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Abstract— The target of cross-modal hashing is to embed 

heterogeneous multimedia data into a common low-dimensional 
Hamming space, which plays a pivotal part in multimedia 

retrieval due to the emergence of big multimodal data. Recently, 
matrix factorization has achieved great success in cross-modal 
hashing. However, how to effectively use label information and 

local geometric structure is still a challenging problem for these 
approaches. To address this issue, we propose a cross-modal 
hashing method based on collective matrix factorization, which 

considers both the label consistency across different modalities 
and the local geometric consistency in  each  modality.  These  
two elements are formulated as a graph Laplacian term in the 

objective function, leading to a substantial improvement on the 
discriminative power of latent semantic features obtained by 
collective matrix factorization. Moreover, the proposed method 

learns unified hash codes for different modalities of an instance  
to facilitate cross-modal search, and the objective function is 
solved using an iterative strategy. The experimental results on  

two benchmark data sets show the effectiveness of the proposed 
method and its superiority over state-of-the-art cross-modal 
hashing methods. 

Index Terms— Cross-modal hashing, multimedia retrieval, col- 
lective matrix factorization, label consistency, local geometric 

consistency. 

I. INTRODUCTION 

ITH the explosive growth of multimedia data, it is of 

particular interest to develop algorithms for scalable retrieval 

of similar visual content in large-scale datasets. In the 

community of computer vision, their applications can be 

found in various tasks such as visual categorization [1], [2], 

image/video retrieval [3], image annotation [4], object detec- 

tion/recognition [5] and action recognition [6], [7]. Among 

them, the most fundamental scheme  is  the  nearest  neigh- 

bor (NN) search: given a query object, one should determine 

the most similar entity in a dataset and assign its label to the 
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query. However, NN search is of linear time complexity with 

respect to the sample size of a dataset. To improve computa- 

tional efficiency, tree based techniques and hashing techniques 

are the most popular methods nowadays. The weakness of tree 

based methods is that they are unable to effectively deal with 

high-dimensional data. By contrast, the main idea of hashing 

methods is to transform high-dimensional data into compact 

binary codes, and hence data dimension is not a significant 

problem for hashing based NN search. NN search is then 

conducted by finding the entities that have codes with a small 

Hamming distance from the query, which can be efficiently 

computed via fast  bit-wise  XOR  operation.  Additionally, 

the representation of binary codes can reduce tremendous 

storage cost compared with traditional feature  descriptors. 

Most previous hashing methods concentrated on producing 

binary codes for data within the same modality. They can be 

categorized as data-independent and data-dependent methods. 

One of the most well-known data-independent methods is 

locality sensitive hashing (LSH) [8], [9], which selects random 

linear projections independent of training data as hash func- 

tions. This idea was further explored in [10] and [11]. Data- 

dependent methods learns project functions from training data, 

which can produce more compact and discriminative hash 

codes than data-independent methods. One representative work 

is  spectral hashing [12], in which hash codes are generated  

by thresholding the Laplace-Beltrami eigenfunctions of man- 

ifolds. PCA hashing [13] uses  principle component analysis  

to learn hash functions. Moreover, various machine learning 

techniques have been applied to uni-modal hashing, such as 

manifold learning based approaches [14] and kernel learning 

based approaches [15], [16]. 

In practical applications, more and more multimodal data 

are generated owing to the rapid development of information 

industry. For example, a web image may have relevant text 

around it and a YouTube video often has associated tags and 

comments. Therefore, more research interest has been shifted 

from single-modal hashing to cross-modal hashing. It is worth 

noting that the idea of multi-view learning [17] is often used 

for cross-modal hashing. In terms of the utilization of label 

information, we can roughly group the existing cross-modal 

hashing methods into three categories, i.e., unsupervised meth- 

ods [18]–[24], semi-supervised methods [25] and supervised 

methods [26]–[33]. In a general sense, label information is 

useful for learning more discriminative features despite that 

some labels may be corrupted and inaccurate [34], [35]. 

Therefore, supervised cross-modal hashing approaches can 

often achieve better retrieval performance. 



 

 
 

 
 

Fig. 1.    Pipeline of the proposed  approach. 

 

 

Matrix factorization has a long history and many well-

known techniques such as singular value decomposition, LU 

decomposition, QR decomposition and eigendecomposi- tion 

have been widely used in computer vision. Recent efforts are 

mainly devoted to investigating  various  constraints  on the 

factors such as positivity, sparsity and rank. The most 

significant achievement brought by these  developments may 

be the progress in compressive sensing. Matrix factorization 

also plays an important role in dealing with cross-modal 

hashing, which has achieved impressive results in mining 

semantic concepts or latent topics from image/text. Under the 

assumption that each modality of an instance has identical hash 

codes, Collective Matrix Factorization Hashing (CMFH) [19] 

learns unified hash codes via collective matrix factorization, 

which is used to find the latent factor model from different 

modalities. In [20], Latent Semantic Sparse Hashing (LSSH) 

learns latent semantic features for images and text using sparse 

coding and matrix factorization respectively, and then maps 

them into a joint abstract space to generate unified hash codes. 

Although the results of these two methods  are  promising, 

hash codes are learned in an unsupervised way and label 

information is not fully considered. Moreover, the preservation 

of intra-modal similarity is not taken into  account. 

To address these issues, we propose a supervised cross- 

modal hashing approach named Supervised Matrix Factoriza- 

tion Hashing (SMFH). We consider preserving intra-modal 

similarity as maintaining the local geometric structure of each 

modality, and enforce supervised learning by leveraging the 

label consistency between different modalities, which eventu- 

ally boil down to a graph regularization term in  the  objec- 

tive function. We use collective matrix  factorization to  learn  

a common latent semantic space, and incorporate the deduced 

 

graph Laplacian to make data with the same  class  labels  

have similar semantic features. The given objective function is 

solved by alternate optimization. And the unified hash codes 

are generated from the semantic space by quantization. Fig. 1 

depicts the working flow of the proposed  algorithm. 

Our work makes the following  contributions: 

x We put matrix factorization based cross-modal hashing 

into a supervised framework, which improves retrieval perfor- 

mance greatly. 

x Our method not only considers the label information of 

data, but also explores the local manifold structure information 

in each modality, making the generated binary codes more 

discriminative. 

x We conduct extensive experiments on two datasets to eval- 

uate the proposed SMFH. Experimental results demonstrate 

that our approach is competitive with state-of-the-art methods. 

The rest of this paper is organized as follows. In Section 2, 

we briefly review some  related  work.  Section  3  presents 

the detail of the proposed approach. In Section 4, we show 

experimental results in comparison to existing methods on two 

popular datasets, followed by the conclusion in Section   5. 

 

II. RELATED WORK 

We  review the related work from four  aspects. 

The first category is unsupervised cross-modal  hashing. 

The basic  idea  of  learning  cross-modal  hashing  functions  

is closely related to CCA [21],  which  projects  data  from  

two modalities into a common space where the correlation 

between them is maximized. Inter-media Hashing (IMH) [28] 

considers both inter-media consistency and intra-media con- 

sistency in  learning hash functions, whose solution is    based 
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on an integrated linear regression model. Linear  Cross-  

Modal Hashing (LCMH) [18] borrows the idea from anchor 

graphs [36], which aims to preserve intra-similarity and inter- 

similarity in a common Hamming space. CMFH [19] is among 

the first to apply collective matrix factorization to cross- 

modal hashing, which learns latent factor model from different 

modalities and generates unified hash codes to support cross- 

modal search. Latent Semantic Sparse Hashing (LSSH) [20] 

also uses the assumption that the hash codes of different 

modalities of one instance are identical. It first uses sparse 

coding and matrix factorization to learn semantic features for 

images and text respectively, and then maps them into a joint 

abstract space to reduce semantic difference. And hash codes 

are generated in the obtained abstract space by quantization. 

LBMCH [37] simultaneously learns Hamming spaces for each 

modality and the semantic correspondences between these 

heterogeneous Hamming spaces. Full-space local topology 

extraction (FS-LTE) [23] first learns an intermediate  com- 

mon subspace by extracting the shared manifold structure 

across different modalities, and then obtains Hamming embed- 

ding by exploiting the local similarity in the intermediate 

subspace. Regularized cross-modal hashing (RCMH) [33] 

employs a three-step strategy, including hashing, regularization 

and partitioning, to learn a common multi-modal Hamming 

space. The last phase is designed to refine the decision planes 

obtained in the first phase. 

learned using the kernel logistic regression with a sampling 

strategy. 

The   last   one   concerns   methods   that    use    geomet- 

ric information to enhance representation discrimination. 

Zheng et al. [40] took into account the local manifold struc- 

ture of data in learning sparse coding, making the obtained 

sparse representations better characterize the intrinsic geomet- 

ric information of data. In [41], the geometric structures of the 

learned dictionary and sparse coefficients are simultaneously 

considered, which are described as a non-local self-similarity 

term and a graph Laplacian term in the objective function. 

Jiang et al. [42] addressed the efficient solution to graph 

regularized sparse coding. They decomposed the optimization 

of graph regularized sparse coding into two subproblems and 

alternately solved them until convergence. 

Motivated by the promising results delivered by matrix 

factorization techniques in  cross-modal retrieval [19], [20],  

we make further efforts to explore the application of collective 

matrix factorization by putting it into a supervised learning 

framework. Moreover, we study leveraging local geometric 

information to boost the discriminative power of the learned 

hash codes. The presented approach is developed by consid- 

ering all these ingredients. 

 

III. SUPERVISED MATRIX FACTORIZATION HASHING 

Suppose that we  have training data with  two     modalities, 
The   second   category   is   semi-supervised    cross-modal 

hashing. Semi-supervised hashing concentrates on using  both 
X(1) = {x 1 1 

1 , · · ·  , xn } and X 
(2) 2 2 

= {x1 , ···  , xn }, which describe 

labeled   and   unlabeled   samples   to   learn   hash functions. 
the same objects and n is    the number of objects. Each object 
consists of an image and its accompanying text. For the    i -th 

Although  many  algorithms  for  uni-modal  data  have   been 
proposed  [38],  [39],  this  kind  of  work  concerning   multi- object, x

(1) 
∈ Rd1 is a d1-dimensional image descriptor,   and 

modal  data  is  limited.  Cheng  et  al.  [25]  presented a semi- 
(2) 

i ∈ R is  a  d2-dimensional  text  feature  (d1   /=  d2  in 
most cases). Without loss of generality, we consider that    the 

supervised  hashing  framework  using  multi-graph   learning. cross-modal  data  are  zero-centered,  i.e.,  
.n (1)

 

Semi-supervised information, which represents semantic simi- n (2) i=1 xi     = 0 and 

larity of each modality, is used to develop an efficient sequen- 

tial learning algorithm for obtaining hash  functions. 

The third category is supervised cross-modal hashing. 

Cross-Modal Similarity Sensitive Hashing (CMSSH) [26] 

formulates learning hash codes as a binary classification 

problem and uses the boosting algorithm to tackle it. Cross- 

view Hashing (CVH) [27] extends spectral hashing [12] from 

single modality to multiple modalities. Zhen and Yeung [30] 

presented a generative model, i.e., the probabilistic latent 

factor model, to learn hash functions from multi-modal data. 

Co-Regularized Hashing (CRH) [30] uses a boosted co- 

regularized framework to learn a set of hash functions for each 

bit of the hash codes from one modality. Zhang and Li [31] 

proposed an efficient supervised multimodal hashing approach 

with linear time complexity, in which the adopted sequential 

learning strategy enables it fitting into large-scale data. Sparse 

multi-modal hashing (SM2H) [22] models both intra-modality 

similarity and inter-modality similarity as a hypergraph and 

then learns the multi-modal dictionaries using hypergraph 

Laplacian sparse coding. Hash codes are generated by applying 

a sensitive Jaccard scheme to the obtained sparse representa- 

tions. Semantics-Preserving Hashing (SePH) [32] transforms 

the predefined semantic affinities into a probability distribution 

and approximates it  in  Hamming space. Hash  functions   are 

.
i=1 xi    = 0. 
The target of SMFH is to learn two groups of hash functions 

for image data and text data that are able to generate unified 

hash  codes,  i.e.,  f (x(1))  :  Rd1  →  {−1, 1}k  and  g(x(2)):  

Rd2 →  {−1, 1}k,  where  k  is  the  length  of  binary  codes.  
To guarantee that each modality can yield identical hash codes, 

we first adopt the similar idea as that in [19] to project 

heterogeneous data into a common latent semantic space, 

while simultaneously considering the label information and 

the local manifold structure of each modality in acquiring the 

semantic space. Image data and text data represented by the 

obtained semantic features are then mapped into a Hamming 

space by quantization. 

 
A. Collective Matrix Factorization 

Most cross-modal hashing methods are built upon a rea- 

sonable assumption that heterogeneous data with the same 

semantic label share some common subspace [18], [27], [43], 

which is often named the latent semantic space. In the latent 

semantic space, the semantic representations of relevant data 

from different modalities are close to each other. We follow 

this idea due to its many successful  applications. 

In this work, we obtain the common semantic representation 

of heterogeneous data describing the same object via collective 

x d2 
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matrix factorization [44], [45]. Collective matrix factorization 
(m) 
ij  (m  =  1, 2)  of  two  data x

(m)
 and  x

(m)  
from  the same 

was first used for relational learning, and one of its  important 
applications is to predict unknown values of a relation when an 

modality is defined as follows: .
1,   i f  x

(m)
 

 

(m) 

 

(m) 

 

(m) 

entity dataset and multiple observed relations among entities 

are available. 

(m) 

ij   = i ∈ Nk(x j    ) or  x j     ∈ Nk(xi ) 

0,  otherwise 
(7) 

Here we give a brief overview on collective matrix factor- 

ization. Suppose that we have two heterogeneous data matrices 

X ∈ Rd1×n and Y ∈ Rd2×n , where n is the number of samples. 
The factors returned  by  collective  matrix  factorization  are 

U ∈ Rd1×k, V ∈ Rk×n and Z ∈ Rd2×k , where k is the rank. V 

is the common factor in two reconstructions, i.e., X ≈ f1(UV) 

and Y ≈ f2(Z V), where fi is a possibly-nonlinear function. 
The average decomposable losses are defined  as: 

where Nk(·) denotes the set of k-nearest neighbors. According 

to our empirical study, we set the number of nearest neighbors 
to 5 throughout this  paper. 

To maintain the label consistency between two modalities 

and preserve the intra-modal similarity of each  modality  in 

the common semantic space, we can minimize the following 

function: 

1 
2 n n . . 

(m) 2 
.
 2 

L(U, V, Z|X, Y) = θ1 L1(U, V|X) + θ2 L2(Z, V|Y), (1) 

where  L1  and  L2  are  the  decomposable  loss  function  for 

Osc(S) = 
2 

( 

1 
m=1 i, j =1 

n 

sij  "si − s j " + 
i, j =1 

cij "si − s j " ) 

. 
(1) (2) 2 

X  ≈  f1(U V) and Y  ≈  f2(Z V) respectively, and 
.

i θi  = 1 
are the balance parameters. 

Collective matrix factorization provides a powerful facility 

to deal with multi-modal data. For the cross-modal hashing 

problem, we can use it to learn semantic features from different 
modalities: 

= 
2

 
i, j =1 

1 . 

= 
2

 
i, j =1 

where wij  = s
(1)

 

(sij  + sij  + cij )"si − s j " 

 

wij "si − s j   
2, (8) 

 
(2) 

Omf (U1, U2, S) = α"X(1) − U1S 2 
2 

ij  + sij  + cij . 
By some algebraic calculation, the function in Eq. (8)    can 

be reformulated as: 

+ (1 − α)"X(2) − U2S"F, (2) 

where U1 ∈ Rd1×k , U2 ∈ Rd2×k , S ∈ Rk×n , and k is the 
number of latent semantic factors. The i -th column vector si of 
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Osc(S) = 
2

 

 
n 
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i, j =1 

 

wij "si − s j  
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S is the common semantic representation of the i -th image data 

i and its accompanying text. Here α is a balance parameter. 

For  out-of-sample  instances,  we  map  original  image and 

text features into the latent semantic space by two linear 

projections respectively: 

SI = P1X(1), (3) 

ST = P2X(2), (4) 

where P1 ∈ Rk×d1 and P2 ∈ Rk×d2 . 

Under  the  assumption  that  we  have  the  same   semantic 

representations for the mapped features, we minimize the 

following function to learn such two linear  projections: 

= tr(S(D − W)ST ) 

= tr(SLST ), (9) 

where  W  ∈  Rn×n  consists  of  wij  in  the  i -th  row  and  

the   j -th column. D ∈  Rn×n  is  a  diagonal  matrix whose 
entries are the column sum of W, i.e., Dii = 

. 
j wij . Hence 

L = D − W is with the form of Laplacian matrix. So far we 
have obtained a  mixed graph regularization term    describing 

both label information and local manifold  structure. 
 

C. Overall Objective Function 

The overall objective function, consisting of the collective 

matrix factorization term Omf  in Eq. (2), the linear projection 

2 2 
term  Olp  in  Eq.  (5),  the  mixed  graph  regularization   term 

Olp(P1, P2) = "S − SI "F + "S − ST "F 

= "S − P1X "F + "S − P2X 
 
(2) 

 
"F. (5) 

Osc  in Eq. (9) and a Frobenius term, is given as   follows: 

min 
U1,U2,P1,P2,S 

O(U1, U2, P1, P2, S) 

B. Mixed Graph Regularization Term = Omf + Olp + Osc + λR(U1, U2, P1, P2, S) 

In  this  part,  we  describe  the  formulation  of  using  label = α"X − U1S"F + (1 − α)"X 
(2) 

− U2S"F 

information and local geometric structure. + β("S − P1X   "F + "S − P2X 
(2) 

"F) 
To   make  use  of  label  information,  we  first  model    the 

label consistency between the image modality and the text 

modality, and define the semantic affinity metric of two   data 

+ γ tr(SLST ) + λR(U1, U2, P1, P2, S), (10) 

where  the  regularization term  is  defined  as  R(·) = " ·  2   to 
x

(1) (2) resist overfitting. β, γ and λ are the tradeoff parameters of the 

i     and xi    from different modalities as  follows: 
.

1,   i f  x
(1) 

and  x
(2) 

have the same categor y 
corresponding terms.  We  set  α = 
λ = 0.01 throughout this paper. 

0.5, β = 100, γ = 1 and 

cij = 
i j 

0.   otherwise 
(6) The optimization problem stated  in  Eq.  (10)  is  hard  to  

be directly solved due to its non-convexity with five matrix 

We then define the local similarity metric to model the intra- 

modal similarity in each modality. The intra-modal  similarity 

variables U1, U2, P1, P2 and S. However, it is convex with 
respect to  any one  of the  five  variables in  the  case  that the 
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Algorithm 1 Supervised Matrix Factorization  Hashing 
 

 

Require:   Image feature matrix X(1)  and  text feature  matrix 

X(2),  the  semantic  labels  L̄  of  bimodal  data,  parameters 

α, β, γ, λ and the length of hash codes  k. 

Ensure:   Unified hash codes H, projection matrix  P1, P2. 

1: Center X(1) and X(2) by means, and construct the Lapla- 

cian matrix L according to Eqs. (8) and   (9). 

2: Initialize U1, U2, P1, P2, S by random matrices respec- 

tively. 

3: repeat 

4:  Fix P1, P2, S, update U1, U2  by Eq. (11) and   Eq. (12) 

respectively. 

5:  Fix  U1, U2, P1, P2, update S by solving   the Sylvester 

equation in Eq. (13). 

6:  Fix U1, U2, S, update P1, P2  by Eq. (14) and   Eq. (15) 

respectively. 
7: until convergence. 

8:  H   = sign(S) 
 

 

remaining four are treated as constants. Therefore, we can 

adopt an iterative strategy to solve this optimization   problem 
following the listed three steps until  convergence. 

we  comprehensively  compare  it  with  some  state-of-the-art 

cross-modal hashing approaches, including LCMH [18], CCA 

[21],  IMH  [28],  LSSH   [20]  ,  CMFH   [19],  CVH      [27], 

SCM_orth [31] and SCM_seq  [31]. 

 
A. Experimental Setup 

The details of the evaluated datasets are shown in Table II. 

Wiki. The Wiki dataset [47] is collected from “Wikipedia 

featured articles.” This dataset consists of 2866 multimedia 

documents grouped into 10 semantic categories and each 

document is an image-text pair. Each image is represented by 

a 128-dimensional Bag-of-Visual-Words SIFT feature vector 

and each text is represented by a 10-dimensional topics vector. 

Following the experimental protocol in [19], [20], and [47], 

we  randomly select  2173 documents as  the  training set  and 

the rest as the test  set. 

NUS-WIDE. The NUS-WIDE dataset [48] is a web image 

dataset downloaded from Flickr, containing about 270K 

images with annotated tags from 81 semantic concepts. Each 

image with its tag annotations can  be  taken  as  an  image- 

text pair. Following [49], we choose 10 largest categories 

consisting of 186577 images as the experimental data. The 

selected 10 categories include animal, buildings, clouds, grass, 

Step 1: Fix P1, P2, S, let   ∂ O
 

∂ O 

∂ U2 

λ 

= 0, the obtain: 
and lake, etc. Each image is represented by a 500-dimensional 

Bag-of-Visual-Words SIFT histogram and each text is repre- 

sented  by  a  Bag-of-Words  feature vector  based  on  the top 
U1  = X(1)ST (SST + I)−1, (11) 

α 1000  most  frequent  tags.  In  the  chosen  experimental data, 

U2 = X(2)ST (SST + 
λ
 

1 − α 

where I is the identity  matrix. 

I)−1, (12) we randomly sample 1866 image-text pairs as the test set and 

5000 image-text pairs randomly selected from the remaining 

documents are used as the training  set. 

Step 2: Fix U1, U2, P1, P2, let  ∂ O  = 0, then obtain: 

AS + SB + C = 0, (13) 

where 

A  = 2(αU(1)  U(1) + (1 − α)U(2)  U(2) + (2β + λ)I), 

We perform two kinds of cross-modal retrieval tasks. One is 

‘Img to Txt’, i.e., using image queries to search relevant text. 

The other is ‘Txt to Img’, i.e., using text queries to search 

relevant images. We employ the mean Average Precision 

(mAP) to evaluate the performance of the cross-modal retrieval 

results: 

B   = L  + LT , 

C   = −2(αU1
T X(1)+(1 − α)U2 

T X(2) +β(P1X(1) + P2X(2))). 

1 

mAP = 
N

 

N 
. 
 
i=1 

 

AP(qi), 

Note that Eq. (13) is a Sylvester equation [46]. We  can   solve 

it using the lyap function of  MATLAB. 
where qi  is a query and  N  is the number of queries.  AP(·) is 
computed by: 

Step 3: Fix U1, U2, S, let   ∂ O
 

∂ O 
∂ P2 = 0, the obtain: 

R
 1 

P1  = SX(1)
 (X(1)X(1)T 

λ 
I)−1, (14) 

β 

AP(q) = 

. 
Pq(r)ξ(r), 

T 
r =1 

P2  = SX(2)
 (X(2)X(2)T 

λ 
I)−1. (15) 

β 

where T  is the number of relevant entities in the retrieved set. 

Pq(r) represents the  precision of top r  retrieved entities   and 

The SMFH  approach is  summarized in  Algorithm 1.  When 
a new query xq comes,  SMFH  firstly  generates the  seman- 

tic representation sq according to Eq.  (3)  or  Eq.  (4).  And 
then we can obtain the hash codes using the  sign function  

Hxq  = sign(sq). 

IV. EXPERIMENTS 

In this section, we evaluate  the  proposed  approach  on  

two benchmark datasets, i.e., the Wiki dataset [47] and the 

NUS-WIDE dataset [48]. To  validate the proposed     method, 

ξ(r ) is defined as an indicator function whose value is 1 if the 

r th entity is relevant to query or 0  otherwise. 

Moreover, we study two types of  performance curves  on 

the Wiki dataset, i.e., the precision-recall curve and the topN-

precision curve. The precision-recall curve shows the 

precision as a function of different recall, which is a frequently 

used measurement on information retrieval performance. The 

topN-precision curve demonstrates the variation of precision 

with respect to different numbers of retrieved samples. As the 

evaluated data are randomly selected, all the reported results 

are averaged over 10 independent  trials. 

= 0, 

= 0, 

T 

+ 
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Fig. 2.    PR-Curves on the Wiki dataset Varying  Code Length (Img to    Txt). 

 

Fig. 3.    PR-Curves on the Wiki dataset Varying  Code Length (Txt to    Img). 

 

Fig. 4.    topN-Precision Curves on the Wiki dataset Varying  Code Length (Img to    Txt). 

 

 

B. Experimental Results 

We first study the experimental results on the Wiki dataset. 

Table I reports the mAP scores of different methods with 

respect to different hash code lengths. We have two obser- 

vations from Table I. Firstly, our SMFH approach yields  

much better mAP  results  than  the  state-of-the-art  methods 

in the overall experiments, which demonstrates its superiority 

over the compared methods. Specifically, SMFH outperforms 

CMFH by about 20% in the case that the hash code length is 

16 bits, which demonstrates that SMFH makes a substantial 

improvement on CMFH. Secondly, with  the  increment  of  

the hash code length, the performance of SMFH  continu- 

ously increases, which can be attributed to  its  ability  to  

better preserve the label consistency  across  modalities  and 

the local geometric information with longer codes. However, 

the performance of some compared methods such as  CCA 

and CVH degrades to some extent, which is also observed   in 

 

[19] and [32]. As discussed in [19] and [32], it can be boiled 

down to that the eigendecomposition solution may make the 

lower bits indiscriminative. 

The precision-recall curves are plotted in Fig. 2 and Fig. 3, 

and the topN-precision curves are plotted in Fig. 4 and Fig. 5. 

We have three observations from these experimental results. 

Firstly, SMFH outperforms all the compared methods, which  

is consistent with the mAP results. Secondly, the behavior of 

LCMH and CCA looks like random guess and the results are 

almost meaningless. Thirdly, even with relatively short binary 

codes (16 bits), SMFH still defeats the compared methods  

with longer binary codes (32 bits), showing the advantage of 

storage efficiency of our approach. 

We then study the results on the NUS-WIDE dataset, which 

are detailed in Table III. The results are somewhat different 

from those on the Wiki dataset. SMFH outperforms most of the 

compared methods apart from SCM_seq, which is   consistent 



 

Fig. 5.    topN-Precision Curves on the Wiki dataset Varying  Code Length (Txt to    Img). 

 

TABLE I 

mAP RESULTS ON THE WIKI DATASET. ITEMS IN BOLD INDICATE THE BEST PERFORMANCE 

 
 

 
 

 
 

    

 

 
 

 

 

 

 

 
    

 
    

 

    
     
     

 
    

     
     
     

 

 
 

 

 

 

 

 
    

 
    

 

    
     
     

 
    

     
     
     

 

with the experiments on the Wiki dataset. Additionally, we can 

observe that SCM_seq outperforms SMFH in the first task 

while producing quite close results compared with SMFH in 

the second task. We conjecture that it is because the identical 

constraint of hash codes from each modality in CMFH and 

SMFH is too  strict  for  the  NUS-WIDE  dataset.  However, 

in consideration of the huge advantage of SMFH in the 

previous experiments, we can learn that SMFH is competitive 

with the compared methods. 

Finally, we investigate the training time of all these methods. 

The experiments are conducted on the NUS-WIDE datset and 

run on a PC with Intel (R) Core (TM) CPU i7-4790@3.60GHz 

and 16GB RAM. Here we only evaluate the case that the code 

length is 16 bits. The results are reported in Table IV. We can 

observe that the time consumption of SMFH is of the same 

order of magnitude as that of CMFH. Although both of them 

involve the computation of matrix inversion, the time cost is 

acceptable in comparison with that of LSSH. As SMFH needs 

to solve the Sylvester equation in an iterative way,  it spends   

a little more time than CMFH in the training   phase. 

 
C. Effect of Graph Laplacian  Term 

To validate the advantage  of  the  mixed  graph  Lapla-  

cian term, we give two variants of  the  proposed algorithm  

for  comparison.  The  first  one  only  uses  local     geometric 

TABLE II 

THE DETAILS OF THE EVALUATED DATASETS 

 
 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 

consistency to construct the graph Laplacian term,and we 

redefine  wij  = s
(1) 

+ s
(2)  

in  Eq.  (8).  The  second  one only 
ij ij  

uses label consistency to build the graph Laplacian term, where 

wij = cij . These two methods are referred to as SMFH_lc and 

SMFH_gc for convenience. We evaluate their performance in 
the case of 16 bits length. The mAP results are summarized    
in  Table  V.  We   can  learn  that  the  graph  Laplacian   term, 

describing label consistency or local geometric consistency, 

produces a positive result. Notably, the mixed graph Laplacian 

term leads to better performance than the individual one, which 

verifies the effectiveness of the proposed strategy. 

 
D. Parameter Sensitivity 

There are four parameters in our SMFH, including α, β,  γ 
and λ in the objective function. In the previous    experiments, 

mailto:i7-4790@3.60GHz


 

 
TABLE III 

mAP RESULTS ON THE NUS-WIDE DATASET. ITEMS IN BOLD INDICATE THE BEST PERFORMANCE 

 
 

 
 

 
 

    

 

 
 

 

 

 

 

 
    

 
    

 

    
     
     

 
    

     
     
     

 

 
 

 

 

 

 

 
    

 
    

 

    
     
     

 
    

     
     
     

 

 
Fig. 6.    Parameter Sensitivity Analysis. 

 
 

 

Fig. 7.    Effect of Training Set Size on mAP on the NUS-WIDE    dataset. 

 
 

we empirically set α = 0.5, β = 100, γ = 1 and λ = 0.01. 
Here we conduct experiments to analyze the effects of different 
parameter settings on the algorithm performance. The exper- 
iments are performed by varying the value of one parameter 

while fixing the other three, in which the  code  length  is  

fixed to 16 bits. And the  mAP results  are used  to  evaluate 

the performance variation with respect to different parameter 

values. Fig. 6 plots the results on the test datasets. We can 

learn that all the parameters are not sensitive and SMFH can 

yield satisfactory results in a wide range of parameter  values. 

E. Training Set Size 

In this part, we analyze the effect of varying training set  

size on the NUS-WIDE dataset. The code length is also fixed 

to 16 bits in this evaluation. We vary the training set  size  

from 200 to 5000 with the gap of 500. Fig. 7 shows the mAP 

results of our SMFH as a function of different training set 

sizes. We can observe that the mAP results increase quickly  

as the training set size grows from 200 to 3500. When the 

training set size is larger than 3500, the performance of SMFH 

tends to converge. This demonstrates that SMFH is suitable for 



 

 
TABLE IV 

TRAINING TIME OF ALL THE EVALUATED METHODS ON 

THE NUS-WIDE DATASET 

 
 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

TABLE V 

EFFECT OF DIFFERENT GRAPH LAPLACIAN TERMS 

 

 

 
 

 

 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 

 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 

large-scale datasets and can achieve satisfactory performance 

with a reasonably small training  set. 

 
V. CONCLUSION 

In this paper, we have proposed an effective cross-modal 

hashing approach named Supervised Matrix Factorization 

Hashing. The proposed approach uses collective matrix factor- 

ization to generate unified hash codes to achieve cross-modal 

search. In particular, we use both label consistency across 

different modalities and local geometric consistency in each 

modality to make the learned hash codes more discrimina- 

tive. These two ingredients are formulated as a mixed graph 

Laplacian regularization term in the objective function. Exper- 

imental results on two benchmark datasets have demonstrated 

that SMFH outperforms several state-of-the-art methods. 
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