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Abstract—How to effectively organize local descriptors to build 

a global representation has a critical impact on the performance 

of vision tasks. Recently, local sparse representation has been suc- 
cessfully applied to visual tracking, owing to its discriminative 
nature and robustness against local noise and partial occlusions. 

Local sparse codes computed with a template actually form a 
three-order tensor according to their original layout, although 
most existing pooling operators convert the codes to a vector     

by concatenating or computing statistics on them.  We argue  
that, compared to pooling vectors, the tensor form could deliver 
more intrinsic structural information for the target appearance, 

and can also avoid high dimensionality learning problems suf- 
fered in concatenation-based pooling methods. Therefore, in this 
paper, we propose to represent target templates and candidates 

directly with sparse coding tensors, and build the appearance 
model by incrementally learning on these tensors. We propose a 
discriminative framework to further improve robustness of our 

method against drifting and environmental noise. Experiments 
on a recent comprehensive benchmark indicate that our method 
performs better than state-of-the-art  trackers. 

Index Terms—Discriminative, sparse representation, subspace, 
tensor pooling, tracking. 

 

I. INTRODUCTION 

ISUAL object tracking is one of the fundamental areas 

in computer vision. It plays a critical role in numerous 

applications, including surveillance, video analysis, human- 

computer interaction, robotics, and intelligent transportation. 

Despite decades of studies [1]–[5], [55], tracking is still a chal- 

lenging task due to the difficulty of handling lots of severe 

appearance variations. 

Appearance and motion models are two essential com- 

ponents for building a robust tracker. Recent years have 

witnessed significant advances in both adaptive appearance 

modeling [6]–[12], [50], [51], [53], [54] and robust motion 

modeling [13]–[16] that improve  the tracking performance. 

In  this  paper,  we  focus  on  the  appearance  model,    which 
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is closely related to the performance of a tracker against 

various challenging appearance variations. Ross et al. [10] 

presented an incremental visual tracker (IVT)-based on online 

principal component analysis (PCA) to account for appear- 

ance variations. Wang et al. [17] extended IVT with a 

Gaussian–Laplacian noise assumption, which is more effec- 

tive in dealing with outliers. However, with flattened intensity 

vector representing a target, IVT results in a high-dimensional 

data learning problem. Moreover, converting two-order inten- 

sity images to one-order vectors could lose the spatial 

information. Li et al. [18] extended IVT to a higher order  

case, which tackles the tracking task in an online tensor sub- 

space learning framework. In this way,  the method is able     

to take spatial redundancies into consideration, and involves 

relatively low-computational and memory costs. However, the 

holistic template used in the above methods is still suscepti- 

ble to local noise and transformation. In [6], [19], and [48], 

local integral histograms-based representations are proposed 

for the purpose of improving the robustness of trackers against 

partial occlusions and object transformation. Ali et al. [20] 

proposed to handle local noise by using salient feature points. 

The basic idea is that when objects are partially occluded, the 

unoccluded feature points are still available for distinguish-  

ing the target. Wang et al. [21] proposed a discriminative 

appearance model based on superpixels. The target and its 

surrounding are segmented into several superpixels, which are 

used for training a discriminative model online to distinguish 

foreground superpixels from background ones. Therefore, the 

method is effective in handling heavy occlusions and nonrigid 

transformations. 

Recently,     sparse     representation     has      been 

attracting    much    attention    in    visual     object     track- 

ing [8], [9], [22]–[24], [52], [56]. It provides an  elegant  

model for representing candidates with very few but most 

related target templates to minimize the adverse impacts of 

background noise [8], [9], [23], [53]. In addition,  it  is  also  

an adaptive model for representing the target appearance with 

local sparse codes to exploit the discriminative nature of  

sparse representation [24]–[28]. These two different kinds of 

sparse coding-based tracking methods could be categorized   

as target searching based on  sparse  representation  (TSSR) 

and appearance modeling based on sparse coding (AMSC), 

respectively [22]. Experimental comparison [22]  indicates  

that AMSC methods significantly outperform TSSR ones. 

Since most AMSC methods model the target appearance with 

local sparse codes, we call them local sparse representation 

(LSR)-based methods as a unified expression. 

It is noteworthy that local sparse codes computed with a 
template constitute a three-order tensor, as shown in Fig. 1. 

For  example,  a  template  with  nr  × nc  patches  (nr  and  nc 
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Fig. 1.       Overview of our approach, which includes tensor pooling and online subspace learning. 

 
 

are numbers of patches per row and per column in a target 

template, respectively) coded on a dictionary with L items 

would build a three-order tensor J  ∈ RL×nr×nc . Almost all  
the LSR-based tracking methods convert the tensor to a vector 

by using a pooling operator.  Max  pooling  [28]  and  aver-  

age pooling [26], [27], [49] operators compute statistics of 

local sparse codes to yield the pooled representation. In this 

way, the dimensionality is significantly reduced, while they 

completely ignore the spatial arrangement of local patches, 

causing much loss of discriminability. On the other hand, con- 

catenation pooling [9], [24] directly concatenates the local 

codes to a long vector, so as to preserve spatial orders of   

local codes. However, the concatenated feature results in a 

high dimensionality learning problem, which is difficult to 

handle. 

Compared to pooling vectors, the original tensor form could 

deliver more intrinsic structural information. Taking coding 

tensor J  ∈ RL×nr×nc  for an example, the first order vectors  
of J      represent different local sparse codes, and the second 

and third orders of J can be interpreted as the row-wise and 

column-wise distributions of dictionary items on the target 

template, respectively. Furthermore, training with the tensor 

form could avoid high dimensionality learning problems. For 

instance, performing dimension reduction on a three-order ten- 

sor of size 50 × 50 × 50 to size 10 × 10 × 10 in a vector 

form needs to learn a 125 000 × 1000 basis matrix. In a ten- 
sor form, however, the dimension reduction task only requires 

three 50 × 10 basis matrices, whose size is 1.2 × 10−5 of that 
of the vector form. In this paper, we propose a novel approach 

for constructing local descriptors named tensor pooling, which 

models a template as a three-order tensor feature. Our tensor 

pooling-based visual tracking algorithm represents the target 

or candidates with tensor-pooled sparse features, and considers 

 

of tensors [35]. In visual tracking, the tensorial representation 

of the target has also been introduced recently [18], [36]–[38]. 

Since the subspace learning [10], [17], [18] methods could 

capture compact and informative appearance of an object and 

can be easily extended to online learning algorithms, which are 

suitable for tracking tasks, in this paper, we propose to address 

the tracking problem within an online tensor subspace learning 

framework. 

The overview of our approach is shown in Fig. 1. Target 

appearance variations are captured by incremental subspace 

learning of pooling tensors. When predicting the target, the 

likelihood of a candidate is evaluated with reconstruction error 

norms of its pooling tensor to the learned subspace. To further 

improve the robustness of our approach against background 

clutter and drifting, the basic tracker is incorporated with a 

discriminative framework and a robust updating scheme. Our 

source code will be publicly available  online.1 

The rest of this paper is organized as follows. We first intro- 

duce the foundation of tensor and its decomposition algorithm 

in Section II, and then present details of our tracking algorithm 

in Section III. Experiment results and analysis are shown in 

Section IV. We  conclude this paper in Section  V. 

 
II. PRELIMINARIES 

In this section, we give a brief introduction to the basic 

concept about tensor and its decomposition  algorithms. 

 
A.  Tensor Fundamentals 

A tensor can be regarded as  a  higher  order  generaliza- 
tion of a vector or a matrix, which is one-order or two-order 

tensor,  respectively.  We  denote  an  N-order  tensor  as  A  ∈ RI1×I2×···×IN ,  and  each  of  its  elements  as  ai  ···i  ···i 

1      n      N , where 
visual tracking task as an online tensor learning  problem. 

The advantages of tensorial representation have attracted 

significant interest from vision researchers. Several works of 

tensor-based extensions of fundamental methods have been 

proposed, such as tensor decomposition [18], [29]–[31], mul- 

tilinear PCA [32], linear discriminative analysis [33],  sup- 

port tensor machines [34], and canonical analysis   correlation 

1 ≤ in ≤ In. In tensor terminology, the n-mode matrix unfold- 

ing of tensor A ∈ RI1×I2×···×IN , which is denoted as A(n)   ∈ 

R
In×(

.
i/=n Ii), is obtained by varying index in while keeping the 

other indices fixed. The process of matrix unfolding of a three- 

order tensor is illustrated in Fig. 2 for better understanding. 
 

1http://github.com/shenjianbing/tensortracking 

http://github.com/shenjianbing/tensortracking
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Algorithm 1 Procedure of Incremental Updating of Eigenbasis 

and Mean 
 

Input: CVD results UpDpVT of existing data Xp, new coming 

data Xq, column mean mp  of Xp  and column mean mq        

of Xq. 

Output:  Column mean mr  of Xr = [Xp|Xq] and CVD  results 
UrDrVT  of Xr. 

1: nr = f ∗ n; 
2:  Compute  mr    = nr  

mp  +     m   mq,  and  Ẽ   =  (Xq  − 
   

nrm nr+m nr+m 

mr11×m| nr+m(mp − mq)); 

3:  Compute R-SVD with U( fD)VT  and Ẽ to obtain UrDrVT . 

 
 
 

 

 
 

 

 
Fig. 2. Illustration of unfolding a third-order tensor in terms of different 
modes. 

 

 
The inverse process of mode-n unfolding is mode-n folding, 

which can restore the original tensor A from the unfolded 

matrix A(n). 

The mode-n product between a tensor A and a matrix U   ∈ 

 

C. Incremental Updating of Eigenbasis and Mean 

We first introduce the incremental low-rank approximation 

in the vector case, and extend it to the tensor case in the     

next section. The R-SVD algorithm [39] is developed for 

sequentially computing SVD of a dynamic matrix as new data 

(columns or rows) arrive. However,  this algorithm assumes     

a zero mean when updating the eigenbasis. Ross et al. [10] 

extended the work of classic R-SVD method. It updates the 

eigenbasis while taking the shift of the sample mean into 

account. 

Let CVD(H) denote the SVD of a matrix H with the column 

mean  removed.  Let  Xp  = [x1, x2,..., xn]  denote  the exist- 
RJ×In is of size I1 × ··· × In−1 × J × In+1 × ··· × IN and ing data, Xq = [xn   1, x , . . . ,  x ] denote the new coming 

+ n+2 n+m 

defined element-wise as 

(A ×n U)i1···in−1jin+1···iN  = 
. 

ai1i2···iN ujin. (1) 
in 

data, and let Xr = [Xp|Xq]. Given the column means mp of Xp, 

mq of Xq, and the CVD results Up, Dp, Vp of Xp, the column 

mean mr of Xr and the CVD of Xr can be computed efficiently 

as follows. 

It can be better characterized in a metricized   form 1) Compute mr  = n/(n + m)mp + m/(n + m)mq, and Ẽ = 
(Xq − mr11×m|   (nm/n + m)(mp − mq)). 

Y = A ×n U ⇔ Y(n) = UA(n). (2) 

The scalar product between two tensors A, B is defined   as 

(A, B) = 
. . 

· · · 
. 

ai1···iNbi1···iN . (3) 

2) Compute  R-SVD  with  Up, Dp, Vp,  and  Ẽ  to  obtain 

Ur, Dr, Vr. 

Levey and Lindenbaum [39] further introduced a forget- 

ting factor f  to put more weights on recent observations when 
updating  the  eigenbasis,  i.e.,  Ar  = (fA|E)  = (U(fD)VT |E), 

i1     i2 iN where A and Ar are the original and weighted data matrices, 
√   

The Frobenius norm of A is defined as "A"= (A, A). The respectively. 

mode-n rank Rn of A is defined as Rn = rank(An). For more 
notations or theories about tensor, we refer the reader to  [30]. 

 
B.  Low-Rank Approximation 

An N-order tensor A ∈ RI1×I2×···×IN can be approximated 

by a low-rank tensor S ∈ RR1×R2×···×RN obtained by 

The above process could be depicted  as 

[Ur, Dr, Vr, mr] = ICVD(Up, Dp, Vp, mp, Xq, k, f ) (5) 

where k    is the number of preserved dominant bases and f 

denotes the forgetting factor. The incremental CVD procedure 

is summarized in Algorithm 1. The analytical proofs of R-SVD 

and ICVD are given in [10] and   [39]. 
min − S ×1 U

(1) ×2 ··· ×N U
(N)
 
 (4) 

S,U(1),...,U(N)  
A

 
D.  Incremental Tensor Subspace Learning 

where U(n) ∈ RIn×Rn, n = 1 ···  N corresponds to the basis 

matrix of the n-mode unfolding matrix of A with Rn ≤ In. S   
is the so-called core tensor [30]. Equation (4) can be readily 

solved by the Tucker decomposition (TD) technique [30]. Note 

that the eigen value matrix D(n) and row basis V(n) can also    

be obtained in the procedure of TD, which are useful for the 

incremental version of tensor subspace learning described in 

Section II-D. 

The proposed tracking algorithm actually learns a four-order 

tensor subspace over time, but for better understanding, here 

we take the three-order case as an example, which can be 

easily extended     to four-order case. We  apply the incremen- 

tal rank − (R1, R2, R3) tensor subspace analysis (IRTSA) [18] 
algorithm to update the tensor subspace. Let A ∈ RI1×I2×I3 

denote the original tensor, F ∈ RI1×I2×Ir denote the new sub- 

tensor and A∗ = (A|F) ∈ RI1×I2×I∗ 
denote the merged tensor 

, 
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Algorithm 2 IRTSA  Algorithm where N  is the number of samples, Xi denotes the ith   sample 

Input: Tensor decomposition results U(k)D(k)V(k)(1 ≤ k ≤ 3) 
of the original tensor A,  column  mean  M(1), M(2)  of  

A(1), A(2) and row mean M(3) of A(3), newly added tensor   
F  and preserved ranks R1, R2  and R3, forgetting factor f . 

of state Xt. 
The  state  transition  is  formulated  by   random   walk,  

i.e., p(Xt|Xt−1) =  N(Xt; Xt−1,W),  where  W  is  a  diag-  
onal    covariance    matrix    whose    diagonal    elements are Output:  Tensor decomposition results Û (i)D̂ (k)V̂ (k)(1 ≤ k ≤ 3) σ 2 2

 2 2 2 2 

of  A∗  = (A|F),  column  mean  M̂ (1), M̂ (2)  of  A∗ 

 

∗ 
(2) 

x , σy , σθ , σs , σβ , σφ , respectively. The likelihood function 

in  the  observation  model  p(Yt|Xt)  will  be  discussed  in the 

and row mean M̂ (3) of A∗  . 

1:  [Û (1), D̂ (1), V̂ (1), M̂ (1)] 

= ICVD(U(1), D(1), V(1), M(1), F(1), R1, f ); 

2:  [Û (2), D̂ (2), V̂ (2)
, M̂ (2)] 

= ICVD(U(2), D(2), V(2), M(2), F(2), R2, f ); 

V̂ (2) = PT · V̂ (2)
; 

following sections. 

 
B.  Tensor Pooling 

The proposed tracking algorithm applies local sparse codes 
for object representation. We use overlapped sliding windows 

on the warped image to obtain nr ×nc patches, where nr and nc 

3:  [Û (3), D̂ (3) (3) are the numbers of them in each column and row, respectively. 
0 0  , V̂

 
0   , M̂

 3] 

= ICVD(U(3), D(3), V(3), M(3), FT
 , R3, f ); 

Patches are first converted to intensity vectors, and then    nor- 
malized to make the features more robust against  illumination 

Û (3) = V̂ (3) (3) 

0   , D̂
 (3) = (D̂ 

0  )
T , variations. Each of them is represented by a vector y ∈ RG×1, 

V̂ (3) = Û (3) (3) where G denotes the patch size. The sparse coefficient  vector 

0   , M̂
 3 = (M̂ 

0   )
T .  

β of each patch is computed  by 

 

with I∗ = I3 + Ir . Based on TD, the task of IRTSA is to 
min "yi − Dβi  

2 + λ"βi"1 (8) 
i 

learn the dominant subspace of A∗ incrementally, given    the 
TD results of A and subtensor F. With the mergence of the where D ∈ RG× L is the dictionary learned by k-means++ [40] 

new subtensors, the column spaces of  A∗ ∗ (2) are extended using patches extracted from the target in the first frame, L   is 

at the same time when the row space of A∗   is extended. the number of cluster centers. 
Unlike  most  LSR-based  methods  which  either  compute 

The idea of IRTSA is to update   U(k)D(k)V(k)T 
(k 1, 2, 3) 

= 
with new columns or rows of corresponding unfolding  matri- 

ces using the ICVD algorithm. The procedure of the IRTSA 

algorithm is listed in Algorithm  2. 

 
III. PROPOSED TRACKING ALGORITHM 

In this section, we present the proposed algorithm in details. 
Our tracking algorithm is implemented under the particle filter 
framework [13], which will be introduced first in Section III-A. 

Its appearance model and likelihood function p(Yt|Xt) are 

described in the following  sections. 

 
A.  Bayesian Framework 

Let Xt  = {xt, yt, θtst, βt, φt} denotes  the  state  of  a  target 
at time t, where xt, yt, θtst, βt, φt are the x, y translations, the 
rotation angle, the scale, the aspect ratio and the skew, respec- 

tively. Given a set of observations Yt = {Y1, Y2,..., Yt} at the 
tth frame, the posterior probability is estimated recursively  as 

¸ 

statistics of these sparse codes or concatenate them to a long 

vector, we organize the sparse codes according to their cor- 

responding positions in the target template. Therefore,     these 

nr × nc sparse coefficient vectors with dimension L form a 

three-order sparse tensor A ∈ RL×nr×nc . In this way, which we 
call tensor pooling, the entire spatial arrangement information 

of local patches is well  preserved. 

 
C.  Online Learning and Similarity  Evaluation 

Each tracking result corresponds to a three-order sparse 

pooling tensor.  Supposing t  frames have  been tracked,   then 

a four-order tensor T ∈ RL×nr×nc×t is constructed with the 

mergence of  these  three-order  tensors.  Let  I1 = L, I2 = nr, 

I3 = nc, I4 = t, then T ∈ RI1×I2×I3×I4 . We  decompose ten-  
sor T  incrementally with the IRTSA  algorithm described    in 
Section II-D to capture the target appearance  variations. 

To evaluate a  test  tensor  J  ∈  RI1×I2×I3×1  computed  
with a candidate in a new frame, we define two different 
reconstruction error norms as 

p(Xt|Yt) ∝ p(Yt|Xt) p(Xt|Xt−1)p(Xt−1|Yt−1)dXt−1 (6)  
3 . . 

(j) 

 2 

(j)T 
. 

 

where p(Xt|Xt−1) represents the dynamic model between two 

consecutive states, and p(Yt|Xt) denotes the observation model 
that  estimates  the  likelihood  of  observing  Yt   at  state    Xt. 

RE1 =   (J − M) − (J − M)   
  

(1 ≤ i ≤ 3) 

×j  U · U 

j=1 

  
  
  

 
T 
. 2 

A particle filter [13] is applied for approximating the distri- 

bution over the location of the target and producing a set of 

  . 
− 

.
J(4) − M(4)

.
 

. 
(4) 

· 
(4) 

· (9) 

samples. The optimal state of the target in the current frame 

given all the observations up to the tth frame is obtained by  

the maximum a posteriori estimation over these samples   by 

where J(4) is the mode-4 unfolding matrix of J , M is the  

mean tensor of pooling tensors and M(4) is the row mean of  

the mode-4 unfolding matrix T(4). The variation cost is    com- 
X̂ t = arg max p

.
Y i|Xi

.
p
.
Xi|Xt   1

.
, i = 1, 2, . . . , N    (7) puted as Cost = γ RE1 + (1 − γ )RE2, where γ  is a weighted 

i t t t − 
t 

parameter. 

, A 

V 



 

− 

 
 

Algorithm 3 Proposed Tracking Algorithm 

Input: Initialized dictionary D and positive subspace param- 

eters; frames: Fk+1,..., Fn; object  state sk+1. 
Output:  Tracking results ŝt  at time t. 

1:  for t = k + 1 → n do 

2: Sample   candidate   states  p (1 ),..., p(m) with  particle 

filter around state ŝt−1; 
3: for i = 1 → m do 

4: Y(i)  =  ExtractPatches(Ft, p(i)); 
5: J (i) = TensorPooling(Y(i), D); 

6: Evaluate likelihood l(i) with J (i) and  positive and 

negative subspace parameters using (9) and (10); 

7: end for 

8: [maxval, maxid] = max(l(1),..., l(m)); 

9: ŝt = p(maxid); 
10: if  maxval >γ  then 

11: Collect J (maxid) as a positive sample for updating; 

12: Npos = Npos + 1; 

13: if Npos == T then 
14: Update positive subspace with IRTSA  algorithm; 

15: Npos = 0; 
16: end if 

17: end if 

18: Sample negative images and obtain their pooling tensors 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 3. Overall performance of compared trackers on the 51 sequences. Only 
the top 11 trackers are displayed for   clarity. 

 
 

where Cost(+) and Cost(−) are the costs computed on positive 

and negative tensor subspaces,  respectively. 

 
E.  Update Scheme 

During tracking, the holistic appearance of the target may 

change a lot, but its normalized local appearance will roughly 

remain the same as in the first frame. Therefore, we keep      

the overcomplete dictionary learned in the first frame fixed 

throughout the tracking process, which captures most local 

patterns of the target and can also avoid being deteriorated by 

tracking failure. (1) 
J 

(s) 
∼ J On  a  fixed  dictionary,  the  target  appearance  variation is 

19: Learn negative subspace with J (1) ∼ J (s) using   TD 
algorithm. 

20:  end for 

 

 
Consequently, the likelihood function is defined as 

 

p(Yt|Xt) ∝ exp(−Cost). (10) 

 
D.  Discriminative Framework 

Recently, the discriminative framework has been success- 

fully utilized in many tracking-by-detection algorithms. By 

taking negative samples into account in the appearance mod- 

eling process, the tracker is able to distinguish the object from 

the background and exclude shifted samples to avoid drifting. 

In this paper, motivated by the success of discriminative 

models in visual tracking, we propose a discriminative frame- 

work to further improve the performance. The positive samples 

are collected one per frame using the pooled tensor features 

of tracking results in the tracked frames, and the positive sub- 

space is learned incrementally using the IRTSA algorithm as 

described above, while the negative samples are collected only 

in the last tracked frame by extracting patches several pixels 

away from the estimated target location. The negative tensor 

subspace is learned directly via the TD algorithm by    pooling 

tensors of these negative  samples. 

After positive and negative models are trained, the costs of  

a candidate tensor on both subspaces are computed to tell how 

similar the candidate is to be a positive or negative sample. 

Finally, the likelihood of each candidate tensor is evaluated as 
. .. 

adapted by incrementally updating the subspace of pooled ten- 

sors. In the incremental updating procedure, we do not take  

all the estimated results for updating, which are vulnerable     

to background clutter, occlusions or tracking failure. Instead, 

under the discriminative framework, we collect the estimated 

candidates which are more likely to be positive samples.  That 

is, Cost(−) > Cost(+) + ‹, where ‹ is the threshold parameter. 
Therefore, the likelihood is updated  as 

p(Yt|Xt) ∝ exp
. .

Cost(+) − Cost(−)
.. 

> exp(‹). (12) 

The occluded or missed samples are more similar to neg- 

ative samples, whose likelihoods are smaller. The above 

mentioned updating scheme is able to exclude ill  samples 

when updating. Supposing the first few k frames (in our exper- 

iments, k = 5) have been tracked using a simple tracking 
approach. The positive subspace is initialized via the TD algo- 

rithm with k corresponding pooled tensors. The main tracking 

procedure for the remaining frames is shown in Algorithm   3. 

 
IV. EXPERIMENTS 

To evaluate the performance of our tracker, we follow the 

protocol suggested in a recent benchmark [5]. Our tracker       

is  tested  on  51  challenging  sequences  and  compared  with 

29 recent state-of-the-art trackers with  their  results  pub-  

licly available on the benchmark [5]. Some of the state- of-

the-art trackers are: struck tracker [7], SCM tracker [9], TLD 

tracker [41], VTD tracker [42], CT tracker [43], ASLA tracker 

[44], CSK tracker [45] and IVT tracker   [10]. 

 
A. Implementation Details 

The proposed tracker is implemented in MATLAB  R2013a 

p(Yt|Xt) ∝ exp
.
− Cost(+) − Cost(−)

 (11) on an Intel Core i7-2600 3.4 GHz CPU with 8 GB memory. 

; 



 

 

 
 

Fig. 4. Precision plots for different challenges namely: background clutter, deformation, fast motion, in-plane rotation, illumination variation, low resolution, 
motion blur, occlusion, out-of-plane rotation, out-of-view, and scale variation. Our approach performs favorably on 8 out of 11 challenges in terms of precision. 

 

Templates are normalized to 32 × 32, and the patch size is  

set to 6 × 6. Dictionary is learned by k-means++ [40] with     

c  = 50 cluster centers. Sparse coding is implemented with  
the  SPAMs  package  [46]. The  number  of  negative samples 

is set to 200, and positive ones are obtained one per frame.  

We set the  update  frequency  to  5  and  update  threshold  τ 

to 1.0. We use tensor class and  TD  codes  provided  pub-  

licly by [47]. The preserved ranks of the positive subspace   

are set as [40 10 10 min(t, 25)], where t is the number of 

tracked frames, and those of the negative  subspace are set     

as [40 10 10 25]. Under the particle framework, the particle 

number is set as 600. In most videos of the benchmark, only 

slight shifts of targets exist in consecutive frames, instead of 

abrupt motions. Therefore, we choose the appropriate values 

[10 10 0.015 0 0 0] for the affine parameters empirically. The 

λ in (8) is set to 0.01 and the weighted parameter γ with 

respect to RE1 and RE2  is set to 0.33. All these parameters  

are fixed on all the tested sequences for fair   comparison. 

 
B. Quantitative Evaluation 

1) Evaluation Criteria: The precision plots and success 

plots [5] are applied to evaluate the robustness of trackers.     

A precision plot indicates the percentage of frames whose 

estimated location is within the given threshold distance to   

the ground truth. A success plot demonstrates the ratio of 

successful frames whose overlap rate is larger than the given 

threshold. The precision score is given by the score on a selected 

representative threshold (e.g., 20 pixels). The success score is 

evaluated by the area under curve (AUC) of each tracker. For 

clarity, only 11 top trackers are illustrated for each    metric. 

2) Overall Performance: The overall performances of the 

top 11 trackers on the 51 sequences are evaluated with the suc- 

cess plots and precision plots, as shown in Fig. 3. For the 

precision plots, the results at an error threshold of 20 pixels  

are used for ranking, and for the success plots, we use AUC 

scores to rank the trackers. The performance score of each 

tracker is shown in the legend of Fig.   3. 

It is observed from Fig. 3 that struck, SCM, and our tracker 

achieve good tracking performance. In the precision plots, our 

tracker outperforms struck by 12.08% and outperforms SCM 

by 13.12%. In the success plots, our tracker performs 9.62% 

better than SCM and 16.74% better than struck. Overall, our 

tracker outperforms the state-of-the-art trackers in terms of 

location accuracy and overlap precision. 

The robustness of our tracker could be attributed to the fol- 

lowing. First, the discriminative nature of local sparse codes 

ensures its effectiveness in visual tracking. Compared with 

pooling vectors, pooling tensors can deliver more discrimi- 

native, structural information of the target, which improves  

the robustness and accuracy of our approach. Second, the 

incremental tensor subspace learning algorithm could ele- 

gantly learn the main patterns of the target appearance and 

capture its variations timely. Third, the proposed discriminative 

framework and the robust updating scheme further     improve 



 

 

 
 

Fig. 5. Success plots for different challenges namely: background clutter, deformation, fast motion, in-plane rotation, illumination variation, low resolution, 
motion blur, occlusion, out-of-plane rotation, out-of-view, and scale variation. Our approach performs favorably on 9 out of 11 challenges in terms of success. 

 

our approach against challenging factors in tracking such as 

occlusion, background noise, and drifting. 

3) Performance Per Challenge: Several factors can affect 

the performance of a visual tracker. In the  recent  bench-  

mark [5], the 51 sequences are annotated with 11 different 

challenges that may affect tracking performance. Our approach 

performs favorably on 8 out of 11 challenges in terms of pre- 

cision plots and 9 out of 11 challenges in terms of success 

plots. Figs. 4 and 5 illustrate the precision plots and success 

plots on all the 11  challenges. 

On the background clutter subset, our tracker achieves the 

best performance, which can be attributed to the informative 

tensor pooling method and the discriminative framework to 

avoid drifting. On the motion blur subset, both struck and our 

method outperform others. On the out-of-plane rotation subset, 

our tracker provides outstanding performance, which may be 

benefited from the subspace learning framework to capture the 

main patterns of the target appearance and adapt to the new 

patterns timely. On the deformation and illumination variation 

subset, both SCM and our approach perform better than other 

trackers, which indicates that local representation methods are 

effective in dealing with transformations, and that normalized 

intensity features are less vulnerable to illumination   changes. 

 

C. Comparison Between Different Pooling Operators 

In this section, we qualitatively and quantitatively  com- 

pare the tracking performance of trackers based on    different 

 
 

Fig. 6. Overall performance of trackers with different pooling operators on  
the 51 sequences. The trackers include APT, MPT,  CPT, and   TPT. 

 
 

pooling operators. Four trackers, i.e., the tensor pooling-  

based tracker (TPT), the average pooling-based tracker (APT), 

the max pooling-based tracker (MPT), and the concatenation 

pooling-based tracker (CPT), are implemented under the same 

tracking framework as described in previous sections.  The 

only few differences of these four trackers are the pooling 

operators and the corresponding subspace learning schemes. 

For  vector  pooling-based  methods,  the  incremental  PCA is 

applied to update the target subspaces, and the number of 

bases is set to 4 = 25. For the proposed  tensor  pooling- 
based  method,  we  use  the  IRTSA  algorithm  to  learn   and 

update the tracking model, and the preserved ranks are set     

to [40, 5, 5, 4]. 

1) Overall Evaluation: The  four  trackers  are  tested  on 

51 benchmark sequences [5] and evaluated with the overall 



 

 

 
 

Fig. 7. Visual comparison of four different pooling operators-based trackers on sequences Jumping, Football, and Basketball. In Jumping, the target is under 
severe motion blur. In some frames of Football, the background objects are very close to the target. In Basketball which is a failure case of our proposed 
algorithm, the nonrigid transformation is the main   challenge. 

 

success plots and precision plots. Two popular trackers, the 

struck [7] and SCM [9], which are the recent state-of-the-art 

trackers, are added for comparison. The evaluation results are 

shown in Fig. 6. As we can see from Fig. 6, TPT and CPT 

significantly outperforms APT and MPT, and even performs 

better than struck and SCM, which indicates that the suffi- 

cient information contained in the corresponding two kinds of 

pooling features make them more discriminative and obtain 

favorable results. TPT obtains much better results than CPT, 

which can be attributed to the intrinsic structural information 

exploited in the tensor pooling operator and the corresponding 

tensor subspace learning scheme. It is also observed from the 

plots that APT achieves better performance than MPT, which 

may be because that the APT averages all the local features 

while MPT only takes a value from one of the local features for 

each dimension, and the ignorance of most features degrades 

its performance. Overall, the proposed tensor pooling opera- 

tor is shown to have superior properties against the other three 

vector pooling operators. 

2) Visual Comparison: To compare the four pooling oper- 

ators intuitively, we select visual tracking results on some 

representative sequences, as shown in Fig. 7. In sequence 

Jumping, the target is under severe  motion blur caused by   

the fast motion of the jumping boy. The average pooling and 

MPTs fail to track the sequence, which drift several pixels 

away or mistakenly lock to the background. The CPT performs 

better, but it still shifts away or estimates the scale inaccu- 

rately in some frames. Our proposed tensor pooling-based 

method successfully lock the target till the end and achieves 

the best performance. In sequence Football, the background 

contains objects that are very similar to the target, which 

makes the average pooling and  MPTs  incorrectly  locks  to 

the background. The CPT drifts away when occlusion occurs. 

The TPT produces promising results. The visual   comparison 

results on the two sequences indicate that, in complex situ- 

ations such as background clutter, motion blur, and similar 

objects interference, the tensor pooling-based method is more 

capable of exploiting discriminative information to identify the 

target. 

Sequence Basketball is a failure case of our method but a 

successful example of max pooling and concatenation pooling- 

based methods. The  player  rotates  its  body  and  changes  

his poses frequently, and is sometimes occluded by other 

players. The max pooling-based method performs well on this 

sequence, though sometimes shakes around the target center. 

This is because that the ignorance of spatial information of 

local features makes the method invariant to nonrigid transfor- 

mations. The concatenation pooling-based method, although 

not so accurate, successfully tracks the target. Our method, 

however, fails in this sequence. It is mainly because the struc- 

tural information of local features contained in pooled tensors 

limits its flexibility in handling severe target  deformations. 

 
D. Qualitative Evaluation 

In this section, we present a qualitative evaluation of the 

tracking results. Twelve representative sequences with different 

challenges are selected from the 51 sequences. The four 

dominant challenges of these sequences are occlusion, illumi- 

nation variation, object deformation, and out-of-plane rotation. 

Figs. 8–10 show some screenshots of the tracking results of 

our tracker and some competitive state-of-the art   trackers. 

1) Occlusion:  Occlusion  is  one  of  the   most   general 

and critical challenges  in  visual  tracking.  Fig.  8  illus-  

trates tracking results on  three  representative  sequences  

(i.e., Walking2, Jogging1, and Woman) where objects are 

severely or long-term occluded. In  the  Walking2  sequence, 

the walking woman is occluded by a man over a long term 

(e.g., #187–#235 and #369–#378), and the similarity  between 



 

 

 
 

Fig. 8.         From top to bottom are representative results of trackers on sequences Walking2, Jogging1, and Woman, where objects are heavily occluded. 

 

 

Fig. 9.          From top to bottom are representative results on sequences Car4, Fish, and Trellis, where objects suffer from significant illumination variations. 

 

 

the target and the background makes the tracking more chal- 

lenging. The ASLA, struck, VTD, and TLD methods miss   

the walking man when occlusion occurs (e.g., #235–#357). 

SCM and DFT fails to track the scale variation of the woman. 

Only VTS and Our method accurately track the target till the 

end. In the Jogging1 sequence, there is a short-term com-  

plete occlusion for the person (e.g., #73) as well as scale 

variation. Most trackers lock to the obstacle during occlusion. 

Only TLD and our tracker are able to reacquire the object and 

track the person to the end of the sequence. The robustness    

of TLD against complete occlusion is because of its reini- 

tialization scheme, while the robust updating scheme in our 

method also ensures that our model will not be contaminated 

by missed objects. In the Woman sequence, the person under- 

goes frequent long-term occlusions by cars. The TLD, VTD, 

VTS, CSK, and ASLA methods drift away from the target 

when the person gets occluded. Only struck, SCM and our 

tracker successfully lock the target for the whole sequence. 

The robustness of our method against occlusion could be 

attributed to the robust updating scheme to prevent the model 

from being contaminated by obstacles. 

2) Illumination Variations: Fig. 9  shows  tracking  results 

on three challenging sequences (i.e., Car4, Fish, and Trellis), 

where   objects   undergo   significant   illumination   changes. 



 

 

 
 

Fig. 10. From top to bottom are representative results on sequences David, Skating1, and Crossing. Object deformation is the main challenge of these 
sequences. 

 

In sequence Car4, the target undergoes drastic illumination 

variation when the car runs under the tree shade (e.g., #5     

and #430) and passes through a bridge (e.g., #200). Along 

with the illumination changes are scale variations. It is dif- 

ficult to handle both of these two challenges. TLD, VTD,    

and VTS drift away when the car goes under the arch of the 

bridge, and struck and CSK fail to track the scale variations. 

ASLA, SCM, and our tracker achieve the best accuracies in 

this sequence. In sequence Fish, the light condition of object 

changes and the camera moves fast. CSK drifts away and  

VTD and VTS methods perform unstable and shake around 

the target position. Struck, ASLA, and our method obtain more 

accurate tracking results. In sequence Trellis, the person walks 

from a dark place to a sunny outdoor environment, where the 

target undergoes drastic illumination variations. The out-of- 

plane rotation and background clutter cast more difficulties   

in tracking. Most trackers drift away when the illumination 

condition changes, and some of their tracking results shake 

away frequently. Struck and our method lock the target more 

stably than others, and our tracker obtains the best accuracy. 

The robustness of our tracker against illumination variations 

can be attributed to the normalized local intensity features, 

since they capture local contrast information that is not sus- 

ceptible to global light condition changes. The discriminative 

nature of sparse codes further improves the robustness of our 

method. 

3) Object Deformation: As shown in Fig. 10, sequences 

David, Skating1 and Crossing are selected to evaluate the 

robustness of trackers against  nonrigid  object  deformation. 

In the David  sequence,  the  person  changes  the  orientation 

of his face over time, and the varying illumination  also  

makes the tracking harder. SCM and DFT fail to lock the 

target. Struck, VTS and our tracker achieve the best per- 

formance. In the Skating1 sequence, the dancer continuously 

changes her pose under drastic illumination variations and    a 

complex background. Struck, TLD, SCM, VTD, ASLA, and 

VTS gradually drift away when the target’s pose and light 

condition change. CSK and our  method  successfully  track 

the sequence and achieve the most stable performance. In the 

Crossing sequence, the walking person moves from a shadow 

area to a bright one. Nonrigid deformation and drastic illu- 

mination variation are the main challenges when performing 

tracking on this sequence. TLD, VTD, and VTS lose the target 

when the target passes through the dark area. ASLA, struck, 

SCM, and our method successfully track the person till the  

end and our tracker obtains the highest accuracy.  The rea-   

son that our tracker performs well on these three sequences 

can be explained as follows. First, the flexibility of the local 

appearance model makes our method less susceptible to object 

transformation. Second, the incremental subspace learning 

algorithm is able to capture main patterns of most target poses 

and adapts to the new ones timely. Third, the discriminative 

framework further improves the tracking performance of our 

tracker. 

 
 

V. CONCLUSION 

In  this  paper,  we  have  proposed  to  represent  the  tar- 

get and candidates by pooling sparse tensors, and formulate 

tracking as an online tensor subspace learning problem in a 

discriminative framework. The pooled tensors could deliver 

more informative and structured information, which poten- 

tially enhances the discriminative power of the appearance 

model and improves the tracking performance. The proposed 

robust updating scheme also proves to be effective in avoiding 

introducing tracking failures into model updating. Experiments 

on a recent comprehensive benchmark with 29 state-of-the-art 

trackers demonstrate the effectiveness and robustness of our 

tracker. More comparison results between different pooling 

operators demonstrate the superior performance of the  tensor 



 

 

pooling approach. As a general method for building global 

representation with local descriptors, we believe the tensor 

pooling scheme can be extended in a wide range of vision 

tasks such as object detection and pose estimation, where local 

appearance model should be further exploited. 
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