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Abstract—In this paper, we propose a novel matching method
to establish dense correspondences automatically between two
images in a hierarchical superpixel-to-pixel (HSP2P) manner.
Our method first estimates dense superpixel pairings between
the two images in the coarse-grained level to overcome large
patch displacements and then utilize superpixel level pairings
to drive the matchings in the pixel level to obtain fine texture
details. In order to compensate for the influence of color and
illumination variations, we apply a regularization technique
to rectify images by a color transfer function. Experimental
validation on benchmark datasets demonstrates that our ap-
proach achieves better visual quality outperforming state-of-the-
art dense matching algorithms.

Index Terms—Dense correspondence, hierarchical superpixel-
to-pixel, image reconstruction, color transfer, exposure fusion.

I. INTRODUCTION

Establishment of dense correspondences between multiple
images is one of the fundamental tasks in computer vision. It is
used in many applications including 3D reconstruction [1], vi-
sual tracking [2], image segmentation [6], [5], multi-exposure
fusion [7], video stylization [3], free-viewpoint video [4] and
others [8], [9], [10], [11], [12], [13]. Unlike feature points
based image matching approaches, every pixel in one image
is assigned to the corresponding pixels in other images [14].

Depending on the size of the search window, i.e. whether a
small search window [16] or the whole image [17], conven-
tional dense matching methods could be classified as local
or global [18] techniques. Most traditional dense matching
algorithms, e.g. point-wise stereo matching and optical flow,
estimate correspondences in local windows for small dis-
placements. Such a limited search operation leads to faster
processing but lower accuracy. In order to derive more reliable
correspondences, Liu et al. [19] extracted SIFT descriptors of
every pixel in the given images and applied an optical flow
based dense matching procedure called SIFT Flow. Then, they
imposed a pixel-level Markov Random Field (MRF) model to
solve the SIFT Flow. Heo et al. [20] normalized the image
color and formulated matching as an energy minimization
problem using adaptive normalized cross-correlations, which
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Fig. 1. An example of image reconstruction in fine detailed texture regions.
(a) Target image. (b) Reference image. (c) Reconstructed target image by
PatchMatch (PM) [15]. (d) Reconstructed target image by HSP2P. (e-f)
Zoomed in regions. It is apparent that HSP2P captures more texture details
such as wrinkle and hair.

was then optimized by graph-cuts [21]. Nevertheless, mis-
matches caused by local search techniques increase rapidly
in case the objects undergo large displacements.

It is feasible to employ feature matching to guide the dense
matching procedure. Brox and Malik [22] presented Large
Displacement Optical Flow (LDOF) that added a sparse feature
matching scheme into the classical optical flow framework.
Xu et al. [23] first matched a set of sparse features and then
expanded them onto candidate motion fields. Optical flow is
utilized to combine the motion fields as a last step. These
feature matching guided methods improved the accuracy of
dense correspondences, however, the matching on the edges of
large displacement regions was not reliable as a result of the
regularization effect of the incorporated motion flow stages.

In order to overcome aforementioned shortcomings, glob-
al search based methods were developed to match images
depicting complex scenes. After the Generalized PatchMatch
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(GPM) approach [18] in which the approximate nearest neigh-
bors of every pixel in one image are found in the second
image, Korman and Avidan [17] combined locality sensitivity
hashing [24] and GPM to determine corresponding patches
between two images. HaCohen et al. [25] presented a nonrigid
dense correspondence (NRDC) algorithm that improves GPM
by adding a color bias and a gain factor per channel into
the transformation. Besse et al. [26] integrated a propagation
scheme with GPM to estimate the corresponding fields of two
images. Still, it is a challenge for patch based image matching
algorithms to maintain the continuity of edges. Besides, the
details of images in such methods might not be preserved
accurately.

Here, we propose a dense correspondence algorithm from
superpixel to pixel levels by taking advantages of global
search in the superpixel level to address the large displacement
problem and local search in the pixel level to reconstruct fine
details. In global search, we search for the superpixel pairs
between the input target image and the reference image. Com-
pared with the grid patches, superpixels offer more reliable
and consistent information of support regions. Most superpixel
methods partition regions according to the similarity between
adjacent pixels, and most adjacent similar pixels can be
aggregated together into consistent regions. This allows similar
objects to retain appearance-wise similar superpixels, which
makes superpixels as good priors to establish adequate region
matches. Mismatches would still exist after the initial su-
perpixel matching process. Thus, low-level features extracted
from the corresponding superpixels may be quite different due
to significant geometric deformations. To solve this problem,
we employ a consistency criterion to calculate the reliability
of the matched superpixels. Then for reliable matches, a color
transformation model is fit. Using this model, the target image
is transferred to an intermediate image, which is similar to
the reference image in color except for some small regions.
One reason is that the color transformation model cannot
completely align the real mapping between the target image
and the reference image. The pixel match is used to correct this
error. To this end, we first find the superpixel correspondences
between the intermediate image and the reference image. For
each pixel in the intermediate image, we search its nearest
neighbor in the corresponding updated superpixel matches. As
shown in Fig. 1, the final adjustment in the pixel level enables
our HSP2P algorithm to keep better details in most images.

In summary, our approach makes two main contributions to
dense correspondence and matching.

1) We present a global search scheme in the superpixel lev-
el, which overcomes the problem of large displacement
between image pairs.

2) The proposed method enjoys a novel pixel level refine-
ment, i.e. a local search strategy, to keep details for better
visual performance.

II. DENSE CORRESPONDENCES

Given a target image A and a reference image B, for each
pixel u ∈ PA, where PA is the pixel set of image A, our
goal is to seek a transformation function T (u) := u→ v, u ∈

Fig. 2. Workflow of HSP2P. (a) is an input image pair. In (b), a superpixel
directed by the red arrow is the nearest neighbor of the corresponding
superpixel in the left image. (c) shows the reliable pairs and the masked
regions indicate the unreliable superpixels. In (d), the left image is the result
mapped by a color transformation model and the right sub-figure shows the
corresponding color curve. (e) is an illustration of pixel match. The red and
yellow rectangles correspond to the rectangles in (d) and (b), respectively. (f)
is the reconstructed result.
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PA, v ∈ PB . Then we obtain the following transformation
function:

Tu = arg min
T
d(fAu , f

B
T (u)) (1)

where fAu is the feature vector of a pixel u ∈ PA, and d(a, b)
is a distance measurement between the feature vectors a and
b.

One solution of this problem is to compute the nearest
neighbor of A from B. It is impractical to exactly search
the nearest neighbor, since the number of pixels in an image
usually is huge. We propose an approximative nearest neighbor
searching algorithm in images, which include four main steps:

1) superpixel match;

2) selecting reliable matched pairs;

3) color transformation fitting;

4) pixel match.

We precompute superpixels of images by an over-
segmentation algorithm, then begin our main steps. First, for
each superpixel in the target image A, we find its nearest
neighbor in the reference image B, by minimizing the feature
distance between superpixels. Second, our method HSP2P se-
lects reliable matched superpixels according to the consistence
of translations in a neighborhood. Third, we use these reliable
matches to robustly fit a color transformation model. To
improve the matching performance, we replace the target
pixels of that predicted by the proposed color transformation
model. Then the first step is repeated to update the matched
pairs of superpixels. Finally, for each updated pair of matched
superpixels, the nearest neighbor of each pixel in the target
superpixel u is searched from the reference superpixel v. The
workflow is shown in Fig. 2.

A. Superpixel match

As a preprocessing stage of the proposed algorithm, we seg-
ment these two input images into superpixels using the simple
linear iterative clustering (SLIC) method [27]. The generated
superpixels are relatively compact, regular and have similar
sizes. However, SLIC may fail to adhere to the boundaries
for some complex images, which is a common problem for
most superpixels methods. We will solve this problem by pixel
matching (step 4) perfectly.

After generating the superpixels, a feature vector is comput-
ed for each of them. In this paper, we use the three channels of
Lab color space as the color features, and use SIFT descriptors
[28] on a dense regular grid as the region features. Inside a
superpixel, most pixels are similar. So we can simply use the
average Lab color vector and the average SIFT vector as the
features of each superpixel. The corresponding features for
superpixel i are denoted as f ilab and f isift, respectively.

To combine these two kinds of features, we define a distance
function for superpixel pair (i, j) as follows:

D(i, j) = α1‖f ilab − f
j
lab‖2 + α2‖f isift − f

j
sift‖2, (2)

where α1 and α2 are constants, ‖·‖2 is a L2-norm of a vector.

According to this distance function, for each superpixel i ∈
SA in A, where SA is the superpixel set of image A, we
compute the distances between superpixel i and all superpixels
in B. And then the superpixel j ∈ SB with the minimum
distance is chosen as the matching result of i ∈ SA. The
matching function is defined as:

M(i) = arg min
j∈SB

D(i, j), i ∈ SA. (3)

B. Selection of reliable pairs

After the superpixel matching stage, we obtain the initial
matches, and some of them may be unreliable. Therefore,
we need to select more reliable matches for the next color
transformation fitting. Although we cannot individually de-
termine which matches are unreliable, we can use groups of
matches to improve robustness. Several matching works [28],
[29], [25] agree that the matching error, which is produced
by a coherent block region, is much lower than that of any
individual pixel. Therefore, we define a consistency function to
calculate a coherence error for a group of matches. The domain
of function is transformed into vectors TS of a superpixel
i ∈ SA and its neighbors set N(i), which is the set of
superpixels connected to superpixel i in boundaries. Given a
superpixel i and its corresponding matched superpixels M(i),
TS(i) equals c(M(i))−c(i), where c is the geometric center
of a superpixel (i.e. the average coordinate of pixels in this
superpixel). Then this consistency function can be formulated
as follows:

C(i) =
1∑

j∈N(i) wij

∑
j∈N(i)

wij‖TS(i)− TS(j)‖2, (4)

where wij = exp(−β‖f ilab − f
j
lab‖2) is a weighting function,

which measures the similarity between two feature vectors,
and β is a constant fixed as 0.02 in our experiments. This
weighting function indicates that similar adjacent superpixels
should keep consistency translation. Once we get the con-
sistency errors, we can sort them as an ascending sequence.
Then the matches corresponding to the first τ% number of
superpixels are selected as the reliable matches. In our work,
τ is set as 50.

C. Color fitting

The goals of our global color transformation model include
two aspects. First, we want to correct some errors produced by
unreliable matches. We can use this model to map the color
features of all superpixels in the target image. Then these new
color features are used for the superpixel match (step 1) to get
the updated superpixel matches, which will be applied to the
final step. Second, in order to produce an initial transformed
image by mapping all of the colors in the target image, this
color transformation model should be global and it should also
recover various color differences.

In previous works, some methods have been used for
the color transformation model, such as simple adjustment
of mean and variance [30], histogram matching and more
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sophisticated statistics-based methods [31]. But these methods
have some limitations, e.g. [30] cannot reproduce complex
variations, [31] may fail to produce a reasonable mapping for
colors that do not appear in the reliable matched superpixels
in the target image.

Therefore, a parametric model is chosen to predict a mean-
ingful mapping for those that do not appear in the input
superpixels. Our algorithm fits three smooth curves, one per-
channel of the Lab color space. For uniformity, we normalize
the range of each channel to [0, 1], respectively. Then we apply
a piecewise cubic spline with 9 breaks to model each of the
curves. Two break points are at the ends of the gamut range
(i.e. zero and one), and 7 points are uniformly distributed
along the subrange produced by reliable correspondences. For
robustness to outliers, we add soft constraints to the Lab
curves outside the color range. Each of the Lab curves is
constrained to pass through the points y(−0.1) = −0.1 and
y(1.1) = y(1.1).

Algorithm 1 HSP2P: Dense Correspondence
Input: Target image A and Reference image B;
Output: Matching result: T (u) ∈ B, ∀u ∈ A;

1: Obtain the superpixels of two images: {SA
i }, {SB

i };
2: Extract the color feature f ilab and SIFT descriptor f isift;
3: Step 1: Superpixel match;
4: Find a transformation M(i),∀i ∈ A by using eq. 2 and

eq. 3;
5: Step 2: Select reliable matched pairs;
6: Sort the matched pairs by eq. 4 and choose the first τ%

matches as reliable pairs;
7: Step 3: Color transformation fitting
8: Fit a global color transformation model;
9: Map color feature of each target superpixel SA

i : f ilab →
f̄ ilab;

10: Repeat step 1 by replacing f ilab of f̄ ilab to get new matched
superpixels: M(i)→ M̄(i);

11: Update target image: A→ Ā
12: Step 4: Pixels match
13: for each target superpixel SA

i do
14: Obtain its candidate set candi by adding its match

SB
M̄(i)

and its neighbors’ matches SB
M̄(j)

;
15: for each pixel u ∈ SA

i do
16: Find the transformation T (u) using eq. 5;
17: end for
18: end for

D. Pixel level matching

After color transformation, although most of colors in the
updated image are consistent with that in the reference image,
some corresponding colors may have large deviation (such as
the regions pointed by the red arrow in Fig. 3 (c)). This may be
due to that the color transformation model cannot completely
fit the real mapping function. So we need to adjust the match-
ing result in the pixel-level. A simple strategy is to compare
the distances between each pixel in the target superpixel and
all pixels in the corresponding reference superpixel, and select

the one with the minimum distance as the final matching result.
This is practical, since the number of pixels in a superpixel is
only a few hundred in our experiments. However, as mentioned
before, some superpixels may fail to adhere to boundaries,
which may lead to matching errors along the boundaries.
Simultaneously, the unreliably matched superpixels may still
exist. This may cause failed matches of all pixels in these
superpixels (shown in Fig. 3).

To overcome the above problems, we expand the searching
space by adding the corresponding matches of neighbors.
Given a superpixel i ∈ SA, we not only consider the pixels
in the corresponding matched superpixel M(i) ∈ SB as
the candidate searched set, but also add the pixels in the
matches of its neighbors M(j), j ∈ N(i) into the candidate
set. Then, for each pixel in superpixel i, we find the pixel
with the minimum distance from the candidate set as the
final matching result. Here, we only use the color feature
to compute the distance to reduce computation time. The
formulation is defined as follow:

T (u) = arg min
v∈candi

‖f̄ulab − fvlab‖2,∀u ∈ SA
i ,∀i ∈ SA, (5)

where f̄ulab is the Lab feature in the updated target image,
and candi represents the candidate set of superpixel i. We
summarize our algorithm in Algorithm 1.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed algorithm on a
variety of image pairs, by comparing with several state-of-the-
art techniques of dense matching, including PatchMatch (PM)
[15], SIFT Flow (SF) [19], and deformable spatial pyramid
method (DSP) [32]. We directly run the source codes from the
authors’ homepages for comparison. In order to achieve a fair
comparison of correspondence quality with these methods, the
advised parameter settings by the original authors are used for
the above algorithms in our comparison experiments. The main
parameters of our algorithm include α1 and α2 in equation
(2). These two parameters measure the weights of different
features. If most colors of an input image pair are similar, such
as the images in the Video Pair dataset, we can reduce the SIFT
weight α2. For different applications, these two parameters are
manually adjusted, which will be described next in detail. The
other parameters are fixed as mentioned before.

In our experiments, we apply the proposed algorithm to
three applications: image reconstruction, color transfer be-
tween image pairs, and exposure fusion from an input exposure
sequence of multiple images.

A. Image reconstruction

Given the dense corresponding map of two input images,
the target image can be reconstructed by replacing each target
pixel of a corresponding pixel from the reference image.
Here, we test the reconstruction performance on a challenging
dataset: the Video Pair dataset [17], by comparing our algo-
rithm with PM [15], SIFT Flow (SF) [19], and deformable
spatial pyramid method (DSP) [32]. In this dataset, most of the
image pairs contain high variability in geometry structure, such
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(a) (b) (c) (d) (e)

Fig. 3. An example of pixel matching. (a) is the input target image. (b) is the input reference image. (c) is the reconstructed image by the color transformation
model. (d) is the result reconstructed by pixel matching without neighbor superpixels. (e) is the result of pixel matching with neighbor superpixels. Note that
the color transformation model fails to map the correct color to the regions pointed by the red arrow in (c). These errors are corrected by pixel matching, as
shown in (e).

(a) Target (b) Reference (c) SF [19] (d) DSP [32] (e) HSP2P

Fig. 4. Results of image reconstruction. (a) shows the input target images. (b) depicts the input reference images. (c-e) are the reconstructed images of SIFT
Flow (SF) [19], deformable spatial pyramid method (DSP) [32], and HSP2P, respectively. The regions in red boxes of (e) will be enlarged in Fig. 5.

as huge deformation and large displacement. This may cause
some region features (like SIFT descriptors) to be invalid.
Fortunately, most of them are similar in color. Hence, we only
consider the color feature by setting α1 = 1, α2 = 0 to reduce
the matching error.

As shown in Fig. 4, five pairs of images are chosen to
demonstrate the effectiveness of our algorithm. It appears that
our reconstructed images have more accurate correspondences
than SF [19] and DSP [32]. The reconstruction results of SF
and DSP have many incorrect corresponding patches in large
displacement regions. The reason may be that the methods
based on spatial pyramid cannot well handle large displace-
ment in the images. The performance between our algorithm
and PM [15] is similar, but our results give more details. To
compare the details, we zoom in the regions in red boxes

in Fig. 4 (e), which is shown in Fig. 5. It indicates that PM
fails to match correct pixels in some regions with details, such
as the places pointed by the red arrows in Fig. 5. And why
HSP2P performs better in these regions may be due to the
exact searching strategy in a small region (the corresponding
superpixels).

In order to quantitatively evaluate the performance of our
algorithm, we compute the reconstruction error of the afore-
mentioned three methods. This error is defined as the Root-
Mean-Square Error (RMSE) between the target image and
the reconstructed image. Denote IA and IR as the target
RGB image and the reconstructed one, respectively. Then the
reconstruction error ε is formulated as follows:

ε =
1

Np

( Np∑
u

‖IA(u)− IR(u)‖22
)0.5

, (6)
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(a) (b) (c) (d) (e)

Fig. 5. Comparison with PM [15]. The first row is the zoomed regions from Fig. 4 (e). The second row is the corresponding reconstructed regions using
HSP2P (best viewed in color).

Fig. 6. Comparison of the reconstruction error by SF [19], DSP [32], PM [15] and our HSP2P on the benchmark VideoPairs dataset [17].

where Np is the number of pixels in the target image.

The histograms of reconstruction error are shown in Fig.
6. Twenty pairs of images are randomly selected to calculate
the reconstruction error of SF [19], DSP [32], PM [15] and
ours. It is clear that our algorithm achieves the most accurate
correspondence results, since the reconstruction error is lower
than others. The reconstruction error of DSP and SF is much
higher than others. One reason may be the limitation of the
pyramid framework. DSP is based on the grid patch pyramid
including different sizes of patches at several layers. The
matching method may stop at a high layer for some images
with large deformation. For example, in the third row of Fig.
4, the patches at a high pyramid layer (i.e. the big patch) are
similar, such as the patch including the body of the boy, but the

smaller patches at a lower layer are not similar, like the patch
containing the girl’s face. Then this method may only use the
matches at a high layer as the final result. However, the image
reconstruction requires high matching accuracy at the pixel-
level i.e. the lowest level of pyramid. Thus, the reconstruction
error of DSP is higher. Similarly, SF may focus on a high
layer because of the multi-resolution pyramid structure.

In contrast, HSP2P and PM pay more attention to the pixel-
level. So the reconstruction errors are lower. Compared with
PM, HSP2P has better matching correspondences in detail as
shown in Fig. 5, which leads to the lower reconstruction error.
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(a) target (b) reference (c) PM [15] (d) SF [19] (e) HSP2P

Fig. 7. Comparative results of the color transfer model. (a) Input target images. (b) Input reference images. (c-e) Transferred images of PatchMatch (PM)
[15], SIFT Flow (SF) [19], and HSP2P (α1 = 1, α2 = 5), respectively.

B. Color transfer

As mentioned before, our algorithm can find dense corre-
spondences between two images. This can be used in many
image applications, such as color transfer between image
pairs, exposure fusion from an input exposure sequence of
multiple images, and semantic foreground segmentation by the
dense correspondences. Here, we use it for color transfer. This
application is one of the most common tasks in image and
video processing. The goal of color transfer can be viewed as
borrowing the color feature from another image [30]. In this
application, we increase the weight of SIFT feature by setting
α1 = 1 and α2 = 5, since the color feature may not be very

accurate for initial matching.
In this subsection, we compare PM [15], SF [19] and

HSP2P. The results of color transfer are shown in Fig. 7.
Firstly, we match the input image pairs by the above methods.
Then all of these correspondences are used to fit the color
transformation model proposed in Section 2.3, except for
HSP2P, since this process has been contained in our method.
The color transferred images of PM and SF are the mapping
images using the color transformation model. As mentioned
before, Barnes et al. [18] only compute the Euclidean distance
of the color feature, where the dense correspondences between
the input images may be effective in the color space. Thus,
the color transfer results by PM in Fig. 7 (c) are not correct
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(a) Input (b) PM [15] (c) SF [19] (d) HSP2P

Fig. 8. Comparative results of exposure fusion. (a) Input multiple exposure images. Only Two images are listed as examples since the space is limited. In our
experiments, we use three images as input. (b-d) Fusion images of PatchMatch (PM) [15], SIFT Flow (SF) [19], and HSP2P (α1 = 1, α2 = 5), respectively.
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in many regions. As shown in Fig. 7 (d), the results by SF are
better than that by PM, since SF has utilized the similarity
measurement with SIFT. However, the large displacements
(such as the fifth row of Fig. 7) between the input images
are not solved by SF, which makes the incorrect results of
color transformation in some texture regions. And the extreme
variation of luminance and exposure may make the SIFT
descriptors invalid and to produce incorrect matching corre-
spondences. In contrast, we find the reliable correspondences
and successfully transfer the color characteristics between the
two input images. Thus, our approach obtains much more
pleasing color transformation results (See Fig. 7 (e)).

C. Exposure fusion

Another application of multimedia using our method is
exposure fusion. The goal of this task is to achieve a full
dynamic range of a scene which can preserve details and
color appearances by fusing multiple exposure images. The
most challenging problem is how to process the moving
objects in the scene. A common solution is to align multiple
exposure images (with moving objects) as registered images
and then to fuse them. How to align these images is the most
difficult and critical step for exposure fusion. This step usually
is solved by searching accurate dense correspondences with
moving objects among the input images taken under different
exposure settings. Here, we use our method to find the dense
correspondences between images and then align them as in [7].
Given these registered images, we fuse them using generalized
random walk [33], [34], [35]. In summary, the exposure fusion
procedures include the following four steps. The first step is
to select the target image. Here, we use the normal-exposure
image from the input sequence as the target image since more
well-exposed and useful regions are in the normal-exposure
image. Then the proposed method is applied to find the dense
correspondences between the target image and other exposure
images. In the third step, we respectively reconstruct this
target image using the other exposure images to achieve the
registered images. Finally, both the images that contain the
reconstructed registered images and the target image are fused
using the generalized random walk fusion method.

It is worth mentioning that the image color varies greatly
among different exposure images, which leads to the color
feature to be inaccurate. Thus, we reduce the weight of
the color feature by setting α1 = 1 and α2 = 5 in the
proposed method. We compare the proposed method with
other methods of dense correspondences PM [15] and SF [19]
to evaluate its performance in this application. The comparison
results are shown in Fig. 8, where the input image sequences
are taken from [36], [37], [38], [39]. It indicates that our
approach achieves better performance with more details and
well-exposed color, which is shown in Fig. 8 (d). All fusion
results of PM (Fig. 8 (b)) seem to be blurred, especially
the top two images in Fig. 8 (b), while our results contain
more details for better visual performance because of the local
search strategy. Some of them are with underexposure, such
as the fourth image. Some images contain incorrect colors
or textures, such as the regions indicated by red arrows. The

reason for unsatisfactory performance may be that the PM
method only matches the correspondences in the color space
so that it fails to match the regions with high variation of
colors. The fused images of SF (Fig. 8 (c)) have more normal
exposure and contain more details than PM, especially the
third image. However, there are many ghost artifacts in the
regions with moving objects that have been indicated by the
red arrows in fused results. This may be due to the limitation
of large displacement in the SF method. What is more, SF
fails to find the right correspondences in some flat regions,
such as the cloud in the first image, which may be caused by
the invalid SIFT features in these regions. While our method
performs well in not only the regions with moving objects
but also the flat regions. Since we use the global search to
overcome the large displacement problem and combine the
color and SIFT features to get more robust performance.

IV. CONCLUSION

We presented a novel SuperMatch method which finds the
dense correspondences between two images in superpixel-
pixel levels. The correspondence procedure is constructed with
a new hierarchical superpixel to pixel (HSP2P) framework.
The HSP2P framework first estimates the correspondences
of the superpixels in the two images, and then matches
the image pixels under the guidance of the corresponding
superpixels. Color transfer is employed to design a color
correction technique to rectify the color of the images, such
that we can ignore the color of illumination variations during
the matching procedure. Experimental results demonstrated
that our HSP2P framework outperforms the state-of-the-art
dense matching algorithms.
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