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Abstract— Feature pooling in a majority of sparse coding- 
based tracking algorithms computes final  feature vectors only 
by low-order statistics or extreme responses of  sparse  codes. 

The high-order statistics and the correlations between responses 
to different dictionary items are neglected. We present a more 
generalized feature pooling method for visual tracking by uti- 

lizing the probabilistic function to model the statistical dis- 
tribution of sparse codes. Since immediate matching between 

two distributions usually requires high computational costs, we 
introduce the Fisher vector to derive a more compact and 

discriminative representation for sparse codes of the visual target. 
We encode target patches by local coordinate coding, utilize 

Gaussian mixture model to compute Fisher vectors, and finally 
train semi-supervised linear kernel classifiers for visual tracking. 

In order to handle the drifting problem during the tracking 
process, these classifiers are updated online with current track- 

ing results. The experimental results on two challenging tracking 
benchmarks demonstrate that the proposed approach achieves a 
better performance than the state-of-the-art tracking algorithms. 

Index Terms— Object tracking, feature pooling, Fisher kernel, 
local coordinate coding, sparse  coding. 

 
 

I. INTRODUCTION 

ISUAL tracking has many important practical applica- 

tions in different areas, e.g. traffic transportation [1], video 

compression [2], and human computer interaction [3]. 

Although it has been studied for decades [4]–[6], it is still one 

of the most challenging tasks in computer vision. The main 

difficulty lies in establishing an effective appearance model to 

account for challenging appearance changes caused by factors, 

such as illumination variation, shape deformation, background 

clutter, and motion blur. Different visual descriptors are used 

to  establish  these  appearance  models  for  robust    tracking. 
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Fig. 1. Illustration of the estimated distribution and the correlation coef- 
ficients map. Left: the estimated distribution (the red solid line) of sparse 
codes in one dimension does not obey a single Gaussian distribution  but  
more likely a mixture Gaussian distribution. Right: correlation coefficients by 
sparse codes corresponding to different dictionary items further prove that 
different dimensions are correlated. 

 

 

Recently, sparse representation based tracking algorithms [7] 

have attracted much attention in face recognition [8], image 

deblurring [9] and classification [10]. 

It is well-known that a probabilistic distribution function  

can better characterize sparse codes of target patches, leading 

to a more generalized pooling framework for visual tracking. 

Since direct matching between distributions is time prohibitive 

in tracking, we propose to extract the Fisher vector from sparse 

codes and use the probabilistic model as the target repre- 

sentation. To instantiate our proposed pooling framework, we 

assume that sparse codes obey Gaussian mixture distributions, 

and develop a visual tracking algorithm using semi-supervised 

Fisher kernel classifiers. To make our approach computation- 

ally feasible, we further assume that each component of GMM 

takes on a diagonal covariance matrix. This assumption is 

obviously distinct from traditional sparse pooling methods. 

Taking average pooling [11] as an example, it not only 

assumes that sparse codes corresponding to different dictionary 

items are statistically independent, but also considers  that 

each sparse code obeys a single Gaussian distribution. Thus, 

average pooling approach gives rise to one mean value as 

representative of all the sparse coefficients corresponding to 

the same dictionary item. Unfortunately, these simplifications 

do not hold in many cases and distributions of sparse codes can 

be arbitrarily complex as illustrated in the left part of Fig. 1. 

At least in the case of an overcomplete visual dictionary, 

sparse coefficients are more likely to be correlative rather than 

independent as illustrated in the right part of Fig.   1. 

Under a particle filtering framework, our algorithm  

includes three main modules. The first module computes 

sparse codes for target  patches  using  local  coordinate 

coding  (LCC)  [12],  [13].  By  encoding  patches  with  local 



 

 

anchors in the manifold, LCC maintains locality of coordinate 

coding and produces similar sparse coordinate codes for simi- 

lar patches. The second module performs a generalized pooling 

operation on sparse codes by extracting the Fisher vector as the 

target representation for random sparse code vectors [14], [15]. 

Fisher vectors have shown excellent results on image retrieval 

and classification tasks [16]–[18]. The main idea is to char- 

acterize a signal by its normalized gradient vector from a 

generative probability model. Compared with the Bag-of- 

Words model (BoW), Fisher vector can not only characterize 

the probabilities of occurrences of different image  features, 

but also encode the high-order statistics of the distribution for 

image features. These works often assume that the image fea- 

tures are generated independently by GMM. While our method 

is under the framework of sparse coding and assume that 

sparse codes obey a probabilistic model. As shown in Fig. 1, 

we estimate the distribution of sparse codes in one dimension 

and find the distribution more likely obeys a mixture Gaussian 

distribution. After we get the probabilistic distribution function 

using these sparse codes, this function could be considered as 

the target representation. Fisher vector is used to avoid direct 

matching between distributions. As the third module, semi- 

supervised Fisher kernel classifiers are developed to compute 

the likelihood score for a candidate  target. 

The proposed method is significantly different to the exist- 

ing Fisher vector based image retrieval and classification 

methods [17], [18]. Firstly, they aim to find a discriminative 

representation for a sample to be classified using  GMM  

based Fisher vector. In contrast, we establish a generalized 

pooling framework by considering both high-order statistics  

of sparse codes and correlations between coding coefficients. 

In our method, Fisher vector is used to avoid the direct 

matching between distributions for computation efficiency. 

Secondly, they assume that the image features are generated 

independently by GMM, while our method assumes that sparse 

codes obey a probabilistic model. Thirdly, the linear SVMs are 

learned to classify samples in their work, but we learn a semi- 

supervised classifier by considering the similarity of samples 

for both labeled and unlabeled  samples. 

Tracking methods using sparse representation usually deter- 

mine the current target by minimizing the  holistic  appear- 

ance reconstruction error or using  a  sparse  pooling method. 

In sparse coding based tracking algorithms [7], sparse pooling 

methods usually encode local patches sampled from target 

regions, and then extract summary features from sparse codes 

of patches as the target representation. Previous pooling meth- 

ods such as concatenating pooling, average pooling, and max 

pooling only use  low-order  statistics  or  extreme  responses 

of sparse codes  to  derive  the  target  visual  representation.  

In contrast, we consider high-order statistics of sparse codes 

and correlations between coding coefficients corresponding to 

different dictionary items. Thus, we propose a probabilistic 

distribution function to better characterize sparse codes of 

target patches by a more efficient matching representation 

between distributions. Finally, we introduce GMM as the 

probabilistic distribution function to extract Fisher vectors for 

computation efficiency. Feature pooling using GMM based 

Fisher vector can be viewed as a special case of the   proposed 

generalized pooling framework. Our source code will be 

publicly available online.1 

The main contributions are summarized as  follows: 

• A generalized pooling method based on a probabilistic 

distribution function is proposed to extract summary fea- 

tures for sparse codes of target patches for object tracking. 

We propose to extract Fisher  vectors from sparse codes  

to derive compact and discriminative visual  descriptors. 

• We instantiate our generalized pooling method by 

developing a Fisher tracker,  where  GMM  models  

sparse code vector distributions, and a semi-supervised 

Fisher kernel classifier  is  utilized  for  classification.  

The extensive experiments on two challenging tracking 

datasets demonstrate better performance of our method 

compared with the state-of-the-art tracking  algorithms. 

 

II. RELATED WORKS 

Appearance modeling is one of the most significant issues in 

visual object tracking. Typically, appearance modeling consists 

of statistical modeling and visual representation [20]. The main 

task of statistical modeling is to establish mathematical models 

by statistical learning theories, while visual representation 

constructs robust object descriptors with different  features. 

Various tracking methods based on different statistical mod- 

eling techniques were designed to represent different statistical 

properties of the object. For example, Jiang et al. [21], [22] 

incorporated an adaptive metric learning method into the 

tracking framework to  obtain  the  optimal  distance  metric  

of different training samples. In [23], an ensemble of weak 

classifiers was trained online to distinguish the object from the 

background. But it is susceptible to drifting because the tracker 

updates its weak classifiers rapidly every frame. In order to 

overcome drifting, Babenko et al. [24] used multiple instance 

learning to learn a discriminative model to handle ambiguous 

positive and negative samples. However, this method would 

inevitably learn a poor classifier by introducing incorrect 

examples in the current frame, leading to tracking  failure. 

Kalal et al. [25] developed a tracker by bootstrapping binary 

classifiers with structural constraints. In [26], Grabner et al. 

also proposed a semi-online boosting algorithm by combining 

a given prior and the classifier to alleviate the drifting prob- 

lem. Different methods have been proposed to handle other 

challenges. For example, Oron et al. [27] presented locally 

orderless tracking to estimate  the  amount  of  local  disorder 

in the object, which specializes in nonrigid and deformable 

objects. Zhang et al. [28] modeled the drift problem by a 

multi-expert restoration scheme for robust tracking. To address 

the significant appearance changes  in  long-term  tracking,  

Ma et al. [29] solved translation and scale estimation of objects 

using correlation with temporal context. Hong et al. [30] built 

a representation that adapt to variations of object appearance 

during tracking by a cognitive psychology  principle. 

In visual tracking, researchers  have  proposed  many  

global and local visual descriptors to model the statistical 

characteristics of the target appearance. Ross et al. [31] and 

Ho et al. [32] flattened the intensity of the target region into  a 

1http://github.com/shenjianbing/poolingtrack 

http://github.com/shenjianbing/poolingtrack
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high-dimensional vector directly. Zhao et al. [33] introduced 

the color distribution to describe the object appearance, and 

Danelljan et al. [34] extended the CSK  tracker  [35],  [36] 

with color attributes on both photometric invariance and 

discriminative power. Ma et al. [37] proposed structural local 

sparse descriptors to learn a strong classifier for  tracking. 

Zhou et al. [38] used local regions of the object and the mean 

shift for tracking. Li et al. [39] combined spatio-temporal 

visual information by incorporating Dempster-Shafer infor- 

mation to estimate the state of an object. Kwon and Lee [40] 

proposed a visual tracking decomposition and applied 

different types of feature templates for robust  tracking. 

A. Fisher Vector 

Assume that a set of d-dimensional local sparse descriptors 

X = {xi, i = 1, ··· , p} for an image region are generated by a 
parametric distribution Pλ(x) independently. In our work, 
GMM  is  chosen  as  the  distribution to  model the generation 

process of local features in an image. Then, Pλ(x) can be 

written as 
K 
. 

Pλ(x) = ωk pk(x), (1) 

k=1 

where  pk  is the k-th component of GMM  with 
In  particular,  sparse  representation  based  tracking  meth- 

1 
. 

1
 T 1 

.
 

ods [7] have achieved great success by  considering  both  

local  and  global  target  appearances.  Mei  and  Ling      [41] 

pk(x) = 
(2π)d/2

 

|€k | 
1/2 

e 
− 2 (x−μk)  €− (x−μk) , (2) 

introduced sparse representation into visual tracking as a 

pioneering work by assuming that the visual target  is  a  

sparse linear combination of holistic and trivial templates. 

Wang et al. [42], [43]  assumed  that  the  noise  term  obeys 

the Gaussian-Laplacian distribution and proposed a least soft- 
thresold  squares  algorithm.  Hu  et  al.  [44]  solved   original 

where   λ   =   {ωk, μk, €k }k=1,··· ,K   denotes   the   parameters 
of GMM. To ensure a valid distribution for Pλ(x), each ωk    is 
equal to or greater than zero and the sum of all ωk s is required 

to be one. Thus, the explicit constraints could be avoided by 

re-parameterizing ωk as 

eαk 

l0 norm minimization problem for tracking. Generally, 

confidences  of  target  candidates  of  these  methods  are cal- 

ωk  = .K αi 
. 

i=1 

(3) 

culated based on reconstruction errors, leading to low dis- 

criminative power. To overcome this, sparse pooling methods 

by summarizing sparse codes of target local  patches  have 

been well studied. Wang et al. [45] learned  sparse  codes  

from raw  patches to obtain the  final feature representation   

by concatenating all codes, which is termed concatenating 

pooling.  Zhong  et  al.  [46]  constructed  a  histogram     with 

Furthermore, we assume diagonal covariance matrices for each 
Gaussian component as δk. The Fisher vector is a sum of 

gradient statistics with respect to each parameter of GMM 

calculated from local descriptors, and describes the contribu- 

tion of different parameters to the generative process. After 

derivation [18], the following gradients are  obtained 

1 . 
β (k) ω ) , (4) 

− 
local  sparse  codes  for  each  candidate  using  concatenating 
pooling. Liu et al. [11] modeled the target with local sparse 

codes by k-selection using average pooling. Wang  et al.   [47] 

learned the visual prior from generic real-world images and 

computed the feature vectors by max pooling. Jia  et al.    [48] 

Gαk = √
ωk

 

1 

Gμk = √
ωk

 

(  i 
i=1 

n . 
βi(k) 

i=1 

k 

.xi 
i − μk 

. 

, (5) 

δk 

exploited sparse coding and alignment-pooling to extract   the 1 
n
 1 

. 
(xi − μ )2 

.
 

target feature representation containing object structural infor- 

mation. Ma et al. [49] learned sparse codes and classifiers 

Gδk = √
ωk

 

. 
βi(k) √ 

i=1
 2 

k     
− 1 

k 

, (6) 

jointly under the linearization to nonlinear learning theory. 

Zhuang et al. [50] evaluated the scores of target candidates 

based on a discriminative sparse similarity  map  by  multi- 

task reverse sparse representation, where an additive pooling 

method  was  proposed  to  extract  discriminative information 
from  this  map.  Ma  Huang  and  Shao  [51]  implemented   a 

where Gαk , Gμk and Gδk are normalized gradients of local 

descriptors with respect to  αk ,  μk  and  δk  respectively, and 
the  division  and  exponentiation  of  vectors  are  all element- 

wise  operations.  βi(k)  is  the  soft  assignment  of  xi  for the 

k-th component of GMM  with 

ωk pk(xi) 

tracking method on tensor sparse coding where target is rep- 

resented as a tensor instead of vector. These pooling   methods 

βi(k) = 

j =1 ωj p j(xi) 

. (7) 

make use of low order statistics or extreme responses of  

sparse codes to model the target appearance, ignoring high 

order statistics and correlations between responses to different 

dictionary elements. To establish a more generalized feature 

pooling framework for visual tracking, we propose to utilize   

a probabilistic function to model the statistical distribution of 

sparse codes. 

III. PRELIMINARIES 

In this section, we first introduce the Fisher vector [17], [18] 

which is extracted for image classification by sparse codes, and 

a sparse coding algorithm named local coordinate  coding. 

The Fisher vector is obtained by concatenating the gradients 

Gαk, Gμk , and Gδk . Note that the dimension of the obtained 

Fisher  vector  is  (2d  + 1)K  which  does  not  depended   on 
the sample size p. Gαk, Gμk , and Gδk could be seen as the zero-

order, first-order and second-order statistics with respect to xi . 

Because of the fact that the gradient with respect to 
the weight parameters brings little additional information, the 

Fisher vector is obtained by only concatenating the gradients 

Gμk  and Gδk . Therefore, the dimension of the Fisher    vector 

is 2dK in our method. In addition, the normalization is neces- 
sary for Fisher vectors and we execute the power normalization 

first and then the L2 normalization  [17]. 
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B. Local Coordinate Coding 

Although the data of many real problems are represented in 

high dimensional space, they usually lie on a manifold with 

much smaller intrinsic dimensionality [12]. Furthermore, the 

characteristics of manifold make it possible to keep locality of 

coordinate coding, which means that a sample can be encoded 

by its local anchors in the  manifold. 

Assume that the nonlinear function f (x) defined in high 

dimensional  space  is  (β, δ, p)-Lipschitz  smooth.  Given  an 
d 

intensity features for image patches only, which ignore the 

related spatial location information of each. To tackle this 

issue, we vectorize these patches by flattening their intensities 

and concatenating with their relative coordinates as the original 

local descriptors, i.e., for each patch, it is represented   by 

y = [I, a, b], (9) 

where I is the vectorial intensity feature, and a, b are the 

related coordinate positions of x direction and y direction with 
regard to  the  target location respectively. In  this  way,   local 

arbitrary coordinate coding (γ, D), where  D  ⊂ R   is  a    set 

of  anchor  points  and  γ   maps  point  x  to  α  ∈  R|C | with 

i=1 αi = 1 where αi is the i -th element of α. This leads 

to  an  approximation  of  point  x,  namely,  γ (x)  = 
.| D| 

αi di 

where di ∈ D. It can be proved  that, 
. 

| D| 
.
 . 

f (x) − 
. 

αi f (di)
. 
≤ β "x − γ (x)" 

descriptors  can  model  both  image  information  and  spatial 

information.  For  computational  efficiency,  we   calculate 

the dictionary first  and  then  code  each  patch  respectively. 

K -means clustering is performed to achieve the dictionary D 

for local coordinate coding with these original local 

descriptors.  To  improve  tracking  performance,  we establish 
several GMMs to estimate the Fisher vector by separating  the . 

. 
i=1 

. 

. 

. 
| D| 

+ δ 
. 

|αi | "di − γ (x)" . 
i=1 

whole  object  into   several   overlapping  parts.   As   shown 

in Fig. 2, the appearance model consists of global 

representation and partial representation. 
1) Global Pooling Representation: Denote the original local 

It can be seen that a nonlinear classification  function can  

be approximated by a linear function with respect to coor- 

dinate coefficients of samples. And the upper bound of the 

approximation error is the reconstruction error of samples and 

the affinity between samples and anchor points. Therefore, the 

function f (x) can be approximated by minimizing the right 

side of the above  equation. 
d 

feature set for all templates as Y = {yi }
p 

, where p is the 
number of overlapped patches. We encode each sample yi with 

dictionary  D  by  LCC,  and  obtain  p  local  codes   x   
p    

as 
i=1 

the new representations for local patches. With this  operation, 

these elements larger than zero in the local coordinate code 

correspond to dictionary items that lie in the neighborhood of 

this sample. We find that similar samples acquire similar sparse 
coordinate codes We  assume that sparse codes  corresponding 

Given samples {(xi, yi)}n   , where xi  ∈ R   is a data   point 

and yi is its corresponding label, to learn the approximation 

nonlinear function  f (x), we first obtain a dictionary   (anchor 
d ×k 

to different dictionary items are statistically independent,  and 

each obeys the Gaussian mixture distributions instead of a 

single  Gaussian  distribution.  We   compute  the  final   target points) D = [d1, d2, · ··  , dk ] ∈ R which will be used   to 

encode every sample. A code αi should be able to minimize  
the reconstruction error and preserve locality when encoding   

a sample xi . For each sample xi ∈   d , the LCC is defined   as 
k 

representation not by traditional sparse pooling methods,   but 

by a GMM leading to a generalized sparse pooling framework. 

Therefore, these local codes are used to train a global GMM. 

Actually, we can apply direct matching between two    GMMs 

min 
1 

||xi − Dαi || + μ |α |||d j − xi || , (8) by Kullback-Leibler divergence [52], but it is time consuming 
 

D,αi  2 i 

j =1 
which  is  not  suitable  for  visual  tracking.  A  Fisher  kernel 

method is introduced to extract the final the feature vector  for 

where α 
j 
is the j -th element of αi and μ a constant that keeps 

balance between the reconstruction error and  locality. 

 
IV. PROPOSED TRACKING APPROACH 

We now introduce our tracking approach. Firstly, we show 

the target appearance model in Section IV-A. Then, we present 

the classifier learning method in Section IV-B and the tracking 

framework of our algorithm in Section IV-C. Finally, the 

updating scheme is introduced to handle appearance changes 

during tracking in Section  IV-D. 

 
A. The Generalized Pooling Method 

target template with GMM. For each template, we compute   

its Fisher vector by substituting its local codes into Eqs. (4), 

(5) and (6). The calculated Fisher vector is regarded as the 

global representation of a template, which is shown in the 

upper portion of Fig.  2. 

2) Partial Pooling Representation: Considering only global 

target representation is susceptible to local appearance vari- 

ations caused by partial occlusion, out-of-plane rotation, etc. 

In order to establish a more discriminative appearance model, 

we extract b  partial Fisher vectors for the target appearance   

to  handle local  changes.  Firstly,  we  split  up  each template 

Ti ∈ T into b overlapped blocks. We get blocks using slide 

widow  method  with  a  certain  step  size.  Let  T 
j  

denote the 

The initial target is located manually or by an object 
detection algorithm without loss of generality. We crop n 

templates  T  = {T1, T2, ··· , Tn } with  a normalized size  by 
moving the target center within a small scope. Templates are 

then divided into overlapped local patches with size s × s. 
Most  sparse  representation  based  tracking  methods  extract 

j -th block of the i -th template. We collect all the local patches 

belonging to the  j -th block for all templates in  T , and fit       

a local GMM for the j -th block  using  its  corresponding  

local codes of the collected  local  patches. Thus, b  GMMs  

are obtained in total for  partial  appearance  representation. 

We calculate a Fisher vector for each block in templates using 
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Fig. 2.         Illustration of the proposed generalized pooling method. (b + 1) Fisher vectors which are the final vectors are obtained for each target candidate. 

 
 

the above global representation. For each template, b local 

representations of the Fisher vector are obtained. The work 

flow of our appearance modeling is shown in the right-lower 

part of Fig.  2. 

Considering  both  global  and  partial  representations,   we 
calculate  (b  + 1)  Fisher  vectors  for  each  target   template. 

with a  positive  definite  Mercer  kernel  K  : X  × X  → R.  

W is a (M + N) × (M + N) similarity matrix  with  entries 
Wij  indicating  the  adjacency  weights  between  data  points 
zi and z j , 

⎧ . 
zi − z j   

2 . ⎪⎨
exp   − 

   
2    ,   i  ∈ Q   or  j ∈ Qi

 

Note that Fisher vectors can also characterize the    high-order Wij = 
 

σiσj 
k k (11) 

statistical  properties  of  coding  coefficients  apart  from low- 

order statistics compared with other sparse pooling methods. 

More importantly, it can also model the correlations   between 
sparse coefficients corresponding to different dictionary items. 

⎪⎩
0, other wi se 

where  Qi  is  the index set  of  the  k  nearest neighbors of   zi k 
in  {zi }

M +N 
, σi  =      − z

(k)     
, and z

(k)  
is  the k-th   nearest 

 
B. Classifier Learning 

i=1 

neighbor of zi . 

 
zi

 
  i      2 i 

Visual tracking is treated as a binary classification problem, 

which separates the target region from the background. Fisher 

vectors can be employed as the training samples of a semi- 

supervised classifier to train samples for superior classification 

results.  We   train  several  classifiers  using  global  and local 

The solution  C (z)  of Eq.  (10) is  an  expansion of  kernel 

functions over both labeled and unlabeled  data, 

M +N 

C (z) =  
. 

ωi K (zi, z), (12) 

i=1 

Fisher vector representations. 

Given a set  of  M  labeled training data {(zi, li ) | zi  ∈  X,  
and we adopt a linear kernel in the classifier. The corre- 

sponding classification score of the one classifier is calculated 
li    ∈   {1, 0}}M     and  a   set   of   N   unlabeled  training data 

i=M +1, where the candidates in the current frame are 
treated   as   unlabeled   training   data.   We    learn   the semi- 

supervised classifier C : X → R by minimizing the following 
optimization problem, 

1  
M 
. 

(li − C (zi))2 + λ1 "C"K 

as e−"1−C(z)" . 

In order to collect training data for classifiers, we cropped nr 

positive samples around the target center within a small scope 

and  mr negative  samples  out  of  the  target  region  within a 

larger scope randomly. Global and local Fisher vectors for each 

training sample and its corresponding blocks are  extracted 

from  the  trained  global  and  local  GMMs  in  Section IV-A. 
i=1 

λ2 

+ 
2

 

M +N 

C (zi) − C 

i, j =1 

.
z j

 

 

..2 

 

Wij , (10) 

In our experiments, we train a global classifier Cg using  

global  Fisher  vector  representations  and  b  local  classifiers 

{Cl }i=1 with local Fisher vectors of all b blocks.  Given  a 
target candidate, we calculate its global Fisher vector  fg and b 

where   "·"K   is   the   norm   defined   in   HK ,   and   HK   is   a local Fisher vectors { f 1, f 2 ··· , f b} using the trained GMMs. 
l l l 

Reproducing Kernel Hilbert Space (RKHS) that  is associated Then, as illustrated in Fig. 3, the final classification score of 
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q,s 
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Fig. 3. A candidate is classified by a global classifier and b partial classifiers, 
and the final confidence score is a weighted sum of these   classifiers. 

 
 

Algorithm 1 The Proposed Tracking  Algorithm 

 

 

a candidate is defined as 
 

 

1 . i i 

H( fg, fl) = αCg( fg) + (1 − α) 
b

  

i=1 

Cl ( fl ), (13) 

where α controls the balance between contributions of global 

features and local features. A sample with the highest classi- 

fication score indicates that it is most likely to be the current 

target, which is considered as the tracking result for the current 

frame. 

C. Our Tracking Method 
t 

Given the observation o1:t = {oi }i=1, the motion parameter 
of  object st  is  calculated  by  maximum a  posteriori  estima- 
tion (MAP) 

arg max p(st | o1:t). (14) 
t 

It can be inferred under the Bayesian   theorem 
t 

p(st |o1:t) ∝ p(ot |st) 
. 

p(si |si−1) p(si−1|o1:i−1), (15) 

i=1 

where p(st |st −1) is the dynamic model and p(ot |st) is the 
likelihood model. For simplicity, the candidates are considered 

to be sampled from a proposal distribution q(st |s1:t −1, o1:t) = 

p(st |st −1).  In  this  work, the posterior  p(st |o1:t) is approxi- 
mated by a set of samples {s1, s2, ··· , sN } with  their corre- 

D. Update Scheme 

Tracking with fixed dictionary and classifiers is prone to 

drifting in real world scenes, because the target appearance is 

changing overtime due to illumination variations, global and 

partial occlusions, shape deformation, etc. In our work, we 

maintain two sample sets: one is used to  train  the GMMs  

with only target templates, and the other is collected to train 

the semi-supervised classifiers. We now introduce the update 

scheme of these two sample  sets. 

1) Target Templates Update: Numerous template updating 

algorithms have been proposed to  handle  appearance  

changes  during  tracking. Jia  et  al.  [48]  proposed to update 
the   template   set   by   a   reconstructed   image   with sparse 

t t t 
sponding weights {w1, w2, ··· ,wN }. representation   and   incremental   subspace   learning.    This 

t t t 

An affine image warp is used to model the target motion 

between  two  consecutive  frames.  The  state  is  defined    as 

st = [ξx, ξy,θ, s, η, φ], where (ξx, ξy) is the target center 
coordinate  in  the  image,  and  θ, s, η,φ  are  the parameters 

of rotation angle, scale, aspect ratio and skew, respectively.  
We apply a Gaussian distribution to model the dynamic model 

which  is  denoted  as  p(st |st −1)  = N(st ; st −1, €),  where € 

method  updates  eigenbasis  vectors  only  with  the estimated 

tracking results. But the estimated targets may be polluted by 

noise or occlusions. In this paper, we filter out occlusions and 

outliers by reconstructing a new template. We remove outliers 

in tracking results y using a Laplacian noise component s 

calculated by minimizing 

is  a  diagonal  covariance  matrix.  The  likelihood   model  is 1 2 

constructed as 

p(ot |st) ∝ H( fg, fl), (16) 

[q, s] = arg min 
2 
"ȳ − Uq − s"2 + γ "s"1, (17) 

where U consists of PCA basis vectors of the target templates, 

where H( fg, fl) is the  classification  score  function  defined 

in Eq. (13). The pseudocode of the proposed tracking approach 
and  ȳ = y − u  where  u  is  the  mean  vector  of  all  the  target 

templates,   and   q   is   the   coefficients   of   ȳ   with   respect 
is summarized in Algorithm 1. to  U.  We   compute  the  i -th  element  of  the   reconstructed 



 

2 

t t 

 

target ỹ  as .
yi,   si  = 0 

We obtained d = 30 dictionary items by K -means for LCC. 
The numbers of components for global and local GMMs were 
set to  4  and 2  manually. We  used  the implementation of  an 

ỹi  = u ,   s (18) 0, open library [54] to train GMMs and compute Fisher  vectors. 
i i /= 

where ui and si denote the i -th elements of mean vector u and 

noise term s respectively. The basis vector matrix U and mean 

vector u are updated with the processed target  incrementally. 

The target template set is updated with a reconstructed 

template 

T̄    = Uq + u. (19) 

We then recalculate dictionary D for LCC and the GMMs to 

compute Fisher vectors with the new template  set. 

2) Training Samples Update: In order to train the semi- 

supervised linear kernel classifiers, we maintain a set of 

labeled training  samples  collected  from  pervious  frames.  

To update the positive samples in them, we crop several new 

positive samples around the current tracking result and update 

the old positive samples with the new ones. However, the target 

during tracking often suffers from appearance changes due to 

different internal and external reasons. Therefore, we recon- 

struct each new sample under target templates to train GMMs, 

where these new templates with high reconstruction errors are 

treated to be occluded or polluted. That is to say, for each new 

target template Tt , we calculate its reconstruction error γ    by 
b 

γ = 
. 

"yi − Dpxi " , (20) 
t t   2 

i=1 

For training samples to learn classifiers, nr = 9 positive 

samples and mr = 200 negative samples were collected. 
Under the  particle filter  framework, the number of   particles 

was set to 600. We fixed all these parameters through this 

experiment and demonstrated the good performance of the 

proposed tracker. 

 

A. Visual Comparisons 

We show some typical examples of our tracking results com- 

pared with several popular tracking algorithms, and explain the 

advantages according to different tracking  challenges. 

In Fig. 4, we show the tracking result on sequences where 

targets are confronted with occlusions and illumination vari- 

ation, fast motion and motion blur. In sequence ‘david3’, the 

target suffers from global occlusion when it walks behind a 

tree. TLD and DSSM fail to  track the target even when it  

only suffers from partial occlusion because of a lamp pole. 

Although CSK can track the target before it walks back, it is 

lost at the end of the sequence. Only TGPR and our tracker are 

able to track the target until the end of the whole sequence 

successfully. For sequence ‘shaking’, the target experiences 

large illumination changes such as in frame #56. Struct drifts 

when the appearance varies, but VTD, SCM, TGPR and our 

tracker perform well. Note that VTD and TGPR drift in several 

where  yi  is  the  feature  vector  of  i -th  block  of  Tt ,  and  xi 

is its corresponding sparse code and Dp is the dictionary 

learned  with  partial   representations   of   target   templates. 

If γ  is  larger than a  constant γ0, this  new sample template   

is regarded as inferior ones, and we drop it.  If not, it  will     

be applied to replace the current positive template with the 

lowest classification confidence score by current classifiers. 

During tracking, the background of the target is also chang- 

ing with the target moving, and negative templates are also 

important to the semi-supervised classifiers. Therefore, we 

crop negative templates far away from the current target center 

randomly, and replace all these old negative templates with 

the new sampled ones. These semi-supervised classifiers are 

retrained with the training samples extracted in the current 

sample set as in Section  IV-B. 

 
V. EXPERIMENTAL RESULTS AND DISCUSSION 

Our tracker  was  tested  on  both  the  tracking  bench-  

mark [19] (TB) which consists  of  50  video sequences and 

the VOT2014 dataset [53] with substantial variation. Our 

tracking approach runs 0.29 fps using our un-optimized Matlab 

implementation on an Intel Core2 3.0GHz CPU with 2GB 

RAM. The number n of target templates cropped around the 

target region within 2 pixels was set to 25. All the templates 

were normalized to 32 × 32, and the local patch size s = 6 

with step size 3. The block size is set to 16 × 16, and we     
get blocks using the sliding window method with a certain  

step size 8. Thus, each template is divided into b = 9   blocks. 

frames such  as  in  frame  #366, while  our  tracker  can  keep 

tracking with high accuracy and less drifting. In the ‘deer’ 

sequence, the tracked deer moves abruptly and the target 

motion between adjacent frames is smooth. VTD, TGPR and 

DSSM fail to track the fast moving target, but TGPR, KCF  

and our method could track the target that moves rapidly 

successfully. CSK and KCF could sample candidates densely 

in a large scope using the circulant matrices theory, and this 

method could capture the target, although it undergoes fast 

motion. In the ‘jump’ sequence, the target undergoes motion 

blur in several frames along with background cluttering. The 

texture feature of this target is blurred and the extracted visual 

cues in blurred frames are very different from that in the initial 

frame. TGPR, Struct, TLD, KCF and our tracker have the 

ability to track the interesting target precisely. The proposed 

method also performs well benefiting from the use of a semi- 

supervised classifier. The semi-supervised classifier considers 

both labeled and unlabeled samples, and these blurred candi- 

dates can participate during training as unlabeled   samples. 

 

B. Evaluation on Tracking Benchmark (TB)  [19] 

The test sequences in the tracking benchmark [19] cover 

almost all difficulties encountered during tracking, and they 

are annotated with different attributes such as illumination 

variation, scale variation, occlusion, and deformation. We have 

tested our tracking algorithm on these video sequences and 

carried out both overall estimation and attribute-based com- 

parisons with 29 popular trackers and four recently   proposed 



 

 
 

 
 

Fig. 4. Handling occlusion illumination variation, fast motion and motion blur. Tracking results over video sequences ‘david3’, ‘shaking’, ‘deer’ and ‘jump’ 
from top to bottom, where targets are confronted with serious occlusion, illumination variations, fast motion and motion blur, respectively. 

 

Fig. 5.        Overall performance comparison of precision plot (left) and success rate (right) for these trackers. 

 
TABLE I 

THE PERFORMANCE SCORES OF TRACKERS(%) 
 

 
             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trackers  including  KCF  [36],  ODDL  [55],  DSSM  [50] and 

TGPR [56]. 

1) Evaluation Metrics: To evaluate the performance of our 

tracker quantitatively, the tracking results were estimated by 

distance precision (DP) and overlap precision (OP) [19]. DP is 

a measurement that presents the relative number of frames 

when the center location error is smaller than a threshold in a 

video, and OP is used to measure the percentage of frames that 

the overlap between ground truth and the tracking bounding 

box is larger than a  threshold. 

We show the precision plots and success rate plots in Fig. 5. 

We rank these trackers according to their corresponding scores. 

Due to the limitation of space,  we  only  list  curves of  the 

first 10 trackers that gain the best performance. The curves    

of our tracker are displayed with red solid   lines. 

2) Overall Estimation: The overall center location error 

performance scores  at  20  pixels  are  presented  in  the  

legend of  the  precision  plots,  and  the  overlap  perfor- 

mance scores calculated with the areas under curves are  

shown  in  the  legend  of  the   success   plots   in   Fig.   5. 

The rankings of trackers in  precision  plots  and  success  

plots  are  slightly  different  because  of   different  metrics. 

For  a  clearer  comparison,  we  list  all  these  scores   in 

Table  I.  TGPR  [56],  KCF  [36],  Struck  [57],  SCM  [46] 

and TLD [25] obtain good performance, but our method 

obtains better performance on both precision  plots  (78.9%) 

and success plots (53.4%). TGPR gets the second best 

performance with DP value 76.2% and OP value 52.8%,  

while these values of our method are higher than it by about 

2 and  1  percent  on  the  two  values  respectively.  It  is   an 



 

 
 

 
 

 

 

Fig. 6.  The robustness-accuracy ranking plots of our tracker (‘Fisher’) and  
the state-of-the-art tracking methods in VOT2014. The better trackers are 
located at the upper right corner, and our tracker gets the best performance. 
(a) baseline. (b) region_noise. 

 

 

impressive performance gain compared with these popular 

existing tracking algorithms. 

 
C. Evaluation on VOT2014 [53] 

We  further test our tracker on nineteen video sequences in   

a more challenging benchmark VOT2014 including the two 

experiments mentioned in [53]. In the baseline setting, each 

tracker is initialized with the ground truth bounding box, and 

in the region_noise setting, it is initialized by a perturbed 

bounding box centered around the ground  truth  bounding  

box randomly. Each  experimental  setting  is  executed  for  

15 times. The estimation toolkit2 reports two evaluation results 

including accuracy and robustness. The  accuracy  measures 

the bounding box overlap ratio with ground truth, and the 

robustness assesses the number of failures which indicate  

when the overlap measure equals zero. In order to reduce the 

robustness measure bias, the target is re-initialized 5 frames 

after tracking failure. To further reduce the bias, 10 frames 

after re-initialization are ignored. 

Our tracker is compared with 20 trackers in VOT2014 

(please refer to [53] for more details about these trackers).    

As shown in Fig. 6, we show the  results  of  all  trackers  

under the baseline experiment and the region noise experiment. 

The better trackers are located at the upper right corner on 

these two figures. In both the baseline experiment and region 

noise experimental settings, our tracker (denoted as ‘Fisher’) 

obtains the  average  best  performance, whose  ranking  score 

is 5.93 and 6.44 respectively. 

 
VI. CONCLUSION AND FUTURE WORK 

A generalized pooling framework for sparse code vectors 

has been proposed for visual tracking in this paper. We propose 

to use a probabilistic function to model sparse codes of the 

visual target. For the consideration of computational efficiency, 

we extract Fisher vectors from the data and the distribution 

model  to  get  a  compact  and  discriminative  representation. 

2https://github.com/vicoslab/vot-toolkit 

 

We instantiate the proposed framework by designing a visual 

tracker that makes use of semi-supervised Fisher kernel 

classifiers, which shows better tracking performance than 

state-of-the-art algorithms. There  are  still  some  limitations 

in our current tracking method. First, we use GMMs with a 

fixed number of components to characterize sparse codes of 

target patches, which may not model the real probabilistic 

distribution of them well. Secondly, we  apply Fisher  vector 

as the final representation of a template for computational 

simplicity, but it may not be enough to reflect the distribution 

of sparse codes corresponding to different dictionary  items. 
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