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Abstract

Solvate formation is a phenomenon that has received special attention in solid state chemistry
over the past few years. This is due to its potential to both improve and impair pharmaceutical
formulations. The reasons for solvate formation aren’t explicitly known. Therefore, there is
currently no reliable guide in the literature on what solvents to choose in order to avoid or
form a solvate when crystallizing an organic material. In this thesis we address the problem by
trying to find the main reasons of solvate formation. A knowledge-based approach was used to
link the molecular structure of an organic compound to its ability to form a solvate with five
different solvents; these are ethanol, methanol, dichloromethane, chloroform and water. The
Cambridge Structural Database (CSD) was used as a source of information for this study. A
supervised machine learning method, logistic regression was found to be the optimal method
for fitting these knowledge-based models. The result was one predictive model per solvent,
with a success rate of 74-80%. Each model incorporated two molecular descriptors,
representing two molecular features of molecules. These are the size and branching in
addition to hydrogen bonding ability. The models’ predictive ability was validated via
experimental work, in which slurries of 10 pharmaceutically active ingredients were screened
for solvate formation with each of the five solvents in the study. During the screening process,
a new diflunisal dichloromethane solvate, a diflunisal chloroform solvate and a hymercromone
methanol solvate were found. The PXRD patterns of these forms are reported. The thesis also
includes SCXRD analysis of a previously known grisoefulvin dichloromethane solvate, a
previously known fenofibrate polymorph and a new fenofibrate polymorph.
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Chapter 1: Introduction



Chemical information is growing at exponential rates, as shown by surveys of databases. This
provides an easy-to-access, reliable source of data. Investigation of such data has the potential
to help in finding new trends, leading to establishing new relationships that were not
previously known. The possibility to conduct such investigations has been long recognized,
where one of the first examples to obtain knowledge from chemical data took place in 1868."
Today, the area of chemical information investigation, also known as Cheminformatics, is a
field that is growing, where the number of publications about chemical information has
increased lately.” One area in which cheminformatics research can be applied is solid state
chemistry, where it is possible to anticipate the physicochemical properties of materials using
previously obtained knowledge. The information obtained from X-ray diffraction could be
particularly useful in solid state chemistry. This is due to the large amount of information
available. Gavezzotti in 1998 stated that “X-ray crystallography is even today a potential source
of a wealth of physicochemical information which awaits to be tapped.’” However, with
increased complexity of the problems and extent of the data available, such studies become
harder. Nowadays, cheminformatics research is a multi-disciplinary area in which
mathematical, statistical, programming, theoretical and experimental chemistry knowledge is
required. It is important to mention that the development that is seen in all these fields has

also facilitated conducting cheminformatics research.

In solid state chemistry, a phenomenon that is poorly understood today is solvate formation.
Solvate is a crystalline solid form in which two or more materials constitute the crystal
structure, where at least one of these materials is in the liquid state at room temperature. This
form has received special attention in the past few years due to its potential beneficial
implications, where it could be used to obtain desired properties in a solid. It also has the
potential to have harmful implications, where its unexpected formation could lead to a change
in the physicochemical properties of the manufactured material. Additionally, the presence of

organic solvents as part of the crystal structure could cause toxicity. Despite the large amount



of data available on solvate forms, where around one third of organic chemical crystalline
materials form hydrates,” the reasons for solvate or hydrate formation are not explicitly
known. Trial-and-error approaches are nowadays used (in industry for example) in order to
rule out the ability of a material to form a solvate. In this work, we use a knowledge-based
approach in an attempt to relate the chemical features of organic compounds to solvate
formation. This could reveal a connection between the molecular structure and the ability of a
material to form a solvate. This is achieved by the information from single-crystal X-ray

diffraction experiments recorded in the Cambridge Structural Database.

In this thesis, Chapter 2 gives a literature background regarding the areas that are relevant to
this work, including solid-state chemistry, statistics and experimental methods. The materials
and the methods used are summarized in Chapter 3. Chapter 4 presents a detailed report on
how the data of this project was collected from the Cambridge Structural Database, while
Chapter 5 focuses on the data mining and statistical modelling of the collected data. It also
shows detailed analysis and criticism of the resulting predictive models. Chapter 6 gives a
closer look on the factors included in the predictive models and the factors that could probably

be added to improve the models via examples.

The applicability of the predictive models in the pharmaceutical industry is tested in Chapter 7,
where predictions obtained by the models are compared to the results obtained by
experimental work. This chapter also reports PXRD patterns of new solvate forms and a

detailed single crystal structural report of a griseofulvin dichloromethane solvate.

Chapter 8 shows results of a collaborative project with a department colleague, Mr. Pratchaya
Tipduangta, who studied the heterogeneous crystallization of fenofibrate under different
conditions. The chapter focuses on the crystal structures of fenofibrate forms Ila and a newly

found form Ill.
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Chapter 2: Literature review



2.1 Solid forms of pharmaceuticals

Pharmaceutical ingredients are often produced in the solid form. However, solid phases can be
either single or multi-component. There is a great variety in the possible compositions of
multi-component organic solids and this situation has caused discussions about feasible
classification systems of organic solids.”” According to the most recently proposed
classification systems, three main classes of multicomponent solids are distinguished. These
are salts, cocrystals and solvates.? Clear definitions of these classes are not available and are
often interpreted in various ways — this will be further discussed in the following sections. The
classification systems referred to, however, generally recognize that a salt contains two ions, a
cocrystal contains two neutral molecules that are solids in their pure form and solvates contain
neutral molecules one of which is liquid in its pure form at ambient conditions. It is possible
that a multicomponent solid contains more than two components and therefore subclasses
are formed. For example, a material containing two ions and a neutral molecule is a cocrystal
salt and a solid containing three molecules one of which would be a liquid in its pure form is a

solvate of a cocrystal.’

Each of the single- or multi-component solids discussed can be either crystalline or
amorphous: crystalline solids exhibit long range structural order while amorphous materials
are structurally disordered. Crystalline materials, both single- and multi-component,

potentially can show polymorphism — different crystal structures with the same composition.

Research on solid forms of pharmaceutical compounds is of interest for pharmaceutical
companies because of several reasons. Firstly, each solid form has unique physicochemical
properties and therefore needs to be studied separately. Secondly, each solid form is also

subject to intellectual property protection.?



2.1.1 Amorphous materials

The significance of amorphous materials in pharmaceutical solid-state chemistry is related to
two aspects. Firstly, although the stability of an amorphous form is inferior to that of a
crystalline form, it is still sometimes selected for production because of better solubility and
dissolution.*® Different techniques are employed by the pharmaceutical industry to stabilize

amorphous materials. Some examples of medicines containing amorphous API are Lopinavir,”®

|6, 9, 10 6, 11

Cefuroxime axeti and Zafirlukast.” =~ Secondly, amorphous form can be an intermediate
phase of solid-state reactions.” Amorphous materials can be either single-component or

multicomponent materials.

Although amorphous materials can have some short-range order (for example, interactions to
neighbouring molecules), translation or rotational order cannot be identified in these solids.***
This means that there is no three-dimensional long-range order in amorphous materials and
therefore they are similar to liquids.”> The main tool used to distinguish between amorphous
and crystalline structures is X-ray diffraction.”® However, it has been noted that a clear
definition of amorphous does not exist, due to a continuum between amorphous and
crystalline states.” Ideal crystalline materials are rare, and real crystals usually show some
degree of disorder and presence of crystal defects. Furthermore, it is known that the particle
size can influence properties of a material. For example, a crystalline material with very small

(Nano sized) particles would behave similarly to amorphous material and care must be taken

to distinguish between these states.*

Common methods for preparation of amorphous solids include quench cooling of a melt,
freeze-drying (lyophilisation), spray-drying and mechanochemical treatment (milling)."**®
Amorphisation can also be achieved by fast precipitation and by desolvation of solvates.” In

the latter case, desolvation of a solvate leads to disintegration of a crystal lattice forming an

amorphous material.



2.1.2 Polymorphism

Polymorphism is an ability of a compound to crystallize in different arrangements.’® Two
polymorphs can differ in the conformation of the molecules (conformational polymorphism),
arrangement of the molecules in space (packing polymorphism) although most commonly both
these situations are encountered at the same time. Polymorphic forms of a compound
therefore have different crystal structures and consequently — different stability and
physicochemical properties.’® This is especially important in the pharmaceutical industry
because two polymorphs with different properties (for example, solubility) can change the
efficacy of the drug and lead to inconsistency of dosing. Because of this, polymorphic purity of
a drug compound is highly important and pharmaceutical companies need to ensure control of
polymorphism of their API’s. Control of polymorphism is achieved via different methods, such

as seeding, use of additives, templating, solvent control, use of membranes, confined space."’

Crystalline phases are always more stable than amorphous phases, however, the stability of
different polymorphic forms also can vary in a wide range. In order to explore the possible
polymorphic forms of a compound, crystal energy landscapes can be calculated.'® At given
conditions one of the polymorphic forms of a compound will be more stable than other forms -
this form has the lowest free energy with regard to other crystalline forms. All other
polymorphs are metastable. Every two polymorphic forms can be either monotropically or
enantiotropically related.’®'® In a monotropic system one of the two polymorphs is more
stable at temperatures up to its melting point while in enantiotropic system a transition point
exists. This means that under the transition temperature one of the polymorphic forms is more
stable than the other and after this point the other form becomes more stable, while at the

20, 21

transition temperature both polymorphic forms have equal stability. Graphically, this can

be illustrated by the Gibbs free energy curves as shown in Figure 2-1.
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Figure 2-1. Graphical illustration of Gibbs energy in monotriopic polymorph system (A) and in enantiotropic

polymorph system (B). M.p.is melting point of Form 1 or Form 2 correspondingly and T.p. is polymorph transition

point in enantiotropic system.zz

It is important to distinguish between monotropic and enantiotropic polymorph systems in
order to prevent undesired polymorph transitions in pharmaceutical products. This is because
in a monotropic system solid-solid phase transitions are irreversible, while in an enantiotropic

polymorph system reversible transitions can take place.

In order to distinguish between monotropic and enantiotropic polymorph systems Burger and
Lamberger have established several rules.”>” The Heat of Fusion rule states that “If the higher
melting form has the lower heat of fusion the two forms are usually enantiotropic, otherwise
they are monotropic”.”® The heat of transition rule states that “if an endothermal transition is
observed at some temperature, the two forms are related enantiotropically. If an exothermal
transition is observed, the two forms are either related monotropically or the transition
temperature is higher”.?® Additionally, it has also been pointed out that a structure with lower

density will be less stable at absolute zero and that analysis of absorption bands in IR spectra

also allows to compare stability of two forms.?



2.1.3 Multicomponent crystalline solids

Alongside the single-component organic solids, multicomponent solids, such as solvates,

cocrystals and salts, are also possible.

2.1.3.1 Cocrystals

According to FDA definition cocrystals are “Crystalline materials composed of two or more
different molecules within the same crystal lattice that are associated by nonionic and
noncovalent bonds”."** The scientific literature is not consistent when discussing whether
solvates (and hydrates) should be classified as cocrystals. It has been pointed out that from
supramolecular perspective solvates and cocrystals are related. From practical perspective,
however, it is beneficial to differentiate between cocrystals and solvates.”” According to
Aakeroy,” reactants making up cocrystals should be solids at ambient conditions. In his
perspective, cocrystals are structurally homogeneous crystalline materials containing neutral
molecules in stoichiometric amounts.? According to these rules, solvates, clathrates and salts
cannot be seen as cocrystals. Although, the rules set out by Aakeroy®® seem to make a

distinction between cocrystals and salts, a continuum exists between these species too as

partial transfer of proton is possible in molecular complexes.”’

Cocrystals are commonly obtained based on knowledge of hydrogen and halogen bonds

282930 Other interactions, such as van der

between functional groups of the reacting molecules.
Waals forces and m-m interactions can play a role cocrystal formation.® The necessary
information can be obtained by analysing the available crystal structure data of other
cocrystals. Several studies employing Cambridge Structural Database (CSD)** have shown the

33,34,28

prevalence of certain supramolecular synthons. This information can be used to design

new cocrystals.
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Until recently, the production of pharmaceutical cocrystals was restricted due to FDA
guidelines. Currently (since 2013) cocrystals have been recognized as drug intermediates and

the industrial interest about them has increased.

2.1.3.2 Solvates

In comparison to cocrystals, in solvates one of the constituents is liquid at ambient
conditions.”” Solvates of a pharmaceutical compound are sometimes referred to as
pseudopolymorphs or solvatomorphs although recently the term “solvates” has been
preferred.” Solvates can contain either a stoichiometric or a non-stoichiometric amount of
solvent. These two types of solvates are being referred to as stoichiometric and non-

stoichiometric solvates.*” >®

In a stoichiometric solvate the solvent molecules are usually a crucial part of the crystal
structure, being bound to the drug molecule by specific intermolecular interactions.
Incorporation of a solvent molecule in such a structure leads to a more stable crystalline form

therefore stoichiometric solvates can be chosen as a final drug product to be marketed.*” * |

n
non-stoichiometric solvates, on the other hand, the solvent molecules usually do not form

strong interactions to the host molecules.

An alternative way to classify solvates (this classification system is typically used for hydrates)
is with regard to their structure: isolated site solvates, channel-type solvates and ion-
associated solvates can be distinguished.* In isolated-site solvates, solvent (water) molecules
are separated from each other and connected to APl molecules by hydrogen bonds. Isolated-
site solvates are usually stoichiometric. Some examples of stoichiometric isolated-site solvates

are cephradine dihydrate, cefaclor dehydrate® and siramesine hydrochloride monohydrate.*!
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In channel-type solvates the solvent (water) molecules are accommodated in channels or
between layers of the host molecules (API)*’ (these can be both stoichiometric and no-
stoichiometric). Channel and layer type structures can often accommodate a range of various
solvents resulting in series of isostructural solvates. These solvates are often non-
stoichiometric and easily undergo desolvation. In case of isostructural solvates, desolvation
commonly leads to isostructural (isomorphic) desolvates with the same structure of the host
molecules and empty voids that used to accommodate solvent molecules.*” Some compounds

known to form isostructural solvates are tenofovir disoproxil fumarate® and sulfathiazole.*

In ion-associated solvates solvent/water molecules are coordinated around an ion. This type

of solvate is not the scope of this study, as we focus on organic solvates.

It is possible for a solvate (with the same stoichiometry) to have several crystalline forms —

polymorphs.

Manufacturing solvated forms of API’s is limited by the toxicity of the solvent present in the
material. Hydrates, that is solvates of water, however, are free from this concern and
therefore are the most commonly used solvates. Additionally, the water molecule because of
its small size can easily fill structural voids. Moreover, its hydrogen bond donor and acceptor
properties ensure efficient bonding to APl molecules resulting in a stable crystal lattice.*® It has
been estimated that at least one third of pharmaceutical compounds can form hydrates.*
Furthermore, water is present in the atmosphere and can come into contact with the drug
compound during processing of the solid.*® Many hydrate forms have been commercialized,
for example, amoxicillin trihydrate,*” darunavir ethanolate®® and dasatinib monohydrate.*
Solvates containing multiple solvents are much more rare among the manufactured products.

An example on the latter is indinavir sulfate ethanolate.®
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While cocrystals and salts are usually prepared intentionally, solvates can form unexpectedly.
Since it is important to obtain a pure solid form as a final product of manufacturing,

information on possible solvation of a compound is crucial.

2.2 ldentification of the solid form

Most of newly discovered Active Pharmaceutical Ingredients (API) do not reach the market,
where it is reported that 89 % of these APIs fail before being marketed.”* The main reasons for
this failure is their poor biopharmaceutical properties, low efficacy and toxicity, where these
account for 41 %, 31 % and 22 % of total failure in development, respectively.”? Therefore, the
sooner the properties of an APl are known, the less time and money is spent on their
development. In order to achieve this early judgement of which medical candidates are going
to be useful, two main approaches are available, these are an in vitro (experimental) and in

silico (theoretical) approaches, which are going to be discussed in sections 2.2.1 and 2.2.2.

2.2.1 Experimental identification of solid form

Historically, screening experiments in biological and pharmaceutical areas were slow processes
that used to consume a considerable amount of materials.> A report in 2007 was published by
Pereira and William who worked in Pfizer. This report mentions that each biological or
pharmaceutical assay required to be 1ml in volume, required an amount of the compounds
being investigated and a separate test tube for each experiment.”* This resulted in testing 20-
50 compounds in a laboratory per week. In the past two decades, it was possible to automate
and speed up the process using computers and robotics. Currently, it is possible to use pico-
litres of liquid and conduct over 100,000 assays per day via Ultra High-throughput screening

>>3% Note that the process of

(uHTS), resulting in reduced time and expenses of a study.
screening can be used in various areas such as conducting biological, toxicological and

pharmacokinetic assays.”
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In this work, we highlight the application of high-throughput techniques in solid form
selection. A solid form is normally obtained by crystallization, as the final step of synthesis.
Multiple crystallization methods are known, such as evaporative, cooling and anti-solvent
crystallizations. For the same compound, using a different crystallization method can result in
a different solid from. Additionally, in any of these crystallization processes it is possible to
change the form of the solid obtained by manipulating factors such as the composition of the
crystallization medium, concentration and additives. These factors are summarized in a review
that was published by Sherry L. Morissette et al in 2004.® The variety of methods of
crystallization and the number of factors to adjust in each result in a large number of
experiments that need to be conducted to cover the possible solid forms of an API. For this
reason, high-throughput has become one of the standard techniques that companies use for
discovering solid form diversity. Although this is a popular method nowadays, it still has its
disadvantages when applied in solid state chemistry. For example, it can require large amounts
of material, especially when crystallizations are conducted. This is because crystallization
experiments cannot be done at the pico-scale these methods offer. Additionally, if
experiments did not cover absolutely all possible materials/ratios of materials in a

crystallization experiment, unexpected solid forms could arise.>

2.2.2 Theoretical prediction of possible solid forms

2.2.2.1  Crystal Structure Prediction (CSP)

Crystal structure prediction is a computational chemistry method, aiming to find the crystal
structure of a molecule given its chemical structure and in some cases, crystallization

conditions.>®

For a specific organic structure, current CSP methods work by looking for the structure with
the lowest lattice energy (also known as global minimum) among all possible structural
arrangements. This means the found structure is likely to have high thermodynamic stability.
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Note that it is not the absolute most stable form because the entropy is ignored here.*® The
energy of these structures is mainly calculated using empirical models or ab initio calculations

or a mixture of both.

Although this might sound straightforward, different challenges are faced; most notably the
number of possible structures (largely depends on the space group choice and the number of
independent molecules in the space group), the phenomenon of polymorphism and the choice

%051 For example sometimes the structure that has

of the model to perform the calculations.
the lowest lattice energy is not experimentally observed. Sometimes one polymorph is the

most stable under certain temperature, but as this temperature changes, a different

polymorph becomes more stable.®

In order to evaluate the different methods available and the progress in improving the
predictability of crystal structures, the Cambridge Crystallographic Data Centre (CCDC)
periodically organizes international blind tests of crystal structure predictions. In this test,
research groups that are interested in developing crystal structure predictive methods are
given a set of organic structures with unknown crystal structures. The groups are then asked to
report their predictions regarding the space group, cell dimensions and atomic coordinates of
the given structures.® Six of these tests have been conducted so far, with the latest of them
being in late 2015. The details about the first five of these tests can be found in the references
provided.’® ®®

It is worth noting that the fourth CSP blind test has introduced multi-component solids as a
new class to be part of the blind test.”® This emphasizes the growing importance of multi-
components in solids state chemistry. Specifically, predicting the crystal structure of a cocrystal
was attempted. Determination of the cocrystal structure was the hardest among all others, as

the report of the test states:
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“As expected, the cocrystal was the main problem — the increased search space was the main
reason for including the new category of two-component crystals in this blind test and seven
of the 12 groups who attempted predictions for this system did not locate the observed

crystal structure in their search.”®

Few years later, multi-components still showed a big challenge to the process of CSP, where

the report of the fifth bind test states:

“Hydrate (XXI) proved to be one of the most challenging systems in the blind test”®

Most recently, the report on the sixth blind test included a prediction of a crystal structure of a
chloride salt hydrate. One of the participating groups was able to predict the experimentally
known structure, where they ranked it as the second most stable structure in their submitted
prediction. Although this prediction doesn’t directly fall into the scope of this thesis, a correct
prediction of the experimental structure of a 3-component system including a solvent is
important to note. Despite these improvements, some issues remain the limiting factors of
CSP. An example is the complexity of this method; where it requires an expert in the field to
generate and assess the possible structures. Additionally, it has a high computational cost,
where a landscape calculation of a molecule can take months.”” Therefore, at current times
CSP is used as a complementary method with experimental work and high throughput
crystallizations, where it helps highlighting the possibility for undiscovered polymorphic

forms.>

2.2.2.2 Cheminformatics

Cheminformatics (also known as chemoinformatics, chemical informatics and molecular
informatics) can be defined as the science in which information technology is employed in

order to help making better and faster decisions in the fields of drug discovery and
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development.®*®’

This is a multi-disciplinary science that employs the fields of chemistry
(chemical information) of structures, mathematics, statistics and computer programming.®®
Chemometrics, a sub-field of cheminformatics is a field that is concerned with deriving
chemical information from experimental data.®® In biology, two parallel sciences that are

heavily used nowadays are Bioinformatics and Biometrics. As the name implies, they are

similar to cheminformatics but they use data derived from biology.*

One of the main concepts in cheminformatics is Quantitative Structure-Activity Relationship
(QSAR). This term describes a process in which the structure of a chemical is mapped to the
biological activity. A closely related term is Quantitative Structure-Property Relationship
(QSPR). This is a process that tries to find an association between the structure of a chemical

and a physicochemical property of this structure.”

The basis of this field could probably be assigned to Crum-Brown in 1861, where he suggested
the possibility of finding mathematical model that would explain chemical theories.”* He was
able to reveal the association between the water solubility of primary alcohols and their
toxicity.”® Few years after that, he supported this opinion in a publication with Fraser, where
their publication focused on the possibility of linking a physicochemical property of a chemical
to its physiological action of a chemical.”® Several studies on QSAR/QSPR followed after that, as
given by review articles.” Currently, knowledge-based cheminformatics approaches play a
significant role in lead discovery and optimization, where it assesses the toxicity, permeability
and other properties of drug candidates. It is also used in early selection of drug candidates

that are going to be tested experimentally using high-throughput techniques.”*

In order to establish a quantitative structure-activity or structure-property relationship, a few
elements are required. Firstly, it is important to have a reliable source of data regarding the

chemical structures from which information and later on, knowledge can be obtained. In this

17



work, we obtain our data from the Cambridge Structural Database (CSD).*? Secondly, a
numerical description of the chemical structures is required.”® Such description is often known
as molecular descriptors (sometimes referred to as “descriptors” alone). More formally,
molecular descriptors have been defined by Todeschini and Consonni to be “The final result of
a logic and mathematical procedure which transforms chemical information encoded within a
symbolic representation of a molecule into a useful number or the result of some standardized

“% In this thesis, the molecular descriptors are obtained using a software called

experiment.
Dragon.”® The details about the descriptors that are calculated by this software are given in

section 3.2.1.

The third step in finding a QSAR/QSPR would be the conduction of statistical tests and machine
learning methods in order to fit models that can best describe the data provided and make
predictions of future data points. It is also important to evaluate these models to ensure they

are not biased.” The statistical part is going to be discussed in details in section 2.3.

2.2.3 Previous CSD investigations on hydrate and solvate formation

Considering the significance of solvates, especially in pharmaceutical science, several attempts
to develop approaches for predicting solvate formation have been made. Alongside studies
that have investigated the behaviour of compounds that readily form large number of

7578 A number of studies have been conducted using large datasets obtained from

solvates,
CSD.** CSD offers valuable information of crystal structures and therefore allows studying

various structural aspects that are expected to facilitate hydrate formation.

It was noticed, however, that most if not all of the studies conducted were at least partially
based on the consideration that formation of hydrogen bonds are the main governing force of
solvate (hydrate) formation. For example, a study conducted by Desiraju investigated the

formation of hydrates in relation to hydrogen acceptor and donor properties.** The inspection
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of hydrate structures of organic compounds revealed that almost all of these compounds did
contain hydrogen bond donor and acceptor groups. The results of this work implied that most
of hydrate-forming compounds have larger number of hydrogen acceptor groups than
hydrogen donor groups. Regardless, actual hydrogen bonding between the compound and
water did not always take place. In some cases (no estimate given) the water only acted as

space-filler.

The conclusion made by Desiraju regarding the effect of hydrogen donor/acceptor ratio was
countered by another study based on CSD data, performed by Infantes et al”” who investigated
hydrate formation in relation to the count of hydrogen bond donors and acceptors in the
compound. In this work, several parameters describing formation of donor-acceptor bonds
were derived and calculated for molecules of interest. A number of molecular parameters,
such as atom count and dipole moment were also calculated. This study concluded that
donor/acceptor ratio does not have effect on probability of hydrate formation. However, this
work showed that higher sum of all donor and acceptor groups in the compound facilitate
hydrate formation. More polar surface of molecule also was found to facilitate hydrate

formation.

Another study, performed by Nangia and Desiraju,® inspected solvates with the 10 most
common solvents in the database. The results showed that solvates are more often formed
with solvents (1,4-dioxane, DMSO and DMF) that have high probability to participate in multi-
point hydrogen bonded recognition schemes between solvent and solute molecules. Hydrogen
bonding between solvent molecules was also common.* On the other hand, solvents that
have comparatively poor multi-point hydrogen bonding ability (ethanol, ethyl acetate and
diethyl ether) were found to rarely form solvates (the occurrence of solvates was calculated

considering how often the solvent is used for recrystallization). They also recognized that
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solvents such as benzene, p-xylene and CCl; are included mostly in rigid framework-type

structures as guest molecules.

The crystallographic information available in the CSD has been used to thoroughly characterize
the molecular environment of the two most common solvent molecules found in solvate
crystal structures — water®® and methanol.® It was found that the most common environment
for water is such that it allows formation of three hydrogen bonds — two involving its hydrogen
atoms and one with its oxygen atom. No correlations between the environment and the
hydrogen bond strength were found. The inspection of the environment of methanol
molecules in solvate crystal structures showed that in 305 of 375 methanol solvate examples
one of five molecular environments could be identified. In the most common environment, the

hydroxyl oxygen acted both as hydrogen donor and acceptor.

A significant contribution to analysis of solvate crystal structure data has been given by van de
Streek and Moteherwell® who developed a software for CSD data analysis to find sets of
structures containing both solvated and non-solvated forms of any compound. They used this
in-house software to analyse such aspects as packing density, flexibility of the compound,
chirality, number of possible donors and acceptors etc. The study showed that larger
molecules commonly include larger number of water molecules (higher stoichiometry). They
also found that certain groups (R,PO,, CI" and NH3") are considerably more common in
hydrates than in anhydrates. Some other groups (CF;, CCl and OCONH), however, were
preferred in anhydrates. A comparison of contacts formed by the same compound in hydrated
and anhydrate structures showed that for most of the functional groups the count is higher in
hydrates. This was most obvious for CI, COO™ and NH;R" groups. This study did not find
correlation between flexibility of molecules and tendency to form hydrates. Chirality, on the
other hand, had a positive effect on hydrate formation. In a subsequent study, van de Streek

developed a program that screens the CSD structures to find solvates based on topological
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indices.®* This program allowed obtaining lists of solvates for compounds with the 51 most
common solvents. Closer inspection of the extracted lists showed that promising solvate
formers are molecules with non-coplanar aromatic rings, cholic acid derivatives and
calixarene/cyclodextrin type molecules. The solvate lists generated by this program allow
preparing a correlation matrix that can be useful to predict solvation of a compound in certain

solvents based on knowledge about similar cases.

The reports reviewed in this section show that although invaluable work has already been
performed to understand the structural reasons of solvate formation, more investigations are
needed in this area. For example, although it has been extensively shown that intermolecular
interactions, especially hydrogen bonds often facilitate solvate formation, some significant
factors such as flexibility of molecules, their size, steric hindering and other have not been
properly challenged. Moreover, it is expected that most of organic structures present in CSD
would contain heteroatoms, therefore presence of hydrogen bond donors and acceptors is
unavoidable, and it is not surprising to find that most of the compounds forming solvates
would also have some hydrogen bond donors and acceptors. Regardless, only a fraction of all
heteroatomic molecules actually does form solvates. Therefore, it would be useful identify the
factors governing solvate formation and quantify them. This would provide a tool that would
be able to predict the formation of solvate. In order to develop a comprehensive approach
that would be able to predict solvate formation, as many aspects as possible should be

objectively evaluated.

2.3 Statistics

In this section, statistical methods that were used in the thesis are going to be presented.
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2.3.1 Hypothesis testing

In its simplest form, this process compares two contradicting hypotheses about a data set, in
terms of a variable. The result of the test is the decision of accepting one hypothesis and
rejecting the other. This decision is based on the value of a statistic that is calculated through
the values of the variables of the data set.® In this thesis, a comparison between two
distributions, whether they come from the same population or not is required. the Wilcoxon
signed-rank test.®® The choice of this test was based on its properties, where it does not
assume a normal distribution of the data (non-parametric).?” Additionally, this test is ordinal
which means it is not going to be affected largely by outliers.®® Such properties are suitable for
the type of data in the problem being solved in this thesis. The study being conducted is for
thousands of molecules, a normal distribution cannot be guaranteed and the amount of

outliers will differ depending how each molecule is described.

This test, developed in 1947, works by comparing two samples in order to know if they come
from the same population. The test is closely related to the Wilcoxon rank-sum test which was
developed earlier in 1945.%° The Wilcoxon signed-rank test works with paired samples, while
the Mann Whitney test was designed to work when the two samples being tested are of

different sizes.®®

The null hypothesis (Ho) is that the two samples come from the same population against an
alternative hypothesis (H1) that the two samples come from different populations. One
commonly used method for accepting or rejecting the null hypothesis is comparing a chosen
alpha (a) level to the p-value obtained by the test.”® Alpha is simply the significance level that
is chosen by the test conductor. The p-value is a probability of obtaining a statistic value that is
as extreme or more extreme to the specified boundary value.”® It is important to note that the
p-value is calculated based on the sample being tested, assuming the null hypothesis is true.”

The convention is to use a p-value 0.05 as recommended by Fisher.”> When a p-value is below
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the significance level, the null hypothesis (Ho) is rejected and the alternative hypothesis (H1) is
accepted. It is worth noting that the alpha value can be on the positive and/or the negative
end of the distribution giving three types of test, a left-tailed, a right-tailed and a two-tailed

test, as illustrated by Figure 2-2.

Figure 2-2. (a) A distribution with a left-tailed alpha value and an equivalent |p-value|. (b) A distribution with a
right-tailed alpha value and an equivalent |p-value|. (c) A distribution with a two-tailed alpha value and a |p-

value| equivalent to alpha/2.

The choice of the tailing of the test is set by the user. It is important to notice that in one tailed
tests the absolute values of the alpha and the p remain similar, but when the a two-tailed test
is chosen the p-value is split between the positive and the negative end, causing it to be half of

the magnitude of the alpha level, as illustrated in Figure 2-2.

2.3.2 Data mining and machine learning

Data mining can be defined as the process of learning from large amount of input data.**
Machine learning, a closely related term, is the use of computers in order to learn from these
large amounts of data.”® The aim of machine learning can be predictive (to know what future

data would look like) and/or descriptive (to know more about existing data).”

Typically, machine learning algorithms can be classified into two types, these are the
supervised methods, which require previously known outcome of the data (labelled data) and
the unsupervised methods, which don’t require previously labelled data.’® More details about

these methods are given in sections 2.3.2.1 and 2.3.2.2.
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2.3.2.1 Unsupervised learning: Principal component analysis (PCA)

As presented earlier, this type of learning works with unlabelled data. One of the most
commonly used unsupervised techniques, and the one used for this project is Principal
Component Analysis (PCA).” It was introduced by K. Pearson back in 1901.%” It works by
projecting the data to a new set of dimensions (variables), which are essentially linear
transformations of existing dimensions.”® The new imaginary variables (known as principal
components) maximize the variance in the dataset in terms of the variables provided. The first
principal component accounts for the largest possible variance, and each succeeding variable
accounts for the highest possible variance, on the condition that each new of these principal
component has to be orthogonal (uncorrelated) to the rest of the principal components. Such
properties make it an ideal way for visualizing the data in a low-dimensional space (for

example in 2D or 3D plots).'®

The technique is used for several purposes, but one of the most popular reasons to apply this
method is data exploration and dimensionality reduction. Additionally, it is used as a

preparatory method before applying other classification techniques.’™

In simpler terms, it
could be used to summarize the data and omit repetitive information from the dataset.’® An

example of a transformation of data in terms of 4 variables to 2 principal components is shown

in Figure 2-3.
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Figure 2-3. An illustration of 4 variables that point in different directions (have some correlation) in terms of

principal components 1 and 2.

Principal components can be calculated via singular matrix decomposition or by eigenvalue
decomposition of the covariance matrix. The software used in this thesis offers both
calculation methods but recommends the latter method as for better numerical accuracy in

the documentation of the “prcomp()” and “princomp()” functions.'®
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2.3.2.2 Supervised learning

In supervised machine learning, we try to find a model that would classify the supplied labelled
data correctly in using the predictors (variables) provided in the dataset. The model that is
established is then used to make future predictions.'® Several supervised machine learning
algorithms exist. Some of the popular algorithms are artificial neural networks,'® logistic
regression,'® and support vector machines.'® In this thesis, logistic regression, and to a lesser
extent, support vector machine are going to be used. An introduction to these methods is

provided.

Logistic regression (LR)

To present the idea of logistic regression, a comparison with linear regression could be
established. Linear regression is used for finding a relationship between variables. However, in
the case of data that belong to two classes (binary outcomes), it is not suitable to fit a linear
regression model. For example if the relationship between an independent, continuous
variable X and a binary dependent variable Y was to be plotted, the outcome will be data

points on two straight lines, with a y value of either 0 or 1, as presented in Figure 2-4.
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Figure 2-4 Values of Y (on the y-axis) vs the values of the continuous variable X (on the x axis).

It is clear that the relationship between X and Y isn’t linear. The logistic regression, a binary
classifier that was developed by D. Cox in 1958 proposes a solution to this problem.’” The
idea is to transform the dependent, binary variable Y so that it becomes a linear function of

% More specifically, it expresses the probability of obtaining the binary

the predictor X.
response of (Y) depending on the values of the predictor variable (X) using a logistic function as

shown in Equation (2-1):

~ 1 (2-1)
P = I o= BotBrxstBoxat 4 Bix)

where p is the probability of an event to happen, S,is the intercept, S;is the coefficient of the
variable x;. Note that the value of the probability p ranges from 0 to 1 while the value of the
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term in the exponent ranges from -co to c0.”"~ The relationship between p and x is not linear,

plotting their relationship results in a sigmoidal curve as illustrated in Figure 2-5. On the other
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hand, this form means that the logarithm of the odds-ratio becomes a linear function of x, as

presented in Equation (2-2).

p 2-2

n(72) = o+ Buxs + Baxa + i, (22)
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Figure 2-5. Fitted probabilities (Y axis) vs the values of X (X axis). Red and black points correspond to two classes,

representing a case of binary data.

The parameters of the function (8, x) in Equation (2-1) are found using a maximum likelihood

estimation (MLE) function. Specifically, the software used in this thesis utilizes the iteratively

reweighted least squares (IRLS) algorithm, as given by the software documentation.'?
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Support vector machines (SVM)

Support Vector Machines is a supervised machine learning technique that has been introduced
by Vapkin in the 1990s.'% Similar to logistic regression, this algorithm requires labelled data. In
its simplest form, the support vector machine algorithm assumes that the given data can be
separated linearly in the space of the provided variables (input space),’® as illustrated in

Figure 2-6.

Figure 2-6. An illustration of support vector machine linearly separating binary data.

The hyperplanes are the dotted lines passing through the nearest points from each group;
these are known as the support vectors. The middle dotted line is known as the decision

boundary.

In support vector machines, the algorithm tries to maximize the margin separating the two

111

classes.” " In the case of non-linearly separable data, the same data can be mapped into a
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higher dimensional space, known as the feature space F in which the data is linearly separable.
Nevertheless, performing this mapping step explicitly could be practically impossible as the
dimensions of the new feature space can be infinite in number. Alternatively, a kernel function
can be introduced to the SVM algorithm, where it allows us to find a separating hyperplane in

112,113

feature space F without mapping the data into the feature space. An illustration of non-

linear SVM, projected back to the input space is shown in Figure 2-7.

Figure 2-7. An illustration of non-linear vector machine with separating binary data.

Multiple kernels such as the Radial Basis Function (RBF) and the Polynomial Kernel can be used
with SVM.'® The choice of a kernel is normally based on prior knowledge of the data being
analysed. Generally, an RBF kernel is used for preliminary testing of SVM.'® But what if the

data is not perfectly separable by SVM? An illustration of such case is shown in Figure 2-8.
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Figure 2-8. An illustration of non-linear support vector machine with soft margins, note that the algorithm
converged despite the misclassification of one black point.

In such a case, it is possible to allow a certain number of incorrect classifications by the model,
also known as soft margins. This helps increasing the simplicity but reduces the accuracy of the

established hypothesis.'®

In comparison to logistic regression, it is possible for SVM to separate non-linear problems,
which could be an advantage above logistic regression. On the parameter optimization of
Support Vector Machines for binary classification] Additionally, unlike the methods optimized
through maximum likelihood estimation, SVM is optimized by structural risk minimization
(SRM), which has no prior assumptions regarding the data used (non-parametric).'*° This offers

SVM another advantage above logistic regression.
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2.3.3 Model selection

After machine learning methods are used to fit statistical models, the best performing models
need to be selected. The techniques that are used for selecting these are discussed in this

section.

2.3.3.1 Cross-validation (CV)

This is a statistical method that estimates the error associated with a model trained on a
dataset to predict a different, independent dataset.'’” Technically, a dataset is randomly split
into k number of partitions, where one or more partitions are used for fitting a model and the
remaining partitions are used for testing the model. A loop of training and testing is repeated k
number of times, until all of the data points have been used for training and for testing the
model. Such a procedure helps avoiding overfitting, where the test set is completely different

108

from the training set. An illustrative example of how this method works is given in

Figure 2-9.
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Figure 2-9. An illustration of how a 5-fold cross-validation works.
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The fundamentals of Cross validation were introduced by Mosier in 1951."“The importance of

this method in model selection in machine learning has been recognized since the 1970s.'*°

Multiple variations have been applied to this method over time.**

In this thesis, 10 fold cross-
validation is going to be used as a standard method for evaluation of model performance.
Although more intense cross validation, such as the leave-one-out method can be performed,
researchers argue that it is more reliable to use a moderate number of folds (10-20), not to
mention how computationally expensive it is to run a leave-one-out method when the dataset

—as it is in the case of this work- is thousands of data points.'?

2.3.3.2 Mean squared error (MSE)

Another method for model selection is MSE. This is simply the mean value of the squared loss
error of each prediction made by a model. This error estimator takes into account the variance

and the bias terms in its calculation, leading to a precise model.’?® In this thesis, MSE was the
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principal method for model evaluation, where it was obtained for each cross-validation loop,
weighted by the sample size of each fold. This is calculated using the formula shown in

Equation (2-3):

1 (2-3)
MSE = = @i = )’
i=1

where §; is the estimated value from the model, y; is the real value (0 for solvates or 1 for
non-solvates) and n is the number of data points. The average weighted MSE of the 10-fold

cross-validation can be calculated using Equation (2-4):

(2-4)
average weighted MSE

I
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where n is the number of folds (10), N, is the sample size in the kth fold, N is the total number

of molecules, and MSE}, is the MSE value of the kth fold. Due to the large sample sizes used
in the analysis, the weighting has minimal effect on the results. The factor % will have a value

very close to 0.1 for each fold, even if the number of molecules is not divisible by 10. For
simplicity, the average weighted MSE calculated by the software is going to be referred to as

MSE from this point onward.
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2.3.3.3 The area under the curve (AUC)

The area under the Receiver operating characteristic (ROC) curve, (see sect