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Abstract

In this work the relaxation of a two-dimensional Bose-gas from a non-equilibrium

initial condition consisting of vortices is studied. To focus on the role of the vortex

excitations on the time evolution of the system, a point vortex model is used. The

relaxation of the vortex gas is seen to lead to clustering of like-signed vortices that

can be explained in terms of negative temperature states. The nature of the Coulomb

interactions between vortices, precludes a well-defined thermodynamic limit. The large

scale flow structures, therefore strongly depend on the shape of the geometry. These

structures can be explained in terms of a maximum entropy principle for the vortex

gas that leads to the Boltzmann-Poisson equation. For a square region the maximum

entropy configuration corresponds to a monopole. This configuration results in the

spontaneous acquisition of angular momentum by the flow. However, by stretching

the square domain into a rectangle, the configuration which maximises the entropy

switched to a dipole where like-signed vortices tend to equally occupy the two halves

of the domain. In this case, the mean flow has zero angular momentum. A direct qual-

itative and quantitative comparison between the predictions of the mean-field theory

and dynamical simulations of a point vortex model are presented. In particular, we

show that vortex-antivortex annihilation results in evaporative heating of the vortex

gas and the subsequent migration of the system into the negative temperature regime.

Moreover, the study is extended to the dynamics of quantised vortices in the same

confined geometries in a two-dimensional Bose-Einstein condensate described by the

Gross-Pitaevskii equation. Despite the coexistence of phonons with vortex excitations

that interact together, the above predictions continue to apply in this more realistic

model of a two-dimensional superfluid.
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σ and its mean value Ē for the monopole and the dipole in the rectangle. 134

ix



LIST OF FIGURES

5.30 Energy-entropy comparison between the results obtained from the solu-

tions of the Boltzmann-Poisson equation and those obtained from the

ensembles in the rectangle. . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.31 Non-dimensional normalised angular momentum associated to the en-

sembles in the square for the dipole, the diagonal dipole and the monopole.138

5.32 Non-dimensional normalised angular momentum associated to the en-

sembles in the rectangle for the monopole and the dipole. . . . . . . . . 140

5.33 Normalised polarisation and normalised number of positive and negative

vortices in the square and in the rectangle.b). . . . . . . . . . . . . . . 142

5.34 Total angular momentum in the square and in the rectangle . . . . . . 142

6.1 Initial condition and the corresponding pseudo-vorticity for the Gross-

Pitaevskii simulation in the square. . . . . . . . . . . . . . . . . . . . . 147

6.2 Number of vortices, antivortices, and polarisation as a function of time

τ in units of tv during the Gross-Pitaevskii simulation in the square. . . 148

6.3 Averaged streamfunction per total number of vortices ψ/(N+ + N−) in

the square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Initial condition and the corresponding pseudo-vorticity for the Gross-

Pitaevskii simulation in the rectangle with aspect ratio Λ = 1.5. . . . . 149

6.5 Number of vortices, antivortices, and polarisation as a function of time

τ in units of tv during the Gross-Pitaevskii simulation in the rectangle. 150

6.6 Averaged streamfunctions per total number of vortices ψ/(N+ +N−) in

the rectangle during the first half of the Gross-Pitaesckii simulation. . . 151

6.7 Averaged streamfunctions per total number of vortices ψ/(N+ +N−) in

the rectangle during the second half of the Gross-Pitaevskii simulation. 151

6.8 Graph of the total angular momentum L as a function of time τ in unit

of tv in the square and in the rectangle. . . . . . . . . . . . . . . . . . . 152

A.1 One-dimensional infinite array of N vortices located at xi, i = 1 . . . N in

the reference cell with side Lx. The positions of all the other vortices are

shifted by nLx, n ∈ Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Example of a system made of 4 vortices located in xi, i = 1 . . . 4 in the

reference cell with side Lx. . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.3 Interactions between the vortex v1 in the reference cell and its copies

(red filled circles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.4 Interactions between the vortex v1 in the reference cell and v2 and all its

copies (red filled circles). . . . . . . . . . . . . . . . . . . . . . . . . . . 160

x



LIST OF FIGURES

A.5 Graphical representation of the double summation over the indices α and

β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.6 Poles of the function f(ζ) inside the path γN . . . . . . . . . . . . . . . 167

A.7 Two point vortices v1 and v2 in a rectangular region surrounded by a

layer of images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.8 Reference cell for a periodic distribution of vortices in a box. . . . . . 172

A.9 Two point vortices in the domain where the dynamics occurs and the

corresponding images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xi





Chapter 1

Introduction

1.1 Superfluidity and Bose-Einstein Condensates

In 1908 4He was liquefied by K. Onnes in his laboratory in Leiden at the temperature

of 4.125K and pressure of 1 atm. Moreover, he tried to solidify 4He by lowering the

temperature keeping the external pressure at 1 atm. After attempting to do so over

a three years period, he was not able to achieve the solid phase of 4He. However,

during the experiments he noticed that the liquid helium had a strange behaviour

when the temperature was lowered below Tλ = 2.18K called the lambda point. When

the temperature was just above Tλ the liquid helium was boiling like the water near

to its boiling point. When the temperature was exactly Tλ, the bubbling immediately

stopped and the surface of the liquid was still even if the temperature was lowered

further towards the absolute zero. The experiments showed the presence of two different

liquid phases which were called He-I, above Tλ, and He-II, below Tλ. Around the lambda

point, analysis of the density and the heat capacity of the liquid helium showed even

stranger results. As the temperature was lowered, the density increased as expected.

However, what was unexpected, was that below Tλ the density started to decrease.

Even more surprisingly, around Tλ, the heat capacity assumed very large values. The

dramatic changes in the properties of liquid helium in the passage from He-I to He-

II are now understood and they can be explained in terms of a second order phase

transition [55]. In 1937 two independent groups, one in Cambridge led by J.F. Allen

and D. Misner, and the other one in Moscow led by P. Kapitza, revealed the amazing

property that He-II can flow without friction [3]. This peculiar characteristic convinced

Kapitza to coin the term superfluidity and to call the second liquid phase of helium, the

superfluid phase. Therefore, if T > Tλ, liquid helium is in a normal fluid with viscosity

and if T < Tλ it is a superfluid with a viscosity which is of the order of 10−9 Pl [49].

1



1.2. THE ROLE OF THE DIMENSIONALITY IN BOSE-EINSTEIN
CONDENSATES

The very first progress in the understanding of superfluidity dates back to 1938 when

F. London had the revolutionary idea to focus on the constituents of 4He. Each atom of
4He is made of two electrons, two protons and two neutrons and therefore, it is a boson.

London had the idea to associate the superfluidity to the Bose-Einstein condensation

(BEC) theorized in 1924 by S. Bose [17] and A. Einstein [41]. Although liquid helium

and BECs are very different, London tried to connect them. An important difference

between them is that the latter involves weakly interacting gases while the former is a

strongly correlated system. An exhaustive theory to describe these strong interactions

is missing and, at the moment, there are only phenomenological models [35]. In 1995,

after seventy years from its prediction, the first BEC was created by E.A. Cornell, E.

Wieman [5] and W. Ketterle [36] who used a gas of 87Rb atoms cooled down to 170

nK (1nK=10−9K). Around the same year the existence of a condensate in superfluid

helium by neutron scattering [52] confirmed the idea proposed by London. This result

fully established an intimate connection between superfluidity and BECs. After the

first realisation of BEC with 87Rb atoms, other atoms such 85Rb [34], 41K [81], 4He

[99], 174Yb [113], 133Cs [118], 52Cr [51], 84Sr [111], 86Sr [110], 40Ca [64], 164Dy [70] have

been used to achieve the condensation. In general, the phenomenon of the BEC is a

phase transition which can occur with different species of atoms with integer spin when

they are cooled below a critical temperature TC .

1.2 The role of the dimensionality in Bose-Einstein

Condensates

In general, in a three dimensional system, a phase transition is associated with

the emergence of a long-range order (LRO) below a critical temperature TC > 0: this

corresponds to the emergence of an order parameter due to a spontaneous breaking of

some continuous symmetry of the Hamiltonian [55]. Examples of such phase transitions

are given by the spin chains [88] and BECs [89]. In the first example, below a critical

temperature TC all the spins tend to be aligned along the same direction and, as a

consequence, the system acquires a non-zero value of the magnetisation. In the second

case, the order parameter, given by the macroscopic complex wave function for the

condensate φ [126], appears when bosons are cooled below the critical temperature

TBEC which is the highest temperature at which a macroscopic number of bosons will

occupy the lowest energy level. This temperature can be evaluated by considering the

total number of bosons N with mass m distributed over the energy states ε with the

2



CHAPTER 1. INTRODUCTION

chemical potential µ = 0 [91],

N =

∫ +∞

0

n(ε)g3(ε)dε, (1.1)

where g3(ε) is the density of states in a three dimensional box with sides L and n(ε) is

the Bose-Einstein distribution

g3(ε) = 2π

(
L

π~

)3

(2m)3/2
√
ε, n(ε) =

1

eβ(ε−µ) − 1
, (1.2)

where β is the inverse temperature of the system, h = 6.626070040(81) × 10−34Js is

the Planck’s constant and ~ = h/2π is the reduced Planck’s constant. By substituting

Eqs. (1.2) into Eq. (1.1), it is possible to find that the temperature TBEC at which the

condensation occurs is given by

TBEC ≈
h2

2mπkB

(
N

V ζ
(

3
2

))3/2

, (1.3)

where kB = 1.3806488(13)JK−1 is the Boltzmann constant, ζ(3/2) ≈ 2.612 is the values

of the Riemann zeta function ζ(z) for z = 3/2, and N is the total number of particles

in the volume V . It has to be noticed that in Eq. (1.1) a key role is played by the

density of states g3(ε) which depends on the dimensionality of the considered space.

In general, the dimensionality of a system is very important to a phase transition to

occur: a phase transition which involves a spontaneous symmetry breaking is impossible

in the thermodynamic limit in one and two-dimensional infinite systems with short

range interactions at any non-zero temperature [78]. Therefore, in 1D and 2D, true

LRO does not occur in the ideal Bose gas, where there are no interactions between

the particles, or weakly interacting infinite uniform Bose gases. However, BECs are

created in laboratories in a confined region of the space and this is the reason why

the above results do not hold and they can exist in lower spatial dimensions. The

trapping potential changes the shape of the density of states and hence, condensation

can occur. In particular, it has been shown by Bagnato [9] that an ideal BEC can occur

in one dimensional systems if the confining potential U(x) ∼ xn and n < 2, and in two

dimensions if U(x, y) ∼ xn + ym and n−1 +m−1 is finite. In addition, the condensation

can occur in low dimensions also for a weakly interacting Bose gas [10].
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1.3. FLUID-DYNAMICS APPROACH TO BOSE-EINSTEIN CONDENSATES

1.3 Fluid-Dynamics Approach to Bose-Einstein Con-

densates

When all the bosons are in the condensed state, it is possible to adopt the Hartree

or mean-field approximation which permits to write the N -body wavefunction which

describes all the bosons as a product of N single-particle wavefunction [91]. This single-

particle wavefunction is called the condensate wavefunction or macroscopic wavefunc-

tion and is indicated by φ(x) where x is the position vector. Moreover, in this approxi-

mation the dynamics of a BECs is well described by the so called Gross-Pitaevskii (GP)

equation [53] given by

i~
∂φ(x, t)

∂t
= − ~2

2m
∇2φ(x, t) + Vext(x, t)φ(x, t) + g|φ(x, t)|2φ(x, t), (1.4)

where x is the position vector, Vext(x, t) is a confining external potential which can

depend on both space x and time t, and g = 4π~as/m is the coupling constant pro-

portional to the scattering length as of two interacting bosons. The presence of the

above equation makes atomic BECs easier to investigate than liquid helium. As pre-

viously said, the external potential is an essential ingredient for the condensation, but

in the following it will be set to zero. The physical content of Eq. (1.4) is revealed by

considering the Madelung transformation [92]

φ(x, t) =
√
n(x, t)eiθ(x,t), (1.5)

which maps the dynamics of a condensate into the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0, v =

~
m
∇θ(x, t), ρ = mn(x, t), (1.6)

and a classical Euler equation for an inviscid and irrotational fluid

∂v

∂t
+ (v · ∇)v = − g

m2
∇ρ+

~2

2m2
∇
[
∇2√ρ
√
ρ

]
, (1.7)

where the additional last term, called quantum pressure, reveals the quantum nature

of the system. It follows that the dynamics of a condensate can be expressed in terms

of the local condensate density ρ and the superfluid velocity, v. This representation

provides a hydrodynamical formulation of BECs and allows connections to be made

between classical fluids and quantum fluids. In particular, one of the problems of

key interest is the analogy between turbulence in classical fluids and quantum fluids.
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CHAPTER 1. INTRODUCTION

Therefore, in the following, a briefly review on the key features of classical turbulence

will be given before discussing open problems in quantum turbulence.

1.4 Three-Dimensional and Two-Dimensional Clas-

sical Turbulence

Turbulence was recognised as an important behaviour of fluids more than five hun-

dred years ago by Leonardo da Vinci. He described it as follows

“...the smallest eddies are almost numberless, and large things are rotated only by

large eddies and not by small ones, and small things are turned by small eddies and

large.”

Since then, there seems to have been no substantial progresses in the understanding

of turbulence until the first half of the 19th Century when C. L. Navier and G. G.

Stokes presented an equation, the Navier-Stokes equation [11], for the dynamics of all

fluid flows including those that are in a turbulent state. This system of non-linear

partial differential equation admits few exact solutions under some hypothesis which

sometimes can oversimplify the problem. In 1922, L.F. Richardson [97] provided an

intuitive characterisation of turbulence

“Big whorls have little whorls, which feed on their velocity; and little whorls have

lesser whorls, and so on to viscosity.”

In a physical description, if energy is injected in a three dimensional system, it spon-

taneously flows towards the small scales (large wave numbers). At sufficiently small

scales, viscosity becomes important and it dissipates the energy into heat. This mecha-

nism, called Richardson cascade, is also known as a direct cascade and, in homogeneous

systems, is associated with the conservation of the energy on intermediate scale, the

inertial range.

Important progress in the understanding of classical turbulence was made by A.N.

Kolmogorov in 1941 [109] who proposed a method to evaluate the energy spectrum

of a turbulent flow. His result is based on a dimensional analysis and it leads to the

conclusion that the energy spectrum in the inertial range is given by E(k) ∼ k−5/3,

where k is the magnitude of the three-dimensional wavenumber vector k. On the other

hand, two-dimensional systems have been widely investigated by R. H. Kraichnan [65]

and G. K. Batchelor [11] and they exhibit a different behaviour. When the energy is

injected at intermediate scale, it flows towards larger scales (small wave numbers) and
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1.5. STATISTICAL MECHANICS OF POINT VORTICES

leads to the formation of large eddies. This flow of energy is opposite to the three-

dimensional case and is called an inverse energy cascade. The contrasting behaviour

between 2D and 3D arises because for an ideal inviscid fluid in 2D there is an additional

invariant (constant of motion) called the enstrophy that is defined as

Z =
1

2

∫
|ω|2d2x. (1.8)

The presence of an additional invariant associated with the enstrophy, also leads to

a direct cascade for the enstrophy which exhibits a spectrum given by E(k) ∼ k−3

and it is associated with the stretching of the large patches of vortices. Experimental

evidences of these cascades have been reported in [23]. From now on, if not explicitly

specified, a two-dimensional system is considered.

1.5 Statistical Mechanics of Point Vortices

The first explanation on the formation of large clusters in two-dimensional fluid

dynamics was given by Onsager in 1949 [90] when he published a seminal work on the

study on two-dimensional hydrodynamic turbulence by using a statistical mechanical

approach. In his work, he used the so called point vortex model [86] (PVM) which was

introduced by H. L. F. von Helmholtz in 1858. In this model, a vortex located at x0

has vorticity given by

ω(x) = γδ(x− x0), (1.9)

where γ is its circulation which is defined as

γ =

∮
C

v · dl, (1.10)

where C is a closed path which encloses the vortex, v is the velocity field generated by

the vortex and dl is the infinitesimal displacement along the path C. Onsager noticed

that a two-dimensional system composed by point vortices (PVs) in a bounded domain

D can admit a negative absolute temperature. From a statistical mechanical point of

view, the temperature of a system is defined as

1

T
=

(
∂S

∂E

)
D
, (1.11)

where S is the entropy of the system, E its energy and the subscript D means that

the partial differentiation is performed keeping the area D constant. If the entropy
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CHAPTER 1. INTRODUCTION

of a system is an increasing function of the energy, then the temperature is always

positive. However, in the case of PVs, the entropy can be a decreasing function of

the energy E and in this case the PVs with same circulation tend to cluster together

forming large coherent structures. This is exactly the scenario described by the inverse

energy cascade: the energy flows from small scales, when vortices are separated, to

large scales, where vortices of the same sense of rotation tend to gather together. The

formation of these eddies, in Onsager’s model, is a direct consequence of the fact that

a two-dimensional confined system with area D has a finite phase space. This can be

immediately seen by looking at the equation of motions for a system composed of N

point vortices with circulation γk, k = 1, . . . , N , given by [86]

ẋk =
1

γk

∂H
∂yk

, ẏk = − 1

γk

∂H
∂xk

, (1.12)

where H is the Hamiltonian (interaction energy) of the system. Clearly these equations

are written in Hamiltonian form, and it is immediate to conclude that the phase space

is finite and it is given by DN . This profound connection between statistical mechanics

and hydrodynamics suggested that a fully and consistent theory based on statistical

mechanics was necessary to describe the two-dimensional turbulence. In 1973, G. Joyce

and D. Montgomery [60] developed a statistical theory for a two-dimensional electro-

static guiding plasma based on the maximum entropy principle. The possibility of using

this theory for the PVM is given by the fact that the Hamiltonian in both systems is

of the same form [86]. They found that the configurations which maximise the entropy

(statistical equilibrium) correspond to solutions of the so called Boltzmann-Poisson

(BP) equation. This is a second order non-linear differential equation for the stream-

function ψ(x) of the flow related to the vorticity by ∇2ψ(x) = −ω(x). Moreover, in

perfect agreement with Onsager, they found that the BP equation has non-trivial solu-

tions only if the temperature of the system is negative and these solutions correspond

to configurations in which PVs cluster together and form large eddies.

The statistical theory of point vortices in confined geometries was fully developed

by Y. B. Pointin and S. Lundgren [93, 71] in 1976 and 1977. Their main aim was to

understand how the geometry modifies the formation of the large coherent structures

and for this reason they investigated the circular domain and the square. In particular,

they wanted to establish if the configurations which maximise the entropy depended on

the shape of the domain. They noticed that in the circular domain, the positive and

negative vortices tend to cluster in two separate clusters forming a dipole. In the case

of the square, the most probable configuration corresponds to vortices with one charge
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1.5. STATISTICAL MECHANICS OF POINT VORTICES

occupying the centre of the domain and the vortices of the other charge occupying the

four corners. Moreover, they also investigated the most probable configuration in a

rectangular geometry [71] and they found that for values of the aspect ratio Λ = Lx/Ly

greater than a critical value ΛC = 1.122 the most probable configuration is no longer

the monopole but the dipole. In this second scenario, the vortices will share equally the

rectangular domain by forming two large eddies. Their work fully established that the

statistical equilibrium is determined by the shape of the container. A deeper insight

about the differences between the circular domain and the square/rectangle is that in

the circular geometry the total angular momentum L of the system is a constant of

motion. The conservation of the angular momentum imposes a strong constraint on

the vortex dynamics. However, the angular momentum is not a constant of motion if

the PVs are confined in a square or, more in general, in a rectangular geometry.

A possible way to test these assertions is to investigate the dynamics of PVs with

the PVM in a confined geometry. This can be done by solving the equation of motion

(1.12), where the Hamiltonian H needs to be specified for the respective geometries.

A possible method to evaluate the Hamiltonian for the PVM in bounded geometries is

the so called method of images [86]: in this method, the PVs are placed in strategic

positions outside the domain in order to ensure that a zero normal velocity is satisfied at

the boundary. In 1941 C.C. Lin [69] showed that using such an approach any connected

domain D can be simulated. In the case of a circular geometry the Hamiltonian H can

be easily derived [86] and the dynamics in such a geometry has been studied by Y. B.

Pointin [93] and it agrees with the prediction given of the statistical theory. However,

the study of the vortex dynamics in the square and in the rectangle was not considered

since the Hamiltonian for such domains was only derived in 1989 by L. J. Campbell [24].

A numerical method to solve the Euler equations was developed by J. P. Christensen

[32] in 1969 and he revealed that in the square the statistical equilibrium is associated

to the monopole while for the rectangle with aspect ratio Λ > ΛC the dipole is the

maximum entropy configuration. Although in 1990 the Hamiltonian in the rectangle

and in the square was known, L.J. Campbell and K. O’Neil [25] investigated the vortex

dynamics in these geometries by using the random walk method. They also noticed

that a possible mechanism to increase the energy of the system was to introduce in the

dynamics an annihilation parameter between the positive and the negative vortices.

Their motivation was to use this to represent the effects of diffusion.

The realisation that statistical mechanical approaches could be applied to fluid dy-

namics through the PVM stimulated interest in decaying turbulence in classical fluids

and in particular in two-dimensional Navier-Stokes flows in confined geometries [33],
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CHAPTER 1. INTRODUCTION

[21], [74], [27], [104], [61], [82], [62], [30]. A striking result has been obtained by H. C.

Clercx et al. [33] in 1998: by studying the two-dimensional turbulence in a squared

container with rigid boundaries, they discovered that the high entropy state is given

by the monopole and which has a non-zero angular momentum. In other words, a

two-dimensional classical fluid in a squared container whose dynamics is governed by

the Navier-Stokes equations will spontaneously evolve towards a monopole configura-

tion which carries a non-zero angular momentum. On the other hand, as a direct

consequence of the results obtained by S. Lundgren [71], the dynamics in a rectangular

container must evolve towards the maximum entropy configuration, the dipole, which

has zero angular momentum. In 2009, J. B. Taylor et al. [114] numerically solved the

Boltzmann-Poisson equation in the square and in two different rectangular geometries

with different aspect ratio showing the maximum entropy configurations in these ge-

ometries. Moreover, in the case of the square, the associated emergence of non-zero

angular momentum is driven by the shape of the container rather than the energy of

the system: this reinforces the fact that the acquisition of angular momentum by a

system can be understood in terms of the statistical theory of PVs in two dimensions.

Similarly conclusions were obtained by Esler et al. in 2015 [43] in more complicated

geometries such as the Neumann ovals. These studies demonstrate the role played by

the geometry in the dynamics of PVs and the importance of a statistical approach in

the description of these systems. The sensitivity of the emergent flows to the shape

of the domain is due to the lack of a well-defined thermodynamic limit. This limit, in

which the number of constituents N and the area of the domain D go to infinity while

their ratio N/D is held constant, is a standard assumption in statistical mechanics in

order to obtain quantities which do not depend on the number of constituents or on

the shape of the container. However, due to the long range interaction for the PVM,

the influence of the domain is an inescapable characteristic as N →∞ [43].

Although the statistical properties of hydrodynamic turbulence can be described by

using the PVM, classical fluids do not represent the natural application of the PVM.

When a vortex in a superfluid is considered, it has a vorticity of the form given by Eq.

(1.9) and a circulation as given by Eq. (2.37). A peculiarity of vortices in superfluids

is that their circulation is quantised [47], [90] and is given by γ = ~/m [92] where m

is the mass of the single condensate boson. This peculiar property makes a vortex in a

superfluid a well-defined object with a well-defined circulation. Vortices in superfluids

represent the most appropriate system in which the PVM can be applied. Quantised

vortices have been experimentally detected and recorded with a photographic technique

in liquid helium by E. J. Yarmchuk et al. in 1979 [121] and, in BECs, by Neely et al.
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in 2010 [85].

1.6 Three-Dimensional and Two-Dimensional Quan-

tum Turbulence

While CT is associated with continuous distributions of vorticity, QT deals with

a collection of vortices with quantised circulation that closely resemble point vortices

[92]. In three dimensions, these structures are vortex lines and in two dimensions,

they are point vortices. Before the realisation of BEC in 1995 [73], liquid helium was

the only quantum fluid in which it was possible to study QT. Although both support

superfluidity, the vortices in these two systems have different sizes: a vortex in superfluid
4He has a characteristic radius rHe ∼ Å [39], while in a BEC rBEC ∼ µm [59]. As a

consequence, it is easier to detect a vortex during an experiment in a BEC rather than

in liquid helium. Moreover, from an experimental point of view, 4He does not offer the

possibility to change parameters such as the interaction strength between the atoms of

helium nor its density.

All these problems are absent in BECs: they provide very flexible systems to work

with due to their compressibility, to the tunable interatomic interactions, to the large

number of experimental methods to generate superfluid flows and furthermore, due to

the presence of a well established microscopic theory. In fact, all the the dynamics of a

BEC at zero temperature can be well described by the GP equation presented in Chap-

ter 2. Therefore, QT can be studied by creating vortex lines in three-dimensional BECs

and quantum vortices in two-dimensional BECs and investigating their dynamics, their

mutual interactions and their interactions with the condensate. All these interactions

are well modelled by the GP equation in the limit of zero temperature. However, if

the condensate is at non-zero temperature, other models are necessary [13], [94]. These

models are important since the incompressible energy of a BEC is radiated by emission

of sound and then dissipated with the interactions with the thermal cloud [1].

All these considerations seem to lead to the conclusion that BECs provide a suitable

environment in which QT can be studied. However, the most natural questions to raise

at this stage are the following: ”how can quantum vortices be created and detected

in a BEC?” Quantum vortices can be created in a BEC by phase imprinting [67, 54],

by transfer of orbital angular momentum to the condensate [120] or by laser stirring

[85]. As to their detection, interferometric techniques have been used to detect the

position and the winding number of the vortices [75], [31], [58] while sequential images
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taken during their dynamics [4], [85], [48], [79] have also been used. Therefore, all the

ingredients for the study of QT are present and the immediate comparison between CT

and QT is to find the presence of a direct cascade in a three dimensional BEC. Evidence

of a direct energy cascade was found by J. Maurer [76] in 1998 and by M. Kobayashi

[72] in 2005. Such direct cascade was also found in other quantum fluids like 4He by T.

Araki [112] in 2002 and in 3He by D. I. Bradley [19] in 2006.

Regarding two-dimensional systems, various attempts have been made to make a

connection between CT and QT from a numerical point of view. The energy flux from

small scales to large scales have been demonstrated by Yatsuynagi et al. [122] in 2005

but, in 2009, R. Numasato et al. [87] concluded that an inverse energy cascade is

not a necessary feature of two-dimensional QT. However, the presence of an inverse

energy cascade in BECs has been found in various geometries [84], [6],[108],[95]. In

all these works, the authors focused on the analysis of the energy spectrum during the

decay of quantum turbulence, but other possible ways to quantify the clustering in a

BEC based on the Ripley’s function [98] have been proposed by A. White [119]. Only

recently A.S. Bradley and B.P. Anderson in 2012 [18] fully established a link between

the two-dimensional CT and two-dimensional QT.

In order to compare CT to QT, the role of the annihilation of quantum vortices with

opposite circulation needs to be understood: this mechanism has been investigated in

detail by several authors [83], [66]. An important progress in the modelling of the

dynamics of quantum vortices in BECs has been made by Simula et al. [107] in 2014

by using the PVM and adding to it an annihilation parameter δrun: PVs with oppo-

site circulation whose mutual distance is less than δrun are removed from the system.

This artefact mimics the pair annihilation which is naturally present in a BEC but is

absent in the PVM since this model conserves the total number of vortices. A similar

approach has been used by T. Billam et al. [14] in a doubly periodic domain. The

idea of introducing an annihilation parameter, dates back to 1990 when L.J. Campbell

and K. O’Neil [25] noticed that this mechanism can increase the energy per vortex of

the system and leads to clustering. It results in evaporative heating (the inverse of

evaporative cooling) in which coldest constituents are removed from the system, and

these constituents are represented by the vortex-antivortex pairs. Since the annihilation

process increases the energy per vortex, the systems migates into the negative temper-

ature regime, and Onsager’s statistical theory could now be applied to the quantised

vortex gas. More recently, in 2016, X. Yu et al. [125] successfully applied a statistical

theory based on point vortices to describe the formation of large coherent structures in

a circular domain. In the case of a finite temperature BEC, the vortex dynamics can

11



1.7. STATICAL MECHANICS OF QUANTISED POINT VORTICES

be modelled by using the so called dissipative PVM [7], which takes into account the

interactions between the vortices and the condensate. However, these works focused

on the doubly periodic domain or on the circular region in which the total angular

momentum is a constant of motion. As already pointed out in the case of CT, the role

played by the geometry is fundamental in the long term dynamics of the system. In

particular, the differences in the long term dynamics of quantum vortices in the square

and the rectangle, for our knowledge, have never been investigated with the PVM.

1.7 Statical Mechanics of Quantised Point Vortices

It is clear that the dynamics of quantised vortices in a BEC can be investigated

with the PVM. However, a systematic description in the square and the rectangle are

missing and this is the first aim of this thesis: to investigate in depth the dynamics of

PVs in these confining geometries in which, due to the absence on the constraint on

the angular momentum, a spontaneous acquisition of angular momentum could occur.

Moreover, due to the nature of quantised vortices, it is natural to apply statistical

theories based on the PVM to the study of QT.

The problem of applying statistical methods to the analysis of a BEC in real experi-

ments has been carried out in 2011 by Yefsah et al. [123]. However, a mean-field theory

based on the PVM is missing in the literature: this theory is the key to understand and

to predict the formation of large coherent structures in two-dimensional QT. Therefore,

the second aim of the thesis is to develop a mean-field theory of quantised point vortices

in a two-dimensional system and to compare the results obtained from the dynamical

descriptions of the system with the PVM. In particular, a mean-field theory based on

the microcanonical approach will be developed in a generic confined domain D and

applied to a squared and rectangular domain. The choice of these geometries is also

reinforced by the possibility of creating BECs in uniform potential optical traps which

allow the study of the dynamics of quantised vortices in geometries like the square and

the rectangle [50]. This fact emphasizes the utility of using the PVM to model the

dynamics of quantised vortices in such domain. An additional aim of this thesis, is

to make a quantitative connection between the mean-field theory and the dynamics

described with the PVM. Indeed, such detailed comparisons are completely missing in

the literature even in studies motivated by CT. Finally, testing these theories against

predictions obtained with the GP model of a superfluid has not been considered to

date. We will therefore culminate the findings of our results with the PVM and the

statistical approach to compare these against a more realistic microscopic model in the
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form of the GP equation.

Summarising, this thesis will investigate the dynamics of point vortices in the square

and the rectangle, will show how to develop and apply a mean-field theory to such

systems and how it is possible to make a quantitative comparison between these two

approaches.

1.8 Thesis Outline

This thesis is organised into six Chapters and a brief description on the contents

of each Chapter is given below. In Chapter 2, a brief introduction to BECs and the

derivation of the GP equation will be provided. Moreover, the hydrodynamic approach

to BECs will be given and, the PVM will be presented as a possible way to describe the

dynamics of quantised vortices in BECs. The PVM will be fully developed in the case

of unbounded and bounded domains. In Chapter 3 a review of classical and statistical

thermodynamics will be given and in particular, the concept of the negative tempera-

tures will be discussed in the context of the point vortex model and fully explained. By

applying the maximum entropy principle to a system composed of point vortices, the

BP equation will be derived. In Chapter 4 the BP equation for a neutral system of point

vortices is solved numerically in a square and a rectangle and the solutions obtained are

classified in terms of their energy and entropy. This will allow the classification of the

configurations of point vortices according to weather they correspond to local or global

maxima of the entropy in both geometries. In Chapter 5 the dynamics of point vortices

in the square and the rectangle will be investigated in depth. In particular, several

aspects of the dynamics will be considered. In the first part, a qualitative analysis of

the dynamics of point vortices is presented. This will reveal good agreement with the

statistical predictions presented in Chapter 4. A description of the dynamics based

on the analysis of the angular momentum is also given. In this Chapter, a method

that allows direct quantitative comparison between predictions of the PVM and the

statistical theory of Chapter 4, is also developed. To our knowledge such a thorough

validation between direct dynamical simulations and results of the BP equation has not

been performed before. In Chapter 6 the dynamics of quantised vortices is investigated

by numerically solve the GP equation in a squared domain and in a rectangle. This

study will show good agreement with the results presented in Chapter 5.
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Chapter 2

Gross-Pitaevskii Theory and Point

Vortex Model

In this Chapter an introduction to the Gross-Pitaevskii theory and to the point

vortex model will be given. More details about the Gross-Pitaesvkii theory can be

found in [52] and [92] whereas the point vortex model is discussed in [86].

2.1 Weakly Interacting Bose Gas

In nature there are two kind of particles: bosons and fermions. If a system is com-

posed of N identical particles each of mass m then, according to Quantum Mechanics,

it is described by the N body wave function

Ψ(x1,x2, . . .xN), (2.1)

where xi is the position of the i-th particle, i = 1, 2, . . . , N . The wave functions which

describe bosons and fermions have different behaviour if two particles are swapped. In

particular for bosons the wave function has to be symmetric under permutation of any

two identical particles

Ψ(. . .xi, . . . ,xj, . . . ) = Ψ(. . .xj, . . . ,xi, . . . ), (2.2)

while for fermions the wave function is asymmetric under the same permutation

Ψ(. . .xi, . . . ,xj, . . . ) = −Ψ(. . .xj, . . . ,xi, . . . ). (2.3)
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In this work the former kind of particles are considered and, hereafter, it will be un-

derstood that the particles which are being studied are bosons. The wave function

Ψ(x1,x2, . . .xN) satisfies the Schrödinger equation

ĤΨ(x1,x2, . . .xN) = EΨ(x1,x2, . . .xN), (2.4)

where

Ĥ = − ~2

2m

N∑
i=1

∇2
i +

1

2

N∑
i,j=1

Vint(xi − xj), (2.5)

is the Hamiltonian operator of the system and Vint(xi− xj) is the interaction potential

between particles. In Eq. (2.5) the factor 1/2 in the second summation avoids the

over counting of interaction between pairs. When the number of particles is large,

solving the Schrödinger equation for all particles with a suitable initial condition, is very

complicated and for this reason a quantum field theory approach is more suitable. In a

second quantization framework 1, the wave function is replaced by the field operators

Ψ̂†(x) and Ψ̂(x) which create and annihilate a particle at position x respectively and

which satisfy the following commutation rules at equal time[
Ψ̂(x′), Ψ̂†(x)

]
= δ(x− x′),

[
Ψ̂†(x′), Ψ̂†(x)

]
=
[
Ψ̂(x′), Ψ̂(x)

]
= 0. (2.6)

where [Â, B̂] = ÂB̂− B̂Â, and δ is the Dirac delta function. The Hamiltonian operator

(2.5), in the second quantisation formalism, becomes [92]

Ĥ =

∫
d3xΨ̂†(x, t)

[
− ~2

2m
∇2 + Vext(x, t)

]
Ψ(x, t)

+
1

2

∫
d3x

∫
d3x′Ψ̂†(x, t)Ψ̂†(x′, t)Vint(x

′,x)Ψ̂(x, t)Ψ̂(x′, t). (2.7)

where Vext(x, t) is an external potential and d3x = dxdydz. If the considered system

consists of a dilute gas then the interactions between bosons are dominated by two-body

collisions and hence, the interaction potential can be written as [92]

Vint(x,x
′) = gδ(x− x′) =

4π~2as
m

δ(x− x′), (2.8)

where g is the coupling constant and as is the s-wave scattering length. In a d-

dimensional space the units of the field operators Ψ̂ and Ψ̂† can be obtained from

Eq. (2.6) and are given by [Ψ̂] = [Ψ̂†] = `−d/2 which reduces to [Ψ̂] = [Ψ̂†] = `−3/2

1For a complete and formal definition see [45].
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in the three dimensional case. Replacing the interaction potential (2.8) into Eq. (2.7)

gives

Ĥ =

∫
d3xΨ̂†(x, t)

[
− ~2

2m
∇2 + Vext(x, t)

]
Ψ̂(x, t)

+
g

2

∫
d3xΨ̂†(x, t)Ψ̂†(x, t)Ψ̂(x, t)Ψ̂(x, t). (2.9)

The time evolution of the operator Ψ̂ is governed by the Heisenberg equation [45]

i~
∂Ψ̂(x, t)

∂t
=
[
Ψ̂(x, t), Ĥ

]
, (2.10)

and by using the commutation relations (2.6)

[
Ψ̂(x, t), Ĥ

]
= − ~2

2m
∇2Ψ̂(x, t) + Vext(x, t)Ψ̂(x, t)

+
g

2

∫
d3x′

[
Ψ̂(x, t), Ψ̂†(x′, t)Ψ̂†(x′, t)Ψ̂(x′, t)Ψ̂(x′, t)

]
=

[
− ~2

2m
∇2 + Vext(x, t) + gΨ̂†(x, t)Ψ̂(x, t)

]
Ψ̂(x, t). (2.11)

Therefore, the time derivative of the operator Ψ̂(x, t) given by Eq. (2.10) becomes

i~
∂Ψ̂(x, t)

∂t
=

[
− ~2

2m
∇2 + Vext(x, t) + gΨ̂†(x, t)Ψ̂(x, t)

]
Ψ̂(x, t). (2.12)

If the temperature of the system is sufficiently low, by using the Bogoliubov ansatz [15]

Ψ̂(x, t) = φ(x, t) + δφ̂(x, t), (2.13)

the wave function can be split into a mean-field term which has non zero mean value

〈φ(x, t)〉 6= 0 which represents the vacuum expectation values of the operator Ψ̂(x, t)

and a term which has a zero mean value 〈δφ̂(x, t)〉 = 0 and it represents the quantum

fluctuations. This assumption is justified if the lowest energy states are macroscopically

occupied and hence the system can be described by the classical field φ(x, t) and the

fluctuations around it. By substituting (2.13) into Eq. (2.9), the Hamiltonian Ĥ can

be decomposed into five terms [94]: a leading order term H0 which involves only the

complex wave function φ(x, t) and other four terms which involve both φ(x, t) and the

operator δφ̂(x, t). In the T = 0 limit, the non condensate contribution δφ̂ can be set
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equal to zero and hence Ĥ ≈ H0, and hence, Eq. (2.12) becomes

i~
∂φ(x, t)

∂t
= − ~2

2m
∇2φ(x, t) + Vextφ(x, t) + g|φ(x, t)|2φ(x, t), (2.14)

which in known as Gross-Pitaevskii equation. Hereafter, the Gross-Pitaevskii equation

will be referred as GP equation. The normalization condition on the wave function is

given by ∫
|φ(x, t)|2d3x = N, (2.15)

where N is the total number of bosons in the condensate.

2.2 Vortex Solutions

In this section a gas in an unbounded domain is considered, hence in the GP equation

(2.14) Vext = 0 and a particular solution of the equation will be investigated. Therefore

a coordinate system (r, θ, z) can be used and and it will be assumed that the solution

does no depend on the z - coordinate. This assumption is justified since a ground

states solution, corresponding to a straight vortex line, is considered. The GP equation

assumes a simple form if the time and spatial dependence of the wavefunction can be

factorized as [92]

φ(x, t) = φ(x) exp

(
−iµt
~

)
, (2.16)

where µ is the chemical potential, which represents the energy associated with the

addition of one boson to the condensate. By substituting (2.16) into Eq. (2.14) the

following time-independent GP can be obtained(
− ~2

2m
∇2 − µ+ g|φ(x)|2

)
φ(x) = 0. (2.17)

In cylindrical coordinates the wavefunction φ(x) can be written as

φ(r, θ) = eikϕF (r), k = ±1,±2, . . . , (2.18)

and hence, Eq. (2.17) becomes

− ~2

2m

1

r

d

dr

(
r
dF

dr

)
+

~2

2m

k2

r2
F (r) + gF 3(r)− µF (r) = 0. (2.19)

17



2.2. VORTEX SOLUTIONS

At a point located far away from the vortex line, the density must be equal to the

uniform value n∞ while at the centre of the vortex line it must approach to zero. This

is due to the fact that the second term of Eq. (2.19) is singular in r = 0 and hence

F (r) = 0 if r = 0 avoids singularities in Eq. (2.19). Therefore,

F (r)→
√
n∞ if r → +∞, F (r)→ 0 if r → 0 (2.20)

and the wave function can be written as F (r) =
√
n∞f(r), and Eq. (2.19) becomes

−
√
n∞

~2

2m

1

r

d

dr

(
r
df

dr

)
+
√
n∞

~2

2m

k2

r2
f(r) + gn3/2

∞ f 3(r)− µ
√
n∞f(r) = 0. (2.21)

As r → +∞ the first two terms of the above equation vanish, leading to

µ = gn∞, (2.22)

which gives the relation between the chemical potential µ, the density of particles n∞

and the coupling constant g. Equation (2.21) reduces to

1

η

d

dη

(
η
df

dη

)
+

(
1− k2

η2

)
f(η)− f 3(η) = 0, (2.23)

if the following dimensionless quantities are introduced

η ≡ r

ξ
, ξ ≡ ~√

2mgn∞
, (2.24)

where ξ is called the healing length. The healing length is the characteristic length

where the kinetic term and the non linear term of the GP equation compete,

~2

2mξ2
= gn∞, (2.25)

and it represents the distance over which the wave function tends to its bulk value

when a localized perturbation occurs. Fig. (2.1) shows the vortex profile f(η) written

in terms of a Padè approximation [12] for k = 1. At this stage, a vortex in a BEC

seems to be only characterised by a region of the space where the density goes to zero.

This is not the full story and, in order to understand the real nature of a vortex in a

BEC, it is convenient to write the so called hydrodynamic formulation of a BEC.

18



CHAPTER 2. GROSS-PITAEVSKII THEORY AND POINT VORTEX MODEL

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

η

f
(η
)

Figure 2.1: Padè approximation of a vortex profile f(η) solution of Eq. (2.23) for
k = 1.

2.3 Hydrodynamic Formulation of Bose-Einstein Con-

densates

In this section, the hydrodynamics approach to BECs will be explained. In the

following, for simplicity the spatial and time dependence (x, t) of the wave function will

be understood. By multiplying the GP equation (2.14) by φ∗ and by considering the

complex conjugate of this quantity the following equations can be obtained

i~φ∗
∂φ

∂t
= − ~2

2m
φ∗∇2φ+ Vext|φ|2 + g|φ(x, t)|4,

−i~φ∂φ
∗

∂t
= − ~2

2m
φ∇2φ∗ + Vext|φ|2 + g|φ(x, t)|4. (2.26)

Subtracting them

i~
(
φ∗
∂φ

∂t
+ φ

∂φ∗

∂t

)
= − ~2

2m

(
φ∗∇2φ− φ∇2φ∗

)
, (2.27)

which assumes the form
∂n

∂t
+∇ · (nv) = 0, (2.28)
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where the particle density n, and the velocity field of the condensate v are given by

n ≡ φφ∗ = |φ|2, v ≡ ~
2mi

(
φ∗∇φ− φ∇φ∗

|φ|2

)
. (2.29)

Instead of using the density of particles n, it is useful to define the mass density ρ ≡
m|φ|2 for which Eq. (2.28) becomes

∂ρ

∂t
+∇ · (ρv) = 0. (2.30)

Hence the GP equation has the form of a continuity equation for the mass density ρ.

The total mass M of the condensate is simply given by integrating the mass density

over the total volume∫
ρd3x =

∫
m|φ|2d3x = m

∫
|φ|2d3x = mN = M. (2.31)

A complete description of a BEC from a fluid dynamics point of view is obtained by

writing the complex function φ in the magnitude-phase representation

φ(x, t) =
√
n(x, t)eiϕ(x,t), (2.32)

also known as Madelung transformation. Since

∇φ = ∇
√
neiϕ +

√
ni∇ϕeiϕ,

∇φ∗ = ∇
√
ne−iϕ −

√
ni∇ϕe−iϕ, (2.33)

the velocity field becomes

v =
~

2mi

(
φ∗∇φ− φ∇φ∗

|φ|2

)
=

~
2mi

2ni∇ϕ
n

=
~
m
∇ϕ, (2.34)

which reveals an interesting property of condensates: ∇ × v = 0. Hence, the flow

is irrotational which is a typical characteristic of superfluids. It is now possible to

deeply understand the nature of a vortex in a BEC and in a superluid by evaluating

the integrated change in the phase

∆ϕ =

∮
C

∇ϕ · dl, (2.35)
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where dl = drur + rdθuθ is the infinitesimal displacement along the curve C which

encloses a vortex. Assuming the values of the wavefunction φin and φfin at the initial

and final points of the curve Cin ≡ Cfin, to be equal (single-valued wavefunction), it

implies

∆ϕ = 2πk, k = ±1,±2 . . . (2.36)

Therefore, a vortex in a BEC is not only a region in which the density goes to zero,

but most importantly, it is a phase defect of the condensate. The evaluation of the

circulation is straightforward and is given by

γ =

∮
C

v · dl =
h

m
k, k = ±1,±2 . . . (2.37)

where C is a curve which encloses the singularity and v is given by Eq. (2.34). If the

curve C does not enclose any singularity, then Stoke’s theorem can be applied and

γ =

∮
C

v · dl =

∫
A

∇× v · dA, (2.38)

where A is a surface with boundary C and dA is the surface normal. Since the flow is

irrotational, the circulation is identically zero. However, Stoke’s theorem does not hold

if C encloses a vortex and hence, a fluid can be irrotational and still carry circulation:

in this case the velocity field is irrotational except at the position of the vortex in

which all the circulation is squeezed. Equation (2.37) reveals an important property of

quantum fluids: the circulation is quantized and the quantum of circulation is given by

h/m. This property is not true in classical fluids where the circulation can assume any

continuous value. If the velocity field generated by a single vortex v = vrur + vθuθ has

no component along ur, Eq. (2.37) gives

γ =

∮
C

v · dl = 2πrvθ, vθ =
γ

2πr
, (2.39)

which is the azimuthal velocity around the singularity which is singular at the posi-

tion of the vortex. To conclude the hydrodynamic formulation of BEC, the Madelung

transformation (2.32) is now substituted into the GP equation (2.14) where, without

loss of generality, the external potential Vext is set equal to zero. Equating both the

real and the imaginary parts of the left and right hand sides, leads to the following two
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equations

<e : −~∂θ
∂t

√
n = − ~2

2m
∇2
√
n+

~2

2m

√
n|∇ϕ|2 + gn

√
n, (2.40)

=m : ~
∂
√
n

∂t
= − ~2

2m

√
n∇2ϕ− ~2

m
∇
√
n · ∇ϕ. (2.41)

For points where n 6= 0, the gradient of Eq. (2.40) gives

−m∂v

∂t
= − ~2

2m
∇
[
∇2
√
n√
n

]
+

1

2
∇|v|2 + g∇n, (2.42)

where Eq. (2.34) has been used. The second term on the right hand side can be written

by using the following vectorial identity ∇|v|2 = 2v× (∇× v) + 2(v · ∇)v which gives

−m∂v

∂t
= − ~2

2m
∇
[
∇2
√
n√
n

]
+ v × (∇× v) + (v · ∇)v + g∇n, (2.43)

and since v = ∇ϕ, the second term on the right hand side of the above equation is

identically zero. Therefore, Eq. (2.43) becomes

∂v

∂t
+ (v · ∇)v = − g

m2
∇ρ+

~2

2m2
∇
[
∇2√ρ
√
ρ

]
. (2.44)

where ρ = mn(x, t) is the mass density. If the last term in the above equation is

neglected, the above equation is similar to the Euler equation for an ideal fluid. It

should be noticed that the Euler equation contains the term v × (∇ × v) which in

this case is identically zero. The last term is the quantum pressure which reveals the

quantum nature of the system and it vanishes if ~→ 0. If the imaginary part (2.41) is

considered, by writing

1

2

∂n

∂t
= − ~

2m
n∇2ϕ− ~

2m
∇n · ∇ϕ = −1

2
∇ · (nv), (2.45)

and noting that

∇n = ∇(
√
n)2 = 2

√
n∇
√
n ,

∂n

∂t
=

∂

∂t
(
√
n)2 = 2

√
n
∂
√
n

∂t
. (2.46)

the continuity equation (2.28)

∂n

∂t
+∇ · (nv) = 0, (2.47)
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is recovered which can be multiplied by the mass of each boson m in order to obtain

Eq. (2.30). This shows that the GP equation contains two fundamental equations of

fluid dynamics: the continuity equation (2.47) and the Euler equation (2.44) except for

the quantum pressure term.

2.4 Two Dimensional Flows in Unbounded Domains

In this section a brief introduction on two dimensional fluid dynamics will be given.A

two-dimensional flow is described by a velocity field

u = u(x, t) = ui + vj, (2.48)

where the component w along the k direction is zero. The density of the fluid ρ(x, t)

will in general be a function of space and time and the conservation of the mass implies

that the density must satisfy the continuity equation (2.30). If the density does not

change in time and space the flow is said to be incompressible and hence, the continuity

equation (2.30) becomes

∇ · u = 0. (2.49)

Hereafter, the density will be assumed to be constant in space and time. The vorticity

field ω is defined ad the curl of the velocity field u

ω = ∇× u, (2.50)

whose magnitude acts as a measure of the local rotation of fluid elements. It has to

be emphasized that the vorticity has nothing directly to do with any global rotation

of the fluid: in fact a fluid can undergo rigid rotation but have zero vorticity. The

incompressibility condition given by (2.49) imposes the existence of a function ψ called

vector potential, such that

u = ∇×ψ, (2.51)

where the dependence of the spatial variables is understood. By inserting (2.51) into

(2.50), the vorticity becomes

ω = −∇2ψ +∇(∇ ·ψ). (2.52)

The vector potential is not unique: in fact, for any smooth scalar field ζ, it is possible

to define ψ′ = ψ +∇ζ which still satisfy Eq. (2.49). This gauge freedom can be used
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to fix the gauge ∇ ·ψ = 0 which will simplify Eq. (2.52) into

ω = −∇2ψ. (2.53)

In a two dimensional flow, the vorticity (2.50) has a non-zero component only along k

and hence also the vector potential is non-zero only along the same direction and it can

be written ψ = ψk. As a consequence, Eq. (2.53) reduces to a scalar equation

ω = −∇2ψ, (2.54)

where ψ is called streamfunction. Moreover, by inserting ψ = ψk into (2.51), the

velocity becomes

u = ∇×ψ = ∇ψ × k + ψ∇× k = ∇ψ × k =
∂ψ

∂y
i− ∂ψ

∂x
j, (2.55)

and hence, by comparison with Eq. (2.48)

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.56)

In order to understand the importance of the streamfunction, the concept of a streamline

needs to be introduced. A streamline is defined as a line that is everywhere tangent to

the instantaneous velocity field. Hence, if dx = dxi + dyj is the element of length along

the streamline, then the cross product between dx and u must vanish,

u× dx = (udx− vdy)k = 0, (2.57)

which defines the equation of a streamline. The variation of the streamfunction dψ(x, y)

along a streamline is given by

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy = −vdx+ udy = 0, (2.58)

where in the last equality Eq. (2.57) has been used. This shows the important property

that along a streamline the streamfunction is constant.

For a fluid with constant density ρ, described by a velocity field u, it is possible to

define its kinetic energy by

Ekin =
ρ

2

∫
|u|2d2x, (2.59)
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where d2x = dxdy, and the integral is extended to the unbounded domain. Integrating

by parts and assuming that the streamfunction goes to zero at infinity, Eq. (2.59)

becomes

Ekin =
ρ

2

∫
|∇ψ| · |∇ψ|d2x = −ρ

2

∫
ψ∇2ψd2x, (2.60)

Recalling Eq. (2.54), the final expression for the kinetic energy is given by

Ekin =
ρ

2

∫
ψ(x)ω(x)d2x. (2.61)

Another important physical quantity related to a fluid is given by the the angular

momentum L: for a fluid with density ρ it is given by

L =

∫
(x− xc)× ρud2x, (2.62)

where xc is the reference position about which the angular momentum needs to be

evaluated and the integral is extended to the considered domain. It is clear that the

angular momentum has a non-zero component only along the k direction since x− xc

and u do not have component along k.

Sometimes, it is useful to express the velocity and the vorticity fields in polar coordinates

(r, θ) and, in this case, the radial and azimuthal components of the velocity are given

by

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
. (2.63)

Expressing Eq. (2.54) in polar coordinates, the vorticity is given by

ω = −1

r

∂

∂r

(
r
∂ψ

∂r

)
− 1

r2

∂2ψ

∂θ2
. (2.64)

2.4.1 Point Vortex Decomposition

In the previous section a description of a fluid flow in terms of the velocity field

has been provided and important physical quantities such as the kinetic energy and

the angular momentum have been introduced. The velocity field u generated by a

distribution of vortices can be obtained once the vorticity field ω is given and therefore,

the first step is to define the vorticity field ω for the flow.

The simplest model for a flow containing vorticity is the so called point vortex model

and it was introduced by Helmholtz [56] in 1858: in this model, the vorticity of a single

vortex with circulation γ0 located at the point x = x0, is represented by the Dirac’s
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delta function

ω0(x) = γ0δ(x− x0). (2.65)

In other words, the vorticity source is concentrated at the point x = x0, it has infinite

intensity but a finite circulation. Since the Eq. (2.54) is linear, for a distribution of

N vortices it is possible to invoke the principle of superposition. Hence, labelling each

point vortex by a subscript j, the total vorticity for such a system is given by

ω(x) =
N∑
j=1

ωj(x) =
N∑
j=1

γjδ(x− xj), (2.66)

where xj and γj are the position and the circulation of the j-th vortex, respectively.

The streamfunction for a single vortex with strength γ0 placed at x = x0 can be

evaluated by solving Eq. (2.54) with (2.65) on the left hand side,

∇2ψ0 = −γ0δ(x− x0), (2.67)

whose solution 2 is given by

ψ0(x) = − γ0

2π
log |x− x0|. (2.68)

The presence of a single vortex generates a velocity field whose components are given

by (2.56)

u0(x, y) =
∂ψ

∂y
= − γ0

2π

y − y0

(x− x0)2 + (y − y0)2
, (2.69)

v0(x, y) = −∂ψ
∂x

=
γ0

2π

x− x0

(x− x0)2 + (y − y0)2
. (2.70)

Notice that the velocity field is undefined at (x, y) = (x0, y0) where the vortex is located

and since a point vortex does not induce velocity on itself, the position of an isolated

point vortex does not change in time. For a distribution of N vortices located at xi with

strength γi, the principle of superposition can be invoked. Therefore, the streamfunction

is given by

ψ(x) =
N∑
i=1

ψi(x) = − 1

2π

N∑
i=1

γi log |x− xi|, (2.71)

2For details see Appendix §(B)
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and the components of the velocity are given by

u(x, y) =
N∑
i=1

ui(x, y) =
N∑
i=1

γi
2π

y − yi
(x− xi)2 + (y − yi)2

, (2.72)

v(x, y) =
N∑
i=1

vi(x, y) = −
N∑
i=1

γi
2π

x− xi
(x− xi)2 + (y − yi)2

, (2.73)

for (x, y) 6= (xi, yi), i = 1, · · · , N . In this case, the velocity field is not defined in all

the positions (x, y) = (xi, yi), i = 1, · · · , N in which vortices are located. If N vortices

are present in a flow, the velocity at the position (xj, yj) where a vortex is located, is

given by evaluating the velocity field generated by the N -1 vortices except from the

j-th vortex at the position (x, y) = (xj, yj), hence

uj ≡ u(xj, yj) =
N∑
i=1
i 6=j

γi
2π

yj − yi
(xj − xi)2 + (yj − yi)2

, (2.74)

vj ≡ v(xj, yj) = −
N∑
i=1
i 6=j

γi
2π

xj − xi
(xj − xi)2 + (yj − yi)2

, (2.75)

where the terms j = i have been removed in order to avoid the contribution of the

j-th vortex. Since the velocity of a single vortex evaluated at the position of the vortex

is not defined, hence, also its kinetic energy is singular: in fact, assuming a constant

density ρ, the kinetic energy is given by substituting Eq. (2.65) and Eq. (2.68) into

Eq. (2.61)

Ekin =
ρ

2

∫
ψ0(x)ω0(x)d2x = −ργ

2
0

4π

∫
log |x− x0|δ(x− x0)d2x, (2.76)

which diverges since the presence of Dirac’s delta function imposes x = x0. This di-

vergent quantity is called the selfinteraction and, in this model, it is not a well defined

quantity. For a distribution of N vortices, the kinetic energy will be given by two contri-

butions: the first is given by all the selfinteractions terms and the second contribution

is given by all the interactions between all the other vortices. The selfinteraction terms

will be neglected and the term which involves all the interactions between the vortices

will be called Hamiltonian and it will be denoted by the letter H. Therefore, when a

distribution of N vortices is considered, the kinetic energy is given by inserting (2.71)
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and (2.66) into (2.61)

Ekin = − ρ

4π

N,N∑
i,j=1

γiγj log |xi − xj| = H +H∞, (2.77)

where a factor 1/2 has been introduced in order not to double count the interactions.

H represents the regular part and H∞ the self interaction terms

H = − ρ

4π

N,N∑
i,j=1
i 6=j

γiγj log |xi − xj|, H∞ = − ρ

4π
lim
ε→0

N∑
i=1

γ2
i log |ε|. (2.78)

By knowing the Hamiltonian of the system, the components of the velocity can be

recovered by evaluating the following terms

ẋj =
1

γj

∂H
∂yj

, ẏj = − 1

γj

∂H
∂xj

. (2.79)

At this stage it is useful to notice that in the above equations the position coordinates

play the role of canonically conjugate coordinates for the Hamiltonian system given by

H as defined in (2.78). This is a crucial property of a two dimensional system: the phase

space coincides with the physical space and this important fact plays a fundamental

role in the study of these systems using a statistical mechanical approach. More details

are given in Chapter 3.

2.4.2 Point Vortex Approximation of the Gross-Pitaevskii Equa-

tion

The GP equation (2.14) can also be derived [92] by evaluating

i~
∂φ

∂t
=
δHGP

δφ∗
, (2.80)

where HGP is the energy functional defined as

HGP =

∫
d3x

[
~2

2m
|∇φ(x, t)|2 + Vext|φ(x, t)|2 +

g

2
|φ(x, t)|4

]
. (2.81)

28



CHAPTER 2. GROSS-PITAEVSKII THEORY AND POINT VORTEX MODEL

Following [18], the two dimensional GP energy functional HGP can be decomposed as

the sum of the following four terms

EK =
1

2

∫
ρ(x, t)|v(x, t))|2d3x, (2.82)

EV =
1

m

∫
ρ(x, t)Vext(x, t))d

3x, (2.83)

EI =
g

2m2

∫
ρ2(x, t)d3x, (2.84)

EQ =
~2

2m2

∫
∇
√
ρ(x, t)|2d3x. (2.85)

where ρ(x, t) = mn(x, t) is the density, Vext is the external potential and g is the coupling

constant defined by Eq. (2.8). These terms are the component of the total energy H

decomposed into the kinetic energy EK , the potential energy EV , the interaction energy

EI and the quantum pressure energy EQ. When the flow is described on lengthscales

larger than the healing length, the density can be approximated as ρ(x, t) ≈ ρ0+ερ̃(x, t)

where ε � 1. Then at leading order EI is constant and EQ is zero. If the external

potential is zero, then also EV is zero and the relevant term in the energy functional

HGP is the kinetic energy term EK . A three-dimensional system containing N straight

vertical vortex lines can be reduced to a planar distribution of N point vortices if the

variable along the k direction is set to be constant. In this case, the kinetic energy EK

of a planar distribution of vortices becomes

EK =
1

2

∫
ρ(x, t)|v(x, t))|2d2x, (2.86)

and it presents both infrared and ultraviolet divergence. In order to regularised EK ,

a multiply connected domain A which contains N vortices each with circulation γk is

considered. The domain A is assumed to be bounded by a circle with radius R in which

small circles Ck with radius rk (k = 1, . . . , N) around each vortex have been removed.

The radius rk of each circle is small but still large compared to the healing length ξ

defined by Eq. (2.24). At leading order, the kinetic term EK can be written as follows

EK =
ρ0

2

∫
A
|v|2d2x =

ρ0

2

∫
A

(v ×∇ψ) · kd2x, (2.87)

where ψ is the streamfunction given by Eq. (2.71) related to the components of the

velocity v by Eq. (2.56). Since∇×(vψ) = ψ∇×v+v×∇ψ, and the fluid is irrotational

29



2.4. TWO DIMENSIONAL FLOWS IN UNBOUNDED DOMAINS

in the multiple connected domain, the above equation becomes

EK =
ρ0

2

∫
A
∇× (vψ) · dS =

ρ0

2

∮
C
ψv · dl +

ρ0

2

∮
Ck
ψv · dlk, (2.88)

where dS = kd2x and the Stokes’ theorem has been applied. In Eq. (2.88) dlk =

(drk, rkdθ) is the infinitesimal displacement along each curve Ck and dl = (dr, rdθ)

along C. Along the curve C distant R from the vortices, the velocity field and the

streamfunction ψ can be approximated by replacing all the vortices by a single vortex

with circulation equal to the sum of the circulations of all vortices, hence

vθ =
γtot
2πR

, ψ(R) = −γtot
2π

logR, γtot =
N∑
k=1

γk, (2.89)

where Eqs. (2.39) and (2.71) have been used. Substituting these two quantities into

the integral along C in Eq. (2.88) gives

ρ0

2

∮
C
ψv · dl = − ρ

4π
γ2
tot logR. (2.90)

The second integral of (2.88) along the curves Ck can be regularised by assuming that

on the circle the streamfunction given by Eq. (2.71) is nearly constant and it is given

by

ψ(xk) = − 1

2π

N∑
j=1
j 6=k

γj log |xk − xj|. (2.91)

In fact, since the velocity around each circle Ck is given by vθ = γk/2πrk, the last term

of Eq. (2.88) becomes

ρ0

2

∮
Ck
ψv · dlk = − ρ0

4π

N,N∑
j,k=1
j 6=k

γjγk log |xk − xj|, (2.92)

which is the regularised interaction energy. The first integral given by Eq. (2.90) is

constant and it does not contribute to the dynamics. On the other hand, the integral

given by (2.92) depends on the mutual distance |xk − xj| and it contributes to the

dynamics. The term of the kinetic energy EK given by Eq. (2.92) is equivalent to the

regular term of the Hamiltonian H for the point vortex model given by Eq. (2.78).

This ensures the possibility of studying the dynamics of quantum vortices in a BEC

described by the GP equation (2.14) by using the point vortex model approach where
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the equation of motions are given by Eq. (2.79).

2.4.3 Lamb-Oseen Vortex

The vorticity field associated with the vortex model suffers from having a singular

distribution. In order to allow comparisons with the smoothed coarse-grained vorticity

fields to be obtained from our mean-field theory to be presented later, we will aim to

reconstruct smoothed form of the vorticity field from our distribution of point vortices.

A natural way to recover such a smooth representation of vorticity from superfluid

point vortices is to adopt the so called Lamb-Oseen vortex which is an exact solution

of the Navier-Stokes equation. We emphasise that this solution is merely used as a

way of choosing an appropriate smooth kernel for the vorticity and the connection with

the Navier-Stokes equation does not have any physical significance for our purposes.

Since this vorticity field arises as an exact solution of the Navier-Stokes equation for

the vorticity, a brief introduction to the Navier-Stokes equation for an incompressible

fluid in three spatial dimensions will be given, and sub-sequentially the two dimensional

case is considered.

The Navier-Stokes equation for a three dimensional velocity field u with density ρ

is given by [86]
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u, (2.93)

where p is the pressure field and ν is the viscosity of the fluid. By using the following

identities

(u · ∇)u =
1

2
∇|u|2 − u× (∇× u), (2.94)

∇2u = −∇×∇× u +∇(∇ · u), (2.95)

Eq. (2.93) can be written as

∂u

∂t
+

1

2
∇|u|2 + ω × u = −1

ρ
∇p− ν∇×∇× u, (2.96)

where the incompressibility condition (2.49) has been applied. Taking the curl of this

equation and noticing that the divergence of a curl and the curl of a gradient are trivially

zero, gives
∂ω

∂t
+∇× (ω × u) = ν∇2ω. (2.97)
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By using the following identity

∇× (ω × u) = (u · ∇)ω − (ω · ∇)u + ω(∇ · u)− u(∇ · ω), (2.98)

and noticing that the last two terms vanish, the Navier-Stokes equation for the vorticity

finally becomes
∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = ν∇2ω. (2.99)

This equation holds for a three dimensional flow, and if a two dimensional flow is

considered, it can be simplified since the last term on the left hand side vanishes

∂ω

∂t
+ (u · ∇)ω = ν∇2ω. (2.100)

In addition, for a two dimensional flow, the vorticity ω becomes a scalar function

perpendicular to the plane where the dynamics occurs so that ω = (0, 0, ω(x, y)). Hence,

the above vectorial equation becomes

∂ω

∂t
+ (u · ∇)ω = ν∇2ω. (2.101)

By using a polar coordinate system and by assuming u = (0, uθ, 0) and ω = (0, 0, ω(r))

the Navier-Stokes equation becomes the heat equation for the vorticity ω

∂ω

∂t
= ν∇2ω. (2.102)

Equation (2.102) is a diffusive equation which depends on the viscosity ν which deter-

mines the size of the viscous vortex core. Before solving Eq. (2.102) it is important

to clarify what Eq. (2.102) represents. If a single vortex with strength γ0 is placed

somewhere in a two dimensional space the above equation represents the evolution in

time of the vorticity field due to the viscosity represented by the parameter ν. If the

vortex is assumed to be placed at the origin, at some initial time, the vorticity is given

by

ω(x, t = 0) = γ0δ(x), (2.103)

which is the required initial condition. By inserting the inverse Fourier transform of

the vorticity field

ω(x, t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
ω̃(k, t)eik·xdkxdky, k = (kx, ky), (2.104)
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into Eq. (2.102) the problem is reduced to solving

∂ω̃

∂t
= −ν|k|2ω̃, (2.105)

which can be integrated to obtain

ω̃(k, t) = Ae−ν|k|
2t, (2.106)

where A needs to be determined by imposing the initial condition described in (2.103).

In particular, the Fourier transform of the initial condition is given by

A = ω̃(k, t = 0) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
γ0δ(x)e−ik·xdxdy =

γ0

2π
. (2.107)

The vorticity field is therefore given by evaluating the inverse Fourier transform of the

above quantity

ω(x, t) =
γ0

4π2

∫ +∞

−∞

∫ +∞

−∞
e−ν|k|

2teik·xdk, (2.108)

which is a Gaussian integral of the form∫ +∞

−∞

∫ +∞

−∞
e−α|k|

2+β·kdk =
π

α
e|β|

2/4α. (2.109)

By comparison α = νt and β = ix, and finally the vorticity is

ω(x, t) =
γ0

4πνt
e−|x|

2/4νt, (2.110)

which can be written as a function of the distance r,

ω(r, t) =
γ0

4πνt
e−r

2/4νt. (2.111)

In the case of a point vortex the value of the circulation in a circle of radius r > 0

is always γ0: in the Lamb-Oseen vortex, this is not valid anymore. The value of the

circulation in a circle of radius r and at time t is given by

γ0(r, t) =

∫ r

0

ω(ξ, t)2πξdξ = γ0

[
−e−ξ2/4νt

]r
0

= γ0

(
1− e−r2/4νt

)
, (2.112)

therefore, the value of the circulation depends on the distance r at which the integral

(2.112) is evaluated and on time t. For a point vortex, the radial and the azimuthal
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Figure 2.2: Vorticity and velocity profile for a Lamb-Oseen vortex.

component of the velocity are given by substituting (2.68) into (2.63) with x0 = (0, 0)

ur = 0, uθ =
γ0

2πr
, (2.113)

and hence, the velocity profile of the Lamb-Oseen vortex is given by substituting γ0 in

the (2.113) with γ0(r, t) given by (2.112)

uθ(r, t) =
γ0

2πr

(
1− e−r2/4νt

)
. (2.114)

The velocity and vorticity profiles for a Lamb-Oseen vortex as a function of the distance

r from the core of the vortex are shown in Fig.(2.2): in this case γ0 = 1 and ν = 0.1.

Fig.(2.2) shows also that for the Lamb-Oseen vortex, the velocity field is not singular,

and this allows also the evaluation of the kinetic energy for a single vortex.

2.5 Domains with Boundaries

In the previous section a flow in an unbounded case has been described. However,

experiments and physical systems are typically bounded, hence it is extremely impor-

tant to develop a theory for finite size systems. Since the velocity field generated by a
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distribution of point vortices requires the knowledge of the streamfunction ψ, its role

is crucial to investigate their dynamics. The Eq. (2.71) for the streamfunction is valid

when an unbounded domain is considered, but its validity ceases in the presence of a

finite domain of a solid boundary. Hereafter, a general domain D with boundary ∂D
will be considered. The domain D could be a closed, simply or multiply connected

region in the plane, or it could be an unbounded region with a solid boundary.

Intuitively, a solid boundary does not allow the fluid to penetrate it: this condition

is satisfied if the normal component of velocity is zero on the boundary

u · n
∣∣
∂D = 0, (2.115)

where n is the normal to the boundary. An example is shown in Fig.(2.3) where a

vertical solid wall is considered: the normal n to the boundary has component (−1, 0)

and the condition (2.115) imposes the component of the velocity in the x-direction to

be zero, and the velocity can be only tangential to the boundary. In the presence of a

boundary it is possible to define two kinds of Green’s function, depending on weather

the boundary condition is imposed on the function G or on its derivative. The Green’s

function of the first kind is defined as the solution of the following boundary problem

∇2GI(x,xi) = −δ(x− xi), x ∈ D, (2.116)

GI(x,xi) = 0, x ∈ ∂D. (2.117)

hence, the boundary conditions apply to the function G (Dirichlet boundary condition).

The Green’s function of the second kind is defined as the solution of the following

boundary problem

∇2GII(x,xi) = −δ(x− xi), x ∈ D, (2.118)

∂GII

∂n
(x,xi) = 0, x ∈ ∂D. (2.119)

As already stated, in the presence of a solid boundary the fluid cannot penetrate it,

and hence, the velocity of the fluid must be parallel to the boundary. This condition

implies that the boundary is a streamline for the flow as explained in §(2.4), and it

requires a constant value of the streamfunction on ∂D. As a consequence, the most

natural choice is the Green’s function of the first kind GI .

As a first step, GI can be decomposed into the sum of the fundamental solution G(x,xi)

in the unbounded plane and an additional function GH which is harmonic in D but can
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∂D

n = (−1, 0) u

v
u = (u, v)

D

Figure 2.3: The grey area represents the domain D. Along the boundary ∂D the u
component must vanish.

have an unknown number of singularities, labelled by α, outside D

GI(x) =
∑
i

G(x,xi) +
∑
α

GH(x,xα). (2.120)

The purpose of this additional function is to impose the right boundary conditions,

since they are not satisfied by the fundamental solution. The number of singularities is

not known a priori and it depends on the specific boundary conditions. Since GI(x,xi)

has to be zero on the boundary, then∑
i

G(x,xi) = −
∑
α

GH(x,xα), x ∈ ∂D. (2.121)

This method is called method of images and the singularities are vortices with vari-

ous strengths placed in particular positions outside the domain in order to satisfy the

boundary conditions. It has to be noticed that finding
∑

iG(x,xi) is not simple, but it

has been shown by Lin [69] that such a function always exits. In particular, for domains

with certain symmetries, it is straightforward to construct the additional function GH .

In the following, two examples are presented: the first one is the procedure to construct

the streamfunction for a single vortex in the vicinity of a corner (see §(2.5.1)). This

example is preparatory for the case of a system of vortices contained in a box with sides

Lx and Ly (see §(2.5.2)).
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2.5.1 Vortex near a corner

The first example is given by a single vortex of strength γ located at (x1, y1) near

two hard walls which form a corner as shown in Fig.(2.4). The boundary conditions

∂D

D

∂D

v1(x1, y1)

v3(x1,−y1)v4(−x1,−y1)

v2(−x1, y1)

0

Figure 2.4: The system composed by a vortex in proximity of a corner: the shaded
area is the domain where the real vortex is placed while the other vortices outside the
domain are the images. The red vortices have positive circulation while the blue have
negative circulation.

which need to be imposed are such that the Green’s function of the first kind is zero if

evaluated along the walls and at the corner which is the origin. It is easy to show [86]

that GI which satisfies the required boundary conditions is given by

GI(x) = G(x,x1) +
∑
α

GH(x,xα)

= − 1

2π
log |x− x1|

+
1

2π
log |x− x1

∗|+ 1

2π
log |x + x1

∗| − 1

2π
log |x + x1|, (2.122)

where the first term represents the fundamental solution G(x,x1) and the other three

terms represent GH(x,xα), α = 1, 2, 3. The fundamental solution is the contribution

in the absence of the boundary and the other three terms ensure the Green’s function

GI(x)to vanish along the two walls. The fundamental solution represent a vortex lo-

cated at (x1, y1) which is the only singularity in the domain D. Outside the domain,

three images are required to represent the effect of the corner: the first two are placed

at (−x1, y1) and (x1,−y1) with opposite circulation −γ, and the third image is placed

at (−x1,−y1) with the same circulation γ. The streamfunction is obtained by simply
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multiplying each term by the respective circulation and hence,

ψ(x) = − γ

2π
log |x− x1|

+
γ

2π
log |x− x1

∗|+ γ

2π
log |x + x1

∗| − γ

2π
log |x + x1|. (2.123)

2.5.2 Vortex in a box

The previous example provides a starting point to understand how to model a sys-

tem composed by vortices in a generic rectangular domain. If a single vortex is in

the box, each corner is emulated by the presence of three vortices as described in the

previous example (see Fig.(2.4)).

C1

C0

C2 C3

C4

C5C6C7

C8

Figure 2.5: Each corner can be represented by adding three images per each corner:
however, this is not sufficient to ensure the streamfunction to be constant along the
walls and on each of the four corners. If C0 is the reference cell which needs to be mimic
then other cells Cj, j = 1, . . . , 8, which contain the images, must be placed around C0.

The bottom right corner can be represented by the images located in the cells C6, C7

and C8. The upper left corner by the images in the cells C8, C1 and C2. The upper right

corner by the images in the cells C2, C3 and C4 and finally the lower right corner by

the images in the cells C4, C5 and C6. However, the presence of the additional charges

for each corner do not impose the right boundary conditions for the other corners. This

problem can be solved only by adding an infinite set of images along both directions
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as shown in Fig.(2.6). This fact has an immediate consequence: an infinite number of

Figure 2.6: Only an infinite set of images can mimic the presence of a box (shaded
area) with impenetrable walls.

terms are required to construct the streamfunction for a single vortex in the box. By

considering Eq. (2.78) it immediately follows that an infinite set of vortices will have

an infinite amount of energy. However, the infinite summation of all the interactions

can be regularised and it will give a compact form for the Hamiltonian H. In particular

the Hamiltonian for N vortices with circulation γi located at (xi, yj) in a box with sides

Lx and Ly, and aspect ratio Λ = Lx/Ly is given by

H =
ρ

4π

[
N∑
i=1

γ2
i b(xi, yi; Λ) +

N−1∑
i=1

N∑
j=i+1

γiγjh(xi, xj, yi, yj; Λ)

]
, (2.124)

where the two functions h(xi, xj, yi, yj; Λ) and b(xi, yi; Λ) are defined as

h(xi, xj, yi, yj; Λ) ≡ f(|xi − xj|, |yi − yj|; Λ)− f(|xi − xj|, Ly − yi − yj; Λ)

− f(Lx − xi − xj, |yi − yj|; Λ) + f(Lx − xi − xj, Ly − yi − yj; Λ),

b(xi, yi; Λ) ≡ 1

2
[−f(2Lx − 2xi, 0; Λ)

+ f(2Lx − 2xi, 2Ly − 2yi; Λ)− f(0, 2Ly − 2yi; Λ)] , (2.125)
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and the additional function f(x, y; Λ) is given by

f(x, y; Λ) =
2π

Λ

[
y

Ly

(
y

Ly
− 1

)
+

1

6

]
− log

+∞∏
β=−∞

χ (x, y; β,Λ) , (2.126)

where

χ(x, y; β,Λ) = 1− 2 cos

(
2πx

Lx

)
e−

2π|y+β|
Λ + e−

4π|y+β|
Λ . (2.127)

For a complete derivation, see Appendix A.0.3. The Hamiltonian (2.124) relies on

the knowledge of the energy of two infinite arrays of vortices, along the x and the y

directions which has been derived by Campbell [24] in 1989. Due to Eq. (2.61), the

streamfunction is given by

ψ(x, y) =
ρ

2π

N∑
j=1

γj
2
h(x, xj, y, yj; Λ), (2.128)

where h(x, xj, y, yj; Λ) is given by Eq. (2.125).

2.5.3 Angular Momentum

The angular momentum of a fluid with constant density ρ measured with respect

to a point xc = (xc, yc) is defined as [102]

L = ρ

∫
D

(x− xc)× udxdy, (2.129)

where x is the position vector, u is the velocity field and D is the surface of the system

delimited by a regular curve ∂D. The angular momentum is perpendicular to the

plane where the dynamics occurs, therefore from now on only its magnitude L will be

considered. The magnitude of L can be evaluated by using (2.56)

u = (u, v) =

(
∂ψ

∂y
,−∂ψ

∂x

)
, x− xc = (x− xc, y − yc) , (2.130)

for which

L = −ρ
∫
D

[
(x− xc)

∂ψ

∂x
+ (y − yc)

∂ψ

∂y

]
dxdy, (2.131)

which can be written as

L = −ρ
2

∫
D
∇ψ · ∇hdxdy, (2.132)
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where h(x, y) ≡ (x− xc)2 + (y − yc)2. For any smooth functions f and g, ∇ · [f∇g] =

∇f · ∇g + f∇2g and the above becomes

L = −ρ
2

∫
D
∇ · [h∇ψ] dxdy +

ρ

2

∫
D
h∇2ψdxdy = LB + LV . (2.133)

Therefore, the angular momentum with respect to the point (x0, y0) of a fluid in a

bounded domain D, is given by the sum of two terms: a volume term LV which involves

the vorticity ω = −∇2ψ of the distribution and a boundary term LB which involves

the value of the velocity field on the boundaries. These two terms are respectively

LV = −ρ
2

∫
D
ω
[
(x− xc)2 + (y − yc)2

]
dxdy, (2.134)

and, after applying the divergence theorem,

LB = −ρ
2

∮
∂D

[
(x− xc)2 + (y − yc)2

]
(−v, u) · dn, (2.135)

where dn is the normal vector to the boundary D. The vorticity in the point vortex

model is given by (2.65) and hence the volume term LV simply becomes

LV = −ρ
2

N∑
i=1

γi
[
(xi − xc)2 + (yi − yc)2

]
, (2.136)

where (xi, yi) and γi are the position and the circulation of the i-th vortex. It is evident

that the boundary term LB depends on the considered geometry: it can be evaluated

by knowing a parametrisation for the boundary ∂D and the components u and v of the

velocity field on ∂D. However, the total angular momentum can be evaluated indirectly

by inserting Eq. (2.56) into (2.129)

L =

∫
D
ρ|(x− xc)× v|dxdy = −ρ

∫
D

[
(x− xc)

∂ψ

∂x
+ (y − yc)

∂ψ

∂y

]
dxdy. (2.137)

integrating by parts once, with the boundary condition ψ = 0 on ∂D, gives

L = 2ρ

∫
D
ψdxdy. (2.138)

Hence the boundary term can be evaluated from

LB = 2ρ

∫
D
ψdxdy − LV , (2.139)

41



2.5. DOMAINS WITH BOUNDARIES

where LB is given by (2.134). It is useful to normalise the angular momentum L with

the maximum angular momentum Lmax which the system will have if it rotates as a

solid body. In particular, the moment of inertia I of a rectangular body with density

ρ is

I = ρ
LxLy(L

2
x + L2

y)

12
, (2.140)

and, assuming that the system rotates ad angular velocity Ω and its total energy E is

purely rotational, then

E =
1

2
IΩ2, (2.141)

from which

Ω =

√
2E

I
. (2.142)

Therefore, the maximum angular momentum is given by

Lmax = IΩ =
√

2EI. (2.143)
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Chapter 3

Statistical Mechanics of point

vortices

“The formation of large, isolated

vortices is an extremely common, yet

spectacular phenomenon in unsteady

flow. Its ubiquity suggests an

explanation on statistical grounds.”

Onsager, 1949

Anyone who wants to analyse the properties of matter in a real problem might want

to start by writing down the fundamental equations and then try to solve them mathe-

matically. Although there are people who try to use such an approach, these people are

the failures in this field...

With these words, in 1963, Richard Feynman [46] was referring to the necessity of

using a statistical approach when systems composed of a large number of constituents

(atoms, molecules, . . . ) are considered. In particular, for such a system, it is dif-

ficult to apply the traditional approach in order to determine the dynamics of each

constituent: solving the equation of motion with the appropriate boundary conditions

will be impossible for a system which consists of a number of particles of the order of

Avogadro’s number (∼ 1023) such as a liquid or a gas. Rather than focusing on the

individual motion of particles a statistical mechanical approach aims to make predic-

tions about emergent macroscopic measures that arise from the collective behaviour of

the constituents particles. Since the system is composed of large number of particles,

statistical arguments become very effective. In this chapter a brief overview on thermo-

dynamics and statistical mechanics will be given. For a complete and more exhaustive
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approach see [96] or [8]. In particular in §(3.1) the concept of temperature and entropy

will be introduced. Moreover, considerations will be given on how particular systems

can admit negative temperature states. The concept of negative temperature has a

particular interpretation which will be explained in detail. In §(3.2) the entropy will

be re-interpreted in a statistical sense: this will provide the possibility to investigate

systems composed of point vortices and to determine the range of energies for which

positive and negative temperatures occur. Finally, in §(3.3) an important equation,

called the multi-species Boltzmann-Poisson equation, for a system composed of a total

of N constituents will be derived. This is a time independent, second order, non linear,

partial differential equation that describes maximum entropy states of a system. More-

over, the expression for the entropy S as a function of the N constituents, the domain

D and the energy E will be given explicitly. Knowledge of the expression for S provides

the possibility to classify different solutions of the Boltzmann-Poisson equation, but this

task will be discussed in the next chapter when the equation will be solved numerically.

3.1 Essentials of Thermodynamics

A thermodynamic system is a region of the universe characterised by a set of thermo-

dynamic variables which are experimentally measurable 1. The set of thermodynamic

variables is divided into two subsets: extensive and intensive. Extensive variables (e.g.,

volume V, total mass m, total internal energy E, . . . ) depend on the size of the system,

while intensive variables (e.g., temperature T, pressure p, density ρ, specific heat C,

etc.) do not scale with the size of the system. If all thermodynamic variables are con-

stant in time an equilibrium state emerges. In order for equilibrium to be established,

three conditions must be satisfied:

• mechanical equilibrium: there are no moments or external forces,

• thermal equilibrium: there are no heat fluxes,

• chemical equilibrium: there are no chemical reactions.

The evolution of a system from an initial equilibrium state to a final equilibrium state

is called a transformation and it is governed by the following laws of thermodynamics:

• Zeroth Law

1For a more complete and exhaustive introduction see [96]
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Any thermodynamic system has a state function called absolute temperature T .

If two systems are in thermal equilibrium with a third system, they must be in

thermal equilibrium with each other and have the same temperature T ,

• First Law

Any thermodynamic system in equilibrium has a state function called internal

energy E which is constant if the system is isolated. If the system interacts with

another system then the variation of internal energy must satisfy the following

conservation law

dE = δQ− δW, (3.1)

where δQ is the heat added to (or absorbed by) the system and δW is the work

done by the system,

• Second Law

In any thermodynamic system there exists a state function called entropy S with

the following properties

– if an isolated system reaches equilibrium, then

dS ≥ 0. (3.2)

– if the system is not isolated and a transformation at temperature T occurs,

then

dS =
δQ

T
, (3.3)

where δQ is the infinitesimal heat exchanged during the transformation.

• Third Law

It is impossible for any process to reduce the temperature T of a system to a zero

value in a finite number of operations.

The work done by the system, due to a change in its volume V is given by δW = pdV

where p is the pressure, therefore the entropy is

dS =
δQ

T
=
dE + δW

T
=
dE + pdV

T
, (3.4)
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If an isochoric process is considered, so that the volume V remains constant, then it is

possible to define the temperature as follows

1

T
=

(
∂S

∂E

)
V

, (3.5)

where the subscript V means that the partial differentiation has been evaluated at con-

stant volume. The entropy can be any function of the internal energy E: in particular

the definition does not require S to increase monotonically with respect to E and it can

also decrease as E increases. It is clear from the second law of thermodynamics that

the change in entropy can be defined when a transformation occurs, however, there are

different ways to define it. Historically Boltzmann associated entorpy to the logarithm

of the number of possible configurations that the constituents of a given system can

be arranged into. In what follows, the idea of Boltzmann will be introduced and ex-

plained with an example. For this purpose, a system composed of N magnets will be

considered. Each magnet can have two possible configurations with respect to the ori-

entation of its magnetic moment, each one with different energies E↑ and E↓, such that

E↑ > E↓. In the presence of a strong magnetic field all the magnets will point in the

same direction. Clearly, the configuration where all the magnets are pointing down (↓)
has lower energy than the configuration where all magnets are pointing up (↑). In the

case of a magnetic field pointing down, there is only one possible configuration and the

energy is fixed to NE↓. By switching off the magnetic field, some magnets will switch

orientation and the energy of the system will increase. As a consequence, also so of

configurations in which the system can be arranged for a given energy increases. If the

external magnetic field is now switched on and it points to the north, all the magnets

will orientate along the same direction. The energy of the system reaches its maximum

value NE↑ > NE↓ and in this case there is only one possible configuration in which the

system can be found. The configurations where all the magnets have the same direction

can be obtained in only one arrangement: all the magnets are pointing up or down (see

Fig. (3.1)). According to the idea of Boltzmann, the entropy is proportional to the

↓↓↓ . . . ↓︸ ︷︷ ︸
S=0

, ↓↓↑↓↑↑ . . . ↓︸ ︷︷ ︸
S>0

, ↑↑↑ . . . ↑︸ ︷︷ ︸
S=0

Figure 3.1: The configurations on the sides have same entropy but different energies.
There must exist a configuration at intermediate energy which maximises the entropy
S.
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logarithm of the number arrangements W , therefore

W = 1N = 1, S ∼ logW = 0. (3.6)

If the magnets are pointing randomly, then the total number of arrangements W and

the entropy of the system are given by

W = 2N , S ∼ logW > 0. (3.7)

Therefore, there must be a value of the energy E = Ẽ at which the entropy reaches its

maximum and then it diminishes as E increases. For energies E < Ẽ the temperature

of the system is positive since ∂S/∂E > 0 while for configurations for which E > Ẽ the

temperature is negative since ∂S/∂E < 0. It has to be noticed that the critical energy

Ẽ for which ∂S/∂E = 0 corresponds to an infinite temperature. This example suggests

that there is a connection between the total number of arrangements of all the con-

stituents and the probability of the system to be found in that particular configuration,

and this will be discussed later in §3.2. It suggests that there is a connection between

disorder and entropy: more precisely if a system reaches an equilibrium configuration,

then the entropy reaches a maximum which is not necessarily a global maximum. In

what follows, the same idea will be applied to a system composed of point vortices: as

a first step it is important to investigate the Hamiltonian of the system and understand

which are the configuration of vortices with higher and lower energies. In the point

vortex model, as discussed in §(2), the energy depends on the mutual distance between

the vortices. Moreover, in the presence of boundaries, the energy depends also on the

distance between the vortices and their images. The interaction energy (Hamiltonian

H) between point vortices in an unbounded domain is given by

H = − 1

4π

N,N∑
j,i=1
j 6=i

γiγj log |xi − xj|, (3.8)

and it is clear that − log |xi − xj| → +∞ when |xi − xj| → 0. Hence, the product γiγj

determines the lower and higher energy configurations. Lower energy configurations

are realized when vortices with opposite value of the circulation are close, and higher

energy configurations are achieved when vortices with the same circulation cluster to-

gether. Since bounded domains are considered in this work, the first configuration can

be obtained in two different ways: the first one is when vortices are close to their im-

ages which replicate the presence of the boundaries while the second is when vortices
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c)b)a)

Figure 3.2: In the configuration on the left (a)), vortices are close to their images:
this configuration has a lower energy with respect to the one on the right (c)) where
point vortices with the same circulation cluster together. The energy of the system
represented in the centre, lies in between the energies of the previous two configurations.
The reference cell is surrounded by copies of it which contain the images.

with opposite circulation are close together. On the other hand, high energy states,

correspond to configurations where the point vortices are clustered together (see Fig.

(3.2)). The configurations where vortices are perfectly mixed and not too close to the

boundary are the intermediate energy states. Of course this types of configuration can

be recovered in far more ways than the other two cases. Therefore, an analogous be-

haviour observed in the magnets is recovered: low and high energy states correspond

to minima of the entropy while intermediate states correspond to configurations with

higher entropy. An example of a possible graph of the temperature T and the inverse

temperature β as a function of energy E for the system above described is given by

Fig. (3.3). The inverse temperature β lies in the range +∞ < β < −∞ and concepts

such as hotter and colder configurations can also be extended to negative temperature

regimes: a body A at temperature TA is hotter than a body B at temperature TB if

the heat flows from A to B if they are brought into thermal contact. A body A at

temperature TA is colder than a body B at temperature TB if the heat flows from B to

A if they are brought into thermal contact. With this convention the first and the sec-

ond law of thermodynamics can be used for system with absolute positive and negative

temperature while the third law needs to be modified as follows:

• modified Third Law [96]

It is impossible for any process to reduce the temperature of a system to absolute

zero for positive temperature or to raise the temperature of a system to absolute

zero for negative temperature in a finite number of operations.
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Figure 3.3: Temperature T and inverse temperature β in unit of the Bolzmann constant
kB as a function of the energy E for a system of point vortices in a box.

3.2 Entropy from Statistical Mechanics

The outcome of an uncertain experiment that depends on an inherent random el-

ements is given in terms of the probability of occurrence of a particular outcome. For

example, in the case of fair die, the prediction that a particular outcome is observed

can be based on the assumption of equal a priori probability postulate is assumed:

namely, the probability that any of the six faces of a die land uppermost is equally

likely. This postulate does not contradict the laws of physics and is the basic assump-

tion to Statistical Thermodynamics. Now consider any system with N constituents

(atoms, electrons, vortices,. . . ) which can be described by specifying some macroscop-

ically measurable independent parameters like the volume V , the total internal energy

E, the pressure p, and other physical quantities. A macroscopic state or macrostate

can be defined by specifying the values of these parameters and any other conditions to

which the system is subject. For example, for an isolated system, a macrostate is de-

fined by fixing the total volume V and the total internal energy E. From a microscopic

point of view there are many different configurations of the N constituents which do

not change the macrostate. These different configurations are called microstates. All
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microstates appear as all different possible ways the system can achieve a particular

macrostate (see Fig. 3.4). The key assumption of Statistical Thermodynamics is the

“equal a priori probability”: in other words, all microstates are equally probable. On

the other hand, this assumption does not hold for the macrostates. In particular the

probability to find a system in a particular macrostate is proportional to the number of

microstates which can give rise to it. It is a common experience that isolated systems

can evolve in time until they reach the macrostate which corresponds to the equilib-

rium: this macrostate corresponds to microstates with the highest number of possible

configurations that coincide with a given macrostate.

(x1, y1)

(x2, y2)

(x3, y3) (x2, y2)

(x1, y1)

(x3, y3)

Figure 3.4: Three particles in a box: the macrostate is defined by saying that two
particles in the box are red and one is blue. Each particle is located in a specific position
in the box: this identifies the microstate. If the two red particles are swapped (figure
on the right), the macrostate is the same. However, the microstate has changed.

The above definition can now be applied to a system A composed of NA particles and

occupying a volume VA and a system B with NB constituents and volume VB. In the

following, WA(EA) denotes the number of microstates of A in the range [EA, EA + δEA]

and WB(EB) the number of microstates of B in the range [EB, EB + δEB]. If brought

into thermal contact, the systems will exchange energy until they reach equilibrium.

The system composed of the two systems is isolated, therefore the total energy

E = EA + EB, (3.9)

is constant. For this latter system, the number of microstates is given by

W (E) = WA(EA)WB(EB) = WA(EA)WB(E − EA), (3.10)

which achieves a maximum when

∂W

∂EA
= WB(EB)

∂WA

∂EA
−WA(EA)

∂WB

∂EB
= 0, (3.11)
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or similarly

β(EA) = β(EB), (3.12)

where we have introduced

β(Ej) =
∂ logWj

∂Ej
, j = A,B. (3.13)

The above quantity has the dimension of a reciprocal energy, therefore Eq. (3.5) is

recovered by defining the entropy

S = kB logW (E,N, V ), (3.14)

where the log is the natural logarithm in base e. Equation(3.14) is called Boltzmann’s

relation and it represents the connection between thermodynamics and statistical me-

chanics. There are three different ensembles which can be used to describe the dynamics

of a system by using the Statistic Thermodynamics: the difference between them is re-

lated to the quantities which are conserved by the system. They are the Microcanonical,

the Canonical and the Grand Canonical ensemble. In the Grand Canonical ensemble

both energy E and number of particles N can change. The Canonical ensemble ap-

proach can be used if the energy can vary but the total number of particles is fixed:

this approach is useful to describe system which are in thermal equilibrium with a heat

bath and the energy between them can be exchanged. Finally the Microcanonical en-

semble applies when the total number of the particle and the energy of the system are

both constant. The choice of ensemble is a delicate matter for systems with long-range

interaction like the point vortex model because it can lead to ensemble inequivalence

[42], [22]. Therefore, in the following a microcanonical ensemble approach where the

total energy E, the total number of constituent N and the volume V are fixed will be

considered. Moreover, since two dimensional systems are are investigated, the area D
will be used instead of the volume V .

3.2.1 Microcanonical Ensemble and Negative Temperature

As pointed out at the end of the last section, the most suitable ensemble for the

point vortex model from a statistical point of view, is the microcanonical ensemble. The

reason is because this ensemble describes systems where the number of constituent N

and the total energy E are constant in time. This is certainly the case of the point vortex

model which has been introduced in the previous chapter. As was discussed in §3.1,

the point vortex has the property that the entropy decreases as the system increases
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its energy, and hence the temperature of the vortex distribution can be negative in

the sense discussed in section §3.1. However, a more rigorous approach to define a

system which admits negative temperature states will now be explained. This is based

on a seminal work done by Onsager in 1949 [90] in where the main ingredient is the

boundedness of the phase space.

As described in §2 the equation of motion for a two dimensional system composed by

N point vortices each with circulation γk, k = 1 . . . N , are given by the Hamilton’s

equation

γkẋk =
∂H
∂yk

, γkẏk = − ∂H
∂xk

, (3.15)

where H is the Hamiltonian which, in the point vortex model, depends on the mutual

distance between vortices and on the particular considered geometry. The position

coordinates (x1, x2, . . . xN , y1, y2 . . . yN) act as the canonically conjugated variables, and

define the so called phase space which, for the point vortex system, coincides with the

two-dimensional physical space. It follows that, for unbounded geometries, the phase

space will in general be unbounded. However, in particular circumstances the phase

space can be bounded even if the physical space is unbounded. This arises, for example,

when all vortices have the same circulation. In particular for two point vortices with

equal circulation, the vortices rotate around each other and in this case, although

the physical space is unbounded, the phase space remains bounded. The dynamics

of N point vortices vortices is described by the equations of motion (3.15). Hence the

dynamics occurs on a isosurface where the energy is constant. Let us denote Ω(E,N,D)

the portion of the phase space which corresponds to all positions that N point vortices

can occupy with energy less than E within a domain D

Ω(E,N,D) =

∫ E

−∞
Ω′(Ẽ, N,D)dẼ. (3.16)

The function Ω′(Ẽ, N,D) is also known as the structure function[63]. This is a mono-

tonically increasing function of the energy such that

lim
E→−∞

Ω(E,N,D) = 0, lim
E→+∞

Ω(E,N,D) = DN , (3.17)

and hence, the function Ω′(Ẽ, N,D) > 0. The constraints (3.17) impose the following

condition on Ω′(Ẽ, N,D)

lim
Ẽ→±∞

Ω′(Ẽ, N,D) = 0+. (3.18)
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Combining this with the fact that the function Ω′ is positive, imposes that it has at

least one maximum at some value E , or in other words

Ω′′(E , N,D) = 0. (3.19)

Once these quantities are known, the temperature T of the system can be immediately

defined
1

T
≡ Ω′′(E,N,D)

Ω′(E,N,D)
=

∂

∂E
log Ω′(E,N,D), (3.20)

and by comparison with Eq. (3.14) it follows that the structure function is proportional

to the number of microstates [8]

Ω′(E,N,D) ∼ W (E,N,D). (3.21)

The number of maxima of Ω′ is an important issue: Fig. (3.5) shows a distribution with

two maxima and, as a consequence, it is not possible to see a similar trend in the graph

of the temperature as a function of the energy E as the one presented in Fig. (3.3).

In this specific case, there are two intervals in which the temperature of the system is

negative. However, we are unaware of systems in which this scenario occurs.

A similar graph for the temperature to the one presented in Fig. (3.3) can be ob-

tained if the function Ω′(E,N,D) has a unique maximum and this is the case shown

in Fig. (3.6). The presence of a single maximum in the entropy is the case of a system

composed by point vortices. In order to demonstrate this peculiarity, in the following,

focus will be given to two specific domains: a square with sides Lx = Ly = 2 and a rect-

angular region, with the same area of the previous one, characterised by an aspect ratio

Λ = Lx/Ly = 1.5. Moreover, a neutral gas composed by an equal number of vortices

(positive charge) and antivortices (negative charge) will be considered. The existence

of negative temperature states in the case of point vortices can be demonstrated nu-

merically by noticing that the curve W (E) represents the distribution of configurations

as a function of the energy E. Therefore, the curves can be generated by evaluating

the energy of a large number of random neutral configurations of N vortices and con-

structing the related histograms. The energy E and the energy per vortex E/N of the

system are evaluated by using Eq. (2.124). The weight functions are then evaluated

from the histograms {Wi} by using a normalised Gaussian fit, called Gaussian kernel

[106], such that

W (E) =
1

M

Nb∑
i=1

Wi√
2πσ

exp(−(E − Ei)2/2σ2), (3.22)
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Figure 3.5: Figure (a) on the left: structure function Ω′(E,N,D) (blue) and the
portion of the phase space Ω(E,N,D) (green) defined by Eq. (3.17). Figure (b) on
the right: temperature T as a function of the energy E. The trend of the graph of the
temperature here presented is different from the graph presented in Fig. (3.3) due to
the presence of two maxima in the structure function.
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Figure 3.6: Figure (a) on the left: structure function Ω′(E,N,D) (blue) and the
portion of the phase space Ω(E,N,D) (green) defined by Eq. (3.17). Figure (b) on
the right: temperature T as a function of the energy E. The trend of the graph of the
temperature presented is similar to the one presented in Fig. (3.3) due to the presence
of a single maximum in the structure function.
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where σ is the kernel width, Nb = 50 is the total number of bins and Wi is the number

of realization with energy lying within the interval (E,E + ∆E). The value of the

kernel width σ needs to be imposed in order to obtain smooth statistical weights. For

the distribution generated by considering the total energy E and the energy per vortex

E/N the values of the kernel width are σ = 0.35 and σ = 0.01, respectively. A total

of M = 100000 are used. A Gaussian kernel is considered in order to approximate

the statistical weight with a smooth function. The results are shown in Fig. (3.7) for

systems composed of different numbers of vortices N = 10, 20, 40, 80 and 160. Plots

showing the dependence on both the total energy (left) and interaction energy per

vortex (right) are included. In both cases the distributions show a single maximum and
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Figure 3.7: Statistical weights in the square: dependence on the total energy and total
energy per vortex are considered on the left and the right panels respectively.

hence the existence of negative temperature states. When the dependence on energy

E is considered, the maxima of the statistical weights are shifted to lower energies

with increasing number of vortices: in terms of the statistical thermodynamics, this is

equivalent to saying that more macrostates are accessible. In contrast, the distributions

showing the dependence on the energy per vortex E/N , tend to converge to a limiting

distribution: this feature has already been pointed out by Campbell et al. [25] also

for a non neutral distribution of vortices and by Esler et al. [44] in different confining

geometries. In particular, in [44] an explicit expression for the limiting distribution was

obtained. Figure (3.7) shows the existence of negative temperature states for which the

temperature presents the same features shown in Fig. (3.6) since all the distributions

have a single maximum. Due to physical reasons that will be widely discussed in §(5),
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the statistical weights have also been generated by imposing two additional constraints

δV and δB on the position of vortices: the first one imposes a minimum distance between

vortices within the domain and the second one imposes a minimum distance between

vortices and the boundaries. Imposing a minimum distance between vortices within

the domain prevents configurations where the energy will be too high or too low due to

clustering of opposite signed or like-signed vortices (see Fig. (3.8) on the right). The

constraint on the boundary, on the other hand, excludes very low energy contributions

from vortices and their images (see Fig. (3.8) on the left). As a consequence, the

difference between the distributions where vortices are free to occupy any positions and

these cases is given by a reduced range of energies and more peaked distributions.

δV

δB

δB

(a) (b)

Figure 3.8: Constraints on the positions of point vortices: Fig. a) on the left δB (green
shaded region) imposes a minimum distance between a vortex and its closest images
with opposite circulation. In Fig. b) on the right the constraint δV can affect also
vortices with same circulation within the considered domain (upper right).

This analysis has been carried out in the square and in the rectangle with aspect

ratio Λ = 1.5 and the results are shown in Figs. (3.9) and (3.10), respectively. One can

see that in both cases the effects of the constraints are more important when a large

number of vortices is considered since the constraints introduce an effective packing

factor in the problem. Although the distributions have different behaviours from those

presented in Fig. (3.7), the qualitative features persist and it is still possible to define

the regions where the tangent to the curves is positive and negative.

These preliminary results are important to determine when a given configuration of

point vortices is in the positive or negative temperature regime. This will be relevant in

Chapter (5) when the dynamics of point vortices will be studied and the transition be-
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Figure 3.9: Statistical weights in the square with sides Lx = Ly = 2 for different values
of δB and δV as indicated above each figure.
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Figure 3.10: Statistical weights in the rectangle with aspect ratioΛ = 1.5 for different
values of δB and δV as indicated above each figure.
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tween positive and negative states investigated. In the next section a mean-field theory

based on a statistical approach will be presented and the multi-species Boltzmann-

Poisson equation will be derived. This is a fundamental equation which connects the

fluid dynamics to the Statistical Mechanics since its solutions represent configuration

of point vortices which maximise the entropy of the system.

3.3 Maximum Entropy Principle and Boltzmann-

Poisson Equation

In this section the most probable vorticity distribution in a generic planar domain

with areaD, subject to some constraints, will be derived following a statistical approach.

This derivation follows the approach presented by Chavanis in [30]. Consider a system of

N point vortices divided in species with different circulations ±γa, where the subscript

a will be used to denote the different species of vortices. If Na represents the number

of vortices of each species, then the total number of vortices, the total circulation and

the total vorticity are given by

N =
∑
a

Na, Γ =
∑
a

Γa =
∑
a

Naγa, ω(x, y) =
∑
a

ωa(x, y) (3.23)

where Γa and ωa(x, y) represent the total circulation and the total vorticity given by

all the vortices of species a. The total circulation can be expressed as follows

Γ =

∫
D
ω(x, y)dxdy =

∑
a

∫
D
ωa(x, y)dxdy, (3.24)

or

Γ =
∑
a

Naγa =
∑
a

∫
D
γana(x, y)dxdy, (3.25)

where na(x, y) is the number density of vortices of species a. Combining Eqs. (3.24)

and (3.25), the vorticity of each species can be expressed as

ωa(x, y) = γana(x, y). (3.26)

For brevity, explicit dependence on the arguments x and y will be dropped. The PVM,

as already mentioned, is a model which conserves the total energy given by Eq. (2.124)

and the number of vortices of each species Na. The latter can be expressed in terms of

the conservation of the total circulation or the circulation of each species a. Therefore,
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the following two quantities are conserved

E =
ρ

2

∫
D
ωψdxdy, Γa =

∫
D
naγadxdy =

∫
D
ωadxdy, (3.27)

where ψ(x, y) is the streamfunction associated with the vorticity field. It is important to

note that there can be other conserved quantities depending on the considered domain

D. For example in [93] and [107], a circular geometry was considered and in this case

the angular momentum L is an additional conserved quantity.

The domain D is now divided into a very large number of small cells (each of size

h2 say) which can contain an arbitrary large number of point vortices and each of these

cells is labelled by the index i. For a given distribution of point vortices in the total

domain D, a microstate is defined when the positions of all point vortices in each cell

are defined, while a macrostate is specified by the number of point vortices of each

species in each cell. Swapping the positions of two point vortices of the same species

will change the microstate, but will not change the macrostate (see Fig. (3.4)). Given

the above definition for the macrostate, the set of numbers of vortices of species a in

each cel will be denoted by {Ni,a}. The vorticity of each species a in the i − th cell,

due to the Ni,a point vortices, is then given by

ωi,a = γani,a = γa
Ni,a

h2
. (3.28)

The total number of configurations, or microstates, corresponding to the macrostate

{Ni,a} is given by [55]

W ({Ni,a}) =
∏
a

∏
i

Na!

Ni,a!
, (3.29)

where Na is the number of vortices of each species a. This can be obtained by remem-

bering that the possible ways of choosing k objects out of m is given by the binomial

coefficient (
m

k

)
=

m!

k!(m− k)!
. (3.30)

In the considered case, k = Ni,a represents the number of vortices in the i− th cell, and

m =
∑

iNi,a = Na is the total number of vortices of species a. Therefore, the number

of ways of putting N1,a vortices in the first cell, N2,a in the second cell, N3,a in the third

cell,. . . , with the constraint ∑
i

Ni,a = Na, (3.31)
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is given by

W ({Ni,a}) =

(
Na

N1,a

)(
Na −N1,a

N2,a

)(
Na −N1,a −N2,a

N3,a

)
. . .

(
Na −N1,a . . . Ni−1,a

Ni,a

)
=

Na!

N1,a!(Na −N1,a)!

(Na −N1a)!

N2,a!(Na −N1,a −N2,a)!
. . .

=
Na!

N1,a!N2,a!N3,a! . . . Ni,a!
=
∏
i

Na!

Ni,a!
. (3.32)

Finally, since the system is composed of a species of point vortices, the final result is

W ({Ni,a}) =
∏
a

∏
i

Na!

Ni,a!
. (3.33)

By using the Boltzmann relation given by Eq. (3.14), the entropy S is related to the

number of microstates by the following

S[ωa] = kB logW ({Ni,a}). (3.34)

Substituting Eq. (3.33) into Eq. (3.34) gives

S = kB log

(∏
a

∏
i

Na!

Ni,a!

)
= kB

∑
a

logNa! + kB
∑
a

log
∏
i

1

Ni,a!

= kB
∑
a

logNa!− kB
∑
a

∑
i

logNi,a!. (3.35)

Using the Stirling approximation

S = kB
∑
a

logNa!− kB
∑
a

∑
i

logNi,a!

∼ kB
∑
a

{Na logNa −Na} − kB
∑
a

∑
i

{Ni,a logNi,a −Ni,a}

= kB
∑
a

Na logNa − kB
∑
a

∑
i

Ni,a logNi,a. (3.36)
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By inserting Eq. (3.28) in the above equation, the entropy becomes

S = kB
∑
a

Na logNa − kB
∑
a

∑
i

ωi,a
γa

h2 log

(
ωi,ah

2

γa

)
(3.37)

= kB
∑
a

Na logNa − kB
∑
a

∑
i

ωi,a
γa

h2 log

(
ωi,aD
γa

)
− kB

∑
a

∑
i

ωi,a
γa

h2 log
h2

D

= kB
∑
a

Na logNa − kB
∑
a

∑
i

ωi,a
γa

h2 log

(
ωi,aD
γa

)
− kB

∑
a

ωa
γa
h2 log

h2

D
,

where D has been added in order to ensure dimensionless quantities in the logarithmic

terms. If the continuum limit is considered∑
i

−→
h→0

1

h2

∫
dxdy, (3.38)

by neglecting the last divergent term, the above equation can be written as

S = kB
∑
a

Na logNa − kB
∑
a

1

h2

∫
D

ωa
γa
h2 log

(
ωaD
γa

)
dxdy

= kB
∑
a

Na logNa − kB
∑
a

1

h2

∫
D

ωa
γa
h2 log

(
NaωaD
γaNa

)
dxdy. (3.39)

The last term of he above Eq. can be manipulated as follows

− kB
∑
a

logNa

∫
D

ωa
γa
dxdy − kB

∑
a

∫
D

ωa
γa

log

(
ωaD
γaNa

)
dxdy,

which gives

− kB
∑
a

Na logNa − kB
∑
a

∫
D

ωa
γa

log

(
ωaD
γaNa

)
dxdy, (3.40)

where Eq. (3.26) has been used. Finally, by inserting Eq. (3.40) into (3.39), the

Boltzmann entropy as a function of the vorticity of each species a is given by

S [ωa] = −kB
∑
a

∫
D

ωa
γa

log

(
ωaD
γaNa

)
dxdy. (3.41)

The next step is to find the most probable vorticity. This corresponds to the vorticity

distribution which maximises the entropy subject to the constraints that the total

number of vortices N and the total energy E are conserved. The first condition is

equivalent to the conservation of the total circulation for each specie of vortices. This
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is a maximization problem which can be solved with the Lagrange multipliers method:

in this case the Lagrange multipliers are the inverse temperature β and the chemical

potentials µa of each species of vortices. The critical points of the Boltzmann entropy

are determined by solving the following equation

δS − βδE −
∑
a

µaδΓa = 0, (3.42)

with respect to ωa. Inserting the variations of the entropy (3.41), the energy and the

total circulation for each specie of vortices (3.27), gives

−
∫
D

∑
a

[
1

γa
log

(
ωaD
Naγa

)
+

1

γa
+ µa + ρβψ

]
δωadxdy = 0. (3.43)

and hence, the vorticity which maximize the entropy is given by

ωa =
Na

D
γaAae

−ρβγaψ, (3.44)

where the quantity Aa = exp(−1 − µaγa) must be determined by the conservation of

the total circulation of each species Γa. Imposing this constraint leads to

Γa = Naγa =

∫
D
ωadxdy =

1

D

∫
D
NaγaAae

−ρβγaψdxdy, (3.45)

and hence

Aa = D
(∫
D
e−ρβγaψdxdy

)−1

. (3.46)

The terms Aa represent the spatial distribution of vortices. Finally, the total vorticity

is given by

ω =
∑
a

ωa(x, y) =
∑
a

Na

D
γaAae

−ρβγaψ, (3.47)

where Aa is given by (3.46). On the other hand, the vorticity must satisfy Eq. (2.54),

therefore the streamfunction and the vorticity are related by the so called multi-species

Boltzmann-Poisson (MSBP) equation

∇2ψ = −
∑
a

Na

D
γaAae

−ρβγaψ. (3.48)

If in the above equation two species of vortices with circulation γ± = ±γ and the

terms A+ and A− are considered equal, then Eq. (3.48) reduces to the Sinh-Poisson
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equation which has been studied by many authors [60], [115], [77] [124]. However, there

is no fundamental reason in the assumption A+ = A− and hence, it is important to

study the full MSBP equation [30]. A numerical analysis on the solutions of the Sinh-

Poisson equation can be found in [16] and [77], while analytic solutions can be found in

[115]. If the inverse temperature β is positive, then the only real solution to the MSBP

equation is given by ψ(x, y) = const. and therefore, the solution is given by a uniform

spatial distribution [115]. This means that for states with positive temperature the

most probable configurations have uniform spatial distribution of vortices. Systems for

which β > 0 have been widely studied by Hückel and Debye [38]. However, if β < 0

different type of solutions can be found [28], [114]. These solutions have a nonuniform

spatial distribution and this is a peculiarity of negative temperature states. Therefore,

the nontrivial solutions to the MSBP equation (3.48) are related to the emergence

of nontrivial flows associated to the formation of large clusters of vortices. In two-

dimensional systems, the equation (2.67) implies a Coulomb type interactions given

by Eq. (3.8). Because of the long-range interaction between vortices, the equilibrium

states are strongly influenced by the confining geometry and this causes different spatial

distribution of vortices which depends on the shape of the container [44], [25], [93]. For a

complete and exhaustive description on the thermodynamics of long-range interactions

systems see [29]. Moreover, the MSBP equation is based on the principle of maximum

entropy, which is a general and universal law, and for this reason it arises in other fields

such as biophysics [37], chemistry [38], eletrochemistry [116] and stellar systems [29]

where systems are composed of a large number of constituents. Finally, the entropy S

is therefore given by substituting Eq. (3.44) into Eq. (3.41)

S = −kB
∑
a

∫
D

ωa
γa

log
(
Aae

−ρβγaψ
)
dxdy

= −kB
∑
a

logAa

∫
D
nadxdy + kB

∑
a

∫
D
ωaρβψdxdy

= −kB
∑
a

Na logAa + 2kBβE, (3.49)

where Aa is given by Eq. (3.46). It should be noted that Eqs. (3.48) and (3.49) are valid

for any generic domain D. However, as mentioned in §(3.2.1), in this work a neutral

system of point vortices in two particular geometries will be investigated: a square

with sides Lx = Ly = 2 and a rectangular region with aspect ratio Λ = Lx/Ly = 1.5.

Therefore, the MSBP equation in the case of two species of vortices will be considered

and numerically solved in these regions. Moreover, these solutions will be classified by
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their energy E and entropy S. Details as such an analysis are presented in the next

Chapter.
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Chapter 4

Mean-Field Theory of Vortex Gas

in Bounded Geometries

In the previous chapter the vorticity which maximises the entropy and the multi-

species Boltzmann-Poisson (MSBP) equation have been derived for a system composed

of different species of point vortices in a generic domain D. The MSBP equation

is a second order, time independent, non linear partial differential equation for the

streamfunction ψ, whose solutions represent stationary configurations for the entropy

S. In general, for a given value of β < 0 several solutions can exist for ψ. Physically

this is because the equation admits solutions that are all local entropy maximisers.

However, a solution ψ can correspond to a global maximum of the entropy. Moreover,

because of the long-range nature of the Coulomb interactions, these solutions can also

depend on the geometry D. In this chapter and in the rest of the work the case of

systems composed of two species of vortices will be considered: the resulting MSBP

equation will be simply called Boltzmann-Poisson (BP) equation where the fact that it

is written for two species will be understood. The aims of this chapter are to provide a

procedure which allows for the classification of the solutions of the BP equation in terms

of their energy and entropy and to develop an iterative algorithm to find the solutions

of the BP equation. The last part of the chapter will focus on the classification of

the solutions in two specific domains: a squared region and a rectangular domain with

aspect ratio Λ = 1.5. This classification has been presented by Pointin et al. in [93]

and lately by Cavanis et al. in [28]. However, it is important to stress that in [71]

and [28] the aim of the authors was to approximate a continuous Euler system with a

continuous vorticity by a large number of point vortices with a discrete vorticity. This

approach, as pointed out by Robert, Miller and Sommeria [100], [80],[101], presents

several difficulties. However, as mentioned in §(2.3), point vortices are realised in Bose-
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Einstein Condensate and therefore, the point vortex model is the most natural approach

to study their dynamics. Finally, the role of the angular momentum of the system in

these geometries will be discussed.

In §4.1 the MSBPE will be written for a system of two species of point vortices,

and a procedure to classify the solutions of the BP equation will be provided. This

procedure requires knowledge of the solution ψ of the BP equation and one important

quantity which can be determined from it: the non-dimensional energy from which also

the non-dimensional entropy can be derived. In §4.2 the linear analysis to the BPE

will be performed. This analysis will reveal the presence of two important classes of

solutions: the first class is composed by the functions whose mean value is non-zero

while the solutions in the second class have zero mean value. In the same section

the peculiar behaviour of the entropy of these two classes with respect to the aspect

ratio Λ of the rectangular domain D will be explained. In §4.3 an iterative algorithm

which converges to non-trivial solutions of the BPE will be described. In §4.4 and §4.5

classification for the solutions of the BP equation in the square and the rectangle with

aspect ratio Λ = 1.5 will be presented. This classification improves the work done by

Taylor et al. [114] and gives predictions on the dynamics of point vortices which will be

presented in §5. In fact in [114] only two type of solutions to the BP equation have been

considered, the so called monopole and dipole. However, an important type of solution

is given by the diagonal dipole. This type of solution will be considered in §4.4 and

this will give the possibility to explain the behaviour of the dynamics of point vortices

which will be presented in the next Chapter. Finally, in §4.7, the ability of a neutral

vortex gas to spontaneously acquire a nonzero angular momentum L will be discussed.

4.1 Boltzmann-Poisson Equation of Two-Species Neu-

tral Vortex Gas

In the previous chapter the MSBP equation has been derived by imposing the max-

imum entropy principle. The solution of this equation is the streamfunction ψ which

is related to the distribution of different species of point vortices, where each species

is identified by the value of the circulation of the vortices. Motivated by applications

to quantum fluids where stable vortices typically have a quantised circulation that is

equal in magnitude an opposite in sign, from now on a system composed of two species

of vortices with circulation ±γ will be considered. In this section, a method to clas-

sify the solutions of the BP equation in terms of the non-dimensional energy Ê and
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the non-dimensional entropy per vortex Ŝ will be presented. These two quantities can

both be determined from knowledge of the solution ψ of the BP equation which can be

obtained by applying the algorithm developed in §4.3.

Introducing the spatial average over the domain D of a generic scalar function f

defined on D
〈f〉 ≡ 1

D

∫
D
f(x, y)dxdy, (4.1)

the MSBP equation (3.48) can be written as follows

∇2ψ = −
∑
a

Na

D
γa

e−ρβγaψ

〈e−ρβγaψ〉
, (4.2)

where ψ is the streamfunction that is related to the vorticity according to Eq. (2.54). In

particular, for a neutral gas composed of N+ = N− = N/2 vortices each with circulation

+γ and −γ respectively, the above equation becomes

∇2ψ = −Nγ
2D

[
e−ρβγψ

〈e−ρβγψ〉
− eρβγψ

〈eρβγψ〉

]
, (4.3)

and the entropy given by Eq. (3.49) reduces to

S = −NkB
2

log (A+A−) + 2kBβE, (4.4)

where the averaged terms A± are given by

A± = D
(∫
D
e∓ρβγψdxdy

)−1

, (4.5)

and the energy E is given by Eq. (2.61). Therefore, in order to evaluate the entropy

S and the energy E for a distribution of N vortices in a domain D, the streamfunction

ψ, and the correspondent inverse temperature β are needed. The streamfunction ψ can

be determined by solving the BP equation as will be discussed in §4.3. The value of

the inverse temperature β can be expressed as a function of the energy E: for example

Edwards et al. [40] obtained a useful approximation for β in terms of E for a doubly

periodic domain while Esler et al. [44] considered the von Neumann oval. Rather, in this

work the BP equation is solved numerically. To proceed a dimensionless streamfunction
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Ψ = ρβγψ is defined for which Eq. (4.3) becomes

∇2Ψ = −Nγ
2ρβ

2D

[
e−Ψ

〈e−Ψ〉
− eΨ

〈eΨ〉

]
. (4.6)

In the next section it will be shown that, in order to have non trivial solutions, the

inverse temperature β is a non-positive quantity and hence, it is possible to define a

positive constant λ2

λ2 = −Nγ
2ρβ

D
, (4.7)

from which the BPE becomes

∇2Ψ = −λ
2

2

[
eΨ

〈eΨ〉
− e−Ψ

〈e−Ψ〉

]
. (4.8)

In terms of the new dimensionless streamfunction Ψ, the averaged terms A± are simply

given by

A± = D
(∫
D
e∓Ψdxdy

)−1

. (4.9)

The expression for the energy becomes

E = −ρ
2

1

ρ2β2γ2

∫
D

Ψ∇2Ψdxdy =
Ẽ

ρβ2γ2
, (4.10)

where Ẽ is a dimensionless energy such that

Ẽ = −1

2

∫
D

Ψ∇2Ψdxdy. (4.11)

The entropy S, evaluated with the nondimensional streamfunction Ψ, becomes

S = −NkB
2

log (A+A−) + 2kB
Ẽ

ρβγ2
. (4.12)

The expression for the energy in Eq. (4.11) does not depend on the number of vortices,

however, the entropy S still contains the dependence on the number N . When N is

sufficiently large, it can be shown [93], that the energy is proportional to the square

of the number of vortices, E ∼ ρN2γ2. Therefore, an alternative expression for the

dimensionless energy, denoted Ê and also used by Taylor et al. [114], can be defined by

Ê ≡ E

4ρN2γ2
= − βE

4NDλ2
. (4.13)
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Substituting Eq. (4.10) into the above expression and by using the definition of λ2 gives

Ê = − Ẽ

4NDρβγ2λ2
=

Ẽ

4D2λ4
, (4.14)

which can be substituted into Eq. (4.12) to obtain

S = −NkB
2

log (A+A−) + 2kB
4D2λ4

ρβγ2
Ê. (4.15)

Finally, by using the definition of λ2 given by Eq. (4.7) a nondimensional entropy per

vortex Ŝ can be defined as follows

S

NkB
≡ Ŝ = −1

2
log(A−A+)− 8ÊD2λ4

Dλ2
= −1

2
log(A+A−)− 8Dλ2Ê. (4.16)

All these quantities can be evaluated by knowing the streamfunction Ψ and the cor-

respondent inverse temperature λ2. Therefore, by starting from the BP equation, the

following steps can be applied to classify its solutions in terms of the energy and entropy

in a generic domain D:

• Fix a value for the positive constant λ2.

• Solve the BPE

∇2Ψ +
λ2

2

[
eΨ

〈eΨ〉
− e−Ψ

〈e−Ψ〉

]
= 0, (4.17)

for the specific value of λ2 and obtain the solution Ψ.

• Evaluate the averaged terms

A± = D
(∫
D
e∓Ψdxdy

)−1

. (4.18)

• Evaluate the energy Ẽ and Ê

Ẽ =
λ2

4

∫
D

Ψ

[
eΨ

〈eΨ〉
− e−Ψ

〈e−Ψ〉

]
dxdy, Ê =

Ẽ

4D2λ4
. (4.19)

• Evaluate the entropy per vortex Ŝ in unit of kB

Ŝ = −1

2
log(A+A−)− 8Dλ2Ê. (4.20)
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This procedure requires the solution Ψ to the BP equation for a given value of the

parameter λ2, and this is the aim of §4.3. Therefore, before considering the BP equation

it is useful to first considering the linearised Boltzmann-Poisson equation, which is the

result of the linearisation of the BP equation.

4.2 Linear Theory

In the previous section, a procedure for classifying the solutions Ψ of the BP equation

in terms of energy and entropy has been explained for a given value of the parameter

λ2. In this section the BP equation given by Eq. (4.17) will be linearised about

the state with zero mean flow i.e. Ψ = 0 and the linearised theory will be studied.

The linear theory is valid for small values of β which means that the energy of the

system corresponds to the maximum of the statistical weights shown in Fig. (3.9) and

(3.10). This will reveal that in the BP equation the inverse temperature β is negative.

Moreover, it will reveal the presence of two distinct families of solutions Ψ: those for

which 〈Ψ〉 = 0 and those for which 〈Ψ〉 6= 0. The distinction between the two cases

depends on the fact that the former correspond to solutions with a vanishing net angular

momentum whereas the latter have a non-zero angular momentum. The importance of

these two classes of solution is due to the fact that, depending on the aspect ratio Λ of

the rectangular region, either one can be a global maximiser of the entropy. The linear

analysis of the BP equation has been previously performed by Chavanis et al. in [28]

where the authors studied the linear theory in bounded geometries with and without

constraints on the angular momentum L and on the total circulation of the system. In

particular the authors investigated the squared and rectangular geometry characterised

by the aspect ratio Λ. They confirmed the prediction given by Lundgren et al. [71] on

the presence of a critical aspect ratio Λ ∼ 1.122 such that the high entropy states for

Λ < Λc are achieved by a configuration in which vortices of one sign are in the centre

and the vortices with opposite sign are near the corners. However, for aspect ratio

Λ > Λc the most probable configuration consist in a configuration where the vortices

occupy the one half of the rectangle. The linear analysis which is now performed is a

particular case of the more general approach presented by Chavanis et al. in [28].

The sign of the factor in front of the squared brackets in Eq. (4.6) depends on the

inverse temperature β. Since the linearisation is around Ψ = 0, the following Taylor

expansions for the dimensionless streamfunction Ψ is considered

exp(±εΨ) ∼ 1± εΨ +O(ε2), 〈exp(±εΨ) ∼ 1± ε〈Ψ〉+O(ε2), (4.21)
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where ε � 1, can be substitute in the BP equation. Considering the leading order

terms, leads to

∇2Ψ = −Nγ
2ρβ

D
(〈Ψ〉 −Ψ) , (4.22)

which is the linearized Boltzman-Poisson equation. Multiplying both sides by −Ψ/2

and integrating over the domain D gives

−1

2

∫
D

Ψ∇2Ψdxdy =
Nγ2ρβ

2D

[
〈Ψ〉

∫
D

Ψdxdy −
∫
D

Ψ2dxdy

]
=

Nγ2ρβ

2

[
〈Ψ〉2 − 〈Ψ2〉

]
= −Nγ

2ρβ

2
Var(Ψ), (4.23)

where Var(Ψ) = 〈Ψ2〉 − 〈Ψ〉2 is the variance of Ψ. The left hand side of the above

equation is the energy of the system given by Eq. (2.60) where the density ρ = 1. Since

the energy and Var(Ψ) are a non-negative quantities, the inverse temperature β must

be negative. If the inverse temperature is positive, then the only possible solution is

given by the trivial case Ψ(x, y) = 0 everywhere. This shows that non trivial solutions

to the BP equation exist if the temperature of the system is negative. Hence, it is

possible to define a positive quantity

λ2 = −Nγ
2ρβ

D
, (4.24)

from which Eq. (4.22) becomes

∇2Ψ + λ2Ψ = λ2〈Ψ〉. (4.25)

The averaged terms A± in the linear approximation (4.21) become

A± ∼ D
(∫
D

[
1± εΨ +O(ε2)

]
dxdy

)−1

∼ 1, (4.26)

and therefore, the entropy given by Eq. (4.4) simplifies to [114]

S = 2kBβE = −2kB
λ2D
Nγ2ρ

E. (4.27)

The above equation reveals an important property: in the linear approximation, the

parameter λ2 is a direct measure of the relative entropy of different solutions the linear

BP equation with the same energy E. This is true only for the linearised BPE: for the

full nonlinear BP equation the expression for the entropy given by Eq. (4.20) needs to
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be considered.

In the following the linear equation (4.25) will be solved and, since the linear theory

is being considered, knowledge of λ2 leads to the evaluation of the entropy for solutions

of the linearised BP equation. In order to solve the inhomogeneous linear BP equation

(4.25) it is convenient to find the solutions to the homogeneous problem

∇2Ψ + λ2Ψ = 0, (4.28)

in the rectangular domain given by 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly with Ψ = 0 on the

boundaries in order to satisfy the boundary conditions (2.115). By using the method of

separation of variables, the eigenfunctions and the eigenvalues of Eq. (4.28) are given

by

Ψn,m(x, y) = sin

(
nπ

Lx
x

)
sin

(
mπ

Ly
y

)
, λ2

n,m = π2

(
n2

L2
x

+
m2

L2
y

)
, (4.29)

where n,m are positive integers. The eigenfunctions and the eigenvalues in a generic

rectangular domain with aspect ratio Λ = Lx/Ly > 1 are given by

Ψn,m(x, y; Λ) = sin

(
nπ√
ΛLx

x

)
sin

(
mπ
√

Λ

Ly
y

)
, λ2

n,m = π2

(
n2

ΛL2
x

+
Λm2

L2
y

)
, (4.30)

where the sides Lx and Ly are changed into
√

ΛLx and Ly/
√

Λ, respectively. The case

Λ = 1 reduces to a square and if Λ > 1 the square is stretched into a rectangle for

which Lx > Ly. This transformation changes the shape of the domain keeping the area

D = LxLy constant. The number of zeros of the above function along both directions

x and y depends on the integers n and m respectively: in order to have 〈Ψ〉 = 0, n

and m can not be both odd. Figure (4.1) shows contour plots of the streamfunction

Ψ2,1 (Fig. a)) called dipole, Ψ2,2 (Fig. b)) called quadrupole and for the superposition

Ψ2,1 + Ψ1,2 (Fig. c)) called diagonal dipole. The general solution to the homogeneous

linear BP equation (4.28) is then given by the principle of superposition

Ψ(x, y; Λ) =
+∞∑
m=1

+∞∑
n=1

Amn sin

(
nπ√
ΛLx

x

)
sin

(
mπ
√

Λ

Ly
y

)
, (4.31)

where Amn are normalization constants. The solution to the inhomogeneous equation

(4.25) can now be found by finding the constants An,m such that the inhomogeneous

BP equation (4.25) is satisfied. Inserting Eq. (4.31) into the left hand side of Eq. (4.25)
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(a) (b) (c)

Figure 4.1: Contour plots for the solutions Ψ2,1 (Fig. a)), Ψ2,2 (Fig. b)) and Ψ2,1 +Ψ2,1

(Fig. c)) of the homogeneous Helmholtz equation (4.28) in the square: they will be
called monopole, quadrupole and diagonal dipole respectively. The blue and the red
lines correspond to negative and positive values of the streamfunction.

gives

∑
m,n

Amn

[
λ2 − n2π2

ΛL2
x

− m2π2Λ

L2
y

]
sin

(
nπ√
ΛLx

x

)
sin

(
mπ
√

Λ

Ly
y

)
. (4.32)

Multiplying the above quantity by two generic elements of the basis sin
(
n′πx/

√
ΛLx

)
identified by an index n′ and sin

(
m′π
√

Λy/Ly

)
identified by an index m′ and integrat-

ing with respect to x and y gives

Am′,n′

[
λ2 − n′2π2

ΛL2
x

− m′2Λπ2

L2
y

]
LxLy

4
, (4.33)

where the following property has been used∫ L

0

sin
(nπ
L
x
)

sin

(
n′π

L
x

)
dx =

L

2
δn,n′ .

The right hand side of Eq. (4.25) becomes

λ2〈Ψ〉
∫ √ΛLx

0

∫ Ly/
√

Λ

0

sin

(
n′π√
ΛLx

x

)
sin

(
m′π
√

Λ

Ly
y

)
dxdy, (4.34)

which is

λ2〈Ψ〉 LxLy
m′n′π2

[
(−1)n

′ − 1
] [

(−1)m
′ − 1

]
, (4.35)
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due to the equality ∫ L

0

sin

(
n′π

L
x

)
dx = − L

n′π

[
(−1)n

′ − 1
]
. (4.36)

Therefore, in order to have a non-zero value, the integers m′ and n′ must be odd.

Combining Eqs. (4.33) and (4.35) gives

Am,n

[
λ2 − n2π2

ΛL2
x

− m2π2Λ

L2
y

]
LxLy

4
= λ2〈Ψ〉4LxLy

mnπ2
, (4.37)

which allows for the evaluation of the coefficients Am,n given by

Am,n = λ2〈Ψ〉 16

mnπ2

1

λ2 − n2π2/ΛL2
x −m2π2Λ/L2

y

. (4.38)

This expression for the coefficients can be substituted into Eq. (4.31) to obtain the

general solution to the inhomogeneous Helmholtz equation (4.25) for which 〈Ψ〉 6= 0

Ψ(x, y; Λ) =
16λ2〈Ψ〉
π2

+∞∑′

m=1

+∞∑′

n=1

sin(nπx/
√

ΛLx) sin(mπ
√

Λy/Ly)

mn(λ2 − n2π2/ΛL2
x −m2π2Λ/L2

y)
, (4.39)

where the summations with the apostrophe mean that only the odd integers are con-

sidered. The integral of the streamfunction Ψ over the domain D is given by

∫ √ΛLx

0

∫ Ly/
√

Λ

0

Ψdxdy =
16λ2〈Ψ〉
π4

+∞∑′

m=1

+∞∑′

n=1

4LxLy
m2n2(λ2 − n2π2/ΛL2

x −m2π2Λ/L2
y)
,

(4.40)

where the equality (4.36) has been used. Therefore, by using the definition of spatial

average (4.1), the parameter λ2 must satisfy the following equation

f(λ2;n,m,Λ) = 0, (4.41)

where the function f(λ2;n,m,Λ) is defined as follows

f(λ2;n,m,Λ) =
64λ2

π4

+∞∑′

n=1

+∞∑′

m=1

1

m2n2(λ2 − n2π2/ΛL2
x −m2π2Λ/L2

y)
− 1. (4.42)

The number of zeros of the solution Ψ given by Eq. (4.39), are related to the solution

of the Eq. (4.41). Figure (4.2) a) shows the graph of the function f(λ2;n,m, 1) for the

particular case Λ = 1: it can be noted that the function does not have zeros for negative
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values of λ2 but only for positive values of λ2. The zeros of the function f(λ2;n,m, 1)
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Figure 4.2: On the left the function f(λ2;n,m, 1) given by Eq. (4.41) for the particular
case of Lx = Ly = 2 and Λ = 1: among all zeros, the most relevant is the first one
which corresponds to λ2 ∼ 11.5. On the right, the trend of the function f(λ2;n,m,Λ)
in the vicinity of the first zero for different values of the aspect ratio Λ indicated in the
legend.

have been numerically evaluated by solving Eq. (4.41) and the first three are given by

λ2 = 11.5287, λ2 = 38.634 and λ2 = 47.177. For these values of λ2, the solutions Ψ

given by Eq. (4.39) in the case of Λ = 1, are presented in Fig. (4.3). Since the entropy

S ∼ −λ2, the higher entropy is achieved for small values of the parameter λ2 and hence,

the relevant zero is the first one about λ2 ∼ 11.5287. This value of λ2 corresponds to

a streamfunction Ψ with the fewer number of zeros as shown in Fig. (4.3). For larger

values of the parameter λ2 the streamfunction Ψ presents more zeros (see Fig (4.3) b)

and c)) and these configurations have lower entropy. Figure (4.2) on the right, shows

the trend of the function f(λ2;n,m,Λ) in the vicinity of the first zero as a function of

Λ: the value of the first zero is shifted to the right as Λ increases. As a consequence,

for these family of solutions, the entropy S decreases as Λ increases. The linearised

BP equation (4.25) allows the identification of two different types of solution: the first

type is composed of solutions for which 〈Ψ〉 = 0 given by Eq. (4.31) and the second for

which 〈Ψ〉 6= 0 given by (4.39). The relation between the parameter λ2 and the entropy

S of these two types will be investigated by comparing the zeros of f(λ2;n,m,Λ) given

by Eq. (4.41) and the values of λ2
n,m given by the second of Eq. (4.29) for the dipole,

the diagonal dipole and the quadrupole. The zeros of f(λ2;n,m,Λ) are numerically
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λ
2
=11.5287 λ

2
=38.634 λ

2
=47.177

(c)(b)(a)

Figure 4.3: Contour plots of the streamfunction Ψ given by Eq. (4.41) for values of λ2

which correspond to the first three zeros of f(λ2;n,m, 1) indicated in Fig.(4.2) on the
left. The values of λ2 are indicated above each figure.

evaluated by using the software Mathematica. The eigenvalues for the dipole and the

quadrupole are given by

λ2
2,1(Λ) = π2

(
4

ΛL2
x

+
Λ

L2
y

)
, λ2

2,2(Λ) = 4π2

(
1

ΛL2
x

+
Λ

L2
y

)
, (4.43)

and for the diagonal dipole

λ2
2,1(Λ) + λ2

1,2(Λ) = π2

(
4

ΛL2
x

+
Λ

L2
y

)
+ π2

(
1

ΛL2
x

+
4Λ

L2
y

)
. (4.44)

Figure (4.4) shows how the entropy (λ2) for the different types of flow varies as a

function of the aspect ratio Λ. The four curves correspond to a monopole, dipole,

diagonal dipole and quadrupole. The inset figures show the streamfunction for these

four kind of solutions in the square (Λ = 1) and in the rectangle with aspect ratio

Λ = 1.5. The configurations which play an important role are the dipole and the

monopole: the quadrupole and the diagonal dipole have a very low entropy compared

with the other two configurations. The linear theory shows that for low aspect ratio,

the monopole configuration has higher entropy while for high aspect ratio the dipole

has higher entropy. The critical value of the aspect ratio has been evaluated by [71]

and it is Λc = 1.122.
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Figure 4.4: Comparison of the linear entropy given by Eq. (4.27) for different solutions
of the linearised BP equation (4.22). By increasing the aspect ratio of the domain,
the entropy of the monopole decreases while the entropy of the dipole increases. For
small values of the aspect ratio Λ the monopole is dominant but for larger values of
Λ the dipole configuration has a higher entropy. The entropies of the quadrupole and
the diagonal dipole are not relevant for this linear analysis. The inset figures are the
streamfunction for the monopole, dipole, diagonal dipole and quadrupole for Λ = 1 and
Λ = 1.5. The blue and red contour lines represent the negative and the positive values
of the streamfunction respectively.
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4.3 Non-Trivial Solutions Of The Boltzmann-Poisson

Equation

The BP equation is a non-linear, second order, partial differential equation which

admits Ψ = 0 as a trivial solution. In §(4.2) it was shown that non-trivial solutions

exist if the inverse temperature β is negative. In this section an iterative algorithm

which converges to a non trivial solutions Ψ of the equation

∇2Ψ +
λ2

2

[
eΨ

〈eΨ〉
− e−Ψ

〈e−Ψ〉

]
= 0, Ψ = 0, on ∂D, (4.45)

will be presented. The algorithm is an extension of the method developed by McDonald

[77] for solving the Sinh-Poisson equation. To enhance the numerical stability of the

iterative algorithm the above form of the BP equation is rewritten in the form

∇2Ψ + λ̃2

[√
a−
a+

eΨ −
√
a+

a−
e−Ψ

]
= 0, (4.46)

where

λ̃2 =
2λ2

√
a+a−

, a± = 〈e±Ψ〉. (4.47)

The fist step of the algorithm is to start with an initial guess ϕ(x, y) which approximates

the exact solution Ψ of the BP equation. A residual function R(x, y) can be defined as

R(x, y) =

(
∇2ϕ+ λ̃2

[√
a−
a+

eϕ −
√
a+

a−
e−ϕ
])

/(ϕ, ϕ), (4.48)

where (f, g) is the inner product of two real functions f and g defined by

(f, g) =

∫
D
f(x, y)g(x, y)dxdy. (4.49)

The residual function R(x, y) represents the discrepancy between the exact solution Ψ

and the trial solution ϕ. Following McDonald, the denominator (ϕ, ϕ) is included in

the definition of R(x, y) to ensure the algorithm converges to a non-trivial solution for

the streamfunction Ψ. A variation in the trial function ϕ(x, y) corresponds to a change

in R(x, y) given by

δR(x, y) =
∇2δϕ+ λ̃2δ [. . . ]− 2(δϕ, ϕ)R(x, y)

(ϕ, ϕ)
, (4.50)
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where δ(ϕ, ϕ) = (δϕ, ϕ) + (ϕ, δϕ) = 2(δϕ, ϕ) and [. . . ] corresponds to the terms in the

squared brackets in Eq. (4.48). Since

δ

√
ai
aj

=
1

2

√
aj
ai

[
ajδai − aiδaj

a2
j

]
, i = ±, j = ∓,

δa± = δ〈e±ϕ〉 = ±〈e±ϕδϕ〉, (4.51)

the variation of the terms contained in the square brackets becomes

δ [. . . ] = δ

√
a−
a+

eϕ +

√
a−
a+

eϕδϕ− δ
√
a+

a−
e−ϕ +

√
a+

a−
e−ϕδϕ

= −1

2

√
a+

a−

(
〈e−ϕδϕ〉
a+

+
a−〈eϕδϕ〉

a2
+

)
eϕ +

√
a−
a+

eϕδϕ

−1

2

√
a−
a+

(
〈eϕδϕ〉
a−

+
a+〈e−ϕδϕ〉

a2
−

)
e−ϕ +

√
a+

a−
e−ϕδϕ

= L [ϕ, δϕ] + h(ϕ)δϕ, (4.52)

where the operator L, which depends on the functions ϕ and δϕ, is given by

L [ϕ, δϕ] = − 1

2

〈e−ϕδϕ〉
√
a+a−

eϕ − 1

2a+

√
a−
a+

〈eϕδϕ〉eϕ

− 1

2

〈eϕδϕ〉
√
a+a−

e−ϕ − 1

2a−

√
a+

a−
〈e−ϕδϕ〉e−ϕ, (4.53)

and

h(ϕ) =

√
a−
a+

eϕ +

√
a+

a−
e−ϕ. (4.54)

Inserting these quantities into Eq. (4.50) gives

δR(x, y) =
∇2δϕ+ λ̃2h(ϕ)δϕ− λ̃2L [ϕ, δϕ]− 2(δϕ, ϕ)R(x, y)

(ϕ, ϕ)
. (4.55)

Hence, δϕ is evaluated by requiring δR = −R such that

∇2δϕ+ λ̃2h(ϕ)δϕ− λ̃2L [ϕ, δϕ]− 2(δϕ, ϕ)R(x, y) = −(ϕ, ϕ)R(x, y). (4.56)

Writing the variation δϕ as a product of a constant α and an unknown function v(x, y)

which goes to zero on the boundary

δϕ(x, y) = αv(x, y), α =
(ϕ, ϕ)

2(v, ϕ)− (ϕ, ϕ)
, (4.57)
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will simplify the fourth term of the above equation. Therefore, by inserting (ϕ, ϕ)R(x, y) =

2αR(x, y)(v, ϕ)− α(ϕ, ϕ)R(x, y) into Eq. (4.56) gives

∇2v(x, y) + λ̃2h(ϕ)v(x, y)− λ̃2L [ϕ, v] = (ϕ, ϕ)R(x, y). (4.58)

Since the operator L is linear, it is possible to introduce a new operator F such that

L [ϕ, v] = F [ϕ] v(x, y) and hence, Eq. (4.58) becomes[
∇2 + λ̃2h(ϕ)− λ̃2F [ϕ]

]
v(x, y) = (ϕ, ϕ)R(x, y). (4.59)

By defining Z the operator in the square brackets,

Z ≡ ∇2 + λ̃2h(ϕ)− λ̃2F [ϕ] , (4.60)

then the function v(x, y) is given by the product of its inverse and the right hand side

of the above equation

v(x, y) = Z−1(ϕ, ϕ)R(x, y). (4.61)

With this approach it is possible to construct an iterative algorithm which converges

to the solution Ψ of the BPE by applying the following procedure:

• Make an initial guess ϕ such that Ψ = ϕ+ δϕ.

• Evaluate the residual function

R(x, y) =

(
∇2ϕ+ λ̃2

[√
a−
a+

eϕ −
√
a+

a−
e−ϕ
])

/(ϕ, ϕ), (4.62)

• Construct the operator Z

Z = ∇2 + λ̃2h(ϕ)− λ̃2L(ϕ, . . . ), (4.63)

• Invert the operator Z and evaluate

v(x, y) = Z−1(ϕ, ϕ)R(x, y), (4.64)

• Find the constant α by evaluating

α =
(ϕ, ϕ)

2(v, ϕ)− (ϕ, ϕ)
, (4.65)
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• Evaluate the variation δϕ = αv(x, y) and update the initial guess ϕ+ δϕ.

All the above steps have been iterated until the energy E of the system saturated.

This iterative procedure allows a solution to the nonlinear BP equation to be found.

However, two things are still missing: the first one is how to choose judiciously the

initial guess ϕ at the beginning of the iterative cycle, and the second is to find a way

to write L [ϕ, v] = F [ϕ] v(x, y).

The trial function ϕ can be chosen by considering the type of solution that needs

to be obtained. Therefore, if the dipole/monpole/diagonal dipole solution to the

BP equation is being sought, then the most natural initial guess is given by the

dipole/monopole/diagonal dipole solution of the linearised BP equation. While the

first two type have been described by Taylor et al. in [114], the diagonal dipole has not

been taken into account. This class of solutions plays an important role in the dynamics

of point vortices which will be investigated in the next Chapter. The BP equation will

be solved in the domain [−
√

Λ,
√

Λ]× [−1/
√

Λ, 1/
√

Λ] which reduces to [−1, 1]× [−1, 1]

in the case of the square. Explicitly, for the monopole the initial guess is given by

ϕM(x, y) =
16Aλ2

π2

+∞∑′

n,m=1

sin (nXM) sin (mYM)

nm(λ2 − (m2π2/ΛL2
x − n2π2Λ/L2

y))
, (4.66)

where

XM =
π

Lx

(
x−
√

Λ
)
, YM =

π

Ly

(
y − 1√

Λ

)
, (4.67)

and A = 0.02 is a constant which fixes the maximum amplitude of the initial guess and

Lx = Ly = 2. For the dipole, the initial guess is given by

ϕD(x, y) = A sin (XD) sin (YD) , (4.68)

where

XD =
πx√

Λ
, YD =

π

2

(√
Λy − 1

)
, (4.69)

and for the diagonal dipole

ϕDD(x, y) = ϕD(x, y) + A sin (XDD) sin (YDD) , (4.70)

where

XDD =
π

2

(
x√
Λ
− 1

)
, YDD = π

√
Λy. (4.71)
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4.3. NON-TRIVIAL SOLUTIONS OF THE BOLTZMANN-POISSON EQUATION

In the following the attention is given on writing the new operator F [ϕ] such that

L [ϕ, v] = F [ϕ] v(x, y).

Each term of L [ϕ, v], apart from the constant term, is of the form

〈f, v〉g(x, y) =
g(x, y)

D

∫
D
f(x̃, ỹ)v(x̃, ỹ)dx̃dỹ (4.72)

Numerically, the integral of the above quantity is evaluated by replacing the double

integral by a double summation over the nodes xi and yj, i, j = 0 . . . , N

〈f, v〉 ∼
N∑
i=0

N∑
j=0

f(xi, yj)v(xi, yj)wxiwyj ≡
N∑
i=1

N∑
j=1

fi,jvi,jWi,j, (4.73)

where wxi and wyj are the weights associated to each node and for brevityWi,j = wxiwyj .

The quantity given by Eq. (4.72) can be written in terms of a matrix product as follows

f1,1W1,1g1,1 · · · f1,NW1,Ng1,1 f2,1W2,1g1,1 · · · fN,NWN,Ng1,1

f1,1W1,1g1,2 · · · f1,NW1,Ng1,2 f2,1W2,1g1,2 · · · fN,NWN,Ng1,2

...
...

...
...

...
...

f1,1W1,1g1,N · · · f1,NW1,Ng1,N f2,1W2,1g1,N · · · fN,NWN,Ng1,N

f1,1W1,1g2,1 · · · f1,NW1,Ng2,1 f2,1W2,1g2,1 · · · fN,NWN,Ng2,1

...
...

...
...

...
...

f1,1W1,1gN,N · · · f1,NW1,NgN,N f2,1W2,1gN,N · · · fN,NWN,NgN,N





v1,1

...

v1,N

v2,1

...

...

vN,N


By writing each term of the operator L [ϕ, v] (4.72) in this form, it is possible to write

Eq. (4.58) as Eq. (4.59) and find the solution v(x, y). The BP equation is then solved

on a Chebyshev grid consisting of 33 × 33 points. The use of a Chebyshev grid has

the advantage that it alleviates the so called Runge phenomenon [117] which results in

spurious oscillations of smooth functions near boundaries. The Chebyshev grid resolves

this problem by using a non-uniform grid [117]. For a given number of points N the

Chebyshev nodes are defined on the interval [−1, 1] by the following relation

xi = cos

(
iπ

N

)
, i = 0 . . . N (4.74)

and they can be visualized as the projection of equispaced points on the upper half

of the unit circle onto the interval [−1, 1] (see Fig. (4.5)). Numerical details on the

construction of the discrete Laplace operator on a Chebyshev grid used in Eq. (4.62),

and on the weights wxi and wyj used in Eq. (4.73) can be found in [117].
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x1x2x3x4x5x6x7 = −1 x0 = +1

Figure 4.5: Chebyshev nodes in the interval [−1, 1]: the nodes are more dense near
the endpoints.

4.4 Solutions of the Boltzmann-Poisson Equation in

the Squared Domain

In the previous section a solution procedure was presented for finding solutions of

the BP equation. In this section the solutions obtained in a squared domain will be

presented. The BP equation was solved in a squared domain for different values of

the parameter λ̃2 for the following families of solutions: monopole, dipole and diagonal

dipole. Results are presented in Fig. (4.6) where the energy Ê given by Eq. (4.14) an

the entropy per vortex Ŝ given by (4.20) are evaluated for each solution in each family.

For the three type of solutions, the parameter λ̃2 runs between λ̃2 = 3 and λ̃2 = 11.5

with steps of 0.5. According to the mean-field theory, all the solutions presented are

local maxima of the entropy. The classification shown in Fig. (4.6) reveals that in the

squared domain, the global maxima corresponds to the monopole, for any value of the

non dimensional energy Ê. This result, which was predicted in the linear theory (4.2),

is still valid in the full non linear theory. An important result, which improves the

result given by Taylor et al. [114], is given by the comparison between the dipole (blue

curve) and diagonal dipole (red curve): the diagonal dipole is more favourable than the

dipole. This result will turn out to be crucial in understanding the dynamics of point

vortices which will be assessed in the next chapter.

Examples of streamfunctions solutions of the BP equation in the square are given

in Fig. (4.7). In the dipole and diagonal dipole cases, the streamfunction is symmetric

whereas for the monopole is asymmetric: negative vortices are located in the center of
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Figure 4.6: Branches related to the solutions of Eq. (4.46) for different values of λ̃2

in the square with Lx = Ly = 2. The monopole (green curve) has the highest entropy
followed by the diagonal dipole (red curve). Values of λ̃2 are indicated at the beginning
and at the end of each branch and each circle refers to an increment of 0.5 in its value.
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the domain surrounded by the positive vortices which tend to occupy the four corners of

the domain. It should be remarked that if the doubly period domain would have been

considered, the maximum entropy configuration would have been the dipole as shown

in [124] and [71]. The particular range of values of λ̃2 considered in Fig. (4.6) have been

(a) (b) (c)

Figure 4.7: Contour plots of streamfunctions, solutions of the BP equation: the
dipole a), the diagonal dipole b), and for the monopole c). These solutions have been
obtained by solving the BP equation for λ̃2 = 9: the blue line corresponds to a region
where the streamfunction is negative while the red lines represent a region where the
streamfunction is positive.

selected for two main reasons. The first reason is related to the number of Chebyshev

nodes used during the numerical evaluation of the solutions of the BP equation. Small

values of the parameter λ̃2 correspond to highly localised vorticity distributions. In

fact, for values smaller than λ̃2 = 3, the localisation of the vorticity field degraded the

numerical accuracy of the solution unless the resolution is increased. The trend of the

error as a function of the parameter λ̃2 is shown in Fig. (4.8) where the error increases

as λ̃2 decreases. The error has been evaluated by considering the degree of convergence

that can be achieved with the iterative method. In particular the following norm is

evaluated

Error =

∣∣∣∣∇2Ψ +
λ2

2

[
eΨ

〈eΨ〉
− e−Ψ

〈e−Ψ〉

]∣∣∣∣ , (4.75)

where Ψ is the numerical solution obtained.

The second reason is related to the fact that for large values of λ̃2, the final configu-

rations corresponds to streamfunctions with a high number of zeros as in the case of the

monopole solutions for the linear BP equation presented in Fig. (4.3). It can be shown

[16] that these configurations have higher energies and therefore, are less favourable.

As a consequence, their entropy is lower than the entropies of the solutions with fewer

zeros and for this reason values of λ̃2 ≥ 12 have not been considered.
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Figure 4.8: Variation of error as a function of λ̃2 for different solution branches in
the squared domain. The error increases as λ̃2 decreases: this is due to the localised
solution to the BP equation for small values of λ̃2.

4.5 Solutions of the Boltzmann-Poisson Equation in

the Rectangular Domain

In the previous section, the entropy Ŝ for the monopole, dipole and diagonal dipole

was evaluated in the square. According to the linear theory high entropy states cor-

respond to the monopole configuration. Motivated by the linear analysis that shows

that as the aspect ratio is increased the different solution branches cross at around

Λc ∼ 1.122, the same analysis has been performed in the rectangle with an aspect ratio

Λ = 1.5, keeping the area fixed. The branches for this geometry are shown in Fig.

(4.9). The first difference between the square (4.6) and the rectangle, is the absence of

the branch related to the diagonal dipole. In fact by starting the initial guess that cor-

responds to the diagonal dipole the algorithm always converged to a dipole. It suggests

that for this particular geometry, the diagonal dipole is no longer a stationary point for

the entropy. The other difference is given by the role of the dipole and the monopole

solutions. In this case the dipole configurations are global maxima for the entropy

whereby the monopole structures are local maxima so the roles of these two families

have been interchanged. The results are consistent with the predictions obtained by

Lundgren [71], by Chavanis [28] and by Taylor [114]. In particular, by changing the
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aspect ratio of the domain a bifurcation occurs at Λ ∼ 1.122 as already discussed in

(4.2).
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Ŝ

 

 

λ̃
2 = 11

λ̃
2 = 10

λ̃
2 = 3

λ̃
2 =3

λ

Dipole Monopole

Figure 4.9: Branches related to the solutions of the Eq. (4.46) for different values of λ̃2

in the rectangle with aspect ratio Λ = 1.5 : the higher value for the entropy is achieved
by the dipole (blue curve).

For reasons similar to these discussed for the square, the range of the values of the

parameter λ̃2 is has been restricted to be between λ̃2 = 3 and λ̃2 = 10 for the dipole

and λ̃2 = 3 and λ̃2 = 11 for the monopole. As with Fig. (4.8), norm of the error for

the solutions in the rectangular domain presented in Fig. (4.10) shows that for small

values of the parameter λ̃2 the error increases.

4.6 Solutions of the Boltzmann-Poisson as a Func-

tion of the Aspect Ratio

The analysis performed in the previous two sections showed that the values of the

entropy Ŝ depends on the aspect ratio Λ. In order to complete this analysis, the BP

equation has been solved for different values of the aspect ratio Λ and the same analysis

on the solutions has been performed. Figure (4.11) shows the variation of the entropy

Ŝ for the dipole and the monopole as a function of the aspect ratio Λ. Figure (4.11)
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Figure 4.10: Variation of error as a function of λ̃2 for different solution branches in
the rectangular domain. The error increases as λ̃2 decreases: this is due to the localised
solution to the BPE for small values of λ̃2.

a) shows branches of the dipolar solutions as a function of the aspect ratio Λ. As the

aspect ratio increases, the entropy of these type of solutions increases. Figure (4.11) b)

shows branches of the monopolar solutions as a function of the aspect ratio Λ and in

this case the entropy decreases as the aspect ratio increases. Figure (4.11) c) combines

all the branches for the two types of solutions for different values of the aspect ratio

Λ. In this analysis the numerical values of the parameter λ̃2 have been restricted to be

between λ̃2 = 3 and λ̃2 = 9.

4.7 Role of the Angular Momentum

The classification of solutions of the BP equation presented in §4.4 and §4.5 revealed

the crucial role of the geometry with respect to the configuration with higher entropy.

In the squared domain the monopole is the solution which is the global maxima for

the entropy, followed by the diagonal dipole and by the dipole. On the other hand,

by changing the domain into a rectangle with aspect ratio Λ = 1.5, the maximum

entropy is achieved by the dipole configuration while the monopole corresponds to a

local maxima. This feature has an important effect to a measurable quantity which
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Ê

Ŝ
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Figure 4.11: Branches related to the solutions of the BP equation (4.17) as a function
of the aspect ratio Λ for the dipole a) and for the monopole b) for different values of
the parameter λ̃2. In Fig. c) the graphs presented in a) and b) are compared.

is the angular momentum: in fact, the angular momentum L of a flow described by a

streamfunction Ψ is given by (see Eq. (2.138))

L = 2

∫
D

Ψdxdy = 2D〈Ψ〉, (4.76)

where the density ρ = 1. In the rectangular geometry the higher entropy state is

associated with a configuration described by a streamfunction Ψ such that 〈Ψ〉 = 0

hence, to a zero value of the angular momentum L. On the other hand, in the squared

geometry, the maximum entropy state is achieved by the monopole. In this case the

streamfunction Ψ is such that 〈Ψ〉 6= 0 and, as a consequence, it is possible to associate

to this configuration a nonzero angular momentum.

The acquisition of an angular momentum in the case of a non-neutral configuration

of point vortices is not surprising: however, the studied system is composed of an equal

number of positive and negative point vortices. This spontaneous acquisition of an

angular momentum by a neutral vortex gas it has been investigated in classical fluid

in [33]. This behaviour is predicted by the mean-field theory but for our knowledge

has never been demonstrated directly by considering the dynamics of point vortices.

In the next chapter, the dynamics for a system composed by an equal number of point
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vortices in a squared and rectangular domain will be described. The aim will be to test

to what extent the predictions of the theory that have been obtained assuming large N

apply to a dynamical simulation consisting of around 100 vortices which is achievable

in current experiments on Bose-Einstein condensates.
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Chapter 5

Point Vortex Dynamics in the

Square and the Rectangle

In the previous Chapter the solutions to the Boltzmann-Poisson (BP) equation for

the streamfunction ψ for a neutral vortex gas consisting of two species of vortices have

been considered. Solutions for both a squared domain with sides Lx = Ly = 2 and in

a rectangle with sides Lx = 2
√

Λ and Ly = 2/
√

Λ where Λ = Lx/Ly = 1.5 have been

presented. In particular, two type of solutions have been investigated and classified in

terms of their energy and entropy: the solutions for which ψ has a zero mean value

and those for which their mean value is non-zero. Example of the first kind of solutions

are given by the dipole and the diagonal dipole and in the second case an example is

given by the monopole. This analysis revealed the presence of two configurations which

maximise the entropy of the system: the monopole in the square and the dipole in the

rectangle.

Since the BP equation has been derived in the framework of a microcanonical ap-

proach, and since the in the point vortex model (PVM) the total number of vortices and

and the total energy H are conserved, it will be interesting to confirm the predictions

given from the mean-field-theory to see whether for which the long term dynamics of

point vortices in the square reveals a monopole structure but a dipole configuration in

the rectangle.

Another interesting aspect to study is the transition of the vortex gas from the

positive temperature to the negative temperature regime and the formation of large

coherent structures as the system evolves deeply into the negative temperature regime.

Unfortunately, the PVM does not allow this scenario to occur: the reason lies in the

fact that in the transition from the positive to the negative temperature regime, the

energy of the system must increase but in this model the energy is a constant of motion.
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Therefore, without modelling additional physical processes that prevent the energy to

change, the energy can not vary and the clustering can never occur, unless the vortices

are initialised from the beginning to correspond to a negative temperature state. This

problem can be resolved by adopting a proposal put forward in [107] by T. Simula et al.,

whereby an annihilation parameter δ is introduced to remove vortices with opposite sign

in the dynamics. The physical motivation for introducing this annihilation mechanism is

that in superfluids, vortices are topologically stable excitations that can annihilate with

antivortices when they pass near one another. The annihilation of vortices with opposite

sign reduces the number of vortices, it keeps the system neutral, and it increases the

energy per vortex of the vortex gas. As a consequence, the system migrates into the

negative temperature regime and the study of the transition between these two regimes

can be performed. This mechanism permits the study of how clustering of vortices

spontaneously occurs and it helps in understanding the role played by the geometry

in the dynamics and in the formation of coherent structures. The starting point to

describe the dynamics of point vortices is to derive the Hamiltonian for the considered

geometry: as already discussed in §2.5 the derivation of the Hamiltonian H in the

presence of boundaries can be very complicated. This Chapter, is organised as follows.

In §5.1, the dynamics of a neutral vortex gas and the transition between the positive

and the negative temperature regime is investigated in two geometries: the square and

the rectangle. The idea is to confirm the results given by the energy-entropy analysis in

the square and the rectangle given in §4.4 and §4.5, respectively . In particular, it will

be shown that in the square the vortices tend to gather together forming a monopole

and in the rectangle they form a dipole. In §5.2 a qualitative analysis of the angular

momentum in the square and the rectangle will be presented. In §5.3 will be presented

a thorough comparison between results from point vortex dynamics and solutions of

the BP equation. This will involve the construction of smooth vorticity fields from the

discrete representation provided by point vortices. These results will bridge the gap

between the statistical mechanical and dynamical approach to the problem. In §5.4 a

quantitative analysis on the angular momentum will be given. Finally, in section §5.5

the analysis on the dynamics of point vortices in the square and the rectangle where

annihilations on the boundaries can occur will be presented. This additional type of

annihilation allows the system to become non neutral and hence, it will be shown that

in both geometries the system naturally evolves towards a monopole configuration.
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CHAPTER 5. POINT VORTEX DYNAMICS IN THE SQUARE AND THE
RECTANGLE

5.1 Point Vortex Dynamics

The aim of this section is to investigate the dynamics of a neutral system composed

of point vortices in the square and in the rectangle with aspect ratio Λ = Lx/Ly = 1.5:

the first case is studied in §5.1.1 while the second is investigated in §5.1.2. In these two

geometries random initial configurations are generated and the long term dynamics is

studied by integrating the equation of motion (2.79) where the Hamiltonian H is given

by Eq. (2.124) and adding an annihilation parameter between vortices with opposite

circulation to the dynamics. Particular attention will be given to the structures in

which the vortices can arrange themselves and if they coincide with the structures

which have been presented in §4.4 and §4.5 based on the BP equation. If this is the

case, then the behaviour of the vortices can be explained in terms of maximum entropy

principle which produces different outcomes in the square and in the rectangle as already

discussed in the previous Chapter. Analysis on the results will be performed by invoking

ergodicity thereby allowing ensemble averages to be replaced by time averages. Hence,

a time average of point vortex positions is then generated from intervals of the same

length during the dynamical runs for both geometries. An example on how this time

averaging allows more well desired structures to be calculated is illustrated in Fig. (5.1).

This shows how superpositions of point vortices from two instantaneous, not necessary

consecutive, configurations leads to more well desired clusters. This approach can

N+ = 5, N
−
= 5, τ = τ1 N+ = 10, N

−
= 10,∆τN+ = 5, N

−
= 5, τ = τ2

a) b) c)

Figure 5.1: Figures a) and b) show two configurations at τ1 and τ2 respectively and the
resulting ensemble is given by Fig. c) on the right: the red and blue circles represent
the vortices with positive and negative circulation respectively.

be easily extended to an arbitrary number of configurations, giving the possibility of

creating ensembles with a large number of point vortices. The method which will be

adopted to study the vortex dynamics in a statistical sense, is to generate ensembles
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from the dynamics and to evaluate their time-averaged streamfunction ψ.

5.1.1 Dynamics in the Square

In this subsection the dynamics of a neutral vortex gas in the square with sides

Lx = Ly = 2 is investigated. In order to do so, the equations of motion (2.79) where

the Hamiltonian is given by Eq. (2.124) for a system composed of N+ = 60 and

N− = 60 vortices with circulation γ± = ±1 are numerically solved with the built-

in ODE45 MATLAB function [105] based on an adaptive 4th-5th order Runge-Kutta

scheme with a maximum time step τ = 0.005. An annihilation parameter δ = 0.01

is added to the dynamics: when the distance between vortices of opposite circulation

becomes less than δ, a pair will be removed from the system. The statistical weight

analysis performed in §3.2.1 helps in generating an initial condition whose energy lies

in the positive temperature regime. Figure (5.2) shows the statistical weights in the

square for neutral configurations of point vortices composed by a different number of

vortices N indicated in the legend. The statistical weights immediately identify the

regions for which the temperature of the vortex gas is positive or negative, depending

on the slope of the tangent to the graphs (see Eq. (3.5)).

The initial configuration has been randomly generated and its energy is evaluated by

using Eq. (2.124) and it is given by Hin = −0.13: this value corresponds to an energy

of a vortex gas with a positive temperature. The energy of the initial configuration is

represented by the vertical dotted line in Fig. (5.2). The inset figure shows the posi-

tions of the initial configuration with vortices with positive circulation (red circles) and

negative circulation (blue circles) and its corresponding streamfunction normalised by

the number of vortices ψ/N . By looking at the contour plot the absence of clusters of

like signed vortices becomes evident and it is the signature of a perfectly mixed config-

uration, typical of a a system in a positive temperature regime. The streamfunction ψ

has been generated from knowledge of the instantaneous positions of the vortices and by

using Eq. (2.128). The configuration has been generated by imposing two constraints

δV = 0.08 and δB = 0.12 on the positions of vortices. The reason for the first constraint

lies in the fact that if vortices are too close at the beginning of the simulation, a large

number of pairs will be removed due to the annihilation parameter δ. By imposing

this constraint this possibility is avoided and allows the system to smoothly migrate

into the negative temperature regime due to the chaotic vortex dynamics. The second

constraint δB prevents the initial vortex positions from being unrealistically close to the

boundaries. These constraints help in generating realistic initial configurations for the

study of the dynamics of a vortex gas in two-dimensional Bose-Einstein condensates
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[103] where annihilation on the boundaries can also occur. This problem will be investi-

gated in more details in Chatper §6. By solving the equation of motions (2.79) together

with the annihilation parameter δ imposed between pairs with opposite circulation,

the total number of vortices in the system is gradually lost whilst remaining neutral.

However, the energy per vortex is seen to increase. Figure (5.3) shows the number of

vortices as a function of time τ during the dynamics. It can be seen that the number
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Figure 5.2: Statistical weights in the square for neutral systems of point vortices
composed of a different total number of vortices N : the vertical dotted line represents
the energy of the initial configuration. On the left the configuration (upper figure) in
which the red and the blue circles represent the vortices with positive and negative
circulation respectively. The figure below is the corresponding contour plot for the
streamfunction per vortex ψ/N . All the random configurations have been generated by
imposing a minimum distance δV = 0.08 between each vortex and a minimum distance
δB = 0.12 between the vortices and the boundaries.

of vortices reduces from N = 120 to N = 42 in the total running time (τ = 25 which

corresponds to 50, 000 iterations) and by τ ∼ 5 the initial number of vortices is halved.

In addition, after τ = 13.2 the process of annihilation slows down dramatically and it

can be inferred that the system is reaching a quasi-equilibrium regime.

During the entire dynamics short time intervals have been considered and in these

windows different time-averaged streamfunctions per vortex ψ/N have been evaluated:

examples of the streamfunction over three time intervals are shown in Fig. (5.3) (in-
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Figure 5.3: Number of vortices as a function of time in the square. The contour plots
represent the streamfunction per vortex ψ/N for three different time intervals during
the dynamics. Indicated below each inset is the interval used to generate the averaged
streamfunctions while the number of positive and negative vortices used in the averaging
is indicated above each inset.

set figures). This shows the presence of different structures at different stages in the

dynamics which correspond to the same structures predicted in §4.2: the dipole, the

diagonal dipole and the monopole. This idea of generating time-averaged streamfunc-

tions over certain intervals can be performed systematically. Starting from τ = 13.2,

when annihilations almost stop, the averaged streamfunctions are evaluated over time

intervals of ∆τ = 0.3 in duration. The results of this analysis are presented in Fig.

(5.4) where each figure represents the averaged streamfunction per vortex ψ/N . The

colors refer to the same colorbar of Fig. (5.3) and Fig. (5.2). Since the number of

vortices does not change in time each averaged streamfunction was evaluated from a

total of N=528 vortex positions.

By looking at Fig. (5.4), it is possible to identify time intervals in which the vortices

form a dipole (τ = [15.6 − 15.9] for example), diagonal dipole (τ = [16.8 − 17.1] for

example), and monopole (τ = [17.7−18] for example). These configurations correspond

to the flows studied in §4 and classified in terms of their energy and entropy in §4.4.

Figure (5.4) shows also another interesting fact: although the entropy of the dipole is

lower than the entropy of the diagonal dipole (Fig. (4.6)) the system bounces between

these two configurations. For example the system can be found in the diagonal dipole

configuration in the interval ∆τ = [14.1− 14.4], then in a lower entropy configuration
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τ = [13.2− 13.5] τ = [13.5− 13.8] τ = [13.8− 14.1] τ = [14.1− 14.4]

τ = [14.4− 14.7] τ = [14.7− 15] τ = [15− 15.3] τ = [15.3− 15.6]

τ = [15.6− 15.9] τ = [15.9− 16.2] τ = [16.2− 16.5] τ = [16.5− 16.8]

τ = [16.8− 17.1] τ = [17.1− 17.4] τ = [17.4− 17.7] τ = [17.7− 18]

Figure 5.4: Contour plots of the streamfunction per vortex ψ/N evaluated over dif-
ferent time intervals in the square: the total number of vortices used in the averaging
in each case and the interval from which the plots have been evaluated are indicated
above each figure. All plots were generated from a total of N+ = N− = 264 vortices.
The colors of the contour plots refer to the same colorbar as in Fig. (5.3) and Fig.
(5.2).
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τ = [21− 21.3] τ = [21.3− 21.6] τ = [24.3− 24.6] τ = [24.6− 24.9]

Figure 5.5: Contour plots of the streamfunction per vortex ψ/N evaluated over dif-
ferent time intervals in last part of the dynamics in the square: the total number of
vortices used in the averaging in each case and the interval from which the plots have
been evaluated are indicated above each figure. All plots were generated from a total
of N+ = N− = 252 vortices. The colors of the contour plots refer to the same colorbar
as in Fig. (5.3) and Fig. (5.2).

in the interval ∆τ = [14.4 − 14.7] and then again in a higher entropy configuration in

the interval ∆τ = [15−15.3] and so on. In other words, the system is free to explore all

the possible configurations in this particular stage of the dynamics. However, among

all the possible configurations, the monopole has the highest entropy in the square and

it is achieved for the very first time at τ = 17.7 (see last contour plot of Fig. (5.4)):

the negative charges occupy the centre of the domain and the positive charges occupy

the four corners. This configuration, which first appears at τ = 17.7, lasts until the end

of the simulation at τ = 25. Figure (5.5) provides four contour plots of four different

averaged streamfunctions evaluated over different time intervals (indicated above each

figure) during the latter stages of the simulation. It should be noted that the time

averaging presented in Fig. (5.4) has been performed after the annihilation process

ceased (see Fig. (5.3)). Therefore, the system was assumed to be in a quasi-equilibrium

state, allowing us to claim that the final configuration corresponded to a maximum

entropy state for the dynamics of point vortices in the square.While the annihilation

process does play an important role at the beginning of the simulation where a large

number of annihilations occur, at later times once the clusters are formed, this mech-

anism is strongly suppressed. Then the probability of annihilation between positive

and negative charges reduces and it becomes proportional to the interfering perime-

ter between the clusters. We note that time averaging can not be be performed for

exceeding large intervals of time. This is because a distribution of positive and neg-

ative vorticity can undergo a sudden exchange as a consequence of having degenerate

maximum entropy configurations. Averaging over intervals traversing this switching of

states would clearly result in a cancellation of the vorticity fields. As a consequence,
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very long time averaging will produce zero averaged quantities and therefore, in choos-

ing our intervals we ensure that we circumvent these scenarios. It has to be remarked

that during the whole dynamics, it has not been possible to find any other structure

(for example the quadrupole). According to the linear study performed in §4.2, the

corresponding streamfunctions have many zeros and a lower entropy and therefore they

are less favourable. This first qualitative analysis confirms the predictions of the mean-

field theory. When the system is not deeply into the negative temperature regime, it

explores all possible microstates which can be local maxima for the entropy. However,

the long term dynamics is governed by the maximum entropy principle which causes the

vortices of the same charge to gather together and to occupy the centre of the square

while the charges with opposite circulation tend to occupy the four corners.

5.1.2 Dynamics in the Rectangle

The squared domain is now stretched into a rectangle with sides Lx = 2
√

Λ and

Ly = 2/
√

Λ where Λ = Lx/Ly = 1.5 is the aspect ratio. This choice modifies the shape

of the domain but it preserves its volume. Since the phase space of a two dimensional

vortex gas coincides with the physical space, the phase space of the rectangle is equal to

the phase space of the square. The initial configuration has been randomly generated

and its energy is evaluated by using (2.124) and it is given by Hin = −0.14: this

value corresponds to an energy of a vortex gas with a positive temperature. The

energy of the initial configuration is represented by the vertical dotted line in Fig.

(5.6). The inset figures show the positions of the initial configuration with vortices

with positive circulation (red circles) and negative circulation (blue circles) and its

corresponding instantaneous streamfunction per number of vortices ψ/N . As before

the contour plot demonstrates the lack of clustering of like signed vortices in the initial

condition which is the signature of a perfect mixed configuration, typical of a a system

in a positive temperature regime. Once the dynamics starts, the system is smoothly

driven into the negative temperature regime due to annihilations. The number of

vortices as a function of time is presented in Fig. (5.7). The decaying rate of the

vortices is compatible with the result for the square. Figure (5.7) also shows four

contour plots for the streamfunction per vortex ψ/N of four averaged streamfunctions

generated over different time intervals during the dynamics: in particular intervals in

which the system is in the diagonal dipole, monopole and dipole configuration have

been found. The diagonal dipole has been found in a single interval ∆τ = 0.25 and

it has not been possible to find any other interval in which the system is in the same
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Figure 5.6: Statistical weights in the rectangle for neutral systems composed of differ-
ent number of vortices N : the vertical dotted line represents the energy of the initial
configuration. On the left the configuration (upper figure) in which the red and the blue
circles represent the positive and negative vortices. The figure below is the correspond-
ing contour plot for the streamfunction per vortex ψ/N . All the random configurations
have been generated by imposing a minimum distance δV = 0.08 between each vortex
and a minimum distance δB = 0.12 between the vortices and the boundaries.
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Figure 5.7: Number of vortices as a function of time in the rectangle. The contour
plots represent the streamfunction per vortex ψ/N for four different time intervals
during the dynamics. Indicated below each inset is the interval used to generate the
averaged streamfunctions while the number of positive and negative vortices used in
the averaging is indicated above each inset.
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configuration. This is consistent with the fact that in the rectangle it was not possible

to find diagonal dipole solutions to the BP equation as shown in Fig. (4.5). The other

inset figures show a dipole and two monopole configurations where negative vortices

occupy the centre of the domain (interval τ = [19.4− 19.55]) or where positive vortices

are in the centre of the rectangle (interval τ = [22.4− 22.55]).

Starting from the beginning of the simulation, averaged streamfunctions constructed

over time intervals ∆τ = 0.3 from a different total number of vortices have been gen-

erated during the dynamics. Figure (5.8) shows contour plots of these streamfunctions

over the duration of the simulation. Above each figure is indicated the window in which

the plot has been generated. Since the annihilations do not stop during the dynamics,

different number of vortices have been used within each time interval which are shown

above each contour plot. In this set of possible configurations the monopole does not

seem to occur so often and, if it occurs, it does not last for long time intervals. The

reason is due to the fact that in the considered rectangle, the value of the aspect ratio

is much greater than the critical value ΛC = 1.122 [71] and therefore, the monopole is

strongly suppressed. In the early stage of the dynamics the system can be found in a

monopole configuration which is a local maximum for the entropy. However, when the

point vortices arrange themselves in a dipole configuration, the global maximum for

the entropy is achieved and therefore the dipole configuration persists until the end of

the simulation at τ = 25, as shown in Fig. (5.8). Hence, the predictions of the theory

given by the BP equation have also been confirmed for the rectangle.

The conclusions at this stage are that the predictions of the mean-field theory are

confirmed for both the considered geometries. When the system of point vortices is

driven into the negative temperature regime there are two possible outcomes, depending

on the considered geometry: in the case of the square, the vortices tend to form a

monopole structure while for the rectangular domain the dipole is the most probable

configuration. As already pointed out in §4.7 the streamfunction ψ related to a possible

configuration of point vortices can be either 〈ψ〉 6= 0 or 〈ψ〉 = 0, where 〈. . . 〉 denotes the

spatial average. Since the angular momentum L of the system is given by Eq. (4.76),

by changing the geometry from a rectangle to a square, the system spontaneously

acquires a non zero value for the angular momentum L. This concludes the analysis

of the dynamics of a neutral system composed of point vortices in the square and

the rectangle. During their dynamics the point vortices are free to explore all the

possible configurations subjects to the instantaneous energy constraint imposed by the

Hamiltonian of the system. Some configurations are local maxima for the entropy while

others are global maxima for the entropy. It has been shown that the long time dynamics
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Figure 5.8: Contour plots of the streamfunction per vortex ψ/N evaluated over differ-
ent time intervals in the rectangle: the total number of vortices used in the averaging
in each case and the interval from which the plots have been evaluated are indicated
above each figure. The colors of the contour plots refer to the same colorbar as in Fig.
(5.3) and Fig. (5.2).
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is such that the configurations which maximise the entropy are always achieved. In the

case of the square this configuration is given by the monopole and in the case of the

rectangle it is given by the dipole. In the next section the qualitative analysis of the

angular momentum in both geometries is presented.

5.2 Angular Momentum

In §2.5.3 it has been shown that the angular momentum L evaluated with respect to

the point (x0, y0) of a distribution of N point vortices each with circulation γi located

at (xi, yi), i = 1, . . . N in a bounded domain D is given by the sum of a volume term,

indicated with LV , given by

LV = −ρ
2

N∑
i=1

γi
[
(xi − x0)2 + (yi − y0)2

]
, (5.1)

and a boundary term LB, given by

LB = −ρ
2

∮
∂D

[
(x− x0)2 + (y − y0)2

]
(−v, u) · dn, (5.2)

where dn is the normal vector to the boundary ∂D. The volume term LV depends ex-

clusively on the positions of the vortices and their circulation, while the boundary term

LB requires the knowledge of the value of the components of the velocity Eq. (2.135)

on the boundary ∂D. However, the boundary term LB can be evaluated indirectly

since the total angular momentum is related to the streamfunction of the distribution

of vortices, via

L = 2ρ

∫
D
ψdxdy, (5.3)

and therefore,

LB = 2Dρ〈ψ〉 − LV , (5.4)

where 〈. . . 〉 represents the spatial average and ρ = 1 is taken as the superfluid density.

Hereafter, the point (x0, y0) is chosen to be the center of the domain for the square

and the rectangle. Before describing the trend of the angular momentum in the square

and in the rectangle, it is important to note that in the case of a perfectly symmetric

configuration the total angular momentum is identically zero. This is immediate by

looking at Eq. (5.3). This fact can be used to describe and characterise the spatial

configuration of a distribution of point vortices by looking at the graph of the total

angular momentum L as a function of time. If it presents a large number of zeros then
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the system is passing through symmetric configurations which can be either a dipole,

a diagonal dipole, a quadrupole, etc... On the other hand, the lack of zeros in the

values of L reflects an asymmetric configurations such as the monopole. In the next

two subsections, the qualitative analysis of the angular momentum in the square and

in the rectangle will be presented.

5.2.1 Angular Momentum in the Square

By considering the positions of the point vortices during their dynamics in the

square, it is possible to evaluate the angular momentum as a function of time during

the whole dynamics. Figure (5.9) shows the total angular momentum L, the volume

term LV and the boundary term LB given by Eqs. (5.3), (5.1), and (5.4), respectively as

a function of time for the dynamics in the square. Aside from the initial time, the graph
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Figure 5.9: From the top to the bottom: total angular momentum L, volume term LV
and boundary term LB evaluated in the square during the dynamics. The red dotted
line represents the zero.

of the angular momentum L (upper figure) in Fig. (5.9) clearly shows very few zeros:

this is a signature of an asymmetric configuration such as a monopole. Fig. (5.10) shows
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L as a function of time and also four contour plots for the averaged streamfunction over

four different time intervals generated during the dynamics.
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Figure 5.10: Graph of the total angular momentum L as a function of time in the
square: the inset figures are the streamfunction per vortex ψ/N for different time
intervals generated during the dynamics. The interval from which the plots have been
evaluated are indicated above each figure. The red dotted line represents the zero.

The contour plots have been generated in the interval indicated above each figure.

The presence of different structures during the dynamics has been widely described

in §5.1.1 and Fig. (5.10) shows how these different configurations are associated with

different values of L. When L = 0 then 〈ψ〉 = 0 and L 6= 0 implies 〈ψ〉 6= 0 where

〈. . . 〉 denotes the usual spatial average. It should be remarked that some of these

configurations can last for only short time intervals.

5.2.2 Angular Momentum in the Rectangle

By changing the aspect ratio of the domain to Λ = 1.5, the maximum entropy

state is achieved by a symmetric configuration and hence, the trend of the angular

momentum L as a function of time is expected to coincide with zero. In the case of

the rectangle, the graph of the the total angular momentum L, the volume term LV

and the boundary term LB given by Eqs. (5.3), (5.1), and (5.4), respectively as a

function of time are shown in Fig. (5.11). The trend of the total angular momentum

during the dynamics of the point vortices in the rectangle reveals the expected trend.

The behaviour is clearly completely different from the previous case: here the graph

oscillates throughout the simulation from positive to negative values of L but never
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deviates from extended periods from zero. Figure (5.12) shows the plot of the total

angular momentum L in the rectangle with three example of averaged streamfunctions

per vortex ψ/N for different time intervals. Two of them show configurations close to

a monopole although they are less well defined and they do not persist for very long.

The other one is a dipolar configuration. The monopoles are present in intervals where

the angular momentum has a peak while the dipoles can be found in intervals where

the values of L is close to zero.

The analysis of the angular momentum clearly shows two different behaviours whether

the square or the rectangle is considered. In the first case, the system naturally evolves

to a configuration with a non zero angular momentum and a consequent significant de-

viation from zero in the graph of L, while in the rectangle the system evolves towards

a dipolar configuration which can be revealed by the extended deviations during which

L is approximately zero
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Figure 5.11: From the top to the bottom: total angular momentum L, volume term
LV and boundary term LB in the rectangle. The red dotted line represents the zero.
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Figure 5.12: Graph of the total angular momentum L as a function of time in the
rectangle: the inset figures are the streamfunction per vortex ψ/N for different time
intervals generated during the dynamics. The interval from which the plots have been
evaluated are indicated above each figure. The red dotted line represents the zero.

5.3 Entropy analysis for the point vortex dynamics

In the previous two sections a qualitative analysis to the dynamics of point vor-

tices and to the trend of the angular momentum in the square and the rectangle was

presented. Moreover, by using a time sequence of vortex positions within particular in-

tervals, the system was found in configurations where vortices arrange themselves into

a dipole, diagonal dipole or monopole in the square and in a monopole or dipole in the

rectangle. The aim of this section is to evaluate the non-dimensional energy Ê given

by Eq. (4.14) and the non-dimensional entropy Ŝ given by Eq. (4.16) for these config-

urations identified from the dynamical simulations. In other words, the main objective

of this section is to classify these structures based on their non-dimensional energy and

entropy as was previously done in §4.4 and §4.5 for the solutions of the BP equation.

The values of Ê and Ŝ computed from the dynamical run will also be compared with

the values already shown in Figs. (4.6) and (4.9) obtained from the solutions of the BP

equation.

In order to perform this analysis it is necessary to reconstruct, starting from the

positions of the vortices, the streamfunction ψ and the positive and the negative vor-

ticity fields ω± required to evaluate the entropy of each configuration. This section is

divided into four subsections which will culminate in the comparison of the entropies

of the solutions of the BP equation and the dynamical simulations of point vortices.

This section is organised as follows. In subsection §5.3.1 the problem of generating the

ensembles for the dipole, the diagonal dipole and the monopole in the square and for
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the monopole and the dipole in the rectangle is discussed. In the subsection §5.3.2 a

mathematical method which allows for the construction of the smooth vorticity fields

ω+ and ω−, corresponding to the vorticity fields generated by the positive and negative

vortices respectively, starting from the positions of the point vortices is presented .

Finally in subsection §5.3.4 the comparison between the non-dimensional entropy com-

puted from the dynamical simulations of point vortices in the square and the rectangle

and the solutions of the BP equation will be presented.

5.3.1 Generating the ensembles

Ensembles in the square

Since the point vortices spend most of the time in the monopole configuration during

their dynamics, it is straightforward to identify a long enough time interval from which

an ensemble for the monopole is the square can be reconstructed based of the assump-

tion of ergodicity. The situation is different for the dipole and diagonal dipole since

they emerge over shorter time intervals. This can be seen by looking at the contour

plots presented in Fig. (5.4) which sow fewer configurations in which the system can

be found in the dipole or diagonal dipole state. One of the main challenges associated

with generating an ensemble is to extract sufficiently many positions related to the

same macroscopic configuration during the dynamics. For example, the configurations

in the intervals τ = [15.6 − 15.9] and τ = [15.9 − 16.2] (see Fig. (5.4)) are both in

the dipole configuration but the first one has a vertical orientation and the second is

horizontally orientated. Although the two ensembles represent a dipole, it is not possi-

ble to consider all these configurations to generate an ensemble in which the dipole is

vertically oriented. However, this problem can be overcome by noticing that the system

is symmetric under rotations: the configurations in the interval τ = [15.9−16.2] can be

rotated by 90◦ clockwise and all the configurations in the whole interval τ = [15.6−16.2]

can be used to generate an ensemble for a vertically orientated dipole. Therefore, by

appropriately rotating the positions of the vortices extracted from the dynamics, a large

number of configurations where the system is in a dipole configuration with the negative

charges on the left and the positive charges on the right can be generated.

In the following a vertically orientated dipole will be generated and the time intervals

which have been used to generate it correspond to τ = [13.2− 14.1], τ = [14.1− 14.7]R,

τ = [14.7 − 15.6]R, τ = [15.6 − 15.9], τ = [15.9 − 16.2]R and τ = [17.1 − 17.7]R where

the superscript R means that the vortex positions have been rotated. The number of

configurations in which the system can be found in a diagonal dipole and monopole
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are enough to generate an ensemble with a large number of vortices. In particular

for the diagonal dipole, the configurations are those in the intervals τ = [14.8 − 15.3]

and τ = [16.2 − 17.4] (see Fig. (5.4)). Finally, for the monopole, the positions are

taken from the final stages of the dynamics in the interval τ = [20− 25]. Figure (5.13)

shows the superposition of all vortex positions within each ensemble corresponding to

dipole (left), the diagonal dipole (centre) and the monopole (right) in the square. The

(a) (b) (c)

Figure 5.13: Ensembles for the dipole (a), diagonal dipole (b) and monopole (c) in the
square: the number of vortices in each ensemble is N = 8580, N = 8360 and N = 8502
respectively. The red and the blue dots represent the vortices with positive and negative
circulation respectively.

ensemble for the dipole, the diagonal dipole and the monopole contains N = 8580,

N = 8360 and N = 8502 vortices, respectively.

Before proceeding, it is important to establish if the ensembles which have been

generated can be used and studied in a statistical sense. In particular, it is important

that the generated ensembles do not contain strong local spatial correlations: an ex-

ample is given by Fig. (5.14(a)) and Fig. (5.14(b)). The frame on the left is taken at

τ1 = 20, the frame in the centre after 10 iterations at τ2 = 20.005 and the resulting

ensemble is given on the right. In the first two frames the position of a positive vortex

is indicated with a yellow circle: the distance travelled by the vortex is not enough to

avoid small scale correlations in the resulting vorticity field ω− generated by considering

the resulting ensemble (figure on the left). The same problem can also be noticed for

the negative charges indicated by the orange circles. These correlations are not seen

in Fig. (5.14(b)) where the time interval between the two configuration is ∆τ = 0.025

which corresponds to 50 iterations. In this case the positive and negative vortices are

well separated and from the ensemble it is not possible to deduct any correlation in the

vortex positions.

112



CHAPTER 5. POINT VORTEX DYNAMICS IN THE SQUARE AND THE
RECTANGLE

These considerations lead to the conclusion that for an ensemble generated over

smaller time intervals, the individual instantaneous vortex configurations can be more

strongly correlated and the problem discussed above can become more pronounced .

Therefore, the ensemble corresponding to the monopole in the square or the ensemble

corresponding to the dipole in the rectangle which are generated from a large number

of time intervals are less susceptible to this problem.

τ1 = 20 τ2 = 20.005 Ensemble

(a)

τ1 = 20 τ2 = 20.025 Ensemble

(b)

Figure 5.14: On the left, positions of the vortices at initial time τ = 20: the yellow
and orange circles represent a positive and two negative vortices respectively. In the
centre, the position of the vortices after ∆τ = 0.005 (upper figure) and after ∆τ = 0.025
(lower figure). On the right, the resulting ensembles: in the lower image the separation
between the vortices at time τ1 and τ2 is enough to avoid spatial correlations which will
affect the resulting vorticity fields. In the upper image the separation of the vortices is
not enough to avoid any spatial correlation.

In order to understand the problem, imagine that the available set of data consists

on NC configurations during the dynamics at time τ1, τ2, · · · , τNC and the number of

vortices at each time is Nv(τi). Hence, it is possible to generate an ensemble with

N =
∑NC

i Nv(τi) vortices. However, by considering all the positions, the vortices will

not have travelled enough in order to guarantee a good separation between the positions

at any time τi and τi+1 (see Fig. (5.14)). This raises the following questions: ”what

is the mean separation of all vortices in the ensembles given in Fig. (5.13)?”, ”Is this
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Figure 5.15: Mean distance between two instantaneous configurations of vortices for
the dipole, diagonal dipole and monopole in the square: each dot in the above figures
represents the separation |∆z| of each vortex after an amount of time ∆τ . In the case
of the dipole this separation is given by ∆τ = 0.009, for the diagonal dipole is given by
∆τ = 0.0185 and for the monopole is given by ∆τ = 0.025. The red and the blue dots
represent the positive and negative vortices respectively.

distance enough to ensure the absence of spatial correlations in the ensemble?”. In

the case of the diagonal dipole in the square, the set of data consists of NC = 3402

configurations and in order to have an ensemble with N ∼ 8000 vortices a maximum

time interval of ∆τ = 0.009 is required. By considering two configurations separated

by this interval, it is possible to consider the separation of the i-th vortex at time τ1

and time τ2, indicated by |∆zi|, which is given by

|∆zi| = |zi(τ2)− zi(τ1)|, (5.5)

where zi(τ1) and zi(τ2) are the positions of the i-th vortex after an interval ∆τ = 0.009.

The mean separation between all vortices in the sample is given by

|∆z| ≡ 1

Nv

Nv∑
i=1

|∆zi|, (5.6)

which, in the case of the diagonal dipole gives |∆z| ∼ 0.29, roughly a seventh of the

side of the squared domain. The result of this analysis for the diagonal dipole is shown

in Fig. (5.15) (figure in the centre). In this analysis only two configurations separated

by ∆τ = 0.009 have been considered. In each figure the x-axe refers to a particular

vortex (the first 22 red are those with positive circulation and the last 22 blue are those
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with negative circulation) and the dots represent the separation of the i-th vortex after

the time ∆τ . In the case of the dipole ∆τ = 0.009, for the diagonal dipole ∆τ = 0.0185

and for the monopole ∆τ = 0.025. The horizontal dotted line indicates the mean value

given by Eq. (5.6) of the separation of all the vortices. These results show that the

minimum separation occurs for the diagonal dipole and it is ∆z ∼ 0.29.

This suggests that the distance travelled by vortices is a function of the scale of

the large structures (assumed to be of the order of the domain size); it is nevertheless

sufficiently large when an ensemble consisting of many instantaneous configurations is

used.

In the case of the dipole and the monopole, the set of data consists in NC = 7502 and

NC = 10000 configurations respectively. In order to have an ensemble with N ∼ 8000

vortices a maximum time interval of ∆τ = 0.0185 for the dipole and ∆τ = 0.025 for the

monopole are required. The separation given by Eq. (5.6) between two configurations

for the dipole is given by |∆z| ∼ 0.399 and for the monopole by |∆z| ∼ 0.505 (see Fig.

(5.14)).

Ensembles in the rectangle

In the case of the rectangle, the symmetry argument does not hold any more, and

hence, the only possibility is to find the system in the appropriate configuration and

construct the ensemble. In the case of the dipole, the configurations have been con-

sidered in the interval τ = [20 − 25]. Regarding the monopole the following intervals

have been chosen: ∆τ = [11.5 − 12.5] and τ = [19.25 − 19.6]. Using these intervals it

has been possible to crate two ensembles (for the monopole and the dipole shown in

Fig. (5.16)) containing more than N = 8000 vortices. The mean separation analysis

about the mean separation between all vortices given by Eq. (5.6) was repeated for the

rectangle and can be visualised in Fig. (5.17) for both ensembles of Fig. (5.16). For the

monopole the number of configurations correspond to NC = 2700 while NC = 10000 for

the dipole. A time interval of ∆τ = 0.012 between the two configurations is required to

generate an ensemble which contains around N ∼ 8000 vortices for the monopole, while

for the dipole the interval is given by ∆τ = 0.025. For these values, the minimum mean

separation between all vortices occurs for the the monopole and it is ∆z ∼ 0.211. The

fact that the minimum mean distance occurs for the monopole is perfectly reasonable

due to the limited number of configurations.
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(a) (b)

Figure 5.16: Ensembles for the monopole (a) and the dipole (b) in the rectangle:
the number of vortices in each ensemble are N = 8022 and N = 8086 respectively.
The red and the blue dots represent the vortices with positive and negative circulation
respectively.
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Figure 5.17: Mean separation between two instantaneous configurations of vortices for
the monopole and the dipole in the rectangle: each dot in the above figures represents
the separation |∆z| of each vortex after an amount of time ∆τ . In the case of the
monopole ∆τ = 0.012 and for the dipole ∆τ = 0.025. The red and the blue dots
represent the positive and negative vortices respectively.
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5.3.2 Lamb-Oseen Vortex in a Box

The main result of the previous subsection is given by the ensembles in the square

and the rectangle: in particular ensembles for the dipole, the diagonal dipole and the

monopole in the square and for the monopole and the dipole in the rectangle have been

generated and they are shown in Fig. (5.13) and Fig. (5.16), respectively. In this

subsection the problem of recovering a smooth vorticity field from these ensembles will

be presented.

In the framework of the statistical mechanics, if a domain D is divided into a large

number of cells with size h2, an important concept is played by the macrostate which

has been introduced in §3.2. In the case of point vortices, the macrostate is defined

by the number of positive and negative vortices in each cell. This uncertainty can be

represented by smearing the vorticity of each vortex using a characteristic ”core size”

that is of the order of the side of the cell and hence, only the information about the

distribution of vortices in each cell h. Therefore, the vorticity field generated by a point

vortex given by Eq. (2.65) can be approximated by a smooth two dimensional Gaussian

distribution with standard deviation σ given by Eq. (2.111). This smearing procedure

is similar to that adopted in §3.2.1 when the statistical weights for different number of

vortices were generated. In that case, the statistical weights were approximated by a

one dimensional Gaussian kernel given by Eq. (3.22). Now a two dimensional Gaussian

kernel is required and it is given by

GK2D(r;σ) =
1

2πσ2
e−

r2

2σ2 , (5.7)

where the parameter σ is the standard deviation and r =
√
x2 + y2 is the distance

between the point vortex position and a generic point in the domain. This expression

is analogous to the expression for the vorticity field corresponding to the Lamb-Oseen

vortex [102] located at the centre of an infinite domain for which the vorticity field is

given by

ω(r, t) =
γ0

4πνt
e−r

2/4νt, (5.8)

where σ =
√

2νt and γ0 is the circulation of the point vortex. This vorticity profile arises

as an exact solution of the Navier-Stokes equation with an initial vorticity corresponding

to that of a point vortex in the presence of a dissipative term ν

∂ω

∂t
= ν∇2ω, ω(r; t = 0) = γ0δ(r). (5.9)
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Comparing Eqs. (5.8) and (5.7), the standard deviation of a two dimensional Gaussian

kernel can be associated with the viscous term such that ν = σ2/2t.

When a bounded domain is considered, these results that hold for an unbounded

domain need to be modified. In a bounded region the solution to Eq. (5.9) is no

longer given by Eq. (5.8). In addition, in a bounded domain, the initial condition

ω(r; t = 0) = γ0δ(r) needs to be modified. In other words the representation of the

Dirac delta function as having the property∫ +∞

−∞

∫ +∞

−∞
f(y)δ(x− y)dy = f(x), (5.10)

must be modified for the particular type of boundary conditions to be used. For these

reasons, in the following the solution of Eq. (5.9) in a rectangular region will be derived

and a representation of the Dirac delta function in a bounded domain will be given.

The starting point will be to consider a rectangular region with sides Lx and Ly in

which a single vortex with circulation γ0 is placed at (x0, y0). The vorticity field ω(x, y)

is required to satisfy the following boundary conditions

ω(x = 0, y) = ω(x = Lx, y) = 0,

ω(x, y = 0) = ω(x, y = Ly) = 0.
(5.11)

The equation (5.9) can be solved by using the method of separation of variables and

hence, the vorticity field is assumed to take the form

ω(x, y, t) = X(x)Y (y)T (t). (5.12)

Substituting Eq. (5.12) into Eq. (5.9), and dividing both sides by X(x)Y (y)T (t), gives

T ′(t)

T (t)
= ν

X ′′(x)

X(x)
+ ν

Y ′′(y)

Y (y)
, (5.13)

which can be split into three ordinary differential equations

X ′′ − λ1X = 0, Y ′′ − λ2Y = 0, T ′ − ν(λ1 + λ2)T = 0, (5.14)

where two constants λ1 and λ2 have been introduced. The first two equations for X(x)

and Y (y) have the same form and, hence, only one needs to be solved and then the
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result can be immediately applied to the other. The equation for the function X(x) is

X ′′ − λ1X = 0, (5.15)

and, depending on the sign of the eigenvalue λ1, it admits three different types of

solution.

If λ1 = 0 the equation simply becomes

X ′′ = 0, (5.16)

and its solution is given by X(x) = Ax + B. By imposing the boundary conditions

(5.11) the only possible solution is the constant zero solution which has no physical

meaning.

If a2 = λ1 > 0 then the solution to Eq. (5.15) is given by

X(x) = A cosh(ax) +B sinh(ax), (5.17)

In this case, the boundary conditions (5.11) at x = 0 and x = Lx, imply A = 0 and

B = 0 respectively which gives rise to a trivial solution. Hence, the last possibility is

a2 = −λ1 > 0 for which the solution to Eq. (5.15) is given by

X(x) = A cos(ax) +B sin(ax). (5.18)

Applying the boundary conditions (5.11) at x = 0

X(x)

∣∣∣∣
x=0

= A cos(ax) +B sin(ax)

∣∣∣∣
x=0

= A, (5.19)

which imposes A = 0. The other boundary condition at x = Lx is given by

X(x)

∣∣∣∣
z=Lx

= B sin(ax)

∣∣∣∣
z=Lx

= B sin(aLx) = 0, (5.20)

which implies the existence of an infinite set of eigenvalues and eigenfunctions given by

a =
nπ

Lx
, sin

(
nπx

Lx

)
. (5.21)
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Recalling a2 = −λ1 > 0, the final results for X(x) and Y (y) are given by

λ1,n = −n
2π2

L2
x

, Xn(x) = sin

(
nπx

Lx

)
,

λ2,m = −m
2π2

L2
y

, Ym(y) = sin

(
mπy

Ly

)
. (5.22)

The solution to the differential equation for the function T (t) is straightforward to

obtain and is given by

T (t) = eνt(λ1,n+λ2,m)t = e−νt(n
2π2/L2

x+m2π2/L2
y). (5.23)

The final solution to Eq. (5.9) is therefore given by Eq. (5.12) in terms of a double

infinite series due to the two sets of eigenfunctions and eigenvalues

ω(x, y; t) =
+∞∑
n,m=1

Cn,me
−νt(n2π2/L2

x+m2π2/L2
y) sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
, (5.24)

where the coefficients Cn,m need to be evaluated by considering the initial condition.

The first step to evaluating the coefficients Cn,m in Eq. (5.24), is to consider the solution

(5.24) at the initial time t = 0, multiplying it by sin (n′πx/Lx) and sin (m′πy/Ly) where

n′,m′ are non zero integers, and integrating it over the domain Lx, Ly. By using the

following property ∫ Lx

0

sin

(
nπx

Lx

)
sin

(
n′πx

Lx

)
dx =

Lx
2
δn,n′ , (5.25)

the integration of the right hand side of Eq. (5.24) gives

Cn′,m′
LxLy

4
. (5.26)

It is important to notice that the boundary conditions (5.11) are equivalent to the

configuration described in §2.5.2 where the presence of two infinite sets of images mimics

the walls of the rectangular box with sides Lx and Ly. Therefore, the configuration in

which a single vortex is placed in a box, is equivalent of a doubly infinite set of periodic

images along the x and the y axes (with periodicity 2Lx and 2Ly) with the circulations

equivalent to that discussed in §2.5.2.

The periodic distribution of vortices which needs to be considered is shown in Fig.

(5.18) in complete analogy to the arguments presented in §2.5.2. This fact is extremely
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2Lx

2Ly

0
Lx

Ly

v1 = (x0, y0)

v2 = (x0, 2Ly − y0) v3 = (2Lx − x0, 2Ly − y0)

v4 = (2Lx − x0, y0)

Figure 5.18: Configuration which automatically satisfies the boundary conditions given
by (5.11): the real vortex v1 and its three images v2, v3 and v4 which made up a periodic
cell. The two sets of images continue along the x and the y directions by periodically
repeating this periodic cell. If v1 has positive circulation then so does the image v3

while the other two vortices have a negative circulation.

useful because there exists a periodic representation of Dirac’s delta function, the so

called Dirac’s comb [68] given by

+∞∑
m1=−∞

δ(x− x0 − 2m1L) =
1

2L
+

1

L

+∞∑
n=1

cos

(
nπ(x− x0)

L

)
, (5.27)

where 2L is the period along x and x0 is the position of the charge. This representation

can be easily extended in two dimensions. Therefore, the initial condition associated

with the vorticity field generated by the configuration of point vortices shown in Fig.

121



5.3. ENTROPY ANALYSIS FOR THE POINT VORTEX DYNAMICS

(5.18) (which continues periodically along x and y) can be described by

ω̃(x, y; t = 0) = γ0

+∞∑
m1=−∞
m2=−∞

δ(x− x0 + 2m1Lx)δ(y − y0 + 2m2Ly)

− γ0

+∞∑
m1=−∞
m2=−∞

δ(x− (2Lx − x0) + 2m1Lx)δ(y − y0 + 2m2Ly)

+ γ0

+∞∑
m1=−∞
m2=−∞

δ(x− (2Lx − x0) + 2m1Lx)δ(y − (2Ly − y0) + 2m2Ly)

− γ0

+∞∑
m1=−∞
m2=−∞

δ(x− x0 + 2m1Lx)δ(y − (2Ly − y0) + 2m2Ly). (5.28)

Now the vorticity ω̃(x, y), which represents the condition at initial time, must be mul-

tiplied by sin (n′πx/Lx) and sin (m′πy/Ly) where n′,m′ are non zero integers, and

integrated over the domain with sides Lx and Ly. Hence, the contributions given by

the charges v2, v3 and v4 indicated in Fig. (5.18) must be taken into account. In order

to do so, it is useful to consider the following integral

I = γ0

+∞∑
m1=−∞

∫ Lx

0

δ(x− (2Lx − x0) + 2m1Lx) sin

(
n′πx

Lx

)
dx, n′ 6= 0, (5.29)

where n′ is any non-zero integer. By performing the change of variable x̃ = 2Lx − x, I

becomes

I = γ0

+∞∑
m1=−∞

∫ 2Lx

Lx

δ(−x̃+ x0 + 2m1Lx) sin

(
2n′π − n′πx̃

Lx

)
dx̃, (5.30)

and since the Dirac delta function is an even function, δ(x) = δ(−x), the integral

becomes

I = −γ0

+∞∑
m1=−∞

∫ 2Lx

Lx

δ(x− x0 + 2m1Lx) sin

(
n′πx

Lx

)
dx. (5.31)

This property shows that the integral over the domain [0, Lx]×[0, Ly] of the second term

of Eq. (5.28) multiplied by sin (n′πx/Lx) and sin (m′πy/Ly) is equivalent to integrating

the first term of (5.28) multiplied by sin (n′πx/Lx) and sin (m′πy/Ly) over the interval

[Lx, 2Lx] × [0, Ly]. By applying the same property to the other terms, the integral of
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the vorticity at the initial time ω̃(x, y) given by (5.28) is given by

Iω̃ =

∫ Lx

0

∫ Ly

0

ω̃(x, y) sin

(
n′πx

Lx

)
sin

(
m′πy

Ly

)
dxdy,

= γ0

+∞∑
m1=−∞

∫ 2Lx

0

δ(x− x0 + 2m1Lx) sin

(
n′πx

Lx

)
dx×

× γ0

+∞∑
m2=−∞

∫ 2Ly

0

δ(y − y0 + 2m2Ly) sin

(
m′πy

Ly

)
dy, (5.32)

where n′,m′ 6= 0. Inserting in the above expression the representation of the Dirac

delta function (5.27) along both x and y directions and using

1

Lx

∫ 2Lx

0

+∞∑
n=1

cos

(
nπ(x− x0)

Lx

)
sin

(
n′πx

Lx

)
dxdy = sin

(
n′πx0

Lx

)
,

1

Ly

∫ 2Ly

0

+∞∑
m=1

cos

(
mπ(y − y0)

Ly

)
sin

(
m′πy

Ly

)
dxdy = sin

(
m′πy0

Ly

)
, (5.33)

gives the final result

Iω̃ = γ0 sin

(
n′πx0

Lx

)
sin

(
m′πy0

Ly

)
. (5.34)

Finally the coefficients can be evaluated by equating Eqs. (5.34) and (5.26) and they

are given by

Cn′,m′ =
4γ0

LxLy
sin

(
n′πx0

Lx

)
sin

(
m′πy0

Ly

)
, (5.35)

which can be substituted into Eq. (5.24) in order to obtain the final solution for a single

vortex with circulation γ0 located at (x0, y0). If there are N± charges of strength γ±,

then the positive and the negative vorticity for this distribution is given by

ω+(x, y; t) =
+∞∑
n,m=1

C+
n,me

−νt(n2π2/L2
x+m2π2/L2

y) sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
,

ω−(x, y; t) =
+∞∑
n,m=1

C−n,me
−νt(n2π2/L2

x+m2π2/L2
y) sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
, (5.36)

where the coefficients are given by

C±n,m =
4

LxLy

N±∑
i=1

γi sin

(
nπxi
Lx

)
sin

(
mπyi
Ly

)
. (5.37)
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From the positive and negative vorticity, it is also possible to derive the streamfunction

for the distribution of vortices. In fact, the streamfunction can be decomposed as

follows

ψ±(x, y; t) =
+∞∑
n,m=1

A±n,m sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
, (5.38)

and differentiating the above quantity twice with respect to x and y gives

∂2ψ±

∂x2
= −

+∞∑
n,m=1

A±n,m
n2π2

L2
x

sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
,

∂2ψ±

∂y2
= −

+∞∑
n,m=1

A±n,m
m2π2

L2
y

sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
.

(5.39)

By using the relation between the vorticity and the equation for the streamfunction

(2.54), the positive and negative vorticity contributions to the streamfunction are given

by Eq. (5.38) where the coefficients are

A±n,m =
C±n,me

−νt(n2π2/L2
x+m2π2/L2

y)(
n2π2

L2
x

+ m2π2

L2
y

) , (5.40)

and the coefficients C±n,m are given by Eq. (5.37). The vorticity fields given by Eq. (5.36)

and the streamfunction given by Eq. (5.38) can be readily generated from knowledge

of the positions of the vortices: therefore, once this quantity has been calculated, Eq.

(3.41) for the entropy S and Eq. (2.61) for the energy E are straightforward to calculate.

However, two important points regarding the results need to be considered: firstly the

vorticity fields given by Eq. (5.36) and the relative streamfunctions given by Eq. (5.38)

depend on a free parameter σ (the core size), secondly the solutions are expressed in

terms of a double summation over the indices n and m. These two observations give

raise the following questions: ”What is the right value for σ?” How many terms in the

double summation need to be retained to obtain an accurate approximation?”

An answer to the first question necessitates a more systematic study and it will de-

ferred to the next subsection §5.3.1. Regarding the other question a numerical analysis

can be performed and it will be explained in the following.

The first task is to determine an appropriate number of meshgrid points for the vortic-

ity and the streamfunctions: for this purpose meshgrids with 64 × 64, 128 × 128 and

256× 256 points are now considered. The number of points should be enough to solve
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the vortex core. Since in the square with sides Lx = Ly = 2, the minimum value for

the vortex core can be estimated approximately by σ = Lx/64 ∼ 0.03, for this analy-

sis a value of σ = 0.05 is chosen. By fixing the value of σ, the positive and negative

vorticity fields given by Eq. (5.36) are constructed and their integral over the domain

are evaluated. For a distribution consisting of N+ vortices with circulation γ+ = +1

and N− vortices with circulation γ− = −1 these integrals are equal to the total positive

and total negative circulation given by N+γ+ and N−γ−, respectively. Figure (5.19)

shows the value of the total positive (figure on the left) and negative (figure on the

right) circulation for the initial configuration in the square as a function of the number

of modes for three different meshgrids indicated in the legend.
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Figure 5.19: Positive (left) and negative (right) circulation for the initial condition as
a function of the number of modes m and n and for different meshgrids indicated in
the legend. The size of the Gaussian kernel is σ = 0.05.

This analysis shows that the circulation does not vary significantly when the number

of modes is greater than n = m = 40 and that there is not much to gain by increasing

the resolution from a grid of 128×128 points to a grid of 256×256 points. For this reason

in the following the vorticity fields and the streamfunctions given by Eqs. (5.36) and

(5.38) will be evaluated with n = m = 50 modes on a 128× 128 equispaced meshgrid.

Figure (5.19) also shows that the total circulation is not conserved: this is due to the

fact that the parameter σ =
√

2νt, which represents the width of the Gaussian curve,

is equivalent to the effect of a diffusive process in time.

Clearly, the values for the positive and negative circulation shown in Fig. (5.19) are

not the expected values which are given by ±60. This situation worsen when vortices of

one charge are near the boundaries as in the case of the monopole shown in Fig. (5.20)

on the right. The evaluation of the total positive and negative circulation for different
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N+ = 60, N
−
= 60, τ = 0 N+ = 22, N

−
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(b)(a)

Figure 5.20: Configuration at initial time (on the left) and at later time τ = 20 (on the
right): the asymmetric distribution of vortices in the latter configuration causes more
loss in the positive circulation (see Fig. (5.21) on the right) due to the positions of the
positive vortices near the boundary.
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Figure 5.21: Positive and negative circulation for the initial condition (on the left) and
at later time τ = 20 (on the right) as a function of the radius σ. The positive circulation
in the figure on the right decreases more rapidly as σ increases, due to the positions of
the positive vortices being located close to the boundaries. The configurations at the
initial time and at τ = 20 are shown in Fig. (5.20).
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values of the parameter σ is presented in Fig. (5.21): the loss in the positive circulation

is bigger than the loss in the negative circulation since the positive vortices are closer

to the boundaries (Fig. (5.20)). To overcome this problem, the vorticity fields given by

Eq. (5.8) are normalised such that their integral over the domain D is always equal to

N+γ+ for the positive component and N−γ− for the negative component.

In conclusion, for a given ensemble, the positive and negative vorticity fields will be

generated by using Eq. (5.36) where the coefficients are given by Eq. (5.37). These

vorticity fields are then normalised such that∫
ω±dxdy = N±γ±. (5.41)

This provides a smoothed vorticity field which decays to zero on the boundaries but for

which the circulation of both the positive and negative charges is always conserved. In

the following subsection a method to identify an optimal value of the parameter σ for

the ensembles in the square and the rectangle will be discussed.

5.3.3 Entropy Evaluation

In the previous subsection the derivation of the smooth vorticity fields and the

streamfunction given by Eqs. (5.36) and (5.38) for a distribution of point vortices has

been presented. It has been also pointed out respectively that these quantities depend

on a free parameter σ which represents the size of the vortex core. In this subsection it

will be shown that the optimal value for the parameter σ is related to the total number

of vortices contained in the ensemble.

In §3.3 the entropy for a system composed of N+ point vortices with positive circu-

lation γ+ and N− point vortices with negative circulation γ− in a domain D was derived

and is given by

S[ωa] = −kB
∑
a=±

∫
D

ωa
γa

log

(
ωaD
γaNa

)
dxdy (5.42)

where ω± are the positive and negative vorticity fields. In order to understand the

role of the parameter σ, a system composed of vortices with opposite circulation is

considered. If the vortices have opposite circulation and they are close enough and

their vorticity field is approximated with a large value of σ (much larger than the

mutual distance between the two vortices) the net result is that the region in which

the vortices are located has zero total vorticity. On the other hand, if they have the

same circulation, then the vorticity in the region will be doubled. Now if instead

of two vortices, an ensemble is considered, it is clear that for a very large value of
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σ all the vortices will overlap creating a neat zero vorticity in the domain. On the

other hand, for a very small value of σ the vorticity fields resemble more closely to a

superposition of Dirac delta functions, thereby reducing mixing from occurring between

vortices. It is reasonable that a good range of values for σ must allow the vortices of

the same circulation to overlap enough but not too much: enough to create regions

where vortices form coherent structures, but not too much otherwise the positive and

negative large structures will cancel each other. The most appropriate values of σ are

therefore expected to correspond to a range in which the positive and negative vorticity

fields are not too sensitive to the value of σ chosen. In other words, an intermediate

range of scales are sought, small enough not to affect the large scale structures but large

enough such that the vorticity fields are sufficiently smooth. Such a range is expected

to be identifiable in the case of an ensemble with a very large total number of vortices.

For this reason different ensembles, each with a different total number of vortices, have

been generated for the dipole, the diagonal dipole, and the monopole in the square, and

for the monopole and dipole in the rectangle. The positive and negative vorticity fields

were then generated by using Eq. (5.36) and then the total entropy per vortex |S/N |
was evaluated where S is given by Eq. (5.42). The results of this analysis is presented

below.

Entropy evaluation for the ensembles in the square

In the case of the dipole in the square, ensembles with N = 44, N = 220, N = 836,

N = 2156, N = 4532 and N = 8580 vortices have been created, and the absolute

value of the entropy per vortex |S/N | of all these ensembles has been evaluated. The

results are shown in Fig. (5.22) on a log log scale: on the left it is possible to notice

that the curves tend to converge to a flatten region as the number of vortices increases.

On the right, a zoom in the region where the curves tends to a straight horizontal line

is shown. The linear interpolation of |S/N | for N = 8580 and 0.035 ≤ σ ≤ 0.07

gives a slope of 0.094 which confirms that the entropy for this range of values does not

change significantly. The range of values for σ has been determined by considering the

slope of the interpolant of |S/N | for different ranges of σ and considering the range

which corresponds to the lowest value of the slope. These results illustrate that as the

number of vortices in the ensemble is increased a well-defined intermediate range can

be identified such that the evaluation of the entropy becomes essentially independent

of σ.

The same analyses has been performed for the diagonal dipole and the monopole in

the square and the results are shown in Figs. (5.23) and (5.24).
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Figure 5.22: On the left, the absolute value of the entropy per number of vortices
|S/N | as a function of σ. Results correspond to the dipole in the square generated from
different ensembles (each with different amount of vortices indicated in the legend)
presented in a log log scale. On the right the results are presented for the range of the
values of the parameter σ for which the entropy remains almost constant.
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Figure 5.23: On the left, the absolute value of the entropy per number of vortices |S/N |
as a function of σ. Results correspond to the diagonal dipole in the square generated
from different ensembles (each with different amount of vortices indicated in the legend)
presented in a log log scale. On the right the results are presented for the range of the
values of the parameter σ for which the entropy remains almost constant.
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Figure 5.24: On the left, the absolute value of the entropy per number of vortices
|S/N | as a function of σ. Results correspond to the monopole in the square generated
from different ensembles (each with different amount of vortices indicated in the legend)
presented in a log log scale. On the right the results are presented for the range of the
values of the parameter σ for which the entropy remains almost constant.

For the diagonal dipole configuration, the interval of the radius is 0.035 ≤ σ ≤ 0.07

and for the monopole it is 0.045 ≤ σ ≤ 0.095. For both cases, ensembles up to N ∼ 8000

have been used as shown in Figs. (5.23) and (5.24). The linear interpolation of the

absolute value of the entropy per vortex |S/N | give the values for the slope of −0.014

for the diagonal dipole and −0.44 for the monopole.

This concludes the entropy analysis in the square for the dipole, the diagonal dipole

and the monopole: in all cases it has been possible to identify a range of values for the

free parameter σ for which the entropy does not vary significantly.

Entropy evaluation for the ensembles in the rectangle

In the case of the rectangle the same procedure has been performed for the monopole

and the dipole and the results are shown in Figs. (5.25) and (5.26). In both figures,

the absolute value of the entropy per vortex |S/N | for ensembles made of different

numbers of vortices (figure on the left) and the region in which |S/N | does not change

significantly (figure on the right) are plotted.

For the monopole, ensembles with N = 56, N = 504, N = 1006, N = 2578, N =

3888 and N = 8022 vortices have been considered. For the ensemble with N = 8022

vortices, the range of σ for which the entropy |S/N | does not change significantly is
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Figure 5.25: On the left, the absolute value of the entropy per number of vortices |S/N |
as a function of σ. Results correspond to the monopole in the rectangle for different
ensembles (each with different amount of vortices indicated in the legend) in a log log
scale. On the right the values of the parameter σ for which the entropy remains almost
constant.

given by 0.035 ≤ σ ≤ 0.105 and for this set of values the slope of the interpolant of

|S/N | is given by 0.035. For the dipole, ensembles with N = 40, N = 282, N = 844,

N = 2050, N = 4062 and N = 8086 vortices have been considered. For the ensemble

with N = 8086 vortices, the range of σ is given by 0.04 ≤ σ ≤ 0.085 and for this set of

values the slope of the interpolant of |S/N | is given by −0.022.

The analysis of the entropy for the monopole and the dipole in the rectangle con-

cludes the analysis of the entropy. For all the ensembles in the square (Fig. (5.13))

and in the rectangle (Fig. (5.16)) an interval of values for the free parameter σ has

been found. In the following subsections, a quantitative analysis of the entropy for the

dipole, the diagonal dipole and the monopole in the square and for the monopole and

the dipole in the rectangle will be presented. Moreover, the comparison between these

values and the values obtained from the solutions of the BP equation in §4.4 and §4.5

will be given.

5.3.4 Entropy Comparison

In the previous subsection, the values for the parameter σ =
√

2νt for all the

ensembles in the square and the rectangle have been found. As a consequence, it

is now possible to use Eqs. (5.36) and (5.38) and evaluate the smoothed vorticity
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Figure 5.26: On the left, the absolute value of the entropy per number of vortices
|S/N | as a function of σ. Results correspond to the dipole in the rectangle for different
ensembles (each with different amount of vortices indicated in the legend) in a log log
scale. On the right the values of the parameter σ for which the entropy remains almost
constant.

fields and the corresponding streamfunction. This allows the evaluation of the non-

dimensional entropy Ŝ and the non dimensional energy Ê for these configurations in

order to compare these results with the results presented in §4.4 and in §4.5 obtained

from the BP equation.

In the following the vorticity fields are normalised according to∫
D
ω±dxdy = ±N±, (5.43)

where the number of positive and negative vortices has been arbitrarily chosen N± = 60.

The procedure to evaluate the non-dimensional entropy Ŝ for a configuration can then

be obtained as follows:

• Fix a value for the parameter σ and evaluate the streamfunction ψσ given by Eq.

(5.38), and the positive and negative vorticity fields ω±σ given by Eq. (5.8) for the

configuration under examination.

• Evaluate the energy Eσ and the non-dimensional energy Êσ

Eσ =
1

2

∫
D
ψσωσdxdy, Êσ ≡

Eσ
4ρN2γ2

. (5.44)
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• For that value of Ê, identify the value of λ̃2 by looking at Fig. (4.6) for the

square or Fig. (4.9) for the rectangle which corresponds to the configuration

under investigation.

• Once λ̃2 has been identified, consider the corresponding solution to the BP equa-

tion Ψ, evaluate the terms a± and the inverse temperature β

a± =
1

D

∫
e±Ψdxdy, β = − λ̃2

√
a+a−

D
Nργ2

. (5.45)

• Consider the smoothed streamfunction ψσ evaluated at the first step and generate

the non-dimensional stramfunction Ψσ = ρβγψσ where ρ = 1.

• Evaluate the terms

Aσ± = D
(∫
D
e∓Ψσdxdy

)−1

, aσ± =
1

D

∫
D

e±Ψσdxdy, λ2
σ = λ̃2

√
aσ+a

σ
−

2
.

(5.46)

• Evaluate the non-dimensional entropy Ŝσ

Ŝσ = −1

2
log
(
Aσ+A

σ
−
)
− 8λ2

σDÊσ. (5.47)

For each ensemble in the square and in the rectangle, a range of values of the parameters

σ has been found and this will correspond to a range of values in the Ê − Ŝ plane. In

what follows, this analysis will be performed on the ensembles in the square and in the

rectangle which have been constructed in §5.3.1.

Entropy comparison in the square

Having established a suitable range of values for the parameter σ for the dipole,

the diagonal dipole and the monopole in the square and by following the procedure

previously explained it is possible to classify the ensembles based on their energy and

entropy. For the dipole, the diagonal dipole and the monopole in the square, the

different range of values of the parameter σ are given by 0.035 ≤ σ ≤ 0.07, 0.035 ≤
σ ≤ 0.07, and 0.045 ≤ σ ≤ 0.095 respectively. For each of these intervals the mean

value was chosen and, by using Eq. (5.36), the positive and negative vorticity fields

can be evaluated. The vorticity fields corresponding to each configuration presented

in Fig. (5.13) are presented in Fig. (5.27). Moreover, following the aforementioned

procedure, the non-dimensional energy Ê of each configuration and for all the values
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(a) (b) (c)

Figure 5.27: Contourplot for the vorticity fields constructed from the ensembles and
corresponding to the dipole (a), the diagonal dipole (b) and for the monopole (c) pre-
sented in Fig. (5.13). The vorticity fields are generated by using Eqs. (5.36) with
a value σ given by the average of the values of σ mentioned at the beginning of this
subsection. The colours of the contour plots refer to the same colorbar as in Fig. (5.2)
and Fig. (5.3).

of σ can be evaluated and the results are shown in Fig. (5.28). In each figure, the blue

curve represents the non-dimensional energy Êσ and the red dotted line is the the mean

value Ē whose numerical value is indicated in the legend.

These values can now be compared with respect to the solution branches of the BP

equation as illustrated in Fig. (5.29). The range of values of Ê for all the three ensembles

are compatible with the range of the energy of the solutions of the BP equation. For

the diagonal dipole and the monopole, the value of the mean energy lies in between the

values of λ̃2 = 8.5 and λ̃2 = 9. For the dipole, this value is very close to λ̃2 = 10.5.

Having identified the values of λ̃2, the inverse temperature β needs to be evaluated.

For the diagonal dipole and the monopole, the solutions Ψ to the BP equation for

λ̃2 = 8.5 and λ̃2 = 9 have been used to evaluate the terms a± in the expression for

the inverse temperature given by Eq. (5.45) and then their mean value have been

considered. As for the dipole, this quantity has been evaluated by considering only the

solution Ψ for λ̃2 = 10.5. The values for the inverse temperature β are

βdipo = −0.4298, βdiago = −0.4242, βmono = −0.3987. (5.48)

Knowledge of the inverse temperature β for all the ensembles, allows the non-dimensional

streamfunction Ψσ = ρβψσ and the corresponding terms Aσ±, aσ± and λ2
σ, to be evalu-

ated for each value of the parameter σ. The values of Ŝσ as given by Eq. (5.47) for

the dipole, the diagonal dipole and the monopole in the square are presented in Fig.
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Figure 5.28: Non dimensional energy Êσ (blue curve) as a function of the parameter
σ and its mean value Ē (red dotted line) for the dipole (left), diagonal dipole (centre)
and the monopole (right) in the square.

(5.29). This provides a direct comparison between the non-dimensional entropy for the

solutions of the BP equation and the ensembles generated from the dynamics of point

vortices (indicated with PV in the legend). The figures b), c) and d) show the magnified

plots of the values of the non-dimensional energy and the non-dimensional entropy for

all the values of σ per each ensemble.

It can be seen from Fig. (5.29) that the dipole and the diagonal dipole configurations

have a substantial difference in energy. However, their entropy is very similar. This

suggests that the ensemble for the dipole may not coincide with the equilibrium states

established at later time in the simulation. On the other hand, the important fact is

given by the difference in entropy between the diagonal dipole and the monopole. Both

configurations have a similar energy while the difference in their entropy is comparable

to that obtained from solutions of the BP equation. This reinforces the premise on

which the statistical mechanical approach is build on: the monopole observed during the

dynamical simulations corresponds to a higher entropy state. A quantitative comparison

of the values of the non-dimensional entropy for the dipole in the square obtained from

the solution of the BP equation and point vortex dynamics gives

ŜBP = −201.968, ŜPV = −203.4001. (5.49)

ŜBP is the non-dimensional entropy for the solution found for λ̃2 = 10.5 while the

second is the mean value of the non-dimensional entropy evaluated after averaging over
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Ŝ

 

 

λ̃
2 = 10.5

λ̃
2 = 9

λ̃
2 = 9

1.5 1.6 1.7

x 10
−3

−191

−190

−189

−188

−187

 

 

λ̃
2 = 9

1.7 1.8 1.9

x 10
−3

−203

−202

−201

 

 

λ̃
2 = 8.5

0.96 0.98 1 1.02 1.04

x 10
−3

−203.5

−203

−202.5

−202

 

 

BP Dipole

BP Monopole

BP Diagonal Dipole

PV Dipole

PV Monopole

PV Diagonal
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Figure 5.29: Energy-entropy comparison between the results obtained from the solu-
tions of the BP equation and those obtained from the ensembles (PV) in the square.
Included on the right three magnified plots for the dipole d), the diagonal dipole c) and
the monopole b): in each figure each marker represents the energy Êσ and the entropy
Ŝσ for each value of the parameter σ.

all values of the parameter σ for the dipole. The comparison between these two values

can be expressed in terms of the percentage error [59] defined by

PE(xPV , xBP ) =
|xBP − xPV |

xBP
× 100%, (5.50)

where the value xBP is the theoretical value obtained from the solution of the BP

equation and xPV is the value obtained from the point vortex dynamics. For the values

given by Eq. (5.49), the percentage error is given by

PEdipo = −0.7%. (5.51)

In the case of the diagonal dipole, the values of the non-dimensional entropy are given

by

ŜBP = −200.9365, ŜPV = −203.7106, (5.52)

where ŜBP is computed from the averaging over the values of Ŝ obtained from the

solution for λ̃2 = 8.5 and λ̃2 = 9. In this case, the percentage error is given by

PEdiago = −1.4%. (5.53)
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In the case of the monopole, the values of the non-dimensional entropy are given by

ŜBP = −188.1261, ŜPV = −190.8353, (5.54)

where ŜBP is computed from the averaging over the values of Ŝ obtained from the

solution for λ̃2 = 8.5 and λ̃2 = 9. In this case, the percentage error is given by

PEmono = −1.4%. (5.55)

From this analysis it can be inferred that the difference in entropy between the results

obtained form the ensembles is compatible with the result obtained from the solutions

of the BP equation, with a maximum error of 1.4%.

These results concludes the analysis of the entropy for the dipole, diagonal dipole

and monopole in the square. In the following part, a similar analysis to the ensembles

in the rectangle will be presented.

Entropy comparison in the rectangle

In the case of the rectangle, the range of values of σ for the monopole and the dipole

are given by 0.035 ≤ σ ≤ 0.105 and 0.04 ≤ σ ≤ 0.085, respectively. For each of these

intervals the mean value was used in Eq. (5.36) to evaluate the positive and negative

vorticity fields. The vorticity fields corresponding to each configuration presented in

Fig. (5.16) are shown in Fig. (5.30). The procedure to classify the ensembles based

on their non-dimensional energy Ê and entropy Ŝ explained at the beginning of this

subsection is now applied to the ensembles in the rectangle shown in Fig. (5.16). The

non-dimensional energy Êσ as a function of the radius σ has been evaluated for the

monopole and dipole in the rectangle and are shown in Fig. (5.31). The blue line in

each figure represents the value of the energy as a function of σ and the red dotted

line is the mean value whose numerical value is indicated in the legend. The values of

energies for the two configurations are compatible with the range of energies obtained

from the solutions of the BP equation: by looking at Fig. (5.32) it is clear that the

energy of the monopole is equivalent to the energy of the monopole solution of the BP

equation corresponding to λ̃2 = 11 while for the dipole its energy corresponds to the

dipole solution of the BP equation with λ̃2 = 8. The corresponding values for β are

then given by

βmono = −0.4004, βdipo = −0.3565. (5.56)

A comparison of the non-dimensional entropy Ŝσ computed from the ensembles
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(a) (b)

Figure 5.30: Contourplot for the vorticity fields constructed from the ensembles for
the monopole (a) and the dipole (b) presented in Fig. (5.16). The vorticity fields are
generated by using Eqs. (5.36) with a value σ given by the average of the values of σ
mentioned at the beginning of this subsection. The colours of the contour plots refer
to the same colorbar as in Fig. (5.2) and Fig. (5.3).
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Figure 5.31: Non dimensional energy Êσ (blue curve) as a function of the parameter
σ and its mean value Ē (red dotted line) for the monopole (left), and the dipole (right)
in the rectangle. In the legend the mean values are indicated.
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Ŝ

 

 

λ̃
2 = 11 λ̃

2 = 8

BP Dipole

BP Monopole

PV Dipole

PV Monopole
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Figure 5.32: Energy-entropy comparison between the results obtained from the solu-
tions of the BP equation and those obtained from the ensembles (PV) in the rectangle.
On the right two magnified plots for the the monopole c) and the dipole b): in each
figure each marker represents the energy Êσ and the entropy Ŝσ for each value of the
parameter σ.

with solutions of the BP equation is shown in Fig. (5.32). The figures on the right

show magnified plots of the non-dimensional energy and non-dimensional entropy for

different values of the core size σ for the monopole c) and the dipole b). A expected

from the result of §4.5 the dipole corresponds to a higher entropy configuration than

the monopole which is now also confimed by direct point vortex simulations. Now the

percentage error between the values of the entropy obtained from the solutions of the

BP equation and the values obtained from the ensembles is evaluated for the monopole

and the dipole. For the monopole these values are given by

ŜBP = −191.368, ŜPV = −196.1323, (5.57)

where ŜBP is the non-dimensional entropy for the solution found for λ̃2 = 11 while ŜPV

is the mean value of the non-dimensional entropy for all values of the parameter σ for

the monopole. In this case the value of the percentage error is given by

PEmono = −2.5%. (5.58)
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For the dipole the non-dimensional entropies are given by

ŜBP = −170.3366, ŜPV = −170.8288, (5.59)

where ŜBP is the non-dimensional entropy for the solution found for λ̃2 = 8 and where

ŜPV the second is the mean value of the non-dimensional entropy for all values of the

parameter σ for the dipole. In this case the value of the percent error is given by

PEdipo = −0.3%. (5.60)

It can be concluded that the values obtained by analysing the ensembles are compatible

with the results obtained from the solutions of the BP equation with a maximum error

of 2.5%.

5.4 Analysis of the Angular Momentum

In the previous section the non-dimensional energy Ê and entropy Ŝ of ensembles in

the square and the rectangle have been evaluated. This analysis allowed the comparison

between the theoretical values given by the solutions of the BP equation and the en-

sembles generated from the dynamics of the point vortices. Moreover, good agreement

with the result obtained in §4.7 has been found. In this section the comparison of the

values of the angular momentum associated to the solutions of the BP equation and to

the ensembles will be performed.

In §4.7 the spontaneous acquisition of angular momentum by a flow was described

and it occurs when the vortices organise themselves in an asymmetric configuration for

which 〈ψ〉 6= 0. The qualitative analysis on the trend of the angular momentum has

been presented in §5.2.1 and §5.2.2 for the square and the rectangle respectively. These

analyses confirmed that when the system is in a monopole configuration, the value of

L is non-zero and for any symmetric configuration (dipole or diagonal dipole) the value

of the angular momentum is close to zero.

In order to evaluate the normalised angular momentum , it is useful to recall the

non-dimensional linearised energy Êlin given by Eq. (4.23) introduced in §4.2 and the

non-dimensional angular momentum L̃

Êlin =
λ2D

2

[
〈Ψ2〉 − 〈Ψ〉2

]
, L = 2D〈Ψ〉. (5.61)

The normalised angular momentum was introduced in §2.5.3 and it is the value of
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the angular momentum divided by the maximum value accessible for the system; this

corresponds to the angular momentum that the system will have if it would rotate as

a solid body. The normalised angular momentum is therefore given by Eq. (2.143)

L̂ =
L

LMax

=
2D〈Ψ〉√
ÊlinI

, (5.62)

where I is the moment of inertia of a rectangular body given by Eq. (2.140). By sub-

stituting Eq. (2.140) into the above equation, the non-dimensional normalised angular

momentum becomes

L̂ = 4

√
3

λ2D

[(
LxLy
L2
x + L2

y

)(
〈Ψ〉2

〈Ψ2〉 − 〈Ψ〉2

)]1/2

(5.63)

It is clear from this formula that L̂ vanishes if 〈Ψ〉 = 0 while L̂ 6= 0 when 〈Ψ〉 6= 0.

With these definitions a comparison between the value of L̂ associated to the solutions

of the BP equation and to the ensembles in the square and the rectangle will now be

performed.

Angular momentum in the square

It has been shown that for the diagonal dipole and the monopole, the value of the

mean non-dimensional energy Ê lies in between the values of λ̃2 = 8.5 and λ̃2 = 9

and for the dipole, this value is very close to λ̃2 = 10.5. In the case of the monopole,

starting from the solutions Ψ of the BP equation for λ̃2 = 8.5 and λ̃2 = 9, it is possible to

evaluate λ2 by using Eq. (5.46) and hence to evaluate the non-dimensional normalised

angular momentum L̂ for these solutions. For the dipole and the diagonal dipole, the

theoretical values are zero due to the fact that in this case 〈Ψ〉 = 0.

For any given ensemble in the square, a range of σ has been found in §5.3.3. More-

over, for each value of the parameter σ, it is possible to consider the non-dimensional

streamfunction Ψσ = ρβγψσ where ψσ can be evaluated by Eq. (5.38). Therefore, for

each streamfunction Ψσ, the value of L̂ can be evaluated: the results are shown in Fig.

(5.33).

For all the plots in Fig. (5.33), the blue markers represent the values of L̂σ obtained

from the ensembles (indicated with Ensembles PV in the legend) as a function of the

parameter σ and the dotted blue line represents the mean value. In the case of the

monopole (figure on the right) there are also two dotted lines: the red and the green

lines correspond to the value of the L̂ for the solution of the BP equation for λ̃2 = 9 and
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Figure 5.33: Non-dimensional normalised angular momentum associated to the ensem-
bles in the square: the dipole (left), the diagonal dipole (centre) and monopole (right).
The blue dotted lines represent the mean value of each configuration and the green
dotted line the values of L̂ associated to the solutions of the BP equation. In the case
of the monopole there are two values: one related to the solution for λ̃2 = 9 and the
other one for λ̃2 = 8.5.

λ̃2 = 8.5 respectively. The numerical mean values of the angular momentum obtained

from the ensembles are given by

L̂dipo = 0.0596, L̂diago = 0.0629, L̂mono = 0.4324, (5.64)

while the values obtained from the solutions of the BP equation are given by

L̂dipo = L̂diago = 0, L̂8.5
mono = 0.4482, L̂9

mono = 0.4536, (5.65)

where the superscripts 8.5 and 9 refer to the values of λ̃2 for the monopole configuration.

In analogy to the errors computed for non-dimensional entropy Ŝ the percentage error

between the theoretical values (taken from the solutions of the BP equation) and the

values of L̂ obtained from the ensembles in the square are evaluated. In particular for

L̂ obtained from the solutions of the BP equation, the mean value of L̂8.5
mono = 0.4482

and L̂9
mono = 0.4536 has been used and in this case the percentage difference between

this value and L̂mono is given by

PEmono = 4.3%. (5.66)
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Unfortunately, for the dipole and the diagonal dipole the percent difference can not be

evaluated since the theoretical value is zero. However, the maximum absolute error in

this case is 6%.

From this analysis it can be inferred that the values found starting from the solutions

of the BP equation and the ensembles generated during the dynamics of the point

vortices, are in good agreement with a maximum error of 6%.

Angular momentum in the rectangle

The same analysis is now performed for the ensembles in the rectangle. In this

geometry, the two ensembles have a non-dimensional energy which corresponds to the

solutions of the BP equation for λ̃2 = 11 for the monopole and λ̃2 = 8 for the dipole.

The results for L̂ as in the case for the square are shown in Fig. (5.34). The numerical

mean values of L̂ obtained from the ensembles are given by

L̂mono = 0.3696, L̂dipo = 0.0298, (5.67)

while the values obtained from the solutions of the BP equation are given by

L̂mono = 0.3844, L̂dipo = 0. (5.68)

The percentage error in the case of the monopole is equal to

PEmono = 3.8%. (5.69)

For the dipole the absolute error is approximately 3.8%.

From this analysis it can be inferred that the values found starting from the solutions

of the BP equation and the ensembles generated during the dynamics of the point

vortices, are in good agreement with a maximum error of 4.3%.

5.5 Annihilation with the Boundaries

In §5.1 the dynamics of point vortices has been studied in the square and the rect-

angle where annihilations between vortices with opposite circulation can occur. The

annihilation which has been manually introduced in the dynamics, allowed the system

to migrate into the negative temperature regime always preserving its neutrality. How-

ever, in physical systems such as a Bose-Einstein condensate, the point vortices can also

annihilate at the boundaries. This additional effect can cause the system to become
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Figure 5.34: Non-dimensional normalised angular momentum associated to the ensem-
bles in the rectangle: the monopole (left) and the dipole (right). The blue dotted lines
represent the mean value of each configuration and the green dotted line the values of
L̂ associated to the solutions of the BP equation.

non-neutral resulting in an asymmetry in the number of charges. The result in the

long term dynamics is that the system can become polarised and this may favour the

emergence of a large monopole configuration. As a consequence, the angular momen-

tum can be altered by the polarised state of the vortices. The analysis of the angular

momentum for a system where the annihilation includes pairs of opposite circulation

as well as between vortices and the boundaries is now presented in the square and the

rectangular domain.

The same initial conditions used in §5.1 for the dynamics of point vortices in the

square and the rectangle are now considered. In order to study the differences in the

dynamics of the vortices in these systems, the equation of motion (2.79) are numerically

integrated and two annihilation parameters have been added to the dynamics. The

first one is the usual annihilation parameter between vortices with opposite circulation

δ = 0.01 and the second one is the parameter which takes into account the annihilation

between the vortices and the boundaries δbound = δ/2 = 0.005. The reason for this

choice of values lies in the fact that the boundary is generated by the presence of

an image of the opposite sign. Hence, this value is the analogue of the annihilation

parameter δ between vortices of opposite sign inside the domain. In the case being

considered, the system develops a strong asymmetry in the number of vortices, due

to the annihilation of the vortices at the boundaries. For both the square and the

rectangle, majority of decay occurs with the negative vortices and therefore, the final

configurations present a large number of positive vortices which occupy the centre of
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the domain in a monopole configuration. The asymmetry in the number of vortices can

be quantified by evaluating the polarisation P defined as

P (N+, N−) =
N+ −N−

N+ +N−
, (5.70)

where N± are the number of positive and negative vortices. Figure (5.35) shows the

graph of the number of positive (blue curve) and negative (green curve) vortices in the

square a) and in the rectangle b) as a function of time τ . The inset figures show the

vortex configurations when the system is polarised due to the annihilation between the

vortices and the boundaries. It is worth noticing that the process of polarisation takes

place earlier in the rectangle. This behaviour can be explained by noticing that the

value of the perimeter of the rectangle is larger than the perimeter of the square with

a consequent higher probability of annihilation between vortices and the boundaries in

the rectangle. As a consequence, for both the rectangle and the square, the system

acquires a positive value for the total angular momentum L. The evaluation of L by

using Eq. (5.3) during the dynamical simulations for both the square and the rectangle

is presented in Fig. (5.36). As already discussed in §5.2, the graph of the angular

momentum as a function of time can be used to describe the configuration which the

system is exploring. At early times, when a large number of annihilations occur,

both systems seem to do not develop a strong asymmetry in the number of vortices as

shown in Fig. (5.35). This is also confirmed from the trend of the angular momentum

and, in particular, by the presence of few zeros in both graphs at the beginning of

the dynamics. The zeros of the angular momentum L correspond to symmetric spatial

configurations of positive and negative vortices, which can take place if the system is not

strongly polarised. However, if the long term dynamics is investigated, this asymmetry

becomes more pronounced: the systems become strongly polarised and they acquire a

well defined value of the angular momentum L. This fact follows by the lack of zeros

in the graph of the angular momentum shown in Fig. (5.36) and it is confirmed by the

asymmetric vortex configurations presented in Fig. (5.35). The inset figures represent

the configuration and the corresponding contour plot of the streamfunction at τ = 6 for

both the square and the rectangle: they both reveal the monopole configuration where

the positive charges tend to occupy the centre of the domain.

This brief analysis shows that when the system is non neutral, it will naturally evolve

towards a monopole configuration with a consequent acquisition of angular momentum

L. However, it can not be inferred that this is the only possible outcome: during

the dynamics the symmetry in the number of vortices can also be restored due to
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the annihilation on the boundaries. In other words, the annihilation parameter δbound,

which is the cause of the asymmetry in the number of vortices, can act on the remaining

charges and push the system again in a neutral configuration. It has to be remarked

that this is a possibility which here has not been tested. A possible way to demonstrate

this scenario requires the study of a large number of simulations and determine the

number of cases in which the symmetry is naturally restored.
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Chapter 6

Gross-Pitaevskii Simulations in the

Square and the Rectangle

In the previous Chapter, the dynamics of point vortices in the square and the

rectangle was investigated by using the point vortex model (PVM). For both geometries,

the averaged streamfunctions correspond to the solutions of the Boltzmann-Poisson

(BP) equation found in §4.4 and §4.5. The aim of this Chapter is to demonstrate

that the same predictions apply to the dynamics of quantised vortices in Bose-Einstein

condensates (BEC). An important difference between the dynamics of point vortices

and the dynamics in the Gross-Pitaevskii (GP) model is given by the fact that in the

latter, the annihilation process is permitted to occur by the underlying macroscopic

theory without the need for any phenomenological modelling. Moreover, there are two

types of annihilation: annihilation between vortices and antivortices and annihilation of

vortices at the boundaries. As a consequence of the latter type, the system can develop

asymmetries in the number of positive and negative vortices and become polarised.

This process was investigated in §5.5 when the effects of the annihilation of vortices

at the boundaries were manually included in the dynamics of point vortices. In order

to describe the dynamics of quantised vortices in a two-dimensional BEC, the two

dimensional GP equation (2.14) presented in §2 will be numerically solved in the square,

and in the rectangle with aspect ratio Λ = 1.5.

6.1 Gross-Pitaevskii Equation in Two Dimensions

In the laboratories, BECs are trapped in confined regions of the space by using

trapped harmonic-oscillator potentials with frequencies ωx, ωy, and ωz. If ωz � ωx ≈ ωy

and µ � ~ωz then the dynamics along z-direction is frozen and the condensate is
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considered quasi two-dimensional. Motivated by [84] the condensate is assumed to

contain N = 5 × 105 atoms of 87Rb (m = 1.4273 × 10−25kg) trapped along the z-

direction with a tight harmonic oscillator trap with frequency ωz = 2π × 1440 Hz. In

this case, the two-dimensional condensate wavefunction φ(x, y) can be written as

φ(x, y) =
1√

2πaz

∫
φ3D(x, y, z)e−z

2/a2
zdz, az =

√
~

mωz
= 2.84µm. (6.1)

Therefore, by setting Vext = 0, the three-dimensional GP equation given by Eq. (2.14)

reduces to [92]

i~
∂φ(x, y, t)

∂t
= − ~2

2m
∇2φ(x, y, t) + g2D|φ(x, y, t)|2φ(x, y, t), (6.2)

where g2D is the coupling constant in two spatial dimensions given by

g2D = g

√
mωz
2π~

, g =
4π~2as
m

, (6.3)

and as is the s-wave scattering length. For these parameters, the healing length ξ at

z = 0 is given by

ξ =
~L√

2mg2DN
= 0.284µm. (6.4)

The extent of the square box potential along x and y is assumed to correspond to

L2 ∼ 72µm2. These values ensure the possibility of having a BEC which can contain

many well-separated vortices. Equation (6.2) can be written in non-dimensional form

by scaling space, time, and the wavefunction as follows

t→ 2mL2

5122~
t, x→ L

512
x, y → L

512
y, φ→

√
Nφ, (6.5)

which can be inserted into Eq. (6.2) in order to obtain

i
∂φ

∂t
= −∇2φ+ g̃|φ|2φ, (6.6)

where g̃ = 2mg2DN/~2 = 93367. The wavefunction φ has dimensions of [1/`] and

therefore the last of Eq. (6.5) becomes φ → 512
√
Nφ/L. With this choice, the value

of the density ambient of the system is ρ∞ = 1/5122 and the value of the healing

length is estimated as ξ = (
√
ρ∞g̃)−1 ∼ 1.7. The non-dimensional GP equation given

by Eq. (6.6) is then numerically solved on a 512 × 512 grid with ∆x = 1 by using a

symmetric Strang splitting method of order 2 [57] with a timestep of ∆t = 0.1. As in
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the previous Chapter, the sides of the rectangular domain are given by Lx = 512
√

Λ

and Ly = 512/
√

Λ in order to ensure the area remains constant. Typically, the most

relevant boundary condition for experiments is the vanishing condensate density at

the boundary. However, to circumvent the need to resolve the healing layers at the

boundaries and to capture the main physical effects we will employ zero flux boundary

conditions. Therefore, motivated also by [50], the condensate is assumed in an optical

square box potential which is simulated by imposing reflective boundary conditions on

the condensate wavefunction φ(x, y, t). This condition is analogous to the one adopted

in §(2.5.2) and §(A.0.2) when the reflective boundary conditions for the point vortex

model in the square and the rectangular box were imposed by considering the images of

the point vortices contained in the domain where the dynamics occurs. These boundary

conditions are achieved by imposing a zero normal flow across the sides of the domain

and, in these numerical simulations, this condition is imposed by using a discrete cosine

transform in the Strang splitting method.

The initial condition for the GP simulation is generated by considering a particular

realisation of the position of the vortices used in §5.1.1 for the square and in §5.1.2

for the rectangle. The phase field ϕ(x, y) and the density field φ(x, y) are generated as

follows

ϕ(x, y) = ±
N±∑
k=1

arctan

(
y − y±k
x− x±k

)
, φ(x, y) = eiϕ(x,y), (6.7)

where N+ = 60 and N− = 60 are the number of vortices with positive and negative

circulation located at (x±k , y
±
k ). The density field is then relaxed through integration of

the GP equation in imaginary time to give the desired initial distribution of vortices.

During the dynamics, the position of the vortices are identified numerically by using

a method developed by Villois et al. in [2]. Information about the circulation of each

vortex can not be extracted by evaluating the vorticity field. In fact, for the GP model

ω = ∇ × v is identically zero apart from the core of the vortex where it is given by

a Dirac delta. Rather, the sense of circulation of each vortex can be identified by

considering the value of the pseudo-vorticity ωps defined by

ωps =
1

2
∇× j, j = ρv =

~
2i

(φ∗∇φ− φ∇φ∗) , (6.8)

where φ∗ is the complex conjugate of φ, ρ = m|φ|2 is the density, and v is given by Eq.

(2.30). This quantity, is finite at the position of each vortex but rapidly decays to zero

outside the healing layer. Moreover, its sign determines the sense of the circulation of

the vortex [26]. Knowledge on the positions of the vortices and their circulation are
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then used to generate the streamfunction ψ of the flow by using Eq. (2.128). This

allows time averaged streamfunctions to be evaluated within the desired time intervals.

6.2 Dynamics in the Square

The same initial condition as the one presented in §5.1.1 is now generated in a square

with sides Lx = Ly = 512 and it is shown in Fig. (6.1). Figure a) shows the density field

|φ|2 where the vortices correspond to localised depletions in the density field. Figure

b) is the corresponding pseudo-vorticity field ωps(x, y). The red and the blue dots

correspond to the positions of positive and negative circulation, respectively. The non-

dimensional GP equation (6.2) is then integrated in time. As the annihilation processes

reduces the number of vortices the vortex gas migrates into the negative temperature

regime. The graph related to the number of vortices and antivortices as a function of

time is presented in Fig. (6.2). In contrast to the PVM, in this case annihilation can

also occur to the boundaries and therefore, the system can become polarized where the

polarisation of the system is given by Eq. (5.70). Figure (6.2) shows the total number

Figure 6.1: Initial condition for the GP simulation in the square: Fig. a) is the density
field |φ|2 and, b) is the corresponding pseudo-vorticity field ωps. The red and blue dots
represent the vortices and antivortices, respectively.

of vortices and antivortices (blue and green curve respectively) as a function of time τ in

unit of tv = L2/|γ| where L2 = 5122 is the size of the domain and |γ| = 4π is the value of

the circulation given by Eq. (2.37) in terms of the non-dimensional units defined by Eqs.

(6.5). The red curve corresponds to the polarisation given by Eq. (5.70). The curves

151



6.2. DYNAMICS IN THE SQUARE

are normalised by the initial number of positive and negative vortices. Knowledge of

the positions and the number of vortices and antivortices permits the evaluation of the

time-averaged streamfunction per vortex. The time-averaged streamfunctions of the

dipole, diagonal dipole and monopole found during the dynamics are presented in Fig.

(6.3). These configurations coincide with those found in §5.1.1 and, therefore, they

can also be explained in terms of high entropy states. It is important to point out, as

observed in the point vortex simulation, that the monopole configuration appears at

later time when the system is deeply into the negative temperature regime. Once the
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Figure 6.2: Number of vortices (blue curve), antivortices (green curve) and polarisation
(red curve) as a function of time τ in units of tv during the GP simulation in the square.
The discrepancy in the number of positive and negative vortices gives raise to a negative
polarisation P .

monopole configuration takes place, the positive vortices are closer to the boundaries

and therefore the system is more likely to become negatively polarised. In other words,

the process of the formation of the monopole can be divided into two stages. At

first, the monopole appears because the configuration maximises the entropy. After

this process takes place, the annihilation of the vortices closer to the boundaries will

increase the difference between vortices and antivortices as described in §5.5. Therefore,

at long times, the emergence of the monopole will favour the formation of a polarised

gas. The analysis of the angular momentum L given by Eq. (5.3) is presented in

Fig. (6.8). The green curve presents a similar behaviour to the curve presented in
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Figure 6.3: Averaged streamfunction per total number of vortices ψ/(N+ + N−) in
the square for three configurations in which the system is found during the dynamics.
For the dipole a) the averaging interval corresponds to τ ∈ [11.5tv − 12.95tv], for the
diagonal dipole b) it corresponds to τ ∈ [10.06tv − 10.49tv], and for the monopole c) it
corresponds to τ ∈ [18.4tv − 18.7tv].

Fig. (5.10). It is interesting the presence of few zeros around τ ∼ 10tv related to

symmetric configurations, followed by a slow process of developing a non-zero angular

momentum. In this case the system slowly evolves toward the monopole configuration

which maximises its entropy. These results lead to the conclusion that the predictions

of the mean-field BP theory apply also to a Bose gas governed by the GP equation. In

particular, all the structures investigated in §4.4 and revealed during the dynamics of

point vortices in §5.1.1, have also been found in the context of the GP model in the early

stage of the dynamics. At later time, when the vortex gas becomes strongly polarised

due to the annihilations of vortices at the boundaries, the results are consistent with

the case studied in §5.5 where the PVM with the additional annihilation parameter of

vortices at boundaries was considered.

6.3 Dynamics in the Rectangle

The square is now stretched into a rectangle with sides Lx = 512
√

Λ and Ly =

512/
√

Λ. The same initial condition as the one presented in §5.1.2 is generated and it is

shown in Fig. (6.4). Figure a) shows the density field |φ|2 where the vortices correspond

to localised depletions in the density field. Figure b) is the corresponding pseudo-

vorticity field ωps(x, y). Similarly to §6.2 the annihilation process reduces the number

of vortices and the vortex gas migrates into the negative temperature regime. The

number of positive and negative vortices during the dynamics is presented in Fig. (6.5).

The figure shows also the polarisation given by Eq. (5.70) (red curve). In the first half

of the simulation, averaged streamfunctions reveal the presence of monopoles as shown
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6.3. DYNAMICS IN THE RECTANGLE

Figure 6.4: Initial condition for the GP simulation in the rectangle with aspect ratio
Λ = 1.5: Fig. a) is the density field |φ|2 and, b) is the corresponding pseudo-vorticity
field ωps. The red and blue dots represent the vortices and antivortices, respectively.
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Figure 6.5: Number of vortices (blue curve), antivortices (green curve) and polarisation
(red curve) as a function of time τ in units of tv during the GP simulation in the
rectangle. The discrepancy in the number of positive and negative vortices gives raise
to a negative polarisation P .
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in Fig. (6.6). However, the system gradually evolves towards the maximum entropy

configuration as the vortices arrange themselves in a dipole as shown in Fig. (6.7) a).

However, at later time the system can be found again the a monopole configuration as

shown in Fig. (6.7) b). The occurrence of the monopole configuration at later time can

be understood in terms of the polarisation which is more important in the rectangle

rather than in the square. Since the rectangle has a larger perimeter than the square, the

system tends to annihilate more vortices at the boundaries which causes the system to

become more polarised. The difference in the number of positive and negative vortices

favours the formation of a monopole configuration as already discussed in the case of

a strongly polarised gas in §5.5. The analysis of the angular momentum L given

a)
 

 

−0.1

−0.05

0

0.05

0.1

b)
 

 

−0.1

−0.05

0

0.05

0.1

Figure 6.6: Averaged streamfunctions per total number of vortices ψ/(N+ + N−) in
the rectangle during the first half of the GP simulation. Both images show the presence
of a monopole at different stage during the dynamics. The averaging interval of the
configuration a) corresponds to τ ∈ [2.44tv − 2.58tv] while for b) it corresponds to
τ ∈ [6.61tv − 6.84tv].
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Figure 6.7: Averaged streamfunctions ψ/(N+ + N−) in the rectangle during the GP
simulations in the second half of the dynamics: on the left the dipole configuration and
on the right the monopole is caused by a strongly polarised system.The averaging inter-
val of the configuration a) corresponds to τ ∈ [8.77tv−9.2tv] while for b) it corresponds
to τ ∈ [12.65.61tv − 13.23tv] when the system is strongly polarised.

by Eq. (5.3) is presented in Fig. (6.8). The blue curve presents the same oscillating
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Figure 6.8: Graph of the total angular momentum L as a function of time τ in unit
of tv in the square and in the rectangle: the inset figures are the streamfunction per
vortex ψ/(N+ + N−) for different instantaneous configurations during the dynamics.
Figures a) and c) show the streamfunction in the square of an asymmetric and sym-
metric configuration during the dynamics, respectively. Figures b) and d) show the
streamfunction of a symmetric and an asymmetric configuration in the rectangle, re-
spectively. The colors of the contour plots refer to the same colorbar shown in Fig.
(6.6) and the red dotted line represents the zero.
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behaviour described in §5.2.2 for the PVM. However, around τ ∼ 10tv the system which

is found in a monopole configuration (see inset Fig. (6.8) d)) becomes strongly polarised

and the vortices rearrange themselves in a monopole configuration with a consequent

non-zero value of the angular momentum L. Therefore, it has been shown that the

results obtained by using the GP model are consistent with the theoretical predictions

given by the mean-field BP equation presented in §4.5. These results can therefore be

explained in terms of high entropy states. Moreover, in the long term dynamics, the

annihilation of vortices at the boundaries gives rise to a strongly polarised vortex gas

with a consequent formation of a large monopole structure in agreement with the result

presented in §5.1.2.

This concludes the analysis of the dynamics of quantum vortices in a BEC by using

the GP model. Numerical simulations in the square and in the rectangle with Λ = 1.5

revealed that the monopole in the square and the dipole in the rectangle represent

the maximum entropy states in good agreement with the solutions of the BP equation

presented in §4.4 and §4.5. Moreover, these results are in agreement with the results

which have been obtained in §5.1.1 and §5.1.2 by using the PVM . However, at later

time in the dynamics, the vortex gas becomes strongly polarised. Independently of the

geometry, according to the results presented in §5.5 for the PVM, the system is then

found in a monopole configuration. The analysis of the angular momentum L in both

geometries provides an additional evidence on the similarities between the dynamics

of quantised vortices in the GP model and point vortices in the PVM. The analysis of

the angular momentum in the GP simulations are consistent with the results obtained

for the PVM in §5.2 in the the early stage of the dynamics. Moreover, later in the

dynamics when the system becomes strongly polarised, the formation of a monopole

generates a nonzero angular momentum according to the results obtained in §5.5 when

the effects of the annihilations at the boundaries were introduced in the PVM.
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Chapter 7

Conclusions

In this work the relaxation of a two two-dimensional Bose gas has been studied in

a squared and a rectangular domain by using both the point vortex model and the

Gross-Pitaevskii model. Moreover, in order to explain the obtained results from the

numerical simulations, a mean-field theory for a vortex gas has been developed.

In the first part of this work, attention was given in developing a mean-field theory

of a neutral vortex gas based on a statistical mechanical approach. By assuming the

maximum entropy principle, it was possible to derive the Boltzmann-Poisson equation

whose solutions represent all possible configurations of vortices which are maximiser of

the entropy. It was shown also that nontrivial solutions to this equation exist only if

the absolute temperature of the vortex gas is negative. These solutions correspond to

configurations in which point vortices with the same sign tend to cluster and form large

coherent structures. Moreover, due to the nature of the long-range interaction between

point vortices, these nontrivial configurations depend on the shape of the domain. The

Boltzmann-Poissoin equation was solved in the square and in the rectangle for two

specific families of solutions: those whose mean value is either zero or nonzero. Among

the former, emphasis was given to the dipole and the diagonal dipole while for the

latter emphasis was given to the monpole. The classification of these solutions in term

of their entropy and energy has been carried out showing that the maximum entropy

solutions in the square are given by the monopole and in the rectangle are given by the

dipole. A remarkable difference between these solutions is given by the property that

those whose mean value is nonzero are related to configurations with a nonzero angular

momentum.

The second part of this work focused on the study of the dynamics of a neutral

system composed by point vortices in the square and in the rectangle by using the

point vortex model. Since the predictions of the mean-field theory are valid in the neg-
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ative temperature regime, the transition from the positive to the negative temperature

states was also investigated. Therefore, by starting from a vortex gas in the positive

temperature regime, and by adding to the dynamics a mechanism of annihilation be-

tween point vortices of opposite sign, the system migrates from the positive to the

negative temperature regime, allowing the study of the transition between these two

regimes. A study on the dynamics of point vortices in the square and the rectangle

revealed that their dynamics can be explained in terms of the mean-field theory pre-

viously developed. By assuming these systems to be ergodic, time averaging of vortex

positions during the numerical simulations revealed the presence of the dipole, the di-

agonal dipole, and the monopole in the square, and the monopole and the dipole in the

rectangle. In order to compare the difference in entropy between these states, ensembles

of point vortices for the dipole, diagonal dipole, and monopole in the square and for the

monopole and the dipole in the rectangle have been generated from the dynamical runs.

By constructing smooth vorticity fields of these ensembles, their energy and entropy

have been evaluated and compared with the theoretical values. This analysis showed

two important results. Firstly, in perfect agreement with the mean-field theory, in the

square and in the rectangle the high entropy states are given by the monopole and the

dipole, respectively. Secondly, the difference in entropy between for the configurations

in the square and the rectangle are compatible with the theoretical values. Therefore,

it has been shown that the dynamics of point vortices and the formation of clusters

of like-signed vortices can be explained in terms of high entropy states. Furthermore,

the values of the angular momentum for these ensembles have been evaluated and the

results compared with the theoretical predictions showing good agreement. In addi-

tion, the dynamics of point vortices has been investigated also for a non-neutral vortex

gas. In this case, an additional mechanism which allows vortices to annihilate at the

boundaries has been introduced to the point vortex model. With this additional mech-

anism, dynamical simulations showed that, independently of the geometry, the vortex

gas spontaneously evolves towards a monopole configuration with a consequent nonzero

value for the angular momentum.

In the last part, the relaxation of a system composed of quantised vortices in a

Bose-Einstein condensate has been investigated in the same geometries by using the

Gross-Pitaevskii model. In this model vortices can either annihilate with vortices of the

opposite sign or at the boundaries and therefore, the vortex gas can become polarised.

In order to compare the dynamics of such a system with the results obtained with the

point vortex model, the same initial configuration of vortices have been initialised in the

square and in the rectangle. For both geometries the dynamics showed two behaviours
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depending on the polarisation of the vortex gas. In the early stage of the dynamics,

when the polarisation of the system is negligible, time averaging of vortex positions in

both geometries revealed the presence of the same structures found in the point vortex

model and predicted by the mean-field theory for a neutral system. Remarkably, in

perfect agreement with the results found previously, the monopole in the square and

the dipole in the rectangle appeared later in the dynamics. Therefore, the formation

of the monopole in the square and the dipole in the rectangle, has been explained in

term of high entropy states. However, later in the dynamics when the polarisation

becomes more important, it was shown that independently of the geometry, the system

spontaneously evolves towards a monopole configuration with a consequent nonzero

value of the angular momentum. Moreover, it has been shown that the process of

polarisation appears earlier in the rectangle than in the square. Such a difference has

been explained in terms of the higher probability of annihilation of vortices at the

boundaries due in the rectangle to its larger perimeter.

160



Appendix A

Point Vortex Hamiltonian for a

Rectangular Box

In §2.5.2 the problem of describing a point vortex contained in a rectangular region

has been introduced. It was shown that, even for a single vortex, two infinite sets of

images are required in order to mimic the presence of the four enclosing walls. This

leads to a divergent value for the Hamiltonian H given by Eq. (2.78). The aim of this

appendix is to give a complete derivation for the Hamiltonian for a system composed

of N point vortices in a generic rectangular region with sides Lx and Ly. In order to do

so, the Hamiltonian for an infinite lattice of vortices is required and this derivation is a

particular case of the one presented by L.J. Campbell [24]. This appendix is organised

as follows. In §A.0.1 the energy of a two dimensional infinite lattice of point vortices

will be given. In §A.0.2 the Hamiltonian of N point vortices in a rectangular domain

with sides Lx and Ly will be presented and finally the equations of motion for N point

vortices in such a domain will be derived.

A.0.1 Two-Dimensional Lattice of Point Vortices

In this subsection the problem of evaluating the energy of two infinite lattices of

point vortices will be presented. This problem dates back to 1918 [20] when M. Born and

A. Land wanted to evaluate the energy of a sodium chloride crystal: they realised that

the summation of all the terms of the interaction energy was not convergent. In fact, the

ionic lattice is a typical system of an infinite distribution of charged objects for which

the evaluation of the interaction energy leads to a divergent quantity. Before considering

the two-dimensional system, the one-dimensional system will be first considered. The

system under examination is given by N aligned vortices on a segment [0, Lx] which
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is periodic along the x-axis, as shown in Fig.(A.1). The segment from 0 to Lx will

be denoted as reference cell. The infinite distribution of charges, can be obtained by

translating the reference cell along the positive and negative directions. For simplicity,

a distribution with charges with the same circulation is considered, but the result for

a configuration composed of charges with different strength can be easily obtained. It

v1

x1

v2

x2

vN

xN

x2 + Lx

x1 − Lx x1 + Lx xN + Lx

x2 − Lx

0 Lx−Lx−2Lx
2Lx

xN − Lx

Figure A.1: One-dimensional infinite array of N vortices located at xi, i = 1 . . . N in
the reference cell with side Lx. The positions of all the other vortices are shifted by
nLx, n ∈ Z.

has been shown in §2.4.1 that the regular part of the kinetic energy given by Eq. (2.78),

neglecting the self interaction terms H∞, is given by

Hfree = − ρ

4π

N,N∑
j,i=1
j 6=i

γiγj log |xi − xj|, (A.1)

where ρ is the fluid density and |xi − xj| is the distance between the i-th and the j-th

vortex and the subscript free refers to the case with no boundaries. In the example

presented in Fig. (A.1) there is an infinite number of point vortices and, therefore, the

Hamiltonian given by Eq. (A.1) does not converge. However, the energy per vortex

and per cell, here indicated by H, converges and it is given by

H = lim
M→∞

Hfree

MN
, (A.2)

where M is the total number of cells and N is the number of vortices in each cell.

The total energy, in units of ρ/4π, is given by considering all the interactions between

each vortex in the reference cell and the other vortices which are inside and outside the
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reference cell. Hereafter, the following notation is adopted

+∞∑′

n=−∞

≡
+∞∑

n=−∞
n6=0

. (A.3)

For simplicity, the Hamiltonian for a system composed of four vortices as shown in

Fig.(A.2) will be evaluated and then the result will be extended to an arbitrary number

of point vortices. The four vortices have circulation γi, i = 1 . . . 4 and they are in the

v1

x1

v2

x2

v3

x3

v4

x4

2Lx
3Lx

Lx
−2Lx −Lx 0

Figure A.2: The considered system is made of 4 vortices located at xi, i = 1 . . . 4 in
the reference cell with side Lx. The positions of all the other vortices are shifted by
nLx, n ∈ Z.

reference cell in the interval [0, Lx] located at x1, x2, x3 and x4. The coordinates of all

the other vortices outside the reference cell are given by xi +nLx as shown in Fig.(A.1)

where n ∈ Z and i = 1, 2, 3, 4. The total Hamiltonian is given by considering all the

possible interactions between all the vortices and all the other images. In the following,

the vortex v1 is considered and the term which corresponds to all the interactions

between v1 and its copies outside the reference cell (see Fig.(A.3)) is given by

H1,1 = − ρ

2π

+∞∑′

n=−∞

γ1γ1 log |x1 − (x1 + nLx)| = −
ρ

2π

+∞∑′

n=−∞

γ1γ1 log |nLx|. (A.4)

If the system contains N vortices, then the generalisation is given by

Hi,i = − ρ

2π

+∞∑′

n=−∞

N∑
i=1

γiγi log |nLx|. (A.5)

Moreover, there will be the contribution related to the interactions between the vortex

v1 and the vortex v2 in the reference cell, and the vortex v1 with the copies of v2 (see

163



v1

x1

v2

x2

v3

x3

v4

x4

2Lx
3Lx

Lx
−Lx 0−2Lx

Figure A.3: Interactions between the first vortex (blue filled circle) in the reference
cell with its copies (red filled circles).

Fig.(A.4)) and this is given by

H1,2 = − ρ

2π

+∞∑
n=−∞

γ1γ2 log |x1 − (x2 + nLx)|. (A.6)

The same considerations are applied to v1 and the other vortices, and if the system is

v1
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v2

x2

v3

x3

v4

x4

2Lx
3Lx

Lx
−Lx 0−2Lx

Figure A.4: Interactions between v1 (blue filled circle) and v2 and its copies (red filled
circles).

composed of N vortices the final result is given by

H1,j = − ρ

2π

+∞∑
n=−∞

N∑
j=1
j 6=1

γ1γj log |x1 − (xj + nLx)|. (A.7)

If the system contains N vortices, then all the interactions are given by

Hi,j = − ρ

4π

+∞∑
n=−∞

N,N∑
i,j=1
j 6=i

γiγj log |xi − (xj + nLx)|. (A.8)
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The total Hamiltonian is therefore given by adding Eqs. (A.5) and (A.8)

Hfree = −Mρ

4π

+∞∑′

n=−∞

N∑
i=1

γiγi log |nLx| −
Mρ

4π

+∞∑
n=−∞

N,N∑
j,i=1
j 6=i

γiγj log |xi − xj + nLx|, (A.9)

where the factor M is needed since in the whole system there are M cells. The energy

per vortex N per cell M is given by (A.2)

H = −ργ̄
2

4π

+∞∑′

n=−∞

log |nLx| −
ρ

4πN

+∞∑
n=−∞

N,N∑
j,i=1
j 6=i

γiγj log |x0
ij + nLx|, (A.10)

where

γ̄2 =
1

N

N∑
i=1

γ2
i , x0

ij = xi − xj, (A.11)

and the superscript 0 refers to the distance between vortices in the reference cell. The

generalization for a lattice where vortices are not along a straight line is obtained by

introducing the vector Ln,m which depends on n and m such that

Ln,m = nLxex +mLyey, (A.12)

where ex and ey are unit vectors along the x and y axes, respectively. The energy per

vortex per cell for a reference cell with sides Lx and Ly is given by

H = −ργ̄
2

4π

+∞∑′

n,m=−∞

log |Ln,m| −
ρ

4πN

+∞∑
n,m=−∞

N,N∑
i,j=1
i 6=j

γiγj log |r0
ij + Ln,m|, (A.13)

where r0
ij = r0

i − r0
j is the distance between the vortices in the reference cell. The first

term in Eq. (A.13) does not depend on the position of the charges and it depends only

on the sides of the reference cell Lx and Ly. The second term depends on both, the

geometry and the position of the vortices. The Hamiltonian given by Eq. (A.13) is now

written as follows

H = H̃(Λ) +
ρ

4πN

N,N∑
i,j=1
i 6=j

γiγjHint(xi,j, yi,j; Λ). (A.14)
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The term Hint(xi,j, yi,j; Λ), which depends on the position of vortices and it will con-

tribute to the dynamics, is now considered. Since hte sum over the indices n and m of

the logarithm appearing in Eq. (A.13) is a periodic function, it can be represented in

the form of a Fourier series

−
+∞∑

n,m=−∞

log |r0
ij + Ln,m| =

2π

LxLy

+∞∑′

α,β=−∞

eik·r
0
ij

|k|2
, k = 2π

(
α

Lx
,
β

Lx

)
(A.15)

where α, β ∈ Z and the apostrophe denotes that (α, β) 6= (0, 0) in order to avoid

singularities. The indices α and β can be zero separately, but not simultaneously. The

interaction term Hint becomes

Hint(xi,j, yi,j; Λ) =
2π

LxLy

+∞∑′

α,β=−∞

eik·r
0
ij

|k|2
=

2π

LxLy

+∞∑′

α,β−∞

e
2παxij
Lx

i+
2πvyij
Ly

i

4π2
(
α2

L2
x

+ β2

L2
y

)
=

Λ

2π

+∞∑′

α,β=−∞

eαiz1eβiz2

α2 + β2Λ2
, (A.16)

where

z1 =
2π(xi − xj)

Lx
≡ 2πxij

Lx
, z2 =

2π(yi − yj)
Ly

≡ 2πyij
Ly

, (A.17)

and Λ = Lx/Ly is the aspect ratio of the rectangular domain. The above summation

can be written in terms of the following integral

Λ

2π

+∞∑′

α,β=−∞

eαiz1eβiz2

α2 + β2Λ2
=

Λ

2π

+∞∑′

α,β=−∞

∫ +∞

0

e−t(α
2+Λ2β2)eiαz1+iβz2dt, (A.18)

since the integration on the variable t is straightforward and it produces the left hand

side of Eq. (A.18). The double summation over the indices α and β can be written as

follows
+∞∑′

α,β=−∞

=

+∞∑′

β=−∞
α=0

+
+∞∑

β=−∞

+∞∑′

α=−∞

, (A.19)

where, in the first summation, the index α = 0 is fixed and β varies, and in the second

summation, β can assume any value and α 6= 0. A graphical representation of the

equality given by (A.19) is given by Fig. (A.5). Therefore, Eq. (A.18) can be written

as follows

Hint(z1, z2; Λ) =
Λ

2π
T1(z2; Λ) +

Λ

2π

∫ +∞

0

S1(z2, t; Λ)S2(z1, t; Λ)dt, (A.20)
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α

β

α

β

Figure A.5: Graphical representation of the double summation over the indices α and
β of Eq.(A.19): the first term involves the sum when α = 0 and any value β (figure on
the left) while in the second term α 6= 0 and all values of β are allowed (figure on the
right).

where

T1(z2; Λ) =

+∞∑′

β=−∞

∫ +∞

0

e−tΛ
2β2

eiβz2dt, (A.21)

S1(z2, t; Λ) =
+∞∑

β=−∞

e−tΛ
2β2+iβz2 , (A.22)

S2(z1, t; Λ) =

+∞∑′

α=−∞

e−tΛ
2α2+iαz1 . (A.23)

The first term T1(z2; Λ) can be integrated with respect to t and it gives

+∞∑′

β=−∞

∫ +∞

0

e−tΛ
2β2

eiβz2dt =

+∞∑′

β=−∞

eiβz2

β2Λ2
. (A.24)

The term S1(z2, t; Λ) can be rewritten by using the Poisson summation method [?]

S1(z2, t; Λ) =
+∞∑

β=−∞

e−tΛ
2β2+iβz2 =

+∞∑
β=−∞

∫ +∞

−∞
e−tΛ

2η2+iηz2e+2πiηβdη. (A.25)

In the above equation the integral is a Gaussian integral of the form∫ +∞

−∞
e−Ax

2+Bxdx =

√
π

A
e
B2

4A , (A.26)
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where A = tΛ2 and B = i(z2 + 2πβ) and therefore,

S1(z2, t; Λ) =
1

Λ

√
π

t

+∞∑
β=−∞

e−
(z2+2πβ)2

4tΛ2 . (A.27)

Hence, inserting Eqs. (A.24) and (A.27) into Eq. (A.20), gives

Hint(z1, z2,Λ) =
Λ

2π

+∞∑′

β=−∞

eiβz2

β2Λ2
+

+∞∑′

α=−∞

+∞∑
β=−∞

eiαz1

2
√
π
I(z2,Λ), (A.28)

where the integral I(z2,Λ) is given by

I(z2; Λ) =

∫ +∞

0

t−1/2e−
(z2+2πβ)2

4tΛ2 e−tα
2

dt. (A.29)

The integral I(z2; Λ) is a particular case of the following integral∫ +∞

0

ts−1e−p
2te−q

2π2/tdt = 2

(
qπ

p

)s
Γ(s+ 1/2)(2ξ)s√

π

∫ +∞

0

cos tdt

(t2 + ξ2)s+
1
2

, (A.30)

for s = 1/2, p = |α| and q = |z2 + 2πβ|/2Λπ. In this case I(z2; Λ) becomes

I(z2; Λ) = 2

(
qπ

p

)1/2
Γ(1)
√

2ξ√
π

∫ +∞

0

cos tdt

t2 + ξ2
= 2

(
qπ

p

)1/2
√

2ξ

π
I(ξ), (A.31)

where Γ is the Euler’s Gamma function and

I(ξ) =

∫ +∞

−∞

cos ηdη

η2 + ξ2
, ξ = 2πpq. (A.32)

The integral I(ξ) can be evaluated with the method of residues, and the result is given

by

I(ξ) =

∫ +∞

0

cos ηdη

η2 + ξ2
=

π

2ξ
e−ξ. (A.33)

Hence, Eq. (A.31) becomes

I(z2; Λ) = 2

(
qπ

p

)1/2√
π

2ξ
e−ξ = 2

√
|z2 + 2πβ|

2Λ|α|

√
π

2

√
Λ

|α||z2 + 2πβ|
e−
|α||z2+2πβ|

Λ .

(A.34)
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Inserting Eq. (A.34) into Eq. (A.28), gives

Hint(z1, z2; Λ) =
Λ

2π

+∞∑′

β=−∞

eiβz2

β2Λ2
+

1

2

+∞∑′

α=−∞

+∞∑
β=−∞

eiαz1

α
e−

α|z2+2πβ|
Λ = S1 + S2. (A.35)

The two terms S1 and S2, are now evaluated separately. The first summation S1 can

be written as follows

S1 =
1

2Λπ

[
lim
a→0

+∞∑
β=−∞

eiβz2

β2 + a2
− 1

a2

]
, (A.36)

where the summation is extended to all integers and 1/a2 corresponds to the additional

contribution for β = 0. In order to evaluate the above summation, the following function

of complex variable ζ is introduced

f(ζ) =
2πieiζz2

(ζ2 + a2)(e2πiζ − 1)
. (A.37)

This function has poles at ζ = ±ia and ζ = n ∈ Z. The sum of the residues corre-

sponding to the latter is given by

+∞∑
n=−∞

einz2

n2 + a2
. (A.38)

In the limit as N → +∞, the contour integral of f(ζ) along the curve CN shown in

Fig.(A.6) gives

lim
N→∞

1

2πi

∮
CN
f(ζ)dζ =

+∞∑
n=−∞

Resf(ζ)
∣∣∣
ζ=n

+ Resf(ζ)
∣∣∣
ζ=±ia

=
+∞∑

n=−∞

einz2

n2 + a2
− π

a

[
e−az2

1− e−2πa
+

eaz2

e2πa − 1

]
. (A.39)

Moreover, as N →∞, the integral on the left hand side of the above equation tends to

zero, hence
+∞∑

n=−∞

einz2

n2 + a2
=
π

a

[
e−az2

1− e−2πa
+

eaz2

e2πa − 1

]
. (A.40)
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This result can be applied on the right hand side of (A.36) and S1 can be evaluated by

performing the following limit

S1 =
1

2Λπ
lim
a→0

f(z2; a), (A.41)

where

f(z2; a) =
π

a

[
e−az2

1− e−2πa
+

eaz2

e2πa − 1

]
− 1

a2
. (A.42)

By inserting the following Taylor’s series

sinh(x) ∼ x+
x3

6
+

x5

120
+ o(x5), cosh(x) ∼ 1 +

x2

2
+
x4

24
+ o(x4), (A.43)

the function f(z2; a) becomes

f(z2; a) =
π

a

[
2 sinh(a(2π − z2)) + 2 sinh(az2)

2 cosh(2πa)

]
− 1

a2

∼ π

a

[
16a2π4 − 40a2π3z2 + 40π2(1 + a2z2

2)− 20πz2(6 + a2z2
2) + 5z2

2(12 + a2z2
2)

40(3 + a2π2)

]
.

The limit as a→ 0 can be evaluated and the summation (A.36) becomes

S1 =
1

2Λπ
lim
a→0

f(z2; a) =
1

2Λπ

(
π2

3
− πz2 +

z2
2

2

)
. (A.44)

The second summation S2 of (A.35) can be rearranged as follows

S2 =
1

2

+∞∑
α=1

+∞∑
β=−∞

eiαz1

α
e−

α|z2+2πβ|
Λ − 1

2

−∞∑
α=−1

+∞∑
β=−∞

eiαz1

α
e
α|z2+2πβ|

Λ

=
1

2

+∞∑
α=1

+∞∑
β=−∞


(
e−
|z2+2πβ|

Λ eiz1
)α

α
+

(
e−
|z2+2πβ|

Λ e−iz1
)α

α

 , (A.45)

and using the following equality

+∞∑
k=1

xk

k
= − log(1− x), |x| < 1, (A.46)

170



APPENDIX A. POINT VORTEX HAMILTONIAN FOR A RECTANGULAR BOX

γN

ζ
−1 =−1 ζ1 = 1

ζ0 = 0

ζ =−ia

ζ =+ia

(−N −

1
2 ,−N −

1
2 )

(N + 1
2 ,−N −

1
2 )

(N + 1
2 ,+N + 1

2 )(−N −

1
2 ,+N + 1

2 )

ζ
−N =−N ζN =N ζN+1 =N +1

ℑmζ

ℜeζ

Figure A.6: Poles of the function f(ζ) inside the path CN .
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the summation over the index α in(A.45) can be performed

S2 = −1

2

+∞∑
β=−∞

{
log
(

1− e−
|z2+2πβ|

Λ eiz1
)

+ log
(

1− e−
|z2+2πβ|

Λ e−iz1
)}

= −1

2

+∞∑
β=−∞

log
(

1− 2 cos(z1)e−
|z2+2πβ|

Λ + e−
2|z2+2πβ|

Λ

)
= −1

2
log

+∞∏
β=−∞

χ(z1, z2; β,Λ), (A.47)

where

χ(z1, z2; β,Λ) = 1− 2 cos(z1)e−
|z2+2πβ|

Λ + e−
2|z2+2πβ|

Λ , (A.48)

and z1 = 2π(xi − xj)/Lx and z2 = 2π(yi − yj)/Ly. Inserting (A.47) and (A.44) into

(A.35) gives the final expression for interaction term of the Hamiltonian

Hint(z1, z2; Λ) =
1

Λ

[ z2

4π
(z2 − 2π) +

π

6

]
− 1

2
log

+∞∏
β=−∞

χ(z1, z2; β,Λ). (A.49)

The first term on the right hand side of Eq. (A.14) depends only on the geometry and

is given by

H̃(Λ) = −ργ̄
2

4π

∑′

n,m

log |Ln,m|. (A.50)

The above summation can be written as follows

−
∑′

n,m

log |Ln,m| = − lim
z→0

+∞∑
n,m=0

log |z + Ln,m|+ lim
z→0
|z| = L1 + L2, (A.51)

where

L1 = − lim
z→0

+∞∑
n,m=−∞

log |z + Ln,m|, (A.52)

L2 = lim
z→0

log |z|. (A.53)
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The first term L1 is the limit for z → 0 of the interaction Hamiltonian Hint given by

Eq.(A.49), and hence

lim
z1,z2→0,0

Hint(z1, z2; Λ) =
π

6Λ
− 1

2

+∞∑
β=−∞

log
(

1− 2e−
|2πβ|

Λ + e−
2|2πβ|

Λ

)
=

π

6Λ
−

+∞∑
β=1

log
(

1− 2e−
2πβ
Λ + e−

4πβ
Λ

)
− L∞

=
π

6Λ
− log

+∞∏
β=1

χ(0, 0; β,Λ)− L∞,

where L∞ is a divergent constant related to the β = 0 term

L∞ =
1

2
lim

z1,z2→0,0
log
[
1− 2 cos(z1)e−

|z2|
Λ + e−

2|z2|
Λ

]
. (A.54)

Therefore, H̃(Λ) becomes

H̃(Λ) =
ργ̄2

4π

[
π

6Λ
− log

+∞∏
β=1

χ(0, 0; β,Λ)− L∞ + lim
(z1,z2)→(0,0)

log |z|

]
. (A.55)

The last term in the above equation can be written as

lim
z→0

log |z| = log

∣∣∣∣∣2π
√
x2

L2
x

+
y2

L2
y

∣∣∣∣∣ = log

(
2π

Lx

)
+

1

2
lim

(x,y)→(0,0)
log(x2 + Λ2y2). (A.56)

This last term, in the limit (x, y) → (0, 0) diverges and it has the same logarithmic

divergence of L∞ so that these infinities vanish. The first term of Eq. (A.56) depends

on the side Lx but since the other terms depend on the ratio Λ = Lx/Ly it is possible

to remove the dependence on Lx in the second term. In fact, the density of vortices in

the reference cell can be set equal to 1 by rescaling the sides of the box such that

Lx → λLx, Ly → λLy. (A.57)

It follows that

1 =
N

λ2LxLy
, λ =

√
N

LxLy
, (A.58)
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and the first term of Eq. (A.56) becomes

log

(
2π

λLx

)
= log

(
2π

Lx

√
LxLy
N

)
= log(2π)− 1

2
log(NΛ). (A.59)

Finally the term H̃(Λ) is given by

H̃(Λ) =
ργ̄2

4π

[
π

6Λ
+ log

[
2π

(
1

NΛ

)1/2
]
− log

+∞∏
β=1

χ(0, 0; β,Λ)

]
. (A.60)

Therefore, the Hamiltonian for a distribution of vortices in a rectangular domain with

aspect ratio Λ = Lx/Ly is given by

H = H̃(Λ) +Hint(z1, z2; Λ), (A.61)

where

H̃(Λ) =
ργ̄2

4π

[
π

6Λ
+ log

[
2π

(
1

Nσ

)1/2
]
− log

+∞∏
β=1

χ(0, 0; β,Λ)

]
, (A.62)

and

Hint(z1, z2; Λ) =
ρ

4πN

N,N∑′

i,j=1

γiγj

{
1

Λ

[ z2

4π
(z2 − 2π) +

π

6

]
− 1

2
log

+∞∏
β=−∞

χ(z1, z2; β,Λ)

}
,

where the dependence of xi,j and yi,j is given by z1 = 2π(xi − xj)/Lx and z2 = 2π(yi −
yj)/Ly. By defining x = xi − xj and y = yi − yj this last term becomes

Hint(xi,j, yi,j,Λ) =
ρ

4πN

N,N∑′

i,j=1

γiγj
2

{
2π

Λ

[
yi,j
Ly

(
yi,j
Ly
− 1

)
+

1

6

]

− log
+∞∏

β=−∞

χ

(
2πxi,j
Lx

,
2πyi,j
Ly

; β,Λ

)}

=
ρ

4πN

N,N∑′

i,j=1

γiγj
2
f(xi,j, yi,j; Λ), (A.63)
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where the auxiliary function

f(x, y; Λ) =
2π

Λ

[
y

Ly

(
y

Ly
− 1

)
+

1

6

]
− log

+∞∏
β=−∞

χ

(
2πx

Lx
,
2πy

Ly
; β,Λ

)
, (A.64)

is introduced to simplify the notation. This concludes the evaluation of the Hamiltonian

for an infinite periodic set of vortices. In the next part, the Hamiltonian for a set of N

vortices in a box will be constructed starting from Hint.

A.0.2 Hamiltonian in the box

In this section, the Hamiltonian for a system composed by N vortices in a rectangu-

lar domain will be derived by starting from the Hamiltonian for a periodic distribution

of vortices given by Eq.(A.63). The interaction Hamiltonian for N vortices in a periodic

box of sides Lx and Ly with aspect ratio Λ can be written as

Hint =
ρ

4πN

N,N∑′

i,j=1

γiγj
2
f (Xi,j, Yi,j,Λ) , Xi,j =

xi − xj
Lx

, Yi,j =
yi − yj
Ly

, (A.65)

where

f(Xi,j, Yi,j; Λ) =

{
2π

Λ

[
Yi,j (Yi,j − 1) +

1

6

]
− log

+∞∏
k=−∞

χ (Xi,j, Yi,j; k,Λ)

}
, (A.66)

and

χ(k,Xi,j, Yi,j; Λ) = 1− 2 cos(2πXi,j)e
−2π|Yi,j+k|/Λ + e−4π|Yi,j+k|/Λ. (A.67)

In order to understand how to construct the Hamiltonian for any number of vortices in

a generic box, the example of two vortices v1 and v2 in a box is now considered. The

vortices have circulation γ1 and γ2, respectively and they are located at (x1, y1) and

(x2, y2). The coordinates are assumed to be such that 0 < xi < Lx and 0 < yi < Ly,

i = 1, 2. In order to mimic the presence of hard walls, an infinite set of images needs

to be added along both x and y directions (see §(2.5.2)): an example of the positions

of the nearest images to the vortices is given by Fig.(A.7). The colors red and blue

correspond to vortices with positive and negative circulation respectively. The system

consisting of the vortices in the reference cell (shaded in grey) and their images is not

periodic. Hence, the Hamiltonian given by Eq. (A.65) can not be used since it requires
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v2 = (x2, y2)

v1 = (x1, y1)

Ly

0 Lx

Figure A.7: Two point vortices v1 and v2 in a rectangular region surrounded by a layer
of images.

0

v2(x2, y2)

v1(x1, y1)

2Lx

2Ly

Figure A.8: The system consisting of two vortices in the rectangle: the shaded area is
the reference cell which is periodic along both directions.
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a periodic distribution of charges. However, by looking at Fig.(A.8), if a box with sides

2Lx and 2Ly is considered, the system composed of the vortices in the cell with sides

Lx and Ly and their images, represents a distribution which has a periodicity of 2Lx

along x and 2Ly along y. The two vortices v1 and v2 and their images located in the

highlighted region, form a periodic system along the x and y directions. Therefore,

the Hamiltonian for a system in a box with sides Lx and Ly, can be obtained by

considering the Hamiltonian of the vortices v1 and v2 and their images, in the box with

sides 2Lx and 2Ly. This defines the reference cell (Fig.(A.8) shaded region). Once the

reference cell is identified, it is necessary to consider the interactions between vortices

contained in the reference cell by using the result given by Eq. (A.65). Without loss

of generality, the vortex v1 and v2 are assumed to have circulation +γ1 and γ2 = −γ1,

respectively. The vortex v1 is located at (x1, y1), and its three images are indicated by

v5 = (2Lx − x1, 2Ly − y1), v6 = (2Lx − x1, y1) and v8 = (x1, 2Ly − y1) and the value of

their circulations are +γ1, −γ1 and −γ1, respectively. The second vortex v2 is located

at (x2, y2) and its three images are indicated by v3 = (x2, 2Ly − y1), v4 = (2Lx− x1, y1)

and v7 = (2Lx − x1, 2Ly − y1) and the value of their circulations are +γ2, +γ2 and

−γ2, respectively. The Hamiltonian for this system is therefore given by considering

2Lx

2Ly

0 Lx

Ly

v1 = (x1, y1)

v2 = (x2, y2)

v8

v3

v4

v6

v5

v7

Figure A.9: Two point vortices in the domain where the dynamics occurs (bottom
left): the coordinates and the circulation of these two vortices are (x1, y1) and (x2, y2),
γ1 and γ2 respectively. The other vortices are images in order to mimic the boundaries:
v5, v6, v8 are the images of v1 and v3, v4, v7 are the images of v2.

the following terms

• The interactions between the vortex v1 and v2 in the box with sides Lx and Ly.
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• The interactions between the vortex v1 and its three images v5, v6, v8.

• The interactions between the vortex v2 and its three images v3, v4, v7.

• The interactions between the vortex v1 and the images v3, v4, v7 of v2.

• The interactions between the vortex v2 and the images v5, v6, v8 of v1.

All these contributions are now considered and then, a general formula for an arbitrary

number N of point vortices in the domain with sides Lx and Ly will be given. For

simplicity, the interaction between a vortex vi = (xi, yi) and vj = (xj, yi) will be

indicated by vi → vj. The pre-factor ρ/4πN in Eq. (A.65) will be understood and then

added at the end. The contributions between v1 and v2 are given by

v1 → v2 = γ1γ2
1

2
f(|x1 − x2|, |y1 − y2|; Λ),

v2 → v1 = γ2γ1
1

2
f(|x2 − x1|, |y2 − y1|; Λ),

where f(x, y; Λ) is given by Eq.(A.66). The next part is to evaluate the interactions

between the vortex v1 and its three images

v5 = (2Lx − x1, 2Ly − y1), v6 = (2Lx − x1, y1), v8 = (x1, 2Ly − y1), (A.68)

are given by

v1 → v5 = γ1γ1
1

2
f(2Lx − 2x1, 2Ly − 2y1; Λ),

v1 → v6 = −γ1γ1
1

2
f(2Lx − 2x1, 0; Λ),

v1 → v8 = −γ1γ1
1

2
f(0, 2Ly − 2y1; Λ),

Regarding the interaction between v1 and the images of the second vortex

v3 = (x2, 2Ly − y2), v4 = (2Lx − x2, y2), v7 = (2Lx − x2, 2Ly − y2), (A.69)

the interactions are given by

v1 → v3 = −γ1γ2
1

2
f(|x1 − x2|, 2Ly − y2 − y1; Λ),

v1 → v4 = −γ1γ2
1

2
f(2Lx − x2 − x1, |y1 − y2|; Λ),

v1 → v7 = γ1γ2
1

2
f(2Lx − x2 − x1, 2Ly − y2 − y1; Λ),
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The interactions between the vortex v2 and its three images are given by

v2 → v3 = −γ2γ2
1

2
f(0, 2Ly − 2y2; Λ),

v2 → v4 = −γ2γ2
1

2
f(2Lx− 2x2, 0; Λ),

v2 → v7 = γ2γ2
1

2
f(2Lx − 2x2, 2Ly − 2y2; Λ),

and for the interactions between v2 and the images of v1 are given by

v2 → v5 = γ2γ1
1

2
f(2Lx − x1 − x2, 2Ly − y1 − y2; Λ),

v2 → v6 = −γ2γ1
1

2
f(2Lx − x1 − x2, |y2 − y1|; Λ),

v2 → v8 = −γ2γ1
1

2
f(|x2 − x1|, 2Ly − y1 − y2; Λ).

These are all the possible terms for the considered distribution of vortices shown in

Fig.(A.8). The interaction terms which involve a vortex with its own images can be

collected by defining a new function b(xi, yi) which depends only on the coordinates

(xi, yi) of a single vortex

b(xi, yi) ≡
1

2
[−f(2Lx − 2xi, 0; Λ) + f(2Lx − 2xi, Ly − 2yi; Λ)− f(0, 2Ly − 2yi; Λ)] .

The interaction between v1 and its own images and between v2 and its own images can

be written in a more compact form as follows

γ2
1b(x1, y1; Λ) + γ2

2b(x2, y2; Λ). (A.70)

The interactions between the vortex v1 and the images of v2 and between the vor-

tex v2 and the images of v1 can be simplified by introducing an additional function

h(xi, xj, yi, yj) which depends on two sets of coordinates (xi, yi) and (xj, yj)

h(xi, xj, yi, yj; Λ) ≡ f(|xi − xj|, |yi − yj|; Λ)− f(|xi − xj|, 2Ly − yi − yj; Λ)

− f(2Lx − xi − xj, |yi − yj|; Λ) + f(2Lx − xi − xj, 2Ly − yi − yj; Λ),

and hence, the interactions become

1

2
γ2γ1h(x2, x1, y2, y1; Λ) +

1

2
γ1γ2h(x1, x2, y1, y2; Λ). (A.71)
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Finally, the Hamiltonian Hint for the system presented in Fig.(A.9) is given by

H = γ2
1b(x1, y1; Λ) + γ2

2b(x2, y2; Λ) +
1

2
γ2γ1h(x2, x1, y2, y1; Λ) +

1

2
γ1γ2h(x1, x2, y1, y2; Λ).

(A.72)

The Hamiltonian in the presence of N vortices with circulation γi located at (xi, yj) is

given by

HBox =
ρ

4πN

[
N∑
i=1

γ2
i b(xi, yi; Λ) +

N−1∑
i=1

N∑
j=i+1

γiγjh(xi, xj, yi, yj; Λ)

]
. (A.73)

A.0.3 Equation of motions

The equations of motion for N point vortices contained in a box with sides Lx and

Ly are given by
dxi
dt

=
1

γi

∂HBox

∂yi
,

dyi
dt

= − 1

γi

∂HBox

∂xi
, (A.74)

where HBox is the Hamiltonian given by (A.73). The derivative of HBox requires

the evaluation of the derivative of the two additional functions h(xi, xj, yi, yj; Λ) and

b(xi, yi; Λ) which are linear combinations of the function f defined by Eq.(A.66). There-

fore, the partial derivatives of f(p(x), q(y); Λ), where p(x) and q(y) are two generic

function of the coordinates xi and yy of the point vortices, are now evaluated. The

function f(p(x), q(y); Λ) is given by

f(p, q; Λ) =
2π

Λ

[
|q| (|q| − 1) +

1

6

]
− log

+∞∏
k=−∞

1− 2 cos(2πp)e−
2π|q+k|

Λ + e−
4π|q+k|

Λ . (A.75)

By defining L(p, q; Λ) as follows,

L(p, q; Λ) =
+∞∏

k=−∞

1− 2 cos(2πp)e−
2π|q+k|

Λ + e−
4π|q+k|

Λ , (A.76)

the partial derivative with respect to x of Eq. (A.75) is given by

∂f

∂x
= − 1

L(p, q; Λ)

+∞∏
k=−∞

[
2 sin(2πp)2πp′e−

2π|q+k|
Λ + e−

4π|q+k|
Λ

]
, (A.77)

180



APPENDIX A. POINT VORTEX HAMILTONIAN FOR A RECTANGULAR BOX

where p′ is the derivative of p with respect to x. The partial derivative of Eq. (A.75)

with respect to y gives

∂f

∂y
=

2π

Λ
q′ sgn q [(2|q| − 1)]−

− 1

L(p, q; Λ)

+∞∏
k=−∞

{
4π

Λ
q′ sgn(q + k)

[
cos(2πp)e−

2π|q+k|
Λ + e−

4π|q+k|
Λ

]}
,

where q′ is the derivative of q. Therefore, the equations of motion of N point vortices

in the rectangular domain can be obtained by substituting (A.73) into (A.74) and then

using (A.77) and (A.78).
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Appendix B

Green’s Function for the Laplace

Operator in 2D

In §2.4.1 the point vortex model was introduced and, in particular, it was shown

that the streamfunction ψ0 for a point vortex located at (x0, y0) whose vorticity is given

by Eq. (2.65) must satisfy the following equation

∇2ψ0 = −γ0δ(x− x0). (B.1)

The aim of this Appendix is to solve this equation and to find the Green’s function,

or fundamental solution for the Laplace operator in two spatial dimensions in an un-

bounded domain. For brevity we will drop the subscript 0 in the streamfunction ψ in

what follows.

Assuming the streamfunction to be axis-symmetric, that is, ψ = ψ(r) with r =

|x− x0|, Eq. (B.1) becomes

ψrr +
1

r
ψr = −γ0δ(r). (B.2)

For r > 0, the above equation becomes

ψrr +
1

r
ψr = 0, (B.3)

whose solution is given by

ψ(r) = A log r +B, (B.4)

where A and B are constants of integration. Without loss of generality, the constant
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of integration B can be set to zero. In order to find A, Eq. (B.1) is integrated over a

disc of radius ε centred at the origin of the domain∫
S

∇2ψ(r)dS = −γ0

∫
S

δ(r)dS = −γ0, (B.5)

where S is the surface of the disk. By applying the divergence theorem∫
S

∇2ψ(r)dS =

∮
∂S

∇ψ(r) · ndl, (B.6)

where ∂S is the boundary of S given by a circle of circumference 2πε. Combining the

previous two equations gives

− γ0 =

∮
γε

∇ψ(r) · ndl =

∮
γε

∂ψ

∂r

∣∣∣∣
r=ε

dl =

∮
γε

A

ε
dl = 2πA. (B.7)

The final result is indeed

ψ(r) = − γ0

2π
log r. (B.8)

In terms of x the solution is given by

ψ0(x,x0) = − γ0

2π
log |x− x0|, (B.9)

where we have restored the subscript 0 to remind us that this solution is valid in the

presence of a single charge with strength γ0 located at the centre of the domain. The

Green’s function for the Laplace operator in the presence of N point vortices, can be

easily constructed by invoking the principle of superposition since Eq. (B.1) is linear.
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E quindi uscimmo a riveder le stelle.
Inferno, XXXIV, 139

Thence issuing we again beheld the stars.
Inferno, XXXIV, 133
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