	pyruvate	 kinase	

(AT3g22960	and	AT5g52920)	and	pyruvate	dehydrogenase	(AT1g01090),	as	well	as	the	

genes	encoding	a	glycerol‐3‐phosphate	dehydrogenase	(AT2G41540)	and	a	subunit	of	

the	acetyl‐coenzyme	A	carboxylase	complex	(AT5g15530;	Baud	et	al.,	2007;	Baud	et	al.,	

2009;	To	et	al.,	2012).	The	M.	truncatula	homologs	of	these	genes	were	among	the	genes	

that	 lacked	 induction	 in	 ram1‐1	 (Table	5.1),	 suggesting	 that	 the	WRI	 homologs	 in	M.	

truncatula	 might	 regulate	 the	 equivalent	 target	 genes	 in	 glycolysis	 and	 fatty	 acid	

biosynthesis	during	AM	symbiosis.	A	phylogenetic	analysis	with	the	closest	homologs	of	

the	WRI	proteins	 in	M.	 truncatula,	A.	 thaliana,	Oryza	sativa,	 and	Marchantia	paleacea	

further	revealed	that	the	genome	of	M.	truncatula	encodes	eight	WRI‐like	genes,	which	

subsequently	 are	 referred	 to	 as	MtWRI1‐MtWRI8	 (Figure	 5.2).	 	 The	 analysis	 of	 the	

transcript	 levels	 of	 all	 the	MtWRI	 homologs	 showed	 that	 in	 addition	 to	 the	 RAM1‐

dependent	genes	MtWRI1,	MtWRI2,	and	MtWRI3,	two	homologs	(MtWRI4	and	MtWRI5)	

were	transcriptionally	induced	in	mycorrhized	wild‐type	roots	in	a	RAM1‐independent	

manner.	These	findings	suggest	that	RAM1	regulates	only	a	subset	of	the	MtWRI	genes	

during	the	colonization	by	mycorrhizal	fungi.	Finally,	several	putative	lipid	transporters	
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were	 found	 to	 be	 among	 the	 RAM1‐dependent	 genes,	 including	 two	 half‐size	 ABCG	

transporters	that	cluster	with	the	A.	thaliana	ABCG	transporters	required	for	wax,	cutin,	

and	suberin	export	(Figure	5.3;	Pighin	et	al.,	2004;	Bird	et	al.,	2007;	Panikashvili	et	al.,	

2010;	Panikashvili	et	al.,	2011).	As	two	other	half‐size	ABCG	transporters	 involved	 in	

mycorrhization	(STR	and	STR2)	have	been	named	MtABCG1	and	MtABCG2,	respectively	

(Zhang	 et	 al.,	 2010),	 the	 two	 ABCG	 transporters	 identified	 here	 are	 subsequently	

referred	 to	 as	 MtABCG3	 (Medtr4g093845)	 and	 MtABCG4	 (Medtr4g094090).	 While	

MtABCG3	 showed	a	very	strong	 induction	 in	mycorrhized	wild‐type	roots	at	all	 three	

time	points,	MtABCG4	was	weakly	upregulated	in	wild‐type	roots	only	at	13	dpi.	Finally,	

two	genes	encoding	lipid	transfer	proteins,	which	have	been	proposed	to	function	in	the	

secretion	 of	 lipids	 (Samuels	 et	 al.,	 2008),	were	 strongly	 upregulated	 in	mycorrhized	

wild‐type,	but	not	ram1‐1	roots	(Table	5.1).		

To	 confirm	 the	 results	 obtained	 by	 RNA‐seq,	 the	 expression	 levels	 of	 RAM2,	 FatM,	

MtABCG3,	 and	 MtWRI1	 were	 examined	 using	 qRT‐PCR	 (Figure	 5.4).	 No	 significant	

upregulation	of	 these	genes	was	observed	 in	mycorrhized	ram1‐1	 roots,	while	all	 the	

tested	genes	showed	a	strong	induction	in	mycorrhized	wild‐type,	nsp1‐1,	and	nsp2‐2	

roots.	These	results	confirm	that	RAM1	is	essential	for	the	upregulation	of	several	genes	

involved	 in	 lipid	metabolism	 and	 putative	 lipid	 secretion	 during	 fungal	 colonization,	

while	NSP1	and	NSP2	do	not	appear	to	be	involved	in	the	transcriptional	regulation	of	

these	genes.	

	

5.2.2  Genes  involved  in  lipid  biosynthesis  and  putative  lipid  secretion  are  co‐

expressed in arbuscule‐harbouring cells 

Several	studies	have	previously	demonstrated	that	the	expression	of	lipid	biosynthesis	

genes	and	root	 lipid	content	 increases	upon	mycorrhization	(Schliemann	et	al.,	2008;	

Gomez	et	al.,	2009;	Gaude	et	al.,	2012).	It	has	been	suggested	that	this	observed	increase	

in	lipid	production	is	required	to	meet	the	higher	demand	for	membrane	lipids	for	the	

formation	of	the	periarbuscular	membrane	(Gaude	et	al.,	2012).	A	recent	study	into	the	

genome	of	R.	irregularis	has	further	proposed	that	lipids	produced	by	the	plant	might	be	

transported	to	the	fungus,	as	mycorrhizal	fungi	do	not	appear	to	encode	genes	for	type	I	

fatty	 acid	 synthase,	 and	 are	 therefore	 unlikely	 to	 be	 capable	 of	 de	 novo	 fatty	 acid	

synthesis	(Tisserant	et	al.,	2013;	Wewer	et	al.,	2014).	Labelling	studies	suggest	that	lipid	

transfer	 from	 the	 plant	 to	 the	 fungus	 does	 indeed	 take	 place	 and	 is	 essential	 for	 a	
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functional	AM	symbiosis	(Peter	Eastmond	and	Ertao	Wang,	personal	communication).	

Moreover,	lipid	transport	is	abolished	in	ram2	mutants,	indicating	that	RAM2	is	not	only	

involved	in	cutin	biosynthesis	during	the	early	stages	of	AM	development	(Wang	et	al.,	

2012),	but	is	also	a	critical	component	of	the	lipid	export	pathway	potentially	feeding	

the	 fungus	 (Peter	 Eastmond	 and	 Ertao	 Wang,	 personal	 communication).	 Other	

components	 of	 this	 pathway	 are	 currently	 unknown,	 however,	 several	 of	 the	 genes	

described	 above	 are	 good	 candidates	 to	 be	 involved	 in	 the	 transfer	 of	 lipids	 to	

mycorrhizal	fungi.	To	further	investigate	whether	the	lipid‐related	genes	identified	by	

global	gene	expression	profiling	could	be	involved	in	the	same	lipid	export	pathway	as	

RAM2,	 the	spatial	expression	patterns	of	RAM2,	FatM,	MtABCG3,	and	the	 three	RAM1‐

dependent	WRI	transcription	factors	(MtWRI1,	MtWRI2,	and	MtWRI3)	were	examined	in	

mycorrhized	and	non‐mycorrhized	roots.	In	addition,	MtWRI4,	which	was	upregulated	

during	 mycorrhization	 in	 a	 RAM1‐independent	 manner,	 and	MtWRI6,	 which	 did	 not	

display	an	increased	expression	upon	fungal	colonization,	were	included	in	the	analysis.	

To	this	end,	the	promoter	sequences	were	fused	to	the	GUS	reporter	gene	and	expressed	

in	M.	 truncatula	 roots	 by	 transformation	 with	 Agrobacterium	 rhizogenes.	 Composite	

plants	were	grown	in	the	presence	or	absence	of	mycorrhizal	fungi	and	stained	for	GUS	

activity	and	mycorrhizal	structures	at	4	weeks	post	inoculation	(wpi).	

As	reported	previously,	RAM2	promoter	activity	was	strongly	associated	with	cortical	

cells	hosting	arbuscules,	while	no	GUS	expression	was	observed	in	epidermal	cells	that	

were	 in	 direct	 contact	 with	 fungal	 hyphae	 (Figure	 5.5;	 Gobbato	 et	 al.,	 2013).	 In	 the	

absence	of	mycorrhizal	fungi,	RAM2	expression	was	localized	to	the	tip	regions	of	the	

roots.	Very	similar	expression	patterns	were	observed	for	FatM,	MtABCG3,	and	the	four	

mycorrhizal‐induced	WRI	 genes,	 which	 all	 showed	 a	 strong	 induction	 of	 promoter	

activity	 in	 arbuscule‐containing	 cells,	 but	 did	 not	 appear	 to	 be	 expressed	 in	 cells	

surrounding	 hyphopodia	 (Figures	 5.6	 –	 5.11).	 In	 non‐mycorrhized	 roots,	 a	 weak	

expression	of	FatM	 and	 several	WRI	 genes	was	 visible	 in	 the	 cortex	 and	 in	 root	 tips,	

suggesting	that	the	expression	of	these	genes	is	not	entirely	specific	to	colonized	root	

tissues.	In	accordance	with	the	findings	of	the	global	gene	expression	profiling,	no	GUS	

staining	 associated	 with	 mycorrhizal	 structures	 was	 observed	 in	 colonized	 roots	

expressing	 the	pMtWRI6‐GUS	 fusion	 (Figure	 5.12).	 Occasionally,	 promoter	 activity	 of	

MtWRI6	was	detected	in	the	root	endodermis	in	non‐colonized	roots,	indicating	that	this	

gene	might	have	a	function	under	non‐symbiotic	conditions.			
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Together,	these	results	show	that	RAM2,	FatM,	MtABCG3,	and	several	WRI	transcription	

factors	are	co‐expressed	in	arbuscule‐containing	cells	of	colonized	M.	truncatula	roots	

and	suggest	 that	 these	genes	could	be	part	of	 the	same	 lipid	biosynthesis	and	export	

pathway.	

	

5.2.3  Mycorrhizal  colonization  is  only  weakly  affected  in  plants  carrying  a 

mutation in the half‐size ABCG transporter MtABCG3  

The	 strong	 transcriptional	 upregulation	 in	 arbuscule‐containing	 cells	 and	 the	 close	

phylogenetic	relationship	with	A.	thaliana	lipid	transporters	make	the	mycorrhizal	ABCG	

transporter	MtABCG3	 a	 good	 candidate	 for	mediating	 lipid	 transfer	 to	 the	 fungus.	To	

further	investigate	whether	this	transporter	has	a	function	in	AM	symbiosis,	seeds	from	

three	M.	truncatula	lines	(NF20376,	NF11484,	and	NF1558)	carrying	a	TNT1	insertion	

in	 the	 coding	 sequence	 of	MtABCG3	 were	 obtained	 from	 the	 Samuel	 Roberts	 Noble	

foundation	(Tadege	et	al.,	2008).	The	insertion	line	NF20376	carries	a	TNT1	insertion	in	

the	third	exon	of	MtABCG3,	which	corresponds	to	the	predicted	AAA+‐ATPase	domain	in	

the	protein	sequence	(Figure	5.13).	The	line	NF11484	contains	a	TNT1	insertion	in	the	

fourth	exon,	which	is	predicted	to	encode	the	linker	region	between	the	AAA+‐ATPase	

domain	and	the	six	transmembrane	domains	at	the	C‐terminal	end	of	the	protein.	The	

third	 insertion	 line,	 NF1558,	 carries	 a	 TNT1	 insertion	 in	 the	 last	 exon,	 which	

corresponds	to	the	protein	sequence	between	the	last	two	transmembrane	domains	at	

the	C‐terminus.	The	presence	of	the	TNT1	insertions	was	confirmed	by	genotyping,	and	

homozygous	plants	were	bulked	to	produce	seeds	for	further	experiments.		

The	TNT1	 transposon	 is	 approximately	 5000	bp	 long	 and	 is	 therefore	 anticipated	 to	

create	null	mutants	when	located	in	an	exon.	To	confirm	that	no	full‐length	transcript	

was	 expressed	 in	 the	 three	 mutant	 lines,	 RT‐PCR	 was	 performed	 with	 RNA	 from	

mycorrhized	roots.	Using	gene‐specific	primers	that	flank	all	three	TNT1‐insertion	sites,	

a	 cDNA	 fragment	 of	 1760	 bp	 was	 amplified	 in	 the	 wild	 type	 line	 (Figure	 5.13).	 As	

expected,	no	full‐length	transcript	was	expressed	in	the	two	lines	NF20376	and	NF1558.	

However,	the	RT‐PCR	with	RNA	from	line	NF11484	did	amplify	a	product	with	a	size	

slightly	smaller	than	1760	bp.	Sequencing	of	the	PCR	product	revealed	that	the	TNT1	

insertion,	 including	 the	whole	 sequence	 of	 exon	 four	 (81	bp),	was	 spliced	 out	 of	 the	

transcript	in	line	NF11484.	Although	it	is	likely	that	the	excision	of	a	whole	exon	results	
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in	a	non‐functional	protein,	it	cannot	be	excluded	that	a	shorter	version	of	the	protein	is	

still	expressed	in	this	line	and	might	retain	some	functionality.		

To	assess	the	mycorrhizal	phenotype	of	plants	carrying	a	mutation	in	MtABCG3,	fungal	

infection	structures	were	quantified	in	the	wild	type	and	the	three	TNT1‐insertion	lines	

in	 a	mycorrhizal	 time	 course	 experiment	 at	 2	wpi,	 3	wpi,	 and	 7.5	wpi.	 At	 2	wpi,	 no	

difference	in	the	quantity	of	fungal	infection	structures	was	observed	between	the	wild	

type	and	the	mutant	lines,	suggesting	that	mycorrhization	at	early	stages	is	not	impaired	

in	the	abcg3	mutants	(Figure	5.14	A).	By	contrast,	all	three	mutant	lines	showed	a	weak,	

but	statistically	significant	reduction	in	the	number	of	hyphopodia	and	arbuscules	at	3	

wpi.	 In	addition,	the	two	TNT1‐insertion	lines	NF20376	and	NF11484	also	had	fewer	

vesicles	 than	 the	 wild	 type	 at	 3	 wpi	 (Figure	 5.14	 B).	 At	 7.5	 wpi,	 the	 reduction	 in	

mycorrhizal	 colonization	disappeared,	 and	 the	 levels	 of	mycorrhization	 in	 the	TNT1‐

insertion	lines	were	again	comparable	to	the	wild	type	(Figure	5.14	C).	The	mycorrhizal	

time	 course	 was	 repeated	with	 the	 two	 insertion	 lines	 NF20376	 and	 NF11484	with	

similar	results.	Ink	staining	of	the	fungal	infection	structures	further	revealed	that	fully	

developed	arbuscules	were	present	 in	 the	 three	mutant	 lines	at	 all	 three	 time	points	

tested	(Figure	5.15).	Together,	 these	results	 indicate	 that	mutations	 in	MtABCG3	only	

have	minor	effects	on	the	levels	of	mycorrhization	and	do	not	impair	the	development	

of	fungal	infection	structures	inside	the	roots.		

	

5.2.4  RAM1  is essential for the transcriptional induction of EXO70I, but not the 

previously proposed targets STR and RAD1  

It	has	previously	been	reported	that	genes	involved	in	arbuscule	development,	including	

the	 exocyst	 subunit	 EXO70I,	 the	 ABCG	 transporter	 STR,	 and	 the	 GRAS‐domain	

transcription	 factor	 RAD1,	 are	 dependent	 on	 RAM1	 for	 their	 induction	 during	

mycorrhization	 (Park	 et	 al.,	 2015).	 Thus,	 I	 investigated	whether	 the	 upregulation	 of	

these	 genes	 was	 also	 abolished	 in	 ram1‐1	 roots	 in	 the	 mycorrhizal	 time	 course	

performed	here.		

Consistent	with	previous	findings,	the	expression	of	EXO70I	was	significantly	induced	in	

colonized	 wild‐type	 roots	 at	 all	 three	 time	 points	 tested,	 while	 no	 induction	 was	

observed	 in	 mycorrhized	 ram1‐1	 roots,	 showing	 that	 RAM1	 is	 essential	 for	 the	

transcriptional	induction	of	EXO70I	(Table	5.2).	In	addition	to	EXO70I,	two	other	genes	

encoding	putative	subunits	of	the	exocyst	complex	showed	a	weak	upregulation	in	the	
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wild	type	during	mycorrhization,	but	were	not	induced	in	ram1‐1,	indicating	that	RAM1	

might	be	involved	in	the	transcriptional	regulation	of	several	exocyst	components.		

The	transcript	levels	of	the	two	genes	STR	and	STR2	were	significantly	induced	in	wild‐

type	roots	at	all	three	time	points	during	mycorrhization	(Table	5.2).	However,	although	

no	 significant	 transcriptional	 upregulation	 of	 STR	 and	 STR2	 was	 observed	 in	

mycorrhized	ram1‐1	roots	at	27	dpi,	their	expression	levels	were	significantly	induced	

in	the	mutant	at	8	dpi	and	13	dpi,	with	fold	changes	that	were	comparable	to	the	ones	

observed	 in	 the	 wild	 type.	 Similarly,	 RAD1	 was	 still	 significantly	 induced	 in	 ram1‐1	

during	mycorrhization,	even	though	fold	changes	were	slightly	lower	than	in	the	wild	

type	(Table	5.2).	These	results	suggest	that,	at	 least	at	early	time	points,	RAM1	 is	not	

essential	 for	 the	 transcriptional	 upregulation	 of	 STR,	 STR2,	 and	 RAD1	 during	 AM	

development.



 

125 
	

	

	

	

Table	5.2:	Fold	changes	of	genes	involved	in	arbuscule	development	during	the	mycorrhizal	time	course	in	wild‐type	and	ram1‐1	roots.	FDR‐corrected	p‐value	<	0.05	
for	all	fold	changes	shown.	‘N.s.’	depicts	a	statistically	non‐significant	fold	change.	
	

    Fold change in the wild type    Fold change in ram1‐1 

Mtv4.0 ID  Annotation  8 dpi  13 dpi  27 dpi    8 dpi  13 dpi  27 dpi 

Medtr1g017910  exocyst subunit exo70 family protein, EXO70I  2.0  13  18    n.s.  n.s.  n.s. 

Medtr2g096230  exocyst subunit exo70 family protein  n.s.  2.6  n.s.    n.s.  n.s.  n.s. 

Medtr4g062330  exocyst subunit exo70 family protein  n.s.  n.s.  1.7    n.s.  n.s.  n.s. 

Medtr8g107450  white‐brown‐complex ABC transporter family protein STR  3.2  33.3  70.3    3.2  4.7  n.s. 

Medtr5g030910  white‐brown‐complex ABC transporter family protein STR2  7.2  204  364    5.6  14.9  n.s. 

Medtr4g104020  GRAS family transcription factor RAD1  39.9  237  696    12  168  45.3 
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5.2.5  RAM1  activates  gene  expression  in  an  unspecific  manner  when 

overexpressed in N. benthamiana leaves 

Global	 gene	 expression	 profiling	 has	 identified	 a	 large	 number	 of	 genes	 whose	

upregulation	during	mycorrhization	was	dependent	on	RAM1	 at	all	 three	 time	points	

tested,	and	it	is	likely	that	this	group	of	genes	contains	direct	targets	of	RAM1.	However,	

the	lack	of	gene	induction	during	mycorrhization	in	ram1‐1	could	also	be	caused	by	the	

absence	of	fully	developed	arbuscules	in	the	mutant.	To	identify	direct	targets	of	RAM1,	

the	ability	of	RAM1	to	induce	the	expression	of	the	reporter	gene	LUC	under	the	control	

of	different	mycorrhizal‐induced	promoters	was	tested	in	a	transactivation	assay	in	N.	

benthamiana	leaves	(described	in	Chapter	4.2.4).		

First,	I	investigated	whether	RAM1	is	able	to	activate	gene	expression	from	the	promoter	

sequence	of	RAM2,	 the	only	 confirmed	direct	 target	of	RAM1	 to	date	 (Gobbato	et	 al.,	

2012).	As	expected,	the	expression	of	RAM1	together	with	LUC	under	the	control	of	the	

RAM2	promoter	resulted	in	a	strong	induction	of	LUC	activity	in	transformed	leaf	tissues	

(Figure	 5.16).	 Similarly,	 RAM1	 was	 able	 to	 activate	 the	 expression	 of	 LUC	 from	 the	

promoter	sequences	of	 the	mycorrhizal‐induced	genes	MNR	 (MYCORRHIZAL	NITRATE	

REDUCTASE)	and	ENOD11	 (Weidmann	et	al.,2004;	 Journet	et	al.,	2001).	As	a	negative	

control,	 I	 next	 tested	 whether	 RAM1	 induces	 the	 expression	 of	 NIN,	 a	 gene	 that	 is	

specifically	 upregulated	 during	 nodulation	 (Schauser	 et	 al.,	 1999),	 but	 has	 not	 been	

reported	 to	 be	 differentially	 expressed	 during	 mycorrhization	 and	 is	 therefore	 not	

predicted	to	be	directly	targeted	by	RAM1.	Surprisingly,	however,	a	strong	induction	of	

LUC	activity	was	also	observed	when	overexpressing	RAM1	together	with	the	LUC	gene	

under	the	control	of	the	NIN	promoter	(Figure	5.16).	Furthermore,	RAM1	appeared	to	

be	able	to	activate	the	promoters	of	the	nodulation‐specific	gene	NPL	(Xie	et	al.,	2012),	

the	meristem	marker	WUS	 (WUSCHEL;	Osipova	et	al.,	2012)	and	 the	A.	 thaliana	 gene	

PLT1	 (PLETHORA1;	 Aida	 et	 al.,	 2004).	 Finally,	 the	 alcohol‐inducible	 promoter	 alcA	

(Kinkema	et	al.,	2014)	and	six	copies	of	the	lac	operon	(Samalova	et	al.,	2005)	were	fused	

to	 the	 LUC	 gene	 and	 activation	 of	 these	 promoter	 sequences	 by	 RAM1	 was	 tested.	

Although	the	relative	LUC/GUS	ratios	were	considerably	lower	than	when	testing	the	M.	

truncatula	and	A.	thaliana	promoters,	a	significant	induction	of	LUC	activity	by	RAM1	

was	also	observed	for	these	two	plant‐unrelated	promoters	(Figure	5.16).	Considering	

that	 the	 majority	 of	 the	 tested	 promoters	 are	 not	 expected	 to	 be	 transcriptionally	

regulated	 by	 RAM1,	 these	 results	 suggest	 that	 RAM1	 activates	 gene	 expression	
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unspecifically	when	overexpressed	in	N.	benthamiana	leaves.	Thus,	the	transactivation	

assay	in	N.	benthamiana	leaves	does	not	appear	to	be	a	suitable	method	to	test	the	ability	

of	RAM1	to	activate	gene	expression	in	a	specific	manner.	

The	conditions	for	the	regulation	of	gene	expression	in	N.	benthamiana	leaves	are	likely	

to	be	different	from	the	conditions	in	M.	truncatula	roots	during	AM	development.	It	is	

possible	that	the	activity	of	RAM1	is	tightly	regulated	under	symbiotic	conditions,	and	

that	this	regulation	is	absent	when	overexpressing	RAM1	in	N.	benthamiana	leaves.	To	

test	 whether	 a	 similar	 unspecific	 activation	 of	 gene	 expression	 is	 observed	 when	

overexpressing	RAM1	in	M.	truncatula	roots,	the	same	expression	vectors	that	were	used	

for	the	transactivation	assay	in	N.	benthamiana	leaves	were	expressed	in	M.	truncatula	

roots	by	transformation	with	A.	rhizogenes.		

Unlike	in	the	transient	assay	in	N.	benthamiana	leaves,	no	induction	of	LUC	activity	was	

observed	when	expressing	RAM1	together	with	the	LUC	gene	fused	to	the	promoter	of	

MNR	 in	M.	truncatula	 roots	(Figure	5.17	A).	To	test	whether	 the	hemagglutinin	(HA)‐

tagged	RAM1	protein	used	 for	 the	 transactivation	assay	 is	 functional	 in	M.	truncatula	

roots	during	AM	symbiosis,	ram1‐1	roots	transformed	with	the	same	expression	vectors	

as	used	 for	 the	 transactivation	assay	were	 inoculated	with	AM	fungi	and	mycorrhizal	

infection	structures	were	quantified	at	4	wpi.	While	ram1‐1	roots	transformed	with	the	

vector	control	only	displayed	very	low	levels	of	mycorrhization	and	were	unable	to	form	

fully	developed	arbuscules,	the	expression	of	the	HA‐tagged	RAM1	protein	resulted	in	

significantly	 higher	 levels	 of	 fungal	 colonization	 (Figure	 5.17	 B).	 Furthermore,	WGA	

staining	of	mycorrhized	roots	confirmed	the	presence	of	fully	developed	arbuscules	in	

roots	expressing	HA‐RAM1,	demonstrating	that	the	fusion	protein	is	functional	during	

AM	development.	Overall,	these	results	suggest	that	unlike	in	N.	benthamiana	leaves,	the	

overexpression	of	a	functional	RAM1	protein	in	M.	truncatula	roots	does	not	result	in	the	

unspecific	activation	of	gene	expression.	

	

5.2.6  Ectopic  overexpression  of  RAM1  in M.  truncatula  roots  is  sufficient  to 

activate  the  expression  of  genes  involved  in  nutrient  exchange  in  the 

absence of mycorrhizal fungi 

As	 performing	 the	 transactivation	 assay	 in	M.	 truncatula	 roots	 is	 considerably	more	

time‐consuming	 than	 in	N.	benthamiana	 leaves	 and	 therefore	 lacks	 the	 advantage	 of	

rapid	testing	of	many	different	promoter	sequences,	an	alternative	approach	was	sought	
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to	 identify	 genes	 that	might	 be	 directly	 regulated	 by	 RAM1.	 To	 this	 end,	RAM1	 was	

overexpressed	to	high	levels	in	M.	truncatula	roots	and	the	expression	of	potential	direct	

target	 genes	 in	 the	 absence	 of	 mycorrhizal	 fungi	 was	 measured	 by	 qRT‐PCR.	 The	

transcript	levels	of	the	mycorrhizal‐induced	genes	RAM2,	FatM,	MtABCG3,	MtWRI2,	and	

PT4	were	significantly	induced	in	roots	overexpressing	RAM1	compared	to	control	roots	

overexpressing	GFP	 (Figure	5.18).	By	contrast,	 the	expression	 levels	of	MtWRI1	were	

slightly	lower	in	RAM1‐overexpressing	roots	compared	to	control	roots.	These	results	

suggest	 that	 the	 overexpression	 of	 RAM1	 is	 sufficient	 to	 induce	 the	 transcription	 of	

several	 genes	 involved	 in	 phosphate	 transport,	 lipid	 metabolism	 and	 potential	 lipid	

secretion	in	the	absence	of	mycorrhizal	fungi.	

	

5.2.7  Generation of M. truncatula  lines stably expressing GFP‐tagged RAM1 for 

the identification of genome‐wide DNA binding sites 

To	 confirm	 that	 RAM1	directly	 binds	 to	 the	 promoter	 sequences	 of	 the	 target	 genes	

identified	above,	M.	truncatula	lines	stably	expressing	GFP‐tagged	RAM1	were	generated	

to	identify	genome‐wide	DNA	binding	sites	of	RAM1	by	performing	ChIP‐seq	assays.	To	

ensure	that	the	GFP‐tag	does	not	impair	the	functionality	of	RAM1	in	AM	development,	

GFP‐RAM1	 was	 expressed	 under	 the	 native	 RAM1	 promoter	 in	 ram1‐1	 roots	 by	

transformation	 with	 A.	 rhizogenes	 and	 composite	 plants	 were	 inoculated	 with	

mycorrhizal	 fungi.	 As	 a	 negative	 control,	 ram1‐1	 roots	 expressing	 GFP	 alone	 were	

inoculated.	 Fungal	 infection	 structures	 were	 quantified	 at	 4	 wpi,	 revealing	 that	 a	

significantly	higher	number	of	hyphopodia,	 intraradical	hyphae,	and	arbuscules	were	

present	in	ram1‐1	roots	expressing	GFP‐RAM1	when	compared	to	the	negative	control.	

Furthermore,	 WGA	 staining	 of	 mycorrhized	 roots	 confirmed	 that	 ram1‐1	 roots	

expressing	 GFP‐RAM1	 were	 able	 to	 form	 fully	 developed	 arbuscules.	 These	 results	

demonstrate	that	the	GFP‐fusion	protein	is	functional	during	AM	symbiosis.	Thus,	the	

expression	vector	 encoding	pRAM1::GFP‐RAM1	was	used	 for	 stable	 transformation	of	

ram1‐1	plants.	The	ability	of	T1	plants	to	form	fully	developed	arbuscules	was	confirmed	

by	ink‐staining,	and	stable	lines	that	were	able	to	enter	a	fully	functional	symbiosis	with	

AM	fungi	were	bulked	to	produce	T2	seeds.	However,	the	time	limitations	of	this	project	

did	not	allow	the	production	of	enough	T1	or	T2	seeds	to	perform	a	ChIP	assay	with	this	

stable	line.	
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5.3  Discussion 

Here,	the	mycorrhizal	processes	regulated	by	RAM1	were	investigated	by	performing	an	

in‐depth	 functional	 analysis	 of	 the	 genes	 that	 were	 found	 to	 be	 induced	 during	 AM	

development	 in	 a	 RAM1‐dependent	 manner.	 These	 analyses	 have	 uncovered	 an	

important	role	for	RAM1	in	the	regulation	of	genes	involved	in	arbuscule	development,	

the	transfer	of	mineral	nutrients	from	the	fungus	to	the	plant,	and	lipid	biosynthesis	and	

putative	export	to	fungal	hyphae.	

Based	 on	 gene	 expression	 analyses	 of	 ram1	 mutants	 at	 late	 time	 points	 during	

mycorrhization	and	ectopic	overexpression	of	RAM1	 in	M.	truncatula	roots,	RAM1	has	

previously	been	proposed	to	control	several	genes	involved	in	arbuscule	development,	

including	 EXO70I,	 STR,	 and	 RAD1	 (Park	 et	 al.,	 2015;	 Rich	 et	 al.,	 2015).	 The	 gene	

expression	 profiling	 performed	 here	 has	 revealed	 that	 while	 the	 transcriptional	

induction	of	all	these	genes	was	abolished	or	strongly	reduced	at	27	dpi	in	ram1‐1,	the	

upregulation	of	STR,	STR2,	and	RAD1	at	8	dpi	and	13	dpi	was	comparable	to	the	wild	type	

or	 only	 slightly	 impaired.	 These	 findings	 suggest	 that	 RAM1	 is	 not	 essential	 for	 the	

transcriptional	 induction	 of	 STR/STR2	 and	 RAD1	 at	 early	 time	 points	 during	 fungal	

colonization,	 indicating	 that	 other	 transcriptional	 regulators	must	 be	 involved	 in	 the	

upregulation	of	these	genes	during	mycorrhizal	colonization.	Furthermore,	considering	

the	severely	reduced	levels	of	fungal	colonization	in	ram1	mutants	at	late	time	points,	it	

is	possible	that	the	reduced	induction	of	RAD1	and	STR/STR2	observed	in	ram1	is	due	

the	loss	of	AM	symbiosis	rather	than	the	direct	control	of	the	expression	of	these	genes	

by	RAM1.	By	 contrast,	 the	 expression	 of	 the	 exocyst	 subunit	EXO70I	was	 completely	

abolished	in	ram1‐1	not	only	at	 late,	but	also	at	early	time	points,	making	this	gene	a	

good	candidate	to	be	a	direct	target	of	RAM1.	EXO70I	is	involved	in	the	formation	of	the	

branch	domain	of	the	periarbuscular	membrane	and	was	shown	to	be	required	for	the	

efficient	incorporation	of	the	two	ABCG	transporters	STR	and	STR2	(Zhang	et	al.,	2015).	

In	line	with	this,	plants	carrying	a	mutation	in	EXO70I	are	unable	to	form	fully	developed	

arbuscules	 (Zhang	 et	 al.,	 2015).	 This	 lack	 of	 induction	 of	 EXO70I	 in	 ram1‐1	 is	 in	

accordance	 with	 the	 arrest	 in	 arbuscule	 development	 observed	 in	 colonized	 ram1‐1	

roots.	In	addition	to	EXO70I,	two	other	putative	subunits	of	the	exocyst	complex	were	

upregulated	during	mycorrhizal	 colonization	 in	 a	RAM1‐dependent	manner,	 although	

the	transcriptional	induction	of	these	two	genes	in	the	wild	type	was	relatively	weak	and	

was	only	observed	at	some,	but	not	all	time	points.	One	of	these	two	subunits,	encoded	

by	Medtr2g096320,	has	previously	been	found	to	be	expressed	in	arbuscule‐containing	
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cells,	 and	 it	 has	 been	 proposed	 that	 a	 number	 of	 exocyst	 subunits	 are	 involved	 in	

arbuscule	development	(Zhang	et	al.,	2015).	Together,	these	findings	suggest	that	RAM1	

is	 involved	 in	 the	 transcriptional	 regulation	 of	 several	 components	 of	 the	 exocyst	

complex,	which	provides	a	secretory	function	during	the	formation	of	the	periarbuscular	

membrane.		

One	 of	 the	main	 benefits	 of	 the	 AM	 symbiosis	 for	 plants	 is	 the	 drastically	 improved	

acquisition	 of	 water	 and	 mineral	 nutrients	 from	 the	 soil.	 In	 particular,	 the	 fungus	

provides	 the	 plant	 with	 substantial	 amounts	 of	 phosphate	 and	 ammonium.	 In	 M.	

truncatula,	the	phosphate	transporter	PT4	has	been	shown	to	be	essential	for	phosphate	

uptake	across	the	periarbuscular	membrane	(Harrison	et	al.,	2002;	Javot	et	al.,	2007).	

PT4	localizes	specifically	to	the	membrane	surrounding	the	fine	branches	of	arbuscules	

(Pumplin	and	Harrison,	2009).	It	is	therefore	maybe	not	surprising	that	PT4	expression	

was	completely	abolished	in	ram1‐1,	as	only	underdeveloped	arbuscules	were	formed	

in	 the	mutant	 roots	 at	 all	 three	 time	 points	 tested	 (Chapter	 2),	 and	 the	 lack	 of	PT4	

induction	could	simply	be	caused	by	the	absence	of	fully	developed	arbuscules	in	ram1‐

1	 rather	 than	 the	 lack	 of	 transcriptional	 activity	 of	 RAM1.	 However,	 the	 ectopic	

overexpression	of	RAM1	in	M.	truncatula	roots	was	sufficient	to	significantly	induce	the	

expression	of	PT4	even	in	the	absence	of	mycorrhizal	fungi,	suggesting	that	RAM1	has	a	

more	direct	role	in	the	regulation	of	PT4	expression.	It	is	possible	that	RAM1	controls	

PT4	transcript	levels	by	directly	associating	with	its	promoter	sequence.	Alternatively,	

RAM1	might	activate	other	transcriptional	regulators	that	can	induce	PT4	expression.	

Binding	 studies	 such	as	ChIP	assays	or	electrophoretic	mobility	 shift	 assays	 (EMSAs)	

would	help	 to	answer	 these	questions.	 Interestingly,	RAM1	was	also	 required	 for	 the	

upregulation	of	two	ammonium	transporter	family	proteins,	AMT2‐3	and	AMT2‐5,	while	

it	did	not	appear	to	be	essential	for	the	induction	of	the	third	mycorrhizal‐induced	family	

member	AMT2‐4	(Breuillin‐Sessoms	et	al.,	2015).	Of	these	three	genes,	only	AMT2‐3	has	

been	characterised	in	more	detail.	It	has	been	shown	that	the	protein	encoded	by	AMT2‐

3	 localises	 to	 the	 periarbuscular	 membrane	 and	 is	 required	 for	 the	 suppression	 of	

premature	arbuscule	degeneration	in	pt4	under	nitrogen‐starved	conditions	(Breuillin‐

Sessoms	et	al.,	2015).	As	AMT2‐3	does	not	seem	to	be	able	to	transport	ammonium	in	

yeast,	 it	 has	 been	hypothesised	 that	 this	member	 of	 the	AMT	 family	 has	 a	 signalling	

function	rather	than	mediating	the	uptake	of	ammonium	into	plant	cells.	It	is	currently	

unclear	 whether	 AMT2‐4	 and	 AMT2‐5	 are	 involved	 in	 the	 symbiotic	 import	 of	

ammonium	across	the	periarbuscular	membrane.	AMT2‐4	is	able	to	complement	a	yeast	

ammonium	 transport	 mutant,	 suggesting	 that	 this	 protein	 has	 ammonium	 transport	



Chapter 5 – Mycorrhizal processes regulated by RAM1 

 

131	
	

activities,	however,	nothing	is	known	about	the	subcellular	localisation	of	the	encoded	

protein	(Breuillin‐Sessoms	et	al.,	2015).	The	observation	that	AMT2‐3	and	AMT2‐5,	but	

not	AMT2‐4,	are	dependent	on	RAM1	for	their	transcriptional	upregulation	during	fungal	

colonization	 suggests	 that	 the	 mycorrhizal‐induced	 AMT2	 family	 members	 are	

differentially	regulated	during	symbiosis	and	might	hint	at	distinct	 functions	of	 these	

transporters	during	mycorrhization.	

In	 exchange	 for	 receiving	 water	 and	 mineral	 nutrients,	 plants	 provide	 the	 obligate	

biotrophic	 fungus	with	 considerable	 amounts	 of	 fixed	 carbon	 (Ho	and	Trappe,	 1973;	

Shachar‐Hill	 et	 al.,	 2005;	 Parniske,	 2008).	 Up	 to	 20%	 of	 the	 plant	 photosynthesis	

products	are	delivered	to	the	fungus	(Bago	et	al.,	2002),	resulting	in	a	significant	increase	

of	the	carbon	sink	strength	of	mycorrhized	roots	and	the	large	accumulation	of	sugars	

and	lipids	(Wright	et	al.,	1998).	Until	recently,	plant‐derived	sugars	have	been	thought	

to	 be	 the	 only	 carbon	 source	 for	 the	 fungus.	 Based	 on	 labelling	 studies,	 it	 has	 been	

proposed	 that	 intraradical	 fungal	 hyphae	 convert	 the	 plant‐derived	 sugars	 into	

triacylglycerols	for	the	export	to	extraradical	hyphae	(Trepanier	et	al.,	2005),	as	lipids	

are	 the	main	 energy	 storage	 form	of	AM	 fungi	 (Beilby	 and	Kidby,	 1980).	However,	 a	

recent	study	investigating	lipid	biosynthesis	and	metabolism	in	R.	irregularis	has	been	

unable	to	find	genes	encoding	subunits	of	type	I	fatty	acid	synthase	(FAS)	in	the	genome	

of	the	fungus,	suggesting	that	the	fungus	is	not	capable	of	de	novo	fatty	acid	synthesis	

and	therefore	relies	entirely	on	the	plant	for	the	supply	with	lipids	(Wewer	et	al.,	2014).	

Consistent	with	this,	radioisotopic	labelling	experiments	show	that	lipids	are	exported	

from	 the	 plant	 to	 the	 fungus	 (Peter	 Eastmond	 and	 Ertao	 Wang,	 personal	

communication).	 RAM2	 has	 previously	 been	 proposed	 to	 be	 involved	 in	 cutin	

biosynthesis	 and	 is	 required	 for	 hyphopodia	 formation	 and	 arbuscule	 development	

(Wang	et	al.,	2012).	Interestingly,	growing	ram2	plants	in	the	presence	of	a	nurse	plant	

that	shares	a	common	fungal	mycelium	restores	fungal	colonization	levels	and	arbuscule	

formation	in	ram2	roots,	suggesting	that	RAM2	has	a	nutritional	role	in	AM	symbiosis	

(Peter	Eastmond	and	Ertao	Wang,	personal	communication).	Labelling	studies	provide	

further	evidence	that	the	lipid	transfer	between	the	plant	and	the	fungus	is	abolished	in	

ram2	 roots,	 indicating	 that	RAM2	 is	a	 critical	 component	of	 the	 lipid	export	pathway	

(Peter	Eastmond	and	Ertao	Wang,	personal	communication).	Based	on	promoter	binding	

studies	 and	 expression	 analyses,	 it	 has	 previously	 been	 demonstrated	 that	 the	

expression	of	RAM2	is	directly	regulated	by	RAM1	(Gobbato	et	al.,	2012).	In	accordance	

with	 these	 findings,	 the	 transcriptional	 profiling	 performed	 here	 showed	 that	 the	

transcript	levels	of	RAM2	were	strongly	upregulated	during	mycorrhizal	colonization	in	
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a	RAM1‐dependent	manner.	In	addition	to	RAM2,	a	large	number	of	genes	involved	in	

lipid	biosynthesis	and	putative	lipid	secretion	were	found	to	be	among	the	genes	whose	

mycorrhizal	induction	was	entirely	dependent	on	RAM1,	including	several	homologs	of	

the	A.	thaliana	WRI	transcription	factors,	the	acyl‐ACP	(acyl	carrier	protein)	thioesterase	

FatM,	and	two	half‐size	ABCG	transporters	with	a	putative	 function	in	 lipid	secretion.	

The	spatial	gene	expression	patterns	of	these	genes	in	mycorrhized	roots	indicate	that	

they	 are	 co‐expressed	with	RAM2	 in	 arbuscule‐containing	 cells,	 suggesting	 that	 they	

might	be	involved	in	the	same	lipid	export	pathway	as	RAM2.	

The	 role	 of	 the	WRI	 transcription	 factors	 in	A.	 thaliana	 has	 been	well	 characterised	

(Marchive	et	al.,	2014).	In	seeds	and	floral	tissues,	these	transcription	factors	regulate	

the	expression	of	late	glycolysis	and	early	fatty	acid	biosynthesis	genes	to	support	the	

production	of	 triacylglycerols	and	cutin	 (Baud	et	al.,	 2009;	To	et	 al.,	 2012).	Although	

AtWRI1,	 AtWRI3,	 and	 AtWRI4	 are	 differentially	 expressed	 in	 the	 plant,	 the	 three	

transcription	 factors	 were	 found	 to	 be	 functionally	 redundant,	 as	 both	 AtWRI3	 and	

AtWRI4	are	able	to	complement	the	Atwri1	mutant	seed	phenotype	(To	et	al.,	2012).	The	

close	 phylogenetic	 relationship	 of	 these	 transcription	 factors	 with	 the	 mycorrhizal‐

induced	AP2‐domain	proteins	in	M.	truncatula	suggests	that	the	M.	truncatula	homologs	

might	have	a	similar	function	in	regulating	the	de	novo	production	of	acyl‐chains,	which	

could	 serve	 as	 precursors	 for	 lipids	 that	 are	 exported	 to	 mycorrhizal	 fungi.	 This	

hypothesis	is	further	supported	by	the	observation	that	similar	to	MtWRI1,	MtWRI2,	and	

MtWRI3,	many	homologs	of	 the	known	AtWRI	 target	genes,	 including	genes	encoding	

pyruvate	kinase	and	acetyl‐CoA	carboxylase	subunits,	were	found	in	the	group	of	RAM1‐

dependent	 genes.	 However,	 further	 evidence	 is	 required	 to	 confirm	 that	 the	 WRI	

transcription	factors	in	M.	truncatula	are	involved	in	the	upregulation	of	de	novo	fatty	

acid	 biosynthesis	 as	 part	 of	 the	 lipid	 export	 pathway.	 Complementation	 assays	 of	A.	

thaliana	wri	mutants	with	 the	M.	 truncatula	 homologs	would	 clarify	whether	 the	M.	

truncatula	WRI	transcription	factors	have	the	same	function	in	lipid	production	as	their	

homologs	in	A.	thaliana.	Interestingly,	RNA	silencing	of	MtWRI2	(also	called	MtERF1)	has	

previously	 been	 reported	 to	 decrease	 fungal	 colonization	 and	 impair	 arbuscule	

formation	in	M.	truncatula	roots	(Devers	et	al.,	2013).	These	results	suggest	that	similar	

to	RAM1	and	RAM2,	MtWRI2	is	required	for	proper	arbuscule	development.	However,	it	

cannot	be	excluded	that	the	expression	of	additional	WRI	homologs	other	than	MtWRI2	

were	 silenced	 in	 these	 roots.	 Several	 TNT1	 insertion	 lines	 are	 available	 that	 carry	

mutations	 in	 the	 mycorrhizal‐induced	 WRI	 genes,	 and	 a	 detailed	 analysis	 of	 the	

mycorrhizal	 colonization	 in	 these	 mutants	 might	 provide	 more	 insights	 into	 the	
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functions	of	these	genes	during	AM	symbiosis.	RAM1	was	required	for	the	upregulation	

of	 only	 three	 of	 the	 five	WRI	 genes	 that	 were	 induced	 during	 fungal	 colonization.	

Promoter‐GUS	 studies	 showed	 that	 the	 RAM1‐independent	MtWRI4	 is	 expressed	 in	

arbuscule‐containing	 cells,	 similar	 to	 the	 three	RAM1‐dependent	WRI	homologs.	 It	 is	

possible	 that	 all	 five	 WRI	 homologs	 are	 involved	 in	 providing	 precursors	 for	 the	

production	of	lipids	delivered	to	the	fungus.	Alternatively,	some	of	these	homologs	might	

be	 required	 for	 the	 production	 of	 other	 complex	 fatty	 acids	 with	 a	 function	 in	 AM	

development.	

The	 acyl	 ACP‐thioesterase	 FatM	 has	 previously	 been	 shown	 to	 be	 upregulated	 in	

mycorrhized	M.	truncatula	 roots	and	 is	evolutionarily	conserved	in	mycorrhizal	plant	

species	(Gomez	et	al.,	2009;	Bravo	et	al.,	2016).	FatM	is	a	homolog	of	A.	thaliana	FatB,	

which	is	involved	in	the	release	of	palmitic	acid	from	the	plastid	into	the	cytosol	(Salas	

and	 Ohlrogge,	 2002;	 Bonaventure	 et	 al.,	 2003).	 The	 biochemical	 characterisation	 of	

RAM2	has	shown	that	the	encoded	enzyme	preferentially	uses	palmitoyl‐CoenzymeA	to	

produce	2‐monopalmitin	 (Peter	Eastmond,	personal	 communication),	 a	 lipid	 that	has	

been	found	to	accumulate	in	mycorrhized	roots	(Schliemann	et	al.,	2008).	Thus,	FatM	is	

an	ideal	candidate	to	provide	the	substrate	for	RAM2	in	the	lipid	export	pathway.	In	line	

with	 this	hypothesis,	M.	 truncatula	plants	carrying	a	mutation	 in	FatM	 show	reduced	

levels	of	fungal	colonization	and	are	unable	to	form	fully	developed	arbuscules	(Bravo	et	

al.,	2016).	It	would	be	interesting	to	test	whether	the	inoculation	of	fatm	with	a	nurse	

plant	inoculum	can	restore	arbuscule	development	in	colonized	mutant	roots	and	would	

further	clarify	whether	FatM,	like	RAM2,	has	a	nutritional	role	during	AM	symbiosis.	

In	A.	thaliana,	several	ABCG	transporters	have	been	found	to	mediate	the	active	export	

of	 lipids	 across	 the	 plasma	 membrane	 (Li	 et	 al.,	 2015).	 Based	 on	 loss‐of‐function	

phenotypes,	the	three	half‐size	ABCG	transporters	AtABCG11,	AtABCG12,	and	AtABCG13	

have	been	proposed	to	be	required	for	the	export	of	waxes,	cutin	and	suberin	to	the	cell	

wall	(Pighin	et	al.,	2004;	Bird	et	al.,	2007;	Panikashvili	et	al.,	2010;	Panikashvili	et	al.,	

2011).	Plants	carrying	mutations	 in	 these	 transporters	show	a	 reduced	deposition	of	

surface	lipids,	however,	the	exact	identity	of	the	substrates	that	are	transported	across	

the	membrane	 remains	unknown	 (Li	 et	 al.,	 2015).	 In	M.	 truncatula,	 two	homologs	of	

these	lipid	transporters,	MtABCG3	and	MtABCG4,	were	significantly	upregulated	during	

mycorrhization	in	a	RAM1‐dependent	manner.	Promoter‐GUS	analyses	in	mycorrhized	

roots	further	indicate	that	MtABCG3	is	strongly	expressed	in	arbuscule	containing	cells.	

Together,	 these	 findings	 suggest	 that	MtABCG3,	and	possibly	MtABCG4,	might	have	a	



Chapter 5 – Mycorrhizal processes regulated by RAM1 

 

134	
	

role	in	mediating	the	export	of	plant‐derived	lipids	across	the	periarbuscular	membrane	

to	the	fungus.	To	test	this	hypothesis,	the	mycorrhizal	phenotypes	of	three	M.	truncatula	

lines	 carrying	 a	 TNT1	 insertion	 in	MtABCG3	were	 examined,	 however,	 only	 a	 weak	

reduction	in	fungal	colonization	was	observed	in	these	three	lines	at	intermediate	time	

points.	Furthermore,	arbuscule	development	did	not	appear	to	be	affected	in	abcg3	roots	

at	any	of	the	time	points	tested.	If	lipid	export	to	the	fungus	was	disrupted	in	these	abcg3	

mutant	lines,	one	would	expect	the	roots	to	display	a	similar	mycorrhizal	phenotype	as	

ram2	 and	 fatm,	which	 show	 low	 levels	of	 colonization	and	 are	not	 able	 to	 form	 fully	

developed	 arbuscules	 (Wang	 et	 al.,	 2012;	 Gobbato	 et	 al.,	 2013).	 It	 is	 possible	 that	

MtABCG3	has	a	different	function	during	mycorrhization	and	is	not	involved	in	the	lipid	

export	pathway.	Alternatively,	lipid	export	might	be	retained	in	abcg3	mutants	due	to	

the	presence	of	 the	close	homolog	MtABCG4,	which	might	act	redundantly	during	AM	

symbiosis.	 Although	 gene	 expression	 profiling	 only	 revealed	 a	weak	 upregulation	 of	

MtABCG4	in	mycorrhized	roots,	the	basal	expression	levels	of	this	transporter	might	be	

sufficient	to	compensate	for	the	loss	of	MtABCG3.	Half‐size	ABCG	transporters	must	form	

homo‐	or	heterodimers	to	be	able	to	 transport	substrates	across	membranes,	as	 they	

only	 possess	 one	 transmembrane	 and	 one	 ATPase	 domain,	 while	 full‐size	 ABC	

transporters	 have	 two	 of	 each	 domain.	 In	A.	 thaliana,	 AtABCG11	 has	 been	 shown	 to	

interact	with	several	other	half‐size	ABCG	transporters,	but	can	also	form	homodimers	

(McFarlane	et	al.,	2010).	During	mycorrhization,	MtABCG3	and	MtABCG4	might	form	a	

heterodimer	to	export	lipids	across	the	periarbuscular	membrane,	and	the	loss	of	one	of	

the	two	subunits	might	be	compensated	for	by	forming	a	homodimer.	Thus,	it	might	be	

necessary	 to	disrupt	 the	expression	of	both	genes	 simultaneously	 to	be	able	 to	 see	a	

reduction	in	fungal	colonization	and	a	potential	defect	in	arbuscule	formation.	As	the	two	

genes	encoding	these	transporters	are	located	in	tandem	on	the	M.	truncatula	genome,	a	

simultaneous	knockdown	using	RNA	silencing	or	CRISPR	would	be	required	to	test	this	

hypothesis.	Moreover,	examining	the	subcellular	localisation	of	MtABCG3	and	MtABCG4	

to	 test	 whether	 these	 two	 proteins	 localize	 to	 the	 periarbuscular	 membrane	 would	

further	clarify	whether	they	could	be	involved	in	transporting	a	substrate	to	the	fungus.	

Two	other	half‐size	ABCG	transporters,	STR	and	STR2,	have	previously	been	shown	to	be	

required	for	arbuscule	formation	and	localise	to	the	periarbuscular	membrane	(Zhang	

et	al.,	2010;	Gutjahr	et	al.,	2012).	The	substrate	transported	by	STR	and	STR2	is	currently	

unknown,	however,	the	inoculation	of	the	rice	str	mutant	with	a	nurse	plant	inoculum	

does	not	restore	the	arbuscular	defect,	suggesting	that	these	two	transporters	do	not	

have	a	nutritional	role	in	AM	symbiosis	(Gutjahr	et	al.,	2012).	
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Global	gene	expression	profiling	revealed	that	RAM1	is	essential	for	the	upregulation	of	

genes	involved	in	lipid	metabolism	and	putative	lipid	secretion	at	all	three	time	points	

during	mycorrhization.	The	ectopic	overexpression	of	RAM1	in	M.	truncatula	roots	and	

the	analysis	of	transcript	 levels	of	putative	direct	 targets	by	qRT‐PCR	further	showed	

that	RAM1	is	sufficient	to	induce	several	of	the	lipid‐related	genes,	including	RAM2,	FatM,	

MtABCG3,	and	MtWRI2,	even	in	the	absence	of	mycorrhizal	fungi.	These	findings	suggest	

that	 RAM1	 regulates	 a	 number	 of	 genes	with	 a	 putative	 function	 in	 the	 lipid	 export	

pathway.	 Interestingly,	 the	 expression	 of	 MtWRI1	 was	 not	 induced	 in	 RAM1‐

overexpression	lines.	It	is	possible	that	other	transcription	factors	are	required	for	the	

upregulation	of	MtWRI1.	RAM1	has	been	shown	to	physically	interact	with	several	GRAS‐

domain	proteins,	including	RAD1,	DIP1,	NSP2,	and	the	DELLA	proteins	(Gobbato	et	al.,	

2012;	Yu	et	al.,	2014;	Xue	et	al.,	2015;	Fonouni‐Farde	et	al.,	2016;	Jin	et	al.,	2016),	and	it	

might	be	necessary	to	overexpress	a	transcription	factor	complex	rather	than	individual	

transcriptional	regulators	to	be	able	to	detect	the	induction	of	some	of	the	putative	target	

genes	of	RAM1.	In	vitro	and	in	vivo	binding	studies	such	as	EMSAs	and	ChIP‐assays	would	

help	 to	 further	 investigate	 whether	 RAM1	 directly	 binds	 to	 the	 promoters	 of	 these	

putative	target	genes.		
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Figure	5.1:	Gene	ontology	(GO)	analysis	of	genes	that	were	found	to	be	consistently	dependent	
on	RAM1	for	their	induction	during	mycorrhization.	Singular	enrichment	analysis	was	performed	
using	Agrigo	(http://bioinfo.cau.edu.cn/agriGO/index.php)	and	the	whole	M.	truncatula	genome	
as	 background.	 Significantly	 enriched	 terms	of	 biological	 processes	with	 an	FDR‐corrected	p‐
value	<0.05	are	shown.	
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Figure	5.2:	 Phylogenetic	 relationship	 of	WRI	 (WRINKLED)	 transcription	 factors.	 A	maximum	
likelihood	phylogenetic	tree	of	the	closest	homologs	of	the	WRI	genes	in	A.	thaliana,	M.	truncatula,	
O.	sativa,	and	M.	paleacea	with	bootstrap	values	for	each	branch	is	shown.	The	alignment	and	the	
tree	were	made	using	Geneious	6.06.	The	WRI‐like	clade	is	indicated	in	dark	green.	Genes	in	blue	
indicate	 the	 homologs	 that	 are	 significantly	 upregulated	 during	 mycorrhization	 in	 a	 RAM1‐
dependent	manner.	Genes	in	light	green	indicate	the	homologs	that	are	significantly	upregulated	
during	mycorrhization	 in	 a	RAM1‐independent	manner.	 The	 three	A.	 thaliana	 genes	AtWRI1,	
AtWRI3,	 and	AtWRI4	 are	 indicated.	 The	M.	 truncatula	WRI	 homologs	 are	named	 as	 indicated.	
Figure	produced	in	collaboration	with	Guru	Radhakrishnan.	
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Figure	5.3:	Phylogenetic	relationship	of	ABCG	half‐size	transporters	with	a	putative	role	in	lipid	
transport.	A	maximum	likelihood	phylogenetic	tree	of	the	closest	homologs	of	the	ABCG	genes	in	
A.	 thaliana,	M.	 truncatula,	O.	 sativa,	 and	M.	paleacea	with	bootstrap	values	 for	 each	branch	 is	
shown.	The	alignment	and	the	tree	were	made	using	Geneious	6.06.	Genes	in	blue	indicate	the	M.	
truncatula	 homologs	 that	 are	 significantly	 upregulated	 during	 mycorrhization	 in	 a	 RAM1‐
dependent	manner.	The	 five	A.	 thaliana	 genes	AtABCG3,	AtABCG11,	AtABCG12,	AtABCG13,	and	
AtABCG15	are	indicated.	Figure	produced	in	collaboration	with	Guru	Radhakrishnan.	
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Figure	5.4:	Quantification	of	transcript	levels	of	genes	involved	in	lipid	metabolism	and	putative	
lipid	transport	in	non‐mycorrhized	and	mycorrhized	wild‐type	(wt),	ram1‐1,	nsp1‐1,	and	nsp2‐2	
roots	at	8	dpi,	13	dpi,	and	27	dpi.	Expression	levels	of	RAM2	(A),	FatM	(B),	MtABCG3	(C),	and	
MtWRI1	 (D)	 are	 shown.	 Expression	 levels	 were	 measured	 by	 qRT‐PCR	 and	 normalized	 to	
Ubiquitin	expression.	Bars	represent	means	of	4	biological	replicates	±	SEM.	Asterisks	indicate	
significant	differences	between	expression	levels	in	mycorrhized	and	non‐mycorrhized	roots	of	
the	same	genotype	at	the	corresponding	time	point	(ANOVA,	post	hoc	Tukey,	*,	P	<	0.05;	**,	P	<	
0.01;	***,	P	<	0.001,	n.s.,	P	>	0.05).	
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Figure	5.5:	Activity	of	the	RAM2	promoter	in	mycorrhized	and	non‐mycorrhized	M.	truncatula	
roots.	 Bright	 field	 (A,	C,	E)	 and	 the	 corresponding	 green	 fluorescence	 (B,	D,	F)	 images	 of	M.	
truncatula	hairy	roots	expressing	the	β‐glucuronidase	(GUS)	gene	under	the	control	of	the	RAM2	
promoter	 are	 shown.	 Roots	 were	 grown	 in	 the	 presence	 (A,	B,	 C,	D)	 and	 absence	 (E,	 F)	 of	
mycorrhizal	 fungi.	RAM2	 promoter	 activity	was	 visualised	 by	GUS	 staining.	 Fungal	 structures	
were	 visualised	 by	 staining	 roots	 with	 Alexa	 Fluor	 488	 WGA.	 Arrowheads	 indicate	 cells	
containing	fully	developed	arbuscules.	Stars	indicate	hyphopodia.	Scale	bars	=	150	µm.	
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Figure	 5.6:	 Activity	 of	 the	 MtABCG3	 promoter	 in	 mycorrhized	 and	 non‐mycorrhized	 M.	
truncatula	roots.	Bright	field	(A,	C,	E)	and	the	corresponding	green	fluorescence	(B,	D,	F)	images	
of	M.	truncatula	hairy	roots	expressing	the	β‐glucuronidase	(GUS)	gene	under	the	control	of	the	
MtABCG3	promoter	are	shown.	Roots	were	grown	in	the	presence	(A,	B,	C,	D)	and	absence	(E,	F)	
of	 mycorrhizal	 fungi.	 MtABCG3	 promoter	 activity	 was	 visualised	 by	 GUS	 staining.	 Fungal	
structures	were	visualised	by	staining	roots	with	Alexa	Fluor	488	WGA.	Arrowheads	indicate	cells	
containing	fully	developed	arbuscules.	Stars	indicate	hyphopodia.	Scale	bars	=	150	µm.	
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Figure	5.7:	Activity	of	the	FatM	promoter	in	mycorrhized	and	non‐mycorrhized	M.	truncatula	
roots.	 Bright	 field	 (A,	C,	E)	 and	 the	 corresponding	 green	 fluorescence	 (B,	D,	F)	 images	 of	M.	
truncatula	hairy	roots	expressing	the	β‐glucuronidase	(GUS)	gene	under	the	control	of	the	FatM	
promoter	 are	 shown.	 Roots	 were	 grown	 in	 the	 presence	 (A,	B,	 C,	D)	 and	 absence	 (E,	 F)	 of	
mycorrhizal	fungi.	FatM	promoter	activity	was	visualised	by	GUS	staining.	Fungal	structures	were	
visualised	by	staining	roots	with	Alexa	Fluor	488	WGA.	Arrowheads	indicate	cells	containing	fully	
developed	arbuscules.	Stars	indicate	hyphopodia.	Scale	bars	=	150	µm.	
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Figure	5.8:	Activity	of	the	MtWRI1	promoter	in	mycorrhized	and	non‐mycorrhized	M.	truncatula	
roots.	 Bright	 field	 (A,	C,	E)	 and	 the	 corresponding	 green	 fluorescence	 (B,	D,	F)	 images	 of	M.	
truncatula	 hairy	 roots	 expressing	 the	 β‐glucuronidase	 (GUS)	 gene	 under	 the	 control	 of	 the	
MtWRI1	promoter	are	shown.	Roots	were	grown	in	the	presence	(A,	B,	C,	D)	and	absence	(E,	F)	
of	mycorrhizal	fungi.	MtWRI1	promoter	activity	was	visualised	by	GUS	staining.	Fungal	structures	
were	 visualised	 by	 staining	 roots	 with	 Alexa	 Fluor	 488	 WGA.	 Arrowheads	 indicate	 cells	
containing	fully	developed	arbuscules.	Stars	indicate	hyphopodia.	Scale	bars	=	150	µm.	
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Figure	5.9:	Activity	of	the	MtWRI2	promoter	in	mycorrhized	and	non‐mycorrhized	M.	truncatula	
roots.	 Bright	 field	 (A,	C,	E)	 and	 the	 corresponding	 green	 fluorescence	 (B,	D,	F)	 images	 of	M.	
truncatula	 hairy	 roots	 expressing	 the	 β‐glucuronidase	 (GUS)	 gene	 under	 the	 control	 of	 the	
MtWRI2	promoter	are	shown.	Roots	were	grown	in	the	presence	(A,	B,	C,	D)	and	absence	(E,	F)	
of	mycorrhizal	fungi.	MtWRI2	promoter	activity	was	visualised	by	GUS	staining.	Fungal	structures	
were	 visualised	 by	 staining	 roots	 with	 Alexa	 Fluor	 488	 WGA.	 Arrowheads	 indicate	 cells	
containing	fully	developed	arbuscules.	Stars	indicate	hyphopodia.	Scale	bars	=	150	µm.	
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Figure	 5.10:	 Activity	 of	 the	 MtWRI3	 promoter	 in	 mycorrhized	 and	 non‐mycorrhized	 M.	
truncatula	roots.	Bright	field	(A,	C,	E)	and	the	corresponding	green	fluorescence	(B,	D,	F)	images	
of	M.	truncatula	hairy	roots	expressing	the	β‐glucuronidase	(GUS)	gene	under	the	control	of	the	
MtWRI3	promoter	are	shown.	Roots	were	grown	in	the	presence	(A,	B,	C,	D)	and	absence	(E,	F)	
of	mycorrhizal	fungi.	MtWRI3	promoter	activity	was	visualised	by	GUS	staining.	Fungal	structures	
were	 visualised	 by	 staining	 roots	 with	 Alexa	 Fluor	 488	 WGA.	 Arrowheads	 indicate	 cells	
containing	fully	developed	arbuscules.	Stars	indicate	hyphopodia.	Scale	bars	=	150	µm.	
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Figure	 5.11:	 Activity	 of	 the	 MtWRI4	 promoter	 in	 mycorrhized	 and	 non‐mycorrhized	 M.	
truncatula	roots.	Bright	field	(A,	C,	E)	and	the	corresponding	green	fluorescence	(B,	D,	F)	images	
of	M.	truncatula	hairy	roots	expressing	the	β‐glucuronidase	(GUS)	gene	under	the	control	of	the	
MtWRI4	promoter	are	shown.	Roots	were	grown	in	the	presence	(A,	B,	C,	D)	and	absence	(E,	F)	
of	mycorrhizal	fungi.	MtWRI4	promoter	activity	was	visualised	by	GUS	staining.	Fungal	structures	
were	 visualised	 by	 staining	 roots	 with	 Alexa	 Fluor	 488	 WGA.	 Arrowheads	 indicate	 cells	
containing	fully	developed	arbuscules.	Stars	indicate	hyphopodia.	Scale	bars	=	150	µm.	
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Figure	 5.12:	 Activity	 of	 the	 MtWRI6	 promoter	 in	 mycorrhized	 and	 non‐mycorrhized	 M.	
truncatula	roots.	Bright	field	(A,	C,	E)	and	the	corresponding	green	fluorescence	(B,	D,	F)	images	
of	M.	truncatula	hairy	roots	expressing	the	β‐glucuronidase	(GUS)	gene	under	the	control	of	the	
MtWRI6	promoter	are	shown.	Roots	were	grown	in	the	presence	(A,	B,	C,	D)	and	absence	(E,	F)	
of	mycorrhizal	fungi.	MtWRI6	promoter	activity	was	visualised	by	GUS	staining.	Fungal	structures	
were	 visualised	 by	 staining	 roots	 with	 Alexa	 Fluor	 488	 WGA.	 Arrowheads	 indicate	 cells	
containing	fully	developed	arbuscules.	Stars	indicate	hyphopodia.	Scale	bars	=	150	µm.	
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Figure	5.13:	Overview	of	TNT1‐insertion	lines	carrying	an	insertion	in	MtABCG3.	(A)	Positions	
of	 the	TNT1	 insertions	 in	the	MtABCG3	gene	 in	the	 lines	NF20376,	NF11484,	and	NF1558	are	
marked	with	triangles.	Exons	(E1‐E8)	are	indicated	in	grey.	(B)	RT‐PCR	of	the	full	length	MtABCG3	
cDNA	and	the	Ubiquitin	(UBI)	cDNA	from	mycorrhized	roots	of	wild‐type	(R108)	plants	and	the	
TNT1‐insertion	lines.	Binding	sites	of	the	primers	used	for	the	amplification	of	the	MtABCG3	cDNA	
are	indicated	by	red	arrows	in	(A).	Expected	size	of	the	amplified	full	length	MtABCG3	cDNA	=	
1760	bp.	Expected	size	of	the	amplified	UBI	cDNA	=	1090	bp.	(C)	Predicted	protein	structure	of	
the	MtABCG3	transporter.	Expected	positions	of	the	TNT1	insertions	are	marked	with	triangles.	
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Figure	 5.14:	 Quantification	 of	 mycorrhizal	 infection	 structures	 in	 wild‐type	 (wt)	 roots	 and	
Mtabcg3	 mutant	 roots.	 The	 occurrence	 of	 hyphopodia,	 intraradical	 hyphae	 (int.	 hyphae),	
arbuscules,	and	vesicles	in	ink‐stained	root	pieces	of	the	wild	type	and	the	TNT1‐insertion	lines	
NF20376,	NF11484,	NF1558	is	shown	as	percentage	of	the	total	number	of	root	pieces	examined.	
Fungal	 infection	 structures	 were	 quantified	 at	 2	 wpi	 (A),	 3	 wpi	 (B),	 and	 7.5	 wpi	 (C).	 Bars	
represent	 the	 average	of	 at	 least	12	biological	 replicates	±	 SEM.	Asterisks	 indicate	 significant	
differences	between	the	wild	type	and	the	mutant	lines	in	each	group	of	infection	type	(Student’s	
t‐test;	*,	P	<	0.05;	**,	P	<	0.01;	***,	P	<	0.001).	
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Figure	5.15:	Appearance	of	arbuscules	in	wild‐type	(R108)	roots	and	Mtabcg3	mutant	roots	at	
different	time	points	during	fungal	colonization.	Bright	field	images	of	ink‐stained	R108	roots	(A,	
B,	C),	NF20376	roots	(D,	E,	F),	NF11484	roots	(G,	H,	I)	and	NF1558	roots	(J,	K,	L)	at	2	wpi,	3	wpi,	
and	7.5	wpi	(as	indicated)	are	shown.	Arrowheads	indicate	fully	developed	arbuscules.	Scale	bar	
=	50	µm.	
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Figure	5.16:	Unspecific	activation	of	gene	expression	by	RAM1	 in	N.	benthamiana	 leaves.	The	
activation	of	the	LUCIFERASE	(LUC)	gene	under	the	control	of	a	number	of	different	promoters	
(as	 indicated)	by	RAM1	 is	 shown.	LUC	activities	were	normalised	against	 the	β‐glucuronidase	
(GUS)	activities	quantified	in	the	same	leaf	discs.	The	same	expression	vectors	containing	all	the	
components	 except	 for	 the	 gene	 encoding	 RAM1	 served	 as	 negative	 controls.	 Bars	 represent	
means	 of	 3	 biological	 replicates	 ±	 SEM.	Asterisks	 indicate	 significant	 differences	 between	 the	
negative	control	and	leaves	overexpressing	RAM1	(Student’s	t‐test;	*,	P	<	0.05;	**,	P	<	0.01;	***,	P	
<	0.001).		
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Figure	5.17:	Complementation	of	the	ram1‐1	mutant	phenotype	by	expressing	the	vector	used	
for	 the	 transactivation	 assay	 with	 RAM1	 and	 the	 pMNR‐LUC	 reporter	 (description	 continued	
overleaf).	
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	(A)	The	ability	of	RAM1	to	induce	the	expression	of	the	LUC	gene	under	the	control	of	the	MNR	
promoter	was	measured	 in	a	 transactivation	assay	 in	M.	 truncatula	hairy	roots.	LUC	activities	
were	 normalised	 against	 the	 β‐glucuronidase	 (GUS)	 activities	 quantified	 in	 the	 same	 root	
samples.	The	same	expression	vector	containing	all	the	components	except	for	the	gene	encoding	
RAM1	served	as	negative	 control.	Bars	 represent	means	of	3	biological	 replicates	±	 SEM.	N.s.	
depicts	a	non‐significant	difference,	Student’s	t‐test.	(B)	Quantification	of	mycorrhizal	structures	
in	wild‐type	 (wt)	 roots	 and	 ram1‐1	 roots	 transformed	with	 the	 same	 vectors	 as	 used	 for	 the	
transactivation	assay	described	in	(A).	The	occurrence	of	hyphopodia,	intraradical	hyphae	(int.	
hyphae),	arbuscules,	and	vesicles	in	ink‐stained	root	pieces	is	shown	as	percentage	of	the	total	
number	 of	 root	 pieces	 examined.	 Fungal	 infection	 structures	 were	 quantified	 at	 4	 wpi.	 Bars	
represent	the	average	of	12	biological	replicates	±	SEM.	Asterisks	indicate	significant	differences	
between	ram1‐1	roots	expressing	the	vector	control	and	ram1‐1	roots	overexpressing	HA‐RAM1	
(Student’s	t‐test;	*,	P	<	0.05;	**,	P	<	0.01;	***,	P	<	0.001).	(C)	–	(H)	Appearance	of	mycorrhizal	
structures	 in	wild‐type	(wt)	roots	and	ram1‐1	 roots	 transformed	with	 the	vectors	used	 in	 the	
transactivation	assay	described	in	(A).	Colonized	roots	were	stained	with	Alexa	Fluor	488	WGA.	
Bright	field	(C,	E,	G)	and	respective	green	fluorescence	(D,	F,	H)	images	are	shown.	Arrowheads	
indicate	fully	developed	arbuscules.	Stars	indicate	underdeveloped	arbuscules.	Scale	bar	=	100	
µm.	EV,	empty	vector.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Chapter 5 – Mycorrhizal processes regulated by RAM1 

 

154	
	

	

											 	

Figure	5.18:	Quantification	of	transcript	levels	of	putative	RAM1	target	genes	in	M.	truncatula	
roots	overexpressing	RAM1.	Gene	expression	was	measured	by	qRT‐PCR	in	M.	truncatula	roots	
overexpressing	 GFP	 (pUBI::GFP)	 or	 RAM1	 (pUBI::RAM1)	 in	 the	 absence	 of	mycorrhizal	 fungi.	
Expression	 levels	 of	 RAM1,	 MtWRI1,	 MtWRI2,	 RAM2,	 FatM,	 MtABCG3,	 and	 the	 phosphate	
transporter	PT4	 are	 shown.	 Expression	 levels	were	 normalized	 to	Ubiquitin	 expression.	 Bars	
represent	means	of	3	biological	replicates	(each	containing	5‐7	root	systems	from	individually	
transformed	 plants)	 ±	 SEM.	 Asterisks	 indicate	 significant	 differences	 between	 GFP‐
overexpressing	roots	and	RAM1‐overexpressing	roots	(Student’s	t‐test;	*,	P	<	0.05;	**,	P	<	0.01;	
***,	P	<	0.001).	
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Figure	 5.19:	 Complementation	 of	 the	 ram1‐1	 mutant	 phenotype	 by	 the	 expression	 of	
pRAM1::GFP‐RAM1	(description	continued	overleaf).		
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(A)	Quantification	of	mycorrhizal	infection	structures	in	wild‐type	(wt)	roots	and	ram1‐1	roots	
transformed	 with	 an	 empty	 vector	 control	 (EV)	 or	 pRAM1::GFP‐RAM1.	 The	 occurrence	 of	
hyphopodia,	intraradical	hyphae	(int.	hyphae),	arbuscules,	and	vesicles	in	ink‐stained	root	pieces	
is	shown	as	percentage	of	the	total	number	of	root	pieces	examined.	Fungal	infection	structures	
were	quantified	at	4	wpi.	Bars	represent	the	average	of	at	least	10	biological	replicates	±	SEM.	
Asterisks	 indicate	 significant	 differences	 between	 ram1‐1	 roots	 expressing	 the	 empty	 vector	
control	and	ram1‐1	roots	expressing	pRAM1::GFP‐RAM1	(Student’s	t‐test;	*,	P	<	0.05;	**,	P	<	0.01;	
***,	P	<	0.001).	(B)	–	(G)	Appearance	of	mycorrhizal	structures	in	wild‐type	(wt)	roots	and	ram1‐
1	roots	transformed	with	the	empty	vector	control	or	pRAM1::GFP‐RAM1.	Colonized	roots	were	
stained	with	Alexa	Fluor	488	WGA.	Bright	field	(B,	D,	F)	and	corresponding	green	fluorescence	
(C,	 E,	 G)	 images	 are	 shown.	 Arrowheads	 indicate	 fully	 developed	 arbuscules.	 Stars	 indicate	
underdeveloped	arbuscules.	Scale	bar	=	100	µm.		
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General discussion 

	

	

	

	

	

The	colonization	of	plant	roots	by	arbuscular	mycorrhizal	fungi	requires	the	extensive	

transcriptional	reprogramming	of	host	cells	to	ensure	the	proper	accommodation	of	the	

fungal	symbiont.	Several	members	of	the	GRAS‐domain	protein	family	have	emerged	as	

important	 regulators	 of	 gene	 expression	 during	 AM	 development.	 Amongst	 these	

proteins	are	NSP1	and	NSP2,	which	were	originally	discovered	due	to	their	critical	role	

as	transcription	factors	in	the	root‐nodule	symbiosis	with	rhizobia	(Catoira	et	al.,	2000;	

Wais	et	al.,	2000;	Oldroyd	and	Long	2003;	Kaló	et	al.,	2005;	Smit	et	al.,	2005).	NSP1	and	

NSP2	physically	interact	with	each	other	to	form	a	transcriptionally	active	complex,	and	

this	 interaction	 appears	 to	 be	 crucial	 for	 gene	 regulation	 and	 the	 successful	

establishment	 of	 the	 symbiosis	with	 rhizobia	 (Hirsch	 et	 al.,	 2009;	 Cerri	 et	 al.,	 2012).	

Plants	carrying	a	mutation	in	either	NSP1	or	NSP2	are	unable	to	form	infection	threads	

or	nodules,	suggesting	that	both	proteins	are	essential	to	regulate	gene	expression	and	

act	 in	a	non‐redundant	way	(Catoira	et	al.,	2000;	Wais	et	al.,	2000;	Oldroyd	and	Long	

2003).	 Based	 on	 these	 observations,	 it	 has	 been	 proposed	 that	 NSP1	 and	 NSP2	 act	

together	 to	 regulate	 the	 same	 genes	 during	 the	 root‐nodule	 symbiosis	 (Hirsch	 et	 al.,	

2009).	 The	 corresponding	 loss‐of	 function	mutants	were	 also	 found	 to	have	 reduced	
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levels	of	mycorrhization,	suggesting	that	these	two	proteins	are	involved	in	regulating	

the	expression	of	genes	 that	are	 relevant	 for	 the	 symbiosis	with	AM	 fungi	 (Liu	et	 al.,	

2011;	Maillet	et	al.,	2011;	Delaux	et	al.,	2013).	In	addition	to	NSP1	and	NSP2,	RAM1	was	

shown	to	act	as	a	transcriptional	regulator	during	mycorrhization	(Gobbato	et	al.,	2012;	

Park	et	al.,	2015,	Rich	et	al.,	2015;	Pimprikar	et	al.,	2016).	RAM1	is	able	to	interact	with	

NSP2,	and	it	has	been	hypothesised	that	these	two	proteins	form	a	transcription	factor	

complex	to	regulate	the	expression	of	mycorrhizal	genes	(Gobbato	et	al.,	2012).	These	

findings	 raise	 the	 question	whether	NSP1,	NSP2	 and	RAM1	have	 similar	 or	 different	

functions	in	the	regulation	of	gene	expression	during	the	establishment	of	AM	symbiosis.	

The	 phenotypic	 and	 transcriptional	 analyses	 of	 the	 corresponding	 loss‐of‐function	

mutants	performed	here	 indicate	 that	 these	three	GRAS‐domain	proteins	play	 largely	

different	roles	in	regulating	the	transcriptional	reprogramming	of	roots	during	fungal	

colonization.		

	

6.1  NSP1  and  NSP2  have  different  roles  in  the  regulation  of  gene 

expression during AM symbiosis 

Plants	carrying	a	mutation	in	NSP1	displayed	a	relatively	subtle	mycorrhizal	phenotype,	

with	fungal	colonization	levels	being	slightly	reduced	in	nsp1‐1	roots	compared	to	the	

wild	type	at	both	early	and	late	time	points	during	AM	symbiosis	(Chapter	2).	Meanwhile,	

no	 qualitative	 differences	 in	 the	 infection	 structures	 were	 observed,	 and	 fungal	

colonization	inside	the	roots	progressed	normally.	These	results	suggest	that	the	onset	

of	mycorrhization	is	delayed	in	nsp1‐1	roots	compared	to	the	wild	type,	and	in	line	with	

this	hypothesis,	global	gene	expression	profiling	revealed	a	delay	in	the	transcriptional	

induction	of	the	majority	of	the	mycorrhizal	genes	in	nsp1‐1	(Chapter	3).	At	the	same	

time,	 only	 a	 few	 genes	 were	 found	 to	 be	 consistently	 dependent	 on	NSP1	 for	 their	

induction	during	mycorrhization,	 indicating	 that	NSP1	 plays	 only	 a	minor	 role	 in	 the	

regulation	of	 gene	 expression	during	 fungal	 colonization.	By	 contrast,	 transcriptional	

profiling	of	nsp1‐1	roots	grown	in	the	absence	of	mycorrhizal	fungi	revealed	that	NSP1	

has	an	important	role	in	the	regulation	of	gene	expression	under	non‐	or	pre‐symbiotic	

conditions	(Chapter	3).	Notably,	a	large	number	of	genes	involved	in	the	biosynthesis	of	

strigolactones	were	 significantly	downregulated,	 indicating	 that	NSP1	might	 regulate	

several	steps	in	the	production	of	strigolactones.	These	findings	are	in	line	with	a	study	

demonstrating	that	the	levels	of	orobanchol	and	didehydro‐orobanchol,	the	two	major	
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strigolactones	present	in	M.	truncatula,	are	almost	entirely	absent	in	nsp1	root	exudates	

(Liu	et	al.,	2011).	As	strigolactones	are	known	to	induce	spore	germination	and	hyphal	

branching	of	mycorrhizal	 fungi	(Akiyama	et	al.,	2005;	Besserer	et	al.,	2006),	a	 lack	of	

strigolactone	 production	 in	 nsp1‐1	 roots	 is	 a	 likely	 reason	 for	 the	 delay	 in	 fungal	

colonization	and	induction	of	mycorrhizal	gene	expression	observed	here.	The	finding	

that	several	genes	involved	in	the	biosynthesis	of	gibberellins	were	also	differentially	

expressed	in	non‐mycorrhized	nsp1‐1	roots	indicates	that	NSP1	might	not	only	regulate	

strigolactone,	but	also	gibberellin	production	under	non‐symbiotic	conditions.	The	gene	

expression	pattern	of	gibberellin	biosynthesis	genes	in	nsp1‐1	suggests	that	gibberellin	

levels	are	reduced	in	the	mutant.	Gibberellins	appear	to	have	both	positive	and	negative	

effects	on	fungal	colonization	(Floss	et	al.,	2013;	Foo	et	al.,	2013;	Yu	et	al.,	2014;	Takeda	

et	al.,	2015),	however,	 the	role	of	 these	plant	hormones	at	 the	pre‐symbiotic	stage	of	

mycorrhization	 is	 currently	 unclear.	 It	 would	 be	 interesting	 to	 test	 whether	 the	

combined	application	of	both	gibberellins	and	strigolactones	is	sufficient	to	complement	

the	mycorrhizal	phenotype	of	nsp1‐1,	and	would	further	shed	light	on	the	potential	role	

of	gibberellins	at	the	pre‐contact	stage	of	the	symbiosis.	Together,	the	phenotypic	and	

transcriptional	 analyses	 of	 nsp1‐1	 suggest	 that	 NSP1	 plays	 a	 major	 role	 in	 the	

transcriptional	 regulation	 of	 roots	 under	 non‐symbiotic	 conditions	 or	 at	 the	 pre‐

symbiotic	stage	of	the	AM	symbiosis,	while	it	appears	to	be	less	important	for	the	control	

of	gene	expression	once	the	fungus	has	entered	the	root.		

Unlike	 nsp1‐1,	 nsp2‐2	 roots	 did	 not	 show	 any	 significant	 quantitative	 or	 qualitative	

differences	in	fungal	colonization	under	the	conditions	tested	here	(Chapter	2).	These	

findings	 are	 somewhat	 surprising,	 as	 it	 had	 previously	 been	 shown	 that	 fungal	

colonization	is	reduced	in	nsp2	mutants	(Maillet	et	al.,	2011;	Lauressergues	et	al.,	2012).	

It	is	likely	that	the	mycorrhizal	phenotype	of	nsp2	depends	on	the	nutrient	conditions	or	

the	 strength	 of	 the	 fungal	 inoculum,	 as	 has	 previously	 been	 described	 for	 the	 nsp1	

mutant	 phenotype	 (Delaux	 et	 al.,	 2013).	 The	 differences	 in	 the	 severity	 of	 the	

mycorrhizal	phenotypes	of	nsp1‐1	and	nsp2‐2	observed	here	show	that	NSP1	and	NSP2	

are	unlikely	to	fulfil	identical	roles	in	the	transcriptional	reprogramming	of	roots	during	

AM	 symbiosis.	 Interestingly,	 although	 no	 significant	 reduction	 in	 mycorrhizal	

colonization	was	observed	in	nsp2‐2	roots,	global	gene	expression	profiling	identified	a	

number	of	genes	whose	 induction	was	dependent	on	NSP2	 at	 late	 time	points	during	

mycorrhization,	suggesting	that	NSP2	might	have	a	role	at	later	stages	of	the	symbiosis.	

However,	no	obvious	functions	of	these	potential	target	genes	in	AM	development	were	

identified	 (Chapter	 3	 and	 4).	 Importantly,	 most	 of	 the	 strigolactone	 and	 gibberellin	
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biosynthesis	genes	 that	were	 found	 to	be	differentially	expressed	 in	nsp1‐1	were	not	

affected	in	nsp2‐2,	suggesting	that	unlike	NSP1,	NSP2	is	not	essential	for	the	expression	

of	these	genes.	This	does	not	exclude	the	possibility	that	NSP2	acts	together	with	NSP1	

to	regulate	some	of	these	genes.	In	fact,	a	complex	of	NSP1	and	NSP2	did	activate	the	

expression	 of	 D27	 in	 a	 transactivation	 assay	 in	 N.	 benthamiana	 leaves,	 while	 the	

individual	transcription	factors	were	significantly	less	active	(Chapter	4).	However,	the	

results	 of	 the	 phenotypic	 analyses	 and	 the	 global	 gene	 expression	 profiling	 strongly	

indicate	 that	 there	 is	 some	 level	 of	 redundancy	 for	 the	 function	 of	 NSP2	 in	 AM	

development,	 at	 least	 under	 the	 conditions	 tested	 here,	 and	 that	 other	 transcription	

factors	 might	 be	 able	 to	 interact	 with	 NSP1	 to	 regulate	 gene	 expression	 during	

mycorrhization.	This	situation	is	different	from	the	regulation	of	gene	expression	by	the	

NSP1‐NSP2	 complex	 in	 the	 root‐nodule	 symbiosis,	where	both	proteins	 appear	 to	be	

equally	important	for	successfully	entering	a	symbiosis	with	rhizobia.	

	

6.2  Non‐mycorrhizal roles of NSP1 and NSP2  

Despite	 the	 fact	 that	NSP1	 and	NSP2	 were	 discovered	 to	 have	 a	 critical	 function	 in	

nodulation	a	long	time	ago,	little	is	known	about	the	genes	that	are	controlled	by	NSP1	

and	NSP2	during	the	establishment	of	the	root‐nodule	symbiosis.	Targeted	DNA	binding	

studies	and	transactivation	assays	have	shown	that	the	NSP1‐NSP2	complex	associates	

with	and	activates	the	promoters	of	the	rhizobial‐induced	genes	NIN,	ERN1,	and	ENOD11	

(Hirsch	et	al.,	2009;	Cerri	et	al.,	2012).	However,	additional	target	genes	of	NSP1	and	

NSP2	during	nodulation	are	largely	unknown,	as	no	global	gene	expression	or	genome‐

wide	DNA‐binding	studies	have	been	performed	so	far.		

The	process	leading	to	rhizobial	infection	and	nodule	formation	shares	many	similarities	

with	AM	development,	and	many	of	the	same	developmental	and	signalling	processes	

are	required	for	both	symbioses.	It	has	therefore	been	suggested	that	the	root‐nodule	

symbiosis	has	evolved	by	recruiting	the	symbiotic	programme	that	is	required	for	AM	

development	 (Parniske,	 2008;	 Oldroyd,	 2013).	 Thus,	 it	 is	 conceivable	 that	NSP1	 and	

NSP2	regulate	similar	processes	during	both	the	root‐nodule	and	the	AM	symbiosis.	In	

accordance	 with	 this,	 research	 in	 recent	 years	 has	 uncovered	 an	 important	 role	 of	

strigolactones	 not	 only	 during	 mycorrhization,	 but	 also	 during	 nodulation.	 In	 M.	

truncatula,	 the	 external	 application	 of	 strigolactones	 was	 found	 to	 promote	 nodule	

formation	 at	 low	 concentrations,	 while	 higher	 concentrations	 appear	 to	 inhibit	
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nodulation	(Soto	et	al.,	2010;	De	Cuyper	et	al.,	2014).	Furthermore,	L.	japonicus	and	pea	

mutants	 deficient	 in	 strigolactones	 display	 a	 reduced	 number	 of	 nodules	 (Foo	 et	 al.,	

2011;	 Liu	 et	 al.,	 2013).	 Consistent	 with	 these	 observations,	 the	 expression	 levels	 of	

several	genes	involved	in	carotenoid	and	strigolactone	biosynthesis,	 including	ZDS,	Z‐

ISO,	D27	and	CCD8,	were	shown	to	increase	in	root	hairs	after	inoculation	with	rhizobia	

(Breakspear	et	al.,	2014).	A	recent	study	has	demonstrated	that	D27,	CCD7	and	CCD8	are	

co‐expressed	 in	 nodule	 primordia	 and	 mature	 nodules	 (van	 Zeijl	 et	 al.,	 2015).	

Interestingly,	D27	was	further	found	to	be	induced	in	response	to	Nod	factors,	and	this	

induction	 appears	 to	 be	 at	 least	 partly	 under	 the	 control	 of	 NSP1	 and	 NSP2.	 These	

findings	provide	further	insights	into	the	role	of	NSP1	and	NSP2	during	nodulation	and	

suggest	 that	 the	 regulation	of	D27	 by	NSP1	and	NSP2	has	been	co‐opted	 in	 the	 root‐

nodule	symbiosis	(van	Zeijl	et	al.,	2015).		

In	addition	to	strigolactones,	gibberellins	are	known	to	play	an	important	role	during	

the	establishment	of	the	root‐nodule	symbiosis.	Similar	to	the	AM	symbiosis,	the	right	

level	of	gibberellins	appears	to	be	crucial	for	the	proper	establishment	of	the	root‐nodule	

symbiosis,	 as	 both	 insufficient	 and	 excessive	 gibberellin	 levels	 inhibit	 nodulation	

(Ferguson	et	al.,	2005;	Maekawa	et	al.,	2009;	Hayashi	et	al.,	2014).	In	addition,	several	

gibberellin	biosynthesis	genes	were	found	to	be	upregulated	in	root	hairs	in	response	to	

rhizobia	 and	 Nod	 factors,	 suggesting	 that	 gibberellins	 might	 have	 a	 function	 in	 the	

rhizobial	 infection	 process	 (Breakspear	 et	 al.,	 2014).	 The	 global	 gene	 expression	

profiling	 performed	 here	 revealed	 a	 possible	 role	 for	NSP1	 in	 regulating	 gibberellin	

levels	through	the	control	of	gibberellin	biosynthesis	genes	under	non‐	or	pre‐symbiotic	

conditions	 (Chapter	 4).	 It	 would	 be	 interesting	 to	 test	 whether	 NSP1	 has	 a	 similar	

function	in	the	regulation	of	gibberellin	biosynthesis	during	rhizobial	infection	or	nodule	

formation.	 Promoter‐GUS	 studies	 in	 the	 wild	 type	 and	 nsp1	mutant	 might	 provide	

further	insights	into	the	expression	pattern	of	gibberellin	biosynthesis	genes	during	the	

establishment	 of	 the	 root‐nodule	 symbiosis,	 and	 would	 help	 clarify	 whether	 the	

expression	of	these	genes	requires	NSP1.	

The	 severity	 of	 the	 nsp1	 and	 nsp2	 phenotype	 in	 nodulation	 suggests	 that	 these	 two	

transcription	factors	have	an	essential	role	in	the	regulation	of	gene	expression	during	

the	root‐nodule	symbiosis,	while	they	appear	to	have	less	critical	functions	during	AM	

symbiosis,	 as	 the	 mycorrhizal	 phenotypes	 of	 the	 mutants	 are	 much	 weaker.	 It	 is	

therefore	likely	that	NSP1	and	NSP2	have	acquired	additional	 functions	in	 legumes	to	

regulate	 gene	 expression	 during	 the	 root‐nodule	 symbiosis.	 For	 example,	 NSP1	 and	
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NSP2	are	known	to	target	NIN,	a	gene	that	has	a	specific	role	in	nodulation,	but	is	not	

involved	 in	 mycorrhization	 (Schauser	 et	 al.,	 1999;	 Hirsch	 et	 al.,	 2009).	 Global	 gene	

expression	 profiling	 of	 nsp1	 and	 nsp2	 roots	 upon	 rhizobial	 infection	 might	 identify	

further	genes	that	are	regulated	by	NSP1	and	NSP2	during	the	root‐nodule	symbiosis.	

Intriguingly,	the	rice	homologs	of	NSP1	and	NSP2	are	able	to	fully	restore	the	defect	in	

root‐nodule	symbiosis	of	the	respective	L.	japonicus	mutants	(Yokota	et	al.,	2010).	These	

findings	indicate	that	NSP1	and	NSP2	are	functionally	conserved	even	in	plant	species	

that	do	not	nodulate.	It	remains	to	be	elucidated	how	the	activity	of	NSP1	and	NSP2	is	

regulated	 during	 the	 establishment	 of	 the	 root‐nodule	 symbiosis	 to	 achieve	 the	

rhizobial‐specific	transcriptional	reprogramming	required	for	nodule	formation.		

Transcriptional	 profiling	 revealed	 that	 a	 large	 number	 of	 genes	 were	 differentially	

regulated	in	M.	truncatula	nsp1‐1	and	nsp2‐2	under	non‐symbiotic	conditions	(Chapter	

3).	While	some	of	these	genes	are	likely	to	be	involved	in	the	pre‐contact	stage	of	AM	

symbiosis,	 others	 might	 function	 in	 processes	 unrelated	 to	 symbiosis.	 Interestingly,	

homologs	of	NSP1	and	NSP2	were	found	in	plant	species	that	do	not	enter	a	symbiosis	

with	 mycorrhizal	 fungi	 or	 rhizobia,	 including	 A.	 thaliana	 (Delaux	 et	 al.,	 2013).	 The	

function	of	these	two	transcription	factors	in	non‐host	species	is	currently	unknown.	It	

is	possible	that	NSP1	and	NSP2	have	a	more	general	role	in	controlling	the	biosynthesis	

of	 strigolactones,	 which	 are	 not	 only	 involved	 in	 the	 establishment	 of	 different	

symbioses,	but	also	act	as	important	plant	hormones	to	regulate	plant	developmental	

processes	such	as	shoot	architecture	and	root	development	(Al‐Babili	and	Bouwmeester,	

2015).	In	addition,	NSP1	and	NSP2	might	control	genes	involved	in	as	yet	unidentified	

non‐symbiotic	 processes.	 The	 characterisation	 of	A.	 thaliana	 nsp1	 and	 nsp2	 mutants	

would	provide	further	insights	into	the	non‐symbiotic	functions	of	these	transcription	

factors.	

	

6.3  RAM1 regulates symbiotic processes specific to AM symbiosis 

Unlike	NSP1	 and	NSP2,	RAM1	 is	 specifically	 involved	 in	mycorrhization,	but	does	not	

have	a	role	in	nodulation,	as	it	is	not	required	for	Nod	factor	induced	gene	expression	

and	lateral	root	growth	(Gobbato	et	al.,	2012).	Furthermore,	gene	expression	profiling	

of	ram1‐1	roots	grown	in	the	absence	of	mycorrhizal	fungi	only	identified	very	few	genes	

that	were	consistently	differentially	expressed	in	ram1‐1	at	all	three	time	points	tested,	

suggesting	that	RAM1	has	no	or	only	a	minor	role	in	regulating	gene	expression	under	
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non‐symbiotic	 conditions	 (Chapter	 2).	 Interestingly,	 RAM1	 was	 shown	 to	 be	

evolutionarily	 conserved	 only	 in	 species	 that	 are	 able	 to	 enter	 a	 symbiosis	 with	

mycorrhizal	 fungi.	 In	non‐host	species,	such	as	A.	thaliana	and	 lupines	(which	do	not	

mycorrhize,	but	are	still	able	to	form	nodules),	no	RAM1	homolog	was	identified,	further	

supporting	the	hypothesis	that	RAM1	acts	specifically	during	AM	development	(Delaux	

et	al.,	2013).	

Out	of	the	three	GRAS	transcription	factor	mutants	investigated	here,	ram1‐1	displayed	

the	most	severe	defect	in	AM	symbiosis	(Chapter	2).	A	slightly	reduced,	transient	fungal	

colonization	was	observed	in	ram1‐1	at	early	time	points,	while	mycorrhizal	infection	

structures	were	almost	entirely	absent	in	the	mutant	at	 late	time	points.	Importantly,	

ram1‐1	 appeared	 to	be	unable	 to	 form	 fully	developed	 arbuscules	 at	 any	of	 the	 time	

points	 tested,	 indicating	 that	 RAM1	 is	 required	 for	 normal	 arbuscule	 development.	

Consistent	 with	 the	 severe	 mycorrhizal	 phenotype,	 global	 gene	 expression	 profiling	

revealed	that	the	transcriptional	upregulation	of	a	large	number	of	mycorrhizal	genes	

was	abolished	in	ram1‐1	roots	(Chapter	5).	Among	these	RAM1‐dependent	genes	were	

the	 phosphate	 transporter	 PT4	 and	 the	 two	 ammonium	 transporter	 family	 proteins	

AMT2‐3	 and	 AMT2‐5,	 suggesting	 that	 RAM1	 might	 regulate	 the	 expression	 of	 genes	

involved	in	the	nutrient	uptake	across	the	PAM.	In	addition,	many	genes	involved	in	lipid	

biosynthesis	and	putative	lipid	secretion	were	dependent	on	RAM1	for	their	induction	

during	mycorrhization,	including	RAM2,	FatM,	several	homologs	of	the	A.	thaliana	WRI	

transcription	factors,	and	two	ABCG	transporters	with	homology	to	lipid	transporters	in	

A.	thaliana.	RAM2	has	recently	been	found	to	be	essential	for	the	export	of	lipids	to	the	

fungus	R.	irregularis,	which	does	not	encode	genes	for	type	I	fatty	acid	synthase	and	has	

therefore	been	proposed	to	rely	on	the	plant	as	a	source	for	lipids	(Wewer	et	al.,	2014;	

Peter	 Eastmond	 and	 Ertao	Wang,	 personal	 communication).	 Promoter‐GUS	 analyses	

showed	that	many	of	these	RAM1‐dependent	lipid‐related	genes	are	co‐expressed	with	

RAM2	 in	 arbuscule‐containing	 cells,	 suggesting	 that	 they	might	 act	 in	 the	 same	 lipid‐

export	 pathway.	 The	 ectopic	 overexpression	 of	 RAM1	 in	 M.	 truncatula	 roots	 was	

sufficient	 to	 induce	 the	 expression	 of	 several	 of	 the	 lipid‐related	 genes	 even	 in	 the	

absence	 of	 mycorrhizal	 fungi,	 providing	 further	 evidence	 that	 RAM1	 directly	 or	

indirectly	controls	this	putative	lipid‐export	pathway.		

Genome	 sequencing	 has	 so	 far	 only	 been	 completed	 for	 the	 mycorrhizal	 fungus	 R.	

irregularis	(Tisserant	et	al.,	2013),	for	which	no	genes	encoding	subunits	of	the	type	I	

fatty	 acid	 synthase	 were	 found	 (Wewer	 et	 al.,	 2014).	 This	 raises	 the	 question	 how	
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widespread	the	inability	to	synthesise	fatty	acids	is	among	AM	fungal	species.	In	a	recent	

study	 investigating	 the	 transcriptome	 of	 the	mycorrhizal	 fungus	Gigaspora	 rosea,	no	

fungal	transcripts	for	fatty	acid	synthase	were	found,	indicating	that	the	genes	encoding	

this	enzyme	might	not	only	be	missing	in	R.	irregularis,	but	also	in	G.	rosea	(Tang	et	al.,	

2016).	These	findings	suggest	that	the	dependence	of	mycorrhizal	 fungi	on	their	host	

plant	to	provide	lipids	might	be	a	shared	characteristic	of	AM	fungi.	Studying	the	gene	

repertoire	of	additional	AM	fungal	species	and	investigating	whether	lipid	transfer	takes	

place	between	different	plants	and	fungal	symbionts	would	provide	further	insights	into	

the	prevalence	of	lipid	auxotrophy	in	mycorrhizal	fungi.	Notably,	RAM2,	FatM,	and	the	M.	

truncatula	homologs	of	the	AtWRI	transcription	factors	belong	to	a	set	of	genes	that	are	

evolutionarily	conserved	in	species	entering	a	symbiosis	with	AM	fungi	(Delaux	et	al.,	

2013;	Bravo	 et	 al.,	 2016).	 If	 all	 of	 these	 genes	play	 a	 role	 in	 the	production	 of	 lipids	

exported	to	the	fungus,	this	would	suggest	that	lipid	transfer	to	the	fungus	could	be	a	

common	 feature	 of	 the	 AM	 symbiosis	 between	 many	 different	 plant	 and	 AM	 fungal	

species.	

Growing	 ram2	 mutants	 together	with	 nurse	 plants	 restores	 the	 arbuscular	 defect	 in	

ram2	roots,	confirming	that	RAM2	has	a	nutritional	role	in	AM	symbiosis,	rather	than	

being	 directly	 involved	 in	 arbuscule	 formation	 (Peter	 Eastmond	 and	 Ertao	 Wang,	

personal	 communication).	 A	 similar	 experiment	 with	 ram1‐1	 roots	 showed	 that	

although	the	extent	of	fungal	colonization	in	the	mutant	was	comparable	to	the	wild	type,	

arbuscule	development	was	not	rescued	by	the	presence	of	nurse	plants	(Chapter	2).	

These	 results	 suggest	 that	 RAM1	 must	 have	 additional	 roles	 during	 AM	 symbiosis.	

Consistent	with	this,	the	expression	of	the	exocyst	subunit	EXO70I,	a	gene	known	to	be	

required	for	the	development	of	the	PAM	surrounding	the	fine	branches	of	arbuscules	

(Zhang	 et	 al.,	 2015),	 was	 abolished	 in	 ram1‐1	 roots	 at	 all	 three	 time	 points	 during	

mycorrhization.	 Together,	 these	 findings	 indicate	 that	 RAM1	 directly	 or	 indirectly	

controls	 key	 genes	 required	 for	 arbuscule	 development	 in	 addition	 to	 regulating	 the	

exchange	of	lipids	and	mineral	nutrients	between	the	plant	and	the	fungus.		

RAM1	has	previously	also	been	proposed	to	regulate	the	formation	of	hyphopodia	at	the	

root	surface	through	the	direct	control	of	RAM2.	The	number	of	hyphopodia	was	shown	

to	 be	 strongly	 reduced	 in	 both	 the	 ram1	 and	 the	 ram2	 mutant,	 however,	 infection	

structures	were	only	quantified	at	late	time	points	during	mycorrhization	(Gobbato	et	

al.,	2012;	Wang	et	al.,	2012).	Here,	the	quantification	of	infection	structures	showed	that	

the	number	of	hyphopodia	was	slightly	reduced	in	ram1‐1	roots	also	at	early	time	points	
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during	mycorrhization,	although	the	statistical	significance	varied	between	experiments	

(Chapter	2).	By	contrast,	a	recent	study	investigating	fungal	colonization	in	two	mutant	

alleles	of	RAM1	reported	that	hyphopodia	formation	was	not	impaired	in	these	mutants	

(Park	 et	 al.,	 2015).	 It	 is	 therefore	 currently	 unclear	whether	RAM1	 has	 a	 role	 in	 the	

regulation	 of	 hyphopodia	 formation	 at	 the	 epidermis	 of	 the	 root.	 Transcriptional	

profiling	 did	 not	 reveal	 any	 RAM1‐dependent	 genes	 that	 play	 an	 obvious	 role	 in	

hyphopodia	formation	other	than	RAM2	(Chapter	5).	It	is	possible	that	the	expression	of	

many	early	mycorrhizal	genes	was	 too	diluted	 in	whole	roots	 to	be	detected	by	gene	

expression	profiling	performed	here.	A	study	investigating	the	transcriptional	response	

to	Myc‐LCOs	found	that	RAM1	is	required	for	the	expression	of	the	majority	of	the	genes	

that	are	 induced	upon	recognition	of	 these	early	 signalling	molecules	 (Hohnjec	et	al.,	

2015).	These	results	suggest	that	RAM1	is	involved	in	regulating	gene	expression	during	

the	 early	 stages	 of	 the	 AM	 symbiosis,	 and	 it	 is	 possible	 that	 some	 of	 these	 RAM1‐

dependent	genes	have	a	function	in	hyphopodia	formation.	A	role	of	RAM1	in	regulating	

the	early	stages	of	AM	development	would	also	be	consistent	with	promoter‐GUS	studies	

showing	that	RAM1	is	expressed	in	all	tissues	of	colonized	M.	truncatula	roots,	including	

the	epidermal	cell	layer	(Gobbato	et	al.,	2013).		

The	expression	of	the	majority	of	the	RAM1‐dependent	genes	identified	here,	including	

the	genes	 involved	 in	arbuscule	development	and	the	nutrient	exchange	between	the	

plant	and	the	fungus,	did	not	appear	to	depend	on	NSP1	or	NSP2	under	non‐symbiotic	

conditions	 or	 during	 mycorrhization	 (Chapter	 4	 and	 5).	 Similarly,	 RAM1	 was	 not	

required	 for	 the	 regulation	of	 strigolactone	and	gibberellin	biosynthesis	 genes	 in	 the	

absence	of	mycorrhizal	fungi.	Considering	that	RAM1	is	unable	to	form	a	complex	with	

NSP1,	at	least	in	a	heterologous	system	(Gobbato	et	al.,	2012),	it	is	not	surprising	that	

NSP1	and	RAM1	have	mostly	specific	functions	during	AM	symbiosis.	By	contrast,	RAM1	

was	found	to	form	a	complex	with	NSP2	(Gobbato	et	al.,	2012).	As	NSP2	was	not	required	

for	the	regulation	of	the	putative	RAM1	target	genes	identified	here,	the	relevance	of	the	

RAM1‐NSP2	transcription	factor	complex	during	AM	symbiosis	remains	to	be	elucidated.	

	

6.4  How is GRAS‐domain protein activity regulated under symbiotic and 

non‐symbiotic conditions? 

The	 activity	 of	 GRAS‐domain	 proteins	 is	 under	 the	 control	 of	 several	 regulatory	

mechanisms,	 including	 transcriptional	 and	 post‐transcriptional	 regulation.	 Gene	
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expression	profiling	showed	that	NSP1,	NSP2	and	RAM1	are	transcriptionally	induced	in	

mycorrhized	roots	(Chapter	3).	RAM1	 in	particular	is	strongly	upregulated	during	AM	

development,	and	this	transcriptional	induction	has	recently	been	found	to	be	mediated	

by	a	CCaMK‐CYCLOPS‐DELLA	complex	in	L.	japonicus	(Pimprikar	et	al.,	2016).	The	same	

study	also	found	that	overexpressing	RAM1	in	roots	treated	with	gibberellins	restores	

arbuscule	formation,	suggesting	that	the	main	output	of	gibberellin	signalling	through	

the	DELLAs	during	mycorrhization	is	the	transcriptional	regulation	of	RAM1.	Similarly,	

the	overexpression	of	RAM1	in	cyclops	restores	the	arbuscular	defect	in	these	mutants	

(Pimprikar	et	al.,	2016).	 It	would	be	interesting	to	test	whether	the	expression	of	the	

putative	 target	 genes	of	RAM1	 identified	here	 are	 also	abolished	 in	cyclops	 and	della	

mutants	 and	would	 further	 clarify	 whether	 the	 signalling	 through	 CYCLOPS	 and	 the	

DELLA	 proteins	 activating	 RAM1	 is	 the	 only	 pathway	 inducing	 these	 genes	 during	

mycorrhization.	

Unlike	RAM1,	NSP1	and	NSP2	were	only	weakly	induced	during	mycorrhization	(Chapter	

3).	Delaux	and	colleagues	found	that	NSP1	is	also	slightly	upregulated	in	response	to	Myc	

factors,	and	this	induction	appears	to	be	dependent	on	the	common	Sym	pathway,	as	it	

is	abolished	in	ipd3	roots	(Delaux	et	al.,	2013).	It	is	possible	that	IPD3	and	the	DELLA	

proteins	are	able	to	directly	induce	the	expression	of	NSP1	and	NSP2,	similar	to	what	has	

been	described	for	RAM1.	NSP1	and	NSP2	were	further	shown	to	be	transcriptionally	

induced	 during	 the	 root‐nodule	 symbiosis	 (Kaló	 et	 al.,	 2005;	 Smit	 et	 al.,	 2005).	

Interestingly,	 the	binding	of	the	NSP1‐NSP2	complex	to	the	promoter	of	ENOD11	was	

found	to	be	enhanced	after	treatment	with	Nod	factors,	and	it	has	been	proposed	that	in	

addition	to	their	transcriptional	regulation,	NSP1	and	NSP2	might	also	be	modified	at	

the	protein	level	to	regulate	their	activity	in	response	to	rhizobial	signals	(Hirsch	et	al.,	

2009).	The	nuclear‐localized	CCaMK	is	an	obvious	candidate	for	regulating	the	activity	

of	NSP1	and	NSP2	by	post‐transcriptional	modifications,	but	until	now	no	evidence	has	

been	reported	for	an	interaction	between	CCaMK	and	these	potential	targets.		

In	 the	 absence	 of	 symbiotic	 partners,	 the	 activity	 of	 NSP1	 and	 NSP2	 appears	 to	 be	

regulated	differently.	Unlike	during	mycorrhization	and	nodulation,	the	transcript	levels	

of	NSP1	and	NSP2	do	not	change	significantly	under	nutrient‐limiting	conditions	(Liu	et	

al.,	 2011).	 Yet,	 when	 phosphate	 levels	 are	 low,	 the	 expression	 of	 the	 strigolactone	

biosynthesis	gene	D27	 is	 induced	 in	an	NSP1‐	 and	partially	NSP2‐dependent	manner.	

Moreover,	 the	 induction	 of	 D27	 does	 not	 require	 components	 of	 the	 common	 Sym	

pathway	(Liu	et	al.,	2011;	van	Zeijl	et	al.,	2015).	These	observations	 indicate	 that	 the	
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activity	of	NSP1	and	NSP2	must	be	regulated	at	 the	protein	level	through	a	signalling	

pathway	other	than	the	common	Sym	pathway,	and	the	change	in	nutrient	availability	

appears	 to	 play	 a	 role	 in	 this	 putative	 regulatory	 mechanism.	 Intriguingly,	 the	

overexpression	of	NSP1	together	with	NSP2	in	tobacco	leaves	induces	gene	expression	

from	promoters	such	as	ENOD11	and	D27	(Cerri	et	al.,	2012;	Chapter	4).	These	findings	

suggest	that	in	a	heterologous	system,	the	presence	of	both	these	transcription	factors	is	

sufficient	 for	 the	 activation	 of	 gene	 expression.	 It	 has	 been	 hypothesised	 that	 in	 the	

absence	of	an	appropriate	signal,	a	repressor	system	might	act	in	M.	truncatula	roots	to	

inhibit	the	transcriptional	activity	or	NSP1	and	NSP2,	possibly	through	the	inhibition	of	

complex	 formation,	and	 this	repressor	system	is	 likely	 to	be	absent	 in	 tobacco	 leaves	

(Cerri	et	al.,	2012).	Upon	the	perception	of	symbiotic	signals	or	a	change	in	the	nutrient	

conditions	 of	 the	 plant,	 this	 putative	 repressor	might	 be	 removed,	 thus	 allowing	 the	

induction	of	gene	expression	mediated	by	NSP1	and/or	NSP2.		

In	addition	to	NSP1	and	NSP2,	many	of	the	other	GRAS‐domain	proteins	with	a	role	in	

mycorrhization	were	shown	to	physically	interact	with	each	other	(described	in	Chapter	

1.4).	However,	it	is	still	an	open	question	how	important	the	formation	of	transcription	

factor	 complexes	 is	 for	 the	 transcriptional	 reprogramming	 of	 roots	 during	 the	

establishment	of	AM	symbiosis.	Interestingly,	only	some	of	the	GRAS‐domain	proteins	

appear	to	have	DNA‐binding	domains,	 including	NSP1	and	RAM1	(Hirsch	et	al.,	2009;	

Xue	et	al.,	2015).	Others,	such	as	RAD1	and	NSP2,	do	not	have	a	predicted	DNA‐binding	

domain	and	have	therefore	been	proposed	to	rely	on	the	interaction	with	other	DNA‐

binding	proteins	to	regulate	gene	expression	(Hirsch	et	al.,	2009;	Xue	et	al.,	2015).	In	the	

case	of	NSP1	and	NSP2,	the	transactivation	assay	in	N.	benthamiana	has	proven	to	be	a	

useful	tool	to	investigate	the	activity	of	individual	transcription	factors	or	transcription	

factor	complexes	towards	different	promoters.	However,	unspecific	activation	of	gene	

expression	was	observed	when	overexpressing	RAM1	in	tobacco	leaves,	indicating	that	

this	assay	is	not	suitable	to	test	the	transcriptional	activity	of	all	GRAS‐domain	proteins	

(Chapter	5).	Unlike	in	tobacco,	the	ectopic	overexpression	of	RAM1	in	M.	truncatula	roots	

resulted	in	the	induction	of	only	some,	but	not	all	tested	putative	target	genes	(Chapter	

5).	RAM1	was	shown	 to	 interact	with	several	other	GRAS‐domain	proteins,	 including	

NSP2,	RAD1,	and	DIP1	(Gobbato	et	al.,	2012;	Xue	et	al.,	2015;	Yu	et	al.,	2015),	however,	

it	is	not	known	whether	RAM1	requires	the	interaction	with	these	proteins	to	be	able	to	

induce	gene	expression.	Considering	that	the	overexpression	of	RAM1	in	M.	truncatula	

roots	appears	to	be	sufficient	to	induce	the	expression	of	several	of	its	putative	targets,	

it	seems	possible	that	RAM1	is	able	to	regulate	gene	expression	without	the	interaction	
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with	other	GRAS‐domain	proteins.	Alternatively,	if	complex	formation	is	required,	the	

endogenous	levels	of	the	interaction	partners	of	RAM1	in	M.	truncatula	roots	might	be	

sufficient	for	the	formation	of	transcriptionally	active	protein	complexes.	Comparing	the	

ability	of	RAM1	to	induce	gene	expression	in	wild	type	and	nsp2,	rad1,	and	dip1	mutant	

backgrounds	might	clarify	whether	RAM1	acts	alone	or	as	part	of	a	transcription	factor	

complex.	It	is	also	possible	that	the	combined	expression	of	several	of	these	interaction	

partners	 results	 in	 the	 induction	 of	 additional	 genes	 that	would	 not	 be	 observed	 by	

expressing	just	one	GRAS‐domain	protein.		

All	 the	interactions	between	the	GRAS‐domain	proteins	described	in	previous	studies	

were	 tested	 in	 heterologous	 systems	 such	 as	 N.	 benthamiana	 leaves	 or	 yeast.	 It	 is	

therefore	important	to	validate	these	findings	in	M.	truncatula	roots,	ideally	under	both	

symbiotic	 and	 non‐symbiotic	 conditions.	M.	 truncatula	 lines	 stably	 expressing	 GFP‐

tagged	 NSP1,	 NSP2,	 and	 RAM1	 provide	 a	 valuable	 resource	 to	 investigate	 complex	

formation	 of	 these	 proteins	 in	 relevant	 conditions	 by	 performing	 co‐

immunoprecipitation	 assays.	 These	 experiments	might	 also	 clarify	whether	 different	

transcription	 factor	 complexes	 are	 formed	 during	 nodulation	 or	mycorrhization	 and	

under	non‐symbiotic	conditions.	

	

6.5  Conclusions 

The	work	presented	here	has	begun	to	address	the	question	how	GRAS‐domain	proteins	

regulate	the	extensive	transcriptional	reprogramming	of	roots	during	the	colonization	

by	AM	fungi.	The	functions	of	NSP1,	NSP2	and	RAM1	in	this	process	were	investigated	by	

performing	detailed	phenotypic	and	transcriptional	analyses	of	the	corresponding	loss‐

of‐function	mutants.	The	results	of	 these	analyses	suggest	 that	all	 three	 transcription	

factors	 have	 largely	 different	 roles	 in	 the	 regulation	 of	 gene	 expression	 during	

mycorrhization.	 While	 NSP1	 is	 required	 for	 the	 expression	 of	 strigolactone	 and	

gibberellin	biosynthesis	genes	at	the	pre‐symbiotic	stages	of	the	symbiosis,	RAM1	plays	

an	 important	 role	 in	 regulating	 genes	 involved	 in	 arbuscule	 development	 and	 the	

nutrient	exchange	between	the	plant	and	the	fungus.	Meanwhile,	the	exact	function	of	

NSP2	remains	unclear,	and	different	growth	conditions	might	be	required	to	unravel	the	

role	of	this	transcription	factor	in	AM	symbiosis.	NSP1,	NSP2	and	RAM1	represent	only	

a	subset	of	transcription	factors	that	are	involved	in	the	transcriptional	reprogramming	

of	roots	during	mycorrhization.	Research	in	recent	years	has	identified	a	large	number	
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of	additional	GRAS‐domain	proteins	that	appear	to	be	required	for	AM	development.	The	

direct	 target	 genes	of	 these	 transcription	 factors	 are	 largely	unknown.	The	approach	

taken	here	has	proven	useful	 to	disentangle	 the	 functions	of	different	 transcriptional	

regulators	and	could	similarly	be	used	to	investigate	the	roles	of	these	additional	GRAS‐

domain	proteins	during	mycorrhization.	Global	DNA‐binding	studies	would	complement	

transcriptional	approaches	by	providing	insights	into	the	genes	that	are	directly	bound	

by	 these	 transcription	 factors.	 Interaction	 studies	 further	 suggest	 that	 many	 GRAS‐

domain	proteins	act	as	multicomponent	complexes.	Future	investigations	will	shed	light	

on	 the	 importance	 of	 this	 complex	 formation	 during	 AM	 symbiosis	 and	will	 provide	

insights	into	how	various	mycorrhizal	processes	are	regulated	by	this	gene	regulatory	

network.	
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Figure	6.1:	Proposed	target	genes	of	NSP1	and	RAM1	at	pre‐symbiotic	stages	and	during	the	
colonization	of	plant	roots	by	mycorrhizal	fungi	(description	continued	overleaf).		
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NSP1	is	required	for	the	expression	of	a	large	number	of	genes	involved	in	isoprenoid	(indicated	
in	yellow),	carotenoid	(indicated	in	orange),	strigolactone	(indicated	in	green),	and	gibberellin	
biosynthesis	 (GAs;	 indicated	 in	 blue)	 at	 the	 pre‐symbiotic	 stage	 of	 AM	 symbiosis.	 During	
mycorrhization,	RAM1	is	required	for	the	induction	of	genes	involved	in	lipid	biosynthesis	and	
putative	lipid	secretion	(including	homologs	of	the	AtWRI	transcription	factors,	FatM,	RAM2,	and	
the	two	ABCG	transporters	MtABCG3	and	MtABCG4),	mineral	nutrient	transport	across	the	PAM	
(including	PT4	and	the	two	AMT2	family	genes	AMT2‐3	and	AMT2‐5),	and	arbuscule	development	
(including	 EXO70I).	 GAP,	 glyceraldehyde‐3‐phosphate,	 GGDP,	 geranylgeranyl	 pyrophosphate,	
ACP,	acyl	carrier	protein,	MAG,	monoacylglycerol.	
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CHAPTER	7 

Material and methods 

	

	

	

	

	

7.1  Plant material and growth conditions 

M.	truncatula	cultivar	Jemalong	A17	and	R108	were	used	as	wild	type.	All	mutant	lines	

used	in	this	study	are	derived	from	one	of	these	two	genetic	backgrounds	(Table	7.1).	M.	

truncatula	seeds	were	scarified	with	sandpaper	and	surface‐sterilised	in	10%	sodium	

hypochlorite	 solution	 for	 3	min.	 Seeds	were	washed	 5	 times	with	 sterile	 water	 and	

imbibed	in	water	for	at	least	2	hours	before	plating	on	water	agar	(DWA;	Table	7.2).	After	

stratification	at	4°C	 for	5	days	 in	the	dark,	seeds	were	germinated	overnight	at	room	

temperature.		

For	seed	bulking,	germinated	seedlings	were	transferred	to	pods	containing	John	Innes	

cereal	mix	(Table	7.2)	and	grown	to	maturity	in	glasshouses,	where	additional	light	and	

heat	was	provided	during	winter.	For	hairy	root	transformations,	plants	were	grown	on	

plates	containing	modified	Fahraeus	plant	agar	medium	(modFP	agar;	Table	7.2)	 in	a	

controlled	environment	room	(23°C,	16‐hour	photoperiod,	with	32%	relative	humidity	

and	 300	 µmol	 m‐2	 s‐1	 light	 intensity).	 For	 mycorrhization	 and	 nodulation	 assays,	

germinated	seedlings	were	first	grown	on	modFP	agar	plates	as	described	above.	After	
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10	days,	plants	were	transferred	to	pods	containing	a	1:1	mix	of	terragreen	and	sand,	

inoculated	with	 fungal	or	rhizobial	 inoculum	(Section	7.6),	and	grown	in	a	controlled	

environment	room	(23°C,	16‐hour	photoperiod,	300	μmol	m‐2	s‐1).	Transparent	plastic	

lids	were	used	to	cover	the	plants	for	3	days	after	transferring	them	to	soil	or	terragreen	

and	sand.	

	

Table	7.1:	M.	truncatula	mutant	lines.	

Mutant  Background  Description  Reference 

nsp1‐1 (B85)  A17  Ethyl methane sulphonate induced point 

mutation (C718T) leads to a premature stop 

codon and truncated protein (NSP1 1‐239) 

Smit et al., 2005 

nsp2‐2 (0‐4)  A17  Fast neutron induced 435 bp deletion at 

position 480 leads to the removal of 145 

amino acids (NSP2 Δ161‐305) 

Kaló et al., 2005 

ram1‐1 (C1)  A17  Fast neutron induced 71 kb deletion leads to 

the removal of 9 predicted genes including 

RAM1 

Gobbato et al., 2012 

NF20376  R108  TNT1‐insertion line with an insertion in the 

third exon of MtABCG3 

Samuel Roberts Noble 

Foundation 

NF11484  R108  TNT1‐insertion line with an insertion in the 

fourth exon of MtABCG3 

Samuel Roberts Noble 

Foundation 

NF1558  R108  TNT1‐insertion line with an insertion in the 

eighth exon of MtABCG3 

Samuel Roberts Noble 

Foundation 

 

	

7.2   Media and antibiotics 

The	composition	of	media	and	soils	used	for	bacterial	and	plant	growth	are	described	in	

Table	7.2.	Where	required,	antibiotics	were	added	to	the	media	for	growth	selection	of	

bacteria	(Table	7.3).		
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Table	7.2:	List	of	media	and	soil	for	bacterial	and	plant	growth.	

Medium  Composition 

Lysogeny broth‐Lennox (L)  Tryptone 10 g, yeast extract 5 g, NaCl 5 g, D‐Glucose 1 g. For 

solid medium 10 g Lab M No.1 agar were added. 

Luria‐Bertani (LB)  L medium lacking D‐Glucose. 

Super orbital broth (SOC)  Tryptone 20 g, yeast extract 5 g, NaCl 0.58 g, KCl 0.19 g, MgCl2 

2.03 g, MgSO4(7H2O) 2.46 g, Glucose 3.6 g. 

Rhizobium complete medium (TY)  Tryptone 5  g,  yeast  extract  3  g,  CaCl2(6H2O)  1.32 g.  For  solid 

medium 10 g Lab M No.1 agar was added. 

Water agar (DWA)  Bacto agar 15 g. 

Modified FP (modFP)  CaCl2(2H2O) 0.1 g, MgSO4 0.12 g, KHPO4 0.01 g, Na2HPO4(12H2O) 

0.150  g,  ferric  citrate  5  mg,  H3BO3  2.86  g,  MnSO4  2.03  g, 

ZnSO4(7H2O) 0.22 g, CuSO4(5H2O) 0.08 g, H2MoO4(4H2O) 0.08 g, 

NH4NO3 0.5 mM, Formedium agar 8 g, pH 6.0. 

Buffered nodulation medium (BNM)  MES  (2‐(N‐morpholino)  ethanesulfonic  acid)  buffer  390  mg, 

CaSO4(2H2O)  344 mg,  KH2PO4  0.125  g, MgSO4(7H2O)  122 mg, 

Na2EDTA 18.65 mg, FeSO4(7H2O) 13.9 mg, ZnSO4(7H2O) 4.6 mg, 

H3BO3 3.1 mg, MnSO4(H2O) 8.45 mg, Na2MoO4(2H2O) 0.25 mg, 

CuSO4(5H2O) 0.016 mg, CoCl2(6H2O) 0.025 mg, pH 6.0. For solid 

medium 11.5 g Formedium agar was added. 

Terragreen and sand mix  1:1  mix  of  terragreen  (Oil‐dry  UK  ltd)  and  sharp  sand  (BB 

Minerals). 

John Innes Cereal mix  Medium grade peat 40 %, sterilised soil 40 %, horticultural grit 

20%, PG mix 14‐16‐18 + Te base fertiliser 1.3 kg m‐³, Osmocote, 

Mini  16‐8‐11  2  mg  +  Te  0.02  %  B  1  kg  m‐³,  wetting  agent, 

Maglime 3 kg m‐³, Exemptor 300 g m‐³. 

	

	

Table	7.3:	List	of	antibiotics	for	growth	selection	of	bacteria.	

Antibiotic  Solvent  Final concentration (µg/ml) 

Carbenicillin  dH2O  100 

Gentamycin  dH2O  40 

Kanamycin  dH2O  25 

Rifampicin  methanol  50 

Spectinomycin  dH2O  100 
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7.3  Genotyping of M. truncatula TNT1‐insertion lines 

For	genomic	DNA	extractions,	M.	truncatula	trifoliate	leaves	were	harvested	and	frozen	

at	‐20°C.	DNA	extractions	were	performed	by	Richard	Goram	(John	Innes	Centre)	using	

the	 DNeasy	 Plant	 kit	 (Qiagen)	 according	 to	 the	 manufacturer’s	 instructions.	 For	

genotyping,	two	PCRs	were	set	up	with	primers	spanning	the	wild	type	gene	or	one	end	

of	the	TNT1	insertion	and	one	end	of	the	mutated	gene.	Primers	used	for	genotyping	are	

listed	 in	 Table	 7.4.	 A	 50	 μl	 PCR	 mix	 was	 set	 up	 containing	 0.5	 μl	 Taq	 polymerase	

(Invitrogen),	5	μl	10	x	buffer,	1	μl	dNTP	mix,	1.5	μl	MgCl2,	1	μl	forward	primer	(10	μM,)	

1	μl	reverse	primer	(10	μM),	2	μl	genomic	DNA,	and	38	μl	water.	Cycling	conditions	for	

DNA	amplification	were	as	follows:	94	°C	for	3	min	followed	by	30	cycles	at	94°C	for	30	

s,	56	°C	for	30	s	and	72	°C	for	1	min,	with	a	final	extension	step	of	10	min	at	72	°C.	The	

PCR	product	was	 run	 by	TRIS/acetic	 acid/EDTA	 gel	 electrophoresis	 on	 a	 1	%	 (w/v)	

agarose	gel	and	stained	for	20	min	in	a	1	μg/ml	ethidium	bromide	solution.		

	

Table	7.4:	Primer	sequences	used	for	genotyping	of	M.	truncatula	TNT1‐insertion	lines.	

Name  Primer sequence 

TNT1 fwd  TCCTTGTTGGATTGGTAGCC 

TNT1 rev  CAGTGAACGAGCAGAACCTGTG  

NF20376 fwd  GGGCTATGTAACACAAGACG 

NF20376 rev  CTGAATAGATGCCGAACCAC 

NF11484 fwd  TCCTAGGAACTCGAAGGT 

NF11484 rev  CTTCTTCTGTGGTTACTCCC 

NF1558 fwd  GTGGTTCGGCATCTATTCAG 

NF1558 rev  CAACTTCTCCTTGCTCTTGG 

	

	

7.4  Molecular cloning 

7.4.1  Golden Gate cloning 

All	 vectors	 used	 in	 this	 study	 were	 cloned	 using	 the	 Golden	 Gate	 cloning	 technique	

(Engler	et	al.,	2009;	Weber	et	al.,	2011).	To	design	level	0	modules,	DNA	sequences	for	

the	 promoter,	 coding,	 and	 terminator	 regions	 were	 retrieved	 from	 the	 Phytozome	

database	(Mtv4.0).	DNA	components	were	synthesised	by	GeneArt	(Life	Technologies).	

To	generate	level	1	vectors,	a	15	μl	reaction	mix	was	set	up	containing	100	ng	of	each	
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level	0	plasmid,	100	ng	backbone	plasmid,	0.15	μl	100	x	BSA,	1.5	μl	10	x	T4	buffer,	1	μl	

BsaI	 (New	 England	 Biolabs),	 1	 μl	 T4	 DNA	 ligase	 (New	 England	 Biolabs)	 and	 water.	

Cycling	conditions	for	digestion	and	ligation	of	the	DNA	components	were	as	follows:	25	

cycles	of	3	min	at	37°C	and	4	min	at	16°C,	followed	by	5	min	at	50°C	and	5	min	at	80°C.	

To	generate	level	2	vectors,	a	15	μl	reaction	mix	was	set	up	containing	100	ng	of	each	

level	1	plasmid,	100	ng	of	the	backbone	plasmid	pICH50505	(Icon‐Genetics),	0.15	μl	100	

x	BSA,	1	μl	BpiI	(Thermo	Fisher	Scientific),	1.5	μl	10	x	T4	buffer,	1	μl	T4	DNA	ligase	(New	

England	Biolabs)	and	water.	The	same	cycling	conditions	as	for	level	1	reactions	were	

used	for	digestion	and	ligation	of	the	DNA	components.	Level	2	vectors	used	in	this	study	

are	listed	in	Table	7.5.	

	

7.4.2  Transformation of Escherichia coli for plasmid amplification 

Chemically	competent	E.	coli	strains	DH5α	and	DH10β	(Invitrogen)	were	used	for	the	

cloning	of	Golden	Gate	level	1	and	level	2	vectors,	respectively.	To	transform	bacterial	

cells,	1	μl	of	the	Golden	Gate	reaction	mix	was	added	to	20	μl	of	chemically	competent	

cells	 and	 incubated	 on	 ice	 for	 10	min.	 Cells	were	 heat‐shocked	 at	 42°C	 for	 30	 s	 and	

incubated	on	ice	for	2	min	prior	to	adding	500	μl	SOC	medium	(Table	7.2).	Bacteria	were	

incubated	at	37°C	for	1	h	with	agitation	at	220	rpm.	Cells	were	streaked	out	on	L	plates	

(Table	7.2)	containing	the	appropriate	antibiotics	and	grown	at	37°C	overnight.	Positive	

clones	were	checked	for	the	presence	of	the	target	construct	using	colony	PCR.	A	PCR	

mix	was	set	up	containing	5	μl	GoTaq	G2	Green	polymerase	 (Promega),	1	μl	 forward	

primer	(20	μM,)	1	μl	reverse	primer	(20	μM),	and	3	μl	water.	Bacterial	cells	from	a	single	

colony	 were	 transferred	 to	 the	 PCR	 mix	 using	 a	 pipette	 tip.	 The	 following	 cycling	

conditions	were	used	for	DNA	amplification:	98	°C	for	10	min	followed	by	30	cycles	at	

98°C	for	10	s,	52	°C	for	20	s	and	72	°C	for	2	min,	with	a	final	extension	step	of	5	min	at	

72	°C.	The	PCR	product	was	run	by	TRIS/acetic	acid/EDTA	gel	electrophoresis	on	a	1	%	

(w/v)	agarose	gel	and	stained	for	20	min	in	a	1	μg/ml	ethidium	bromide	solution.	To	

obtain	 plasmid	 from	 transformed	E.	 coli,	 bacterial	 cells	 from	a	 single	 positive	 colony	

were	grown	in	10	ml	of	liquid	L	medium	(Table	7.2)	at	37°C	overnight	with	agitation	at	

220	 rpm.	 Plasmids	 were	 extracted	 using	 the	 QIAprep	 Spin	 Miniprep	 Kit	 (Qiagen)	

according	 to	 the	 manufacturer’s	 instructions.	 To	 ensure	 that	 the	 cloning	 reactions	

resulted	in	the	correct	assembly	of	level	0	and	level	1	sequences,	plasmids	were	sent	for	

sequencing	to	Eurofins	Genomics	(Germany).
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Table	7.5:	Design	of	Golden	Gate	level	2	binary	expression	vectors.		

Number  Position 1  Position 2  Position 3  Position 4  Position 5  Position 6 

Constructs for transactivation assays         

EC10101  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10132 pL1M‐R2‐ 
pMNR‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

 ‐  ‐ 

EC10102  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10096 pL1M‐R2‐ 
pNIN‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

 ‐  ‐ 

EC10107  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10148 pL1M‐R2‐ 
pENOD11‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

 ‐  ‐ 

EC10502  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10493 pL1M‐R2‐ 
pMtWUS‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

 ‐  ‐ 

EC10503  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10494 pL1M‐R2‐ 
pAtPLT1‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

 ‐  ‐ 

EC10505  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10496 pL1M‐R2‐ 
palcA‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

 ‐  ‐ 

EC10506  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10497 pL1M‐R2‐ 
pOP6‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

 ‐  ‐ 

EC10508  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10499 pL1M‐R2‐ 
pNPL‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

 ‐  ‐ 

EC20706  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC20677 pL1M‐R2‐ 
pD27short‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

 ‐  ‐ 

EC20969  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC20968 pL1M‐R2‐ 
pD27long‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

 ‐  ‐ 

EC20970  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC20967 pL1M‐R2‐ 
pRAM2‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

 ‐  ‐ 

EC20971  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC20677 pL1M‐R2‐ 
pD27short‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10150 pL1M‐R5‐ 
pUBI‐3xHA‐NSP1‐tOcs 

‐ 

EC20972  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC20677 pL1M‐R2‐ 
pD27short‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10141 pL1M‐R5‐ 
pUBI‐3xHA‐NSP2‐tOcs 

‐ 

EC20973  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC20677 pL1M‐R2‐ 
pD27short‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10150 pL1M‐R5‐ 
pUBI‐3xHA‐NSP1‐tOcs 

EC10151 pL1M‐R6‐
pUBI‐3xHA‐NSP2‐tOcs 

            continued overleaf 
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Table	7.5:	continued.	

Number  Position 1  Position 2  Position 3  Position 4  Position 5  Position 6 

EC20978  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC20968 pL1M‐R2 
‐pD27long‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10150 pL1M‐R5‐ 
pUBI‐3xHA‐NSP1‐tOcs 

 ‐ 

EC20979  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC20968 pL1M‐R2‐ 
pD27long‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10141 pL1M‐R5‐ 
pUBI‐3xHA‐NSP2‐tOcs 

 ‐ 

EC20980  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC20968 pL1M‐R2‐ 
pD27long‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10150 pL1M‐R5‐ 
pUBI‐3xHA‐NSP1‐tOcs 

EC10151 pL1M‐R6‐
pUBI‐3xHA‐NSP2‐tOcs 

EC10121  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10148 pL1M‐R2‐ 
pENOD11‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10150 pL1M‐R5‐ 
pUBI‐3xHA‐NSP1‐tOcs 

 ‐ 

EC10122  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10148 pL1M‐R2‐ 
pENOD11‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10141pL1M‐R5 
‐pUBI‐3xHA‐NSP2‐tOcs 

 ‐ 

EC10123  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10148 pL1M‐R2‐ 
pENOD11‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10150 pL1M‐R5‐ 
pUBI‐3xHA‐NSP1‐tOcs 

EC10151 pL1M‐R6‐
pUBI‐3xHA‐NSP2‐tOcs 

EC20981  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC20967 pL1M‐R2‐ 
pRAM2‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10466 pL1M‐R5 
‐pUBI‐3xHA‐RAM1‐tOcs 

 ‐ 

EC10469  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10132 pL1M‐R2‐ 
pMNR‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10466 pL1M‐R5‐ 
pUBI‐3xHA‐RAM1‐tOcs 

 ‐ 

EC10448  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10096 pL1M‐R2‐ 
pNIN‐LUC‐tAct 

EC15034 pL1M‐R3 
‐pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10466 pL1M‐R5‐ 
pUBI‐3xHA‐RAM1‐tOcs 

 ‐ 

EC10511  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10493 pL1M‐R2‐ 
pMtWUS‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10466 pL1M‐R5‐ 
pUBI‐3xHA‐RAM1‐tOcs 

 ‐ 

EC10512  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10494 pL1M‐R2‐ 
pAtPLT1‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10466 pL1M‐R5‐ 
pUBI‐3xHA‐RAM1‐tOcs 

 ‐ 

EC10514  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10496 pL1M‐R2‐ 
palcA‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10466 pL1M‐R5‐ 
pUBI‐3xHA‐RAM1‐tOcs 

 ‐ 

EC10515  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10497 pL1M‐R2‐ 
pOP6‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10466 pL1M‐R5‐ 
pUBI‐3xHA‐RAM1‐tOcs 

 ‐ 

EC10517  EC10156 pL1M‐R1‐
pNOS‐GUS‐tNOS 

EC10499 pL1M‐R2‐ 
pNPL‐LUC‐tAct 

EC15034 pL1M‐R3‐ 
pAtUBI10‐dsRed‐tNOS 

EC10155 pL1M‐R4‐
p35S‐P19‐t35S 

EC10466 pL1M‐R5‐ 
pUBI‐3xHA‐RAM1‐tOcs 

 ‐ 

            continued overleaf 
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Table	7.5:	continued.	

Number  Position 1  Position 2  Position 3  Position 4  Position 5  Position 6 

Constructs for transcription factor overexpression in M. truncatula         

EC20678  pL1M‐R1‐pAtUBI10‐
dsRed‐tNOS 

EC20631 pL1M‐R2‐ 
pLjUBI‐RAM1‐tOcs1 

‐    ‐   ‐   ‐ 

EC20681  pL1M‐R1‐pAtUBI10‐
dsRed‐tNOS 

EC15489 pL1M‐R2‐ 
pLjUBI‐GFP‐tOcs1 

‐   ‐   ‐   ‐ 

Constructs for promoter‐GUS in M. truncatula         

EC20945  EC21950 pL1M‐R1‐
pAtUBI10‐dsRed‐tNOS 

EC20649 pL1M‐R2‐ 
pMtWRI1‐GUS‐tMtWRI1 

‐   ‐   ‐   ‐ 

EC20946  EC21950 pL1M‐R1‐
pAtUBI10‐dsRed‐tNOS 

EC20650 pL1M‐R2‐ 
pMtWRI2‐GUS‐tMtWRI2 

‐   ‐   ‐   ‐ 

EC20947  EC21950 pL1M‐R1‐
pAtUBI10‐dsRed‐tNOS 

EC20651 pL1M‐R2‐ 
pMtWRI3‐GUS‐tMtWRI3 

‐   ‐   ‐   ‐ 

EC20948  EC21950 pL1M‐R1‐
pAtUBI10‐dsRed‐tNOS 

EC20652 pL1M‐R2‐ 
pMtWRI4‐GUS‐tMtWRI4 

‐   ‐   ‐   ‐ 

EC20952  EC21950 pL1M‐R1‐
pAtUBI10‐dsRed‐tNOS 

EC20656 pL1M‐R2‐
pMtABCG3‐GUS‐tMtABCG3 

‐   ‐   ‐   ‐ 

EC20953  EC21950 pL1M‐R1‐
pAtUBI10‐dsRed‐tNOS 

EC20657 pL1M‐R2‐ 
pMtFatM‐GUS‐tMtFatM 

‐    ‐   ‐   ‐ 

EC20954  EC21950 pL1M‐R1‐
pAtUBI10‐dsRed‐tNOS 

EC20658 pL1M‐R2‐
pMtRAM2‐GUS‐tMtRAM2 

‐    ‐   ‐   ‐ 

Constructs for stable transformation of M. truncatula         

EC15474  EC15324 pL1M‐R1‐
pNOS‐BAR‐tNOS‐15324 

EC15483 pL1M‐R2‐
pMtRAM1::3xHA‐GFP‐
MtRAM1‐t35S 

‐   ‐   ‐   ‐ 

EC10538  EC15324 pL1M‐R1‐
pNOS‐BAR‐tNOS‐15324 

EC10540 pL1M‐R2‐
pLjUBI::NSP2‐GFP‐3xFLAG‐
t35S 

‐   ‐   ‐   ‐ 

EC10686  EC15324 pL1M‐R1‐
pNOS‐BAR‐tNOS‐15324 

pMtNSP1‐GFP‐
MtNSP1(cDNA)‐t35s 

‐  ‐  ‐  ‐ 
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7.4.3  Transformation  of  A.  tumefaciens  and  A.  rhizogenes  for  plant 

transformation 

Electro‐competent	A.	 tumefaciens	 strains	GV3101	and	AGL1	 (for	 transformation	of	N.	

benthamiana	and	stable	transformation	of	M.	truncatula,	respectively)	and	A.	rhizogenes	

strain	AR1193	(for	hairy	root	transformation	of	M.	truncatula)	were	transformed	with	

Golden	 Gate	 level	 2	 vectors	 by	mixing	 100	 ng	 of	 the	 plasmid	 with	 20	 μl	 of	 electro‐

competent	 cells	 and	 incubating	 on	 ice	 for	 10	 min.	 Bacteria	 were	 transferred	 to	 an	

electroporation	cuvette	 (Geneflow)	and	subjected	 to	an	electroshock	(125	volts,	25	μ	

farad,	200	ohms;	Gene‐Pulser	(BioRad))	prior	to	adding	500	μl	SOC	medium	(Table	7.2).	

Bacteria	were	incubated	at	28°C	for	2	h	with	agitation	at	220	rpm.	Cells	were	streaked	

out	on	LB	plates	(Table	7.2)	containing	the	appropriate	antibiotics	and	grown	at	28°C	

for	2‐3	days.	Positive	clones	were	checked	for	the	presence	of	the	target	construct	using	

colony	PCR	and	gel	electrophoresis	as	described	in	Section	7.4.2.	

	

7.5  Hairy root transformation of M. truncatula 

M.	truncatula	seeds	were	sterilised	and	germinated	overnight	as	described	 in	Section	

7.1.	Roots	were	transformed	by	cutting	off	the	tip	of	the	radicles	and	dipping	the	ends	of	

each	cut	radicle	into	a	large	drop	of	a	cell	suspension	of	A.	rhizogenes	AR1193	carrying	

the	appropriate	Golden	Gate	level	2	vector.	To	prepare	A.	rhizogenes	cell	suspension	for	

dipping,	bacterial	cells	were	grown	in	liquid	LB	medium	(Table	7.2)	with	antibiotics	for	

2	days,	spun	down	by	centrifugation	for	10	min	at	4000	rpm	and	resuspended	in	fresh	

LB	medium	without	antibiotics.	After	dipping	the	radicles	into	A.	rhizogenes,	seedlings	

were	 placed	 onto	 modFP	 plates	 (Table	 7.2),	 sealed	 with	 3M	Micropore	 tape	 (Miller	

Medical	Supplies)	and	placed	upright	in	a	controlled	environment	room	as	described	in	

Section	 7.1.	 Four	 weeks	 after	 transformation,	 plants	 were	 screened	 for	 transformed	

roots	using	a	DMR/MZFLIII	microscope	(Leica)	to	visualise	the	transformation	marker	

dsRed.	 Plants	 with	 transformed	 roots	 were	 used	 for	 mycorrhization	 or	 nodulation	

assays,	gene	expression	analyses,	or	for	transactivation	assays.	
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7.6  Stable transformation of M. truncatula  

Stable	 transformation	 of	 M.	 truncatula	 was	 performed	 by	 Matthew	 Smoker	 (The	

Sainsbury	 Laboratory,	 Norwich).	 A.	 tumefaciens	 strain	 AGL1	 transformed	 with	 the	

appropriate	 Golden	 Gate	 level	 2	 binary	 expression	 vectors	 (Table	 7.5)	were	 used	 to	

transform	nsp1‐1,	nsp2‐2,	or	ram1‐1	leaf	tissue.	For	selection	of	transformed	tissue,	the	

herbicide	BASTA	was	used.	Regenerated	transformed	plants	were	transferred	to	soil	for	

the	production	of	T1	seeds.	T1	plants	were	tested	for	their	ability	to	form	nodules	(for	

GFP‐NSP1	 and	NSP2‐GFP	 expressing	 plants)	 or	 fully	 developed	 arbuscules	 (for	 GFP‐

RAM1	expressing	plants).	Plants	that	were	able	to	enter	a	fully	functional	symbiosis	were	

bulked	to	produce	T2	seeds.	

	

7.7  Mycorrhization assays 

7.7.1  Inoculation of M. truncatula with mycorrhizal fungi 

To	assess	the	mycorrhizal	phenotype	of	M.	truncatula	mutant	lines,	seeds	were	sterilised	

and	germinated	as	described	in	Section	7.1.	Germinated	seedlings	were	placed	on	filter	

paper	on	modFP	plates	(Table	7.2)	and	grown	for	10	days	in	a	controlled	environment	

room	(described	in	Section	7.1).	Plants	were	transferred	to	a	1:1	terragreen	and	sand	

mix	(Table	7.2)	containing	7%	(v/v)	of	commercial	mycorrhizal	inoculum	and	grown	in	

a	 controlled	environment	 room	as	described	 in	Section	7.1.	 For	RNA‐sequencing	and	

phenotyping	of	A17,	nsp1‐1,	nsp2‐2	and	ram1‐1,	the	mycorrhizal	inoculum	Solrize	Pro	

(Agrauxine,	 France)	was	used,	which	 contains	 a	mixture	of	R.	 irregularis	 and	Glomus	

mosseae	spores	and	hyphae.	For	mycorrhizal	phenotyping	of	R108	and	TNT1‐insertion	

lines,	 the	 mycorrhizal	 inoculum	 P‐3201	 (Premier	 Tech,	 Canada)	 was	 used,	 which	

contains	 spores	 from	 R.	 irregularis.	 For	 complementation	 assays	 and	 growth	 of	M.	

truncatula	with	nurse	plants,	plants	were	transferred	to	a	1:1	terragreen	and	sand	mix	

containing	20%	(v/v)	of	chive	inoculum	(mycorrhized	chive	roots	mixed	with	terragreen	

and	sand).		

	

7.7.2  Ink staining and quantification of fungal infection structures 

To	quantify	mycorrhization,	fungal	infection	structures	were	visualised	by	ink	staining.	

Roots	were	washed	in	water	and	pre‐cleared	by	incubation	in	10%	(w/v)	KOH	at	95°C	
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for	18	min.	Roots	were	rinsed	3	times	with	distilled	water	and	stained	with	a	solution	

containing	5%	ink	and	5%	acetic	acid	at	95°C	for	6	min.	Roots	were	de‐stained	in	water	

for	1	day.	Mycorrhizal	infection	structures	(hyphopodia,	intraradical	hyphae,	arbuscules	

and	 vesicles)	 were	 quantified	 using	 the	 gridline	 intersect	 method	 (Giovannetti	 and	

Mosse,	1980).	Fungal	colonization	was	visualised	using	a	DM	6000	microscope	(Leica)	

and	a	DFC420	colour	camera	(Leica).		

	

7.7.3  Wheat Germ Agglutinin (WGA) staining  

To	assess	the	appearance	of	fungal	infection	structures,	roots	were	stained	with	Alexa	

Fluor	488	WGA.	Roots	were	incubated	in	20%	(w/v)	KOH	at	room	temperature	for	2	

days	before	rinsing	with	distilled	water	and	incubating	in	0.1M	HCl	for	2	h.	Subsequently,	

roots	were	rinsed	once	with	distilled	water	and	once	with	1x	phosphate	buffered	saline	

(PBS;	137	mM	NaCl,	2.7	mM	KCl,	10	mM	Na2HPO4,	1.8	mM	KH2PO4).	Pre‐cleared	roots	

were	stained	with	WGA	by	incubation	in	a	1x	PBS	solution	containing	0.2	µg/ml	Alexa	

Fluor	488	WGA	(Sigma)	in	the	dark	at	4°C	for	1‐2	days.	Green	fluorescence	was	visualised	

using	a	DM	6000	microscope	(Leica)	and	a	DFC420	colour	camera	(Leica).	

	

7.8  Nodulation assays 

For	 nodulation	 complementation	 assays,	 M.	 truncatula	 seeds	 were	 sterilised	 and	

germinated	as	described	in	Section	7.1.	Germinated	seedlings	were	transferred	to	a	1:1	

mix	of	terragreen	and	sand	and	grown	in	a	controlled	environment	room	(Section	7.1)	

for	1	week,	before	inoculating	roots	with	Sinorhizobium	meliloti	strain	1021.	To	prepare	

S.	meliloti,	bacterial	cells	were	grown	in	liquid	TY	medium	(Table	7.2)	for	2	days,	spun	

down	by	centrifugation	for	10	min	at	4000	rpm	and	resuspended	in	fresh	BNM	medium	

to	a	final	OD600	of	0.03.	Nodules	were	quantified	4	weeks	after	inoculation.		

	

7.9  Histochemical GUS staining of M. truncatula roots 

To	visualise	GUS	activity	in	M.	truncatula	hairy	roots,	roots	were	washed	with	distilled	

water	and	incubated	in	GUS	staining	solution	(50	mM	phosphate	buffer	pH	7.2,	0.5	mM	

K3Fe(CN)6,	0.5	mM	K4Fe(CN)6,	50	mM	EDTA,	1%	(v/v)	Triton‐X	and	2	mM	X‐Gluc	(5‐

bromo‐4‐chloro‐3‐indolyl‐beta‐D‐glucuronide))	in	the	dark	at	37°C	for	6	h	or	overnight.	
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To	 test	 whether	 GUS	 activity	 correlates	 with	 mycorrhizal	 infection	 structures,	 GUS‐

stained	 roots	 were	 additionally	 stained	 with	 Alexa	 Fluor	 488	 WGA	 as	 described	 in	

Section	7.7.3.	Images	were	obtained	using	a	DM	6000	microscope	(Leica)	and	a	DFC420	

colour	camera	(Leica).	

	

7.10  Quantification of gene expression 

7.10.1  RNA isolation 

For	RNA	extraction,	root	tissue	was	frozen	at	‐80°C	and	ground	to	a	fine	powder	in	liquid	

nitrogen	 using	 a	 mortar	 and	 pestle.	 For	 RNA	 sequencing	 and	 qRT‐PCR	 analysis	 of	

mycorrhized	 and	 non‐mycorrhized	 roots,	 4‐5	 root	 systems	 were	 pooled	 to	 obtain	 1	

biological	 replicate,	 and	 4	 biological	 replicates	 per	 treatment	 and	 genotype	 were	

analysed.	For	qRT‐PCR	analysis	of	GFP‐	and	RAM1‐overexpression	lines,	6	root	systems	

were	pooled	for	1	biological	replicate,	and	3	biological	replicates	per	line	were	analysed.	

RNA	was	extracted	from	100	mg	of	root	tissue	using	the	RNeasy	plant	mini	kit	(Qiagen)	

according	to	the	manufacturer’s	instructions.	To	remove	genomic	DNA,	the	on	column	

RNase	free	DNase	kit	(Qiagen)	was	used	according	to	the	manufacturer’s	instructions.	

RNA	 was	 eluted	 in	 30	 µl	 RNase‐free	 water.	 RNA	 concentration	 and	 quality	 were	

determined	using	a	NanoDrop	ND‐1000	Spectrophotometer	(NanoDrop	Technologies).	

To	 assess	 the	 integrity	 of	 the	 extracted	 RNA,	 1	 µg	 of	 RNA	 was	 run	 by	 TRIS/acetic	

acid/EDTA	gel	electrophoresis	on	a	1.2%	(w/v)	agarose	gel	and	stained	for	20	min	in	a	

1	μg/ml	ethidium	bromide	solution.	

	

7.10.2  Quantitative reverse transcription PCR (qRT‐PCR) 

Reverse	transcription	was	carried	out	with	1	μg	of	RNA	using	the	iScript	cDNA	synthesis	

kit	 (Bio‐Rad)	 according	 to	 the	 manufacturer’s	 instructions.	 Primers	 for	 qPCR	 were	

designed	 using	 the	 primer	 design	 tool	 Quantprime	 (http://quantprime.mpimp‐

golm.mpg.de/)	or	the	NCBI	design	tool	Primer‐BLAST	(primer	sequences	are	listed	in	

Table	7.6).	The	amplification	efficiency	of	primer	pairs	was	tested	using	a	cDNA	dilution	

series.	Generally,	primers	with	an	amplification	efficiency	of	90‐110%	were	considered	

acceptable.	The	specificity	of	primer	pairs	was	confirmed	by	analysing	the	dissociation	

curves	(65°C	to	95°C).	For	the	quantification	of	transcript	levels,	qPCRs	were	performed	
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using	a	C1000	touch	thermal	cycler	(Bio‐Rad).	Reactions	were	set	up	in	96‐well	plates	

using	10	μl	SYBR	Green	mix	(Bio‐Rad),	0.7	μl	primer	mix	(containing	10	μM	 forward	

primer	 and	 10	 μM	 reverse	 primer),	 2	 μl	 1:10	 diluted	 cDNA,	 and	 7.3	 μl	 water.	 The	

following	cycling	conditions	were	used	for	DNA	amplification:	95	°C	for	2	min	followed	

by	40	cycles	at	95°C	for	15	s,	58	°C	for	15	s	and	72	°C	for	30	s.	Data	were	analysed	using	

the	2‐ΔΔCt	method	(Livak	and	Schmittgen,	2001)	with	Ubiquitin	as	a	reference	gene.	For	

comparison	of	two	samples,	Student’s	t‐test	was	used	to	test	for	significant	differences	

in	expression	levels.	For	comparison	of	more	than	two	samples,	ANOVA	and	Tukey’s	HSD	

mean‐separation	 test	was	used	 to	 test	 for	significant	differences	 in	expression	 levels.	

Where	required,	data	were	log10	transformed	to	ensure	equal	variance.	

	

Table	7.6:	Primer	sequences	used	for	qRT‐PCRs.	

Name  Primer sequence 

MtRAM2_F  CCTTCATGGCTTTGTGCAAGGAG 

MtRAM2_R  CACTGTTGTTACCTTTGGCTTTGC 

MtRAM1_F  AAGCCATTTTCGAGGCGTTT 

MtRAM1_R  CGTTAAGCATCGTCCGGTTT 

MtWRI1_F2  AGAGGAGTAGCAAGGCACCATC 

MtWRI1_R2  TGCCGAACACTCTTCCAATCCTTG 

MtWRI2_F3  TGTACCAAAAATAGGTGATGATGCT 

MtWRI2_R3  TCCATCTATGCCTGCTAACACC 

MtFATM_F2  ATGGGTTGGAGCATCGGGAAAG 

MtFATM_R2  TGTTCATCATCACCCATGTGCTTG 

MtABCG3_F2  CATTGGCTCAAGTAGTGGTTCG 

MtABCG3_R2  GAATCCACCAACAAGGGTCATG 

MtUbiquitin_F  GCAGATAGACACGCTGGGA 

MtUbiquitin_R  AACTCTTGGGCAGGCAATAA 

MtCCD7_F  GATGTGGGGGAAGAAGCTATTG 

MtCCD7_R  TCCCAATCGTATCCAACGTG 

MtCCD8_F  GAAGATGGGAGGGTAACTGCTG 

MtCCD8_R  AGAACATCTTCGCCGTTAAATG 

Medtr2g094160_F3  CGGAGCAGCTAACAAAGCCATTAC 

Medtr2g094160_R3  ACAACCAAGCGTGTGCCTTG 

Medtr5g019460_F2  TGTCCGTCCGGTACTCTGTATTGC 

Medtr5g019460_R2  CGCATGCCGATGGAATTGATGC 

Medtr8g068300_F  TGCCTCCTTAAACCAAACCACTC 

  continued overleaf 
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Table	7.6:	continued.	

Name  Primer sequence 

Medtr8g068300_R  ATGAAGCCATCACACAGAACTGG 

Medtr8g097190_F2  GTTGCAGCAGTTGACAAGCCTAAG 

Medtr8g097190_R2  CCACATGACCTGTCCAACCATCTG 

Medtr7g063800_F2  CAGAGGAAGATGATGGTGTGGTA 

Medtr7g063800_R2  AAGGGAACTTAGCTGTAGCG 

Medtr2g105360_F1  CAACCAGCCATGGACACTCT 

Medtr2g105360_R1  TGGAACCGCTGGTACATGAG 

Medtr1g102070.1_F  TCACTGGCAGATTCTCTTCCAAGC 

Medtr1g102070.1_R  ACTCATTGCCCATTGTGTTGCAC 

MtPT4_ F  GACACGAGGCGCTTTCATAGCAGC 

MtPT4_R  GTCATCGCAGCTGGAACAGCACCG 

	

7.10.3  RNA‐sequencing 

To	 quantify	 global	 gene	 expression,	 RNA	 sequencing	 was	 performed	 by	 IMGM	

Laboratories	(Martinsried,	Germany).	In	brief,	RNA	sequencing	libraries	were	prepared	

with	 the	 Illumina	 TruSeq®	 Stranded	 mRNA	 HT	 technology,	 an	 approach	 that	 uses	

fragmentation	of	the	RNA,	a	poly‐T	oligo	pulldown	and	sequencing	adapter	ligation.	RNA	

sequencing	 was	 performed	 on	 the	 Illumina	 NextSeq500	 next	 generation	 sequencing	

system	and	the	high	output	mode	with	1	x	75	bp	single‐end	read	chemistry.	The	resulting	

reads	were	 quality	 controlled	 and	mapped	 against	 the	most	 recent	 version	of	 the	M.	

truncatula	 reference	 genome	 (Mtv4.0).	 Differentially	 expressed	 genes	 (DEGs)	 were	

identified	by	pair‐wise	comparisons	of	expression	levels	(total	exon	reads)	using	the	CLC	

Genomics	Workbench	tool	‘Empirical	analysis	of	DGE’	(EDGE).	For	further	analyses,	only	

DEGs	with	a	fold	change	larger	than	1.5	and	a	false	discovery	rate	(FDR)‐corrected	p‐

value	smaller	than	0.05	were	considered.	

	

7.11  Chromatin‐immunoprecipitation (ChIP) 

To	 identify	DNA‐binding	sites	of	NSP1,	ChIP	was	performed	according	 to	 the	method	

described	 by	 Kaufmann	 et	 al.,	 (2010)	 with	 some	 modifications.	 For	 each	 biological	

replicate,	roots	 from	M.	truncatula	 lines	stably	expressing	pNSP1:GFP‐NSP1	grown	on	

plates	with	media	containing	15	mM	KNO3	and	a	1/100	dilution	of	BNM	(Table	7.2)	were	
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pooled	 to	 obtain	 3.5	 g	 of	 fresh	 root	 tissue.	 As	 a	 negative	 control,	 roots	 from	

untransformed	M.	truncatula	A17	grown	under	the	same	conditions	were	used.	

	

7.11.1  Crosslinking 

To	crosslink	DNA	and	proteins,	fresh	plant	tissue	was	vacuum‐infiltrated	with	fixation	

buffer	(0.4	M	sucrose,	10	mM	TRIS	pH	8,	1	mM	EDTA	pH	8.5,	1%	formaldehyde,	100	μM	

PMSF)	 for	 20	min	 on	 ice.	 Formaldehyde	was	 quenched	 by	 adding	 0.1	M	 glycine	 and	

incubating	for	10	min	on	ice.	Tissue	was	washed	twice	with	sterile	water	and	dry‐blotted	

before	being	frozen	in	liquid	nitrogen.		

	

7.11.2  Nuclei extraction 

To	extract	nuclei	from	crosslinked	roots,	the	frozen	tissue	was	ground	to	a	fine	powder	

in	liquid	nitrogen	using	a	mortar	and	pestle.	The	ground	tissue	was	resuspended	in	25	

ml	 lysis	 buffer	M1	 (10	mM	 sodium	 phosphate	 pH	 7,	 0.1	 M	 NaCl,	 1	M	 2‐methyl	 2,4‐

pentanediol,	10	mM	ß‐mercaptoethanol,	EDTA‐free	protease	inhibitor	cocktail	(Roche))	

by	 rotating	 the	 tubes	 at	 4°C	 for	 15	min.	 The	 lysate	was	 filtered	 through	 2	 layers	 of	

miracloth	(Merck	Chemicals)	and	spun	down	by	centrifugation	at	1000	g	for	20	min	at	

4°C	with	decreased	acceleration	and	deceleration.	The	supernatant	was	discarded	and	

the	pellet	was	resuspended	in	15	ml	wash	buffer	M2	(10	mM	sodium	phosphate	buffer	

pH	7,	0.1	M	NaCl,	1	M	2‐methyl	2,4‐pentanediol,	10	mM	ß‐mercaptoethanol,	EDTA‐free	

protease	 inhibitor	 cocktail	 (Roche),	 10	 mM	 MgCl2	 and	 0.5%	 Triton	 X‐100).	 After	

centrifugation	at	1000	g	for	10	min	at	4°C	with	decreased	acceleration	and	deceleration,	

the	supernatant	was	discarded	and	the	pellet	was	resuspended	in	7.5	ml	wash	buffer	M3	

(10	mM	sodium	phosphate	buffer	pH	7,	0.1	M	NaCl,	10	mM	ß‐mercaptoethanol,	EDTA‐

free	protease	inhibitor	cocktail	(Roche)).	The	resuspended	samples	were	spun	down	by	

centrifugation	at	1000	g	for	10	min	at	4°C	with	decreased	acceleration	and	deceleration.	

The	supernatant	was	discarded	and	the	pellet	was	resuspended	in	1	ml	sonication	buffer	

(0.5	M	Hepes,	150	mM	NaCl,	5	mM	MgCl2	and	10%	Triton	X‐100	and	EDTA‐free	protease	

inhibitor	cocktail	(Roche)).	
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7.11.3  Chromatin fragmentation 

For	 DNA	 fragmentation,	 nuclei	 were	 sonicated	 in	 a	 Bioruptor	 water	 bath	 sonicator	

(Diagenode)	at	4°C	(2	x	5	min	at	a	high	power	level	with	30	s	on/30	s	off	cycles)	to	obtain	

an	average	fragment	size	of	~	500	bp.	After	sonication,	samples	were	cleared	from	debris	

by	centrifugation	at	16000	g	for	15	min.	The	supernatant	was	transferred	to	a	new	tube	

and	the	centrifugation	step	repeated.	50	μl	of	the	cleared	supernatant	were	taken	as	DNA	

input	sample	and	kept	on	ice.	

	

7.11.4  Immunoprecipitation 

Lysed	nuclei	were	diluted	by	adding	500	μl	immunoprecipitation	buffer	(0.5	M	Hepes,	

150	mM	NaCl,	5	mM	MgCl2	10%	Triton	X‐100,	1	mg/ml	bovine	serum	albumin	(BSA,	

added	fresh)).		To	each	tube,	25	μl	of	anti‐GFP	μMACS	Microbeads	(Miltenyi	Biotec)	were	

added	and	mixed	by	inverting.	The	samples	were	incubated	on	ice	for	30	min	to	allow	

binding	 of	 the	 beads	 to	 GFP‐tagged	 NSP1.	 Subsequently,	 samples	 were	 loaded	 on	

μColumns	 (Miltenyi	Biotec)	equilibrated	with	200	μl	 immunoprecipitation	buffer	and	

placed	on	a	magnetic	μMACS	separator	(Miltenyi	Biotec).	Once	the	entire	sample	volume	

had	passed	the	columns,	the	beads	were	washed	twice	with	400	μl	immunoprecipitation	

buffer	 and	 twice	 with	 200	 μl	 immunoprecipitation	 buffer.	 In	 addition,	 beads	 were	

washed	twice	with	200	μl	TE	buffer	(100	mM	Tris	pH	8,	10	mM	EDTA	pH	8).	To	elute	the	

protein‐DNA	complexes,	20	μl	pre‐heated	elution	buffer	(95°C;	50	mM	Tris	pH	8,	10	mM	

EDTA,	50	mM	DTT,	1%	SDS)	were	added	to	the	column.	After	incubating	for	5	min,	2	x	

50	μl	hot	elution	buffer	were	added	to	the	column	for	final	elution	and	the	eluate	was	

collected	in	low	binding	Eppendorf	tubes.		

	

7.11.5  DNA clean‐up 

The	eluted	samples	and	DNA	input	samples	were	diluted	by	adding	100	μl	TE	buffer.	For	

reverse	crosslinking,	9	μl	of	25	mg/ml	Proteinase	K	(Sigma)	were	added	and	incubated	

at	37°C	overnight.	The	next	day,	9	μl	of	fresh	25	mg/ml	Proteinase	K	(Sigma)	were	added	

and	incubated	at	65°C	for	8	h.	DNA	was	cleaned	up	using	the	NucleoSpin	Gel	and	PCR	

Clean‐up	kit	(Macherey‐Nagel)	according	to	the	manufacturer’s	instructions.	As	the	DNA	

samples	contain	SDS,	buffer	NTB	(Macherey‐Nagel)	was	used	for	DNA	clean‐up.	DNA	was	

eluted	in	30	μl	elution	buffer	(Macherey‐Nagel).	
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7.11.6  qPCR 

For	the	quantification	of	DNA	enrichment,	1	μl	of	the	purified	immuno‐precipitated	DNA	

and	1	μl	of	 the	1/10	diluted	 input	sample	was	used	 for	qPCR	as	described	 in	Section	

7.10.2.	Primers	used	for	ChIP‐qPCR	are	listed	in	Table	7.7.	Primers	were	designed	using	

the	NCBI	design	tool	Primer‐BLAST	and	specificity	and	efficiency	tested	as	described	in	

Section	7.10.2.	Three	technical	replicates	were	performed	for	each	sample	and	primer	

pair.	The	enrichment	of	DNA	in	the	immuno‐precipitated	samples	relative	to	the	input	

samples	were	 calculated	 based	 on	 the	 difference	 in	 the	 Ct	 values	with	 the	 following	

equation:	%input	=	2^(average	Ct(input)	–	x	–	average	Ct(IP))	x	100,	where	x	=	dilution	

factor	of	the	input	versus	IP	sample.		

	

Table	7.7:	Primer	sequences	used	for	ChIP‐qPCR.	

Name  Primer sequence 

D27_1_F  TCATTGGCGTTTCCTCCCTG 

D27_1_R  TGCCCAAGTTTTGTATGCAGT 

D27_2_F  ACATGTGTCTGCAGCTATATCAG 

D27_2_R  CTGCATCTACTTCATAACCGACC 

D27_3_F  TAACAACTGTTCCCAGCGCA 

D27_3_R  TGACATACTCTAACAACCGATTCT 

D27_4_F  AGAATCGGTTGTTAGAGTATGTCA 

D27_4_R  AATTGCGTCCCTCGGTCAAT 

	

	

7.12  Transactivation assays 

7.12.1  Transformation of N. benthamiana leaves 

Leaves	of	three‐week	old	N.	benthamiana	plants	were	transformed	using	A.	tumefaciens	

strain	GV3101	carrying	the	appropriate	Golden	Gate	level	2	vector	(Table	7.5).	To	this	

end,	bacterial	cultures	were	set	up	48	h	prior	to	the	transformation	and	grown	in	LB	

media	(Table	7.2)	containing	the	appropriate	antibiotics	at	28°C	with	agitation	at	220	

rpm.	Bacteria	were	spun	down	at	4000	g	for	15	min	at	RT	and	resuspended	in	infiltration	

buffer	(10	mM	MgCl2,	10	mM	MES	pH	5.6,	100	μM	acetosyringone)	to	a	final	OD600	of	

0.3.	After	incubating	for	3	h	at	room	temperature	in	the	dark,	resuspended	bacteria	were	
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infiltrated	into	plant	leaves	using	a	1‐ml	needleless	syringe.	Leaf	discs	with	a	diameter	

of	1.5	cm	were	collected	at	72	h	post	 infiltration	and	frozen	 in	 liquid	nitrogen	before	

extracting	proteins	for	enzymatic	GUS	and	LUC	activity	assays	as	described	below.	

	

7.12.2  Protein extraction 

To	extract	proteins	from	transformed	leaf	tissues,	frozen	leaf	discs	were	ground	to	a	fine	

powder	in	liquid	nitrogen	using	a	blue	polypropylene	pestle	(Sigma	Aldrich).	To	extract	

proteins	 from	 transformed	M.	 truncatula	 roots,	 frozen	 tissue	 was	 ground	 in	 liquid	

nitrogen	using	a	mortar	and	pestle.	Immediately	after	grinding,	150	µl	of	1x	Luciferase	

cell	 culture	 lysis	reagent	 (Promega)	supplemented	with	EDTA‐free	protease	 inhibitor	

cocktail	(Roche)	was	added	to	the	plant	tissue	(one	N.	benthamiana	leaf	disc	or	100	mg	

M.	truncatula	root	tissue)	and	incubated	on	ice	 for	10	min.	Cell	extracts	were	cleared	

from	debris	by	centrifugation	at	16000	g	for	10	min	at	4°C.	

	

7.12.3  GUS activity assays 

For	enzymatic	fluorometric	GUS	assays,	40	µl	protein	extracts	were	mixed	with	100	µl	

MUG	assay	buffer	(50	mM	phosphate	buffer	pH	7,	1	mM	EDTA,	0.1%	TritonX‐100,	0.1%	

sodium	lauroyl	sarcosinate	and	10	mM	β‐mercaptoethanol,	2	mM	MUG)	and	incubated	

at	37C.	The	reactions	were	stopped	at	T0	(to	use	as	a	blank)	and	after	30	min	by	adding	

20	 µl	 of	 the	 reaction	 mix	 to	 180	 µl	 200	 mM	 Na2CO3.	 The	 fluorescence	 of	 4‐

methylumbelliferone	 released	 from	 MUG	 was	 measured	 in	 black	 96‐well	 microtitre	

plates	(Greiner	Bio‐One)	on	a	Varioskan	microplate	reader	(Thermo	Fisher	Scientific)	

with	an	excitation	wavelength	of	365	nm	and	an	emission	wavelength	of	455	nm.		

	

7.12.4  LUC activity assays 

To	detect	LUC	activity	in	protein	extracts,	10	μl	protein	extract	were	mixed	with	100	μl	

luciferase	 assay	 reagent	 (Promega)	 in	 a	white	 96‐well	microtitre	 plate	 (Greiner	 Bio‐

One).	Luminescence	was	measured	on	a	Varioskan	microplate	reader	(Thermo	Fisher	

Scientific)	 with	 5	 s	 integration	 time.	 The	 LUC	 activity	 assessed	 in	 a	 sample	 was	

normalized	 to	 the	 transformation	 efficiency	 measured	 as	 GUS	 activity	 in	 the	 same	

sample.	ANOVA	and	Tukey’s	HSD	mean‐separation	test	was	used	to	test	for	significant	
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differences	 in	 transactivation	 levels	 (measured	 as	 LUC/GUS	 ratios).	Where	 required,	

data	were	log10	transformed	to	ensure	equal	variance.	

	

7.13  Phylogenetic analyses 

Phylogenetic	analyses	were	performed	using	protein	sequences	from	M.	truncatula,	A.	

thaliana,	O.	 sativa,	 and	M.	 paleacea.	 With	 the	 exception	 of	M.	 paleacea,	 the	 putative	

homologs	of	MtABCG3	and	MtWRI1	were	extracted	from	the	Phytozome	database	using	

BLASTP	with	the	corresponding	full‐length	protein	sequence	as	query.	Sequences	from	

M.	 paleacea	 were	 obtained	 from	 Guru	 Radhakrishnan	 (unpublished	 data).	 All	 the	

identified	potential	homologs	were	aligned	using	MAFFT	and	maximum	likelihood	trees	

were	constructed	with	Geneious	6.06.	

	

7.14  Bioinformatics 

To	produce	heat	maps	showing	fold	changes	of	differentially	expressed	genes,	the	web‐

based	 tool	GENE‐E	(now	called	Morpheus,	https://software.broadinstitute.org/GENE‐

E/index.html)	 was	 used.	 Hierarchical	 clustering	 of	 genes	 was	 performed	 using	 a	

Euclidean	distance	metric.	

To	identify	significantly	enriched	gene	ontology	(GO)	terms	of	NSP1‐,	NSP2‐,	and	RAM1‐

dependent	genes	identified	by	clustering,	a	singular	enrichment	analysis	was	performed	

using	 the	 web‐based	 tool	 AgriGO	 (http://bioinfo.cau.edu.cn/agriGO/index.php).	 M.	

truncatula	gene	identifiers	(Mtv4.0)	were	used	for	the	input	sample	list,	and	the	analysis	

was	performed	using	the	whole	M.	truncatula	genome	(Mtv4.0)	as	background.	To	test	

for	significance,	Fisher’s	exact	test	was	used,	and	only	GO	terms	with	an	FDR‐corrected	

p‐value	 smaller	 than	 0.05	 were	 considered	 (calculated	 using	 the	 multi‐test	 method	

Yekutieli).		
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The	following	tables	can	be	found	in	the	appendix	of	the	electronic	version	of	this	thesis:	

	

Table	A1:		 List	 of	 genes	 differentially	 expressed	 in	 wild‐type	 roots	 during	

mycorrhization.	

Table	A2:		 List	of	 genes	 consistently	dependent	on	RAM1	 at	 all	 three	 time	points	

during	mycorrhization.	

Table	A3:		 List	 of	 genes	 consistently	 dependent	 on	NSP1	at	 all	 three	 time	 points	

during	mycorrhization.	

Table	A4:		 List	 of	 genes	 consistently	 dependent	 on	NSP2	 at	 all	 three	 time	 points	

during	mycorrhization.	

Table	A5:		 List	of	genes	differentially	expressed	in	ram1‐1	at	all	three	time	points	

under	non‐symbiotic	conditions.	

Table	A6:		 List	of	genes	differentially	expressed	 in	nsp1‐1	at	all	 three	time	points	

under	non‐symbiotic	conditions.	

Table	A7:		 List	of	genes	differentially	expressed	 in	nsp2‐2	at	all	 three	time	points	

under	non‐symbiotic	conditions.	
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