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Abstract 
Solvate formation is a phenomenon that has received special attention in solid state chemistry 
over the past few years. This is due to its potential to both improve and impair pharmaceutical 
formulations. The reasons for solvate formation aren’t explicitly known. Therefore, there is 
currently no reliable guide in the literature on what solvents to choose in order to avoid or 
form a solvate when crystallizing an organic material. In this thesis we address the problem by 
trying to find the main reasons of solvate formation. A knowledge-based approach was used to 
link the molecular structure of an organic compound to its ability to form a solvate with five 
different solvents; these are ethanol, methanol, dichloromethane, chloroform and water. The 
Cambridge Structural Database (CSD) was used as a source of information for this study. A 
supervised machine learning method, logistic regression was found to be the optimal method 
for fitting these knowledge-based models. The result was one predictive model per solvent, 
with a success rate of 74-80 %. Each model incorporated two molecular descriptors, 
representing two molecular features of molecules. These are the size and branching in 
addition to hydrogen bonding ability. The models’ predictive ability was validated via 
experimental work, in which slurries of 10 pharmaceutically active ingredients were screened 
for solvate formation with each of the five solvents in the study. During the screening process, 
a new diflunisal dichloromethane solvate, a diflunisal chloroform solvate and a hymercromone 
methanol solvate were found. The PXRD patterns of these forms are reported. The thesis also 
includes SCXRD analysis of a previously known grisoefulvin dichloromethane solvate, a 
previously known fenofibrate polymorph and a new fenofibrate polymorph. 
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Chemical information is growing at exponential rates, as shown by surveys of databases. This 

provides an easy-to-access, reliable source of data. Investigation of such data has the potential 

to help in finding new trends, leading to establishing new relationships that were not 

previously known. The possibility to conduct such investigations has been long recognized, 

where one of the first examples to obtain knowledge from chemical data took place in 1868.1 

Today, the area of chemical information investigation, also known as Cheminformatics, is a 

field that is growing, where the number of publications about chemical information has 

increased lately.2  One area in which cheminformatics research can be applied is solid state 

chemistry, where it is possible to anticipate the physicochemical properties of materials using 

previously obtained knowledge. The information obtained from X-ray diffraction could be 

particularly useful in solid state chemistry. This is due to the large amount of information 

available. Gavezzotti in 1998 stated that “X-ray crystallography is even today a potential source 

of a wealth of physicochemical information which awaits to be tapped.3” However, with 

increased complexity of the problems and extent of the data available, such studies become 

harder. Nowadays, cheminformatics research is a multi-disciplinary area in which 

mathematical, statistical, programming, theoretical and experimental chemistry knowledge is 

required. It is important to mention that the development that is seen in all these fields has 

also facilitated conducting cheminformatics research.  

In solid state chemistry, a phenomenon that is poorly understood today is solvate formation. 

Solvate is a crystalline solid form in which two or more materials constitute the crystal 

structure, where at least one of these materials is in the liquid state at room temperature. This 

form has received special attention in the past few years due to its potential beneficial 

implications, where it could be used to obtain desired properties in a solid. It also has the 

potential to have harmful implications, where its unexpected formation could lead to a change 

in the physicochemical properties of the manufactured material. Additionally, the presence of 

organic solvents as part of the crystal structure could cause toxicity. Despite the large amount 
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of data available on solvate forms, where around one third of organic chemical crystalline 

materials form hydrates,4 the reasons for solvate or hydrate formation are not explicitly 

known. Trial-and-error approaches are nowadays used (in industry for example) in order to 

rule out the ability of a material to form a solvate. In this work, we use a knowledge-based 

approach in an attempt to relate the chemical features of organic compounds to solvate 

formation. This could reveal a connection between the molecular structure and the ability of a 

material to form a solvate. This is achieved by the information from single-crystal X-ray 

diffraction experiments recorded in the Cambridge Structural Database. 

In this thesis, Chapter 2 gives a literature background regarding the areas that are relevant to 

this work, including solid-state chemistry, statistics and experimental methods. The materials 

and the methods used are summarized in Chapter 3. Chapter 4 presents a detailed report on 

how the data of this project was collected from the Cambridge Structural Database, while 

Chapter 5 focuses on the data mining and statistical modelling of the collected data. It also 

shows detailed analysis and criticism of the resulting predictive models. Chapter 6 gives a 

closer look on the factors included in the predictive models and the factors that could probably 

be added to improve the models via examples. 

The applicability of the predictive models in the pharmaceutical industry is tested in Chapter 7, 

where predictions obtained by the models are compared to the results obtained by 

experimental work. This chapter also reports PXRD patterns of new solvate forms and a 

detailed single crystal structural report of a griseofulvin dichloromethane solvate. 

Chapter 8 shows results of a collaborative project with a department colleague, Mr. Pratchaya 

Tipduangta, who studied the heterogeneous crystallization of fenofibrate under different 

conditions. The chapter focuses on the crystal structures of fenofibrate forms IIa and a newly 

found form III.  
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2.1 Solid forms of pharmaceuticals 

Pharmaceutical ingredients are often produced in the solid form. However, solid phases can be 

either single or multi-component. There is a great variety in the possible compositions of 

multi-component organic solids and this situation has caused discussions about feasible 

classification systems of organic solids.1,2 According to the most recently proposed 

classification systems, three main classes of multicomponent solids are distinguished. These 

are salts, cocrystals and solvates.2 Clear definitions of these classes are not available and are 

often interpreted in various ways – this will be further discussed in the following sections. The 

classification systems referred to, however, generally recognize that a salt contains two ions, a 

cocrystal contains two neutral molecules that are solids in their pure form and solvates contain 

neutral molecules one of which is liquid in its pure form at ambient conditions. It is possible 

that a multicomponent solid contains more than two components and therefore subclasses 

are formed. For example, a material containing two ions and a neutral molecule is a cocrystal 

salt and a solid containing three molecules one of which would be a liquid in its pure form is a 

solvate of a cocrystal.2 

Each of the single- or multi-component solids discussed can be either crystalline or 

amorphous: crystalline solids exhibit long range structural order while amorphous materials 

are structurally disordered. Crystalline materials, both single- and multi-component, 

potentially can show polymorphism – different crystal structures with the same composition.  

Research on solid forms of pharmaceutical compounds is of interest for pharmaceutical 

companies because of several reasons. Firstly, each solid form has unique physicochemical 

properties and therefore needs to be studied separately. Secondly, each solid form is also 

subject to intellectual property protection.3 
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2.1.1 Amorphous materials 

The significance of amorphous materials in pharmaceutical solid-state chemistry is related to 

two aspects. Firstly, although the stability of an amorphous form is inferior to that of a 

crystalline form, it is still sometimes selected for production because of better solubility and 

dissolution.4-6 Different techniques are employed by the pharmaceutical industry to stabilize 

amorphous materials. Some examples of medicines containing amorphous API are Lopinavir,7, 8 

Cefuroxime axetil6, 9, 10 and Zafirlukast.6, 11 Secondly, amorphous form can be an intermediate 

phase of solid-state reactions.4 Amorphous materials can be either single-component or 

multicomponent materials.  

Although amorphous materials can have some short-range order (for example, interactions to 

neighbouring molecules), translation or rotational order cannot be identified in these solids.4,12 

This means that there is no three-dimensional long-range order in amorphous materials and 

therefore they are similar to liquids.13 The main tool used to distinguish between amorphous 

and crystalline structures is X-ray diffraction.13  However, it has been noted that a clear 

definition of amorphous does not exist, due to a continuum between amorphous and 

crystalline states.4 Ideal crystalline materials are rare, and real crystals usually show some 

degree of disorder and presence of crystal defects. Furthermore, it is known that the particle 

size can influence properties of a material. For example, a crystalline material with very small 

(Nano sized) particles would behave similarly to amorphous material and care must be taken 

to distinguish between these states.4 

Common methods for preparation of amorphous solids include quench cooling of a melt, 

freeze-drying (lyophilisation), spray-drying and mechanochemical treatment (milling).14,15 

Amorphisation can also be achieved by fast precipitation and by desolvation of solvates.15 In 

the latter case, desolvation of a solvate leads to disintegration of a crystal lattice forming an 

amorphous material.  
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2.1.2 Polymorphism 

Polymorphism is an ability of a compound to crystallize in different arrangements.16 Two 

polymorphs can differ in the conformation of the molecules (conformational polymorphism), 

arrangement of the molecules in space (packing polymorphism) although most commonly both 

these situations are encountered at the same time. Polymorphic forms of a compound 

therefore have different crystal structures and consequently – different stability and 

physicochemical properties.16 This is especially important in the pharmaceutical industry 

because two polymorphs with different properties (for example, solubility) can change the 

efficacy of the drug and lead to inconsistency of dosing. Because of this, polymorphic purity of 

a drug compound is highly important and pharmaceutical companies need to ensure control of 

polymorphism of their API’s. Control of polymorphism is achieved via different methods, such 

as seeding, use of additives, templating, solvent control, use of membranes, confined space.17   

Crystalline phases are always more stable than amorphous phases, however, the stability of 

different polymorphic forms also can vary in a wide range. In order to explore the possible 

polymorphic forms of a compound, crystal energy landscapes can be calculated.18 At given 

conditions one of the polymorphic forms of a compound will be more stable than other forms - 

this form has the lowest free energy with regard to other crystalline forms. All other 

polymorphs are metastable. Every two polymorphic forms can be either monotropically or 

enantiotropically related.16,19 In a monotropic system one of the two polymorphs is more 

stable at temperatures up to its melting point while in enantiotropic system a transition point 

exists. This means that under the transition temperature one of the polymorphic forms is more 

stable than the other and after this point the other form becomes more stable, while at the 

transition temperature both polymorphic forms have equal stability.20, 21 Graphically, this can 

be illustrated by the Gibbs free energy curves as shown in Figure 2-1.  
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Figure 2-1. Graphical illustration of Gibbs energy in monotriopic polymorph system (A) and in enantiotropic 

polymorph system (B). M.p.is melting point of Form 1 or Form 2 correspondingly and T.p. is polymorph transition 

point in enantiotropic system.
22

 

It is important to distinguish between monotropic and enantiotropic polymorph systems in 

order to prevent undesired polymorph transitions in pharmaceutical products. This is because 

in a monotropic system solid-solid phase transitions are irreversible, while in an enantiotropic 

polymorph system reversible transitions can take place.  

In order to distinguish between monotropic and enantiotropic polymorph systems Burger and 

Lamberger have established several rules.20,23 The Heat of Fusion rule states that “If the higher 

melting form has the lower heat of fusion the two forms are usually enantiotropic, otherwise 

they are monotropic”.20 The heat of transition rule states that “if an endothermal transition is 

observed at some temperature, the two forms are related enantiotropically. If an exothermal 

transition is observed, the two forms are either related monotropically or the transition 

temperature is higher”.20 Additionally, it has also been pointed out that a structure with lower 

density will be less stable at absolute zero and that analysis of absorption bands in IR spectra 

also allows to compare stability of two forms.20  
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2.1.3 Multicomponent crystalline solids 

Alongside the single-component organic solids, multicomponent solids, such as solvates, 

cocrystals and salts, are also possible.  

2.1.3.1 Cocrystals 

According to FDA definition cocrystals are “Crystalline materials composed of two or more 

different molecules within the same crystal lattice that are associated by nonionic and 

noncovalent bonds”.1,24 The scientific literature is not consistent when discussing whether 

solvates (and hydrates) should be classified as cocrystals. It has been pointed out that from 

supramolecular perspective solvates and cocrystals are related.1 From practical perspective, 

however, it is beneficial to differentiate between cocrystals and solvates.25 According to 

Aakeroy,26 reactants making up cocrystals should be solids at ambient conditions. In his 

perspective, cocrystals are structurally homogeneous crystalline materials containing neutral 

molecules in stoichiometric amounts.26 According to these rules, solvates, clathrates and salts 

cannot be seen as cocrystals. Although, the rules set out by Aakeroy26 seem to make a 

distinction between cocrystals and salts, a continuum exists between these species too as 

partial transfer of proton is possible in molecular complexes.27 

Cocrystals are commonly obtained based on knowledge of hydrogen and halogen bonds 

between functional groups of the reacting molecules.28,29,30 Other interactions, such as van der 

Waals forces and π-π interactions can play a role cocrystal formation.31 The necessary 

information can be obtained by analysing the available crystal structure data of other 

cocrystals. Several studies employing Cambridge Structural Database (CSD)32  have shown the 

prevalence of certain supramolecular synthons.33,34,28 This information can be used to design 

new cocrystals.  
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Until recently, the production of pharmaceutical cocrystals was restricted due to FDA 

guidelines. Currently (since 2013) cocrystals have been recognized as drug intermediates and 

the industrial interest about them has increased.  

2.1.3.2 Solvates  

In comparison to cocrystals, in solvates one of the constituents is liquid at ambient 

conditions.25 Solvates of a pharmaceutical compound are sometimes referred to as 

pseudopolymorphs or solvatomorphs although recently the term “solvates” has been 

preferred.25 Solvates can contain either a stoichiometric or a non-stoichiometric amount of 

solvent. These two types of solvates are being referred to as stoichiometric and non-

stoichiometric solvates.35, 36 

In a stoichiometric solvate the solvent molecules are usually a crucial part of the crystal 

structure, being bound to the drug molecule by specific intermolecular interactions. 

Incorporation of a solvent molecule in such a structure leads to a more stable crystalline form 

therefore stoichiometric solvates can be chosen as a final drug product to be marketed.37, 38 In 

non-stoichiometric solvates, on the other hand, the solvent molecules usually do not form 

strong interactions to the host molecules.  

An alternative way to classify solvates (this classification system is typically used for hydrates) 

is with regard to their structure: isolated site solvates, channel-type solvates and ion-

associated solvates can be distinguished.39 In isolated-site solvates, solvent (water) molecules 

are separated from each other and connected to API molecules by hydrogen bonds. Isolated-

site solvates are usually stoichiometric. Some examples of stoichiometric isolated-site solvates 

are cephradine dihydrate, cefaclor dehydrate40 and siramesine hydrochloride monohydrate.41 
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In channel-type solvates the solvent (water) molecules are accommodated in channels or 

between layers of the host molecules (API)37 (these can be both stoichiometric and no-

stoichiometric).  Channel and layer type structures can often accommodate a range of various 

solvents resulting in series of isostructural solvates. These solvates are often non-

stoichiometric and easily undergo desolvation. In case of isostructural solvates, desolvation 

commonly leads to isostructural (isomorphic) desolvates with the same structure of the host 

molecules and empty voids that used to accommodate solvent molecules.42 Some compounds 

known to form isostructural solvates are tenofovir disoproxil fumarate43 and sulfathiazole.44 

In ion-associated solvates solvent/water molecules are coordinated around an ion.  This type 

of solvate is not the scope of this study, as we focus on organic solvates. 

It is possible for a solvate (with the same stoichiometry) to have several crystalline forms – 

polymorphs.  

Manufacturing solvated forms of API’s is limited by the toxicity of the solvent present in the 

material. Hydrates, that is solvates of water, however, are free from this concern and 

therefore are the most commonly used solvates. Additionally, the water molecule because of 

its small size can easily fill structural voids. Moreover, its hydrogen bond donor and acceptor 

properties ensure efficient bonding to API molecules resulting in a stable crystal lattice.36 It has 

been estimated that at least one third of pharmaceutical compounds can form hydrates.45 

Furthermore, water is present in the atmosphere and can come into contact with the drug 

compound during processing of the solid.46 Many hydrate forms have been commercialized, 

for example, amoxicillin trihydrate,47 darunavir ethanolate48 and dasatinib monohydrate.49 

Solvates containing multiple solvents are much more rare among the manufactured products. 

An example on the latter is indinavir sulfate ethanolate.50 
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While cocrystals and salts are usually prepared intentionally, solvates can form unexpectedly. 

Since it is important to obtain a pure solid form as a final product of manufacturing, 

information on possible solvation of a compound is crucial.  

2.2 Identification of the solid form 

Most of newly discovered Active Pharmaceutical Ingredients (API) do not reach the market, 

where it is reported that 89 % of these APIs fail before being marketed.51 The main reasons for 

this failure is their poor biopharmaceutical properties, low efficacy and toxicity, where these 

account for 41 %, 31 % and 22 % of total failure in development, respectively.52 Therefore, the 

sooner the properties of an API are known, the less time and money is spent on their 

development. In order to achieve this early judgement of which medical candidates are going 

to be useful, two main approaches are available, these are an in vitro (experimental) and in 

silico (theoretical) approaches, which are going to be discussed in sections 2.2.1 and 2.2.2. 

2.2.1 Experimental identification of solid form 

Historically, screening experiments in biological and pharmaceutical areas were slow processes 

that used to consume a considerable amount of materials.53 A report in 2007 was published by 

Pereira and William who worked in Pfizer. This report mentions that each biological or 

pharmaceutical assay required to be 1ml in volume, required an amount of the compounds 

being investigated and a separate test tube for each experiment.54  This resulted in testing 20-

50 compounds in a laboratory per week. In the past two decades, it was possible to automate 

and speed up the process using computers and robotics. Currently, it is possible to use pico-

litres of liquid and conduct over 100,000 assays per day via Ultra High-throughput screening 

(uHTS), resulting in reduced time and expenses of a study.55,56 Note that the process of 

screening can be used in various areas such as conducting biological, toxicological and 

pharmacokinetic assays.55  
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In this work, we highlight the application of high-throughput techniques in solid form 

selection. A solid form is normally obtained by crystallization, as the final step of synthesis. 

Multiple crystallization methods are known, such as evaporative, cooling and anti-solvent 

crystallizations. For the same compound, using a different crystallization method can result in 

a different solid from. Additionally, in any of these crystallization processes it is possible to 

change the form of the solid obtained by manipulating factors such as the composition of the 

crystallization medium, concentration and additives. These factors are summarized in a review 

that was published by Sherry L. Morissette et al in 2004.53 The variety of methods of 

crystallization and the number of factors to adjust in each result in a large number of 

experiments that need to be conducted to cover the possible solid forms of an API. For this 

reason, high-throughput has become one of the standard techniques that companies use for 

discovering solid form diversity. Although this is a popular method nowadays, it still has its 

disadvantages when applied in solid state chemistry. For example, it can require large amounts 

of material, especially when crystallizations are conducted. This is because crystallization 

experiments cannot be done at the pico-scale these methods offer. Additionally, if 

experiments did not cover absolutely all possible materials/ratios of materials in a 

crystallization experiment, unexpected solid forms could arise.57 

2.2.2 Theoretical prediction of possible solid forms 

2.2.2.1 Crystal Structure Prediction (CSP) 

Crystal structure prediction is a computational chemistry method, aiming to find the crystal 

structure of a molecule given its chemical structure and in some cases, crystallization 

conditions.58  

For a specific organic structure, current CSP methods work by looking for the structure with 

the lowest lattice energy (also known as global minimum) among all possible structural 

arrangements. This means the found structure is likely to have high thermodynamic stability. 
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Note that it is not the absolute most stable form because the entropy is ignored here.59 The 

energy of these structures is mainly calculated using empirical models or ab initio calculations 

or a mixture of both. 

Although this might sound straightforward, different challenges are faced; most notably the 

number of possible structures (largely depends on the space group choice and the number of 

independent molecules in the space group), the phenomenon of polymorphism and the choice 

of the model to perform the calculations.60,61 For example sometimes the structure that has 

the lowest lattice energy is not experimentally observed. Sometimes one polymorph is the 

most stable under certain temperature, but as this temperature changes, a different 

polymorph becomes more stable.61 

In order to evaluate the different methods available and the progress in improving the 

predictability of crystal structures, the Cambridge Crystallographic Data Centre (CCDC) 

periodically organizes international blind tests of crystal structure predictions. In this test, 

research groups that are interested in developing crystal structure predictive methods are 

given a set of organic structures with unknown crystal structures. The groups are then asked to 

report their predictions regarding the space group, cell dimensions and atomic coordinates of 

the given structures.61 Six of these tests have been conducted so far, with the latest of them 

being in late 2015. The details about the first five of these tests can be found in the references 

provided.58, 62-65 

It is worth noting that the fourth CSP blind test has introduced multi-component solids as a 

new class to be part of the blind test.58  This emphasizes the growing importance of multi-

components in solids state chemistry. Specifically, predicting the crystal structure of a cocrystal 

was attempted. Determination of the cocrystal structure was the hardest among all others, as 

the report of the test states: 
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“As expected, the cocrystal was the main problem – the increased search space was the main 

reason for including the new category of two-component crystals in this blind test and seven 

of the 12 groups who attempted predictions for this system did not locate the observed 

crystal structure in their search.”58 

Few years later, multi-components still showed a big challenge to the process of CSP, where 

the report of the fifth bind test states: 

“Hydrate (XXI) proved to be one of the most challenging systems in the blind test”65 

Most recently, the report on the sixth blind test included a prediction of a crystal structure of a 

chloride salt hydrate. One of the participating groups was able to predict the experimentally 

known structure, where they ranked it as the second most stable structure in their submitted 

prediction. Although this prediction doesn’t directly fall into the scope of this thesis, a correct 

prediction of the experimental structure of a 3-component system including a solvent is 

important to note. Despite these improvements, some issues remain the limiting factors of 

CSP. An example is the complexity of this method; where it requires an expert in the field to 

generate and assess the possible structures. Additionally, it has a high computational cost, 

where a landscape calculation of a molecule can take months.57 Therefore, at current times 

CSP is used as a complementary method with experimental work and high throughput 

crystallizations, where it helps highlighting the possibility for undiscovered polymorphic 

forms.59 

2.2.2.2 Cheminformatics 

Cheminformatics (also known as chemoinformatics, chemical informatics and molecular 

informatics) can be defined as the science in which information technology is employed in 

order to help making better and faster decisions in the fields of drug discovery and 
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development.66,67 This is a multi-disciplinary science that employs the fields of chemistry 

(chemical information) of structures, mathematics, statistics and computer programming.66 

Chemometrics, a sub-field of cheminformatics is a field that is concerned with deriving 

chemical information from experimental data.68 In biology, two parallel sciences that are 

heavily used nowadays are Bioinformatics and Biometrics. As the name implies, they are 

similar to cheminformatics but they use data derived from biology.69 

One of the main concepts in cheminformatics is Quantitative Structure-Activity Relationship 

(QSAR). This term describes a process in which the structure of a chemical is mapped to the 

biological activity. A closely related term is Quantitative Structure-Property Relationship 

(QSPR). This is a process that tries to find an association between the structure of a chemical 

and a physicochemical property of this structure.70  

The basis of this field could probably be assigned to Crum-Brown in 1861, where he suggested 

the possibility of finding mathematical model that would explain chemical theories.71 He was 

able to reveal the association between the water solubility of primary alcohols and their 

toxicity.70 Few years after that, he supported this opinion in a publication with Fraser, where 

their publication focused on the possibility of linking a physicochemical property of a chemical 

to its physiological action of a chemical.72 Several studies on QSAR/QSPR followed after that, as 

given by review articles.70 Currently, knowledge-based cheminformatics approaches play a 

significant role in lead discovery and optimization, where it assesses the toxicity, permeability 

and other properties of drug candidates. It is also used in early selection of drug candidates 

that are going to be tested experimentally using high-throughput techniques.73,51 

In order to establish a quantitative structure-activity or structure-property relationship, a few 

elements are required. Firstly, it is important to have a reliable source of data regarding the 

chemical structures from which information and later on, knowledge can be obtained. In this 
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work, we obtain our data from the Cambridge Structural Database (CSD).32 Secondly, a 

numerical description of the chemical structures is required.70 Such description is often known 

as molecular descriptors (sometimes referred to as “descriptors” alone). More formally, 

molecular descriptors have been defined by Todeschini and Consonni to be “The final result of 

a logic and mathematical procedure which transforms chemical information encoded within a 

symbolic representation of a molecule into a useful number or the result of some standardized 

experiment.”74 In this thesis, the molecular descriptors are obtained using a software called 

Dragon.75 The details about the descriptors that are calculated by this software are given in 

section 3.2.1. 

The third step in finding a QSAR/QSPR would be the conduction of statistical tests and machine 

learning methods in order to fit models that can best describe the data provided and make 

predictions of future data points. It is also important to evaluate these models to ensure they 

are not biased.70 The statistical part is going to be discussed in details in section 2.3. 

2.2.3 Previous CSD investigations on hydrate and solvate formation 

Considering the significance of solvates, especially in pharmaceutical science, several attempts 

to develop approaches for predicting solvate formation have been made. Alongside studies 

that have investigated the behaviour of compounds that readily form large number of 

solvates,76-78 A number of studies have been conducted using large datasets obtained from 

CSD.32 CSD offers valuable information of crystal structures and therefore allows studying 

various structural aspects that are expected to facilitate hydrate formation.   

It was noticed, however, that most if not all of the studies conducted were at least partially 

based on the consideration that formation of hydrogen bonds are the main governing force of 

solvate (hydrate) formation. For example, a study conducted by Desiraju investigated the 

formation of hydrates in relation to hydrogen acceptor and donor properties.143 The inspection 
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of hydrate structures of organic compounds revealed that almost all of these compounds did 

contain hydrogen bond donor and acceptor groups. The results of this work implied that most 

of hydrate-forming compounds have larger number of hydrogen acceptor groups than 

hydrogen donor groups. Regardless, actual hydrogen bonding between the compound and 

water did not always take place. In some cases (no estimate given) the water only acted as 

space-filler.  

The conclusion made by Desiraju regarding the effect of hydrogen donor/acceptor ratio was 

countered by another study based on CSD data, performed by Infantes et al79 who investigated 

hydrate formation in relation to the count of hydrogen bond donors and acceptors in the 

compound. In this work, several parameters describing formation of donor-acceptor bonds 

were derived and calculated for molecules of interest. A number of molecular parameters, 

such as atom count and dipole moment were also calculated. This study concluded that 

donor/acceptor ratio does not have effect on probability of hydrate formation. However, this 

work showed that higher sum of all donor and acceptor groups in the compound facilitate 

hydrate formation. More polar surface of molecule also was found to facilitate hydrate 

formation.  

Another study, performed by Nangia and Desiraju,80 inspected solvates with the 10 most 

common solvents in the database. The results showed that solvates are more often formed 

with solvents (1,4-dioxane, DMSO and DMF) that have high probability to participate in multi-

point hydrogen bonded recognition schemes between solvent and solute molecules. Hydrogen 

bonding between solvent molecules was also common.80 On the other hand, solvents that 

have comparatively poor multi-point hydrogen bonding ability (ethanol, ethyl acetate and 

diethyl ether) were found to rarely form solvates (the occurrence of solvates was calculated 

considering how often the solvent is used for recrystallization). They also recognized that 
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solvents such as benzene, p-xylene and CCl4 are included mostly in rigid framework-type 

structures as guest molecules.   

The crystallographic information available in the CSD has been used to thoroughly characterize 

the molecular environment of the two most common solvent molecules found in solvate 

crystal structures – water81 and methanol.82 It was found that the most common environment 

for water is such that it allows formation of three hydrogen bonds – two involving its hydrogen 

atoms and one with its oxygen atom. No correlations between the environment and the 

hydrogen bond strength were found. The inspection of the environment of methanol 

molecules in solvate crystal structures showed that in 305 of 375 methanol solvate examples 

one of five molecular environments could be identified. In the most common environment, the 

hydroxyl oxygen acted both as hydrogen donor and acceptor. 

A significant contribution to analysis of solvate crystal structure data has been given by van de 

Streek and Moteherwell83 who developed a software for CSD data analysis to find sets of 

structures containing both solvated and non-solvated forms of any compound. They used this 

in-house software to analyse such aspects as packing density, flexibility of the compound, 

chirality, number of possible donors and acceptors etc. The study showed that larger 

molecules commonly include larger number of water molecules (higher stoichiometry). They 

also found that certain groups (R2PO2
-, Cl- and NH3+) are considerably more common in 

hydrates than in anhydrates.  Some other groups (CF3, CCl and OCONH), however, were 

preferred in anhydrates. A comparison of contacts formed by the same compound in hydrated 

and anhydrate structures showed that for most of the functional groups the count is higher in 

hydrates. This was most obvious for Cl-, COO- and NH3R
+ groups. This study did not find 

correlation between flexibility of molecules and tendency to form hydrates. Chirality, on the 

other hand, had a positive effect on hydrate formation. In a subsequent study, van de Streek 

developed a program that screens the CSD structures to find solvates based on topological 



21 
 

indices.84 This program allowed obtaining lists of solvates for compounds with the 51 most 

common solvents. Closer inspection of the extracted lists showed that promising solvate 

formers are molecules with non-coplanar aromatic rings, cholic acid derivatives and 

calixarene/cyclodextrin type molecules. The solvate lists generated by this program allow 

preparing a correlation matrix that can be useful to predict solvation of a compound in certain 

solvents based on knowledge about similar cases.  

The reports reviewed in this section show that although invaluable work has already been 

performed to understand the structural reasons of solvate formation, more investigations are 

needed in this area. For example, although it has been extensively shown that intermolecular 

interactions, especially hydrogen bonds often facilitate solvate formation, some significant 

factors such as flexibility of molecules, their size, steric hindering and other have not been 

properly challenged.  Moreover, it is expected that most of organic structures present in CSD 

would contain heteroatoms, therefore presence of hydrogen bond donors and acceptors is 

unavoidable, and it is not surprising to find that most of the compounds forming solvates 

would also have some hydrogen bond donors and acceptors. Regardless, only a fraction of all 

heteroatomic molecules actually does form solvates. Therefore, it would be useful identify the 

factors governing solvate formation and quantify them. This would provide a tool that would 

be able to predict the formation of solvate. In order to develop a comprehensive approach 

that would be able to predict solvate formation, as many aspects as possible should be 

objectively evaluated. 

2.3 Statistics 

In this section, statistical methods that were used in the thesis are going to be presented. 



22 
 

2.3.1 Hypothesis testing 

In its simplest form, this process compares two contradicting hypotheses about a data set, in 

terms of a variable. The result of the test is the decision of accepting one hypothesis and 

rejecting the other. This decision is based on the value of a statistic that is calculated through 

the values of the variables of the data set.85 In this thesis, a comparison between two 

distributions, whether they come from the same population or not is required. the Wilcoxon 

signed-rank test.86 The choice of this test was based on its properties, where it does not 

assume a normal distribution of the data (non-parametric).87 Additionally, this test is ordinal 

which means it is not going to be affected largely by outliers.88 Such properties are suitable for 

the type of data in the problem being solved in this thesis. The study being conducted is for 

thousands of molecules, a normal distribution cannot be guaranteed and the amount of 

outliers will differ depending how each molecule is described.  

This test, developed in 1947, works by comparing two samples in order to know if they come 

from the same population. The test is closely related to the Wilcoxon rank-sum test which was 

developed earlier in 1945.89 The Wilcoxon signed-rank test works with paired samples, while 

the Mann Whitney test was designed to work when the two samples being tested are of 

different sizes.86 

The null hypothesis (Ho) is that the two samples come from the same population against an 

alternative hypothesis (H1) that the two samples come from different populations. One 

commonly used method for accepting or rejecting the null hypothesis is comparing a chosen 

alpha (α) level to the p-value obtained by the test.90 Alpha is simply the significance level that 

is chosen by the test conductor. The p-value is a probability of obtaining a statistic value that is 

as extreme or more extreme to the specified boundary value.91 It is important to note that the 

p-value is calculated based on the sample being tested, assuming the null hypothesis is true.92 

The convention is to use a p-value 0.05 as recommended by Fisher.93 When a p-value is below 
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the significance level, the null hypothesis (Ho) is rejected and the alternative hypothesis (H1) is 

accepted. It is worth noting that the alpha value can be on the positive and/or the negative 

end of the distribution giving three types of test, a left-tailed, a right-tailed and a two-tailed 

test, as illustrated by Figure 2-2. 

 

Figure 2-2. (a) A distribution with a left-tailed alpha value and an equivalent |p-value|. (b) A distribution with a 

right-tailed alpha value and an equivalent |p-value|. (c) A distribution with a two-tailed alpha value and a |p-

value| equivalent to alpha/2. 

The choice of the tailing of the test is set by the user. It is important to notice that in one tailed 

tests the absolute values of the alpha and the p remain similar, but when the a two-tailed test 

is chosen the p-value is split between the positive and the negative end, causing it to be half of 

the magnitude of the alpha level, as illustrated in Figure 2-2. 

2.3.2 Data mining and machine learning 

Data mining can be defined as the process of learning from large amount of input data.94 

Machine learning, a closely related term, is the use of computers in order to learn from these 

large amounts of data.95 The aim of machine learning can be predictive (to know what future 

data would look like) and/or descriptive (to know more about existing data).95 

Typically, machine learning algorithms can be classified into two types, these are the 

supervised methods, which require previously known outcome of the data (labelled data) and 

the unsupervised methods, which don’t require previously labelled data.96 More details about 

these methods are given in sections 2.3.2.1 and 2.3.2.2. 
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2.3.2.1 Unsupervised learning: Principal component analysis (PCA) 

As presented earlier, this type of learning works with unlabelled data. One of the most 

commonly used unsupervised techniques, and the one used for this project is Principal 

Component Analysis (PCA).97 It was introduced by K. Pearson back in 1901.97 It works by 

projecting the data to a new set of dimensions (variables), which are essentially linear 

transformations of existing dimensions.99 The new imaginary variables (known as principal 

components) maximize the variance in the dataset in terms of the variables provided. The first 

principal component accounts for the largest possible variance, and each succeeding variable 

accounts for the highest possible variance, on the condition that each new of these principal 

component has to be orthogonal (uncorrelated) to the rest of the principal components. Such 

properties make it an ideal way for visualizing the data in a low-dimensional space (for 

example in 2D or 3D plots).100 

The technique is used for several purposes, but one of the most popular reasons to apply this 

method is data exploration and dimensionality reduction. Additionally, it is used as a 

preparatory method before applying other classification techniques.101 In simpler terms, it 

could be used to summarize the data and omit repetitive information from the dataset.100 An 

example of a transformation of data in terms of 4 variables to 2 principal components is shown 

in Figure 2-3. 
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Figure 2-3. An illustration of 4 variables that point in different directions (have some correlation) in terms of 

principal components 1 and 2. 

Principal components can be calculated via singular matrix decomposition or by eigenvalue 

decomposition of the covariance matrix. The software used in this thesis offers both 

calculation methods but recommends the latter method as for better numerical accuracy in 

the documentation of the “prcomp()” and “princomp()” functions.102 
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2.3.2.2 Supervised learning 

In supervised machine learning, we try to find a model that would classify the supplied labelled 

data correctly in using the predictors (variables) provided in the dataset. The model that is 

established is then used to make future predictions.103 Several supervised machine learning 

algorithms exist. Some of the popular algorithms are artificial neural networks,104 logistic 

regression,105 and support vector machines.106 In this thesis, logistic regression, and to a lesser 

extent, support vector machine are going to be used. An introduction to these methods is 

provided. 

Logistic regression (LR) 

To present the idea of logistic regression, a comparison with linear regression could be 

established. Linear regression is used for finding a relationship between variables. However, in 

the case of data that belong to two classes (binary outcomes), it is not suitable to fit a linear 

regression model. For example if the relationship between an independent, continuous 

variable X and a binary dependent variable Y was to be plotted, the outcome will be data 

points on two straight lines, with a y value of either 0 or 1, as presented in Figure 2-4. 
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Figure 2-4 Values of Y (on the y-axis) vs the values of the continuous variable X (on the x axis). 

It is clear that the relationship between X and Y isn’t linear. The logistic regression, a binary 

classifier that was developed by D. Cox in 1958 proposes a solution to this problem.107   The 

idea is to transform the dependent, binary variable Y so that it becomes a linear function of 

the predictor X.108 More specifically, it expresses the probability of obtaining the binary 

response of (Y) depending on the values of the predictor variable (X) using a logistic function as 

shown in Equation (2-1): 

 
𝑝 =

1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑖𝑥𝑖)
 

(2-1) 

where 𝑝 is the probability of an event to happen, 𝛽0is the intercept, 𝛽𝑖is the coefficient of the 

variable 𝑥i. Note that the value of the probability p ranges from 0 to 1 while the value of the 

term in the exponent ranges from -∞ to ∞.109 The relationship between p and x is not linear, 

plotting their relationship results in a sigmoidal curve as illustrated in Figure 2-5. On the other 
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hand, this form means that the logarithm of the odds-ratio becomes a linear function of x, as 

presented in Equation (2-2). 

 𝑙 𝑛 (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +𝛽𝑖𝑥𝑖 

(2-2) 

 

Figure 2-5. Fitted probabilities (Y axis) vs the values of X (X axis). Red and black points correspond to two classes, 

representing a case of binary data. 

The parameters of the function (𝛽, 𝑥) in Equation (2-1) are found using a maximum likelihood 

estimation (MLE) function. Specifically, the software used in this thesis utilizes the iteratively 

reweighted least squares (IRLS) algorithm, as given by the software documentation.102 
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Support vector machines (SVM) 

Support Vector Machines is a supervised machine learning technique that has been introduced 

by Vapkin in the 1990s.106 Similar to logistic regression, this algorithm requires labelled data. In 

its simplest form, the support vector machine algorithm assumes that the given data can be 

separated linearly in the space of the provided variables (input space),110 as illustrated in 

Figure 2-6. 

 

Figure 2-6. An illustration of support vector machine linearly separating binary data. 

The hyperplanes are the dotted lines passing through the nearest points from each group; 

these are known as the support vectors. The middle dotted line is known as the decision 

boundary.  

In support vector machines, the algorithm tries to maximize the margin separating the two 

classes.111 In the case of non-linearly separable data, the same data can be mapped into a 
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higher dimensional space, known as the feature space 𝐹 in which the data is linearly separable. 

Nevertheless, performing this mapping step explicitly could be practically impossible as the 

dimensions of the new feature space can be infinite in number. Alternatively, a kernel function 

can be introduced to the SVM algorithm, where it allows us to find a separating hyperplane in 

feature space 𝐹 without mapping the data into the feature space.112,113 An illustration of non-

linear SVM, projected back to the input space is shown in Figure 2-7. 

 

Figure 2-7. An illustration of non-linear vector machine with separating binary data. 

Multiple kernels such as the Radial Basis Function (RBF) and the Polynomial Kernel can be used 

with SVM.104 The choice of a kernel is normally based on prior knowledge of the data being 

analysed. Generally, an RBF kernel is used for preliminary testing of SVM.105 But what if the 

data is not perfectly separable by SVM? An illustration of such case is shown in Figure 2-8. 
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Figure 2-8. An illustration of non-linear support vector machine with soft margins, note that the algorithm 
converged despite the misclassification of one black point. 

In such a case, it is possible to allow a certain number of incorrect classifications by the model, 

also known as soft margins. This helps increasing the simplicity but reduces the accuracy of the 

established hypothesis.106  

In comparison to logistic regression, it is possible for SVM to separate non-linear problems, 

which could be an advantage above logistic regression. On the parameter optimization of 

Support Vector Machines for binary classification] Additionally, unlike the methods optimized 

through maximum likelihood estimation, SVM is optimized by structural risk minimization 

(SRM), which has no prior assumptions regarding the data used (non-parametric).110 This offers 

SVM another advantage above logistic regression. 
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2.3.3 Model selection 

After machine learning methods are used to fit statistical models, the best performing models 

need to be selected. The techniques that are used for selecting these are discussed in this 

section. 

2.3.3.1 Cross-validation (CV) 

This is a statistical method that estimates the error associated with a model trained on a 

dataset to predict a different, independent dataset.117 Technically, a dataset is randomly split 

into 𝑘 number of partitions, where one or more partitions are used for fitting a model and the 

remaining partitions are used for testing the model. A loop of training and testing is repeated 𝑘 

number of times, until all of the data points have been used for training and for testing the 

model. Such a procedure helps avoiding overfitting, where the test set is completely different 

from the training set.108  An illustrative example of how this method works is given in 

Figure 2-9. 
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Figure 2-9. An illustration of how a 5-fold cross-validation works. 

The fundamentals of Cross validation were introduced by Mosier in 1951.119The importance of 

this method in model selection in machine learning has been recognized since the 1970s.120 

Multiple variations have been applied to this method over time.121 In this thesis, 10 fold cross-

validation is going to be used as a standard method for evaluation of model performance. 

Although more intense cross validation, such as the leave-one-out method can be performed, 

researchers argue that it is more reliable to use a moderate number of folds (10-20), not to 

mention how computationally expensive it is to run a leave-one-out method when the dataset 

–as it is in the case of this work- is thousands of data points.122  

2.3.3.2 Mean squared error (MSE) 

Another method for model selection is MSE. This is simply the mean value of the squared loss 

error of each prediction made by a model. This error estimator takes into account the variance 

and the bias terms in its calculation, leading to a precise model.123 In this thesis, MSE was the 
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principal method for model evaluation, where it was obtained for each cross-validation loop, 

weighted by the sample size of each fold. This is calculated using the formula shown in 

Equation (2-3): 

 
𝑀𝑆𝐸 =  

1

𝑛
∑(ŷ𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 
(2-3) 

where ŷ𝑖  is the estimated value from the model, 𝑦𝑖  is the real value (0 for solvates or 1 for 

non-solvates) and 𝑛 is the number of data points. The average weighted MSE of the 10-fold 

cross-validation can be calculated using Equation (2-4): 

 

 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑀𝑆𝐸 =  ∑

𝑁𝑘

𝑁
𝑀𝑆𝐸𝑘

𝑛

𝑘=1

 
(2-4) 

where 𝑛 is the number of folds (10), 𝑁𝑘  is the sample size in the 𝑘th fold, 𝑁 is the total number 

of molecules, and 𝑀𝑆𝐸𝑘 is the 𝑀𝑆𝐸 value of the 𝑘th fold.  Due to the large sample sizes used 

in the analysis, the weighting has minimal effect on the results. The factor 
𝑁𝑘

𝑁
 will have a value 

very close to 0.1 for each fold, even if the number of molecules is not divisible by 10. For 

simplicity, the average weighted MSE calculated by the software is going to be referred to as 

MSE from this point onward.  
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2.3.3.3 The area under the curve (AUC) 

The area under the Receiver operating characteristic (ROC) curve, (see section 2.3.4.1 for more 

about ROC curve) also known as AUC is a popular estimate that can be used to compare the 

quality of models.124, 125 The AUC represents the probability that a randomly selected positive 

instance will be ranked more positive than a randomly selected negative one.125 

2.3.3.4 Akaike information criterion (AIC) 

Another method for selection of a model among others is the Akaike information criterion. 

This criterion measures the relative quality of the fitted models.126 Specifically, it helps the 

decision of how many descriptors to include in a model by introducing a penalty for adding 

variables to the model. This helps avoiding the problem of overfitting in the model. It is 

calculated using Equation (2-5): 

 𝐴𝐼𝐶 =  2𝑘 − 2𝑙𝑛 (𝐿) (2-5) 

where 𝑘 is the number of variables in the model and  𝐿 is the maximized value of the likelihood 

function of the fitted model.127 

2.3.4 Graphical illustrations 

Some figures in this work are presented in non-conventional plots. An example of these plots 

and what they mean is going to be shown in this section. 
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2.3.4.1 Receiver operating characteristic (ROC) curve 

This curve was introduced by the British Royal Airforce back in World War II as a means of 

signal detection. Currently, it is being used in multiple fields of science.128 In this thesis, we use 

the ROC curve for visualizing the performance of a binary classifier (logistic regression). This 

curve plots the false positive rate (fall-out) on the and x- axis against the true positive rate 

(sensitivity) on y-axis at threshold levels between 0 and 1129 as illustrated in Figure 2-10. 

 

Figure 2-10. An example of the ROC curve of the chloroform model presented in this thesis. 

Note that the diagonal line shown in the Figure 2-10 represents the random guess. Any model 

showing results above this line indicates a better performance. In the same graph it is possible 

to overlay the true positive rate (sensitivity) with the false positive rate (specificity). As seen in 

Figure 2-11. 
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Figure 2-11. Sensitivity and specificity curves, with the optimal threshold level shown in the dotted line. 

The threshold level that maximises both the sensitivity and specificity is the ideal point at 

which the model gives a non-biased prediction towards the positive or negative outcome.128 

2.3.4.2 Boxplots 

Boxplots, also known as box and whiskers plot was introduced by Tukey.130 This type of 

illustration visualizes variables values in terms of their quartiles. An example of this boxplot is 

shown in Figure 2-12. 
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Figure 2-12. An example of a boxplot, obtained as a comparison between the solvate and the non-solvate groups 
in this thesis. 

The lower side of the box represents the lower quartile. The middle of the box represents the 

median. The higher side of the box represents the upper quartile. The whiskers that extend 

outside the box represents a maximum of 1.5 of the interquartile range or a minimum of the 

most extreme point, whichever is closer to the median.131 outliers can be easily seen in this 

type of figure as they just sit outside the whiskers range. 

2.4 Non-covalent interactions 

In order to describe the structures that are included in this thesis, an insight into a few types of 

intermolecular interactions needs will be provided in sections 2.4.1 to 2.4.3.  

2.4.1 Hydrogen bond 

Hydrogen bonding is an attractive interaction between an electron-depleted hydrogen atom 

and an electron rich site, which can be represented by the scheme of X-H···Y, where X,Y are 
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two atoms with greater electronegativity than the hydrogen atom H.132  The X-H part of the 

bond is known as the proton donor while the Y is known as the proton acceptor. The proton 

donor (also known as “donor” alone) can interact with multiple acceptors. Examples of atoms 

with greater electron density than hydrogen include C, O, N, F, P, Cl, Br, I, in addition to regions 

of high electron density such as double and triple bonds.132 

The first recognition of hydrogen bonding was in 1912 by T.S.Moore and T.F.Winmill133 as 

mentioned by L. Pauling’s book in 1960.134 Currently, the literature regarding hydrogen 

bonding is vast.135,136 However in this section we will focus on the aspects of hydrogen bond 

that have significant impact on the work conducted in this thesis. 

In 2011, the IUPAC has released a document listing criteria for a bond to qualify as a hydrogen 

bond.137 These criteria include almost linear (180 °) X–H···Y angle, prolonged X–H distance 

(evident from shifts of absorption bands as well as formation of new bands in IR spectra), 

deshielding of H (involved in the X–H bond) in NMR spectra. Additionally, the Gibbs energy 

related to the formation of the bond should be detectable experimentally. 

The strength of a hydrogen bond can range from a 0.2 to 40 kcal/mol, making it second to ionic 

interactions.136 In this wide energy range, hydrogen bonding can be broken down into 3 types: 

weak (1-5 kcal/mol), intermediate (5-15 kcal/mol) and strong hydrogen bonding (15-40 

kcal/mol). The strength of the hydrogen bond can be estimated from its geometrical 

information (distances between atoms and angles between bonds).138 Several reports have 

correlated the strength of hydrogen bonds to bond length and angle values acquired from 

large amount of spectroscopic or crystallographic data.138,139,140 These studies have allowed 

establishing guidelines of hydrogen bond distances and angles. Indicative distances138 of some 

of the most common medium strong hydrogen bonds are given in Table 2-1. These are the 

main hydrogen bonds that have also been identified in the structures described in this work.  
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Table 2-1. Distances of some common hydrogen bonds 

Bond type H…A bond length Sum of Wan der Waals 
radiia (H···A) 

O–H···O 1.215 to 1.230 Å (linear, strong bonds) to 
2-3 Å (multi-centre bonds) 

2.72 
 

N–H···O 1.58 to 2.59 Å. 2.72 

N–H···N 1.75–2.33 Å 2.75 

O–H···N 1.59–2.19 Å 2.75 
a According to Bondi, taken from Mercury manual 

From the examples demonstrated in Table 2-1, it can be seen that each hydrogen bond 

distance for medium strong bonds is shorter than the sum of van der Waals radii by at least ca. 

0.1 Å. This was therefore selected as a limit for detecting hydrogen bonding during hydrogen 

bond analysis. However, it should be noted that hydrogen bonds are predominantly 

electrostatic interactions,141,142 therefore their angles and distances can vary in a long range. 

IUPAC in their recommendations have pointed out that the distances of strong hydrogen 

bonds would be shorter than the sum of van der Waals radii.137 The angle should preferably be 

above 110 °, however, weak and multi-centre bonds can have smaller angles.  

Alongside the medium strong hydrogen bonds given in Table 2-1, weak bonds such as C–H···O 

can also contribute to the stability of a crystal structure.138,143 The C···O separation for these 

bonds can be up to 4 Å and the energy of C–H···O hydrogen bonds is usually below 2 

kcal/mol.143 

Hydrogen bonds contribute to the stability of crystalline structures and therefore are highly 

significant in solid-state chemistry. For example, hydrogen bonding is considered with regard 

to polymorphism of pharmaceutical ingredients.28 Hydrogen bonds are also important in 

biochemistry as they ensure binding of ligands to the proteins.144 Additionally, hydrogen 

bonding can direct chemical reactions145 and impact physical properties of a solid.  
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2.4.2 Halogen bond 

A halogen bond is an attractive interaction that forms between a halogen atom (e.g. F, Cl, Br, I) 

and an electron-rich site. It can be represented with the scheme R–X···Y, where the X a halogen 

atom, Y is the electron rich site and R is a group that is covalently attached to the halogen X. 

Similar to hydrogen bonding, the electron-deficient site is known as the halogen bond donor 

(the R-X in the scheme) and the electron rich site is known as the halogen bond acceptor (the 

symbol Y in the scheme). This can get confusing because the former is sometimes referred to 

as the electron density acceptor and the latter is referred to as electron density donor. Note 

that a halogen atom X can form more than one halogen bond at the same time.146,147 

Halogen bond has been known since the late 19th century, where it was described by F. Guthrie 

as sticky electrophilic sites.148 Later on, this type of bonding started receiving more 

attention.149 The energy of this bond can range from 1.4 to 10 kcal/mol, as shown in an 

extensive study by S. Kozuch et al.150 Due to this significant bond energy, it plays an important 

role structurally and biologically151,152 The length of this bond is typically shorter than the sum 

of the van der Waals radii of the two interacting atoms.153 In terms of its properties, this bond 

shares some properties with hydrogen bonding. For example, the driving force of the 

interaction is electrostatic. It is also a directional bond, where the interaction occurs at an 

angle of almost 180 ° considering the R–X···Y scheme. In fact, the Y approaches the X along the 

axis of the R-X bond. The interaction is thought to form following the σ-hole model, in which 

static charges plays a significant role.154 Therefore, the more electron-deficient the halogen 

bond donor X is, the stronger the halogen bond would be.146,152 

2.4.3 Interactions of aromatic rings 

In their simplest form, this type of interaction takes place between two unfunctionalized 

benzene rings, adopting one of three common arrangements known as sandwich (parallel), 
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offset-parallel and T-shaped (face-to-edge) interactions.154  An illustration of these interactions 

is shown in Figure 2-13. 

 

Figure 2-13. Graphic representation of ring interaction types. 

The first observations of the (offset) parallel π-π interactions were made around 1930-1950 by 

Robertson and Lonsdale after analysing crystal structures of aromatic compounds.155  Initially, 

π-π interactions were explained by formation of a charge transfer complex, but later 

experimental findings have shown that this explanation is unlikely.155 The energy associated 

with π-π interactions is low and therefore difficult to determine. Several theoretical studies 

have been conducted to calculate the binding energy in benzene dimers, however, the method 

of calculation and the basis set can significantly affect the result. Sinnokrot et al.154 compared 

the effect of different basis sets and concluded that aug-cc-pVDZ or larger basis set is 

necessary to obtain reliable results. The results obtained in their study are presented in 

Table 2-2. The authors have confirmed the correspondence of the geometry of benzene dimers 

obtained in their calculations to crystallographic observations.  
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Table 2-2. The distances and binding energy in the different π-π interactions 

Interaction type Distance between centroids, Å 
Binding energy, 
kcal/mol 

Sandwich 3.7 1.8 

T-shaped 4.9 2.7 

Parallel displaced 3.76a 2.8 

a The reported distance is 3.6 vertically 1.6 horizontally (displacement), the value given is 
obtained by applying Pythagorean theorem. 

The values reported in Table 2-2 shows the binding energies of the benzene dimer. Note that 

these conformations can have higher binding energies when the rings are subistituted.156 Ring 

interactions are known to contribute to the stability of biological systems, for example, the 

structure of DNA is supported by ring interactions.157 These interactions also contribute to 

stability of crystal structures containing aromatic groups, such as pyrene.158 Aromatic 

interactions also participate in binding ligands to proteins and therefore are a significant 

aspect of pharmaceutical compounds. For example, the complexation of the anaesthetic 

bupivacaine to receptors has been shown to rely on ring interactions.159 In this work, we will 

focus on the role ring interactions play in solvate formation. 

2.5 Characterization 

2.5.1 X-ray diffraction techniques 

In order understand solid-state materials it is crucial to obtain information about their 

structure. The most advantageous method in terms of information obtained is single crystal X-

ray diffractometry. This method allows to obtain detailed information on the 3D structure of a 

material as well as to characterize its intermolecular interactions.160, 136 However, it is not 

always possible to use single-crystal X-ray diffractometry as it requires having single crystals of 

the material of appropriately large size.  If use of single-crystal X-ray diffraction is not possible, 

crystal structure solution can be attempted from powder X-ray diffraction data. This method 
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gives less information where two dimensions of data are merged into one dimension. 

However, if sufficient information about the molecules in the crystal is available, it can be used 

for crystal structure determination. Powder X-ray diffraction is commonly used as a routine 

technique for identifying crystalline phases bases on a “fingerprint” of peak positions.  

Both diffraction methods are based on Bragg’s law which states that the distance d between 

Miller planes (planes in crystal structure formed by atoms or molecules) can be calculated 

from the 2θ position at which a reflection has been observed if the wavelength of radiation λ is 

known using Equation (2-6):  

 
𝑑 =

𝜆

2𝑠𝑖𝑛𝜃
 

(2-6) 

2.5.1.1 Single crystal X-ray diffraction 

In single crystal X-ray diffractometry a single crystal of the compound is analysed. X-ray 

diffraction patterns for this crystal are recorded depending on its angular position with regard 

to the source of radiation and detector. The intensity and position of diffraction peaks in these 

patterns contain information on atom positions and symmetry operations in the crystal lattice. 

The first step in extracting this information is indexing the diffraction pattern. Indexing assigns 

Miller indices to the diffraction peaks. This leads to characterizing the Miller planes orientation 

in the unit cell and allowing to calculate unit cell parameters.161 In further steps, the reflection 

intensities (corresponding to amplitude of the radiation wave) are used to calculate structure 

factor Fhkl, which contains information of the electron density in each point (x,y,z) of the unit 

cell. Fhkl can be calculated using Equation (2-7): 
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𝐹ℎ𝑘𝑙 = ∫ 𝜌(𝑥, 𝑦, 𝑧)𝑒2𝜋𝑖(ℎ𝑥+𝑘𝑦+𝑙𝑧)𝑑𝑉

𝑉

 

(2-7) 

where ℎ, 𝑘, 𝑙 are Miller indices, 𝑥, 𝑦, 𝑧 are fractional coordinates and V is volume of the unit 

cell. Fourier synthesis can be applied to calculate electron density,162 as presented in Equation 

(2-8):  

 
𝜌(𝑥, 𝑦, 𝑧) =

1

𝑉
∑ ∑ ∑|𝐹ℎ𝑘𝑙|𝑒𝑖𝜑ℎ𝑘𝑙𝑒−𝑖2𝜋(ℎ𝑘+𝑘𝑦+𝑙𝑧)

𝑙𝑘ℎ

 
(2-8) 

This equation also contains a phase angle φhkl of the waves  - this information is lost in the 

experiment causing the “phase problem”.162,163 Generally phase problem is solved by using the 

previous knowledge that crystals consist from discrete units – atoms – arranged in three-

dimensional structures.  

Several approaches have been developed to address the phase problem: direct methods,163 

charge flipping,164 molecular replacement, VLD (Viva la difference)165  etc. The most commonly 

used of these are direct methods, which employs structure invariants to link normalized 

structure factors to phase angles.163 These algorithms are integrated in crystal structure 

determination and analysis packages such as SHELX, SIR, OLEX and other software 

packages.160,166 
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2.5.1.2 Powder X-ray diffraction 

Although crystal structure determination using powder X-ray diffraction data is considerably 

more complicated compared to single crystal X-ray diffraction, recent advances in computation 

techniques together with development of powerful algorithms have facilitated the use of this 

method.167,168 The first step in the crystal structure solution from powder data is generation of 

random trial structures, followed by simulation of their powder diffractograms and 

comparison of these with the experimental diffractogram. Subsequently, global optimum is 

found. The most commonly employed approach to find the global minimum is “Simulated 

Annealing” which is based on Monte Carlo method.169  

Other more common uses of X-ray powder diffraction include qualitative and quantitative 

analysis of solid phase mixtures. The distinctive property of X-ray powder diffraction is that it 

allows obtaining information about the structure of the material to be analysed, but not about 

its chemical composition therefore it is irreplaceable technique in polymorph screening.170,171 

Nowadays, X-ray diffractometry is a fast method used in high-throughput solid form screening 

analysis. The data analysis is often conducted using statistical analysis – clustering and 

multivariate data analysis.172 

X-ray diffraction data can be used not only to identify solid phases present in a sample but also 

to quantitatively determine their amount. For quantitative analysis of X-ray diffraction data 

two approaches can be distinguished – individual reflection analysis and full pattern analysis. 

The first one is based on measuring the intensities of individual reflections with regard to a 

reference.173 The full pattern analysis, on the other hand, is based on finding the best possible 

agreement between experimental and simulated X-ray diffraction patterns. The simulated 

pattern is calculated either from crystal structures (Rietveld method)174 or from reference 

patterns of the components present in the sample.175,176,177  



47 
 

2.5.2 Thermal analysis 

Thermal methods such as thermogravimetry (TG), differential thermal analysis (DTA) and 

differential scanning calorimetry (DSC) are used to investigate the thermal behaviour of 

organic solids. Thermogravimetry is especially advantageous in identifying solvates, as this 

technique allows observing weight changes upon heating, which are often related to 

desolvation of solvates or decomposition of the material.170 In order to analyse the by-

products of decomposition, systems combining TG with evolved gas analysis have been 

developed. These systems commonly use mass spectrometry to analyse the products of 

decomposition.178 DTA method is often used together with TG and allows identifying thermal 

events taking place upon heating the sample.179  

Thermogravimetry is extensively used in this work to identify solvate formation. A typical 

thermogravimeter consists from a programmable furnace and a balance.180 Thermogravimetric 

measurement provides information on the temperature of the thermal event and the amount 

of lost weight.181 In addition, it is also often possible to differentiate between stoichiometric 

and nonstoichiometric solvates as the nature of the weight loss step is different for both of 

these. The stoichiometric solvates usually have well-defined weight loss steps in a narrow 

temperature range, while non-stoichiometric solvates lose weight in a wide temperature range 

and the weight loss may also vary for the same species.170, 182 A comparison of TG graphs 

comparing desolvation events of stoichiometric and non-stoichiometric solvates is shown in 

Figure 2-14.  
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Figure 2-14. A comparison of desolvation events in TG thermograms for stoichiometric and non-stoichiometric 
solvates. 

Although DSC is not going to be used in this work, it is worth highlighting the principles and 

uses of this method, as DSC and TG are considered two complementary methods. DSC detects 

the physical and chemical changes in a sample by measuring heat flow against a reference as a 

function of temperature and time. The output from DSC gives information about endo- and 

exothermic events, such as glass transition, crystallization and melting.183,184 Such properties 

make it especially useful in detection and characterization of a wide range of solid forms, 

including polymorphs, amorphous forms, multi-component solids as well as complete 

formulations. Due to its wide range of applications, it is reportedly one of the most heavily 

used methods in solids state characterization.183 Temperature-modulated DSC (MTDSC), a 

relatively recent improvement to this method,185 enables DSC to separate overlapping 

thermodynamic (irreversible) and kinetic (reversible) events.186 
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3.1 Materials 

The solvents used in this work were ethanol (C2H6O, Sigma Aldrich, UK, purity: ≥ 99 % (GC)), 

methanol (CH3O, Fisher Scientific, UK, purity: HPLC grade), dichloromethane (CH2Cl2, Sigma 

Aldrich, UK, purity: ≥ 99 % (GC)), chloroform (CHCl3, Fisher Scientific, UK, purity: laboratory 

reagent grade) as well as Milli-Q water that is prepared on site in the School of Pharmacy at 

the University of East Anglia. 

The pharmaceutically active ingredients that were used were Theophylline anhydrous 

(C7H8N4O2, Sigma Aldrich, UK), 4-Methylumbellferone (Hymecromone) (C10H8O3, Sigma Aldrich, 

UK), Isoniazid (isonicotinohydrazide) (C6H7N3O, Fluka, ≥99 %, India), Ethenzamide (2-

ethoxybenzamide) (C9H11NO2, Alfa Aeser, Germany), Carbamazepine (C15H12N2O, Sigma Aldrich, 

UK), Diflunisal (C13H8F2O3, Sigma Aldrich UK), Fenofibrate (C20H21ClO4, generously donated by 

Merck Serono (Germany)), Felodipine (C18H19NO4Cl2, Afine Chemicals Limited, Hangzhou, 

China)). Ketoconazole (C26H28Cl2N4O4, Alfa Aeser, Germany), Griseofulvin (C17H17ClO6, Alfa 

Aeser, Germany). 
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3.2 Methods 

3.2.1 Descriptor calculation 

Descriptor calculation was conducted using the Dragon software. Relevant technical details of 

calculation process are given below. 

3.2.1.1 Main descriptors calculated by Dragon 

The Dragon software that was used in this thesis calculates 29 families of descriptors, known 

as blocks. These blocks are presented in Table 3-1. 

Table 3-1. The 29 main blocks of descriptors calculated by Dragon. Details explaining the calculation of each 
descriptor can be found in the Dragon software documentation

1
 

Block 

number Block name 

Examples (Name in Dragon) 

1 Constitutional descriptors 

Molecular weight (MW), 

number of non-H atoms 

(nSK), percentage of O 

atoms (O %) 

2 Ring descriptors 

Number of rings (nCIC), 

number of 6-membered 

rings (nR06),  total ring size 

(TRS) 

3 Topological indices 

First Zagreb index (ZM1)2, 

all path Wiener index 

(Wap)3  
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Table 3-1. Continued 

4 Walk and path counts 

Molecular path count of 

order 1 (MPC01, nr. of 

bonds between non-H 

atoms); self-returning walk 

count of order 4 (SRW04, 

nr. of possible 4-bond walks 

that return to the same 

atom) 

5 Connectivity indices 

Randic connectivity index 

(X1)4, solvation connectivity 

index of order 0 (X0sol) 5 

6 Information indices 

The information index on 

molecular size (ISIZ)6, Kier 

symmetry index (S0K)4 

7 2D matrix-based descriptors 

Average vertex sum from 

reciprocal squared distance 

matrix (AVS_H2), third 

order spectral moment of 

the topological distance 

matrix (SM3_D) 

8 2D autocorrelations 

Moran autocorrelation of 

lag 1 weighted by mass 

(MATS1m) 7 

9 Burden matrix eigenvalues8 

Largest eigenvalue of 

Burden matrix weighted by 

mass (SpMax1_Bhm)  

10 P_VSA-like descriptors9 

P_VSA-like descriptor on 

LogP, 1st bin  

(P_VSA_LogP_1)  
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Table 3-1. Continued 

11 ETA indices10 

Eta core count (Eta_alpha), 

eta p shape index 

(Eta_sh_p) 

12 Edge adjacency indices 

Leading eigenvalue from 

the edge adjacency matrix 

of the H-depleted molecular 

graph (SpMax_EA) 

13 Geometrical descriptors 
radius of gyration (Rgyr), 

gravitational index G1 (G1)11 

14 3D matrix-based descriptors 

Wiener-like index from 

distance/distance matrix 

(Wi_G/D) 12 13 

15 3D autocorrelations 

3D Topological distance 

based autocorrelation with 

lag 1, unweighted 

(TDB01u)14 

16 RDF descriptors 

Value of the Radial 

Distribution Function 

weighted by atomic mass at 

1.5 Å (RDF015m)15 

17 3D-MoRSE descriptors16  

Unweighted scattered 

intensity at a scattering 

ratio of 1 (Mor01u)  

18 WHIM descriptors17 

Unweighted variance of 

atomic coordinates along 

the 1st principal axis of the 

molecule (L1u) 

19 GETAWAY descriptors18, 19 

Atomic leverage weighted 

autocorrelation of lag 0 

(H0u) 

20 Randic molecular profiles20 

Molecular profile 1 (sum of 

all interatomic distances, 

divided by the number of 

atoms, DP01) 
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Table 3-1. Continued 

21 Functional group counts 
Number of aliphatic 

carboxyl groups (nRCOOH) 

22 Atom-centred fragments21 

Number of CH2R2 

fragments in the molecule 

(C-002) 

23 Atom-type E-state indices22 

Sum of the 

electrotopoligical states of 

all methyl carbon atoms in 

the molecule (SsCH3) 

24 CATS 2D23, 24 

Number of donor-donor 

atom pairs at a separation 

of 3 bond (CATS2D_03_DD) 

25 2D Atom Pairs25 

Sum of topological 

distances between N..N 

atom pairs (T(N..N)) 

26 3D Atom Pairs 

Sum of geometrical 

distances between N..N 

atom pairs (G(N..N)) 

27 Charge descriptors 
The maximum positive 

atomic charge (qpmax) 

28 Molecular properties 

The hydrophilic factor 

(Hy)26, total surface area of 

acceptor atoms (SAacc) 

29 Drug-like indices 

Complementary Lipinski 

Alert index (cRo5, 0 or 1 

indicating whether the 

molecule violates at least 

two criteria from Lipinski’s 

rule of five)27, 28 
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3.2.1.2 The reciprocal squared topological distance matrix (H2) 

This matrix is mentioned when the ethanol solvate formation model is presented. The process 

of calculating topological distance matrix (H2) will be described using a commonly used drug; 

aspirin (2-(acetoxy)benzoic acid). Calculations for other compounds are conducted similarly.  

 

Figure 3-1. Molecular graph of the aspirin molecule. 

The topological distance matrix is calculated from the molecular graph. The topological 

distance between atoms i and j (dij) is defined as the number of bonds in the shortest path 

connecting them in the molecular graph. The diagonal elements of the topological distance 

matrix are zero, while the off-diagonals give the topological distance between non-hydrogen 

atoms. An example for aspirin is shown in Table 3-2 (refer to Figure 3-1 for atom numbering). 
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Table 3-2. Topological distance matrix of aspirin 

- 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 0 1 2 3 2 1 1 2 2 2 3 4 4 

2 1 0 1 2 3 2 2 3 3 1 2 3 3 

3 2 1 0 1 2 3 3 4 4 2 3 4 4 

4 3 2 1 0 1 2 4 5 5 3 4 5 5 

5 2 3 2 1 0 1 3 4 4 4 5 6 6 

6 1 2 3 2 1 0 2 3 3 3 4 5 5 

7 1 2 3 4 3 2 0 1 1 3 4 5 5 

8 2 3 4 5 4 3 1 0 2 4 5 6 6 

9 2 3 4 5 4 3 1 2 0 4 5 6 6 

10 2 1 2 3 4 3 3 4 4 0 1 2 2 

11 3 2 3 4 5 4 4 5 5 1 0 1 1 

12 4 3 4 5 6 5 5 6 6 2 1 0 2 

13 4 3 4 5 6 5 5 6 6 2 1 2 0 
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Squaring each element in the matrix gives the squared topological distance matrix, shown in 

Table 3-3.  

Table 3-3. Squared topological distance matrix of aspirin 

- 1 4 9 16 25 36 49 64 81 100 121 144 169 

1 0 1 4 9 4 1 1 4 4 4 9 16 16 

4 1 0 1 4 9 4 4 9 9 1 4 9 9 

9 4 1 0 1 4 9 9 16 16 4 9 16 16 

16 9 4 1 0 1 4 16 25 25 9 16 25 25 

25 4 9 4 1 0 1 9 16 16 16 25 36 36 

36 1 4 9 4 1 0 4 9 9 9 16 25 25 

49 1 4 9 16 9 4 0 1 1 9 16 25 25 

64 4 9 16 25 16 9 1 0 4 16 25 36 36 

81 4 9 16 25 16 9 1 4 0 16 25 36 36 

100 4 1 4 9 16 9 9 16 16 0 1 4 4 

121 9 4 9 16 25 16 16 25 25 1 0 1 1 

144 16 9 16 25 36 25 25 36 36 4 1 0 4 

169 16 9 16 25 36 25 25 36 36 4 1 4 0 
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By taking the reciprocal of each element in the squared matrix, the reciprocal squared 

topological distance matrix (H2) is obtained as shown in Table 3-4. 

Table 3-4. Reciprocal squared topological distance matrix (H2) of aspirin 

0.00 1.00 0.25 0.11 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 

1.00 0.00 1.00 0.25 0.11 0.25 1.00 1.00 0.25 0.25 0.25 0.11 0.06 0.06 

0.25 1.00 0.00 1.00 0.25 0.11 0.25 0.25 0.11 0.11 1.00 0.25 0.11 0.11 

0.11 0.25 1.00 0.00 1.00 0.25 0.11 0.11 0.06 0.06 0.25 0.11 0.06 0.06 

0.06 0.11 0.25 1.00 0.00 1.00 0.25 0.06 0.04 0.04 0.11 0.06 0.04 0.04 

0.04 0.25 0.11 0.25 1.00 0.00 1.00 0.11 0.06 0.06 0.06 0.04 0.03 0.03 

0.03 1.00 0.25 0.11 0.25 1.00 0.00 0.25 0.11 0.11 0.11 0.06 0.04 0.04 

0.02 1.00 0.25 0.11 0.06 0.11 0.25 0.00 1.00 1.00 0.11 0.06 0.04 0.04 

0.02 0.25 0.11 0.06 0.04 0.06 0.11 1.00 0.00 0.25 0.06 0.04 0.03 0.03 

0.01 0.25 0.11 0.06 0.04 0.06 0.11 1.00 0.25 0.00 0.06 0.04 0.03 0.03 

0.01 0.25 1.00 0.25 0.11 0.06 0.11 0.11 0.06 0.06 0.00 1.00 0.25 0.25 

0.01 0.11 0.25 0.11 0.06 0.04 0.06 0.06 0.04 0.04 1.00 0.00 1.00 1.00 

0.01 0.06 0.11 0.06 0.04 0.03 0.04 0.04 0.03 0.03 0.25 1.00 0.00 0.25 

0.01 0.06 0.11 0.06 0.04 0.03 0.04 0.04 0.03 0.03 0.25 1.00 0.25 0.00 
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3.2.1.3 Main descriptors used in thesis 

The values of these descriptors for two common drugs are illustrated in Table 3-5. The 

descriptors that require previous knowledge of the 3D structure of a molecule were not 

included. 

Table 3-5. Values of the descriptors mentioned in the thesis calculated for carbamazepine and acetaminophen 
molecules 

Descriptor Brief explanation 

of the descriptor 

  

AVS_H2 

The log 

transformation of 

the average of the 

sum of the entries 

in each row of the 

reciprocal squared 

topological 

distance matrix. 3.783 3.016 

TRS 

The number of 

atoms in each 

independent ring 

in the molecule. 19 6 

SM3_H2 

The log 

transformation of 

the third order 

spectral moment 

of the reciprocal 

squared distance 

matrix. 4.168 3.358 

𝜋ID 

The logarithmic 

transform of the 

conventional bond 

order ID number. 9.776 6.033 
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Table 3-5. Continued 

nHDon 

The number of 

hydrogen bond 

donors. 2 2 

Hy 

The hydrophilic 

factor 0.32 0.66 

H-050 

The number of 

hydrogen atoms 

attached to a 

heteroatom 2 2 

nH 

The number of 

hydrogen atoms. 12 9 

nCIC 

The number of 

rings in the 

molecule. 3 1 

MPC01 

The log 

transformation of 

the count of paths 

of length 1 in the 

H-depleted 

molecular graph. 3.045 2.485 

3.2.2 Slurry preparation 

Chapter 7 of this thesis incorporated screening of materials for solvate and hydrate formation. 

All slurries were prepared using one general procedure, that is, the addition of an amount of 

the solid material into a 1-1.5 ml of the solvent until slurry is formed.  Five slurries were 

prepared per candidate, each of them being with a different solvent (ethanol, methanol, 

water, chloroform, dichloromethane), resulting in a total of 50 slurries. After these slurries 

were prepared, they were left to shake at 25 °C and 250 rpm for 20 days.The details of each 

sample preparation are shown in Table 3-6. 
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Table 3-6. A summary of the preparation of each slurry used in the screening experiments 

Drug candidate Solvent 

Volume of 

solvent added 

(ml) 

Amount of 

drug added 

(mg) 

Drying time 

(minutes) 

Theophylline Ethanol 1.5 50 20 

Theophylline Methanol 1.5 50 20 

Theophylline Dichloromethane 1 50 10 

Theophylline Chloroform 1 50 10 

Theophylline Water 1.5 50 60 

Hymecromone Ethanol 1.5 50 20 

Hymecromone Methanol 1.5 50 20 

Hymecromone Dichloromethane 1 50 10 

Hymecromone Chloroform 1 50 10 

Hymecromone Water 1.5 50 60 

Griseofulvin Ethanol 1.5 50 20 

Griseofulvin Methanol 1.5 50 20 

Griseofulvin Dichloromethane 1 250 10 

Griseofulvin Chloroform 1 100 10 

Griseofulvin Water 1.5 50 60 

Isoniazid Ethanol 1.5 100 20 

Isoniazid Methanol 1.5 100 20 

Isoniazid Dichloromethane 1 100 10 

Isoniazid Chloroform 1 100 10 

Isoniazid Water 1.5 200 60 

Ethenzamide Ethanol 1.5 100 20 

Ethenzamide Methanol 1.5 150 20 

Ethenzamide Dichloromethane 1 200 10 

  



81 
 

Table 3-6. Continued 

Ethenzamide Chloroform 1 200 10 

Ethenzamide Water 1.5 50 60 

Carbamazepine Ethanol 1.5 100 20 

Carbamazepine Methanol 1.5 150 20 

Carbamazepine Dichloromethane 1 250 10 

Carbamazepine Chloroform 1 250 10 

Carbamazepine Water 1.5 50 60 

Diflunisal Ethanol 1.5 300 20 

Diflunisal Methanol 1.5 250 20 

Diflunisal Dichloromethane 1 50 10 

Diflunisal Chloroform 1 50 10 

Diflunisal Water 1.5 100 60 

Fenofibrate Ethanol 1.5 100 20 

Fenofibrate Methanol 1.5 100 20 

Fenofibrate Dichloromethane 1 750 10 

Fenofibrate Chloroform 1 750 10 

Fenofibrate Water 1.5 50 60 

Felodipine Ethanol 1.5 150 20 

Felodipine Methanol 1.5 180 20 

Felodipine Dichloromethane 0.5 650 10 

Felodipine Chloroform 0.5 600 10 

Felodipine Water 1.5 50 60 

Ketoconazole Ethanol 1.5 80 20 

Ketoconazole Methanol 1.5 150 20 

Ketoconazole Dichloromethane 1 500 10 

Ketoconazole Chloroform 1 500 10 
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Table 3-6. Continued 

Ketoconazole Water 1.5 50 60 

3.2.3 Thermogravimetric analysis 

In this work, the thermogravimetric analysis was conducted to detect the solvate formation. 

TGA Q5000 (TA instruments, Newcastle, USA) was used for this purpose. The samples were 

prepared from slurry then dried at room temperature. After drying they were heated from 

40 °C up to 250 °C at a rate of 10 °C min-1. The nitrogen gas purge rate was set to 100 ml min-1. 

3.2.4 Single crystal X-ray diffraction. 

The single crystal X-ray diffraction experiments in this thesis were performed using an Oxford 

Diffraction Xcalibur-3/Sapphire3-CCD diffractometer (Oxford diffraction Ltd., Oxford, UK) 

equipped with a graphite monochromator. The diffractometer uses a Mo-Kα radiation of 

wavelength 0.71073 Å.  Intensity data was measured by thin-slice ω- and φ-scans. All 

experiments were conducted at 140(1) K. The programs CrysAlisPro-CCD and -RED were used 

to process the diffraction data.29,30 The structures were solved in SHELXT31 via the dual-space 

approach. SHELXL and the user interface ShelXle were used to refine the structures.32,33 All 

non-hydrogen atoms were located from electron density maps. The thermal displacement 

parameters of these atoms were refined anisotropically. Hydrogen atoms were added in 

geometrically idealized positions and their coordinates were refined in riding mode, while 

allowing rigid rotations of the methyl groups. All hydrogen atoms were refined with isotropic 

displacement parameters. 

Crystal structure analysis and geometric measurements were carried out using the programs 

PLATON and OLEX2.34, 35 The graphical illustrations were created using Mercury.36 
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3.2.5 PXRD 

Powder X-ray Diffraction experiments were conducted using a Thermo-ARL X’tra 

diffractometer (Ecublens, Switzerland). Cu Kα1 radiation source was used with 45 kV voltage 

and a current of 40 mA. All experiments were conducted at room temperature and humidity. 

PXRD patterns of hymecromone, diflunisal and fenofibrate were obtained in this work. All 

samples were prepared by gentle crushing of the crystals using a metal spatula or a mortar and 

pestle and transferring the crushed material into the sample holder. The diffraction data was 

recorded in 2θ-rage from 3 ° to 50 °. The measurement was carried out at a rate of one second 

per step and the step size of 0.01 °. Note that the solvate samples were measured immediately 

after crushing, to avoid possible solvent loss. 

3.2.6 Microscopy 

The hot-stage microscopy experiments in reflective mode were carried out using 

LinkamMDSG600 automated hot stage and Linkam imaging station that was attached to a 

microscope with LED light source and ×10 magnification lens.  

The polarised light microscopy experiments were conducted using Leica DM LS2 polarised light 

microscope (Wetzlar GmbH, Germany) connected to a video capture system and equipped 

with the Mettler Toledo FP 82 HT hot stage and FP 90 temperature controller.  
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  Data acquisition and descriptor calculation  Chapter 4:
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4.1 Overview of the research steps 

The introduction in Chapter 1 has given a background on how the work in this thesis is 

designed to predict the hydrate and solvate formation in organic compounds. An overview of 

the technical steps that need to be taken to achieve the desired predictions is summarized in 

Figure 4-1. 

 

Figure 4-1. Main steps of analysis of solvate formation. 

4.2 Data collection 

In this section, technical details on how the data was collected, the challenges faced and how 

each issue was treated will be discussed. 

4.2.1 Solvent selection rationale 

The steps presented in Figure 4-1 seems to be in a logical order, but the question remains what 

solvents should be studied for their solvate formation ability? Over 300 recrystallization 

solvents are recorded in the CSD, as shown by a study conducted in 2000.1 Studying this large 
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number would not be feasible due to the time limit. Additionally, it would not be possible to 

draw reliable conclusions for solvents having small number of hits in the database. For these 

reasons, few solvents had to be selected. Solvents with the largest number of hits in the 

database would be a rational choice, as this is a knowledge based approach, where the larger 

amount of information could lead to more robust results. 

The same study that reported the 300+ solvents has also shown the top 50 solvents ranked by 

number of solvates they formed with organic compounds in the CSD.1 Note that the word 

solvate here means solvate that is formed by a single solvent, for example a dichloromethane 

solvate. The information in this article was published based on the CSD version of October 

1998. To check if these numbers are still valid at this time, the top 10 solvents addressed in the 

article were checked using the CSD November 2013 version. The comparison can be seen in 

Figure 4-2. 

 

Figure 4-2. The number of solvates recorded in CSD for the 10 most commonly used organic recrystallization 
solvents. 
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The top 5 solvate-forming organic solvents (with organic materials) in 1998 remained as the 

top forming ones in 2013, these solvents are methanol, dichloromethane, benzene, ethanol 

and chloroform. With exception to benzene, all of these solvents are reported to be commonly 

used solvents in pharmaceutical industry.2 Additionally, ethanol and methanol belong to the 

same family of hydroxyl group-containing solvents, similarly, dichloromethane and chloroform 

are also closely related chlorinated solvents. Comparing the hydroxylated to the chlorinated 

solvents could have several benefits on the study. For example, solvents of the same group are 

expected to have similar behaviour. Benzene did not show the same potential as it stands in a 

different group. For these reasons, ethanol, methanol, dichloromethane and chloroform were 

selected. Water, being the most commonly used solvent and the largest solvate former, where 

hydrates represent around 33 % of entries in the CSD was also included in this study.3 Although 

dichloromethane and chloroform have well recognized high toxicity4,5, a large increase (around 

4-folds) in the number of dichloromethane and chloroform solvates among organic crystals 

was observed, relative to the year 1998. This shows the increasing usage of these solvents in 

crystallization; therefore the importance of studying them. 

4.2.2 Entries selection rationale 

Identification of the factors that contribute to solvate formation in the five chosen solvents is 

possible through comparing the molecules which were able to form a solvate to those that 

were not able to form a solvate, both being crystallized from the same solvent. In order to do 

this comparison, two groups of molecules per solvent need to be extracted from the database, 

these are: a solvate forming and a non-solvate forming group. In order to keep the study in a 

defined shape, it was necessary to apply restrictions on the selected molecules. For example, 

formally charged molecules are expected to form an ionic bond, which is significantly stronger 

than any other non-covalent interaction.6 This shows that the inclusion of such entries would 

cause an increase in the number of outliers in the data. The ConQuest software was used to 
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make a custom search in the database. The solvate-forming entries for each solvent were 

selected based on the following criteria: 

 Each entry should have 2 chemical entities that are not covalently bonded. 

 One of these 2 entities is the solvent of interest. 

 Only organic structures were considered, no organometallic structures were searched.  

 Structures that are ionic (salts) or polymeric were also excluded from the search. 

 

To extract the non-solvate entries that were recrystallized from a certain solvent, the search 

criteria were set to: 

 Each entry should have 1 molecule only.  

 The recrystallization solvent should only be the solvent of interest.  

 Only organic structures were considered, no organometallic structures were searched.  

 Structures that are ionic (salts) or polymeric were excluded from the search. 

Note that in both groups, only organic structures were selected. This is due to the fact that the 

reason for solvent inclusion (esp. water) changes with the presence of metal ions. This is 

reported to occur due to the entry of water atoms into the coordination sphere of metal 

atoms.7 
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A total of 54,653 CSD entries were exported using the search criteria explained. The extracted 

data consisted of 15,082 solvate-forming (S) and 39,571 non-solvate-forming (NS) structures. 

The breakdown of these entries between the 5 solvents is shown in Table 4-1. 

Table 4-1. The breakdown of the number of solvate and non-solvate entries by solvent 

Solvent NS S Total 

Ethanol 17,958 855 18,813 

Methanol 7,862 1,942 9,804 

Dichloromethane 7,149 1,767 8,916 

Chloroform 4,382 1,676 6,058 

Water 2,220 8,842 11,062 

Total 39,571 15,082 54,653 

4.2.3 Refinement of the non-solvate/solvate forming groups 

Random samples of the non-solvate and solvate groups were visually examined in each solvent 

to ensure they meet the desired criteria mentioned above. Five types of unexpected entries 

were encountered.  

(1) When the non-solvate forming groups were searched for, ConQuest text search was used. 

It was intended that entries recrystallized from the solvent of interest only would be selected 

from the database. When the entries were investigated, it was seen that many of them had a 

combination of recrystallization solvents. Additionally, entries having the solvent as part of 

their name were also within the results of text search. An example of that is 2-(Boranyl(t-

butyl)methylphosphoranyl)-1,1-diphenylethanol (CSD refcode: BETMAQ)8 which was listed as a 

result for the search, although it doesn’t have ethanol as the recrystallization solvent. 

Moreover, an overlap in the names of the solvents was observed. For example, the string 

“ethanol” was used to search the recrystallization solvent of each entry in the database. 

Results for molecules that were recrystallized from methanol also turned up. This explains the 
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large number of entries under the ethanol non-solvate group compared to the other organic 

solvents’ groups. It is notable that some of these issues could have been avoided if the 

recrystallization solvent search was used instead of the text search in the first place. However, 

these issues were fixed by processing the non-solvate lists through a Linux command line script 

that strictly looks for the recrystallization solvent of interest in each dataset. 

(2) Upon examining the solvate-forming groups, it was noticed that some of the entries had no 

recrystallization solvent recorded. These entries were part of the results of the search because 

the search criteria for solvate-forming entries did not include a criterion to look in the 

recrystallization solvent tab in the database. The percentage of entries with unknown 

recrystallization solvent versus the complete solvate dataset is shown in Figure 4-3. 

 

Figure 4-3. Percentages of entries with unknown recrystallization solvent among the solvate-forming entries in 
each solvent dataset. 

The large percentage of empty recrystallization solvent entries raises the question whether to 

include these entries in the analysis or to exclude them. Since the solvent exists as a part of the 

structure in the solvate-forming group, this means that the solvent was used in the 

preparation of the sample. Solvate entries with unknown recrystallization solvents were 
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considered as part of the dataset. For the non-solvate-forming group, the recrystallization 

solvent cannot be known without having it mentioned in the database. For this reason, we 

excluded any non-solvate molecule with an unknown recrystallization solvent. This issue of an 

unknown recrystallization solvent did not happen in the non-solvate groups as the string of the 

solvent (for example “dichloromethane”) was searched for. 

(3) Some solvate entries had a solvent in the crystal structure that was not included as a 

recrystallization solvent in the database. An example is the CSD reference code: ZEQPUI entry.9 

This entry is an ethanol solvate in which the recrystallization solvent was recorded as a mixture 

of petroleum ether and ethyl acetate. Few entries (less than 10) of this type were present in 

each dataset. Since the solvent cannot just show up in the crystal, it must have been used 

although it might not be recorded. For this reason, these entries were accepted in the solvate 

dataset. They were rejected in the non-solvate datasets. 

(4) Another issue that affected the accuracy of the solvate-forming lists was the inconsistency 

in the solvents nomenclature in the CSD, which made the collection of a complete dataset 

harder. For example, ethanol was recorded in the database under different names, including 

alcohol, ethyl alcohol, abs. alcohol, 96 % alcohol. The proportion of structures crystallized from 

ethanol that were saved using these names was below 0.5 %. In water datasets on the other 

hand, more than 13 % of the total non-hydrates had their recrystallization solvent recorded as 

“aqueous” instead of “water”, which can cause a significant change in the information 

obtained. These different solvent names were searched and the results were considered part 

of the dataset. 

(5) It is important to mention that by applying the mentioned criteria in ConQuest, hydrate and 

solvate structures of different stoichiometric ratios (disolvates/ dihydrates/ hemisolvates etc.) 

were all considered to be a hydrate or a solvate form. An example of that is the carbamazepine 

dihydrate (CSD reference code: FEFNOT02)10 which contains two water moieties, yet was still 
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present in the datasets of hydrate although the criterion of the number of chemical units was 

set to two. This is because the search option used in ConQuest treats every molecule in the 

asymmetric unit as one chemical entity regardless of the number of times that this unit is 

present in the unit cell. On the other hand, entries that contained molecules with more than 

one type of solvent in the crystal structure were excluded from this search because they are 

considered to have three chemical units. An example is 2-ethoxy-1,3-bis(3-

(trifluoromethyl)phenyl)-1,3-dihydro-1H-imidazo(4,5-b)quinoxaline methanol ethanol solvate, 

(CSD reference code: CAWREY).11 This entry contains ethanol and methanol moieties as can be 

seen in Figure 4-4. 

 

Figure 4-4. The CSD entry CAWREY showing more than one solvent in the crystal structure. 

Entries with more than one type of solvent in the structure were excluded in order to reduce 

the number of variables in the investigation and to keep it as simple as possible. The count of 

the solvate and non-solvate forming entries after corrections are shown in Table 4-2. 

.  
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Table 4-2. The count of solvate and non-solvate entries after refinement 

 
NS S Total 

Ethanol 6,745 855 7,600 

Methanol 4,065 1,942 6,007 

Dichloromethane 1,520 1,767 3,287 

Chloroform 1,449 1,676 3,125 

Water 443 7,086 7,529 

Total 14,222 13,326 27,548 

4.2.4 Further partitioning of the solvate group 

Including the solvate entries with unknown recrystallization solvent to the solvate-forming 

entries gave the question whether the entries recrystallized from a known source would show 

a different behaviour from the ones with no recrystallization solvent mentioned. It would also 

be advantageous to know if entries recrystallized from one solvent would show a different 

behaviour from the entries recrystallized from a combination of solvents. Note that the latter 

comparison is valid only if the two groups had a solvent in common. For these purposes, the 

data of each solvent was further partitioned as illustrated in Figure 4-5. 

 

Figure 4-5. An illustration of the four individual groups of each solvent. 

Solvent 

Non-solvate 
entries 

Solvate entries 

Solvate entries 
from mixtures 

of solvents 

Solvate entries 
from solvent 

alone 



99 
 

At this point, the solvate data consisted of three groups, the main group that includes all 

solvate entries, a sub-group that consists of entries recrystallized from a mixture of solvents 

and a sub-group that consists of entries recrystallized from the solvent of interest only. The 

non-solvate group was not partitioned; simply because the group did not have entries with 

blank recrystallization solvent tab in the database. The detailed number of entries in each of 

the solvate group and sub-groups are given in Figure 4-6. 

 

Figure 4-6. The number of entries that were recrystallized from the solvent of interest and the number of entries 
recrystallized from a mixture as obtained from the database. Note: numbers were rounded to the nearest integer 

this is why they do not all sum precisely to 100 %. 

Based on the partitioning seen in Figure 4-5, a total of 20 groups (4 groups per solvent) were 

exported from the database as (gcd) lists. These are text files that include the CSD reference 

codes of the entries. They can be read in ConQuest to recall the hits from the database. After 

that, the entries were finally exported in the (mol2) file format, which contains the structural 

information and is suitable for descriptor calculation. 
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4.2.5 Preparing the data for descriptor calculation 

The purpose of calculating molecular descriptors is to be able to represent the molecular 

features, such as the size of a molecule in a numerical value and later, compare those using 

statistical methods. The Dragon software was used for the molecular descriptor calculation. As 

the name “molecular descriptor” implies, Dragon strictly works with molecules. That means 

any entries that have more than one molecule in the asymmetric unit would give an error and 

no descriptors for this entry would be calculated. Based on that, all solvate entries are going to 

show an error. Non-solvate entries with more than one molecule in the asymmetric unit are 

also going to fail the descriptor calculation. Moreover, any entries with disorders would also 

cause an error. In order to resolve this issue, every extracted structure had to go under a 

“splitting step”. This means the mol2 files were processed to obtain one molecule in 

asymmetric unit before the descriptor calculation can take place. An example of each case 

above is shown in Figure 4-7. 
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  (a)

                    (b) 

Figure 4-7. The splitting step of the AFEYOA
12

 (a) and the COHLOC
13

 (b) entries. 

The splitting step was performed using in-house software, developed by my PhD advisor, 

Dr. László Fábián (written in Perl language). This small program splits a mol2 file into a number 

of mol2 files equal to the number of molecules in the asymmetric unit. Each of the newly 

generated mol2 files has one molecule in it with the first file generated always having the 

molecule with the largest molecular weight.  
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4.3 Descriptor calculation 

After all non-solvate and solvate molecules were extracted, refined and split, the 20 lists of 

entries were fed into Dragon, where 4,885 molecular descriptors were calculated per 

molecule. 20 tables, corresponding to the 20 lists of molecules were obtained. Each row in 

these tables represents a molecule (identified by its CSD reference code), while each column 

represents a molecular descriptor. A sample of the Dragon software output can be seen in 

Table 4-3. 

Table 4-3. A sample from the Dragon software’s output. Specifically, the sample was taken from the 
dichloromethane non-solvate entries dataset.  NA values represent an error in the calculation 

Refcode MW AMW nH nAT nSK nHAcc qpmax 

MUKBUQ 354.650 15.420 6 23 17 2 NA 

FUGYAH 344.440 7.488 20 46 26 4 NA 

BILCUU11 NA NA NA NA NA NA NA 

LOVBON 212.280 9.230 8 23 15 1 NA 

DUWBUT01 306.490 6.255 26 49 23 2 NA 

DUWBUT02 306.490 6.2550 26 49 23 2 NA 

QUPKIV 260.320 16.270 0 16 16 2 NA 

WIZMAU 287.200 11.046 6 26 20 6 1 

In this table, MW is a the molecular weight, AMW is the average molecular weight, nAT is the 

number of atoms in the molecule, nH is the number of hydrogen atoms in the molecule, nSK is 

the number of the non-hydrogen atoms in the molecule, nHAcc is the number of hydrogen 

bond acceptors carbon atoms and qpmax is the maximum positive charge in each molecule. 

As it can be seen in the Table 4-3 few errors occurred during the calculation of the molecular 

descriptors. Three types of molecules causing errors were identified. The cause of these errors 

and how they were treated is discussed in section 4.3.1. 
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4.3.1 Entries with calculation problems 

(1) For some molecules, the calculation of all 4,885 descriptors failed although no errors, 

disorders or other problems could be seen in the structure/entry. An example is the entry S-(4-

Chlorophenyl) (4-chlorophenyl)thiosulfonate, CSD reference code: BILCUU11.14 Molecules 

giving this type of error were not traced back and fixed as this would be a time-consuming 

procedure. Alternatively, these faulty molecules were omitted from the datasets. 

(2) Another example of molecules that caused trouble during descriptor calculation are 

molecules with no hydrogen atoms. These were mostly old entries with no H coordinates 

determined. This causes mistakes in the calculation of some descriptors. The simplest example 

on a descriptor that can be miscalculated due to this missing information is the nH descriptor, 

which counts of the number of H atoms. Other descriptors such as nAT, the number of atoms 

in a molecule, were affected by this error. An example of a molecule showing this error is 

shown in Table 4-3, entry CSD reference code: QUPKIV,15 which is illustrated in Figure 4-8. 

(b) 

Figure 4-8. QUPKIV molecule and how it is recorded in the CSD (left) and the auto-edited structure by Mercury 
(right). 

Molecules with no hydrogen atoms were also removed from all datasets using a script in R.  

(3) Entries having polymorphs were prevalent in the extracted datasets. Since the original 

claim was to predict hydrate and solvate formation using the molecular graph (only 2-D 
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descriptors), polymorphs in the datasets cause a redundancy of the information. This can have 

large influence on the outcome of the data analysis. A script in R was developed to keep one of 

the polymorphs. The selection of a polymorph was based on keeping one entry with a unique 

molecular weight and the same first six letters of the CSD reference code. 

The removal of faulty molecules, molecules with no hydrogens and polymorphs has reduced 

the number of molecules in the dataset. The new number of molecules in each dataset is 

shown in Table 4-4.  

Table 4-4.  The count of solvate and non-solvate entries left after removing the errors 

Solvent Number of structures Solvates Non-solvates 

Ethanol 4,895 689 4,206 

Methanol 4,366 1,518 2,848 

Dichloromethane 2,761 1464 1,297 

Chloroform 2,556 1,363 1,193 

Water 4,432 4,128 304 

Total 19,010 9,162 9,848 
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4.3.2 Descriptors with calculation problems 

The mol2 files that were extracted from the CSD do not contain information about partial 

charges of molecules. For this reason, any charge-related descriptors showed NA values across 

the dataset. An exception was zwitterionic molecules, which had an overall charge of zero but 

contained formal charges in the molecule. An example of these descriptors is qpmax, which is 

shown in Table 4-3. The WIZMAU16 molecule (for which the descriptors were calculated in 

Table 4-3) is shown in Figure 4-9. 

 

Figure 4-9. A zwitterionic molecule from the dichloromethane non-solvate dataset. The WIZMAU molecule. 

 These descriptors showed an NA value for more than 99 % of the data in each dataset. They 

were removed from the dataset because they were not meaningful at this point. The 

molecules that were zwitterionic were kept as part of the dataset. 

4.4 Summary of data  

Before starting the statistical analysis, it is a good idea to investigate the structure of the data 

that is going to be analysed. Every solvent had a different number of entries in its dataset. An 

illustration of the relative number of these entries is shown in Figure 4-10. 
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Figure 4-10. Percentage of solvate and non-solvate forming molecules in each solvent's dataset. Total number of 
entries is 19,010. 

The number of entries in the ethanol set was the largest (26 %) followed by water (23 %), 

methanol (23 %), dichloromethane (15 %) and chloroform (13 %). In terms of solvate- and non-

solvate groups, the hydrate and ethanol non-solvate were the largest among them. Ironically, 

the groups that corresponds to these two (the non-hydrate and ethanol solvate, respectively) 

were the smallest. Methanol has shown a more balanced dataset with a non-solvate group 

that is twice the size of the solvate group. Dichloromethane and chloroform have shown 

datasets that are almost perfectly balanced (nearly half-split of solvate and non-solvate). 

After the structure of the data was seen, it was important to consider the range of data 

covered in these datasets. For example, what is the chemical space that is covered by these 

datasets? How hydrophilic are these compounds? Each solvent’s dataset was plotted in terms 

of chemical space, Log P value, number of hydrogen bond acceptors and number of hydrogen 

bond donors, as illustrated in Figures 4-11 to 4-14. The column colours in these figures are just 

for a more clear illustration. 
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Figure 4-11. The chemical space covered by each solvent dataset (units in Da (g/mol)). Y axis shows the frequency 
of occurrences. 
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Figure 4-12. Log P values for each solvent dataset. Y axis shows the frequency of occurrences. 
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Figure 4-13. The number of hydrogen bond donors in each solvent's dataset. Y axis shows the frequency of 
occurrences. 
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Figure 4-14. The number of hydrogen bond acceptors in each solvent's dataset. Y axis shows the frequency of 
occurrences. 

As can be seen in Figure 4-11 the molecular weight of the entries in different datasets was 

similar, where most of the data was concentrated in the region of 100-600 Da (g/mol). The 
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chlorinated solvents have shown a larger number of high molecular weight entries compared 

to the other solvents. Water on the other hand has shown a slight shift towards lower 

molecular weight. 

With exception of water, the Log P values of most entries ranged between -1 and 6 

(Figure 4-12), showing a more hydrophobic nature of data for these 4 solvents. The chlorinated 

solvents have shown a tail towards higher values. The Log P values in most water entries 

ranged between -5 and 6, showing a more balanced hydrophilicity in its dataset. 

As illustrated by Figure 4-13, most of the entries in the dataset possessed no hydrogen bond 

donors. In ethanol and methanol, the non-solvate entries largely outnumber the solvate ones, 

therefore a majority of entries with no hydrogen bond donors is a logical outcome. Chlorinated 

solvents are unable to form hydrogen bonds, so a majority of entries with no hydrogen bond 

donors can also be understood. On the hand, over 90 % of the water dataset were solvate 

entries, yet it had a majority of entries with no hydrogen bond donors. This is a rather 

interesting observation, as hydrogen bonding is reportedly one of the most important features 

that make hydrates more common than other solvate forms. For the number of hydrogen 

bond acceptors, solvents with hydrogen bond ability (ethanol, methanol and water) have 

shown a normal-like distribution (Figure 4-14) with the largest frequency being entries with 3 

acceptors. Chlorinated solvents on the other hand, have shown fuzzy distribution, which does 

not show a clear pattern. 
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 Statistical analysis Chapter 5:
  



115 
 

5.1 Overview 

The think process of this chapter is outlined in Figure 5-1. 

 

Figure 5-1. The thinking process throughout Chapter 5 
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5.2 Dimensionality reduction  

The datasets obtained in Chapter 4 were now ready to start the analysis. Each dataset was 

described by about 5000 variables. The question here would be: are all these descriptors 

useful for predicting solvate formation? In order to answer this question, a significance test 

between each pair of solvate and non-solvate dataset was conducted. Such test would be able 

to tell which descriptors showed difference between the two groups, indicating the descriptors 

that are useful for solvate prediction. Ideally, it would also quantify that difference, indicating 

which variables show the largest discriminating ability between the two groups of interest. The 

Wilcoxon rank-sum test (also known as Mann–Whitney U test) was chosen to carry out this 

comparison. 

5.2.1 The Wilcoxon rank sum test 

This test works by testing a null hypothesis that the two samples being tested come from the 

same population. In this study, the null hypothesis would be that the solvate and the non-

solvate groups come from the same population. In this comparison, the p-value was set to 

0.05. This value is the conventional value that has been used for significance testing by Fisher 1. 

It corresponds to an α (alpha) level of 5 %, which means there is a 5 % risk of omitting a good 

descriptor. On the other hand, this also means that there is 95 % chance that the rejected 

descriptor is not useful. Since the values of descriptors can take any value, a two-tailed test 

was necessary. Because this is a two-tailed test, any descriptor with a p value above 0.025 was 

rejected.  

The non-parametric nature of this test means it doesn’t have any underlying assumptions 

about the distribution of the parent data. This was important as the datasets of the five 

solvents are not guaranteed to have a normal distribution. Moreover, the dataset is described 

by the molecular descriptors, where each of them represents the data differently. This renders 

the data not feasible for optimal transformation of each descriptor. Another property that was 
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important in choosing the Wilcoxon rank-sum test was its ability to rank the data, therefore, it 

is not largely affected by outliers. For these reasons, the Wilcoxon test was suitable for the 

data in question. A deeper insight of the characteristics of this test are given in the literature 

review (Section 2.3.1). 

At this point, it is useful to remember the structure of the data. It consists of 5 datasets 

corresponding to the 5 solvents being tested. Each of these 5 datasets is partitioned into 4 

groups. Each group consists of a number of molecules that are described by 4885 descriptors. 

The general structure of the data was illustrated in section 4.2.4. 

As mentioned earlier, the Wilcoxon rank-sum test compares two samples of a population, in 

terms of one variable. In this sense, two aspects had to be adjusted for each solvent’s dataset 

in order to run the significance. These are the number of samples (i.e. groups) and the number 

of variables (i.e. descriptors). In order to adjust the number of samples, the test was applied to 

the two major groups only, that is; the group consisting of all non-solvate forming molecules 

(NS) and the solvate-forming molecules (S). The other groups, i.e. the solvate from a mixture of 

solvents (S-M) and the solvate entries from the solvent of interest alone (S-O), where just 

included in the visualization of the results. In order to compare one descriptor at a time, the 

test took place on a descriptor-by-descriptor basis. This means every descriptor from the non-

solvate-forming molecules (NS) dataset was compared with the same descriptor from the 

corresponding solvate-forming molecules (S) dataset at a time. An automated loop was 

scripted in R to perform the analysis over the 4885 descriptors. The p-value for each 

comparison in the loop was recorded, and the descriptors that show a p-value larger than 

0.025 were omitted from the dataset. Figure 5-2 shows an illustration of the comparison 

between the four groups in the ethanol dataset. 
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Figure 5-2. Boxplot of the nAT descriptor value in the ethanol dataset (Y axis). The circles represent the outliers in 
the dataset. 

The boxplot shows a clear difference between the solvate-forming group and the non-solvate 

forming group in this descriptor, but the variation among the solvate sub-groups was minimal. 

This trend of the S-O and S-M groups to have similar descriptor values to the larger S group 

was observed for all descriptors. Despite the known effect of having a mixture of solvents on 

the recrystallization process (by changing solvent activity), this phenomenon cannot be 

observed using the descriptors and datasets included. 

Descriptors that did not show a significant difference between the two groups were omitted 

from the datasets as these descriptors do not give information about what features might be 

important for solvate formation. This omission leaves us a smaller dataset to investigate for 
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each solvent. An example of a descriptor that did not show a significant difference between 

the two groups is shown in Figure 5-3.  

 

Figure 5-3. Insignificant difference between the groups in the O % descriptor. Such descriptors were omitted from 
the dataset. 

Over 2850 out of 4885 descriptors turned out to have a significant difference between the 

solvate and the non-solvate group in each solvent’s dataset. An illustration of the amount of 

remaining and omitted descriptors is shown in Figure 5-4. 
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Figure 5-4. An illustration of the number of the variables that were omitted due to insignificance between the 
solvate-forming and the non-solvate forming groups. Total number of descriptors in each circle is 4885. 

Although the test reduced the datasets to the descriptors with significant difference between 

the NS and the S groups, the reduction was not enough. 2850 descriptors in each dataset do 

not give a clear idea about the features that influence hydrate/solvate formation. 

5.2.2 Principal component analysis 

The main concern at this point was the large number of descriptors in each dataset. A method 

that can select the most meaningful descriptors in each dataset was required. This means a 

further reduction in the number of descriptors. It is important to remember that all these 

descriptors have shown significant difference between the groups and omitting them means 

the loss of part of the information they might contain. An unsupervised machine learning 

technique, principal component analysis (PCA) was the method chosen to solve the issue.  

PCA reduces the dimensionality of a problem by creating new variables from existing 

descriptors. The PCA method has the advantage of combining the available variables 

(descriptors) rather than selecting the best ones in the dataset (See section 2.3.2.1). This 
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reduces the number of variables being studied without losing the information the descriptors 

might contain. 

The principal component analysis procedure was applied to each solvent dataset individually. 

The principal component algorithm has given rise to a large number of principal components, 

equal to the number of datapoints in each dataset. For example, over 1300 PCs were given in 

the ethanol dataset. 

The large number of PCs obtained were ordered by the amount of variance explained by each 

of them. The first principal component accounts for the highest variability in a dataset and the 

succeeding components account for lower variability. An illustration of the variance explained 

by the first 100 principal components in the ethanol dataset is shown in Figure 5-5. 
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Figure 5-5. The percentage of Variance explained by the top 100 principal components in the ethanol dataset. 
Each bar represents a principal component, ordered. 

The variability explained by principal components dramatically drops after the first few ones. 

For example, in the ethanol dataset, the top three principal components accounted for 54 %, 

while the top 5 accounted for 61 % and top ten principal components accounted for 68 % of 

the total variance. In order to see how well the PCA algorithm works in the different solvents 

datasets, the variance explained by the top three, five and ten principal components in each 

dataset was observed. 

 

Although the percentage of variance explained by them isn’t extremely high, the first 3 

principal components seem a good choice to have an initial look at the data, as they explain a 
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variability equal to the rest of the variables in the dataset. Additionally, visualizing data in 

space with more than 3 variables would not be an easy task. For these reasons, only the first 

three principal components were selected. A scatterplot of the data points in terms of the 

principal components would show the spread of these points across the imaginary axes with 

the highest variability. It might as well show a trend of the solvate-forming and the non-

solvate-forming molecules along the principal components. The spread of data points of the 

ethanol dataset in terms of PCA is shown in Figure 5-6. 

 

Figure 5-6. The ethanol data points in terms of the first three principal components. The solvate-forming 
molecules are shown in blue and the non-solvate forming molecules are shown in red. 

A 3D plot from a 2D perspective isn’t the best way to precisely see the effect of the principal 

components, but it can certainly show the combined effect of the three dimensions (principal 

components). For more clear representation of the spread of the data points in terms of the 
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first three principal components, pairs plot was used.  An example of pairs plot of PC1, PC2 and 

PC3 of the same ethanol dataset is shown in Figure 5-7. 

 

Figure 5-7. Pairs plot of ethanol data points in terms of PC1, PC2 and PC3. The solvate-forming molecules are 
shown in blue and the non-solvate forming molecules are shown in red. 

The principal component analysis showed a good spread of the data points across the axes. 

Additionally, they showed a fairly good separation of the solvate-forming and non-solvate 

forming molecules along the top three PCs.  

As it has been previously pointed out, the principal components are essentially combinations 

of the existing descriptors. Since these components showed some splitting of the data, the 

knowledge of which descriptors mainly account for these principal components might give an 

indication of the most important descriptors involved in solvate formation. In order to know 
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which descriptors affect the first three principal components, the loadings (rotations) of these 

principal components should be calculated. The loadings of a principal component show the 

contribution of each descriptor to this principal component 2. This means that if a certain 

descriptor had a high rotation value of PC1 (e.g. 0.7), then it is an important determinant in the 

classification of the data points into solvate and non-solvate forming molecules. 

A list of the rotation values of all descriptors was obtained in each solvent. An illustration of 

the distribution of the rotation values of PC1, PC2 and PC3 in the ethanol dataset is given in 

Figure 5-8. 
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(a)

(b) 

 

 
Figure 5-8. Histograms of the rotation values of the first (a), second (b) and third (c) principal components in the 

ethanol’s dataset. Total number of variables is 2647. The colours of the bars have no indication, they are used for 
a better illustration. 
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(c) 

Figure 5-8. Histograms of the rotation values of the first (a), second (b) and third (c) principal components in the 
ethanol’s dataset. Total number of variables is 2647. The colours of the bars have no indication, they are used for 

a better illustration. 

Although the shape of the histogram shown in Figure 5-8 (a) looks promising (as there seem to 

be some high values at the positive end of the x-axis), the actual values on the x-axis are very 

small. Small rotation values were obtained for the first three principal components in all 

solvents datasets. The details of the maximum rotations of the first 3 PCs in each solvent are 

shown in Table 5-1. 

Table 5-1. The maximum rotation value in the first three components in each solvent dataset 

Solvent Max rotation in PC1 Max rotation in PC2 Max rotation in PC3 

Ethanol 0.028 0.047 0.068 

Methanol 0.027 0.052 0.067 

Dichloromethane 0.027 0.044 0.068 

Chloroform 0.028 0.046 0.066 

Water 0.027 0.039 0.076 
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This means that these principal components do not mainly depend on one or even on a few 

descriptors, which makes it hard to conclude which molecular features would affect the 

solvate formation with any solvent. 

5.3 Supervised machine learning 

Since PCA did not help in concluding what molecular features affect solvate formation, the 

direction of thinking has changed from dimensionality reduction to using a learning method in 

an attempt to find a pattern in the data. One special feature about this type of data is that it 

already has a known outcome, that is, each molecule is labelled as a solvate or a non-solvate. 

When this is the case, the supervised machine learning techniques can be used. (see 

section 2.3.2.2) Several machine learning algorithms are available. The question is which of 

these methods would be the most suitable in this case? 

5.3.1 Selection of the machine learning algorithm 

Tens of machine learning algorithms are available, and trying each for solving the solvation 

problem wouldn’t be feasible. In order to select the most suitable machine learning algorithm, 

it is important to know the underlying concepts of the algorithms. Machine learning algorithms 

can be broadly classified into linear and non-linear classifiers. For example logistic regression 

(LR) is a linear classifier, while neural networks and support vector machines can perform as 

nonlinear classifiers. The ultimate way to know whether the problem of solvate formation is 

linear or non-linear (in terms of the molecular descriptors available) would be a preliminary 

testing of a linear and a non-linear classifier. Logistic regression was used as a representative 

of the former family while SVM (with an RBF kernel) was chosen as a representative of the 

latter family.  The selection rationale of these methods was their simplicity and the previous 

evidence of their usefulness in classification problems. The RBF kernel is a reasonable choice 

for preliminary testing of SVM. It offers several advantages over other kernels, most notably 
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the small number of parameters that require adjustment compared to other kernels.3 The 

KNIME software was used to perform preliminary testing and comparison of these methods.4 

This program provides a user-friendly interface and offers different machine learning 

algorithms, among which SVM and logistic regression are available. Note that the measure 

used for choosing the better method was the accuracy, which means the number of correctly 

predicted instances over the total number of instances. This is the method that is mostly used 

in supervised learning algorithm selection. 5 

Before the testing started, three “concerns” had to be adjusted, these are the number of 

descriptors, the number of molecules and the parameters of the machine learning methods, as 

explained by sections 5.3.2 to 5.2.4. 

5.3.2 Choosing descriptors to decide the linearity of the problem 

At this point, around 3,000 descriptors have shown to be useful to discriminate between the 

solvate and non-solvate groups in each dataset. It was not possible to use all these descriptors 

at once to fit a predictive model, helping to show the performance of LR and SVM. The large 

number of variables and the multicollinearity among the descriptors have caused errors and 

prevented the algorithm from converging. Alternatively, three variables were selected based 

on the p-value in the Wilcoxon rank sum test. The first variable to be selected was the one 

with the lowest p-value. The second variable shouldn’t be selected directly to have the second 

lowest p-value. This is due to the possible high correlation between the first and the second 

two variables with the lowest p-values. Therefore, any variable showing a correlation above 

0.5 to the first variable was removed from the dataset, and the variable with the lowest p-

value among the remaining ones was selected. The third variable was selected in a similar 

manner to the second where any variable correlated more than 0.5 to the second variable was 

omitted from the dataset and the variable with the lowest p-value among the remaining ones 

was selected. 
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5.3.3 Equal size sampling 

Datasets such as the ethanol and water datasets showed a high imbalance between the 

number of solvate and nonsolvate entries. If a logistic regression or a support vector machine 

model was to be fitted with any of the variables in these two datasets, the outcome of the 

prediction would be 100 % of the larger group. For example, a water model was fitted to the 

descriptor with the lowest p-value, which is the number of carbon atoms in the molecule (nC). 

The prediction results of this model are show in Table 5-2. 

Table 5-2. The confusion matrix and overall prediction accuracy of the water logistic regression model, fitted to 
the nC descriptor 

 

Predicted as 

non-hydrate 

Predicted 

as hydrate 

Non-hydrate 0 273 

Hydrate 0 3714 

Overall correct prediction 93 % 

The overall accuracy looks very promising, where 93 % of the data was correctly classified. On 

the other hand, the confusion matrix shows that none of the hydrate entries was predicted 

correctly. This leads to a completely useless model. A more reasonable representation would 

be using samples of equal sizes from both the solvate and the non-solvate datasets. This 

causes the total number of molecules (rows) in each dataset to drop. The total count of 

molecules was kept as large as possible by reducing the number of data-points in the group 

with the larger number just enough to meet the number of the data-points in the smaller 

group. 

The random selection of the instances for equal size sampling could lead to the inaccuracy of 

conclusions, since not all molecules were used for fitting the models or even for testing them. 

This can be referred to as sampling error. To minimize this error, 3 equal size, random samples 
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were withdrawn from the complete dataset.6 Each of these equal size samples was treated as 

a separate dataset, where logistic regression and support vector machine models were fitted 

and the error rates were recorded. The steps of analysis are illustrated in Figure 5-9.  

 

Figure 5-9. An example of a KNIME workflow illustrating the steps of analysis that were taken to compare SVM to 
LR. The CSV Reader node reads the data. The Column Filter node selects what variables will be included in the 
model fitting. The Equal Size Sampling node takes a sample of the data in which the two classes (solvate and 

nonsolvate) are equal in number. The Partitioning data node splits the data into a training set (10 % of the data) 
and a test set (90 % of the data). The Learner and Predictor nodes fits the model and performs the prediction, 

respectively. The Scorer node gives the % accuracy (percentage of correct predictions). 

For each solvent’s dataset, 3 types of models were fitted, these are models with the first 

variable (lowest p-value), a model with the first two variables and a model with the first three 

variables. With each of these, 3 equal size samples were used for training and testing the 

models. In other words, if we consider Figure 5-9 to show one workflow, 3 workflows were 



132 
 

conducted per solvent. For the logistic regression models, this was straightforward, as no 

parameters require adjustment. The performance of the logistic regression models with these 

three types of model was recorded. 

5.3.4 Parameter adjustment of the RBF kernel 

The last adjustment required before the analysis can take place is the parameters of the RBF 

kernel. The main two parameters to adjust are the sigma and the C parameter 7. The sigma 

parameter specifies the limit of the influence of one training point on the model (as given by 

the formula of the radial basis function), while the C parameter is a penalty term that specifies 

the softness of the margins of the SVM model.7 (See section 2.3.2.2). These parameters have 

no pre-determined value, where the optimal value is different for each training data. 

Moreover, their optimal value would change with the sample provided for the training dataset. 

For these reasons, these parameters are classically adjusted via grid search, although other 

faster methods are being suggested.8 Therefore; after the data was split into a training and a 

test set, a grid search was performed using an “optimization loop” in KNIME.  

As has been shown in section 5.3.3, each solvent had 9 equal size samples taken from the 

parent data. Each of these equal size samples was partitioned into a training and a test set 

under a specific static seed (randomization seed). The sigma and C parameters were adjusted 

for each of these partitions, simply because the optimized parameters would not be ideal for 

other equal size samples or a differently partitioned sample. For this reason, the same dataset, 

equal size sampling and partitioning was used to fit the SVM and logistic regression model in 

each trial, as illustrated in Figure 5-10. 
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Figure 5-10. KNIME workflow for optimizing SVM parameters, testing an SVM model and testing a logistic 
regression model. This was done for 3 samples per variable which gives 9 trials for each of the solvents, resulting 

45 similar workflows. 

The workflow illustrated in Figure 5-10 represents the test that was done for 1 sample, where 

the results from the optimization loop (the first line in the work flow, which adjusted the sigma 

and the C parameter value) were used to fit the SVM model and compare it to the LR model. 

There are 5 solvents being tested, each of them had 3 types of models being tested, the 1 

Variable, 2 Variable and 3 Variable models. In order to avoid the sampling error, each of these 

was tested 3 times, summing the total number of samples to 45.  

5.3.5 SVM vs LR 

The results of the 45 workflow are presented in bar plots in Figure 5-11 to Figure 5-15. Note that 

45 workflow means 45 SVM and 45 LR model, resulting in 90 bars in total to compare. 
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Figure 5-11. The percentage of correct predictions from the ethanol dataset made by the logistic regression and 
the support vector machine models that were fitted to the same samples. The test set is more than 1200 

molecules. 

 

Figure 5-12. The percentage of correct predictions from the methanol dataset made by the logistic regression and 
the support vector machine models that were fitted to the same samples. The test set is more than 2700 

molecules. 
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Figure 5-13. The percentage of correct predictions from the dichloromethane dataset made by the logistic 
regression and the support vector machine models that were fitted to the same samples. Test set is more than 

2300 molecules. 

 

Figure 5-14. The percentage of correct predictions from the chloroform dataset made by the logistic regression 
and the support vector machine models that were fitted to the same samples. Test set is more than 2100 

molecules. 
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Figure 5-15. The percentage of correct predictions from the water dataset made by the logistic regression and the 
support vector machine models that were fitted to the same samples. Test set is more than 500 molecules. 

Overall, LR has performed better than SVM in all solvents, where it showed higher prediction 

accuracy in most samples. SVM has topped LR in some cases, most notably the water 2 

Variable model, Sample 3. Nevertheless, this is a small difference.  

The fact that that LR mostly topped SVM as the number of dimension increased, signals that 

this problem is better classified using a linear classifier, or at the very least, it can be 

confidently said that there’s no reason to use a more complex, non-linear method. 

5.4 Principal components as logistic regression variables 

Logistic regression turned out to be a good method of classification for the datasets under test, 

as non-linear SVM method showed no advantage over it. The question remains on what 

descriptors to include in this method to make predictions. Instead of looking for the descriptor 

that would give a good prediction, one idea was to start with what is already available. The 

PCA in section 5.1.2 has shown the ability to split the data into a solvate and a non-solvate 

forming groups (Figure 5-6). Although the main descriptors contributing to the formation of 
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these principal components were not found, the first three principal components were able to 

aggregate the data in what looked like two large clusters. This means these uncorrelated 

components could be used to make predictions if they were used as variables in a logistic 

regression function. The logistic regression function was applied in R, with the first three 

principal components being the variables used by the algorithm. The error rate associated with 

every model was estimated via cross-validation, where the cross-validation estimate of 

prediction error was used to decide the performance of the resulting models. 9, 10 

5.4.1 Models with one principal component 

The PCA applied to the datasets here used equally sized samples for all solvent’s datasets. For 

example in the ethanol dataset the total number of molecules approaches 5000, but only 1364 

were used to perform the PCA to ensure that the principal components obtained explain the 

variability in the dataset of both the solvate and the non-solvate group. To estimate the 

sampling error, 10 equally sized samples were tested. Additionally, each model was cross-

validated 10 times. 

It is important to mention that all of these sampling procedures took place based on fixed seed 

values. This means the algorithm for randomly choosing these molecules is saved in the R 

script. This helps getting reproducible results when the script is run again. 

 The estimate through which the performance of the logistic regression model was measured 

was the Average Mean Squared Error of the 10-fold cross validation (MSE). Other estimates, 

such as the Akaike Information Criterion (AIC) and the Area Under the receiver operator curve 

ROC (AUC) were calculated. The analysis was started with the simplest possible form of the 

models; that is a logistic regression model that takes only the first principal component into 

account, denoted as model 1. The results of the models with the lowest MSE (best 

performance) and the models with the highest MSE (worst performance) among the 10 equal 

size samples for each solvent are shown in Table 5-3.  
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Table 5-3. Details of the logistic regression models taking into account the first principle component (model 1) in 
different solvents. The models with the lowest MSE (best performance) and the models with the highest MSE 

(worst performance) among the 10 equal size samples for each solvent are shown 

Solvent Performance Number of datapoints  Mean squared error 

Ethanol Best 4893 0.187 

Ethanol Worst 4893 0.198 

Methanol Best 4364 0.213 

Methanol Worst 4364 0.217 

Dichloromethane Best 2759 0.156 

Dichloromethane Worst 2759 0.159 

Chloroform Best 2554 0.157 

Chloroform Worst 2554 0.160 

Water Best 4427 0.161 

Water Worst 4427 0.177 

The models utilizing the first principal component only have shown a good separation ability of 

the data into the solvate and the non-solvate groups. This can also be noticed as the highest 

MSE value across all solvents was below 0.22. The inter-sample variation of the models is also 

little, where the largest difference in MSE between the 10 equal-size-samples was in ethanol, 

with a difference of 0.03. It is also notable that the AUC and the AIC always agree with the MSE 

value, indicating these terms can be used interchangeably for the estimation of the goodness 

of the fit. The AUC value can actually be visualized through a ROC curve. An example of the 

ROC curve of the ethanol model is shown in Figure 5-16.  
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Figure 5-16. Receiver operative curve (ROC) of the ethanol model 1. The area under the curve is approx. 0.72. The 
dotted line, with the 45 ° angle represents the random guess (50 % correct prediction). 

5.4.2 Models with two and three principal components 

In order to see the improvement in the performance of the model upon the addition of next 

principal components, logistic regression models taking into account the first two and the first 

three variables (model3) were fitted. The results are given in Table 5-4 and Table 5-5, 

respectively. 
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Table 5-4. Details of the logistic regression models taking into account the first two principal components (Model 
2) in different solvents. The models with the lowest MSE (best performance) and the models with the highest 

MSE (worst performance) among the 10 equal size samples for each solvent are shown 

Solvent Performance 

Number of data 

points  Mean squared error 

Ethanol Best 4893 0.184 

Ethanol Worst 4893 0.194 

Methanol Best 4364 0.213 

Methanol Worst 4364 0.217 

Dichloromethane Best 2759 0.151 

Dichloromethane Worst 2759 0.154 

Chloroform Best 2554 0.153 

Chloroform Worst 2554 0.156 

Water Best 4427 0.161 

Water Worst 4427 0.178 

 

Table 5-5. Details of the logistic regression models taking into account the first three principal components 
(Model 3) in different solvents. The models with the lowest MSE (best performance) and the models with the 

highest MSE (worst performance) among the 10 equal size samples for each solvent are shown 

Solvent Performance Number of datapoints  Mean squared error 

Ethanol Best 4893 0.181 

Ethanol Worst 4893 0.192 

Methanol Best 4364 0.211 

Methanol Worst 4364 0.217 

Dichloromethane Best 2759 0.150 

Dichloromethane Worst 2759 0.153 

Chloroform Best 2554 0.153 

Chloroform Worst 2554 0.157 

Water Best 4427 0.161 

Water Worst 4427 0.177 
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Although the second and the third principal components accounted for part of the variability in 

the dataset (see section 5.1.2), they did not show much improvement to the predictive 

models. The addition of each principal component to the models has even shown an increase 

to the MSE value in some cases. For example looking at the water models, it can be seen that 

the MSE for the best model 1 has a lower MSE value than the best model 2 and model 3 all 

equal to 0.161. This shows that they do not add any advantage to the models based on 

model 1. This inability to show an improvement can be better illustrated through an overlay of 

the ROC curves, as shown in Figure 5-17. 

 

Figure 5-17. ROC curves of the water models taking into account 1, 2 and 3 principal components. The curves 
almost overlap, showing the insignificance of the addition of the second and the third principal components. 

Bearing in mind that the MSE values shown in Table 5-3 to Table 5-5 are for best and worst 

models, which have the biggest difference among all 10 samples, the models prove to have a 

robust behaviour regardless of the subset that was taken from the original dataset.  
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5.5 Systematic variable selection using logistic regression 

The first three PCs, each consisting of a combination of a few thousand descriptors, were able 

to give good classification ability with an MSE value between 0.150-0.217 in all solvents. 

Although this is a very good predictive ability, the principal components still do not give an 

idea on which of the descriptors actually contribute to the solvate formation. This is due to the 

low rotation values that were shown in Figure 5-8. 

In order to see if there is a single, or a few descriptors that can classify the solvate and the 

non-solvate groups correctly, another approach was used. In this approach, only the 

descriptors that showed a significant difference between the solvate and the non-solvate 

groups in the Wilcoxon rank sum test were investigated. These descriptors were used in 

conjunction with the best machine learning algorithm found for this problem; that is the 

logistic regression. 

5.5.1 Single-variable models 

It is well known by now that about 3000 descriptors had significant effect on solvate 

formation. In order to select which among these give the logistic regression model that split 

the data best, a trial and error approach was used. Similar to the analysis conducted in 

section 5.4, the dataset of each solvent was split into 10 random equal size samples. For each 

of these samples, a number of models equal to the number of variables in each dataset were 

fitted. Each of these models was tested via a 10-fold cross validation and the MSE of the cross-

validation was calculated. The variable that showed the lowest MSE was chosen as the best 

variable to describe the dataset. The performance of the models containing the best variable 

in each solvent is shown in Table 5-6. 
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Table 5-6. Single-variable models: details and performance. The models noted as “best” are the ones with the 
lowest MSE out of the 10 random samples. Similarly, the ones marked as “worst” have the highest MSE. This 

applies to Table 5-6, Table 5-9 and Table 5-10. 
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It is notable that all descriptors in these single-variable models were derived from the spectral 

moments of topological matrices. These are complex descriptors that represent the size and 

branching of molecules. Spectral moments are discussed in detail later (see section 5.6.2) 

5.5.2 Two variable models 

The single-variable models showed a surprisingly good ability to predict solvate formation. This 

lead to the anticipation that using a model that takes two variables into account rather than 

one would improve the predictive ability even further. The question was on how to select the 

best model that takes two variables into account? The ultimate answer to this question would 

be a trial-and-error approach. This means all possible two-variable models would be fitted, 

tested and compared. Logically, the descriptors that showed a significant difference between 

the solvate and the non-solvate groups in section 5.2.1 were used for this analysis. Fitting a 

model to every possible combination of length two for these ~3000 descriptors means that for 

each solvent, over 4 million models were fitted. In order to obtain unbiased models, ten equal 

size samples were used again here. This means that a total of more than 200 million models 

were fitted. A 10-fold cross validation was applied to each of these models, where the average 

MSE of these 10-folds was calculated. The combination of variables with the lowest MSE in 

each of the 10 subsets were recorded, as seen in Table 5-7. 
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Table 5-7. The 10 descriptor combinations with the lowest MSE in the dichloromethane data set – sample 1 

Combination MSE 

SM3_H2 + Hy 0.14569 

SM3_H2 + H.050 0.14588 

EE_H2 + Hy 0.14596 

SM3_H2 + nHDon 0.14597 

SM4_H2 + Hy 0.14607 

EE_H2 + H.050 0.14614 

SM3_H2 + BLTD48 0.14619 

SM3_H2 + MLOGP 0.14619 

SM3_H2 + BLTA96 0.14619 

SM3_H2 + BLTF96 0.14619 

Doing this type of testing is CPU intensive. For this reason, these analyses were executed using 

the High Performance Computing Cluster at the University of East Anglia, where the analyses 

were parallelized between 160 dedicated cores with 64 GB of RAM. The script to perform the 

analyses was programmed in R, with the parallelization conducted using the “dopar” package 

11. The time required for the analyses was between 3 and 5 days per dataset, depending on the 

number of data points. The models with the lowest errors among the 4 million were selected. 

Due to the fact that 10 subsets were withdrawn from the complete dataset in each solvent, 

the best model obtained from each sample was different. For example, the best model might 

not necessarily utilize the same descriptors in each subset, as shown in Table 5-8. 

  



146 
 

Table 5-8. The descriptor combinations with the lowest MSE in each of the 10 subsets in the dichloromethane 
data 

Sample No. Combination MSE 

1 SM3_H2 + Hy 0.14569 

2 SM3_H2 + Hy 0.14593 

3 SM3_H2 + Hy 0.14585 

4 SM3_H2 + Hy 0.14578 

5 SM3_H2 + MLOGP 0.14565 

6 SM3_H2 + Hy 0.14699 

7 SM3_H2 + Hy 0.14694 

8 SM3_H2 + Hy 0.14705 

9 SM3_H2 + MLOGP 0.14699 

10 SM3_H2 + MLOGP 0.14692 

Although the 10 subsets of the Dichloromethane dataset resulted in different best models, 

only one combination should be chosen for the final models. Therefore the best combination 

was selected based on a voting system, where the pair of descriptors that gave the lowest MSE 

in most of the 10 samples were chosen. The resulting models are shown in Table 5-9. 
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Table 5-9. Two-variable models: details and performance  
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Compared to the single-variable models, the addition of the second variable has improved the 

predictive ability of the models in some but not all solvents. The MSE values were reduced into 

the range of 0.145 to 0.184. The variable that was added to the single-variable models of 

ethanol and methanol was related to hydrogen bond donation. These variables have 

contributed to the MSE reduction of the models. In dichloromethane and chloroform, the new 

variable was related to hydrophilicity and heteroatoms connected to hydrogens, all of which 

are correlated to hydrogen bonding (correlation between these variables is above 0.95 in all 

datasets). In water on the other hand the variable was related to the 3D structure of the 

compound.  The second variable in dichloromethane, chloroform and water, did not result in a 

large model improvement, an illustration of the MSE value of the single- and the two-variable 

descriptors is shown in Figure 5-18. 

 

Figure 5-18. Reduction of the MSE by the addition of the second descriptor in each solvent. 

5.5.3 Three-variable models 

The two variable models have shown a large improvement over the single-variable models of 

ethanol and methanol in addition to a slight improvement in the predictive ability of the 
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dichloromethane, chloroform and water models. In order to improve the models even further, 

another descriptor was planned to be added. 

The same exhaustive approach that was used to add the second descriptor (where all possible 

models of length two were tested), cannot be applied to the three-variable models. The 

number of possible models increases exponentially with the number of descriptors included. 

For example in the single variable models, around 3000 models were possible per solvent.  

Upon the addition of the second descriptor, the number of possible models increased to 

approximately 4.5 million per solvent. This required parallelization and the use of a cluster to 

perform this calculation. Using the same approach with three variables would increase the 

number of possible models to about 4.5 billion. Such a calculation would require a lot of 

computing power and it is not feasible to perform it within a reasonable timeframe. For this 

reason, the three-variable models were fitted based on the two-variable models via forward 

selection. The addition of a third variable to the two-variable models was performed using the 

“stats” package in R. This package offers the function “add1()” that fits models by adding one 

extra variable at a time to an existing model. Again here, since the datasets are not balanced in 

number between the solvate and the non-solvate groups, 10 equal size samples were used, 

resulting in a reasonable number (~30,000) of models per solvent. The “add1()” function 

evaluates the best model using the AIC value. But would our judgment be consistent if the AIC 

was used as a performance measure?  

In order to answer this, Table 5-6 and Table 5-9 were checked again. In these tables, it can be 

seen that the AIC value always agreed with the MSE. Although these two estimates seem to 

generally agree on the performance of different models, a closer look is required to see how 

closely related they are. These two estimators are unit less and they use different approaches 

to be calculated. See section 2.3.3 for details on how the AUC and the MSE are calculated.  
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AIC values in the two-variable models fell between 565 and 3333 while the MSE values fell 

between 0.145 and 0.184. This means the former values is around 10000 times larger than the 

latter for the same model. In order to compare these two estimators, their values were 

normalized to their means, the comparison is shown in Figure 5-19. 

 

Figure 5-19. A plot of the normalized AIC and MSE value for the best and the worst two-variable models. The 
details of these models were shown in Table 5-9. 

Figure 5-19 shows that the MSE and the AIC are very close estimates, supporting the idea that 

the AIC is as efficient as the MSE in these models. Therefore, the models with the lowest AIC 

values were selected after the “add1()” function was applied. The best and the worst model of 

these 10 samples in each solvent, along with the AIC, MSE and the AUC values are shown in 

Table 5-10.  
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Table 5-10. Three-variable models: details and performance 
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While the AIC values of some solvents slightly decreased (such as dichloromethane), others 

have shown a slight increase in this value (e.g. ethanol). The AIC values of the new models 

were generally similar to those of the two-variable models. This leads to the conclusion that 

the addition of the third variable increased the complexity of the model without giving extra 

information that is good enough to outperform the complexity. The MSE values were similarly 

affected. As the MSE was used to evaluate previous models, a comparison of the MSE values in 

the two- and the three-variable models is shown in Figure 5-20.  

 

Figure 5-20. The change in MSE between the two-variable and the three-variable models. For each solvent, the 
models with the lowest and the highest MSE of the 10 equally sized samples is shown. 

The addition of more descriptors to the current models does not seem to improve their 

predictive ability any further. For this reason, the two-variable models are going to be used. 

5.6 A closer look on the two-variable models 

After all the investigations were conducted in section 5.4., the two-variable models turned out 

to give the most reasonable predictions for solvate formation, both in terms of complexity and 
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performance. Therefore, these models are going to be used to make predictions. In this 

section, the two-variable models are going to be presented, discussed and analysed. 

5.6.1 The models 

The general formula for the predictive models is given in Equation (5-1). 

 
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

1

1 + 𝑒−(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑖𝑛𝑡1∗𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟1+𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑖𝑛𝑡2∗𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟2)
 

(5-1) 

Each model contains two types of parameters, the constants, which only change when 

predicting a different solvent’s behaviour and the descriptors, whose values change depending 

on the molecule to be predicted. For the constants part, the intercept showed nonnegative 

values in all models. On the other hand, the coefficients of all descriptors had negative values 

except for one descriptor in the water model. It is important to keep in mind that the 

descriptor values themselves can be positive or negative. Each descriptor is multiplied by its 

coefficient. In logistic regression, if the product of the descriptor and its coefficient gives a 

negative term, it pushes the probability value towards zero (0), while a positive one pushes the 

prediction towards one (1). In these models, solvate formation is more likely when the 

probability is closer to zero, while non-solvate formation is more likely when the prediction is 

closer to one.  

Although the descriptors to include in the model of each solvent are known at this point, the 

coefficients of these models would slightly differ depending on the sample used for training 

the algorithm. In order to obtain models that are fair, 10 models were obtained for 10 random 

subsets per solvent (these are the same 10 subsets used earlier in cross-validation). The 
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models were then averaged in terms of the intercept, descriptor 1 coefficient and descriptor 2 

coefficient. These models are given in Equations (5-2) to (5-6). 

 
𝑝𝑒𝑡ℎ𝑎𝑛𝑜𝑙 =

1

1 + 𝑒−(15.939 −3.817AVS_H2−0.861nHDon)
 

(5-2) 

 
𝑝𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 =

1

1 + 𝑒−(2.8−0.085TRS−0.612nHDon)
 

(5-3) 

 
𝑝𝑑𝑖𝑐ℎ𝑙𝑜𝑟𝑜𝑚𝑒𝑡ℎ𝑎𝑛𝑒 =

1

1 + 𝑒−(15.459−3.314SM3_H2−0.664Hy)
 

(5-4) 

 
𝑝𝑐ℎ𝑙𝑜𝑟𝑜𝑓𝑜𝑟𝑚 =

1

1 + 𝑒−(14.744−3.05SM3_H2−0.384H050)
 

(5-5) 

 
𝑝𝑤𝑎𝑡𝑒𝑟 =

1

1 + 𝑒−(4.672−0.424πID+0.327Mor05u)
 

(5-6) 

 

where 𝑝𝑒𝑡ℎ𝑎𝑛𝑜𝑙, 𝑝𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙, 𝑝𝑒𝑡ℎ𝑑𝑖𝑐ℎ𝑙𝑜𝑟𝑜𝑚𝑒𝑡ℎ𝑎𝑛𝑒, 𝑝𝑐ℎ𝑙𝑜𝑟𝑜𝑓𝑜𝑟𝑚 and 𝑝𝑤𝑎𝑡𝑒𝑟 are the probability of 

a molecule to stay in the non-solvated form when crystallised from the corresponding solvent. 

The result is a value between 0 and 1, where 0 represents a solvate and 1 represents a non-

solvate. 
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Since these models, along with the coefficients they contain, were averaged over multiple 

datasets, a reasonable question would be how much confidence is associated with each of 

these coefficients. In other words, what was the deviation of each sample from the mean value 

of the coefficient that is shown in the Equations (5-2) to (5-6)? The confidence of the intercept, 

the first and the second coefficient in each model can be represented by finding the standard 

deviation of the 10 models, fitted to the subsets of the complete data. Comparing the absolute 

standard deviations won’t give an intuitive value. This is because some coefficients have large 

and others have small values for standard deviations. In order to make the values comparable, 

the relative standard deviation (also known as the coefficient of variation) can be used instead, 

that is the standard deviation divided by the mean.12 The relative standard deviations are 

shown in Table 5-11. 

Table 5-11. Relative standard deviation of the intercept, first coefficient and second coefficient over 10 models in 
each solvent 

Solvent Intercept Coefficient 1 Coefficient 2 

Ethanol 0.04 0.05 0.05 

Methanol 0.03 0.03 0.04 

Dichloromethane 0.01 0.01 0.04 

Chloroform 0.01 0.01 0.02 

Water 0.08 0.13 0.08 

As it can be noticed, the deviation among the 10 samples was minimal. The largest deviation 

that can be seen is the first coefficient of the water model. This is expected, as the water had 

the most imbalanced sample, leading to almost completely different subsets that were used to 

fit the model, when equal size sampling was used. 
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5.6.2 The meaning of the descriptors 

In this section, the descriptors that are utilized in each of the two-variable models are going to 

be discussed in details. For the ethanol model, the predictive model utilizes the AVS_H2 and 

nHDon descriptors. AVS_H2 is a descriptor that is determined based on the reciprocal squared 

topological distance matrix, and it is calculated by taking the natural logarithm of the average 

of the sum of the entries in each row of the matrix. The details of calculating this descriptor 

are provided in section 3.2.1.2. The AVS_H2 descriptor value is linked to molecular size and 

branching in a molecular graph. A molecule that is large and highly branched is expected to 

have a large AVS_H2 value. The second descriptor in the best ethanol two-variable model was 

a simple count descriptor, nHDon. This descriptor simply counts number of hydrogen bond 

donors via the molecular graph. These are hydrogen atoms that are bound to a nitrogen or an 

oxygen atom, according to the Dragon software documentation. 

In the methanol two-variable model, the first descriptor was TRS (Total Ring Size). This is the 

total number of atoms in each independent ring in the molecule (e.g. TRS value of benzene is 6 

and of naphthalene is 12). The fact of having this descriptor as part of the best methanol 

model could indicate the role of the hydrophobic ring interactions in the stabilization of 

solvate crystals. The second descriptor in the methanol model was the same as the second 

descriptor in the ethanol model (nHDon: the number of hydrogen bond donors). 

The dichloromethane model had the SM3_H2 and the Hy descriptors. The former refers to the 

third order spectral moment of the reciprocal squared distance matrix (H2).13 The third 

spectral moment is calculated as the trace of the third power of the matrix. 14 844−849. Since this 

descriptor is calculated from the H2 matrix, it is closely related to the AVS_H2 descriptor 

observed in the ethanol model, where it also incorporates information about the size and 

branching of molecules. In fact, SM3_H2 is obtained by the logarithmic transformation 

[x’ = ln (1+x)] of the spectral moment. This is due to the exponential increase in its value with 
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the molecular size. The second descriptor in the dichloromethane model was Hy; the 

hydrophilic factor. This factor is calculated using the formula presented in Equation (5-7): 

 
𝐻𝑦 =

(1+𝑁𝐻𝑦)∙𝑙𝑜𝑔2(1+𝑁𝐻𝑦)+𝑛𝐶∙(
1

𝑛𝑆𝐾
.𝑙𝑜𝑔2

1

𝑛𝑆𝐾
)+ √

𝑁𝐻𝑦

𝑛𝑆𝐾2

𝑙𝑜𝑔2(1+𝑛𝑆𝐾)
  

(5-7) 

𝑁𝐻𝑦 is the number of hydroxyl, amine or thiol groups, 𝑛𝐶 is the number of carbon atoms and 

𝑛𝑆𝐾 is the number of non-hydrogen atoms.15 

The chloroform model shares the same first descriptor with the dichloromethane model; that 

is SM3_H2. This descriptor, combined with H-050 resulted in the chloroform model with the 

lowest MSE. The descriptor H-050 is calculated by counting the number of hydrogen atoms 

attached to a heteroatom.16, 17 This descriptor is highly correlated to Hy (r > 0.95). This suggests 

a proximity in behaviour between dichloromethane and chloroform in terms of solvate 

formation, where they have the first descriptor in common and have a near-identical second 

descriptor.  

The best water two-variable model, included the πID and the Mor05u descriptors. The former 

is based on the conventional bond order ID number.18 It is calculated using the formula in 

Equation (5-8): 

 𝜋𝐼𝐷 = ln (1 + 𝑛𝑆𝐾 + ∑ 𝑤𝑝)𝑝   (5-8) 
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were 𝑛𝑆𝐾 is the number of non-hydrogen atoms and 𝑤𝑝is the weight of molecular path 𝑝. The 

index 𝑝 runs over all bond paths in the hydrogen-depleted molecular graph, where the length 

of the path ranges from 1 bond to the longest path possible. Each path 𝑝 is weighted by 

conventional bond orders of the bonds in this path, resulting in  𝑤𝑝 ;the weight of molecular 

path. The conventional bond order of single bonds is 1, 1.5, 2 and 3 for single bonds, aromatic 

bonds, double bonds and triple bonds, respectively. By incorporating this information, the 𝜋𝐼𝐷 

descriptor value doesn not only incorporate information regarding the complexity (size and 

branching) of a molecule. It also indicates the rigidity of a molecule. Note that the descriptor 

was subject to logarithmic transformation [see Equation (5-8)]. The second descriptor in the 

water model was a 3D-MoRSE (3D-Molecule Representation of Structures based on Electron 

diffraction) descriptor; that is Mor05u. This family of descriptors are calculated from the 

atomic 3D coordinates obtained by a molecular transform that is similar to the electron 

diffraction formulae,19 the formula to calculate the Mor05u descriptor is presented in Equation 

(5-9): 

 𝑀𝑜𝑟05𝑢 = ∑ ∑
sin(5𝑟𝑖𝑗)

5𝑟𝑖𝑗

𝑛𝐴𝑇
𝑗=𝑖+1

𝑛𝐴𝑇−1
𝑖=1   (5-9) 

where rij is the topological distance between atoms i and j in the molecule and nAT is the total 

number of atoms in a molecule. 

The 3D-MoRSE descriptors require the previous knowledge of the 3D coordinates of atoms in a 

molecular before conducting the descriptor calculation. This is not always applicable, 

especially that this model aims at predicting solvate formation at early development stages. 

For this reason, the Mor05u in the water model can be replaced with a 2D descriptor, 

providing the ability to predict solvate formation using the molecular graph only. A highly 
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correlated, easy-to-calculate descriptor can be used instead. Fortunately, two simple 

descriptors showed high correlation (r =0.94) with Mor05u; these are the number of hydrogen 

atoms (nH) and the number of atoms of molecule (nAT). A water model based on the 𝜋𝐼𝐷 and 

𝑛𝐻 descriptors gives an average MSE of 0.161 compared to an average MSE of 0.159 of the 

original hydrate model. The alternative water model is given in Equation (5-10). 

 
𝑝𝑤𝑎𝑡𝑒𝑟−𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 =

1

1 + 𝑒−(4.756−0.434πID−0.089nH)
 

(5-10) 

With exception to water, all two-variable models consisted one descriptor that related to the 

size and branching of a molecule and another one that is related the heteroatoms in the 

molecules. The water model on the other hand has possessed one variable related to size and 

branching in addition to rigidity, while the second variable focused on the count of hydrogen 

atoms in a molecule. 

5.6.3 The descriptor values and their coefficients 

The models of the different solvents include descriptors that are identical or highly correlated, 

as has been shown in section 5.5.1, Equations (5-2) to (5-6). In the first instance, this could 

imply that the models are similar. In fact, it shows that the models are conceptually, but not 

numerically similar. The value of parameters in the logistic function (i.e. intercepts and 

coefficients) vary widely between the different models. This difference can be demonstrated 

using the ethanol and methanol models, where the relative importance of a shared descriptor 

(nHDon) is roughly 1.5 times higher in the ethanol model than it is in methanol model. 

Each descriptor that is included in the logistic regression equation has a different impact on 

the overall result. The influence of each descriptor on the total model can be estimated by 
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looking at two properties: the coefficient of each descriptor and the value of the descriptor 

itself. Looking at the general logistic regression formula [Equation (5-1)], the value of each 

descriptor is multiplied by the coefficient found by the model. For example: in the ethanol 

model, for a given molecule, the value of the AVS_H2 descriptor is multiplied by -3.817. The 

mean value of this descriptor across the dataset is 3.728. Their multiplication gives a value of -

14.23.  The product of the descriptor value and its coefficient also has to be compared to the 

product of the other descriptor and its coefficient. The coefficient of the number of hydrogen 

bond donors (nHDon) descriptor is -0.861 and the mean value of this descriptor across the 

dataset is 1.113. The effect of the mean value multiplied by the coefficient gives a value of -

0.958. This means that for an “average” molecule, the value of the AVS_H2 descriptor has an 

effect on the model around 15 times the value of the number of hydrogen bond donors 

(nHDon). This clearly shows that the importance of the size, complexity and branching exceeds 

the importance of the hydrogen bonding ability of a molecule in forming ethanol solvates. The 

negative sign in both descriptors indicates that larger values of the descriptors push the 

prediction value closer to zero i.e. towards solvate formation. 

The value of a coefficient alone in the model is not enough to imply the importance of a 

descriptor as the value of the descriptor itself might be small or large. For example in the 

methanol model, the coefficients of the TRS and the nHDon descriptors are -0.084 and -0.612, 

respectively. In the first instance one might think that the hydrogen bonding is more important 

than the size for determining the methanol solvate formation ability. However, the mean value 

of the methanol model descriptors was 22.328 for the TRS descriptor and 1.497 for the nHDon. 

The product of the multiplication of the mean values with the coefficients is -1.876 for TRS and 

-0.916 for nHDon.  This leads to the conclusion that the size and branching of a molecule is still 

the most important factor in comparison to the hydrogen bonding in methanol. Care must be 

taken not to take the coefficient or the descriptor value as an indicator of the final probability 

as it might cause misinterpretation of the results.  
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5.6.4 Visual representation 

Since each solvent’s model equation contains two variables, it is possible to represent these 

models in a 2D plot. An illustration of the dichloromethane model, its decision boundary and a 

sample’s prediction is shown in Figure 5-21. 

 

Figure 5-21. A plot of 2600 datapoints from the dichloromethane dataset in terms of the 2 descriptors that give 
the best linear separation, these are the SM3_H2 and Hy. The black line represents the decision boundary upon 

which the outcome is predicted. Colours = experimental outcome. 

The x axis in Figure 5-21 represents the SM3_H2, a descriptor explaining the size and branching 

of a molecule. The increase in number of solvate with increased SM3_H2 suggests that a large, 
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branched molecule is more likely to form a solvate, probably because it would be difficult for 

such a molecule to optimally fill the three-dimensional space. It is also possible that poor 

packing of molecules in the crystal allows the solvent molecules to diffuse through the 

structure and form a solvate. This idea could be illustrated by a histogram of the SM3_H2 

descriptor in the solvate and the non-solvate groups, as shown in Figure 5-22. 

 

Figure 5-22. Histograms of the SM3_H2 descriptor distribution from the chloroform data. 

 The y axis in Figure 5-21 represents the number of hydrogen bond donors. The increase of 

number of solvents as this value increases suggests that hydrogen bond donors play a role in 

stabilizing the solvent molecules in the crystal voids. This can be supported by the fact that the 

hydrogen bonding related descriptors show a negative sign in the models, therefore 

contributing to solvate formation. The role of hydrogen bonding in solvate formation has been 

previously recognized.20, 21 The improvement in the current findings is the quantification of the 
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relative importance of size, branching and hydrogen bonding. By knowing this information, it 

would be possible to predict the ability of molecules to form solvate based on the molecular 

structure alone.  

In the alcohol containing solvents, the hydrogen bonding related descriptors have shown a 

positive effect on solvate formation. Surprisingly, introduction of the hydrogen bond-related 

descriptors did not improve the predictive ability of the models for hydrate formation. The 

effect of the addition of a hydrogen bond related descriptor to the model is shown in 

Figure 5-23. 

 

Figure 5-23. An illustration of the change in performance between the alternative water model fitted using piID 
and nH (red) vs the water model fitted using piID, nH and nHDon (blue). The steps in the curve (not smooth) are 

due to the small number of datapoints in the water sample (number of datapoints is 606). 
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In the first instance, it might seem that hydrogen bonding is not important in hydrate 

formation. The role of hydrogen bonding in hydrate formation is a fact that cannot be denied. 

Positive correlations between hydrogen bonding and hydrate formation has been reported.22 

In order to demonstrate the importance of hydrogen bonding, a logistic regression model was 

fitted one variable only, that is the hydrogen bond acceptors (nHAcc). This model resulted in 

an average MSE of 0.237. This proves that hydrogen bonding plays an important role in 

hydrate formation, but it is not the most important discriminating factor according to this 

dataset. Note that all the datapoints provided for the water model were for crystals that were 

successfully grown from aqueous solutions suggests that even the non-hydrate formers among 

them are relatively hydrophilic. 

The solvents that possess similar functional groups had their best models describing the same, 

or closely related structural features, although the datasets for all these solvents were 

completely different. For example, ethanol and methanol are both hydroxyl-containing 

solvents and the hydrogen bonding is essential in their solvate formation, as can be seen by 

the second descriptor in both. This is logical since both solvents are structurally related and 

can involve in similar interactions. Another example is the models of the dichloromethane and 

chloroform where the first descriptor was exactly the same (SM3_H2), chosen from amongst 

about 5000 descriptors. Such similar results agree with the expected outcome of similar 

behaviour of structurally related solvents.  

5.6.5 Cut-off point determination 

 The cut-off point is the numerical probability value which splits the prediction outcomes into 

solvates and non-solvates. In principle, any value between 0 and 1 can be chosen to be the cut-

off value. In order to get an unbiased decision, the convention is to choose a value that 

maximizes the true positive and the true negative predictions.23 An illustration of the 

specificity and the sensitivity curves of the two-variable models is given in Figure 5-24. 
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Figure 5-24. The sensitivity and specificity curves from the dichloromethane data, sample 1. 

It is not too surprising that the optimal value found by crossing these two curves is close to 0.5, 

due to the fact that equal size samples were used. The value shown in Figure 5-24 is for one of 

the 10 samples taken per solvent. To get the best estimation possible for this point, the 

average cut-off point obtained for the 10 samples for each solvent was found. Table 5-12 shows 

the average cut-off point for each solvent. 
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Table 5-12. Average cut-off point in each solvent's dataset 

Solvent Average Cut-off point 

Ethanol 0.485 

Methanol 0.485 

Dichloromethane 0.513 

Chloroform 0.514 

Water 0.564 

The average cut-off point was very close to 0.5. The small deviation from 0.5 could be due to 

the sampling error, since this is an average over 10 samples. For this reason, 0.5 was chosen to 

be the cut-off point.  

5.6.6 Residuals 

One of the most important diagnostics of the model performance is the residuals. These are 

the difference between the actual value and the predicted value.24  The importance of this 

diagnostic comes from the fact that the presence of a pattern among the residuals signals that 

the model is modifiable. On the other hand, if the residuals plot was fuzzy and showed no 

trend, then that means the model doesn’t seem to be modifiable despite having prediction 

errors. The distribution around the model should also be symmetrical for a healthy residual 

plot, i.e. the points should be at comparable distances from the line at zero. The residual plot 

of the two-variable ethanol model is shown in Figure 5-25. 
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Figure 5-25. A residual plot of the ethanol model (from subset data no.1). 

The raw residual plot of a logistic regression model isn’t particularly informative. It cannot be 

estimated by the naked eye how many points fall above or below the curve, making the 

judgment of the presence of a trend or a bias not possible. A suggested way to go around this 

problem is to convert the data into bins (groups), where the average residual value among 

these can be seen. The binned residuals plot for an equal-size sample prediction for each 

model is shown in Figure 5-30 (a-e). 
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(a) 

Figure 5-26. The binned residual plots from the 2 variable models in each solvent (a): ethanol. Note that each plot 
is based on an equal size sample to show sensible distribution around the zero line. The two grey lines in each 

figure represents the boundaries of 95 % error assuming the model is true. 
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(b) 

Figure 5-27. Continued. The binned residual plots from the 2 variable models in each solvent (b): methanol. Note 
that each plot is based on an equal size sample to show sensible distribution around the zero line. The two grey 

lines in each figure represents the boundaries of 95 % error assuming the model is true. 
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(c) 

Figure 5-28. Continued. The binned residual plots from the 2 variable models in each solvent (c): 
dichloromethane. Note that each plot is based on an equal size sample to show sensible distribution around the 
zero line. The two grey lines in each figure represents the boundaries of 95 % error assuming the model is true. 
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(d) 

Figure 5-29. Continued. The binned residual plots from the 2 variable models in each solvent (d): chloroform. 
Note that each plot is based on an equal size sample to show sensible distribution around the zero line. The two 

grey lines in each figure represents the boundaries of 95 % error assuming the model is true. 
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(e) 

Figure 5-30. Continued. The binned residual plots from the 2 variable models in each solvent (e): water. Note that 
each plot is based on an equal size sample to show sensible distribution around the zero line. The two grey lines 

in each figure represents the boundaries of 95 % error assuming the model is true. 

The residual plots for all models look normal, with no patterns observed. Although one sample 

is shown here from each solvent, 10 similar plots were exported for 10 different test sets for 

each solvent’s model, where they showed similar performance. 
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5.6.7 Misclassified data and intercept adjustment 

It was shown earlier that each solvent’s model (the two-variable models in shown in 

section 5.5.1) misclassified between 19 and 26 % of the starting (complete) datasets. But was 

most misclassification attributed to solvate or non-solvate group or was it a 50-50 % split 

between them? Ideally, the misclassification should be a half-split between the solvate and the 

non-solvate groups. This is thought to be due to the fact that the cut-off point was chosen in a 

way to maximize the sensitivity and the specificity of the models, as has been shown in 

section 5.5.5 The percentage of solvates and non-solvates among the misclassified data in each 

solvent dataset was calculated. The results are shown in Figure 5-31. 

 

Figure 5-31. Percentage of misclassifications in the solvate and the non-solvate groups in each model when the 
complete dataset was predicted using the two-variable models. 

All models have shown a biased behaviour towards the non-solvate group to different extents, 

with the alcohols and water showing the largest bias. This could be surprising in the first 

instance, but bearing in mind that the prior probability of the solvate formation was ignored 

when equal size samples were taken explains this. Although 10 subsets were used to fit each 

model, the fact that equal size sampling was used results in ignoring part of the data. In other 
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words, this error happened due to the sampling error. In a logistic regression model, this error 

could be fixed by adjusting the intercept of the model.25 Therefore, what is required ad this 

stage is eliminating the bias that is present in these models via intercept adjustment. 

In order to know the perfect cut-off point for each model, a loop programmed in R was used to 

make a stepwise change to the intercept in both positive and negative direction until the bias 

in prediction between the solvate and the non-solvate groups is eliminated. This adjustment 

results in an equally distributed error between the solvate and the nonsolvate groups, as 

shown in Figure 5-32. 

 

Figure 5-32. Percentage of misclassifications in the solvate and the non-solvate groups in each model when the 
complete dataset was predicted using the intercept-adjusted two-variable models. 

Intercept-adjusted models are more fair towards both the solvate and non-solvate groups, 

nevertheless, the overall misprediction and MSE of the models has shown a small increase in 

some solvents. The change in intercept is shown in Table 5-13. The details on the change of the 

overall prediction and the MSE per solvent are shown in Figure 5-33. 
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Table 5-13. The intercept value in normal and intercept-adjusted models 

 

Original Adjusted 

Ethanol 15.939 15.868 

Methanol 2.8 2.652 

Dichloromethane 15.459 15.357 

Chloroform 14.744 14.688 

Water 4.672 4.558 

 

Figure 5-33. The effect of adjusting the intercept on the MSE value of each model. 

5.7 Simple alternatives 

To this point, it is well known that the two-variable models were able to correctly predict the 

behaviour of 74-80 % of the data in any of the five solvents. The descriptors in the models 

shown in section 5.6.1 can be instantly calculated by a computer for almost any molecule. 

Nevertheless, it would be impractical to calculate them manually. For example the process of 
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calculating the value of the SM3_H2 descriptor involves working out the third power of a 

matrix. This is a tedious task to be performed manually for almost any molecule. Additionally, 

the descriptor value is not easily estimated by looking at the molecular structure. In order to 

give a more intuitive value, simple alternative models were introduced. 

5.7.1 The alternative descriptors  

The rationale for solving this issue was based on finding simple models that resemble the 

original ones given in section 5.5.1. This could be achieved by considering for simple 

descriptors that are highly correlated with the ones in the original models.  A correlation 

matrix was established for each solvent’s dataset individually and new descriptors were 

selected.  

In the ethanol model, the AVS_H2 descriptor requires a lot of time to be calculated. A 

correlation matrix was calculated and arranged according to the correlations between AVS_H2 

and the rest of descriptors. Part of this correlation matrix is presented in Table 5-14. 

Table 5-14. Part of the AVS_H2 correlation matrix 

- AVS_H2 

AVS_H2 1 

SpMax_H2 0.981 

SpDiam_H2 0.977 

SM6_H2 0.975 

… … 

nCIC 0.870 
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The top 3 correlated descriptors in this dataset were SpMax_H2, SpDiam_H2 and SM6_H2. 

Although these had the highest correlation, the notation (H2) in their names indicate the need 

to calculate the reciprocal squared topological distance matrix, therefore they are not suitable 

to be manually calculated. The descriptor with 109th highest correlation was the nCIC at a 

correlation value of 0.87. This is a simple count descriptor that counts the number of rings in a 

molecule. The correlation sounds logical as AVS_H2 inherently contains information about the 

size and branching of a molecule; therefore a larger molecule is expected to have a higher 

number of rings. For this reason, the AVS_H2 was replaced with the nCIC and a model was 

fitted. The second descriptor in the ethanol model was already a simple count descriptor, so it 

was not changed. The average MSE of the model that uses nCIC and nHDon over 10 samples 

was 0.157, which is close to 0.148, the average MSE of the original model. 

In the methanol model, the descriptors used were the TRS and nHDon. Both of these are 

simple descriptors that are easy to calculate manually, for this reason the methanol model was 

not adjusted or represented by a simpler model. 

In the dichloromethane model, the SM3_H2 descriptor hard to be estimated using the 

molecular graph. Fortunately, a simple path count descriptor (MPC01) showed to be very 

similar to SM3_H2, with a high correlation (r = 0.983). MPC01 is the count of paths of length 1 

in the H-depleted molecular graph. It could also be seen as the number of bonds between non-

hydrogen atoms in the molecular graph.26, 27  Just like SM3_H2, MPC01 shows large values 

when the molecule size increases so it was subject to logarithmic transformation. 

The second descriptor in the dichloromethane model was the Hy. This descriptor is not very 

complex but may require a considerable amount of time to be calculated. For this reason a 

simpler alternative was looked up. nHDon turned out to have a correlation of more than 0.95 

to Hy, so it was replaced by nHDon. The resulting model still gives similar results. This 
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alternative simple model had an average MSE of 0.150 over 10 samples compared to 0.146 for 

the original model. 

In the chloroform model, the first descriptor (SM3_H2) was shared with dichloromethane. 

Interestingly, chloroform also shares the first alternative descriptor with dichloromethane, 

where the MPC01 descriptor showed a correlation of 0.984 to SM3_H2. The second descriptor 

in the chloroform model was the number of hydrogen atoms attached to a heteroatom (H-

050). This is a simple count descriptor, therefore it was left unchanged. Although the 

chloroform model shows a different second descriptor from the dichloromethane model, the 

correlation between the second descriptors in both is very high (r > 0.95 correlation), 

indicating the similarity in their behaviour. The average MSE of the simpler model, again over 

10 samples, is 0.152, compared to 0.148 of the original model. 

In the water model, the first descriptor was the πID. This descriptor is calculated through the 

formula presented in Equation (5-8). Since it is not easy to calculate, it was replaced with the 

nCIC descriptor, which is the number of rings in a molecule. nCIC has a correlation value 

(r= 0.854) of with πID. The second descriptor in the water model was the nH, which is already a 

simple count descriptor. Therefore it was left as it is. A model utilizing the nCIC and nH 

descriptors has an average MSE of 0.161 compared to an average MSE of 0.159 of the original 

hydrate model. The result of these replacement was 5 new models. These five models had 

their intercept adjusted in the same manner shown in section 5.6.7. The resulting models are 

illustrated in Equations (5-11) to (5-15): 
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𝑝𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = 1 −

1

1 + 𝑒−(3.952 −0.766nCIC−0.889nHDon)
 

(5-11) 

 
𝑝𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = 1 −

1

1 + 𝑒−(2.652−0.085TRS−0.612nHDon)
 

(5-12) 

 
pdichloromethane = 1 −

1

1 + e−(12.737−3.649MPC01−0.339nHDon)
 

(5-13) 

 
pchloroform = 1 −

1

1 + e−(12.336−3.416MPC01−0.358H.050)
 

(5-14) 

 
𝑝𝑤𝑎𝑡𝑒𝑟 = 1 −

1

1 + 𝑒−(2.45−0.606nCIC−0.088nH)
 

(5-15) 

5.7.2 Performance of the simple models 

The descriptors chosen to simplify the models showed a high correlation to the ones in the 

original models as has been shown in section 5.6.1. This means the simple alternatives are 

ought to have a performance that is comparable to the original ones. The average 

performance of the alternative models (over 10 samples) is shown in Table 5-15. A comparison 

of the MSE between the original and the alternative models is shown in Figure 5-34. 
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Table 5-15. The average performance of the intercept-adjusted alternative models (over 10 samples) in each 
solvent’s dataset. 
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Figure 5-34. The increase in the MSE value when alternative models are used. Note that the comparison in shown 
here is between intercept-adjusted two-variable models and intercept-adjusted alternative models. 

The increase in the error values was minimal. This demonstrates that predictions with the 

same success rate can be made without the use of a computer. 

5.8 Practical usage of the models 

The application of the models can be viewed in two ways, these are a visual 

representation and a purely mathematical one, both of which are going to be 

explained in this section. 

5.8.1 Mathematical representation 

After the alternative models were introduced, it is logical to show an example of how these 

could be used to make a prediction. Bearing in mind that most users would not have the 

descriptor calculation software, it was necessary to demonstrate their practical usage. In this 

section, two molecules are going to be predicted for solvate formation using the alternative 

models. The molecules chosen to exemplify the usage of the models were large, branched and 

complex. The reason for these choices is to demonstrate the easiness of using the alternative 

models, regardless of the complexity of the structure. The first example is going to utilize the 
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water alternative model. The example of choice was the azithromycin, an anti-bacterial from 

the macrolides family (CSD reference code: NAVTAF28), which is shown in Figure 5-35. 

 

Figure 5-35. The structure of azithromycin. Chemical formula C37H67NO13. 

In order to calculate the probability of hydrate formation, two descriptors are required, these 

are the nCIC and nH. The nCIC (number of rings) in the structure can be easily worked out as 3, 

while the nH (number of hydrogen atoms) would take a little longer. The number of H atoms 

sum up to 67. Putting these in the alternative water model gives the Equation (5-16): 

 
𝑝𝑤𝑎𝑡𝑒𝑟 = 1 −

1

1 + 𝑒−(2.45−0.606∗3−0.088∗72)
= 0.003 

(5-16) 

The prediction is well below the cut-off point for the water model, which indicates this 

molecule is a strong candidate for forming a hydrate. In reality, a dihydrate is recorded in the 

CSD for this entry (GEGJAD), which makes the prediction correct in this case.  
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Another example could be demonstrated via the methanol alternative model. This time, a 

pharmaceutically active statin, known as bryostatin was chosen to predict solvate formation. 

Similar to the previous example, the values of two descriptors have to be worked out in order 

to make the prediction. This time the two descriptors were TRS and nHDon. Considering the 

structure of the molecule, the TRS descriptor can be calculated by counting the number of 

atoms in every ring. This structure show 4 rings, 3 of which are 6-membered rings and one that 

is a 20-membered ring. These rings overlap, but the number of atoms consisting each ring are 

counted individually, leaving the final value of the TRS descriptor to be 38. The nHDon 

descriptor value for this structure is 4. An illustration of the two descriptors on the bryostatin 

structure is shown in Figure 5-36. 

 



184 
 

 

Figure 5-36. The chemical structure of bryostatin with the groups contributing to the TRS and nHDon descriptors 
highlighted. 

Feeding these values into the model gives the result shown in Equation (5-17): 

 
𝑝𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 =

1

1 + 𝑒−(2.652−0.0847∗38−0.612∗4)
= 0.047 

(5-17) 

The low probability value gives the indication of a high likelihood of the methanol solvate 

formation. In fact, this molecule does form a methanol solvate. The form was reported in a 

publication in 1982 (CSD reference code: BOKKIV29). 
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5.8.2 Visual representation 

From a visual perspective, the two-variable models are representing a two-dimensional 

problem, as has been shown in Figure 5-21. In this problem, the two descriptors will represent 

the two axes of a plane. For each given molecule, the values of these two descriptors are 

calculated. These two values are used as the coordinates to draw a point on the plane. The 

machine then draws the decision boundary (which is defined by the model) on the same plane. 

The position of the drawn point in relation to the decision boundary decides the prediction 

outcome. The distance from this decision boundary defines the likelihood of hydrate or solvate 

formation. An example is given here using the amoxicillin molecule, which was described back 

in 1971.30 An illustration of the amoxicillin molecule and its classification by the model are 

shown for the amoxicillin molecule in Figure 5-37 and Figure 5-38, respectively. 

(a) 

Figure 5-37. The amoxicillin molecule. 
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Figure 5-38. An illustration of the graphical prediction method used by the water model. The point in the plot 
represents the amoxicillin molecule. 

By looking at the water model shown in Equation (5-15), it can be anticipated that the region 

for hydrate formation lies to the right of the decision boundary. The amoxicillin did fall into 

this region, with the value of the two descriptors being 3 and 18, respectively. This indicates 

the drug’s ability to form a hydrate according to the model. This is a correct prediction as the 

amoxicillin drug was found to have a trihydrate form that was recognized in the late 1970s.31 

The trihydrate entry is recorded in the CSD under the reference code AMOXCT10. 
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 Discussion of the models Chapter 6:
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The previous chapter has covered the statistical aspects of the models. In this chapter, we 

discuss examples from the dataset, representing the importance of the descriptors that were 

included in the models. Additionally, some descriptors that could be useful for determining 

solvate formation but were not part of the models will be discussed and represented by 

examples form the dataset. Such criticism can help the identification of the strong and weak 

points of the models. An important term to point out before the chapter starts is the short 

contact. In this work, this term is used to describe the distance between two atoms when it is 

at least 0.1 Å shorter than the sum of the van der Waals radii of the atoms in contact. 

6.1 Effects the models take into account 

At this point, it has been shown that the best descriptors to predict solvate formation were 

related to the size and branching of a molecule in addition to its hydrogen bonding ability. The 

relative importance of these two variables will be illustrated via examples from the ethanol 

datasets. 

6.1.1 Size and branching 

This molecular property is the most important in the prediction of the solvate formation 

according to the models. The significance of this property can be illustrated by discussing 

entries that have a small size, low branching and a high ability to form hydrogen bonds and by 

discussing the other extreme case of large molecules with a little ability to form hydrogen 

bonds. A couple of examples representing the former case are 1-((E)-2-

pyridinylmethylidene)semicarbazone, CSD reference code: KUHGEA1 and N-(pyridin-2-

yl)hydrazinecarbothioamide, CSD reference code: XAPTOY.2 These are shown in Figure 6-1. 
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(a) (b) 

Figure 6-1. Molecular structures of (a) KUHGEA and (b) XAPTOY. 

KUHGEA and XAPTOY possess AVS_H2 values of 2.972 and 2.979 and a number of hydrogen 

bond donors of 3 and 4, respectively. Both of these entries were recrystallized from ethanol. 

The solvent was not incorporated into the crystal structure in either of the cases, despite the 

availability of multiple hydrogen bond donors as well as acceptors. The inability of these 

entries to form an ethanol solvate was correctly predicted by the ethanol model at an x value 

of 0.874 for KUHGEA and 0.741 for XAPTOY. This inability to form a solvate was reasoned by 

not having a size and branching that is large enough to surpass the decision boundary into the 

solvate region. An illustrative example of the case of the molecules that show a large, 

branched structure can be the compound (16S)-(-)-16-ethylrhazilinam ethanol solvate, CSD 

reference code: ECEKON.3 This molecule shows a branched structure (AVS_H2 value is 4.099) 

and has one hydrogen bond donor (nHDon value is 1). The entry is an ethanol solvate, 

nevertheless, no hydrogen bond seems to exist between the molecule and the solvent even in 

the range of the Van der Waals radii + 0.1 Å. This shows that the hydrogen bond is not highly 

involved in the inclusion of the solvent inside the crystal structure. An illustration of the 

ECEKON entry is shown in Figure 6-2. Its solvate formation was correctly predicted by the 

ethanol model at x= 0.345. 
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Figure 6-2. Molecular structures of ECEKON. 

Multiple examples illustrating solvate formation despite the low count of hydrogen bond 

donors can be seen in all datasets. The CSD reference codes for additional examples from the 

ethanol and methanol datasets are given in Table 6-1. 

Table 6-1. Additional examples on the importance of size and branching in solvate formation 

From ethanol data 

CSD 

reference 

code 

AVS_H2 nHDon Chemical formula 
Prediction 

value 

MOKVOY4 4.233 0 

 

0.428 
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Table 6-1. Continued 

QEKMEY5 4.201 0 

 

0.458 

QUSWUX6 4.201 0 

 

0.458 

RIBBOU 7 4.213 0 

 

0.447 
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Table 6-1. Continued 

TOYJUM8 4.092 1 

 

 

0.352 

From methanol data 

EREWED9 35 0 

 

0.420 

EMEBUT10 36 0 

 

0.420 

KAQVIJ11 38 0 

 

0.359 
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Table 6-1. Continued 

DADWEM12
 39 0 

 

0.340 

ZEBXUZ13
 40 0 

 

0.321 

 

6.1.2 Hydrogen bonding 

The importance of hydrogen bonding in different structural formations, including solvate 

structures cannot be denied. Several studies have shown a positive correlation between the 

hydrogen bonding ability and the formation of solvates, especially in alcohol containing 

solvents. Additionally, all the models found agreed that the hydrogen bonding ability of the 

structure is an important factor in the determination of solvate formation. A number of 

examples from the ethanol dataset are used to demonstrate the importance of this type of 

bonding. The molecules that are used to make the demonstration were chosen to have similar 

AVS_H2 values, but differ in the number of hydrogen bond donors as illustrated in Figure 6-3 

(a) and (b). 
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(a) (b) 

Figure 6-3. Molecular structures of (a) SOYQON and (b) UHUWEA. 

 The first example, shown in Figure 6-3(a) is N'-(2,4-dimethoxybenzylidene)-3,4,5-

trihydroxybenzohydrazide ethanol solvate, CSD reference code: SOYQON.14  The other entry 

shown in Figure 6-3(b) is N-(2-hydroxyethyl)-6-methoxy-2-oxo-2H-chromene-3-carboxamide, 

CSD reference code: UHUWEA.15 Both compounds were recrystallized from ethanol, but the 

latter has failed to form a solvate. These two entries have close AVS_H2 values of 3.534 and 

3.513, respectively. The larger difference between them lies in the hydrogen bonding ability, 

where the SOYQON entry had 4 hydrogen bond donors, compared to 2 donors in the UHUWEA 

entry. According to the model, this difference in the number hydrogen bond donors is the 

reason for the solvate formation in the first molecule. Both of these entries were correctly 

predicted for solvate formation by the ethanol model, where SOYQON had an x value of 0.256 

and the UHUWEA entry had an x value of 0.676.  

Another example can be shown via ethyl 5-((2-hydroxybenzoyl)carbohydrazonoyl)-3,4-

dimethyl-1H-pyrrole-2-carboxylate ethanol solvate, CSD reference code: EHUKAU,16 and (E)-N'-

(4-(2-chlorobenzyloxy)benzylidene)isonicotinohydrazide, CSD reference code: QERJED,17 both 

of which are illustrated in Figure 6-4. 
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(a) (b) 

Figure 6-4. The importance of hydrogen bonding in solvate formation shown via the EHUKAU (a) and the QERJED 
(b) entries. 

Both of these entries have an AVS_H2 value of 3.533. The count of the hydrogen bond donors 

is different though. While the EHUKAU entry shows three hydrogen bond donors, the QERJED 

has only one. This causes the model to predict them differently. Both of these entries were 

correctly predicted by the ethanol model, where the EHUKAU entry was predicted to form a 

solvate at x= 0.450 and the QERJED entry was predicted not to form a solvate at x=0.821. A 

large number of examples were available to demonstrate the case. Additional paired examples 

illustrating this case are shown in Table 6-2. Note that these examples are from the ethanol and 

the methanol datasets only. This is because the models of these two solvents are the only ones 

that were significantly improved by the addition of the hydrogen bonding factor (see 

section 5.5.2 for the addition of the second variable). 
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Table 6-2. Additional paired examples indicating the importance of hydrogen bonding ability in solvate 
formation. Each pair of examples has similar background shading 

From ethanol data 

Chemical formula and reference code 
AVS_H2 

value  

nHDon 

value 

Prediction 

value 

NEQDEU18
 

 

3.743 1 0.673 

KAYTOU19
 

 

 

3.743 4 0.134 

AZUYAV20
 

 

 

3.758 0 0.821 

ABEBOZ21
 

 

 

3.758 2 0.45 
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Table 6-2. Continued 

IGASOZ22
 

 

 

3.76 0 0.812 

SEHSOP23
 

 

 

3.76 2 0.449 

From methanol data 

AFETIO24
 

 

 

22 0 0.686 
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Table 6-2. Continued 

ANOQOK25
 

 

 

22 2 0.391 

CEHCOJ26
 

 

 

22 1 0.542 

YUQKAX27
 

 

 

22 2 0.391 
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Table 6-2. Continued 

OJOHUQ28
 

 

 

25 0 0.629 

QUCSEM29
 

 

 

25 2 0.332 

6.2 Effects the models do not take into account 

The previous section has shown examples to prove the usefulness of the descriptors that are 

included in the models. Bearing in mind that 20 % of the data was not correctly predicted by 

the models, there must be factors that account for solvate formation which the models did not 

consider. These factors are going to be shown by examples from the datasets. 

  



204 
 

6.2.1 Hydrogen bond strengths 

The addition of hydrogen bonding to the models has increased their prediction ability, 

especially in the models of the alcohol containing solvents. Nevertheless, the description of 

this property was too simple. The count of the hydrogen bond donors is certainly not the best 

description of the hydrogen bonding ability of a given molecule. This is due to the fact that the 

strength of hydrogen bonds depends on many factors, such as the nature of the hydrogen 

bond donating atom. For instance, a primary amine has a lower affinity than an amide to 

donate a hydrogen bond.30  

An example that can demonstrate this difference in ability to donate hydrogen bonds can be 

seen by comparing 7-hydroxy-1-methyl-N-(9-methyl-9-azabicyclo[3.3.1]non-3-yl)-1H-indazole-

3-carboxamide methanol solvate, CSD reference code: VUQMEA31 and 4-(4-Fluorophenyl)-1-

phenyl-3-(pyridin-4-yl)-1H-pyrazol-5-amine, CSD reference code: LANRUP.32  Both of these 

entries were recrystallized from methanol. Their structures are shown in Figure 6-5. 

(a)  (b) 

Figure 6-5. Molecular structures of (a) VUQMEA and (b) LANRUP. 
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The values of the descriptors TRS and nHDon are identical for both compounds; these are 23 

and 2, respectively. While the count of hydrogen bond donating groups is the same, the nature 

of these groups is not. The VUQMEA entry shows an amide and a hydroxyl group while the 

LANRUP entry has a primary amine. Amides are known to form stronger hydrogen bonds than 

primary amines; therefore the former is expected to form a stronger interaction than the 

latter.33 In the VUQMEA entry, the hydrogen bond between methanol and the amide group, in 

which the (N–H···O distance is below 2.5 Å) is thought to cause the retention of the solvent in 

the crystal. Despite this difference in hydrogen bond donating ability, the methanol predictive 

model looks at them as identical structures. It predicts both of them to form a solvate at value 

of x=0.373. In fact, it correctly predicts the solvate form of the VUQMEA entry but fails to 

predict the behaviour of the LANRUP entry. 

Another example is 2-((2-Aminophenylimino)(phenyl)methyl)-4-chlorophenol, CSD reference 

code: DEMFUX34 and N'-(2-hydroxynaphthylidene)-3-hydroxybenzohydrazide methanol 

solvate, CSD reference code: LOMLEF.35 These 2 entries are illustrated in Figure 6-6. 

 (a)  (b) 

Figure 6-6. An illustration of the DEMFUX (a) and the LOMLEF (b) entries. 

From the methanol model perspective, these two entries are identical as they share the same 

values for the descriptors in that model. They both possess a TRS value of 18 and an nHDon 

value of 3. Consequently, they both were predicted to form a solvate at a value of 0.330. By 
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looking at the illustrations of the molecules in Figure 6-6, it can be seen that the hydrogen bond 

donor groups are quite different. The DEMFUX entry shows one primary amine and a hydroxyl 

group while the LOMLEF entry shows two hydroxyl and one amide group. The misprediction of 

the DEMFUX is thought to be caused by the inability of the current models to differentiate 

between a strong and a weak hydrogen bonding group. 

6.2.2 Accessibility of hydrogen bonding 

Being one of the main factors involved in the formation of the solvate form, the hydrogen 

bonding ability of the misclassified compounds was investigated more closely. The nature of 

the hydrogen bond donor is not the only factor that influences this type of interaction. It can 

be influenced by other factors, such as the availability of the hydrogen bond donors. In many 

instances, molecules possessing hydrogen bond donor groups have failed to make hydrogen 

bonds with the solvent due to their inaccessibility or involvement in intramolecular bonding. 

An example of that can be seen in the case of tris(2-hydroxy-3-t-butyl-5-methoxybenzyl)amine, 

CSD reference code: RACMEP36 from the methanol dataset. The 3D structure is illustrated in 

Figure 6-7.  
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(a)  (b) 

Figure 6-7. An illustration of the limited accessibility of the hydrogen bond donors (the oxygen atoms in yellow) in 
the RACMEP entry. Part (a) of the Figure shows the capped sticks model of the entry; part (b) shows the space-

filling model of the same entry. The intramolecular hydrogen bonds are shown in the blue lines between atoms in 
part (a). 

This molecule has failed to form a solvate upon crystallization from methanol. It has a TRS 

value of 18 and possesses 3 hydrogen bond donors. As the capped-stick model in Figure 6-7(a) 

shows, the three hydrogen bond donating groups are involved in intramolecular hydrogen 

bonds. Additionally, the space-filling model in Figure 6-7(b) shows that these donors are hardly 

accessible for the solvent molecules due to the steric effect, leaving them with a low accessible 

surface area. For these reasons, the methanol model has failed to correctly predict the solvate 

formation of this entry, where it gave an x value of 0.330.  

Another example from the methanol dataset is the case of 5,11,17,23-tetra-t-butyl-25,27-

bis(2-(N-(pyrid-3-ylcarbonyl)amino)ethoxy)-26,28-dihydroxycalix[4]arene, CSD reference code: 

AZOMIL.37 The entry is illustrated in Figure 6-8. 



208 
 

(a) (b) 

Figure 6-8. (a) Capped-stick and (b) space filling representation of the AZOMIL molecule. The inaccessible donors 
(oxygen atoms) are highlighted in yellow. The intramolecular hydrogen bonds are shown in the blue lines 

between atoms in part (a). 

Similar to the previous example, this entry has shown a high TRS (52) value and a large number 

of hydrogen bond donors (nHDon=4). This compound was recrystallized from methanol and 

has failed to form a solvate. The likely reason for the inability of this entry to form a solvate is 

the low availability of the hydrogen bond donors. Three of the four donor groups in this 

structure participate in intramolecular hydrogen bonds. This can be seen by looking at 

Figure 6-8(a) where the capped stick model clearly shows it. The other factor is the steric effect 

where other atoms have prevented the solvent from interacting with the donors. This can be 

noticed by looking at Figure 6-8(b) which shows the low accessible surface area. The methanol 

model has failed to correctly predict the solvate formation of this entry, where it gave an x 

value of 0.015. This large misprediction is mostly attributed to the reasons mentioned. A large 

number of examples exists in the datasets. The reference codes of these entries are given in   
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Table 6-3. Similar to Table 6-2, this table shows examples from ethanol and methanol datasets 

because their models were the only two improved by the addition of the hydrogen bond factor 

to the models. 
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Table 6-3. Accessibility of hydrogen bond donors 

From ethanol data 

CSD 

reference 

code 

AVS_H2 nHDon Chemical formula 
Prediction 

value 

ICOTIE38  3.938 4 

 

0.069 

QEXYUO39 4.04 3 

 

0.106 

GILZOR40
 4.474 4 

 

0.009 

WISTUN41
 4.455 3 

 

0.024 
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Table 6-3. Continued 

From methanol data 

CSD 

 reference 

code 

TRS nHDon Chemical formula 
Prediction 

value 

AWITIJ42 52 4 

 

0.015 

TUFSIX43  52 2 

 

0.049 
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Table 6-3. Continued 

QASFUL44 40 4 

 

0.040 

RUWGOF45 40 2 

 

0.123 

6.2.3 Ring interactions  

This type of interaction was widely observed throughout the dataset at short contact distances 

(see the beginning of chapter 6 for the definition of short distances). In order to know if this 

interaction affects solvate formation, a comparison between the short interactions in the 

solvate and the non-solvate groups in each solvent can be conducted. Note that the search 

should cover all three common conformations (parallel, offset parallel and T-shaped) of the 

ring interactions. In addition to the distance, the angle of the interaction and how much it 

deviates from the ideal interaction (90 ᵒ for T-shaped, 0 ᵒ for offset and - stacking) should be 

taken into account. An illustration of the deviation from a perfect interaction is illustrated in 

Figure 6-9. 
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Figure 6-9. An illustration of the deviation that was allowed for the T-shaped interaction from 90 ᵒ. 

In order to optimize the angle and make it consistent when comparing the distance of 

interactions, the entries of all solvent datasets (~19,000 molecules) were searched for any type 

of ring interaction in the range from 3.2 to 5 Å. This range covers the distance from 0.5 Å 

below to 0.1 Å over the equilibrium distance of the benzene dimer interactions (see 

section 2.4.3 for more details). The results of this search are shown via a heat map in 

Figure 6-10. 

 

Figure 6-10. A heat map showing the number of entries that from a - interaction, where the x-axis shows the 
angle and the y-axis shows the centroid to centroid distance. 

Three regions of high density can be noticed in Figure 6-10, two to the left and one to the right 

of the figure. The one to the left high density in the range of 3.5 to 4 Å represents the 
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interactions at an angle near zero. This suggests that entries possessing offset - interactions 

and π-π stacking are in this region. It could be noticed that the interaction is restricted to being 

completely parallel, where a deviation of 5 ᵒ from the perfectly parallel interaction resulted in 

almost no hits. The high density region above that, near 5 Å is not thought to represent any 

binding interactions, as this distance is well above the interaction distance for parallel - 

interactions. The region to the right shows the largest number of interactions around 65 ᵒ 

indicating the entries on this side are the T-shaped (edge-to-face) interactions. More flexibility 

can be noticed in this type of interaction, where the first column with completely navy blue 

boxes can be seen around 40-50 ᵒ. As a result, the search that was conducted to count the 

number of interactions in each solvent allowed for a magnitude of deviation of 10 ᵒ for the 

parallel interactions (sandwich (parallel) and the offset-parallel interactions) from 0 ᵒ, while a 

deviation of 45 ᵒ from the 90 ᵒ ideal interaction was allowed for the T-shaped interactions. The 

results of this search are shown in Figure 6-11. The distance on the other hand was restricted to 

the same concept of short interactions defined in at the beginning of chapter 6. 

 

Figure 6-11. The percentage of structures with short ring interactions in the solvate and the non-solvate groups 
per solvent. Note that these hits are the ones that followed the restrictions set on the angles of the interaction.   
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Strong ring interactions turned out to be more frequent in solvates. This indicates that ring 

interactions could aid hydrate and solvate formation to different extents among solvents, with 

the chlorinated solvents and water being the most affected type of solvents. 

6.2.4 Halogen bonding 

The chlorinated solvents tested, dichloromethane and chloroform, have drawn attention to 

the halogen bonding role in solvate formation. More than 25 % of the chloroform solvate 

entries have shown halogen bond at short distances between the solvent and the molecules 

(see the beginning of chapter 6 for short distance definition). This could be an evidence of the 

participation of this type of bonding in solvate formation. On the other hand, no entries in this 

dataset showed to have a solvate where the solvent is stabilized through halogen bonding 

alone, which means the chlorinated solvent in any observed crystal always had other 

interactions binding it. This could suggest that halogen bonding is not strong enough to 

stabilize a solvate structure on its own.  

An example of a positive contribution of this bond towards solvate formation can be seen in t-

butyl (1-((4-bromophenyl)sulfonyl)-4-(4-methyl-1H-1,2,3-triazol-1-yl)piperidin-3-yl)carbamate 

chloroform solvate, CSD reference code: KUWWOP.46 An illustration is shown in Figure 6-12. 
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Figure 6-12. Molecular structure of KUWWOP. 

This entry shows a chlorine atom at a short distance (3.118 Å) from a nitrogen atom 

(C-Cl···N angle=173.8 ᵒ). It has a SM3_H2 value of 4.663 and an H.050 value of 1, both of which 

led to a prediction value of x= 0.520 by the chloroform model (formation of non-solvates). The 

prediction of this chloroform solvate was incorrect where the probability found was 0.020 over 

the cut-off point of the chloroform model. The inclusion of halogen bonding in the model 

could probably shift the predictions of such a case towards the correct prediction region. 

Another example from the chloroform dataset is meso-1,12-dimethylene-2,11-

dithia[3.3]metacyclophane 2,11-dioxide chloroform solvate, CSD reference code: PIGDOZ.47 

The 3D structure of the entry is shown in Figure 6-13. 
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Figure 6-13. An illustration of the halogen bond in the PIGDOZ entry. It shows the role of this type of bonding in 
the chloroform solvate formation. The bond takes place at a distance 0.1 Å shorter than the sum of the van der 

Waals radii of the two atoms. 

This entry shows a chlorine-oxygen halogen bond at a short distance of 3.027 Å 

(C-Cl…N angle=178.06 ᵒ). The molecule has an SM3_H2 value of 4.339 and a H.050 value of 0. It 

was predicted not to form a solvate at x=0.810. A number of entries in different datasets have 

also shown the effect of this type of interaction. Additional examples from the chloroform 

dataset are given in Table 6-4.  

Table 6-4. Additional examples of mispredicted data, involving a short halogen bond in the structure. The 
examples are given from the chloroform dataset 

From dichloromethane data 

CSD 

reference 

code 

SM3_H2 Hy Chemical formula 
Prediction 

value 

SUQQEA48
 4.560 -0.601 

 

0.656 
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Table 6-4. Continued 

VOHHAC49
 4.603 -0.104 

 

0.543 

MOHTOS50
  4.741 -0.759 

 

0.537 

YAJCOD 4.742 -0.729 

 

0.531 
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Table 6-4. Continued 

From chloroform data 

CSD 

reference 

code 

SM3_H2 H.050 Chemical formula 
Prediction 

value 

REMDUK51 4.805 0 

 

0.508 

FIJXOM52 4.686 1 

 

0.503 

PASMUS53 4.765 0 

 

0.539 

KAJRUK54 4.747 0 

 

0.552 
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6.2.5 Zwitterions 

Some entries were mispredicted despite the fact that they had a prediction with a high 

confidence. Examples of entries that were predicted with a high confidence for solvate 

formation but failed to form them were given in section 6.2.2. This has happened when the 

hydrogen bond donors were not accessible by the solvent molecules, leading to an unexpected 

non-solvate. The opposite case was when some entries having a small size, low branching and 

small number of hydrogen bond donors were able to form a solvate. A closer look on these 

entries have revealed the fact that many of them were zwitterionic, i.e. having a formal 

positive and a formal negative charge on the same molecule. These entries were noticed when 

the data was first investigated in chapter 4 (section 4.3.2)  but were not excluded from the 

datasets. An example representing this case is 1-ammoniocyclopropanecarboxylate 

hemihydrate, CSD reference code: FOBJUB55 (Figure 6-14). 

 

Figure 6-14. Molecular structure of FOBJUB. The heteroatoms are labelled with their formal charge. 

This entry has an nH value of 7 and a ID value of 3.871. These values have led to a probability 

of x=0.905 by the hydrate model, which is far from reality. The entry shows an unusually short 

interaction between a hydrogen bond donating group (ammonium ion (NH3
+)) and the oxygen 

of water at a distance of 1.913Å. The large misprediction associated with this entry is mostly 

related to donor strength where the charged nitrogen is involved. The formal positive charge 
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might have caused it to be more electronegative than usual, leading to a strong interaction 

with the water molecule. This was not the only case witnessed in the datasets. The role of this 

highly polar nitrogen atom in hydrate formation coincides with what has been reported by L. 

Infantes et al. in a CSD investigation of around 35,000 organic molecules in 2006.56 Plenty of 

examples on this type of interaction were seen in each solvent dataset, which gives a warning 

sign to the scientists interested in developing charged organic materials. A list of examples 

illustrating this case from the water data are given in Table 6-5. 

Table 6-5. Additional examples on mispredictions due to the presence of a zwitterion 

From ethanol data 

CSD 

reference 

code 

AVS_H2 nHDon Chemical formula 
Prediction 

value 

APUNAA57 3.033 3 

 

0.847 

JUQQIV58 3.107 4 

 

0.638 

SUWLOL59 3.097 4 

 

0.646 
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Table 6-5. Continued 

From methanol data 

CSD 

reference 

code 

TRS nHDon Chemical formula 
Prediction 

value 

FEMQEV60 11 0 

 

0.848 

SAWGOM61
 0 4 

 

0.551 

AKAWUE62 10 1 

 

0.767 

From dichloromethane data 

CSD 

reference 

code 

SM3_H2 Hy Chemical formula 
Prediction 

value 

EVODAV63 4.151 1.306 

 

0.676 
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Table 6-5. Continued 

ROLDEB64 4.420 -0.778 

 

0.773 

DAHMEE65
 4.569 -0.294 

 

0.601 

From chloroform data 

CSD 

reference 

code 

SM3_H2 H.050 Chemical formula 
Prediction 

value 

MIPIMT66 3.886 0 

 

0.945 

TEQTUG67 3.926 3 

 

0.827 
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Table 6-5. Continued 

WAQLAD68
 4.019 0 

 

0.919 

From water data 

CSD 

reference 

code 

ID nH Chemical formula 
Prediction 

value 

AHLPRO69
 4.477 9 

 

0.860 

CEDJEA70 7.833 9 

 

0.588 

MAPYNM71
 7.008 8 

 

0.691 
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6.2.6 Why these factors were not included in the predictive models 

Multiple factors that the models did not account for were mentioned in sections 6.2.1 to 6.2.5. 

A sensible question here would be why the statistical investigation did not identify any of 

these factors. The answer to this question can be one of these cases: 

 The number of examples of a specific factor might not have been large enough to be 

statistically significant. An example of this case can be the zwitterions problem (section 

6.2.5), where about 30 examples representing the case were found in each dataset. 

The fact that the smallest dataset is made of more than 2,500 data points, made these 

entries insignificant. 

 The factor is partially encoded in a descriptor that is already in the model. For 

example, the ring interactions (section 6.2.3) is a factor that was highly involved in the 

solvate formation of the chlorinated solvents. Nevertheless, it was not one of the 

three top descriptors that showed up in the statistical analysis, not even as the third 

most important descriptor. This is because the descriptors found by the logistic 

regression model (spectral moment in the case of chloroform and dichloromethane) 

inherently include information about the number of rings. For example, the correlation 

between the spectral moment descriptor SM3_H2 and the number of rings nCIC in the 

chloroform dataset is larger than 0.75. 

 No descriptor is available to represent that factor. An example of this is the hydrogen 

bond strength, where the descriptors available give either a yes or no, but do not give 

a weighing to the hydrogen bond.  
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6.3 Possible improvements 

At this point, it would be valuable to suggest solutions to improve the predictive ability of the 

models. This section suggests possible improvements that can solve some issues mentioned in 

section 6.2, leading to an effective, simple prediction of the solvate formation. 

6.3.1 Inclusion of a hydrogen bond strength scale 

The hydrogen bond donating ability can vary depending on the donating group and the 

environment surrounding it. Section 6.2.1 has explained this variability with examples. The 

question remains on how could the description of the hydrogen bond donating ability be 

improved? To start with, researchers are aware of this variation as mentioned in several 

publications.72, 73 Different research groups have worked on finding a solution to quantify this 

interaction. In 2001, a study led by Michael H. Abraham from the University College London 

presented empirical hydrogen bond structural constants indicating the relative ability of 

functional groups to donate and accept hydrogen bonds. These constants were obtained based 

on the equilibrium constant of a 1:1 hydrogen bonded complex. They were provided for both 

aromatic and aliphatic functional groups. In 2004, another group, led by Christopher A. Hunter 

was able to provide similar description based on the electrostatic potential surface of 

molecules. Despite the different approaches taken by these two groups, the ranking of 

hydrogen bonding ability between functional groups is analogous. 

Incorporating these findings into the current predictive models can improve their predictive 

ability. To be precise, it could be most beneficial to the predictions that are close to the 

decision boundary of the models, where a small shift towards the correct prediction region can 

influence the outcome. This assumption can be demonstrated by referring to the example in 

Section 6.2.1. The first entry in that example (CSD reference code: VUQMEA), which formed a 

methanol solvate possessed an amide group. The second entry (CSD reference code: LANRUP) 
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which has failed to from a solvate possessed a primary amine group. The empirical scales set 

by Abraham suggests that the hydrogen bond donating constant for the aliphatic amide group 

ranges between 0.40-0.55 compared to 0.08-0.16 for aliphatic amines. The amine in the 

LANRUP structure is connected to a benzene ring, which might mean it is close to being an 

aromatic amine due to the delocalization of the ring. The hydrogen bond donating constant for 

aromatic amines range is 0.17-0.26, which is still significantly lower than the constant of the 

amide. 

Although the hydrogen bond acceptors are not part of the predictive models at this point, an 

illustrative example is essential to prove the usability of these scales. The comparison between 

(3S,6S)-3,6-Diethyl-3,6-dimethyl-1,4-bis(1-phenylethyl)piperazine-2,5-dione methanol solvate, 

CSD reference code: IXAYOW74 and cis-1,4-dicyano-7,7-dimethoxy-6,6-dimethyl-2,3-benzo-cis-

bicyclo[3.3.1]nonane, CSD reference code: QIHFAO75 from the methanol dataset, suggests the 

importance of the hydrogen bond accepting scales. Both of these structures are shown in 

Figure 6-15. 

(a)       (b) 

Figure 6-15. Molecular structures of IXAYOW and QIHFAO. 
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These two molecules possess hydrogen bond acceptors. These groups are available for 

interaction with methanol. They both had a TRS descriptor value of 18 and an nHDon 

descriptor value of 0. The model does not qualify them to form a methanol solvate, where 

they are predicted at a value of x= 0.755. This means that the model correctly predicts the 

QIHFAO entry but fails to predict IXAYOW. The reason for this misprediction is thought to be 

due to the difference in the hydrogen bond accepting ability. In the paper published by 

Abraham, it is shown that the carbonyl of the amide group acts as a stronger acceptor than the 

ether or cyanide groups. The assigned values for their strengths on the hydrogen bond 

accepting scale is 0.77-0.80 for amide while it ranges between 0.48-0.51 and 0.36-0.44 for 

ether and cyanide groups, respectively.72 

6.3.2 Application of Etter’s rules 

One of the issues that limited the ability of the models to correctly predict the solvate 

formation was the inaccessibility of the strongly-binding functional groups. One reason for this 

inaccessibility was intramolecular hydrogen bonding or involvement of hydrogen bond 

donor/acceptor groups in intramolecular hydrogen bonding (see section 6.2.2). Margaret C. 

Etter has proposed a list of rules regarding hydrogen bonding.76 These rules focus mainly on 

the preferred interactions for strong hydrogen bond donors and acceptors. For example, one 

of the general rules states that “The best proton donors and acceptors remaining after 

intramolecular hydrogen-bond formation form intermolecular hydrogen bonds to one another.”  

The value of this rule can be seen in the cases illustrated and tabulated in section 6.2.2. The 

incorporation of these rules into the models has the potential to improve their predictive 

ability. 
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6.3.3 Inclusion of steric hindrance description 

The application of Etter’s rules can certainly account for a considerable part of the 

mispredictions associated with inaccessibility of the functional groups. Another reason why 

some groups were inaccessible was the steric hindrance around these groups. But how can this 

be studied theoretically? A model of hydrogen bond propensity in organic crystals, known as 

the “logit hydrogen bond propensity” (LHP) was introduced by P. Galek et al. in 2007.77 One of 

the parameters used by this model was called the steric density function. This function 

describes the density of non-hydrogen bonding atoms in the environment around the 

hydrogen bonding functional groups. When there is a high density of non-hydrogen bonding 

atoms, this means the hydrogen bond donor/acceptor is less likely to be accessible by other 

atoms. Such a function could be implemented as part of the predictive models. In more 

technical terms, the knowledge of the chemical structure of a molecule, along with the 

knowledge of the average bond lengths and atomic sizes can help find the density of atoms in 

a specific area, leading to an anticipation of the availability of the hydrogen bond 

donating/accepting groups. 
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 Experimental validation of the models  Chapter 7:
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7.1 Overview 

The predictive models for the five solvents were fitted based on the information available in 

the CSD. The performance of the models was statistically evaluated and the data misclassified 

by the model was analysed in previous chapters. At this point, it was important to check the 

applicability of these models in real-life experiments, representing their use in pharmaceutical 

development. In this chapter, 10 pharmaceutically active candidates will be selected. They will 

be experimentally tested for hydrate and solvate formation with each of the five solvents, in 

order to validate the predictive models obtained. Some of these drugs were part of the 

training data of solvents. Strictly speaking, this could cause preferential prediction for these 

candidates. Nevertheless, due to the large number of molecules in each dataset, the effect of 

these entries on the models is minute, where they constitute less than 1.7 % of the training 

data in the worst case.  

7.2 Selection of drug candidates and their profiles 

The 10 drug candidates that were used for the models validation were chosen to be 

pharmaceutically active and show variability in their molecular structures. The variability 

among these candidates was in terms of the molecular properties that were considered in the 

two-variable models. These are molecular size, different level of branching as well as different 

hydrogen bonding capability. Validating the models based on such different candidates would 

cover a wide range of pharmaceutical applications. The 10 candidates, their structure and 

selection strategy are summarized in Table 7-1. 
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Table 7-1. The molecular structure, some selected molecular descriptors, application and selection strategy of the 
10 drug candidates 

Drug Candidate Chemical structure 

Theophylline 

anhydrous 

 

 

- Descriptor values 

- AVS_H2 TRS nHDon SM3_H2 Hy H.050 piID nH  

- 3.522 11 1 3.853 0.022 1 6.794 8  

- Pharmaceutical use 

- 

A bronchodilator and an anti-inflammatory that is used in the 

treatment of reversible respiratory airways obstruction.1, 2 

Theophylline is one of the most widely used bronchodilators.1  It 

has been reported3, 4 that low doses of theophylline can reverse 

corticosteroid resistance in chronic asthma and obstructive 

pulmonary disease.  It also exhibits immunomodulatory effect.3-5 

- Selection Philosophy 

- 

Theophylline is a small-sized structure as compared to the 

datasets provided, when the molecular weight is considered (see 

Figure 4-11 of chemical space in chapter 4) is considered. The 

structure possesses some short branches. In terms of hydrogen 

bonding, the structure possesses one hydrogen bond donor and 5 

Hydrogen bond acceptors. This candidate was chosen due to the 

mixed properties it possesses where it falls in the middle range of 

most descriptors that are important for solvate formation.  
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Table 7-1. Continued 

Drug Candidate Chemical structure 

Hymecromone 

 

 

- Descriptor values 

- AVS_H2 TRS nHDon SM3_H2 Hy H.050 piID nH  

- 3.443 12 1 3.768 -0.202 1 7.351 8  

- Pharmaceutical use 

- 

A food supplement that is used in bile therapy.6 More recently, it is 

being recognized as a Hyaluronan (HA, Hyaluronanic acid) inhibitor 

therefore capable of preventing chronic inflammation, 

autoimmunity and tumours.7 For example, the inhibitory action of 

4-MU on HA can be beneficial in different malignant diseases such 

as prostate cancer.8 

- Selection Philosophy 

- 

Similar to theophylline, this molecule is small in terms of size, 

possesses two fused rings and shows minimal branching. It also 

contains one hydrogen bond donor and 3 acceptors. It is expected 

to have similar behaviour to theophylline. 
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Table 7-1. Continued 

Drug Candidate Chemical structure 

Isoniazid 

 

 

- Descriptor values 

- AVS_H2 TRS nHDon SM3_H2 Hy H.050 piID nH  

- 2.97 6 3 3.232 1.786 3 5.833 7  

- Pharmaceutical use 

- 

Isoniazid is a first-line anti-tubercular drug also used in 

tuberculosis preventive therapy for HIV positive patients.9, 10 

Isoniazid is mostly used in combination with other anti-tubercular 

drugs (ethambutol, rifampicin, and pyrazinamide) to treat multi-

drug resistant tuberculosis.9, 11  

- Selection Philosophy 

 

- 

Isoniazid possesses an AVS_H2 value which is well below the 

average value in any of the datasets. On the other hand it 

possesses 3 hydrogen bond donors in addition to 4 hydrogen 

bond acceptors, all of which are accessible for interaction. This 

hydrogen bonding ability is also well above the average, 

compared to other entries in any dataset (see Figure 4-11 from 

chapter 4 for more details). Such properties make isoniazid an 

excellent candidate that can compare the importance of the size, 

branching and complexity of the structure against the importance 

of hydrogen bonding. 
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Table 7-1. Continued 

Drug Candidate Chemical structure 

Ethenzamide 

 

 

- Descriptor values 

- AVS_H2 TRS nHDon SM3_H2 Hy H.050 piID nH  

- 3.105 6 2 3.477 0.59 2 6.278 11  

- Pharmaceutical use 

- 

Ethenzamide is an anti-inflammatory drug with analgesic, 

antipyretic, and sedative effects.12 It also has anti-convulsive and 

muscle relaxing effects.13 Ethenzamide is used as an active 

ingredient in pain reliving ointments.14 This drug has been 

reported to have ulcerogenic and hypothermic effects.12 

- Selection Philosophy 

- 

Ethenzamide is structurally related to isoniazid. In terms of size 

and branching, it possesses an AVS_H2 value that is slightly 

higher than isoniazid due to the extra branching from the ring. In 

terms of hydrogen bonding, it shows an inferior hydrogen bond 

donating/accepting ability. This candidate was chosen to observe 

if these changes in molecular structure can alter the solvation 

behaviour of the compound. 
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Table 7-1. Continued 

Drug Candidate Chemical structure 

Carbamazepine 

 

 

- Descriptor values 

- AVS_H2 TRS nHDon SM3_H2 Hy H.050 piID nH  

- 3.783 19 2 4.168 0.32 2 9.776 12  

- Pharmaceutical use 

- 

Carbamazepine is an anticonvulsant used to treat epilepsy15, 16 

and trigeminal neuralgia.17 It has been shown to have 

prophylactic and improving effect in manic-depressive illness.18-20 

It has been reported to reduce symptoms of diabetic 

neuropathy21 and post-traumatic stress disorder.22 

- Selection Philosophy 

- 

Carbamazepine’s AVS_H2 value is rather high compared to other 

entries. In terms of hydrogen bonding ability, one primary amide 

is present. It is also important to notice the rigidity of this 

structure, despite it is large size. Carbamazepine was chosen 

after isoniazid and ethezamide, to see the change in behaviour 

as the candidate gains more size, retains rigidity and gets a lower 

hydrogen bonding ability. 
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Table 7-1. Continued 

Drug Candidate Chemical structure 

Diflunisal 

 

 

- Descriptor values 

- AVS_H2 TRS nHDon SM3_H2 Hy H.050 piID nH  

- 3.545 12 2 4.083 0.429 2 8.499 8  

- Pharmaceutical use 

- 

Diflunisal is a nonsteroidal anti-inflammatory analgesic.23 It has 
been shown to be efficient in treatment of postoperative 
pain.24,25,26

 

- Selection Philosophy 

- 

In terms of its molecular structure, diflunisal is considerably 

different from the previously described candidates. Firstly, it is a 

flexible compound compared to the previously chosen candidates, 

where the two rings are connected by a rotatable bond. Secondly, 

it possesses two fluorine atoms, which could have significant 

effect on the electrostatic interactions of the molecule. Finally, 

this entry still has two hydrogen bond donors that are completely 

available for interacting with other molecules. This drug is a 

candidate that represents a mildly flexible structure with 

hydrogen donating ability. 
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Table 7-1. Continued 

Drug Candidate Chemical structure 

Fenofibrate 
 

- Descriptor values 

- AVS_H2 TRS nHDon SM3_H2 Hy H.050 piID nH  

- 3.579 12 0 4.381 -0.79 0 8.814 21  

- Pharmaceutical use 

- 

Fenofibrate is used to treat high cholesterol levels.27 It reduces 

the angiographic progression of coronary-artery disease,28,  #873],  

#873],  #873],  #873],  #873] 2001 #873;Simpson, 1990 #867] and 

diabetic retinopathy29 in diabetes patients. 

- Selection Philosophy 

- 

Fenofibrate structure is largely flexible which gives the freedom to 

the molecule to assume a variety of conformations. On the other 

hand, it does not show long branching in any direction. No 

hydrogen bond donors are available in this structure. This could 

be a good candidate to see the effect of having a flexible structure 

with short branches, no hydrogen bond donating ability and a 

larger size compared to other candidates. 
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Table 7-1. Continued 

Drug Candidate Chemical structure 

Felodipine 
 

- Descriptors value 

- AVS_H2 TRS nHDon SM3_H2 Hy H.050 piID nH  

- 3.8 12 1 4.462 -0.277 1 8.66 19  

- Pharmaceutical use 

- 

An antihypertensive agent used in the treatment of high blood 

pressure30 [Comparison of Antihypertensive Effect and 

Pharmacokinetics of Conventional and Extended Release 

Felodipine Tablets in Patients with Arterial Hypertension Drugs]. 

The effect of Felodipine is increased by combining it with other 

agents, such as metoprolol.31 

- Selection Philosophy 

- 

Felodipine has a highly branched structure with a high AVS_H2 

value. It also possesses one hydrogen bond donor and multiple 

hydrogen bond acceptors. The features of this candidate are close 

to fenofibrate, which might cause them to have similar behaviour. 
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Table 7-1. Continued 

Drug Candidate Chemical structure 

Ketoconazole 
 

- Descriptor values 

- AVS_H2 TRS nHDon SM3_H2 Hy H.050 piID nH  

- 3.924 28 0 4.852 -0.717 0 10.425 28  

- Pharmaceutical use 

- 

An antifungal agent32 that is used to treat systematic dermal 

infections.33 It can be administered orally or topically (as cream or 

shampoo).34 The oral form is not preferred due to its high 

hepatotoxicity.34 Higher doses of the drug can cause 

hypoadrenalism.35 

- Selection Philosophy 

- 

Ketoconazole represents the case when the size of a molecule is 

large, branched, possesses multiple hydrogen bond acceptors, but 

no hydrogen bond donors. Screening this structure would give an 

idea on the role of hydrogen donating importance in solvate 

formation. 
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Table 7-1. Continued 

Drug Candidate Chemical structure 

Griseofulvin 

 

 

- Descriptor values 

- AVS_H2 TRS nHDon SM3_H2 Hy H.050 piID nH  

- 3.987 17 0 4.563 -0.699 0 8.93 17  

- Pharmaceutical use 

- 

An antifungal that is mainly used in the treatment of skin 

infections such as trichophyton and microsporum.36-38 It is 

administered orally and known to have multiple side effects.39  

More recently, it has been reported to be a promising anti-cancer 

agent.40, 41 

- Selection Philosophy 

- 

Griseofulvin is very close to ketoconazole in terms of the overall 

size and branching, as indicated by their AVS_H2 values. They also 

have identical nHDon and H-050 values and they both possess 

chlorine atoms. On the other hand griseofulvin is much more rigid 

compared to ketoconazole. This candidate could show the effect 

of rigidity on solvate and hydrate formation. 
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7.3 Sample preparation and characterization 

In this project, it is required to mimic the process under which pharmaceutical materials go 

during processing and manufacturing. These include exposing the candidates to the solvent for 

a long time to allow it to convert to the solvate form in addition to the stirring, which 

resembles the mechanical processing of materials in the industrial process. Therefore, slurries 

of each of the 10 drug candidates, with each of the 5 solvents were prepared, resulting in 50 

slurries. The principal method for hydrate and solvate formation is shown in the materials and 

methods chapter, section 3.2.2. 

Characterization of the samples was conducted using TGA. In this work, highly unstable 

solvates that undergo complete desolvation already below 40 °C were considered as non-

solvates. This is because in practice, they are expected to lose the solvent on their own or 

during the drying process. Heating up to 250 ᵒC was reasoned by the fact that all 10 candidates 

melt or decompose before reaching 250 ᵒC.42-52 

A thermogram was obtained for each of the 50 of the slurries prepared according to the 

method in section 3.2.2. Additionally, starting materials (labelled as ‘raw’ in figure) were also 

screened via TGA. Therefore; a set of 6 thermograms per drug candidate was obtained. These 

were then overlaid and analysed. When a new solvate was detected, further analysis took 

place to confirm the presence of this new form. It is important to mention that the TGA results 

shown in the sections of this chapter were normalized. This means that the first data point in 

each plot is considered to be the reference (100 % of weight). The normalization is denoted in 

the legend of the plots as an asterisk “*”. It is also useful to mention that the distance between 

the points on the curves is 5 °C.  
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Theophylline anhydrous 

The thermograms obtained for the theophylline screening products are shown in Figure 7-1.

 

Figure 7-1. The heating profile for theophylline and its screening products. 

With the exception of water, no weight loss was observed in any TGA profile prior to 

decomposition, which is seen above 170 °C. A theophylline hydrate was detected, with a 

weight loss of ~5.5 % at 60 ᵒC. Nevertheless, the weight loss in this thermogram could be 

misleading, as the desolvation seems to be starting before 40 °C. Therefore, the TG analysis 

was repeated from ambient temperature. The result is shown in Figure 7-2. 
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Figure 7-2. The TG thermogram of the theophylline hydrate from room temperature. 

The weight loss in Figure 7-2 represents the weight loss starting from room temperature. This 

means the weight loss observed here is the total loss in the experiment, which was calculated 

to be 10 % of the total sample weight. Such loss corresponds to a 1:1 stoichiometry of water to 

theophylline (the theoretical weight loss for a 1:1 hydrate is 9.1 %). Therefore, the hydrate 

formed here is most likely to be the same hydrate reported by Sutor et al In 1958.53 (CSD 

reference code THEOPH) 

  

0

20

40

60

80

100

120

0 50 100 150 200 250

W
e

ig
h

t 
(%

) 

Temp. (°C) 

Theophylline hydrate 



256 
 

Hymecromone 

The thermograms obtained for the hymecromone screening products are shown in Figure 7-3. 

 

Figure 7-3. TGA profiles of hymecromone and its screening product. 

Ethanol, dichloromethane and chloroform were not able to form a solvate with hymecromone. 

Methanol and water on the other hand have shown a weight drop, attributed to the presence 

of a solvate in the structure. Since the desolvation that was observed for these two solvate 

forms starting around 40 °C, there is a chance there has been a weight loss below 40 ᵒC. For 

this reason, the TGA for these two samples were repeated, with recording the data starting 

from RT. The results are shown in Figure 7-4. 
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Figure 7-4. TGA profile of hymcromone methanol solvate and hydrate. 

The hydrate form shown in Figure 7-4 has reached a plateau of weight loss of 9.2 % at 90 °C, 

while the methanol solvate reached the weight loss plateau at 60 °C, with a weight loss value 

of 14.6 % of the original weight. Both of these correspond to 1:1 solvent:drug solvate (the 

theoretical weight loss is 9.3 % for a 1:1 hydrate and 15.4 % for a 1:1 methanol solvate).  A 

hymercromone hydrate was previously reported in 2002 with the same stoichiometry (1:1) 

(CSD reference code WIKDAV),54 which is likely to be the same hydrate. On the other hand, the 

methanol solvate was not found to be previously reported. For this reason, the PXRD pattern 

for the methanol solvate was obtained and compared to the simulated PXRD patterns of other 

hymercromone forms found in the CSD, as illustrated in Figure 7-5.  
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Figure 7-5. PXRD patterns of the solvated forms of hymecromone. 
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Isoniazid 

The thermograms obtained for the isoniazid screening products are shown in Figure 7-6. 

 

Figure 7-6.TGA profiles of isoniazid and its screening products. Note that the heating was up to 155 °C only; this is 
due to the low melting point of this drug candidate. 

Isoniazid was not able to form a solvate with any of the 5 solvents, where no weight loss was 

observed in any of the TG plots.  
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Ethenzamide 

The thermograms obtained for the ethenzamide screening products are shown in Figure 7-7. 

 

Figure 7-7. TGA profiles of ethenzamide and its screening products. Note that the heating was up to 180 °C only 
due to the low melting point of this drug candidate. 

Similar to isoniazid, ethenzamide did not form a solvate with any of the five solvents. These 

two drug candidates are structurally related and it is expected for them to show similar 

behaviour.  
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Carbamazepine 

The thermograms obtained for the carbamazepine screening products are shown in Figure 7-8.

 

Figure 7-8. TGA profiles of carbamazepine and its screening products. 

Carbamazepine has failed to form a solvate with any solvent except for water. A hydrate is 

already known to form with carbamazepine as has been reported.55 As the desolvation of the 

carbamazepine hydrate takes place at low temperature, the TGA run was repeated starting 

from RT. The TGA profile obtained is shown in Figure 7-9.  
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Figure 7-9. TGA profile of carbamazepine hydrate measured from RT. 

The weight loss was 12.6 %, this corresponds to a dihydrate, (theoretical weight loss of a 

dihydrate is 13.3 %) showing that the solvate that was formed here is most likely to be the 

same as the one known before. 
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Diflunisal 

The thermograms obtained for the diflunisal screening products are shown in Figure 7-10. 

 

Figure 7-10. TGA profiles of diflunisal and its screening products. 

Diflunisal was able to form a solvate with both chlorinated solvents, as can be seen in 

Figure 7-10. A 1:1 diflunisal chloroform solvate has been previously reported (CSD refcode: 

RUXRUX 10.1021/cg025589n), while no dichloromethane solvate was found to be reported. 

The stoichiometry obtained by weight analysis shows that the solvent: drug ratio is 0.34 and 

0.38 for dichloromethane and chloroform, respectively. This ratio suggests the chloroform 

solvate is different from the reported one, as shown by the PXRDs in Figure 7-11. 
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Figure 7-11.  PXRD patterns of diflunisal dichloromethane and chloroform solvate forms. 

The similarity between the PXRD patterns of the dichloromethane and chloroform solvate and 

the non-stoichiometric ratio of the solvate forms could be an indicative of the presence of a 

channel solvate, where the molecules are not in a definite order inside the channels. 
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Fenofibrate 

The thermograms obtained for the fenofibrate screening products are shown in Figure 7-12. 

 

Figure 7-12. TGA profiles of fenofibrate and its screening products. 

Despite its large size, fenofibrate has failed to form any solvate with the 5 solvents. 
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Felodipine 

The thermograms obtained for the felodipine screening products are shown in Figure 7-13. 

 

Figure 7-13.TGA profiles of felodipine and its screening products. 

Similar to fenofibrate, felodipine is an example of a large-sized structure in comparison to 

other candidates. Note that felodipine was more likely to form a solvate due to having a 

hydrogen bond donor in its structure, nevertheless both did not form any solvents with the 5 

solvents. 
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Ketoconazole 

The thermograms obtained for the ketoconazole screening products are shown in Figure 7-14. 

 

Figure 7-14. TGA profiles of felodipine and its screening products. 

Despite its large size, flexibility and multiple hydrogen accepting sites, ketoconazole has failed 

to form a solvate with any of the 5 solvents. The loss of weight in the chloroform sample has 

started after melting, when the sample was visually inspected, it was a yellow/brownish liquid 

in colour, indicating the weight loss seen in the thermogram is due to decomposition. 
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Griseofulvin 

The TGA results for griseofulvin and its screening products are shown in Figure 7-15 . 

 

Figure 7-15. TGA profiles of griseofulvin and its screening products. 

Griseofulvin was able to form solvates with the chlorinated solvents only. Both a chloroform 

and a dichloromethane solvates were previously reported for griseofulvin.56,57 They show an 

interesting desolvation pattern, where the solvent loss is observed over two steps, one 

happening below 80 °C and the other starting around 80 °C. It is noticeable that the solvent 

loss starts from around room temperature. In order to work out the solvate stoichiometry 

correctly, another experiment was conducted starting from 25 °C, the result of which is show 

in Figure 7-16.  
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Figure 7-16. TGA profiles of the dichloromethane and chloroform solvate forms of griseofulvin. 

The loss of total weight of the dichloromethane and chloroform solvate upon desolvation was 

(19 %) (25.4 %), respectively. Both solvents in a 1:1 solvate (the theoretical weight loss for 1:1 

dichloromethane solvate is 19.4 % and for 1:1 chloroform solvate – 25.3 %). These results 

match the forms that were previously reported in the literature. 56, 57 The crystal structure of 

the dichloromethane solvate had not been reported. For this reason, a single crystal X-ray 

diffraction experiment was conducted for this solvate. The results and discussion of the 

structure are presented in section 7.5.  
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7.4 Prediction vs results 

After all screening experiments were completed; it was time to compare the experimental 

results with the predictions made via the computer. The predictions made by each model are 

presented separately in Tables 7-2 to 7-6. The highlighted cells in these tables indicate a wrong 

prediction by the models. 

Table 7-2. Prediction vs. screening results for the ethanol predictive model 

Drug candidate Prediction value 

Experimental 

solvate 

Carbamazepine 0.427 No 

Felodipine 0.623 No 

Diflunisal 0.649 No 

Griseofulvin 0.657 No 

Ketoconazole 0.709 No 

Theophylline 0.827 No 

Hymecromone 0.866 No 

Izoniazaid 0.875 No 

Fenofibrate 0.901 No 

Ethenzamide 0.908 No 
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Table 7-3. Prediction vs. screening results for the methanol predictive model 

Drug candidate Prediction value 

Experimental 

Solvate 

Carbamazepine 0.455 No 

Ketoconazole 0.570 No 

Izoniazaid 0.576 No 

Diflunisal 0.601 No 

Ethenzamide 0.715 No 

Felodipine 0.736 No 

Hymecromone 0.736 Yes 

Theophylline 0.752 No 

Griseofulvin 0.771 No 

Fenofibrate 0.837 No 
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Table 7-4. Prediction vs. screening results for the dichloromethane predictive model 

Drug candidate Prediction value 

Experimental 

Solvate 

Ketoconazole 0.439 No 

Griseofulvin 0.668 Yes 

Felodipine 0.680 No 

Carbamazepine 0.791 No 

Fenofibrate 0.796 No 

Diflunisal 0.824 Yes 

Theophylline 0.929 No 

Hymecromone 0.953 No 

Ethenzamide 0.969 No 

Izoniazaid 0.970 No 
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Table 7-5. Prediction vs. screening results for the chloroform predictive model 

Drug candidate Prediction value 

Experimental 

Solvate 

Ketoconazole 0.472 No 

Felodipine 0.667 No 

Griseofulvin 0.684 Yes 

Carbamazepine 0.770 No 

Fenofibrate 0.790 No 

Diflunisal 0.813 Yes 

Theophylline 0.928 No 

Hymecromone 0.943 No 

Ethenzamide 0.965 No 

Izoniazaid 0.975 No 
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Table 7-6.Prediction vs. screening results for the water predictive model 

Drug candidate Prediction value 

Experimental 

hydrate 

Ketoconazole 0.079 No 

Fenofibrate 0.243 No 

Felodipine 0.291 No 

Griseofulvin 0.304 No 

Carbamazepine 0.320 Yes 

Diflunisal 0.539 No 

Hymecromone 0.658 Yes 

Ethenzamide 0.701 No 

Theophylline 0.710 Yes 

Izoniazaid 0.803 No 

The ethanol model has performed unexpectedly well with 9 correct predictions out of 10. The 

only misprediction by this model was for the carbamazepine molecule. It is worth noting that 

no solvate was formed by the 10 candidates that were tested. This probably shows the ethanol 

model predictive ability towards non-solvate forming molecules only. The methanol model 

followed with a success rate of 8 out of 10. The misprediction was for one solvate 

(hymecromone) and one non-solvate (carbamazepine). The dichloromethane and chloroform 

models have shown a lower predictive ability than the previous models, with 3 mispredictions 

for each model. These wrong predictions were for one non-solvate (ketoconazole) and two 

solvate forms (griseofulvin and diflunisal). The water model has mispredicted the behaviour of 

5 out of 10 compounds. Ketoconazole, felodipine and fenofirate were predicted to form a 

hydrate but didn’t do so. The other two mispredictions, hmyecromone and theophylline were 

predicted not to form a hydrate, yet they were able to form one. 

As the main reasons for solvate formation are not known, the real reasons for the 

mispredictions are not known either. An explanation could be established for each molecule 
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separately, in terms of molecular descriptors and 3D structure; however this would take us out 

of the scope of the research, where we are trying to find a trend for solvate formation. 

Alternatively, some patterns have been noticed in this set of tested molecules. For example, 

isonizaid and ethenzamide had a very small size, resulting in the formation of no solvate with 

any of the 5 solvents, despite their hydrogen bonding ability. Ketoconazole, fenofibrate and 

felodipine were large in size, yet failed to form a solvate with any of the solvent. It can be 

noticed that the first two possess no hydrogen bond donors, which can explain their behaviour 

not to form solvates. Felodipine does possess one hydrogen bond donor, but the ratio of 

hydrogen bond donors to its size is small. Moreover, all three molecules possessed a 

chlorinated ring, which could signal the existence of an electrostatic factor contributing to 

strong intermolecular interactions; therefore, solvent exclusion from the crystal. 

For the molecules that were able to form a solvate despite the model predicting them not to 

form one, it seems like these molecules have the ability to arrange themselves in a low-energy 

solvate form. One trend that was obvious among these was special to the water model, where 

rigid molecules (consisting of connected rings with some degree of branching) were able to 

form a hydrate; these are hymecromone, theophylline anhydrous and carbamazepine. 
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7.5 Griseofulvin dichloromethane solvate 

7.5.1 Overview 

Griseofulvin formed a dichloromethane solvate, as determined from TG results shown in 

Figure 7-16. Further investigation regarding this solvate will be carried out in this section. The 

griseofulvin dichloromethane solvate was selected among all other solvates due to the 

interesting properties it showed. For example, colourless single crystals of the solvate were 

formed upon slurrying, yet, the crystal structure of this compound was not known. 

Additionally, the form was stable for more than 24 h at ambient conditions where no changes 

in TGA profiles were observed between a fresh and a stored sample. 

7.5.2 Under the microscope  

An optical refractive microscope and an optical transmittance microscope were used for 

observing the griseofulvin dichlormethane solvate crystals (see section 3.2.6 for more details 

about the microscopes). Both of these microscopes were equipped with heating units (hot-

stage microscope). The heating units help studying the morphological changes of the crystals 

over a range of temperature, particularly around the desolvation temperature (80 °C). Since 

the temperature required to achieve the desolvation wasn’t too high, the samples were 

heated under the microscope to 120 °C with a rate of 5 °C min-1. The results are shown in 

Figure 7-17. 
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Figure 7-17. The first and the last frame of the heating cycles of griseofulvin dichloromethane solvate in the 
reflective (a) and transmittance microscope (b). The first images (left) were taken at ambient room temperature 

while the final images (right) were taken at 120 °C. 

In both techniques, the griseofulvin started as transparent brick/slate-shaped crystals. Upon 

heating, the transparency of these crystals was lost while the morphology of the crystals was 

retained.  

7.5.3 X-ray data and structure solution 

A crystal of suitable size for single crystal X-ray diffraction analysis was obtained from the 

filtered and dried slurry. The cell parameters determined for this crystal in comparison to cell 

parameters for griseofulvin dichlorometane solvate available from literature are given in 

Table 7-7. The cell parameters reported previously were determined using a capillary method 

and calculated via least squares approach. The space group was not reported.57 
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Table 7-7. Crystallographic parameters of the new dichloromethane solvate (II) versus the reported one (I) 

Parameter  New DCM solvate II Reported DCM solvate I 

Lattice system Monoclinic Triclinic 

Space group I2 Not reported 

a (Å) 11.7585(6) 11.776(5) 

b (Å) 8.5592(4) 11.918(6) 

c (Å) 19.6721(13) 8.640(4) 

α (°) 90.0 111.44(3) 

β (°) 96.817(5) 90.00(3) 

γ (°) 90.0 66.69(3) 

Cell volume 1965.86(19) - 

Density 1.482 - 

Crystal size 
(mm) 

0.4 x 0.04 x 0.02 - 

Z 2 - 

R 0.0592 - 

wR2 0.1542 - 

Temperature 
(K) 

293(2) - 

The cell parameter comparison of the solvate obtained in this work and that reported in 

literature shows considerable differences in the crystallographic data.  The new solvate 

crystallized in the space group I2 (monoclinic) as opposed by the triclinic system reported in 

literature.57 The crystal structure data acquired within this work were used to simulate a 

theoretical powder pattern of griseofulvin dichloromethane solvate. This simulated pattern 

was compared to the pattern acquired from literature in order to identify whether a new 

crystalline form has been obtained, as illustrated in Figure 7-18.  
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Figure 7-18. Comparison of X-ray diffraction patterns of griseofulvin dichloromethane solvate simulated from 
crystal structure (blue) and reported in literature (orange).  

The comparison of the two X-ray diffraction patterns show some similarity although diffraction 

peak positions are considerably shifted probably due to temperature difference (the single 

crystal data were collected at lower temperature). The apparent similarity between both 

patterns imply that the same crystal form as reported in literature has been obtained in this 

work. However, since crystal structure of the solvate had not been determined previously, it is 

reported in this thesis. The molecular structure of this solvate is shown in Figure 7-19.  
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Figure 7-19. Molecular structure of griseofulvin showing ellipsoids of thermal displacement parameters. 
Probability of shown ellipsoids is set to 50 %. 

The crystal structure solution of the griseofulvin dichloromethane solvate showed two 

crystallographically independent solvent molecules in the asymmetric unit. The two solvent 

molecules are situated on special positions (i.e. 2 fold symmetry axes), and therefore only half 

of each molecule belongs to the asymmetric unit. Moreover, one of the dichloromethane 

molecules shows a disorder over multiple positions. Several datasets were obtained from 

different crystals and all of them have shown the same trend of one ordered and one 

disordered dichloromethane molecule. The disorder in the solvent molecules has been 

accounted for by refining the occupancies of the corresponding atoms. The chlorine atoms of 

molecule A (see Figure 7-19) are symmetry-related and have occupancy of 1. The 

dichloromethane molecule B is disordered over multiple positions. As a result, each of the four 

atom positions can be occupied either by chlorine or by carbon. An illustration of this disorder, 

along with the atom numbering is shown in Figure 7-20. 
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Figure 7-20. An illustration of the numbering of griseofulvin. 

In the disorder component of the disordered dichloromethane (molecule B) illustrated by black 

lines, the occupancy of the carbon atoms (C27A) should be halved because the carbon atom 

can reside on one of the two symmetrically related positions shown in Figure 7-20 by either 

continuous or dashed lines. The chlorine atoms also should have an occupancy of 0.5, because 

they are on a twofold axis. When the grey illustration of the disordered dichloromethane 

molecule in Figure 7-20 is considered, the carbon atoms (C27B, C31B) represent two alternative 

orientations of the molecule. The proportion of former (black) to the latter (grey) part was 

0.21:0.29, leading to a total occupancy of this disordered moiety of 0.5, per asymmetric unit. 

Together with the non-disordered dichloromethane molecule the total stoichiometry of the 

solvate is 1:1, as observed in the TGA thermogram in Figure 7-16. 

Previous investigations have reported the crystal structures of griseofulvin polymorphs as well 

as a chloroform solvate. The overlays of the griseofulvin molecule in the newly found solvate 

with the reported griseofulvin structures56, 58-60 and with the known chloroform solvate56 are 

shown in Figure 7-21 (a) and (b), respectively.  
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(a) 

(b) 

Figure 7-21. (a)An overlay of the griseofulvin molecule in the new DCM solvate (red) with all reported structures 
of grsieofulvin in the CSD. Reference code GRISFL is shown in blue, GRISFL02 is shown in yellow, GRISFL03 is 

shown in orange, GRISFL04 is shown in green. (b) An overlay of the new grisefoulvin dichloromethane solvate 
(red) with the exiting chloroform solvate (grey), CSD reference code MATZEO. 

The overlay in part (a) of the figure shows that the solvate and all polymorphs exhibit a similar 

conformation in the rigid part of the structure (the fused rings and their branches), while they 

show a difference in the direction of the cyclohexane ring and the radicals attached to it. On 

the other hand, part (b) of Figure 7-21 shows high similarity between the dichloromethane and 
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chloroform solvate in terms of the molecular structure. Crystal packing similarity function in 

mercury was applied for the dichloromethane and chloroform solvate, the result was 9 out of 

15 molecules in common. 

7.5.4 Interactions and packing 

Before discussing the structure, it is useful to note that in this section, as in chapter 6, any 

interactions with inter-atomic distances shorter than the VDW radii (of interacting atoms) by 

at least 0.1 Å are referred to as “short interactions”. It is also important to note that the 

numbering that is shown in Figure 7-20 is going to be used for the discussion of the interactions 

and packing.  

Looking at the interactions of griseofulvin molecules, it can be seen that each molecule forms a 

dimer with an inverted molecule via a pair of C−H···π interactions. Specifically, the interaction 

takes place between H10A and C15 on the chlorinated benzene ring, [d(H···C) =2.787 Å, 

C−H···C = 147.64 °] as illustrated in Figure 7-22(a). Note the high contact surface area 

between the molecules in the dimer associated with this interaction, which enforces the 

connection of the molecules in this dimer further. These dimers are connected to other dimers 

along the crystallographic a axis via C−H···O interactions resulting in a ladder-like arrangement, 

as shown in Figure 7-22(a). These weak hydrogen bonds take place between O1 and H24A 

[d(H···O) =2.454 Å, C−H···O = 123 °]. The ladder-like motif is connected to other similar motifs 

in horizontal and diagonal directions if the “packing” was viewed along the a axis, as illustrated 

Figure 7-22(b). Two interactions linking the dimer motif to another horizontally were noticed, 

these are a short halogen interaction between Cl20 and O23 [d(H···O) =3.137 Å, 

C−H···O = 140.10 °] in addition to a slightly longer C−H···O bond between H24C and O21 

[d(H···O) =2.669 Å, C−H···O = 154.18 °]. These interactions are viewed alone in Figure 7-22(c). 

Diagonally, the dimers are held via a two C−H···O bonds between H9C and O19 [d(H···O) 

=2.424 Å, C−H···O = 164.37 °] and O11-H9A [d(H···O) =2.734 Å,  C−H···O = 150.65 °]. Note 
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that the H9C and H9A mentioned here belong to two different molecules. These two bonds 

result in a ring-like 𝑅2
2(13)61 hydrogen bonded dimer, as illustrated in Figure 7-22(d).

(a)      (b) 

(c)  (d) 

Figure 7-22. The interactions between griseofulvin molecules. Part (a) shows the dimers formed by griseofulvin 
molecules along the B axis. Part (b) shows four pairs of dimers along the a axis. Part (c) shows the horizontal 
interaction between the molecules in part (b), along the C axis. Part (d) shows the ring-like interaction that 

connects the dimers in part (b) diagonally. 

The interactions between the griseofulvin molecules result in a structure with channels, where 

the dichloromethane molecules are positioned. These channels are illustrated in Figure 7-23. 
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(a) 

(b) 

(c) 

Figure 7-23. The channels of dichloromethane in the griseofulvin dichloromthenae solvate II from. Part (a) shows 
these channels along the a axis, part (b) show the same channels along the b axis and part (c) show the same 

channels along the c axis. 
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It can be noticed that each channel contains a sequence of disordered-ordered 

dichloromethane molecules as can be seen in Figure 7-23(c). The non-disordered 

dichloromethane molecules have short interactions with two griseofulvin molecules. These are 

formed through two symmetry-equivalent C–H···O bonds. Specifically, it is between the 

hydrogen atoms in the dichloromethane molecule (H26A, H26B) and the O19 of two 

griseofulvin molecules [d(H···O) =2.586 Å, C−H···O = 142 °]. This dichloromethane molecule 

also forms short interactions with adjacent, disordered dichloromethane molecules through a 

C–H···Cl bond ((d(H···O) =2.52 Å, C−H···O = 121 °]. With exception of the latter weak bond, 

the disordered dichloromethane molecules were not involved in any other short attractive 

interaction, allowing free rotation of these molecules, resulting in the disordered fragment. 

  



287 
 

7.6 References 

1. Barnes PJ. Theophylline. American Journal of Respiratory and Critical Care Medicine. 

2013;188(8):901-6. 

2. ZuWallack RL, Mahler DA, Reilly D, Church N, Emmett A, Rickard K, et al. Salmeterol 

Plus Theophylline Combination Therapy in the Treatment of COPD. CHEST Journal. 

2001;119(6):1661-70. 

3. Hansel TT, Tennant RC, Tan AJ, Higgins LA, Neighbour H, Erin EM, et al. Theophylline: 

Mechanism of action and use in asthma and chronic obstructive pulmonary disease. Drugs of 

Today. 2004;40(1):55-69. 

4. Barnes PJ, Pauwels RA. Theophylline in the management of asthma: time for 

reappraisal? European Respiratory Journal. 1994;7:579-91. 

5. Ward AJM, McKenniff M, Evans JM, Page CP, Costello JF. Theophylline—an 

Immunomodulatory Role in Asthma? American Review of Respiratory Disease. 

1993;147(3):518-23. 

6. Abate A, Dimartino V, Spina P, Costa PL, Lombardo C, Santini A, et al. Hymecromone in 

the treatment of motor disorders of the bile ducts: a multicenter, double-blind, placebo-

controlled clinical study. Drugs under Experimental and Clinical Research. 2001;27(5-6):223-31. 

7. Nagy N, Kuipers HF, Frymoyer AR, Ishak HD, Bollyky JB, Wight TN, et al. 4-

Methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in 

inflammation, autoimmunity, and cancer. Frontiers in immunology. 2015;6:123. 

8. Yates TJ, Lopez LE, Lokeshwar SD, Ortiz N, Kallifatidis G, Jordan A, et al. Dietary 

Supplement 4-Methylumbelliferone: An Effective Chemopreventive and Therapeutic Agent for 

Prostate Cancer. Journal of the National Cancer Institute. 2015;107(7) djv085. 



288 
 

9. van den Boogaard J, Kibiki GS, Kisanga ER, Boeree MJ, Aarnoutse RE. New drugs 

against Tuberculosis: Problems, Progress, and evaluation of Agents in Clinical Development. 

Antimicrobial Agents and Chemotherapy. 2009;53(3):849-62. 

10. World Health Organization. Global tuberculosis control: WHO report 2010 

11. Dickinson JM, Ellard GA, Mitchison DA. Suitability of isoniazid and ethambutol for 

intermittent administration in the treatment of tuberculosis. Tubercle. 1968;49(4):351-66. 

12. Darias V, Bravo L, Abdallah SS, Sanchez Mateo CC, Exposito-Orta MA, Lissavetsky J, et 

al. Synthesis and Preliminary Pharmacological Study of Thiophene Analogues of the Antipyretic 

and Analgesic Agent Ethenzamide. Archiv der Pharmazie (Weinheim). 1992;325(2):83-7. 

13. Kawano O, Sawabe T, Misaki N, Fukawa K. Studies on Combination Dosing (III) Aspirin 

and Ethenzamide. The Japanese Journal of Pharmacology. 1978;28(6):829-35. 

14. Yasuno N, Tsuchiya M, Kizu J, Watanabe M, Arakawa Y, Umeyama T, et al. 

Development of Ethenzamide Ointment as a Pain Relief for Postherpetic Neuralgia. Iryo 

Yakugaku (Japanese Journal of Pharmaceutical Health Care and Sciences). 2002;28(4):309-14. 

15. Dalby MA. Antiepileptic and Psychotropic Effect of Carbamazepine (Tegretol®) in the 

Treatment of Psychomotor Epilepsy. Epilepsia. 1971;12(4):325-34. 

16. Bird CAK, Griffin BP, Miklaszewska JM, Galbraith AW. Tegretol (Carbamazepine): A 

Controlled Trial of a New Anti-Convulsant. The British Journal of Psychiatry. 

1966;112(488):737-42. 

17. Campbell FG, Graham JG, Zilkha KJ. Clinical trial of carbazepine (Tegretol) in trigeminal 

neuralgia. Journal of Neurology, Neurosurgery, and Psychiatry. 1966;29(3):265-7. 

18. Ballenger JC, Post RM. Carbamazepine in manic-depressive illness: a new treatment. 

The American Journal of Psychiatry. 1980;137(7):782-90. 



289 
 

19. Okuma T, Kishimoto A, Hisashi M, Atsushi O, Toji M, Nakao T, et al. Anti‐Manic and 

Prophylactic Effects of Carbamazepine (Tegretol) on Manic Depressive Psychosis A Preliminary 

Report. Psychiatry and Clinical Neurosciences. 1973;27(4):283-97. 

20. Post RM, Uhde TW, Ballenger JC, Squillace KM. Prophylactic efficacy of carbamazepine 

in manic-depressive illness. The  American Journal of Psychiatry. 1983;140(12):1602-4. 

21. Rull JA, Quibrera R, González-Millán H, Castañeda OL. Symptomatic treatment of 

peripheral diabetic neuropathy with carbamazepine (Tegretol®): double blind crossover trial. 

Diabetologia. 1969;5(4):215-8. 

22. Lipper S, Davidson JR, Grady TA, Edinger JD, Hammett EB, Mahorney SL, et al. 

Preliminary study of carbamazepine in post-traumatic stress disorder. Psychosomatics. 

1986;27(12):849-54. 

23. Forbes JA, Beaver WT, White EH, White RW, Neilson GB, Shackleford RW. Diflunisal. A 

New Oral Analgesic With an Unusually Long Duration of Action.The Journal of the American 

Medical Association. 1982;248(17):2139-42. 

24. Forbes JA, Calderazzo JP, Bowser MW, Foor VM, Shackleford RW, Beaver WT. A 12-

Hour Evaluation of the Analgesic Efficacy of Diflunisal, Aspirin, and Placebo in Postoperative 

Dental Pain. The Journal of Clinical Pharmacology. 1982;22(2-3):89-96. 

25. Sisk AL, Mosley RO, Martin RP. Comparison of preoperative and postoperative 

diflunisal for suppression of postoperative pain. Journal of Oral and Maxillofacial Surgery. 

1989;47(5):464-8. 

26. Forbes JA, Kolodny AL, Beaver WT, Shackleford RW, Scarlett VR. A 12-hour evaluation 

of the analgesic efficacy of diflunisal, acetaminophen, and acetaminophen-codeine 

combination, and placebo in postoperative pain. Pharmacotherapy. 1983;3(2 Pt 2):47s-54s. 



290 
 

27. Ellen RL, McPherson R. Long-Term Efficacy and Safety of Fenofibrate and a Statin in the 

Treatment of Combined Hyperlipidemia. The American journal of cardiology. 1998;81(4A):60B-

5B. 

28.  Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the 

Diabetes Atherosclerosis Intervention Study, a randomised study. The Lancet. 

2001;357(9260):905-10. 

29. Keech AC, Mitchell P, Summanen PA, O'Day J, Davis TM, Moffitt MS, et al. Effect of 

fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a 

randomised controlled trial. Lancet. 2007;370(9600):1687-97. 

30. Elmfeldt D, Hedner T. Antihypertensive effects of felodipine compared with placebo. 

Drugs. 1985;29(2):109-16. 

31. Dahlöf B, Hosie J. Antihypertensive efficacy and tolerability of a new once-daily 

felodipine-metoprolol combination compared with each component alone. The Swedish/UK 

Study Group. Blood Pressure Supplement. 1993;1:22-9. 

32. Heeres J, Backx LJJ, Mostmans JH, Van Cutsem J. Antimycotic imidazoles. Part 4. 

Synthesis and antifungal activity of ketoconazole, a new potent orally active broad-spectrum 

antifungal agent. Journal of Medicinal Chemistry. 1979;22(8):1003-5. 

33. Van Cutsem J. The antifungal activity of ketoconazole. The American Journal of 

Medicine. 1983;74(1, Part 2):9-15. 

34. Grycová A, Dořičáková A, Dvořák Z. Impurities contained in antifungal drug 

ketoconazole are potent activators of human aryl hydrocarbon receptor. Toxicology Letters. 

2015;239(2):67-72. 

35. Pont A, Williams PL, Loose DS, Feldman D, Reitz RE, Bochra C, et al. Ketoconazole 

Blocks Adrenal Steroid Synthesis. Annals of Internal Medicine. 1982;97(3):370-2. 



291 
 

36. Blank H, Roth FJ, BLANK H, ROTH FJ, Bruce WW, Engel MF, Smith JG, Zaias N. The 

treatment of dermatomycoses with orally administered griseofulvin. AMA archives of 

dermatology. 1959 Mar 1;79(3):259-66. 

37. Lpez-Gmez S, Del Palacio A, Van Cutsem J, Soledad Cuetara M, Iglesias L, Rodriguez-

Noriega A. Itraconazole versus griseofulvin in the treatment of tinea capitis: a double-blind 

randomized study in children. International Journal of Dermatology. 1994;33(10):743-7. 

38. Gull K, Trinci APJ. Griseofulvin inhibits Fungal Mitosis. Nature. 1973;244(5414):292-4. 

39. Liu K, Yan J, Sachar M, Zhang X, Guan M, Xie W, et al. A metabolomic perspective of 

griseofulvin-induced liver injury in mice. Biochemical Pharmacology. 2015;98(3):493-501. 

40. Zhong N, Chen H, Zhao Q, Wang H, Yu X, Eaves AM, et al. Effects of griseofulvin on 

apoptosis through caspase-3- and caspase-9-dependent pathways in K562 leukemia cells: An in 

vitro study. Current Therapeutic Research. 2010;71(6):384-97. 

41. Rebacz B, Larsen TO, Clausen MH, Rønnest MH, Löffler H, Ho AD, et al. Identification of 

Griseofulvin as an Inhibitor of Centrosomal Clustering in a Phenotype-Based Screen. Cancer 

Research. 2007;67(13):6342-50. 

42. Bruns S, Reichelt J, Cammenga HK. Thermochemical investigation of theophylline, 

theophylline hydrate and their aqueous solutions. Thermochimica Acta. 1984;72(1):31-40. 

43. Thareja S, Verma A, Kalra A, Gosain S, Rewatkar PV, Kokil GR. Novel 

chromeneimidazole derivatives as antifungal compounds: synthesis and in vitro evaluation. 

Acta Poloniae Pharmaceutica-Drug Research. 2010;67(4):423-7. 

44. Good DJ, Rodríguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. 

Crystal Growth and Design. 2009;9(5):2252-64. 

45. Brewer GA. Isoniazid. Analytical Profiles of Drug Substances. 1977;6:183-258. 



292 
 

46. Isoniazid. Tuberculosis.88(2):112-6. 

47. THE JAPANESE PHARMACOPOEIA FOURTEENTH EDITION, PART I, Official monographs. 

48. Martinez-Ohárriz MC, Martin C, Goni MM, Rodriguez-Espinosa C, Tros de Ilarduya-

Apaolaza MC, Sánchez M. Polymorphism of diflunisal: isolation and solid-state characteristics 

of a new crystal form. Journal of Pharmaceutical Sciences. 1994;83(2):174-7. 

49. Tipduangta P, Takieddin K, Fábián L, Belton P, Qi S. A New Low Melting-Point 

Polymorph of Fenofibrate Prepared via Talc Induced Heterogeneous Nucleation. Crystal 

Growth & Design. 2015;15(10):5011-20. 

50. Surov AO, Solanko KA, Bond AD, Perlovich GL, Bauer-Brandl A. Crystallization and 

Polymorphism of Felodipine. Crystal Growth & Design. 2012;12(8):4022-30. 

51. Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P, et al. Physical 

stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. 

European Journal of Pharmaceutical Sciences. 2001;12(3):261-9. 

52. Yang D, Kulkarni R, Behme RJ, Kotiyan PN. Effect of the melt granulation technique on 

the dissolution characteristics of griseofulvin. International Journal of Pharmaceutics. 

2007;329(1–2):72-80. 

53. Sutor DJ. The structures of the pyrimidines and purines. VI. The crystal structure of 

theophylline. Acta Crystallographica. 1958;11(2):83-7. 

54. Jasinski JP, Woudenberg RC. 7-Hydroxy-4-methylcoumarin monohydrate. Acta 

Crystallographica Section C. 1994;50(12):1952-3. 

55. Reck G, Dietz G. The Order-Disorder Structure of Carbamazepine Dihydrate: 5 H-Dibenz 

[b, f] azepine-5-carboxamide Dihydrate, C15H12N2O · 2 H2O. Crystal Research and 

Technology. 1986;21(11):1463-8. 



293 
 

56. Cheng KC, Shefter E, Srikrishnan T. Crystal structure analysis of the desolvation of the 

chloroform solvate of griseofulvin. International Journal of Pharmaceutics. 1979;2(2):81-9. 

57. Shirotani K-I, Suzuki E, Morita Y, Sekiguchi K. Solvate Formation of Griseofulvin with 

Alkyl Halide and Alkyl Dihalides. Chemical & Pharmaceutical Bulletin. 1988;36(10):4045-54. 

58. Malmros G, Wagner A, Maron L. (2S,6'R)-7-chloro-2',4,6,-trimethoxy-6'-methyl-spiro-

(benzofuran-2(3H),2-(2')cyclohexene)-3,4'-dione CI7HI7ClO6. CRYSTAL STRUCTURE 

COMMUNICATIONS. 1977;6:463-70. 

59. Puttaraja, Nirmala KA, Sakegowda DS, Duax WL. Crystal structure of griseofulvin. 

Journal of Crystallographic and Spectroscopic Research. 1982;12(5):415-23. 

60. Loew E., Steglich W., Polborn K. CSD private communication. 2004. 

61. Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. 

Accounts of Chemical Research. 1990;23(4):120-6. 

 

  



294 
 

 Single crystal analysis of the new fenofibrate forms Chapter 8:
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8.1 Overview 

This chapter is dedicated to describing new advances related to the polymorphs of the 

fenofibrate drug. The structural formula of fenofibrate and atom numbering used further is 

shown in Figure 8-1. 

 

Figure 8-1. The structural formula of fenofibrate showing atom numbering scheme. 

This anti-hyperlipdemic agent shows interesting crystallization properties when crystallized 

from its amorphous form. Homogeneous nucleation and crystallization are slow for 

amorphous fenofibrate.1 Alternatively, heterogeneous crystallization can be initiated by 

addition of an impurity or mechanical stimulation.2 The crystallization of fenofibrate was 

studied with a colleague working in the same suite, Mr Pratchaya Tipduangta. In this chapter, 

the theme of Tipduangta’s work on fenofibrate will be outlined to give a background, but the 

main focus will be the part which I took part in, that is, the determination of the crystal 

structure of two feonfibrate polymorphs, form IIa and form III using single crystal XRD. 

8.2 Fenofibrate polymorphs 

Forms I and II of fenofibrate were reported in the literature.3-6 The literature regarding form I 

was clear, where multiple papers described the same crystalline form. 3-5 On the other hand, 

the literature about form II was not as consistent. Di Martino et al. were the first to report 

form II of fenofibrate in 2000, where they provided PXRD pattern and DSC data of this form. 

More details about the same form was given by Heinz et al. in 2009.3, 4 The latter has 
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confirmed obtaining the same form as Di Martino’s group using DSC data. Another group, 

Balendiran et al. have reported a crystal structure of form II in 2011.5 What is surprising is that 

the simulated PXRD pattern of fenofibrate in the latter work does not match the recorded 

PXRD pattern obtained by the former groups, which signals these are different forms. To avoid 

confusion, Tipduangta has denoted the form discovered by Di Martino et al. as “form IIa” while 

he denoted the form reported by Balendiran et al. as “form IIb”. The PXRD of these forms are 

shown in Figure 8-2. 

 

Figure 8-2. PXRD patterns of the different fenofibrate polymorphs. 

8.3 Polymorph preparation 

The method that was used to obtain each of the four fenofibrate forms is described in this 

section. Form I of fenofibrate is simply the powder that was obtained from the supplier 

(Sigma-Aldrich). From IIa of fenofibrate was obtained via heterogeneous crystallization of 

amorphous fenofibrate. The preparation started with placing the fenofibrate powder (form I) 

on a microscopic slide, where it was heated to a 100 °C until all fenofibrate was melted. After 

10 15 20 25 30 35 40 45 50

Form I

Form IIa

Form IIb

Form III
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that, the solid on the microscopic slide was left to cool at room temperature to obtain 

amorphous material. Crystallization was initiated by surface disruption; that is, scratching the 

surface of the amorphous film with a stainless steel spatula. The microscopic slide was left to 

crystallize at room temperature, where it yields a mixture of fenodibrate forms I and IIa, with 

from I being dominant. Tipduangta manipulated two factors to get preferential crystallization 

of from IIa.8 The factors changed were the temperature and the free surface available during 

crystallization. The result was the possibility to obtain a pure form IIa by reducing the free 

surface available, i.e. by placing a coverslip on the microscopic slide right after the mechanical 

stimulation of the amorphous film and allowing crystallization to happen in the range from 

room temperature to 40 °C. It was also possible to obtain a mixture of fenofibrate form I and 

IIa, with form IIa being the dominant form by annealing the free-surface microscopic slide at 

40-50 °C. 

Form IIb was reported by Balnderian et al., where they were able to obtain that form by 

recrystallization of fenofibtate from ethanol at room temperature. However, Tipduangta was 

not able to reproduce the form when the same procedure was followed. Alternatively, form I 

of fenofibrate was obtained. A group that worked on fenofibrate in 2014 had the same result 

as Tipguanda,7 where they obtained fenofibrate form I by crystallizing it from an 

undersaturated ethanol solution by slow evaporation. 

From III was obtained via heterogeneous nucleation of amorphous fenofibrate. In order to 

obtain this form, fenofibrate powder (form I) and talc (a pharmaceutical excipient) were 

weighed out in a ratio of 99:1, placed in a glass vial and mixed well with a stainless steel 

spatula. The vial was then heated to 100 °C until all fenofibrate melted. After that, it was 

transferred to a 0 % relative humidity desiccator. After 24 hours, the amorphous fenofibrate in 

the vial crystallized as form III. Obtaining this form was confirmed using microscopy, ATR-FTIR 

and PXRD.8 
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8.4 Single crystal X-ray Diffraction 

8.4.1 Structure solution 

The crystal structures of the forms IIa and III have not been previously determined. In order to 

obtain the crystal structure of these forms, single crystal X-ray diffraction experiments were 

conducted. The crystallographic parameters for these two forms compared to the forms 

mentioned in the literature are shown in Table 8-1. 

Table 8-1. Crystallographic parameters of fenofibrate polymorphs 

Parameter Form I9 Form IIa8 Form IIb5 Form III 

Lattice system Triclinic Triclinic Monoclinic Triclinic 

Space group P1̅ P1̅ P21/n P1̅ 

a (Å) 8.1325 8.1328(5) 13.619 9.4803(6) 

b (Å) 8.2391 8.7088(6) 7.554 9.7605(6) 

c (Å) 14.399 13.6692(9) 17.88 10.9327(8) 

α (°) 93.978 85.976(6) 90 110.840(6) 

β (°) 105.748 84.815(5) 92.35 90.352(5) 

γ (°) 95.854 74.344(6) 90 99.701(5) 

Cell volume 919.03 927.34(11) 1837.909 929.53(11) 

Density (qcm3) 1.285 1.292 1.304 1.289(2) 

Crystal size (mm) 0.55 x 
0.50 x 
0.44 

0.12 x 0.13 x 
0.46 

0.55 × 0.30 × 
0.25 

0.12 × 0.15 × 
0.34 

Z 2 2 4 2 

R 0.0418 0.0694 0.0355 0.0653 

wR2 0.105 0.1265 0.0897 0.149 

Temperature (K) 193 140(2) 100 140 

Goodness of fit 1.035 1.023 1.026 1.016 

Both forms IIa and III crystallize in the triclinic P1̅ space group with one molecule of fenofibrate 

in the asymmetric unit and two molecules in the unit cell. Structures of forms IIa and III have 

been solved according to the method described in section 8.3. The molecular structures of 

fenofibrate in these new forms are shown in Figure 8-3(a) and (b). 
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(a) 

(b) 

Figure 8-3. ORTEP structure of fenofibrate forms IIa (a) and III (b). 

In order to visually compare the conformation of fenofibrate in its polymorphic forms, an 

overlay of the molecular structures in these forms was generated and is shown in Figure 8-4. 
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Figure 8-4. An overlay of fenofibrate form I (black), form IIa (blue), form IIb (red), form III (green). 

The fenofibrate molecule can be divided into two main parts: a rigid part consisting of the two 

aromatic rings linked by a keto group and a flexible aliphatic tail. The overlay in Figure 8-4 

shows that form IIa exhibits the highest proximity in spatial conformation to the most stable 

form I, followed by form III then form IIb. It is noticeable that for the 4 forms shown in the 

figure, the aliphatic chain is not fully extended, but rather folded back towards the aromatic 

part of the structure. This folding seems to be stabilized by an intramolecular C–H···O 

interaction between the middle benzene ring and the ester group in the alkyl chain. An 

overview of the intra-molecular interactions and angles representing the conformation of the 

molecule is given in Table 8-2.  
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Table 8-2. Intramolecular angles and short contact distances in fenofibrate. The RMSD is a function in mercury 
program that compares structural similarity between molcules/forms 

Form 

Angles 

between the 

two 

aromatic 

rings 

Distance between 

carbonyl O of the 

ester and H of the 

central benzene ring 

Distance between 

ether O and H of 

the benzene ring 

Torsion angle 

(C14-C13-

O16-C17) 

RMSD 

compared to 

form I 

I 48.62(7) ° 2.81 (O24···H14) 2.84 (O21···H14) -23.36 0 

IIa 48.25(10) °  3.04 (O24···H14) 
2.649(16) 

(O21···H14) 
-40.35 

0.189 

IIb  53.73 °  2.90 (O24···H12) 3.00 (O21···H12) 174.98 1.844 

III 45.73(9) °  2.8 (O24···H14) 2.81 (O21···H14) 10.2 0.323 

Table 8-2 further confirms the order of conformational similarity to the stable form I among the 

polymorphs to be form IIa > from III > from IIb in both the aromatic and aliphatic parts. The 

easiest way to see this is by comparing the values in the RMSD column. This value is calculated 

through the molecular similarity function in mercury, where the value obtained is based on the 

mean distance between all atoms in the different polymorphs. The values indicate that the 

molecular similarity of these forms is in the sequence mentioned earlier. Other parameters can 

also show the similarity between these molecules. For example, the angle between the planes 

of the two aromatic rings in from IIa deviates from the most stable form by less than 0.5 °, 

compared to a deviation of 3 ° in from III and 5 ° in form IIb. Similar trend was observed in the 

flexible part of the molecule as shown by the torsion angle between the central benzene ring 

and the propanyl-2-methylpropanoate group. The torsion angle between (C14-C13-O16-C17) 

was given in Table 8-2 as this is the angle at which the direction of the alkyl chain is defined; 

therefore it signals the similarity between the geneal structures of the different forms.  

From IIb adopts a conformation that is different from other known polymorphs, nonetheless, it 

was found that this molecule in this crystal has a similar conformation to the one observed in 

the fenofibric acid crystal structure.5 In the further discussion only the structures determined 

within this work (forms IIa and III) and the structure of the stable form I will be compared.  
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8.4.2 Main intermolecular interactions 

Fenofibrate form I is the thermodynamically stable form meaning that it has the lowest Gibbs 

energy. For this reason, the interactions in the two newly found structures will be compared to 

it. The main groups that formed strong interactions in the investigated fenofibrate forms were 

the keto group between the two rings, the chlorbenzyl rings and the ester group in the 

aliphatic part. The interactions formed by these three groups will be discussed for each of the 

forms I, IIa and III. 

In form I, the shortest intermolecular interaction was formed between the carbonyl oxygen 

(O24) of the ester group and a hydrogen atom (H12) of the phenyl ring [d(H···O) = (2.49 Å), 

(C-H···O) = 128 °]. The same carbonyl atom forms another short interaction to the H5 atom of 

the chlorophenyl ring [d(H···O) = (2.61 Å), (C–H···O) = 172 °].  , as illustrated in Figure 8-5(a). 

Both interactions are more than 0.1 Å shorter than the sum of the atomic van der Waals radii. 

These interactions connect fenofibrate molecules into a layer parallel to the (001) plane. The 

layers are connected to each other through further C–H···O interactions, formed between 

isopropyl methyl groups (H25A) and ketone carbonyl oxygen (O9) atoms [d(H···O) = (2.66 Å), 

(C–H···O) = 156 °] and offset π−π interactions between parallel chlorophenyl rings at an 

interplanar distance of 3.5116(6) Å, as seen in Figure 8-5(b). The interlayer C−H···O interactions 

also facilitate the efficient packing of the isopropyl groups with a high surface area, which can 

be seen forming an “embrace” together. 
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(a) 

(b) 

 

Figure 8-5. (a) The sheet that is formed parallel to the (001) plane via C–H···O interactions in Form I. (b) The offset 
π−π interactions between parallel chlorophenyl rings in addition to the “embrace” interaction in form I. 
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In form IIa, the carbonyl of the ester group in the aliphatic chain (O24) contributes to the 

formation of a dimer in the unit cell via C14–H14···O24 [d(H···O) = 2.662(11) Å, (C–H···O) = 

129.6(8) °] and C15–H15···O24 [d(H···O) = 2.891(10) Å, (C–H···O) = 120.4(12) °] hydrogen 

bonds. These hydrogen bonds generate a ring motif (Figure 8-6(a), between molecules number 

1 and 2). The large contact surface area between the two molecules suggests that van der 

Waals interactions play a significant role in stabilising the dimer. Two principal interactions 

connect adjacent dimers to form layers parallel with the (111) plane. These interactions are: 

C11–H11···O9 hydrogen bonds between the hydrogen donor from the benzene ring and the 

ketone carbonyl acceptor [d(H···O) = 2.570(16) Å, (C–H···O) = 135.2(8) °] and π-π interactions 

between chlorophenyl rings. The former forms a ring motif R2
2(14) between two molecules, as 

seen in Figure 8-6(a) (molecules 1 and 3). The offset π-π interaction involves the chlorobenzene 

fragments of two molecules and takes place at an interplanar distance of 3.3029(8) Å between 

the parallel rings, as seen in Figure 8-6(a) between molecules 1 and 4. The same stacking 

interaction was observed in form I with an interplanar distance of 3.5116(6) Å. Moreover, the 

layers formed in this form also show the same “embrace” of the alkyl chain seen in form I, 

however at a larger inter molecular distance [Figure 8-6(b)]. 
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(a) 

 

(b) 

Figure 8-6. (a) The main interactions in fenofibrate form IIa. (b) From IIa pattern that is common with form I. 
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In form III the molecules are linked into layers by two C−H···O bonds parallel to the 

crystallographic (100) plane. Specifically, one interaction takes place between a hydrogen of 

the isopropyl group (H23B) and the ketone carbonyl group of an adjacent molecule, O9 

[d(H···O) = 2.56 Å, C−H···O = 160 °]. The other interaction is between the same keto group 

(O9) and an isopropyl hydrogen (H18), from a different molecule [d(H···O) = 2.67(1) Å, 

C−H···O = 143.6 °]. These interactions are illustrated in Figure 8-8(a). In this sheet 

arrangement there is a chain shared between forms I and III, but not present in form IIa 

[Figure 8-5(a) and Figure 8-8(a)]. Despite the similarity of the layer structures in forms I and III, 

their layers are not superimposable. The relative positions of the molecules perpendicular to 

the (100) plane of form III are different in the two forms. 

The keto group in form III forms a C−H···O interaction with the hydrogen of benzene ring (H14) 

[Figure 8-8(b)]. This interaction forms a ring motif, resulting in a dimer. The C–H···O interaction 

takes place between the carbonyl of the keto-group (O9) and (H12) [d(H···O) =2.92 Å, 

C−H···O = 161.8 °]. It can be noticed that a repulsive H-H interaction is seen in this ring motif. 

Such repulsive interactions in the structure are thought to be a reason for the instability of this 

form. Similar interaction between the keto group and a central benzene hydrogen was 

observed in form IIa [Figure 8-6(a), molecules 1 and 3], but not in form I. 

Form III shares two other interactions with both forms I and IIa. Firstly, the offset π−π 

interaction of the chlorobenzene rings. In form III, this interaction links pairs of dimers at a 

distance of 3.5719(8) Å. The second shared interaction is the “embrace” type of interaction, 

this seem to be the most essential interaction in all forms, where it maximizes the contact 

surface of molecules in the crystal. The ether atom O(21) has a short contact to H23 (2.78(2) Å) 

and between carbonyl O24 and H atoms of the chlorobenzyl ring (H5 and H6; 2.84 Å and 

2.88 Å). The offset π−π interaction, the “embrace” interaction and the ether C–H···O 

interaction can be seen in Figure 8-8(c) and (d). 
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(a) 

(b) 

Figure 8-7. (a) The sheet that is formed parallel to the (100) plane via C-H…O interactions in form III. (b)  The keto 
group in C−H···O interaction with the hydrogen of benzene ring in from III. 
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(c) 

(d) 

Figure 8-8. Continued. (c) Illustrates the offset π−π interaction, the “embrace” interaction and the ether C–H···O 
interaction in from III. (d) The two molecules on the right side in part (c) from a different angle, showing the 

embrace type of interaction in form III, not short H-H interaction is noticed between the two molecules in part 
(d). 
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8.4.3 Comparison of crystal structures of fenofibrate form I, form IIa and form III  

A summary of the relevant interactions in the three forms of fenofibrate, I, IIa and III, is given 

in Table 8-3. 

Table 8-3. Relevant short H-acceptor interactions in the crystal structures of fenofibrate forms I, IIa and III. The H 
atoms have the same numbers as C atoms that they attached to. (See Figure 8-1 for atom numbering). The 

symbols A, H and D in the table are short of Acceptor, Hydrogen and Donor atoms 

A H  
D A···H 

distance 

D...A 

distance 

D-H Angle vdW 

difference 
Symmetry 

Form I 

O24 H12 C12 2.49 3.156(2) 0.93 128.4 -0.23 x,1+y,z 

O24 H5 C5 2.61 3.534(2) 0.93 171.8 -0.11 1+x,1+y,z 

O24 H11 H11 2.78 3.296(2) 0.93 116.4 0.06 x,1+y,z 

O9 H18A C18 2.62 3.523(2) 0.96 156.3 -0.1 -1+x,-1+y,z   

O9 H19A C19 2.87 3.702(2) 0.960 145.4 0.15 -1+x,-1+y,z   

O9 H2 C2 2.91 3.171(2) 0.930 98.0 0.19 2-x,-y,1-z  

O9 H23A C23 2.67 3.401(3) 0.960 133.8 -0.06 3-x,1-y,2-z   

Cl7 H14 C14 3.10 3.706(2) 0.93 124.4 0.15 2-x,1-y,1-z 

Form IIa 

Cl7 H11 C11 2.895(13) 3.541(2) 0.96(2) 125.8(9) -0.06 1+x,-1+y,z  

Cl7 H6 C6 2.924(18) 3.720(2) 0.96(2) 141(1) -0.03 3-x,1-y,-z  

Cl7 H25A C25 3.062(12) 3.967(3) 0.98(1) 155(1) 0.11 2-x,1-y,1-z    

O9 H11 C11 2.570(16) 3.318(3) 0.96(2) 135.2(9) -0.15 1-x,2-y,-z  

O9 H5 C5 2.874(12) 3.571(3) 0.95(3) 131.2(9) 0.15 2-x,2-y,-z   

O16 H18A C18 2.773(15) 3.734(3) 0.97(2) 170.6(9) 0.05 -x,2-y,1-z  

O24 H14 C14 2.662(11) 3.374(2) 0.98(2) 129.6(9) -0.06 1-x,1-y,1-z  

O24 H18B C18 2.783(10) 3.533(3) 0.97(1) 134.5(8) 0.06 -x,1-y,1-z  

O24 H19A C19 2.913(15) 3.697(3) 0.99(1) 136.9(9) 0.19 -x,1-y,1-z  

O24 H15 C15 2.891(10)  3.485(3) 0.97(2) 120(1) 0.17 1-x,1-y,1-z 

 



310 
 

Table 8-3. Continued 

Form III 

Cl7 H23A C23 3.114(15) 3.915(3) 1.01(2) 141(1) 0.16 1-x,1-y,2-z      

Cl7 H18A C18 2.960(11)  3.781(2) 0.98(1) 141.9(8) 0.01 1+x,1+y,1+z      

Cl7 H25A C25 2.828(14)  3.586(3) 0.98(1) 135.1(8) -0.12 1+x,1+y,1+z      

O9 H18B C18 2.671(12) 3.509(2) 0.98(1) 143.5(8) -0.05 x,1+y,1+z        

O9 H25B C25 2.565(12) 3.498(4) 0.98(1) 159.9(9) -0.15 x,y,1+z 

O9 H12 C12 2.92 3.810(2) 0.93 161.8 0.2 -x,1-y,2-z  

O24 H22 C22 2.91 3.772(2) 0.98 146.9 0.19 1-x,1-y,1-z 

O24 H6 C6 2.88 3.468(2) 0.93 122.2 0.16 x,-1+y,-1+z 

O24 H5 C5 2.84 3.449(2) 0.93 124.4 0.12 x,-1+y,-1+z 

O21 H23C C23 2.775(16) 3.660(3) 1.01(2) 147(1) 0.06 -x,1-y,1-z  

Interestingly, no interactions were observed at a distance less than the Van der Waal radii of 

interacting atoms seem to be shared between the three forms. However, some similarities can 

be identified between forms I and III. For example, the O9 of the ketone group interacts with 

the methyl group (O9 ···H18B) and with isopropyl group (O9 ···H25B). The interaction between 

O24 of the ester carbonyl and H23 of the isopropyl group is also common for both forms I and 

III. Despite these differences in the interactions among the three fenofibrate forms, similar 

packing trends can be identified. Each molecule of the three forms adopts a capital “L” letter 

shape. Two of these “L”s pack inverted to each other to form a near-rectangular shape “L⅂”. 

Rectangular dimers then efficiently fill the space. An illustration of the packing of the three 

forms is shown in Figure 8-9. 
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(a) (b) 

(c) (d) 

 

 (e) 
 

(f) 

Figure 8-9. The unit cell and packing of fenofibrate form I (a) and (b), form IIa (c) and (d) and form III (e) and (f). 

In order to know how similar these packing patterns are to each other, the “crystal packing 

similarity” function in Mercury was used to compare forms IIa and III to the most stable form I. 

The packing of 15 molecules in each form were compared. Form IIa had 6 out of 15 molecules 



312 
 

in common with form I compared to 1 molecule out of 15 in common between form III and 

form I. The observation that the packing is more similar for forms I and IIa could be an 

explanation to the experimentally observed sequence of polymorph transitions: III->IIa->I 

when fenofibrate is left to age at room temperature. In order to assume the conformation and 

arrangement of form I, molecules in form III first need to convert to the other metastable 

polymorph IIa which then can undergo transition to form I.  
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 Summary and conclusions Chapter 9:
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9.1 Summary 

Pharmaceutical companies are always trying to find new solid forms of APIs for different 

reasons. For example new solid forms have the potential to give new forms that give superior 

physicochemical properties to the known forms of a drug such as stability and dissolution (as in 

the case of amoxicillin). Additionally, a newly discovered form is not covered by the patent of 

the parent/innovator company, allowing for large profits of the company discovering the new 

form. One of the strategies to find new solid forms is the use of multicomponent solids. This 

method has gained popularity over the past few years. The forms of cocrystal and solvate have 

received special attention because they are less well explored. The number of marketed 

multicomponent drugs is certainly increasing, showing the larger interest in this area. These 

forms can also have negative effects on pharmaceutical companies, where the unexpected 

formation of a solvate could lead to having remnants of the solvents used during processing of 

the API, causing a danger to the patient as well as a financial loss to the company. 

Until today, the formation of multicomponent solids is not readily predictable, so high-

throughput screening methods are used in order to cover the possible range of solid forms 

(single- and multi-component) that an API can form. Crystal structure prediction is also being 

used alongside experimental work in order to show the possible forms using lattice energy 

calculations.  

In this work, we focused on the solvate forms of organic materials. We tried to relate the 

structural features of organic compounds to their ability to form a solvate using a knowledge-

based approach. Identifying these features resulted in better understanding of the 

crystallization of these forms and provides a quick, easy-to-use tool for scientists, helping them 

in the choice of solvents in early stage development. 
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As a proof of concept, four of the most commonly used recrystallization solvents for organic 

materials were studied. These solvents were ethanol, methanol, dichloromethane, chloroform. 

Additionally, water, being the preferred choice in any experiment, was studied as well. The 

Cambridge Structural Database, is the only database that contains the relevant data. 

For each of the five solvents, two groups of entries were extracted from the CSD; these are a 

solvate-forming and a non-solvate-forming group. For each extracted molecule, thousands of 

molecular descriptors were calculated via the Dragon software. The output of Dragon was 10 

tables; a solvate and a non-solvate forming table per solvent. Each of these tables had a few 

hundreds to a few thousands molecules, which were represented by rows and had thousands 

of descriptors, represented by columns of these tables. All of these descriptors were numerical 

values, which makes them suitable for the application of statistical procedures. 

Statistical significance testing was applied to each solvent’s dataset individually, comparing the 

solvate and non-solvate forming groups. The majority of the descriptors showed significant 

difference between solvate and non-solvate molecules. This implies that most of the structural 

features represented by molecular descriptors have shown the potential to be useful in 

differentiating the solvate and the non-solvate molecules. 

Due to the large number of these useful descriptors, machine learning algorithms were used. 

Initially, an unsupervised machine learning method, PCA, was applied to the data in order to 

reduce the dimensionality. The PCA gave a good separation of the data in space. Nevertheless, 

PCA could not point towards a small number of descriptors that could be used to achieve the 

good separation that was seen by PCA. After that, supervised machine learning was used to 

learn from the available data. A linear and non-linear method were compared, these are 

logistic regression and support vector machine, respectively. The performance of these two 

methods was comparable, with a higher consistency in logistic regression performance, 
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implying that support vector machines could be overfitting to the training data in some cases. 

Therefore logistic regression was used for the rest of the analysis.  

Logistic regression was first used to fit models using the first, first two and first three principal 

components (PCs). It was then used in a systematic approach to descriptor selection, that is, 

models with all possible combinations of one and two descriptors were fitted. When the 

results were compared, the models with one and two variables had comparable results with 

the PCA logistic regression models. This could reflect the high correlation between descriptors, 

where the dimensionality reduction was not of great significance. The variables with two 

descriptors slightly outperformed PCA in the models of all five solvents. Additionally, they 

showed exactly what chemical features are the main contributors for solvate formation, in 

terms of the descriptors available. A third descriptor was added to the models using forward 

selection but it couldn’t improve the performance in any of the five solvents. This again shows 

the high correlation between variables, where among thousands of potentially useful 

descriptors, the predictive ability stopped improving when the third descriptor was added. For 

this reason, the two-variable models were considered to be optimal. The two variables in these 

models were related to the size and branching of molecules in addition to the availability of 

heteroatoms in a molecule. When these models were evaluated, a small bias was noticed, with 

a preferential prediction towards the non-solvate group in all solvents. This was corrected by 

adjusting the intercept of each model, until the bias was not seen any further. The next step 

that was taken was to provide a simpler description than the one given by the two-variable 

models. This could be useful for researches who want to make predictions without using 

computers. The simpler models were obtained based on the correlation of simple descriptors 

to the ones in the two-variable models. As expected, the resulting simple models performed 

very closely to the two-variable models.  
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Analysis of correctly and incorrectly predicted structures revealed that the importance of size 

and branching of the molecule exceeds any other factor, at least among the studied molecular 

descriptors. Factors that seem to be involved in solvate formation but the models did not take 

them into account (e.g. C–H···O hydrogen bonding, steric hindrance and halogen bonding) 

were also identified. These factors are thought to be the reason for misprediction in many 

cases, but were too few in number to be found by the machine learning algorithms. This 

assumption was supported by examples from each data set showing mispredictions caused by 

ignoring at least one of these factors.  

The applicability of the models to pharmaceuticals was tested via experimental validation. Ten 

drug compounds that vary in their properties, especially in the factors that the models take 

into account, were used in this validation. Each of the candidates was tested for its ability to 

form a solvate with each of the five solvents, and the results of the experimental screening 

were compared to the predictions. The success rates for ethanol and methanol were the 

highest (9/10) followed by dichloromethane and chloroform (8/10) then followed by the water 

model (5/10). Multiple reasons could have caused these results. For example the number of 

points in the training data was the smallest in the water data set; therefore it is expected for 

the water model to have the lowest predictability. Additionally, a test set of 10 drug 

candidates is small. Consequently, the test set was probably not representative of the 

population of known crystal structures. Therefore the validation was more of a demonstration 

of how the models work with pharmaceutically active materials and how realistic the results 

are giving probabilities ranging between 0 and 1 depending on the structure given.  

During the screening of the solvate formation, some of these drug candidates formed solvate 

forms that were not previously reported. In this case, the PXRD of the sample was collected. 

Additionally, a new solvate form of griseofulvin dichloromethane solvate was reported via 

SCXRD experiment. A dichloromethane solvate of griseofulvin has previously been reported. 



319 
 

Nevertheless, the crystallographic parameters were different from the reported form, showing 

an example of solvate polymorphism. 

Chapter 8 was my contribution to a study conducted by P. Tipduangta, a colleague in the same 

suit who is studying the heterogeneous crystallization of fenofibrate, an anti-hyperlipdemic 

agent. The study focused on the effect of surface annealing and temperature in preferential 

crystallization of different polymorphic forms, where it was possible to obtain polymorph IIa of 

fenofibrate purely by manipulating these factors. It also focused on the role of a commonly 

used additive, talc, in acquiring a new polymorph of fenofibrate that was not previously 

reported, which was denoted as polymorph III. The crystal structures of forms IIa and III had 

not been previously reported. The main scope of this chapter was the determination and 

analysis of the new structures. The structural similarities and differences between the newly 

obtained and the known polymorphic forms were highlighted and discussed in terms of 

possible transition pathways.   
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9.2 Conclusions and future outlook 

9.2.1 Conclusions 

The work produced in this thesis has identified the main structural features that are 

responsible for solvate formation with five solvents in organic compounds using a knowledge-

based approach. These features were used to fit one predictive model per solvent. The models 

can be used to predict the probability of solvate formation of any organic compound with each 

of the five solvents. The factors that were found to influence solvate formation were mainly 

related to size and branching of a molecule, along with its hydrogen bonding ability. The 

success rate obtained ranged between 74-80 % in all 5 solvents. This shows the potential for 

cheminformatic approaches to become one of the fundamental methods in many steps of 

drug discovery and development, providing a simple, quick guide for scientists. 

Implementation of cheminformatics in gaining knowledge and predicting future results can 

save a lot of time and money in the drug development cycle. 

The key points learned from the project will can be summarized in the following points: 

(1) Careful collection and pre-processing of data are important steps, where consideration of 

one phenomenon, such as polymorphism, before analysing the data has resulted in dropping 

more than 30 % of the parent data due to redundancy. Redundancy isn’t a problem with data 

only, but also applies to the description of data, where most of the ~5000 descriptors used 

turned out to have high correlation to each other, resulting in redundant information. 

 (2) A linear, simple algorithm was enough for preliminary classification in this problem. A more 

complex, non-linear method has resulted in overfitting to the training data.  

(3) Principal components have reduced the dimensionality of the data, but failed to add value, 

possibly due to the high correlation between descriptors.  

(4) MSE, AIC and AUC gave very similar results when they were used for model selection in this 

problem, indicating their interchangeability.  
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(5) Complex descriptors are not an essential requirement for models with a good 

predictability, at least for a preliminary description of the data. In this problem complex 

descriptors could be replaced by simple, correlated descriptors, resulting in comparable 

predictive ability.  

(6) Statistical methods are subject to overfitting and underfitting, depending on the sensitivity 

on the method applied. Therefore the consideration of the chemical structure or the opinion 

of an expert is required for a valid prediction.  

(7) The size of a validation set is important to be large enough to represent the data, 10 drug 

candidates per solvent did not provide enough data to confidently judge the experimental 

validity of the predictive models.  

(8) Crystallization conditions, such as exposed surface area and temperature can result in 

different polymorphic forms. Although the last piece of work in this thesis did not explicitly 

concern solvates, crystallization of different forms have the potential to be applied in the field 

of multicomponent solids. 
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9.2.2 Future outlook 

The work presented in this thesis has proven the usefulness of cheminformatics approaches in 

predicting the physicochemical behaviour of organic compounds. While the prediction isn’t 

perfect, improving such a predictive method is possible. One of the main requirements for 

obtaining a better predictive ability is collection of more data. Machine learning is based upon 

using the training data to fit predictive models. The bigger the training data and the more 

diverse it is, the more likely it is to give a realistic model. Another way to improve these 

models would be finding a better description of compounds. This includes a more detailed 

description of hydrogen, halogen and π interactions. It is also possible to add new descriptions, 

encoding new information that is not yet encoded in descriptors such as the accessibility of 

atoms, based on the molecular graph. This could be useful especially when atoms with the 

potential to form strong intermolecular bonds exist.  

The successful application of knowledge-based systems in a complex problem, such as solvate 

formation indicates the possibility to extend their use in other phenomena in the solid state, 

such as cocrystal formation, drug-polymer compatibility and stability of solid dispersions. It is 

important to note here that in order to obtain meaningful results from knowledge-based 

methods, chemical knowledge of a problem is required. Such methods serve as a guide for 

researchers, where it could point towards the factors that need to be considered in their 

research. 

 


