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Abstract 12 

As satellite-derived normalized difference vegetation index (NDVI) is related to vegetation 13 

biomass, it may provide a proxy for habitat quality across extensive species ranges where 14 

ground-truth data are scarce. However, NDVI may have limited accuracy in sparsely-15 

vegetated arid and semi-arid environments due to signal contamination by substrate 16 

reflectance. To validate NDVI as a vegetation proxy in the low-altitude deserts of Central 17 

Asia, we examine its response to precipitation across the migratory corridor of Asian 18 

Houbara Chlamydotis macqueenii, a threatened gamebird occupying deserts from the 19 

Middle East to China. Restricting NDVI data by altitude (masking higher elevations 20 

unoccupied by n=61 satellite-tracked houbara) and 2009 Globcover land cover (excluding 21 

cropland and built-up area), we relate moderate-resolution imaging spectroradiometer 22 

(MODIS) NDVI data to Global Precipitation Climatology Project precipitation data across 23 

five World Wildlife Fund semi-arid ecoregions (totaling 4.06 million km2). We examine this 24 

both spatially (per 1 degree cell, mean annual NDVI and mean precipitation over 16 years, 25 

2000–2015); and temporally (annual NDVI and annual precipitation) using separate 26 

temporal General Linear Models per cell and an overall Generalized Linear Mixed Model 27 

(GLMM) (including cell ID as a random effect). We sought to explain spatial variation in the 28 

NDVI-precipitation relation among temporal per degree-cell models, in terms of the slope 29 

(strength) and adjusted (adj.) R2 (explanatory power), using inter-annual mean NDVI 30 

(2000–2015) and Gridded Livestock of the World livestock density. NDVI increases with 31 

precipitation, both spatially (adj. R2 = 0.58, p < 0.001) and temporally (mean adj. R2 across 32 

n=244, 1 degree cells = 0.44; GLMM across cells p< 0.001).  More vegetated regions show a 33 
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stronger temporal response of vegetation biomass for a given precipitation increment 34 

(slope of NDVI to precipitation in per cell temporal models increases with inter-annual 35 

mean NDVI; adj. R2 = 0.38, p < 0.001), reinforcing the conclusion that NDVI provides a 36 

proxy for vegetation abundance. The slope of this relation did not differ among ecoregions. 37 

Although livestock density is generally assumed to degrade vegetation and weaken the 38 

NDVI-precipitation relationship, explanatory power (adj. R2 of per cell NDVI-precipitation 39 

models) is weakly, but positively, related to livestock density (adj. R2 = 0.02, p = 0.011). 40 

This may be because we assess livestock at a coarse grain, at scales where overall stocking 41 

density is positively associated with vegetation abundance, but may also indicate that 42 

livestock are not degrading vegetation at regional landscape-scales despite potential 43 

localized effects. The strong signature of rainfall shows MODIS NDVI offers a potentially 44 

powerful proxy for spatial and temporal variation in arid and semi-arid vegetation at a 45 

resolution of 1 degree and 1 year over the houbara’s breeding and wintering range, and 46 

probably also at finer spatial resolutions. NDVI can therefore be used in analyses relating 47 

(a) staging and wintering site selection to variation in habitat among potential wintering 48 

locations, and (b) variation within and between localities to demographic carry-over 49 

effects.  50 

Keywords: NDVI, validation, precipitation, Asian Houbara, extensive grazing, pastoralism 51 

1. Introduction 52 

The Normalized Difference Vegetation Index (NDVI) is a remotely sensed, freely-available 53 

proxy for green leaf biomass and leaf area index, related to primary productivity (Tucker 54 

and Sellers, 1986). It supports a mechanistic understanding of how species respond to 55 

climatic and environmental change, thus offering predictive potential. Global coverage and 56 

multi-decadal timespans make NDVI data a powerful ecological tool (Pettorelli et al., 2011, 57 

2005) which has helped explain migration patterns (Bridge et al., 2016; Saino 2004a; 58 

Tøttrup et al., 2008), life history traits (Saino et al., 2004) and avian survival (Grande et al., 59 

2009; Schaub et al., 2005). As NDVI responds to climatic and environmental change, it can 60 

be used to predict how changing precipitation under future climate scenarios may affect 61 

vegetation structure and productivity (Yang et al. 2014), and thus habitat quality and 62 

species distributions (Hu and Jiang, 2011; Singh and Milner-Gulland, 2011). However, the 63 

information content and explanatory power of NDVI as a proxy for vegetation productivity, 64 

indicated by the degree of correlation with precipitation (Weiss et al., 2004) or soil 65 

moisture (Yang et al. 2014), can vary geographically owing to varying signal contamination 66 

by background reflectance. Geographic inconsistency in NDVI performance makes it 67 

problematic for measuring climatic and environmental change, or as a consistent predictor 68 

of species distributions when considered at inter-regional rather than localized scales. 69 

Lower accuracy in some areas may cause the link between NDVI and species distributions 70 



3 

 

to break down (Parra et al., 2004; Pettorelli et al., 2006). Consequently, the performance of 71 

NDVI should be validated across relevant spatial extents, prior to use in ecological 72 

research.  73 

NDVI signal contamination from canopy gaps and background conditions can vary 74 

with precipitation gradients, snowfall, litterfall, soil organic matter content and substrate 75 

mineralogy (Huete et al., 1999), so that the responsiveness of NDVI to vegetation 76 

productivity varies geographically.  NDVI is affected by differences in soil brightness even 77 

for constant vegetation cover, particularly when this is less than 50% (Huete et al., 1985). 78 

Therefore, NDVI may have limited application in sparsely-vegetated arid and semi-arid 79 

environments with abundant exposed substrate, even though problems from clouds, 80 

atmospheric effects, and signal saturation are less in such regions (Gamon et al., 1995; 81 

Kaufman et al., 1992). However, as many desert species are sparsely distributed over large 82 

ranges, making it challenging to obtain extensive field-based measures to model occupancy, 83 

demographic performance and thus habitat suitability, the potential to use NDVI as a proxy 84 

could be extremely valuable. If reliable, NDVI could potentially be used to aid the study and 85 

conservation of a suite of taxa associated with difficult-to-access semi-arid regions of the 86 

Middle East and Central Asia, such as Asiatic Cheetah Acinonyx jubatus venaticus (IUCN 87 

Critically Endangered), Goitered Gazelle Gazella subgutturosa (IUCN Vulnerable), two 88 

subspecies of Asian Wild Ass Equus hemionus onager (IUCN Endangered) and E. hemionus 89 

kulan (Endangered) and Central Asian Tortoise Testudo horsfieldii (IUCN Vulnerable). 90 

Initial global analysis relating inter-annual NDVI to precipitation over 1982–1990 showed 91 

significant and positive correlation in semi-arid regions overall, but a non-significant 92 

correlation in most of Central Asia (Ichii et al., 2002). More recent studies of Central Asia, 93 

with greater sample size (spanning 1980s–2000s) showed a positive NDVI-rainfall 94 

correlation that, however, varied between land use/cover types (Nezlin et al., 2005; 95 

Propastin et al., 2008; Gessner et al., 2013). If both (a) the extent to which precipitation, as 96 

a proxy for potential vegetation productivity, explains observed NDVI and (b) the error or 97 

uncertainty in this signature can be related to landscape processes, this understanding of 98 

regional variation in NDVI-precipitation signature can assist the interpretation of NDVI and 99 

inform the scale at which it should be used (e.g. intra- or transregional). We expect that 100 

within arid to semi-arid areas those with relatively greater vegetation biomass (greater 101 

mean NDVI) will be more strongly (i.e. steeper regression slope) and clearly (greater R2) 102 

responsive to precipitation, as there is more plant material to respond. Furthermore, 103 

vegetation degradation in areas of high livestock density may make NDVI less responsive to 104 

precipitation (provided livestock impacts are extensive relative to NDVI measurement 105 

grain) (Prince et al., 1998; Li et al., 2004). 106 

To examine whether NDVI offers a potentially useful signal of vegetation 107 

productivity and semi-arid habitat structure across non-montane Central Asia, we examine 108 



4 

 

its relationship with precipitation across the migratory range of a population of Asian 109 

Houbara Chlamydotis macqueenii (IUCN Vulnerable: BirdLife International, 2016) from the 110 

southern Kyzylkum Desert, Uzbekistan. Asian Houbara occupy vast and remote desert 111 

regions from the Middle East to China, and birds from Uzbekistan follow a similar 112 

migration as birds from East Kazakhstan along a “flyway” through Turkmenistan and 113 

around the Hindu Kush to wintering areas in southern Afghanistan, Pakistan, and Iran, 114 

where birds from China also winter (Combreau et al., 2011). NDVI could offer a proxy that 115 

may help understand constraints and settlement decisions on migration (routes and 116 

stopover sites), potential inter-annual variation in individual migration choices due to 117 

variations in rainfall, and carry-over effects of wintering site quality (Daunt et al., 2014; 118 

Rushing et al., 2016) on subsequent breeding productivity and survival. Across a large 119 

geographic area encompassing multiple ecoregions, we examine (1) the degree to which 120 

NDVI (from 2000–2015) relates to variation in precipitation (a) spatially (relating mean 121 

NDVI to mean precipitation, among degree cells); (b) inter-annually (within and across 122 

degree cells); (2) whether the NDVI-precipitation relation varies between ecoregions; and 123 

(3) possible drivers or correlates (mean NDVI and livestock density) of spatial variability in 124 

the strength of the NDVI-precipitation relation. 125 

2. Methods 126 

2.1 Study extent 127 

We define our study extent as the outer borders (Fig 1a) of the migratory corridor and 128 

wintering range used by Asian Houbara that breed in Bukhara province, Uzbekistan, and 129 

migrate south to winter in Turkmenistan, Iran, Afghanistan and Pakistan (supported by 5 130 

years of satellite telemetry data: Burnside et al., unpublished), together encompassing an 131 

area of 4.06 million km2. Of the several desert and xeric shrubland World Wildlife Fund 132 

(WWF) terrestrial ecoregions (Olson et al., 2001) in our study area, we focus on five with 133 

varying shrub composition and density (Fig. 1b): 134 

i) Central Asian southern desert, spanning the Karakum and Kyzylkum Deserts of 135 

Turkmenistan and Uzbekistan in the north of the study area, where seasonal 136 

precipitation is greatest during winter and spring;  137 

ii) Central Persian desert basins, occupying western regions of central Iran and 138 

north-west Afghanistan, dominated by a large salt desert in the north and hot sand 139 

and gravel deserts in the east; 140 

(iii) South Iran Nubo-Sindian desert and semi-desert, occupying a hilly coastal 141 

landscape bordering the north of the Persian Gulf on the southern and south-west 142 

limits of the study area;  143 
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(iv) Registan-North Pakistan sandy desert, lying east and south-east of the Central 144 

Persian desert basin, comprising semi-deserts in southern Afghanistan, sandy desert 145 

in Pakistan, and steppes in Iran; and 146 

(v) Baluchistan xeric woodlands, lying further east in Pakistan and Afghanistan, with 147 

varied climate and topography.  148 

2.2 Data processing 149 

2.2.1 Constraints 150 

We constrain the study window to 2000–2015 since higher-resolution Global Precipitation 151 

Climatology Project data are only available for this period. We constrain the study area by 152 

creating masks that exclude heavily modified anthropogenic land use/cover classes that do 153 

not support semi-arid, semi-natural shrub vegetation, and higher-elevation montane areas 154 

not used by Asian Houbara and expected to support different vegetation physiognomy. We 155 

derive land use/cover from Globcover 2009 data (Bontemps et al., 2011) with a 300 m 156 

spatial grain, and resample these to 1 km spatial grain using the nearest-neighbour 157 

algorithm, which assigns to each 1 km cell the classification of the nearest 300 m cell (Fig. 158 

1a). We exclude from our land use/cover mask 1 km cells classified as irrigated, rain-fed 159 

and mosaic cropland where seasonal patterns of NDVI may be independent of 160 

precipitation. Globcover is reported to capture much of the extent of irrigated agriculture 161 

in Central Asia (Fritz et al., 2011), which we further confirmed by visual comparison with 162 

satellite imagery (S1-6). We found that Globcover underestimates the extent of mosaic and 163 

rain-fed agriculture (S7-14), so the higher vegetation productivity in these fields may 164 

introduce noise in the NDVI-precipitation relationship. We also exclude from our land 165 

use/cover mask at 1 km spatial grain artificial surfaces (i.e. urban areas), waterbodies and 166 

permanent snow and ice (Fig. 1a), as these also lack semi-arid vegetation and are 167 

unsuitable for houbara. Globcover misses some cities, waterbodies, and areas of ice and 168 

snow, again introducing noise in the NDVI-precipitation relationship, since NDVI in these 169 

areas is not expected to respond to rainfall (S15-34). However, given that excluded classes 170 

only make up ~16% (13% mosaic and rain-fed agriculture; all others < 3%) of the study 171 

area (compared to 7.6% cover by irrigated agriculture), their underestimation is unlikely to 172 

interfere substantially with the NDVI-precipitation relationship (S35). We map the land 173 

use/cover mask at 1 km spatial grain with all non-relevant classes excluded (S36). We 174 

produce an elevation layer by aggregating 90 m Shuttle Radar Tomography Mission 175 

(SRTM) data to 1 km spatial grain by computing the mean of all 90 m cells in each 1 km cell 176 

(S37a; Jarvis et al., 2015). We then examine the elevation of houbara migration, wintering, 177 

and breeding satellite-telemetry GPS fixes (excluding flight but including foraging 178 

movements, defined as those where mean speed between consecutive fixes is < 2 km hr-1) 179 

for 61 wild birds tracked from 2011–2016 (see S37b for houbara fixes overlaid on 180 
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elevation map), allowing us to exclude from our elevation mask at 1 km spatial grain cells 181 

above the 95th percentile of foraging elevations (1235 m) where houbara do not occur (see 182 

S37c for elevation mask). 183 

2.2.2 NDVI 184 

NDVI, the difference between the red (RED) and near infrared (NIR) spectral bands, 185 

expressed as (NIR – RED) / (NIR + RED), is positively associated with more green 186 

vegetation, as leaves absorb the photosynthetically active red band and reflect in the NIR; 187 

normalizing by the sum of the bands gives an index ranging from –1 to 1 (Tucker, 1979). 188 

We use Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI, which has higher 189 

spatial resolution than other leading products (Pettorelli et al., 2005). For validation we use 190 

1 km resolution data as smaller scales are not relevant to precipitation data; however, 191 

finer-grain MODIS NDVI (e.g. 250 m) would be relevant to fine-scale analysis of houbara 192 

movement. Monthly composites produce temporally-averaged, cloud-free NDVI images 193 

(NASA LP DAAC, 2015). We remove negative values, considered to represent unvegetated 194 

areas (e.g. saltpans, water, snow) (Huete et al., 1999), because NDVI will not respond to 195 

precipitation in these places. We average monthly 1 km spatial grain NDVI by year and map 196 

the mean across the years 2000–2015 (S38a). Additionally, we apply the 1 km spatial grain 197 

land use/cover and elevation masks to exclude areas where NDVI will not respond to 198 

precipitation and high-elevation areas where houbara are not found (S38b). 199 

2.2.3 Precipitation 200 

We quantify annual precipitation (mm.yr-1) using the daily, 1 degree spatial grain Global 201 

Precipitation Climatology Project product (Huffman and Bolvin, 2013) (averaged by month 202 

from September 2000 to August 2015, see 2.2.4). This has global coverage at relatively high 203 

resolution, and is derived from both satellite and, importantly (as there are relatively few 204 

rain-gauges in the study area: Schneider et al., 2008), rain-gauge measurements (National 205 

Center for Atmospheric Research Staff, 2014). We aggregate the 1 km NDVI data to 1 206 

degree spatial grain by computing the mean of all unmasked 1 km cells in each 1 degree 207 

cell, considering only those 1 degree cells with > 50 % of their area covered by unmasked 1 208 

km cells. NDVI values of 1 degree cells retaining few 1 km cells after masking are likely to 209 

be biased because the small number of residual cells on the fringes of large masked regions 210 

of agriculture may be misclassified and also represent agriculture. Finally, we mask the 1 211 

degree precipitation data by the masked 1 degree NDVI data so that their spatial extents 212 

are consistent and only suitable land uses/covers and elevations remain. 213 

2.2.4 Summarizing annual NDVI and precipitation 214 

Prior to analysis, preliminary data inspection revealed considerable geographic variation in 215 

seasonality across the study area, in terms of timing and length of periods of precipitation 216 

and NDVI (Fig. 2). As fixed growing and wet seasons could not be consistently defined, we 217 
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calculate mean annual precipitation and NDVI. Annual mean NDVI is typically used to 218 

measure inter-annual variability in productivity and to determine how much of this 219 

variability is explained by annual average rainfall (Pettorelli et al., 2005). Although 220 

integrated NDVI can be calculated across year- and cell-specific ‘growing seasons’ defined 221 

by inflection points in the rate of change of monthly NDVI (Reed et al., 1994), this was not 222 

considered appropriate, given the low amplitude of annual NDVI variation and the erratic, 223 

ephemeral and sometimes unpredictable patterns of rainfall in the study region. We 224 

observe that the precipitation and NDVI signals are lowest in the summer months across all 225 

cells (Fig. 2; S39–44), but the timing of peak precipitation and vegetation growth varies 226 

geographically from autumn, through winter, to late winter/spring. To capture the majority 227 

of the precipitation and NDVI signals in a consistent one-year window, we measure both 228 

from the middle of summer in one year to the same in the next; thus autumn–winter–229 

spring vegetation is related to precipitation from the same time-period. We tested different 230 

summer splits, and found the August–September split gave the best average fit of temporal 231 

models relating annual NDVI to precipitation in separate 1 degree cells (S45, see full 232 

temporal model description below). The fit of these models was not improved by offsetting 233 

precipitation and lagging NDVI by different numbers of months (assuming that NDVI signal 234 

follows precipitation) (S46); therefore we consider annual precipitation and annual NDVI 235 

from the beginning of September of year 1 to the end of August in year 2, aggregating 236 

autumnal, winter and spring rainfall and NDVI (15 annual intervals, from 2000 to 2015). 237 

We map the inter-annual mean and standard deviation of annual mean monthly NDVI and 238 

cumulative annual precipitation (Fig. 3), as well as the annual values of both variables 239 

(S47–48), which serve as inputs to models relating NDVI and precipitation across space 240 

and through time. 241 

2.3 Relating NDVI to precipitation 242 

2.3.1 Inter-annual mean (spatial relation) 243 

To examine the spatial relation between long-term patterns of rainfall and NDVI, across 244 

replicate 1 degree cells (n=244) for the masked study area (see Fig. 3), we relate the inter-245 

annual mean (across 2000–2015) of annual mean monthly NDVI (hereafter ‘mean NDVI’) 246 

to the inter-annual mean of cumulative annual precipitation (mm.yr-1) (hereafter ‘mean 247 

precipitation’), in a General Linear Model (GLM) fitted by least squares, with normal error 248 

and both variables log-transformed to satisfy homoscedasticity of model residuals. We do 249 

not consider temperature in the model or in the temporal analysis below (see 2.3.2) as 250 

precipitation has a greater influence on NDVI than temperature in semiarid regions 251 

globally (Ichii et al., 2002; Fensholt et al., 2012), and precipitation, but not temperature, 252 

correlates with growing season NDVI (March to November) in Central Asia (Propastin et al., 253 

2008). We also examine whether this relation between mean NDVI and mean precipitation 254 

differs between ecoregions, testing the additive effect of ecoregion, the relation with mean 255 
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precipitation and the interaction between these (different slope, response magnitude), 256 

assessed by a χ2 test of -2 × (log likelihood ratio) of two nested models with degrees of 257 

freedom equal to the number of parameters removed. 258 

2.3.2 By-cell annual mean (temporal variation) 259 

Having explored the spatial association between mean (long-term) NDVI and rainfall, we 260 

then relate inter-annual variability (across 2000–2015, n= 15 years) in annual NDVI to 261 

cumulative annual precipitation (mm.yr-1) (see S47–48 for model input layers). We 262 

examine the overall relation across the entire study area, using a Generalized Linear Mixed 263 

effects Model (GLMM, with normal error) incorporating precipitation as a fixed effect and 264 

random intercepts and slopes for each cell to control for pseudo-replication, conducted in 265 

lme4 (Bates et al., 2014). We again log-transform both variables to satisfy homoscedasticity 266 

and assess significance by a likelihood ratio test (tested as χ2) on removing from the full 267 

model. Then, separately for each of the 244 1 degree cells in the area of interest, we relate 268 

annual NDVI to cumulative annual precipitation (mm.yr-1) (both log-transformed), using 269 

independent general linear models. Mapped model results reveal spatial patterns in the 270 

effect size or strength (slope coefficient of NDVI-precipitation relation) and explanatory 271 

power (R2) of the per degree cell models, which we then relate to covariates (mean NDVI, 272 

livestock density) to test a priori hypotheses (see 2.3.4). 273 

2.3.3 Ecoregional variation 274 

We expect spatial heterogeneity among semi-arid ecoregions in overall NDVI, precipitation 275 

and the information content of the NDVI-precipitation model. Variation in how responsive 276 

and tightly related (explanatory power) NDVI is to precipitation may signal that NDVI is a 277 

better proxy for habitat in some ecoregions than others, informing use of NDVI to examine 278 

winter site selection across the flyway, and whether it can be used at inter- as well as intra-279 

regional scales. For the five semi-arid WWF ecoregions in the area of interest (Fig. 2b), we 280 

compare the inter-annual mean and standard deviation at 1 degree spatial grain of NDVI, 281 

mean and SD of cumulative precipitation (mm.yr-1), and effect size (coefficient) and 282 

association strength (adjusted R2) of per 1 degree cell NDVI-precipitation models, using a 283 

GLM with ecoregion as a categorical fixed effect (i.e. an ANOVA), comparing means between 284 

ecoregions by a Tukey HSD multiple comparison test conducted in the agricolae R package 285 

(Mendiburu, 2016). 286 

2.3.4 Geographic correlates of NDVI-precipitation signature 287 

We investigate factors that may explain spatial variation (among degree cells) in the 288 

strength of association (GLM slope and adjusted R2) between NDVI and precipitation, 289 

considering inter-annual mean NDVI and livestock density as potential explanatory 290 

variables. Numbers of sheep and goats, the main livestock used in semi-arid areas and 291 
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frequently blamed for vegetation degradation in the study area (Wint and Robinson, 2007), 292 

were summed from the Gridded Livestock of the World (GLW) dataset, aggregating from 293 

0.05 degree to 1 degree resolution and log(1+x)-transforming to maintain 294 

homoscedasticity. As the variance inflation factor (VIF) of each of the two predictors was < 295 

3 (S49), we consider that they are not collinear and can be simultaneously included in 296 

models (Zuur et al., 2010). We model the slope, and separately adj. R2, as a linear function 297 

(GLM) of inter-annual mean NDVI and sheep and goat density km-2 at 1 degree spatial grain 298 

(n=244, see S50 for untransformed model input layers). In a separate GLM, relating slope of 299 

NDVI-precipitation to mean NDVI, we also examine differences (additive effects) of mean 300 

NDVI between ecoregions and the interaction of ecoregion and mean NDVI (does the 301 

strength of response of slope to mean NDVI differ between ecoregions). We expect steeper 302 

slopes in cells with greater vegetation density (inter-annual mean NDVI) and shallower 303 

slopes in lower density cells, however we would not expect the nature of this relationship 304 

to vary between ecoregions. For all models, we use backward elimination based on a χ2 test 305 

of -2 × (log likelihood ratio) of two nested models with degrees of freedom equal to the 306 

number of parameters removed to assess parameter significance. The structure and 307 

specification of significant analytical models are summarized in Table 1. 308 

3. Results 309 

3.1 Relating NDVI to precipitation 310 

Mean precipitation (2000–2015) at 1 degree spatial grain (n=244) over the Asian Houbara 311 

migratory range is highest (based on Tukey HSD test) in Baluchistan (455 mm.yr-1 ± 182 312 

sd), followed by Central Asia (337 ± 57.3), South Iran (289 ± 79.3), and Central Persia (273 313 

± 73.5), and lowest in Registan (195 ± 35.2) (Fig. 4a; S51). Following a similar pattern, 314 

mean NDVI (January–December) at 1 km spatial grain (n=2,863,519) is highest (based on 315 

Tukey HSD test) in Central Asia (0.125 mm.yr-1 ± 0.0293 sd), and decreases in descending 316 

order in Baluchistan (0.119 ± 0.0485), South Iran (0.0942 ± 0.0385), Central Persia (0.0897 317 

± 0.0316) and Registan (0.0817 ± 0.0217) (Fig. 4b; S51).  318 

Spatially, across the entire area of interest, long-term inter-annual mean NDVI (n= 319 

15 years, 2000–2015) is greater in 1 degree cells (n=244) with higher long-term mean 320 

precipitation (mm.yr-1) (𝜒2(1) = 15.02, p < 0.001): NDVI = –5.98 ± 0.205 se + (0.654 ± 321 

0.0353 se) × precipitation. Mean precipitation explained (adj. R2) 58% of the variance in 322 

inter-annual mean NDVI per 1 degree cell. We show the NDVI-precipitation relationship by 323 

ecoregion (Fig. 5; Table 1, model 1), reducing the overall adj. R2 to 0.48 because doing so 324 

limits the data extent (n=166, 1 degree cells). Incorporating a term for ecoregion (Table 1, 325 

model 2) improves model fit (𝜒2(4) = 2.04, p < 0.001 on removal of ecoregion from the 326 

precipitation mean + ecoregion model), however the interaction between ecoregion and 327 
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mean precipitation does not (𝜒2(4) = 0.14, p = 0.33 on removal of the interaction from the 328 

precipitation mean + ecoregion + ecoregion:precipitation mean model), indicating that the 329 

intercept but not the slope of the NDVI-precipitation relation differs among ecoregions. 330 

Compared to all other ecoregions, the intercept is significantly higher in Central Asia 331 

(controlling for table-wide significance with Holm adjustment, see S52-57 for full model 332 

results). 333 

Temporally, across the area of interest (n=244, 1 degree cells) annual NDVI (n=15 334 

across 2000–2015, n=3660 cell-year observations) was greater in years with higher 335 

cumulative annual precipitation (mm.yr-1); in a GLMM controlling for degree cell (random 336 

intercepts and slopes; Table 1, model 3) (𝜒2(1) = 314.15, p < 0.001, Marginal R2GLMM = 0.14, 337 

Conditional R2GLMM = 0.95): NDVI = –3.6 ± 0.044 se + (0.23 ± 0.0091 se) × precipitation. 338 

Separate general linear models (with normal error) relating annual NDVI to cumulative 339 

annual precipitation for each of the 244 1 degree cells, had a similar mean slope (0.233 ± 340 

0.157 sd) and a mean adj. R2 of 0.436 ± 0.231 sd (Table 1, model 4; Fig. 6), confirming the 341 

strong overall temporal relation but revealing considerable spatial variation in its strength 342 

and explanatory power. 343 

3.2 Geographic correlates of NDVI-precipitation signature 344 

NDVI-precipitation model results systematically differed between the five semi-arid WWF 345 

ecoregions. Slope values of the 244 separate 1 degree cell linear models relating mean 346 

annual NDVI to cumulative annual precipitation (mm.yr-1) are two or more times greater 347 

(based on Tukey HSD test) in Central Asia (0.291 ± 0.154 sd), Baluchistan (0.2330 ± 0.107) 348 

and South Iran (0.199 ± 0.0910) than in Registan (0.105 ± 0.0553) and Central Persia 349 

(0.0707 ± 0.0763), which are similar (Fig. 7a; S51). Adjusted R2 values (n=244) of separate 350 

1 degree cell linear models are higher (based on Tukey HSD test) in Baluchistan (0.627 ± 351 

0.117 sd), Registan (0.553 ± 0.176) and South Iran (0.544 ± 0.201) than in Central Asia 352 

(0.476 ± 0.177), and are more than three times higher in these first three regions than in 353 

Central Persia (0.166 ± 0.176) (Fig. 7b; S51). Mean NDVI and livestock density in part 354 

explain this heterogeneity in NDVI-precipitation relation. The strength (slope coefficient) of 355 

the NDVI-precipitation relation per 1 degree cell, is greater in cells with greater mean NDVI 356 

(Table 1, model 5) (𝜒2(1) = 2.26, p < 0.001, adj. R2 = 0.38): slope = –0.0624 ± 0.0259 se + 357 

(2.5 ± 0.207 se) × mean NDVI, but was not affected by livestock density (𝜒2(1) = 0.04, p = 358 

0.099 on removing livestock from model including mean NDVI). In contrast, the 359 

explanatory power (adjusted R2) of per 1 degree cell NDVI-precipitation models is weakly, 360 

but positively, related to livestock density (Table 1, model 6) (𝜒2(1) = 0.33, p = 0.0105, adj. 361 

R2 = 0.023): adj. R2 = 0.403 ± 0.0202 se + (0.0203 ± 0.00793 se) × livestock density, but not 362 

to mean NDVI (𝜒2(1) = 0.03, p = 0.416 on removing mean NDVI from model including 363 

livestock). In the separate models testing ecoregion influence on the slope of the NDVI-364 

precipitation relation (Table 1, model 7), ecoregion is significant (𝜒2(4) = 0.41, p < 0.001 on 365 



11 

 

removing ecoregion from the NDVI mean + ecoregion model), however the interaction of 366 

ecoregion and mean NDVI is not (𝜒2(4) = 0.04, p = 0.46 on removing the interaction from 367 

the NDVI mean + ecoregion + ecoregion:NDVI mean model), indicating that the intercept 368 

but not the slope of the relation varies between ecoregions. Pairwise comparison shows 369 

significant groupings between ecoregions (controlling for table-wide significance with 370 

holm adjustment, see S58-65 for full model results). 371 

4. Discussion 372 

4.1 NDVI as a vegetation proxy 373 

Overall, MODIS NDVI is positively related to precipitation and thus offers information on 374 

spatial and temporal variation in green vegetation biomass across the Asian Houbara’s 375 

range. The significance and high explanatory power of models relating per 1 degree cell 376 

mean NDVI to mean precipitation indicates a strong geographic relation between regional 377 

rainfall levels and vegetation biomass across this wide sweep of arid and semi-arid 378 

ecosystems. Areas with greater mean rainfall (such as the southern Central Asian desert 379 

and Baluchistan xeric woodlands) had greater mean NDVI. Furthermore, both within and 380 

across ecoregions, temporal (inter-annual) variation in annual NDVI was strongly and 381 

significantly related to variation in annual precipitation, supporting the interpretation of 382 

NDVI as providing information on local temporal variation in vegetation cover and 383 

productivity. Importantly, the response of annual NDVI to annual precipitation varied 384 

among ecoregions and at finer (1 degree) scales, with the strength (slope) of this signature 385 

positively related to mean NDVI. This is not surprising, as areas that have greater 386 

vegetation biomass and thus NDVI have more vegetation available to respond (in terms of 387 

contributing to the NDVI increment) to a given change in precipitation volume and thus 388 

water availability. This suggests that semi-arid landscapes with greater long-term levels of 389 

vegetation cover may experience greater amplitude of temporal variability in habitat 390 

quality for a given amplitude of climatic variation. It is surprising, therefore, that the 391 

strength of association (R2) between annual NDVI and annual precipitation was not also 392 

related to mean NDVI. However, other differences in vegetation structure and plant species 393 

composition (or temperature) between ecoregions may also affect the slope of the NDVI-394 

precipitation relation; South Iran has mean NDVI that is broadly similar to (though 395 

significantly greater than) that of Central Persia and Registan, but is almost twice as 396 

sensitive to precipitation. 397 

Unexpectedly, the robustness of the temporal NDVI-precipitation relation (in terms 398 

of the adj. R2 of temporal per-cell models) increases rather than decreases with livestock 399 

density. It may be that the coarse spatial grain of the analysis, which resamples Gridded 400 

Livestock of the World data from a 0.05 to 1 degree spatial grain, obscures a finer-scale 401 
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negative relationship that has been found between NDVI and livestock, e.g. at scales of one 402 

or a few kilometers relative to settlement foci or watering points (Behnke et al., 2006; 403 

Rajabov et al., 2009). At the coarse scale of our analysis, as constrained by resolution of 404 

precipitation data, it is likely that more livestock are grazed where there is more green 405 

vegetation. However, the positive association between NDVI-precipitation adj. R2 and 406 

livestock density suggests that widely assumed perceptions of widespread degradation by 407 

livestock (e.g. MEA), sometimes socially constructed without objective evidence (e.g. 408 

Stringer, 2008), may not be reflected in landscape-scale measures of vegetation. Notably, 409 

Koshkin et al. (2014) found no evidence that extensive livestock browsing in Bukhara 410 

province, Uzbekistan, altered semi-arid shrub vegetation structure at landscape scales. 411 

Though by showing NDVI relates to rainfall, and is thus a robust measure of vegetation 412 

volume, we validate its use (at appropriate scales) to further explore degradation effects at 413 

finer resolutions. 414 

4.2 Implications for species habitat modelling  415 

The broad spatial and temporal association between mean and annual NDVI and 416 

precipitation, across the full extent of the area of interest (spanning five WWF arid or semi-417 

arid ecoregions), suggests that NDVI could be used as a proxy for vegetation abundance 418 

through space and time even at such wide geographic scales. Demographic data for Asian 419 

Houbara may support this. Breeding population densities are an order of magnitude higher 420 

in the Kyzylkum Desert (within Central Asian ecoregion; 0.06 birds per square km) than in 421 

northern Iran (within Central Persian ecoregion; 0.008 birds per square km: Allinson, 422 

2014), where mean NDVI are 0.1250 and 0.0897 respectively, although intensity of local 423 

persecution may be an additional factor (Goriup, 1997). 424 

Owing to limitations in availability of precipitation data we conducted our analysis 425 

at a spatial grain of 1 degree, while ecological analyses in relation to bird or animal 426 

movements, and analyses examining demographic responses to habitat quality at wintering 427 

sites, will likely be conducted at finer spatial grain. Nevertheless, we expect that the spatial 428 

and temporal NDVI-precipitation relation would be robust at such finer scales, as the 429 

relation detected at coarse scales is a summation of the localized responses of vegetation to 430 

prevailing precipitation. Furthermore, as the coarse-grain resolution of precipitation data 431 

averages across rainfall events that may be localized and spatially variable within arid 432 

regions (Noy-Meir, 1973), the vegetation response may be even stronger at local scales if 433 

suitable fine-grain precipitation data are available for such analysis. Lastly, resampling 434 

(averaging) NDVI across degree cells removes ecologically important information relating 435 

to localized topography (e.g. wadis and salt pans or solonchaks) and localized habitat 436 

degradation (e.g. in close proximity to villages or wells: Behnke et al., 2006; Rajabov et al., 437 

2009), potentially making finer-scale NDVI more informative. 438 
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As annual NDVI was responsive to temporal variation in annual precipitation, for a 439 

given wintering area NDVI (or NDVI anomaly relative to the local inter-annual mean) can 440 

be used as a proxy for temporal variation in habitat quality to examine potential carry-over 441 

effects between years for individuals wintering within the same ecoregion. NDVI also offers 442 

the potential to examine stopover and wintering site selection relative to other available 443 

areas within the same ecoregional landscapes, potentially reflecting local variation in plant 444 

community composition, structure and productivity (e.g. through substrate and 445 

topography) but also habitat degradation.  446 

At greater study scales across the flyway, it appears appropriate to use mean inter-447 

annual NDVI as a proxy for relative habitat quality or vegetation productivity between and 448 

across ecoregions that differ in bioclimatic character, owing to the broad spatial correlation 449 

between mean NDVI and mean precipitation and the overall positive relation between the 450 

strength of the temporal NDVI-precipitation signature and per-cell mean NDVI. However, 451 

when examining site selection and inter-annual carry-over effects (i.e. by relating 452 

subsequent performance to inter-annual variation in habitat quality at a location) 453 

simultaneously across individuals wintering in different ecoregions (i.e. to maximize 454 

sample size); variation in the strength of the NDVI-precipitation signature advises caution. 455 

Central Asia has greater NDVI for the same level of precipitation than all other ecoregions 456 

(significant additive effect), however ecoregion does not influence how much mean NDVI 457 

increases for a given precipitation increment (non-significant interaction), suggesting 458 

comparison of site selection effects is appropriate across wintering ecoregions (Central 459 

Persia, Registan, South Iran, and Baluchistan) but should be considered separately for 460 

breeding (Central Asia, versus other ecoregions). Similarly, the slope of the relation 461 

between annual NDVI and annual precipitation differs for the same mean NDVI by 462 

ecoregion (significant additive effect), but ecoregion does not affect how much the slope 463 

increases for a given mean NDVI increment (non-significant interaction), supporting 464 

comparison of carry-over effects only between ecoregions. Validating NDVI across space 465 

and time in arid and semi-arid environments opens the way to understanding how it 466 

relates to species’ habitat, which will aid in the study and conservation of the Asian 467 

Houbara and other threatened species which share its range. 468 
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Figure legends 628 

Figure 1. Maps of (a) land use/cover (Bontemps et al., 2011) and (b) elevation (Jarvis et al., 629 

2015) overlaid with semi-arid WWF ecoregions (Olson et al., 2001) at 1 km spatial grain. 630 

See supplementary information for validation of mapped land use/cover data with Google 631 

Earth imagery. 632 

Figure 2. Mean monthly precipitation (mm.month-1) and NDVI (mean per month, across 633 

2000–2014, late 2015 data unavailable) for degree cells sampled within each of five semi-634 

arid ecoregions. The month axis is offset from minimum to minimum. For reference are a 635 

vertical red line at March and gray box from February to May. 636 

Figure 3. Inter-annual mean and standard deviation of mean annual NDVI (a, b) and 637 

cumulative annual precipitation (mm.yr-1) (c, d) across 2000–2015 at 1 degree spatial 638 

grain masked by land use/cover and elevation. 639 

Figure 4. Box and whisker plots for each semi-arid ecoregion of the inter-annual mean of 640 

(a) cumulative annual precipitation (mm.yr-1) and (b) mean annual NDVI across 2000–641 

2015, at 1 km and 1 degree spatial grain. Plots show the median, boxes bound the second 642 

and third quartiles, lower and upper whiskers extend to the most distal value within 1.5 × 643 

IQR (inter-quartile range) of the second and third quartiles respectively, with outliers 644 

beyond the whiskers plotted as points. Superscripts show homogenous subsets identified 645 

by Tukey HSD tests. 646 

Figure 5. Inter-annual mean of mean annual NDVI versus cumulative annual precipitation 647 

(mm.yr-1) at 1 degree spatial grain (n=244) for the extent of the five ecoregions and by 648 

individual ecoregion across 2000–2015. NDVI significantly relates to precipitation (𝜒2(1) = 649 

15.02, p < 0.001, adj. R2 = 0.58): NDVI = –5.98 ± 0.205 se + (0.654 ± 0.0353 se) × 650 

precipitation across the full area of interest. However showing the relationship by 651 

ecoregion limits the data extent, reducing the overall adj. R2 to 0.48. 652 

Figure 6. Slope (a) and adjusted R2 (b) separately for each of 244 1 degree cells in the area 653 

of interest, of GLMs (with normal error) relating annual NDVI to cumulative annual 654 

precipitation (mm.yr-1) across 2000–2015 (n=15). We map the slope and adj. R2 for log-655 

transformed data (to satisfy homoscedasticity) of models across cells. Mean slope and R2 656 

across cells are 0.233 ± 0.157 sd and 0.436 ± 0.231 sd. 657 

Figure 7. Box and whisker plots for each semi-arid ecoregion of the (a) slope and (b) 658 

adjusted R2 values of the 244 separate 1 degree cell linear models relating mean annual 659 

NDVI to cumulative annual precipitation (mm.yr-1) (2000–2015, n=244). Plots show the 660 

median, boxes bound the second and third quartiles, lower and upper whiskers extend to 661 
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the most distal value within 1.5 × IQR (inter-quartile range) of the second and third 662 

quartiles respectively with outliers beyond the whiskers plotted as points. 663 
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Tables 688 

Table 1. Summary of models analyzed, specifying model structure, response and predictor 689 

variables, overall model significance and explanatory power. GLM denotes a General Linear 690 

Model, GLMM a Generalised Linear Mixed effects Model, for which M-R2GLMM is the Marginal 691 

R2, and C-R2GLMM the Conditional R2. χ2 tests the change in model performance relative to 692 

the null model, or on model simplification (removal of ecoregion term, models 2 and 7). 693 

 694 

Model Response Predictor(s) Structure n cells 𝜒2 p R2 

1 Inter-annual 

mean NDVI 

Inter-annual mean 

precipitation (mm.yr-1) 

GLM 

(across 

cells) 

166 𝜒2(1) = 

6.47 

<0.001 adj. R2 = 

0.48 

2 Inter-annual 

mean NDVI 

Inter-annual mean 

precipitation (mm.yr-1), 

ecoregion 

GLM 

(across 

cells) 

166 𝜒2(4) = 

2.04 

<0.001 adj. R2 = 

0.62 

3 Annual NDVI Annual precipitation 

(mm.yr-1), 

Cell ID (random) 

GLMM 

(across 

cells) 

3660 cell-year 

observations 

𝜒2(1) = 

314.15 

<0.001 M-R2
GLMM = 

0.14, 

C-R2
GLMM = 

0.95 

4 Annual NDVI Annual precipitation 

(mm.yr-1) 

GLM (per 

cell) 

244   Mean adj. R2 

= 0.436 ± 

0.231 sd 

5 Annual NDVI-

precipitation 

slope per cell 

(β of model 4) 

Inter-annual mean NDVI GLM 

(across 

cells) 

244 𝜒2(1) = 

2.26 

<0.001 adj. R2 = 

0.38 

6 Annual NDVI-

precipitation 

adj. R2 per cell 

(of model 4) 

Livestock density GLM 

(across 

cells) 

244 𝜒2(1) = 

0.33 

0.0105 adj. R2 = 

0.023 

7 Annual NDVI-

precipitation 

slope per cell 

(β of model 4) 

Inter-annual mean NDVI, 

ecoregion 

GLM 

(across 

cells) 

166 𝜒2(4) = 

0.41 

<0.001 adj. R2 = 

0.50 



28 

 

Supplementary information 695 

Side-by-side comparisons of Globcover 2009 classification and Google Earth satellite 696 

imagery. 697 

Cropland 698 

Large areas of continuous cropland 699 

 700 

S1: Irrigated cropland in Bukhara, Uzbekistan 701 
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 702 

S2: Satellite view of Bukhara, Uzbekistan 703 

 704 

S3: Irrigated cropland along the Amu Darya near the Uzbekistan–Turkmenistan border 705 
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 706 

S4: Satellite view of the Amu Darya near the Uzbekistan–Turkmenistan border 707 

 708 

S5: Irrigated cropland in Mary, Turkmenistan 709 
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 710 

S6: Satellite view of Mary, Turkmenistan 711 

Boundary between cities and desert 712 

 713 
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S7: Cropland in Sirjan, south-east Iran 714 

 715 

S8: Satellite view of Sirjan, south-east Iran 716 

 717 



33 

 

S9: Cropland in Quetta, Balochistan province, Pakistan 718 

 719 

S10: Satellite view of Quetta, Balochistan province, Pakistan 720 

 721 
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S11: Cropland in Khuzdar, Balochistan province, Pakistan 722 

 723 

S12: Satellite view of Khuzdar, Balochistan province, Pakistan 724 

 725 
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S13: Cropland in Turbat, Balochistan province, Pakistan 726 

 727 

S14: Satellite view of Turbat, Balochistan province, Pakistan 728 



36 

 

Artificial surfaces 729 

High population cities 730 

 731 

S15: Artificial surfaces in Tashkent, Uzbekistan 732 
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 733 

S16: Satellite view of Tashkent, Uzbekistan 734 

 735 

S17: Artificial surfaces in Ashgabat, Turkmenistan 736 
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 737 

S18: Satellite view of Ashgabat, Turkmenistan 738 

Low population cities 739 

 740 
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S19: Artificial surfaces in Bukhara, Uzbekistan 741 

 742 

S20: Satellite view of Bukhara, Uzbekistan 743 

 744 
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S21: Artificial surfaces in Turkmenabat, Turkmenistan 745 

 746 

S22: Satellite view of Turkmenabat, Turkmenistan 747 
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Waterbodies 748 

Saltpans 749 

 750 

S23: Waterbody classification of Haj Aligholi saltpan, northern Iran 751 
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 752 

S24: Satellite view of Haj Aligholi saltpan, northern Iran 753 

 754 
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S25: Waterbody classification of a saltpan near the Regional Cooperation for Development 755 

Highway, western Balochistan province, Pakistan 756 

 757 

S26: Satellite view of a saltpan near the Regional Cooperation for Development Highway, 758 

western Balochistan province, Pakistan 759 
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Lakes 760 

 761 

S27: Waterbody classifcation of Tudakul Lake, east of Bukhara, Uzbekistan 762 

 763 
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S28: Satellite view of Tudakul Lake, east of Bukhara, Uzbekistan 764 

Rivers 765 

 766 

S29: Waterbody classifcation of the Amu Darya near Turkmenabat, Turkmenistan 767 
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 768 

S30: Satellite view of the Amu Darya near Turkmenabat, Turkmenistan 769 
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Permanent snow and ice 770 

 771 

S31: Permanent snow and ice near the Uzbekistan–Tajikistan border 772 
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 773 

S32: Satellite view of the Uzbekistan–Tajikistan border 774 

 775 

S33: Permanent snow and ice in north-east Afghanistan 776 
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 777 

S34: Satellite view of north-east Afghanistan 778 

Classification 

Percent 

cover 

Post-flooding or irrigated croplands (or aquatic) 7.6 

Rainfed croplands 1.7 

Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20–

50%) 

3.6 

Mosaic vegetation (grassland/shrubland/forest) (50–70%) / cropland (20–

50%) 

7.1 

Closed to open (>15%) broadleaved evergreen or semi-deciduous forest 

(>5m) 

0 

Closed (>40%) broadleaved deciduous forest (>5m) 0.4 

Open (15–40%) broadleaved deciduous forest/woodland (>5m) 0 

Closed (>40%) needleleaved evergreen forest (>5m) 0.1 

Open (15–40%) needleleaved deciduous or evergreen forest (>5m) 0 

Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) 0.1 

Mosaic forest or shrubland (50–70%) / grassland (20–50%) 0.9 
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Mosaic grassland (50–70%) / forest or shrubland (20–50%) 1 

Closed to open (>15%) (broadleaved or needleleaved, evergreen or 

deciduous) shrubland (<5m) 

0.2 

Closed to open (>15%) herbaceous vegetation (grassland, savannas or 

lichens/mosses) 

5.9 

Sparse (<15%) vegetation 6.6 

Closed (>40%) broadleaved forest or shrubland permanently flooded - 

Saline or brackish water 

0 

Closed to open (>15%) grassland or woody vegetation on regularly flooded 

or waterlogged soil - Fresh, brackish or saline water 

0 

Artificial surfaces and associated areas (Urban areas >50%) 0.1 

Bare areas 61.9 

Water bodies 1.4 

Permanent snow and ice 1.3 

S35: Percent cover of land use / cover classes in area of interest (Bontemps et al., 2011). 779 

 780 
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S36: Land use / cover mask at 1 km spatial grain with croplands, artificial surfaces, water 781 

bodies, and snow / ice excluded (unshaded) (Bontemps et al., 2011). 782 

 783 
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S37: Map of (a) elevation at 1 km spatial grain (Jarvis et al., 2015), (b) overlaid with 784 

houbara GPS fixes for 61 wild birds from 2011–2016, and (c) resulting mask with areas 785 

>1235 m excluded. 786 

 787 

S38: Inter-annual mean of mean annual NDVI across 2000–15 (January–December) (a) at 1 788 

km spatial grain and (b) masked by land use/cover and elevation suitable for houbara. 789 
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  790 

S39: Inter-annual mean of mean annual NDVI from 2000–2015 at 1 degree spatial grain 791 

overlaid with WWF ecoregions (Olson et al., 2001). 792 
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  793 

S40: Mean monthly precipitation (mm.month-1) and NDVI (across 2000–2014, late 2015 794 

data unavailable) for degree cells sampled in the Central Asian southern desert. The month 795 

axes are offset from minimum to minimum. For reference are a vertical red line at March 796 

and gray box from February to May. 797 
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 798 

S41: Mean monthly precipitation (mm.month-1) and NDVI (across 2000–2014, late 2015 799 

data unavailable) for degree cells sampled in the Central Persian desert basins. The month 800 

axes are offset from minimum to minimum. For reference are a vertical red line at March 801 

and gray box from February to May. 802 
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  803 

S42: Mean monthly precipitation (mm.month-1) and NDVI (across 2000–2014, late 2015 804 

data unavailable) for degree cells sampled in the South Iran Nubo-Sindian desert and semi-805 

desert. The month axes are offset from minimum to minimum. For reference are a vertical 806 

red line at March and gray box from February to May. 807 
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  808 

S43: Mean monthly precipitation (mm.month-1) and NDVI (across 2000–2014, late 2015 809 

data unavailable) for degree cells sampled in the Registan-North Pakistan sandy desert. 810 

The month axes are offset from minimum to minimum. For reference are a vertical red line 811 

at March and gray box from February to May. 812 
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  813 

S44: Mean monthly precipitation (mm.month-1) and NDVI (across 2000–2014, late 2015 814 

data unavailable) for degree cells sampled in the Baluchistan xeric woodlands. The month 815 

axes are offset from minimum to minimum. For reference are a vertical red line at March 816 

and gray box from February to May. 817 

 818 

S45: Mean and standard deviation of adjusted R2 values of the 244 separate 1 degree cell 819 

linear models relating mean annual NDVI to cumulative annual precipitation (2000–2015, 820 

n=244) for different annual splits during late spring, summer, and early autumn months. 821 
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 822 

S46: Mean and standard deviation of adjusted R2 values of the 244 separate 1 degree cell 823 

linear models relating mean annual NDVI to cumulative annual precipitation (2000–2015, 824 

n=244) for different numbers of months annual NDVI is offset ahead of annual 825 

precipitation where annual precipitation is considered from August to September. 826 

 827 
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  828 

S47: Inter-annual mean of mean annual NDVI by year across 15 annual intervals (split from 829 

August to September) spanning 2000-2015 at 1 degree spatial grain masked by land use / 830 

cover and elevation. 831 
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 832 

S48: Inter-annual mean of cumulative annual precipitation (mm.yr-1) by year across 15 833 

annual intervals (split from August to September) spanning 2000-2015 at 1 degree spatial 834 

grain, masked by land use / cover and elevation. 835 
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 836 

S49: Variance inflation factors of the adjusted R2 and slope values of the 244 separate 1 837 

degree cell linear models relating mean annual NDVI to cumulative annual precipitation 838 

(2000–2015, n=244) and sheep and goats per square kilometer. All data are masked by 839 

unsuitable land use / cover and elevation. 840 

 841 

S50: (a) Adjusted R2 and (b) slope values of the 244 separate 1 degree cell linear models 842 

relating mean annual NDVI to cumulative annual precipitation (2000–2015, n=244), (c) 843 

inter-annual mean of mean annual NDVI, (d) sheep and goats per square kilometer, and 844 

elevation (m) (Wint and Robinson, 2007). All data are mapped at 1 degree spatial grain. 845 

  846 
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 847 

 848 

 849 

S51: Mean, standard deviation, and Tukey HSD groups of cells in each semi-arid ecoregion 850 

for the inter-annual mean of (a) mean annual NDVI (January-December) and (b) 851 

cumulative annual precipitation across 2000–2015 at 1 km and 1 degree spatial grain, and 852 

masked by land use / cover and elevation. Also summarized are the (c) slope and (d) 853 

adjusted R2 values of the 244 separate 1 degree cell linear models relating mean annual 854 

NDVI to cumulative annual precipitation (2000–2015, n=244).  855 
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Parameters adj. R2 𝜒2 p 

log(precip. mean) 0.48 6.47 <0.001 
log(precip. mean), ecoregion 0.62 2.04 <0.001 
log(precip. mean), ecoregion, ecoregion: log(precip. mean) 0.62 0.14 0.33 

 856 

S52: The R2 of linear models relating log-transformed (to satisfy homoscedasticity) inter-857 

annual mean of mean annual NDVI to inter-annual mean of cumulative annual precipitation 858 

(mm.yr-1), ecoregion, and the interaction of ecoregion and mean precipitation at 1 degree 859 

spatial grain (n=166), limited to the extent of the five ecoregions across 2000-2015. The χ2 860 

and p-values show the change in model fit between a given model and the next simplest 861 

model based on a χ2 test of -2 × (log likelihood ratio) of the two nested models with degrees 862 

of freedom equal to the number of parameters removed. A significant decrease in model fit 863 

on parameter removal indicates that parameter’s significance. 864 

 865 

 Dependent variable: 

 log(NDVI mean) 

log(precip. mean) 0.603*** 
 (0.049) 

Constant -5.712*** 
 (0.277) 

Observations 166 

R2 0.481 

Adjusted R2 0.478 

Residual Std. Error 0.206 (df = 164) 

F Statistic 152.241*** (df = 1; 164) 

Note: *p<0.05; **p<0.01; ***p<0.001 

 866 

S53: Results from the linear model of log-transformed (to satisfy homoscedasticity) inter-867 

annual mean of mean annual NDVI versus inter-annual mean of cumulative annual 868 

precipitation (mm.yr-1) at 1 degree spatial grain (n=166), limited to the extent of the five 869 

ecoregions across 2000-2015.  870 
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 Dependent variable: 

 log(NDVI mean) 

log(precip. mean) 0.554*** 
 (0.056) 

Ecoregion: Cent. Asia 0.273*** 
 (0.050) 

Ecoregion: Cent. Persia 0.035 
 (0.058) 

Ecoregion: Regist. 0.117 
 (0.070) 

Ecoregion: S. Iran 0.030 
 (0.057) 

Constant -5.558*** 
 (0.340) 

Observations 166 

R2 0.634 

Adjusted R2 0.622 

Residual Std. Error 0.175 (df = 160) 

F Statistic 55.330*** (df = 5; 160) 

Note: *p<0.05; **p<0.01; ***p<0.001 

 871 

S54: Results from the linear model of log-transformed (to satisfy homoscedasticity) inter-872 

annual mean of mean annual NDVI versus inter-annual mean of cumulative annual 873 

precipitation (mm.yr-1) and ecoregion at 1 degree spatial grain (n=166), limited to the 874 

extent of the five ecoregions across 2000-2015 (Baluchistan as reference level). 875 

  876 



66 

 

 Baluch. Cent. Asia Cent. Persia Regist. S. Iran 

Baluch. - <0.001 0.544 0.099 0.599 
Cent. Asia - - <0.001 0.003 <0.001 
Cent. Persia - - - 0.101 0.909 
Regist. - - - - 0.094 
S. Iran - - - - - 

 877 

S55: Raw p-values in pairwise matrix of comparisons between ecoregions (additive effects) 878 

from alternating the reference ecoregion in the linear model of mean NDVI versus mean 879 

precipitation and ecoregion. 880 

 Baluch. Cent. Asia Cent. Persia Regist. S. Iran 

Baluch. - <0.001 1 0.565 1 
Cent. Asia - - <0.001 0.022 <0.001 
Cent. Persia - - - 0.565 1 
Regist. - - - - 0.565 
S. Iran - - - - - 

 881 

S56: Holm-adjusted p-values (to control for table-wide significance) in pairwise matrix of 882 

comparisons between ecoregions (additive effects) from alternating the reference 883 

ecoregion in the linear model of mean NDVI versus mean precipitation and ecoregion 884 

(n=10 unique comparisons between different ecoregions).  885 
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 Dependent variable: 

 log(NDVI mean) 

log(precip. mean) 0.601*** 
 (0.099) 

Ecoregion: Cent. Asia 0.546 
 (1.035) 

Ecoregion: Cent. Persia 1.469 
 (0.883) 

Ecoregion: Regist. 0.145 
 (1.216) 

Ecoregion: S. Iran -0.408 
 (0.892) 

Ecoregion: Cent. Asia * log(precip. mean) -0.045 
 (0.176) 

Ecoregion: Cent. Persia * log(precip. mean) -0.253 
 (0.153) 

Ecoregion: Regist. * log(precip. mean) 0.001 
 (0.224) 

Ecoregion: S. Iran * log(precip. mean) 0.081 
 (0.153) 

Constant -5.838*** 
 (0.598) 

Observations 166 

R2 0.644 

Adjusted R2 0.624 

Residual Std. Error 0.175 (df = 156) 

F Statistic 31.370*** (df = 9; 156) 

Note: *p<0.05; **p<0.01; ***p<0.001 

 886 

S57: Results from the linear model of log-transformed (to satisfy homoscedasticity) inter-887 

annual mean of mean annual NDVI versus inter-annual mean of cumulative annual 888 

precipitation (mm.yr-1), ecoregion, and the interaction of ecoregion and mean precipitation 889 

at 1 degree spatial grain (n=166), limited to the extent of the five ecoregions across 2000-890 

2015 (Baluchistan as reference level).  891 
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Parameters adj. R2 𝜒2 p 

NDVI mean 0.39 1.3 <0.001 
NDVI mean, ecoregion 0.5 0.41 <0.001 
NDVI mean, ecoregion, ecoregion: NDVI mean 0.5 0.04 0.46 

 892 

S58: The R2 of linear models relating the slopes of separate 1 degree cell linear models of 893 

mean annual NDVI versus cumulative annual precipitation (mm.yr-1) (2000–2015, n=166), 894 

limited to the extent of the five ecoregions, to inter-annual mean of mean annual NDVI, 895 

ecoregion, and the interaction of ecoregion and mean NDVI. The χ2 and p-values show the 896 

change in model fit between a given model and the next simplest model based on a χ2 test 897 

of -2 × (log likelihood ratio) of the two nested models with degrees of freedom equal to the 898 

number of parameters removed. A significant decrease in model fit on parameter removal 899 

indicates that parameter’s significance. 900 

 901 

 
 Dependent variable: 

 slope 

NDVI mean 2.834*** 
 (0.277) 

Ecoregion: Cent. Asia -0.105*** 
 (0.030) 

Observations 166 

R2 0.390 

Adjusted R2 0.387 

Residual Std. Error 0.111 (df = 164) 

F Statistic 104.958*** (df = 1; 164) 

Note: *p<0.05; **p<0.01; ***p<0.001 

 902 

S59: Results from the linear model of slopes of separate 1 degree cell linear models relating 903 

mean annual NDVI to cumulative annual precipitation (mm.yr-1) (2000–2015, n=166) 904 

versus inter-annual mean of mean annual NDVI, limited to the extent of the five ecoregions.  905 
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 Dependent variable: 

 slope 

NDVI mean 2.017*** 
 (0.313) 

Ecoregion: Cent. Asia 0.029 
 (0.028) 

Ecoregion: Cent. Persia -0.115*** 
 (0.031) 

Ecoregion: Regist. -0.062 
 (0.033) 

Ecoregion: S. Iran 0.007 
 (0.031) 

Constant 0.003 
 (0.043) 

Observations 166 

R2 0.515 

Adjusted R2 0.500 

Residual Std. Error 0.101 (df = 160) 

F Statistic 33.937*** (df = 5; 160) 

Note: *p<0.05; **p<0.01; ***p<0.001 

 906 

S60: Results from the linear model of slopes of separate 1 degree cell linear models relating 907 

mean annual NDVI to cumulative annual precipitation (mm.yr-1) (2000–2015, n=166) 908 

versus inter-annual mean of mean annual NDVI and ecoregion, limited to the extent of the 909 

five ecoregions (Baluchistan as reference level).  910 
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 Baluch. Cent. Asia Cent. Persia Regist. S. Iran 

Baluch. - 0.305 <0.001 0.066 0.82 
Cent. Asia - - <0.001 0.002 0.376 
Cent. Persia - - - 0.047 <0.001 
Regist. - - - - 0.012 
S. Iran - - - - - 

 911 

S61: Raw p-values in pairwise matrix of comparisons between ecoregions (additive effects) 912 

from alternating the reference ecoregion in the linear model of NDVI-precipitation slope 913 

versus mean NDVI and ecoregion. 914 

 Baluch. Cent. Asia Cent. Persia Regist. S. Iran 

Baluch. - 0.914 0.002 0.263 0.914 
Cent. Asia - - <0.001 0.012 0.914 
Cent. Persia - - - 0.234 <0.001 
Regist. - - - - 0.074 
S. Iran - - - - - 

 915 

S62: Holm-adjusted p-values (to control for table-wide significance) in pairwise matrix of 916 

comparisons between ecoregions (additive effects) from alternating the reference 917 

ecoregion in the linear model of NDVI-precipitation slope versus mean NDVI and ecoregion 918 

(n=10 unique comparisons between different ecoregions). 919 

 Group 

Baluch. bc 
Cent. Asia c 
Cent. Persia a 
Regist. ab 
S. Iran bc 

 920 

S63: Significant groupings between ecoregions (additive effects) in the linear model of 921 

NDVI-precipitation slope versus mean NDVI and ecoregion, based on the holm-adjusted 922 

pairwise comparison matrix. 923 

  924 
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 Dependent variable: 

 slope 

NDVI mean 2.847*** 
 (0.738) 

Ecoregion: Cent. Asia 0.136 
 (0.114) 

Ecoregion: Cent. Persia 0.065 
 (0.108) 

Ecoregion: Regist. -0.028 
 (0.142) 

Ecoregion: S. Iran 0.084 
 (0.108) 

Ecoregion: Cent. Asia * NDVI mean -0.930 
 (0.926) 

Ecoregion: Cent. Persia * NDVI mean -1.772 
 (1.002) 

Ecoregion: Regist. * NDVI mean -0.081 
 (1.545) 

Ecoregion: S. Iran * NDVI mean -0.645 
 (0.977) 

Constant -0.091 
 (0.088) 

Observations 166 

R2 0.526 

Adjusted R2 0.498 

Residual Std. Error 0.101 (df = 156) 

F Statistic 19.211*** (df = 9; 156) 

Note: *p<0.05; **p<0.01; ***p<0.001 

 925 

S64: Results from the linear model of slopes of separate 1 degree cell linear models relating 926 

mean annual NDVI to cumulative annual precipitation (mm.yr-1) (2000–2015, n=166) 927 

versus inter-annual mean of mean annual NDVI, ecoregion, and the interaction of ecoregion 928 

and mean NDVI, limited to the extent of the five ecoregions (Baluchistan as reference level). 929 
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 930 

  931 

S65: Slopes of separate 1 degree cell linear models relating mean annual NDVI to 932 

cumulative annual precipitation (mm.yr-1) (2000–2015, n=166) versus inter-annual mean 933 

of mean annual NDVI for all cells within the extent of the five ecoregions and cells by 934 

ecoregion. 935 


