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Abstract— As an interesting and emerging topic, cosaliency 

detection aims at simultaneously extracting common salient 
objects in multiple related images. It differs from the conventional 
saliency detection paradigm in which saliency detection for each 

image is determined one by one independently without taking 
advantage of the homogeneity in the data pool of multiple related 
images. In this paper, we  propose  a  novel  cosaliency  detec-  

tion approach using deep learning models. Two new concepts, 
called intrasaliency prior transfer and deep intersaliency mining, 
are introduced and explored in the proposed work. For the 

intrasaliency prior transfer, we build a stacked denoising autoen- 
coder (SDAE) to learn the saliency prior knowledge from auxil- 
iary annotated data sets and then transfer the learned knowledge 

to estimate the intrasaliency for each image in cosaliency data 
sets. For the deep intersaliency mining, we formulate it by using 
the deep reconstruction residual obtained in the highest hidden 

layer of a self-trained SDAE. The obtained deep intersaliency can 
extract more intrinsic and general hidden patterns to discover  
the homogeneity of cosalient objects in terms of  some  higher 

level concepts. Finally, the cosaliency maps are generated by 
weighted integration of the proposed intrasaliency prior, deep 
intersaliency, and traditional shallow intersaliency. Comprehen- 

sive experiments over diverse publicly available benchmark data 
sets demonstrate consistent performance gains of the proposed 
method over  the state-of-the-art cosaliency detection  methods. 

Index Terms— Cosaliency detection, deep learning, prior 
transfer, stacked denoising autoencoder  (SDAE). 

 
I. INTRODUCTION 

ALIENCY detection has been an extensively studied topic 

in the past few decades. It enables a computer vision system 

to select a subset of interesting regions in each input image 

for further processing and analysis [1]–[3], [46]–[48]. More 

recently, the growing popularity of photosharing websites,  

such  as  Flickr  and  Facebook,  has  taught  us that 
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Fig. 1. Illustration of the difference between conventional saliency detection 
and cosaliency detection. First row: input images. Second row: saliency 
detection results obtained by region-based contrast [3]. Third row: cosaliency 
detection results obtained by the proposed  approach. 

 

 

people love taking photographs, and there is a rich collection 

of related pictures sharing the common foreground regions of 

the same object or event [4]. When detecting these cosalient 

foregrounds, the direct use of conventional  saliency  detec- 

tion methods that process each of these images individually 

may lead to unsatisfactory performance (see  the  second row 

of Fig. 1). This, thus, triggers a new and interesting research 

area named cosaliency detection with the goal of discovering 

the consistent salient patterns in multiple related images and, 

finally, extracting the common salient foreground regions in 

the image group (see the third row of Fig. 1). Different from 

cosegmentation [4]–[6] that considers not only common salient 

foreground regions but also similar nonsalient background 

areas in images, cosaliency detection  focuses  on  exploring 

the most important information, i.e., the common foreground 

regions, among the image group with a reduced computa- 

tional demand by implying priorities based on human visual 

attention. Cosaliency detection can serve as a more promising 

preprocessing step for many high-level visual information 

understanding tasks, such as video foreground extraction [7], 

image  retrieval  [8],  object  detection  [9],  [52],  and   image 

matching [10]. 

As shown in [11], cosalient image regions usually have two 

properties: 1) they should be prominent or noticeable regions 

with respect to the background in each image and 2) high 

homogeneity should be observed for such regions across 

multiple related images. To explore the first property, some 

earlier cosaliency models proposed in [12] and [13] directly 

combine several existing saliency detection methods for 

predicting the salient regions within each single image. For 

obtaining better performance, Fu et al. [14] and Liu et al. [15] 

proposed  novel  algorithms  for  intrasaliency  prediction   by 



 

 

modifying the existing unsupervised saliency detection 

models. To explore the second property, most previous 

approaches discover the homogeneity of cosalient regions 

within each image pair [12], [16]–[19]. To extend beyond 

pairwise relations, Fu et al. [14] employed CIE Lab color and 

Gabor filter to represent each pixel, and extracted contrast cue, 

spatial cue, and correspondence cue from the image group for 

generating the cluster level cosaliency maps. Liu et al. [15] 

proposed to derive the global similarity measures of image 

regions over the image set based on the quantized color 

features. 

As can be seen, corresponding to the above two properties, 

the key problems in cosaliency detection lie in two aspects: 

1) predicting the saliency of image regions within each single 

image, i.e., the intrasaliency, robustly and 2) developing an 

optimal mechanism to explore the homogeneity of cosalient 

objects, i.e., the intersaliency, among multiple related images. 

For the first problem, most existing approaches only directly 

apply or manually modify the previous unsupervised saliency 

detection algorithms for a single image to cosaliency detection. 

However, they cannot yield promising results as unsupervised 

saliency detection algorithms tend to lack robustness and be 

influenced by the complex backgrounds. In addition, the recent 

progress of saliency detection in a single image has acquired 

more prior knowledge on saliency. Knowledge transfer from 

single saliency detection will be certainly beneficial to the 

intrasaliency in cosaliency detection. For the second  prob- 

lem, the existing approaches mainly focus on exploring the 

homogeneity based on the low-level features, such as color, 

texture, or corner descriptors. In this paper, we call it shallow 

intersaliency, because they only  formulate  the  homogene-  

ity of the low-level visual  stimulus, while  the  homogeneity 

in deeper insights into higher level concepts could not be 

captured. In addition, low-level features are easily influenced 

by the variation in luminance, shape, or viewpoint, leading to 

unsatisfactory performance of cosaliency detection. 

In order to tackle these problems and further improve the 

performance of cosaliency detection, we adopt deep learning 

models in this paper for better solving the problems in both the 

generation of the robust intrasaliency prior and the discovery 

of the intersaliency patterns. Instead of using humans as a 

transfer machine, where researchers learn the knowledge of 

how to formulate saliency from the conventional unsupervised 

saliency detection approaches and, then, manually modify 

these approaches for predicting intrasaliency, inspired by the 

studies in [20] and [21], we propose an alternative frame- 

work to design a real transfer machine that can learn the 

saliency prior knowledge from the auxiliary annotated data 

sets  automatically and, then, transfer the learned knowledge  

to predict the intrasaliency for each image in cosaliency data 

sets. As we know, saliency is an abstract concept that relates to 

the contrast between the certain image regions and the image 

backgrounds, as well as the content within the image regions. 

This relationship holds true regardless of the object category. 

Thus, according to [22], this kind of an abstract concept is 

more likely to be suitable for transfer learning. In addition,  

the training data in cosaliency data sets appears to be limited 

(about 17 images per group). When the labeled training    data 

are scarce, transfer learning of the relevant knowledge from 

the auxiliary data sets would yield a significant performance 

improvement [23], [24]. In order to capture saliency prior from 

the data in the source domain and transfer it to predict the 

intrasaliency for the data in the target domain, we design a 

novel framework by adopting the stacked denoising autoen- 

coder (SDAE). As SDAE has been demonstrated to be a pow- 

erful deep model that can learn more abstract representations 

based on its hierarchical architecture and take advantage of the 

out-of-distribution data for knowledge transfer [22], [25], the 

proposed transfer learning framework would be an effective 

way to predict the intrasaliency. 

Deep learning has shown outstanding performance on 

mining deep and hidden patterns for building powerful 

representations in many challenging tasks, such as visual 

classification and object localization [26], [27]. In this paper, 

we  attempt  to  leverage  deep  learning  for  the  discovery    

of higher level homogeneity among cosalient regions. 

Specifically, we present the concept of deep intersaliency, 

which is formulated using the deep reconstruction residual 

obtained in the highest hidden layer of a self-trained SDAE. 

As the SDAE is trained on the image regions with higher 

intrasaliency priors among the multiple related images, it can 

extract more intrinsic and general hidden patterns to discover 

the homogeneity of cosalient objects in terms of some higher 

level concepts. Consequently, the obtained deep intersaliency 

could alleviate the influence of variance in luminance, shape, 

and view point, and should become a novel and useful cue 

when generating the final cosaliency  map. 

The flowchart of the proposed approach is shown in Fig. 2. 

First, the input images are decomposed hierarchically into fine- 

level superpixels and coarse-level segments. Then, the saliency 

prior in this paper is formulated based on the contrast prior  

and the object prior. We train the contrast model and the 

objectness model in the auxiliary data sets, and transfer them 

to generate the contrast prior map and the  object prior map  

for each image in the cosaliency data sets, respectively. The 

intrasaliency prior is obtained by combining the contrast prior 

and the object prior. Afterward, we simultaneously explore  

the homogeneity among the multiple related images based on 

low-level feature matching and high-level pattern mining to 

establish the shallow intersaliency and the deep intersaliency, 

respectively. Finally, the cosaliency maps are generated by 

weighted integration of the proposed intrasaliency prior, 

shallow intersaliency, and deep intersaliency. 

We notice that some early works [42] have applied deep 

models to solve problems in saliency detection. However, most 

of those algorithms are proposed for the task of eye fixation 

prediction rather than the task in this paper, i.e., cosaliency 

detection. More specifically, the deep model proposed in [42] 

is used for extracting low- and mid-level features and comput- 

ing local contrast. However, the deep learning model proposed 

in this paper is used for the intrasaliency prior transfer and the 

deep intersaliency pattern mining. 

In summary, the major contributions of this paper are 

threefold. 

1) In  this  paper,  we  make  the  earliest  effort  to  cast  

the  intrasaliency  prediction  in  cosaliency  detection as 



 

 
 

 

Fig. 2.    Flowchart of the proposed cosaliency detection  approach. 
 

a problem of prior knowledge transfer, which could take 

advantage of the auxiliary fully annotated data sets and 

generate robust intrasaliency. 

2) Besides exploring the shallow intersaliency, we also 

propose to mine the deep intersaliency for discovering 

higher level homogeneity of the cosalient objects in the 

image group. The generated deep intersaliency map is 

demonstrated in our experiments to be another critical 

factor in cosaliency detection. 

3) SDAEs are used in this paper for better solving the prob- 

lems both in the generation of the robust intrasaliency 

prior and in  mining deep intersaliency patterns, which  

is the earliest effort to introduce deep learning to 

cosaliency detection. 

The rest of this paper is organized as follows. Section II 

reviews the related works. Section III describes the proposed 

approach in detail. Section IV presents the experimental results 

with a quantitative evaluation in comparison with  a  number 

of the state-of-the-art approaches. Finally, the conclusions are 

drawn in Section V. 

 
II. RELATED WORKS 

Most early approaches for cosaliency detection explore the 

joint information provided by the image pair to find cosalient 

regions [12], [16]–[19]. However, these methods only seek to 

detect the cosaliency of two images at a time, not accounting 

for the discovery of the global coherent information that may 

exist when there  are  more  than  two  images.  This  results  

in a direct limitation for cosalient pattern exploration when 

extending beyond pairwise relations. To tackle this problem, 

some recent works [11], [13]–[15], [28], [49] have been 

proposed to simulate the attention mechanisms for cosaliency 

detection in a group of images. Based  on their assumption  

and formulation, these methods can be subdivided into three 

categories. 

The first category is based on the assumption that the salient 

areas detected by the single image-based saliency detection 

approaches always contain parts of the foreground object, and 

the cosalient regions can be decided by selecting the areas 

frequently occurring among the multiple related images from 

the detected salient areas. The most representative work for 

this class was proposed in [13], where the cosaliency was 

formulated  by  a  simple  hard  constraint  of  the  distinctness 

(i.e., saliency in an individual  image)  and  the  repeated-  
ness (i.e., the consistence measured in an image group) as 

Cosaliency = Distinctness × Repeatedness. This algorithm 
gives better performance than the conventional single image- 
based saliency detection methods in the task of cosaliency 
detection. However, it still appears to be ineffective due to its 
idealized assumption. 

To mitigate this limitation, the second category of cosaliency 

detection approaches [11], [12], [14], [15] relieves the hard 

constraint to the soft constraint, which usually considers the 

intrasaliency, intersaliency, and other useful factors as indepen- 

dent information cues, and generates the final cosaliency map 

through the weighted integration of these cues. Specifically,  

Li et al. [11] proposed to generate  an  intraimage  saliency 

map and an interimage saliency map based on multiscale 

segmentation and pairwise similarity ranking, respectively. 

Then, the cosaliency map was modeled as a linear combination 

of the two saliency maps. Fu et  al.  [14] extracted contrast  

cue, spatial cue, and corresponding cue through clustering and 

weighted integration of these information cues based on the 

probability formulation. Liu et al. [15] proposed a hierarchical 

segmentation-based cosaliency model, where the regional con- 

trasts, global similarity, and object prior are calculated based 

on segmentations of multiple levels. The final cosaliency map 

was generated by effectively fusing the intrasaliency map and 

the object prior map. 

Cao et al. [19], [28] proposed another category of algo- 

rithms for cosaliency detection, which focus on finding ways 

to integrate the existing saliency and cosaliency cues more 

reasonably. Rather than engaging to discover homogeneous 

information from the collection of multiple related images for 

representing cosalient objects, these methods mainly exploit 

the relationship of the obtained maps of multiple existing 

saliency and cosaliency approaches to obtain the self-adaptive 

weights for generating the final cosaliency map. Based on the 

most recent achievements in saliency detection and cosaliency 

detection, these methods produce a relatively satisfactory 

performance. However, the large time  costs  for  preparing  

the existing saliency and cosaliency maps before the fusion 

process become their major  limitations. 

III. PROPOSED APPROACH 

In this section, we first introduce the basic idea of  the 

SDAE algorithm. Then, the overall procedure of the  proposed 
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algorithm is briefly introduced. Afterward, two major compo- 

nents of the proposed framework, i.e., the robust intraimage 

saliency prior transfer and the intersaliency pattern mining, are 

described in detail. The generation of the final cosaliency map 

is introduced in Section  III-E. 

 
A. Stacked Denoising Autoencoder 

SDAE is one kind of state-of-the-art deep learning models, 

which seeks to exploit the unknown structure in the input 

distribution at multiple layers to make the learned higher level 

representations more abstract and informative [22]. Compared 

with the convolutional neural network, SDAE can lean infor- 

mative patterns from the input data in an unsupervised manner, 

which is what we need in Section III-D for mining deep 

intersaliency patterns. In addition, compared with the other 

unsupervised deep learning models, e.g., the deep Boltzmann 

machine (DBM), SDAE has fourfold advantages in this paper. 

First, SDAE is a better way to extract stable and deterministic 

numerical feature vectors, since it can directly learn the para- 

metric mappings from input data to their representations [26]. 

However, although DBM can  learn  latent  random variables 

to describe a posterior distribution over the observed data, the 

learnt posterior distribution is not yet the simple usable feature 

vectors in some cases [26]. Second, SDAE  is  demonstrated  

in [22] and [25] to have the capability to handle domain 

adaption. Thus, it is more suitable to use SDAE  to transfer  

the prior knowledge for cosaliency detection, as described in 

Section III-C. Third, SDAE  is a reconstruction-based   model, 

 
 

 

Fig. 3.  Illustration  of the architecture  of DAE  and SDAE. (a) DAE  acted   
as one unit for building the SDAE. (b) SDAE  built by two DAE layers  and    
a logistic regression layer. 

 

 

 

is based on the patterns encoded in the network. To learn 

appropriate parameters  in  θ f  and  θg,  the  training  process 

of such a network is to  minimize  the  cost  function  with  

two important terms. The first one is the reconstruction error 

constraint, which is a basic constraint to reflect the difference 

between the original input data and the reconstruction output 

of the network. The second one is called sparsity constraint, 

which penalizes the deviation of the expected activation of the 

hidden units (in representation vector) from a fixed (low) level. 

With these two constraint terms, the cost function is written as 

 

1 . 1 2 
. 

and the generated reconstruction residual is what we need to 

formulate the  deep  intersaliency  in  Section  III-D. However, 
L(X, Z,ρ, ρ̂  j ) = 

m
  

i=1 2 
||xi − zi ||2 + λ  

j =1 

KL(ρ||ρ̂ j )   (3) 

we cannot obtain  such  a  term  from  DBM.  Finally,  SDAE 

is simpler to train and explain, provides an efficient  infer- 

ence,  and  yields  the  results  comparable  or  better  than  the 

KL(ρ||ρ̂ j ) = ρlog 
ρ 

ρ̂  j 
+ (1 − ρ)log 

1 − ρ 

1 − ρ̂  j 
(4) 

RBM-based models in series of experiments [25]. All the 

above-mentioned advantages motivate us to use SDAE instead 

of other deep models in this  paper. 

As a basic building block in SDAE, an AE consists of an 

encoding process and a decoding process. With the aim to 

transform the input vector into output reconstructions with the 

least possible amount of distortion, it would learn useful repre- 

sentations and latent patterns of the given data. Specifically, the 

encoding process uses an encoding function f (xi,θ f ) to map 

from the input vector xi to a hidden representation vector yi, 

where θ f indicates the encoding parameters including an 

encoding projection matrix W(1) and an encoding bias b(1). 

Normally, the sigmoid function sigm(η) = 1/(1 + exp(−η))  
is used in the encoding  function 

yi = f (xi,θ f ) = sigm(W(1)xi + b(1)). (1) 

Then,  with   the   decoding  parameters  θg    =   {W(2), b(2)},  
a decoding function g(yi, θg) is utilized to map the hidden 

representation yi back to a reconstruction representation zi 

through 

where m denotes the number of all the training and recon- 

structed data, respectively. λ is the weight of the sparsity 

constraint term, n is the dimension of the hidden representation 

vector, ρ is    the target average activation of the hidden units, 

and  ρ̂  j   = 
. 

m  [y j ]i /m  is  the  average  activation  of  the 

j th  hidden  unit  y j  over  the  m  training  data.  KL(·) indicates 

the  Kullback–Leibler  divergence  for  providing  the sparsity 

constraint. Like in sparse coding, a nonredundant overcom- 

plete feature set is learned when ρ is   small. 

For  further  improving  the  effectiveness  of  AEs,  

Vincent et al. [29] propose to build DAEs by reconstructing 

the   input   data   into   a   corrupted   and   partially destroyed 

version. In DAE [see Fig. 3(a)], the stochastic mapping 

function  x̃ i  = q D(x̃ i|xi)  is  first  added  to  the  original  input 
data  by  randomly  forcing  30%  of  them  to  be  zero, while 

the objective function is still to minimize the reconstruction 

loss between a clean input xi and its reconstruction output zi. 

Thus, it forces the learning of far more clever mapping than 

the identity [29]. Usually, training a DAE is straightforward 

using  the  gradient descent  optimization  algorithm  to update 

zi = g(yi, θg) = sigm(W(2)yi + b(2)). (2) the  parameters W (l) = {Wij  } and b 
(l) 

= {bi   } in iterations, 
 

After encoding and decoding, the obtained reconstruction 

representation zi can be taken as a prediction of input xi, which 

where  l  =  {1, 2} indicates  the  representation  layer  and the 
reconstruction  layer.  Specifically,  all  these  parameters   are 

randomly  initialized,  and  then  they  are  updated  with    the 
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Algorithm 1: Overall Procedure of Our  Algorithm 
 

 

Input: A group of  images; 

Output: Co-saliency maps of these  images; 

1: Generate fine-level superpixels {Supp} for each image 

and extract the feature vectors  {xp}; 
2: Train boundary-specific contrast SDAE models  via 

where  ε  is   the   learning   rate.   The   partial   derivatives   

in (5) and (6) are calculated by  the  backpropagation  

algorithm [30]. 

Based on the observation that the layerwise stacking of 

feature extraction often yields better representations [26], 

SDAE is built by stacking  additional  DAE  layers  to  form 

the deep architecture [29]  [see  Fig.  3(b)].  Just  as  other  

deep neural networks,  training  SDAE  could  be  done  in  

two phases: 1) layerwise self-learning and 2) fine-tuning. 

Given a set of training data, the layerwise self-learning allows 

the  usage  of  DAE  as  independent  blocks  for  training   the 
whole  deep  network.  The  key  concept  in  this  phase  is  to 

Algorithm 2 and use the learnt SDAE models   to 

calculate the final contrast prior C Pp  via Eq. 9  and 
Eq. 10; 

3: Generate course-level segments {Segq } for each image; 

4: Use the objectness model learnt in [40] to calculate    
the object prior for each segment via Eq. 11 and Eq. 12;  
5: Use the pixel-wise mean of the contrast prior and  

object prior to generate the intra-saliency prior  Sin ; 
6: Calculate the shallow inter-saliency Ssh by   using 

p 

Eq. 13, Eq. 14, and Eq.   15; 

7: Train a SDAE model via Algorithm 3 and use it to 

calculate the deep inter-saliency S
dp 

using Eq. 16   and 

train one layer DAE at a time. As shown in Fig. 3(b), the 

bottom layer DAE is first trained with the original input   data 
to obtain its encoding parameters. Then, the obtained   hidden 

Eq. 17; 

8: Use the obtained Sin ,  Ssh , and S
dp 

 

final co-saliency maps via Eq.  18. 

 

to generate the 

representations are used as the input data for training the 

higher layer DAE. As the labels of the input data are not 

needed in this process, the layerwise self-learning becomes to 

a task-free process focusing on learning hierarchical generative 

representations in an unsupervised manner. After the layerwise 

self-learning, a logistic regression layer can be added on the 

top of DAEs, as shown in Fig. 3(b), enabling the established 

deep architecture to capture more discriminative information 

under the supervision of the specific  task. 

Suppose, we have a training set {x1, x2, ..., xm } with its 

label set {41, 42, ... , 4m }. For each input data xi∈[1,m], its 
higher (second) layer representation, as shown in Fig. 3(b),  is 

denoted by HV,d(xi ), where V and  d  indicate the parameters 

in the bottom two-layer neural network. These parameters 

include the weight matrix V(1) and offset vector d(1) between 

the input layer and  the  bottom  representation  layer,  and  

V(2) and d(2) between the bottom representation layer and the 

higher representation layer. In the logistic regression layer, the 

hypothesis function is 

1 

The notations in this Algorithm are defined in Section   III. 
 
 

B. Overall Algorithm 

By using the SDAE model introduced above, we can 

transfer contrast prior knowledge (in Section III-C) and 

explore deep intersaliency (in Section III-D) in the proposed 

cosaliency detection framework. The overall algorithm flow of 

the proposed algorithm is shown in Algorithm  1. 

In contrast prior transfer, the core  problem  is  how  to  

learn and transfer the prior knowledge of image contrast, 

which is a relationship between superpixels in the image 

foreground  and  background.  To  solve  this  problem,  we  

use the generated  sample  pairs  in  an  auxiliary  data  set,  

i.e., the accurate-segmented saliency detection  (ASD)  data 

set, as the input data to train SDAEs  through  greedy 

layerwise pretraining and  supervised  fine-tuning,  as  shown 

in Algorithm 2. By inputting the sample pairs from the 

cosaliency data sets into the trained SDAEs, we  can obtain  

the outputted boundary specific contrast prior values for each 

superpixel that will be fused to generate the final contrast prior, 

h©(HV,d(xi )) = 
1

 + exp(−©T HV,d(xi )) 
(7) as described in Section  III-C. 

In  deep  intersaliency pattern  mining, the  problem is  how 
where  © is  the  parameter  learned  in  logistic  regression by 
minimizing the cost function 

. 
m

 
. 

to capture the homogeneity of  the cosalient objects  in terms 

of some higher level concepts.  To  solve  this  problem,  we 

use the selected  superpixels with  higher intrasaliency as   the 

J  = − 
m

  
i=1 

4i logh©(HV,d(xi )) input data to train an SDAE via greedy layerwise unsupervised 
learning, which is shown in Algorithm 3. Then, the    obtained 

. 
deep model is used to output the deep reconstruction residuals 

+ (1 − 4i )log(1 − h©(HV,d(xi ))) . (8) for each input superpixel to formulate the deep intersaliency, 

as described in Section  III-D. 

In this training phase, the parameters V and d are initialized 

by the layerwise self-learning, while © is initialized by random 

values. Then, all these parameters are optimized under the 

supervised information in the top logistic regression layer, 

which is implemented by using the gradient descent algorithm 

with backpropagation to minimize the cost function in   (8). 

 

C. Intrasaliency Prior Transfer 

Contrast and objectness are two critical concepts for visual 

attention modeling [31]. More importantly, these two concepts 

are the most general knowledge about how much certain 

regions are visually different from the background and   likely 



 

 
 

 

Algorithm   2:   Train   SDAE   Models   for  Transferring 
Contrast Prior 

Input: Superpixels and their features in an auxiliary 
dataset; 

Output: The learnt boundary-specific contrast SDAE 
models; 

1: For Boundary = [top, left, bottom,  right] 
2:   Collect the boundary-specific CB sample pairs  and 

their labels; 

3:  Use the boundary-specific CB sample pairs as input   

data to layer-wise train the boundary-specific SDAE in 

an unsupervised manner; 

4: Use the labels of the input data to fin-turning the 

boundary-specific SDAE model by using 

back-propagation. 
5: End for 

 
 

 
 

Algorithm 3: Train the SDAE Model to Formulate Deep 

Intersaliency 
 

 

Input: The features and intra-saliency prior values of 

superpixels in each image of an image group;   

Output: The learnt SDAE  model; 

1: Use the adaptive threshold in each image to select 

superpixels with higher intra-saliency prior; 

2: Collect all the selected superpixels in the image group 

to form the training  data; 

3: Train the SDAE model in a completely unsupervised 

layer-wise manner. 
 

 

 

 

to be parts of the salient objects. Regardless of the specific 

object category, these concepts would have less constraint on 

the choice of the auxiliary data set and be easy to transfer  

from the auxiliary data to the target data [20]. Inspired by this 

insight, we propose to transfer the saliency priors from the 

auxiliary annotated data sets for better solving the problems   

in generating a robust intrasaliency  map. 

1) Contrast Prior Transfer: Image contrast is one of the 

most widely used information for saliency detection in a single 

image [32], [33], because the contrast operator simulates the 

human receptive fields [14]. As a result, image  regions that 

are distinct from the background would capture more human 

visual attention and become the salient regions in the image. 

By following the basic rule of photographic composition, we 

assume most image boundaries belong to the background area 

and formulate saliency based on the contrast between each 

image region and the image boundaries. As suggested by [34], 

image boundaries are separated into four sides, i.e., the top 

boundary, left boundary, bottom boundary and right boundary, 

and the final contrast prior would be obtained by combining 

the four side-specific contrast priors. 

In this paper, we choose the ASD data set [35] as the 

auxiliary data set for learning and transferring the contrast 

model. Since the ASD data set is one of the largest benchmark 

data set for saliency detection containing 1000 images and the 

ground truth is manually labeled, we can use it to learn the 

contrast model to  formulate the mechanism of human   visual 

attention and, then, transfer the learned model to  calculate  

the contrast prior for each image in the cosaliency data sets. 

Specifically, for each image, we first apply the simple linear 

iterative clustering algorithm [36] to  decompose it  into   Kfin 

fine-level superpixels {Supp},  p ∈ [1, Kfin]. Then, we extract 
low-level visual  features of  53  dimensions for  each  pixel as 

suggested in [33], including a 5-D color feature (three RGB 

color values as well as the hue and the saturation components), 

12-D steerable pyramid filter responses, and 36-D Gabor filter 

responses. For each Supp, we use the mean features of the 

pixels within this superpixel as its feature vector  x p. 
In the learning process, we train four individual contrast 

models to formulate the image contrast specific to the top 

boundary, left boundary, bottom boundary, and right boundary, 

respectively. Because superpixels in different image bound- 

aries are often dissimilar, we use them separately for better 

performance [34]. For each image boundary, we first collect 

the center-boundary (CB) sample pairs (where center indicates 

a superpixel not in the image boundary) to generate the 

pairwise inputs as well as their labels, which are determined 

by the ground truth mask within the center superpixels. Then,  

a four-layer SDAE is trained based on the generated inputs and 

labels to formulate the side-specific contrast. Taking the top 

image boundary as an example [see Fig. 4(a)], the superpixels 

within the top boundary (in  purple) and  a  center superpixel 

(in yellow) are collected to form a CB sample pair. Afterward, 

all the superpixels in the CB sample pair are represented by the 

extracted low-level features. In order to establish the relation- 

ship between the center superpixel and boundary superpixels, 

all the image superpixel features in one CB sample pair should 

be concatenated into a single feature vector for representing 

the CB pair. Since the number of boundary superpixels is far 

more than that of the center superpixel, we average the feature 

vectors of boundary superpixels into one vector to address the 

imbalanced data dimension problem, and then concatenate it 

with the feature vector of the center superpixel. Therefore, the 

dimension of input vectors of SDAE should be twice of that of 

each superpixel representation. For training SDAE, we first use 

layerwise self-learning to determine the parameters among the 

input layer and two hidden layers, which helps to reduce the 

risk of falling into a poor local optimum of the whole network. 

Then, the supervised fine-tuning is applied with the  label  

layer and the cost function in (8) to optimize the parameters 

(V, d, and ©) of the deep network. Thus, it could learn more 

complex mapping relations between the CB pair inputs and 

the corresponding saliency of the center  superpixels. 

After the learning process, the obtained SDAE models can 

capture the mutual patterns among CB pairs and infer their 

contrast hierarchically. Since the abstract concepts learned by 

SDAE could share a statistical strength across different but 

related types of examples coming from other  domains than 

the task domain [25], it is convenient to transfer the trained 

SDAE models to calculate the contrast prior for the images in 

the cosaliency data sets without additional steps for domain 

adaption. Specifically, for each image in the cosaliency data set 

[see Fig. 4(b)], we first sample each center image superpixel 

[the  yellow  superpixel  in  the  top-left  image  of  Fig.  4(b)] 
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Fig. 4.  Illustration of learning and transferring the contrast prior. (a) Learning process of the top-side-specific SDAE model. (b) Transferring contrast model   
for generating contrast prior. Yellow nodes: feature representation of the yellow center superpixel. Violet, green, blue, and black nodes: feature representations  
of the top, left, bottom, and right image boundaries,    respectively. 

 

 

with the boundary superpixels in each side to generate the 

sample pairs. Then, the low-level features are extracted to 

form the side-specific pairwise features. Putting these pairwise 
features into the corresponding contrast model, we can  obtain 

 

Afterward, all of these windows are integrated to form the 

objectness map OB by the pixelwise mean of their objectness 

probabilities 

1 
the  boundary specific  contrast  prior,  i.e.,  cp

top
,  cpleft, cpbot, OBpix = 

. 
ψk (11) p p p 

and cp
rig

. By taking into account the spatial consistency, the 

final contrast prior of each input image is obtained   by 
.

Sup  ∈ N (Sup  ) cpp · exp(−D(x p, xτ )) 

|γpix| 
Wk ∈γpix 

where the subscript pix denotes a pixel in the objectness map 

and γpix  indicates the collection of the windows that   contain 

CP p = . (9) the certain pixel. 

Supτ ∈ N (Sup p ) 
exp(−D(x p, xτ)) Inspired by the work in [15], we also use the appearance 

top rig characteristics of real world backgrounds in images to improve 
cp p = 

.
cp p   + cpleft + cpbot + cp p 

.
/4 (10) 

p p the  object  prior  map,  which  assumes  that  the  background 

where  N (Sup p)  denotes  the  neighborhood  of  Supp   and 

D(x p, xτ)  indicates  the  Euclidean  distance  between   the 
two feature vectors. 

2) Object Prior Transfer:  The object prior in this paper is a 

regions are usually large and homogeneous,  and  have  a 

higher ratio of connectivity with image boundaries than salient 

objects. Consequently, the proposed object prior for each 

segment can be formulated  by 

generic measurement over various classes, which is different 

from the category specific detectors, such  as  faces or     cars. OPq = exp 

. 

−γ 
|
 Segq ∩ Bou| 

.
 
+ 

.
pix∈Segq 

OBpix  
(12) 

It  indicates how likely it  is  for an  image window to  contain perq |pix ∈ Segq | 

an object of any class rather than background, such  as  sky 

and lawn. In contrast to object detectors extensively trained 

from a large number of  category specific training samples,  

our approach is relatively less expensive and easy to obtain, 

but it is effective to salient object  detection. 

According to [15], the object prior is more suitably eval- 

uated on the coarse segmentation. Thus, we apply a graph- 

based segmentation algorithm [37] to decompose an image 

into Kcoa coarse-level segments {Segq }, q ∈ [1, Kcoa]. Inspired 

by  the  studies  in  [21], [38], and  [39], the  objectness [40] is 

used in this paper, which is trained on PASCAL VOC07 data 

set to distinguish windows containing an object with a well- 

defined boundary from amorphous background windows based 

on several low-level image cues. It is then transferred to the 

cosaliency data sets to evaluate whether an image window 

contains an object or not. For each image, we can obtain a    

set of image windows Wk  with their corresponding objectness 

probabilities ψk , where k  ∈ [1, 1000] as suggested in    [40]. 

where Bou denotes the image boundary, perq indicates the 

perimeter of Segq , and |· | refers to the number of elements. 
γ is a decay factor set to be 2 as suggested in [15]. Finally, 

the intrasaliency prior Sin  is obtained by the pixelwise mean  

of the contrast prior and object  prior. 

 

D. Intersaliency Pattern Mining 

Mining the intersaliency patterns from the data pool of the 

multiple related images is  another important component in  

our proposed cosaliency detection framework. Based on the 

intrasaliency prior, both the shallow and deep intersaliency 

patterns are explored in this paper to extract the common 

patterns of the cosalient objects  among  the  image  group  

(see Fig. 5). 

The shallow intersaliency is explored based on the 

observation that the cosalient regions should be the visual 

similar regions sharing consistent color or texture and  having 

τ p 
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Fig. 5. Illustration of the mining of intersaliency based on shallow and deep 
cosalient cues. 

the deep intersaliency can capture the homogeneity of the 

cosalient objects in terms of some higher level concepts. This 

is important in cosaliency detection, whereas it is unexplored 

in the previous works. In this paper, the deep intersaliency is 

formulated by using the deep reconstruction residual obtained 

in a three-layer self-trained SDAE. Specifically, we first use 

an adaptive threshold, i.e., twice of the mean intrasaliency 

prior value, in each image to select superpixels with a higher 

priority. Then, all of these superpixels obtained in the image 

group are collected to form a data pool, which is then used by 

an SDAE model for the deep intersaliency pattern mining. 

With  the  help  of  the  unsupervised  self-training,  the SDAE 

can abstract the generative and representative patterns layer to 

layer, and encode them into its weight matrices {V(1), V(2)}. 
When  using  these  learned patterns to  represent input super- 

pixels, the ones homogeneous with the cosalient regions are 

well represented with small reconstruction residuals and vice 

versa. Since the DAE trained in higher layer  can  capture  

more intrinsic and latent patterns of the cosalient regions [26], 

we propose to utilize the deep reconstruction residuals to 

formulate the deep intersaliency  as 

(M −1)Ksim 

 

 

 
Fig. 6.  Some examples of the shallow intersaliency and the deep intersaliency. 

p   = exp(−0p) 

..x 
(2) 

. 
 

t =1 
(2)  2 .. 

1 

DRt 
(16) 

As can be seen, the deep intersaliency  alleviates  the influence of variations  
in luminance, shape, and viewpoint to highlight the cosalient objects more 
uniformly. 

DRt  = 
2 

..  
t    − zt  

..

2 
(17) 

where DRt indicates the deep reconstruction residual of Supt , 

and  x 
(2) 

and  z
(2) 

indicate the input vector and  reconstruction 
t t 

higher intrasaliency prior. In other words, the cosalient regions 

normally have a higher global saliency and visual   similarity. 

Specifically, for each Sup p in the image group with M images, 

its Ksim most similar regions in each of the other images are 
searched based on the Euclidean distance of their features to 

form the collection {Supt }, t ∈ [1, (M − 1)Ksim]. Thus, we 

can calculate the global saliency for each superpixel   by 

vector of the higher (second) layer DAE in the SDAE   model, 

respectively. 

 
E. Cosaliency Map Generation 

Until now, three critical information cues, i.e., the 

intrasaliency prior, the shallow intersaliency, and the deep 

intersaliency, have been  introduced for cosaliency   detection. 

S
gl .(M −1)Ksim 

Sin  
(13) Since  each  of  these  information cues  only  partially reflects 

p 
t =1 one  aspect  of  characteristics  of  the  cosalient  regions,    we 

gl 

where  Sin  indicates  the  intrasaliency  prior  of  Supt  and S 

denotes  the  global  saliency  of  Supp.  In  order  to     further 
encourage the salient regions frequently appearing in multiple 

utilize a weighted linear combination in this paper to calculate 
cosaliency for each superpixel by 

S
co dp . 

 
images and suppress the uncommon regions that only occur in  

where Sco
 
p  = β

.
α Sp  + (1 − α)Ssh

 + (1 − β)Sin
 (18) 

a small number of images, we calculate the global similarity 

for each superpixel as follows: 
(M −1)Ksim 

p denotes the cosaliency value of Sup p, α and β are 
two free parameters with values between 0 and 1. The final 

cosaliency map is generated by extracting the mean cosaliency 

values within the coarse segments of each image. As can be 

0p 

. 
t =1 

D(xp, xt ) (14) 
seen, α and β     are  two  important parameters for the fusion 

where a small 0p indicates a large similarity among the image 

group and vice versa. By considering these two terms, the 

proposed shallow intersaliency is defined as 

S
sh gl 

p   = Sp · exp(−0p). (15) 

Note that it is difficult to uniformly highlight the cosalient 

objects by mining of the shallow intersaliency based on the 

low-level features due to the influence of variations in lumi- 

nance, shape, and viewpoint (see the second row of Fig.  6).  

To this end, we also propose to mine the deep intersaliency 

among  the  image  groups.  Unlike  the  shallow intersaliency, 

process. α reflects the significance of mining intrinsic  and 

deep structures for exploring the common patterns among 

multiple images, while β indicates the importance of exploring 

the common patterns  among  multiple  images  for  the  task 

of cosaliency detection. The final cosaliency is positively 

correlated with all the three information  cues. 
 

IV. EXPERIMENT 

In this  section,  we  evaluate the proposed approach both  

on image pair cosaliency detection and multiple images cos- 

aliency  detection.  Qualitative  and  quantitative  analyses   of 

= t 



 

 
TABLE I 

HYPERPARAMETERS IN THE SDAE MODELS 

 

 

 

 

 

 
the experimental results are presented, which include the 

comparisons with some state-of-the-art methods on a variety 

of benchmark data sets. 
 

A. Experimental Settings 

1) Data Sets: Basically, we evaluate the proposed algorithm 

on two public benchmark data sets: the Image Pair data set [12] 

and iCoseg data set [4]. The Image Pair data set [12]  contains 

105 image pairs (i.e., 210 images) with manually labeled 

ground truth data. It is the earliest benchmark data set built for 

evaluating the performance of cosaliency detection, in which 

each image pair contains one or more similar objects with 

different backgrounds. The iCoseg data set [4] may be the 

largest publicly available data set so far that can be used for 

cosaliency detection. It consists of 38 image groups of totally 

643 images along with pixel ground truth hand annotations. 

Since most images in the iCoseg data set contain complex 

background and multiple cosalient objects, and it is difficult  

to discover the useful information among multiple images, the 

iCoseg data set is considered as a more challenging data set  

for cosaliency detection. 

2) Evaluation Metrics: To evaluate the performance of the 

proposed method, we adopted four widely used criteria that 

include the receiver operating characteristic (ROC) curve, area 

under the ROC curve (AUC), the precision recall (PR) curve, 

and the average precision (AP). Like in [14], [15], and [34], 

ROC and AUC are generated by thresholding pixels in a 

saliency map into binary cosalient object masks with a series 

of fixed integers from 0 to 255. The resulting false positive 

rate versus true positive rate at each threshold value forms   

the ROC curve. Similarly, PR and AP are generated using the 

precision rate and the true positive rate (or the recall rate). 

Specifically, the precision PRE, true positive rate TPR, and 

false positive rate FPR values are, respectively, defined  as 

 

 

 

 

 

 

 

Fig. 7. Illustration of relationship between  the  number of training  images 
and the performance of the transferred contrast  priors. 

 
 

 

Fig. 8. Illustration of the mining of intersaliency based on the shallow and 
deep cosalient cues. 

 

 

weight of the sparsity penalty, the learning rate for the 

backpropagation optimization, and the number of units at each 

hidden layer.  Before training, we follow [29], [43], and [44]  

to build a three-layer network for unsupervised layerwise 

learning and add another label layer for supervised fine-tuning 

(when necessary). Then, according to  [26], we  set the   target 

PRE = 
|
 
SF ∩ GF| 

|SF| 
TPR = 

|SF ∩ GF| 

|GF| 
FPR = 

|SF ∩ GB| 

|GB| 
(19) 

mean activation ρ and the number of units empirically, as 

shown in Table I. For the other hyperparameters, we use a 

coordinate ascentlike method [41], [45] to optimize them for 

each  layer.  In  addition,  we  show  the  relationship  between 

where SF, GF, and GB denote the set of segmented foreground 

pixels after a binary segmentation using a certain threshold, the 

set of ground truth foreground pixels, and the set of ground- 

truth background pixels, respectively. 

3) Implementation Details and Parameter Analysis: It is 

known that there are many hyperparameters involved in such 

deep neural networks, affecting the performance of the model. 

More specifically, we used a publicly available library in 

http://cn.mathworks.com/MATLABcentral/fileexchange/38310 

-deep-learning-toolbox,   where   the   SDAE   models   are 

first initialized randomly and then trained with several 

hyperparameters,  e.g.,   the   target   mean   activation   ρ, the 

the number  of  training  samples  and  the  performance  of 

the contrast prior transfer in Fig. 7. As can be seen, the 

performance of such transfer process  reasonably  relies  on 

the number of  training  samples  and  using  all  the  images  

in the ASD data sets is able to generate the best transfer 

performance. 

Besides the hyperparameters in the SDAE models, the para- 

meter Ksim in the intersaliency pattern mining is empirically  

set to 3. In the experiments, we observe that the cosaliency 

detection results are  reasonably sensitive to  the  parameters  

in (18). Thus, we set α and β to be 0.6 and 0.7, respectively, for 

the best performance. The detailed experiment and  discussion 

http://cn.mathworks.com/MATLABcentral/fileexchange/38310


 

 
 

 

Fig. 9.    Qualitative comparison of cosaliency maps on the Image Pair data    set. 

 

of these two parameters can be found in the next paragraph. 

For a hierarchical image segmentation, we generate fine-level 

superpixels and coarse-level segments by setting the number 

of superpixels in each image to be 200 and the pixels within 

each segment to be larger than 200, respectively. A unified set 

of parameters was utilized in all  experiments. 

In order to discuss the main parameters in (18) and inves- 

tigate the contributions of the  three  information  cues,  i.e., 

the intrasaliency prior, the shallow intersaliency, and the deep 

intersaliency, on the overall performance based on the AUC 

curve, AP curve,  AUC  score,  and  AP  score,  we  conduct  

an experiment on the iCoseg data set. The reason is that it 

contains more images that can be used for more comprehensive 

analysis. Specifically, we  first  set  β  =  1  to  investigate  
the  contributions of the  shallow  intersaliency and  the   deep 

intersaliency by varying α from  0  to  1.  As  shown  in  the 
top two histograms in Fig. 8, the performance of the deep 

intersaliency (α = 1) is better than the shallow    intersaliency 

(α = 0). In addition, it also shows that the best    performance 
for the intersaliency pattern mining can be achieved when α is 

∼0.6. This implies that the deep patterns are more important in 

mining of the intersaliency. Afterward, we fix α to be 0.6 and 
vary β (0-1) to investigate the contributions of the intrasaliency 
prior and  the  intersaliency mined among the  related images. 

From the bottom two histograms in Fig. 7, we can observe that 

the obtained intersaliency (β = 1) achieves better performance 

than the intrasaliency (β = 0) does, especially when looking 
at the AP score. In addition, it also can be found that the best 

fusion performance is reached when β = 0.7, indicating that 
mining intersaliency patterns plays a more important role     in 

cosaliency detection. 

 
 

B. Evaluation on the Image Pair Data  Set 

In this experiment, we first compared our cosaliency detec- 

tion algorithm with a number of state-of-the-art cosalient 

detection algorithms, i.e., IPCS [12], CBCS [14], CSHS [15], 

and PCS [17]. Fig.  9  shows  some  comparison  results  of  

six  pairs of images from the Image Pair data set,  where     the 

common objects exhibit distinct diversities in a color or shape 

property. The subjective evaluations by comparing with the 

ground truth reveal that the proposed method can yield cos- 

aliency maps more correctly and robustly in these image pairs. 

To provide quantitative comparison, we plotted the ROC and 

PRC for each approach and calculated the corresponding AUC 

and AP scores. As shown in Fig. 10, compared with the state- 

of-the-art cosaliency detection algorithms (i.e., IPCS, CBCS, 

CSHS, and PCS), the proposed approach can consistently 

achieve the highest true positive rates on the whole  ROC 

curve and the highest precisions  on  the  whole  PR  curve. 

To demonstrate the effectiveness of the proposed saliency 

prior transfer method, we compared the proposed saliency 

prior transfer method with the intrasaliency detection method 

CBCS-S [14], the two state-of-the-art unsupervised single 

image saliency detection algorithms HS [32] and LR [33], and 

another outstanding supervised single image saliency detection 

method DRFI [46]. The experimental results shown in Fig. 10 

demonstrate that transferring a contrast prior and an object 

prior from the auxiliary data sets is a promising way to 

formulate intraimage saliency, which outperforms both the 

intraimage saliency detection methods proposed in the state- 

of-the-art cosaliency detection and the recent single image 

saliency detection algorithms. The AUC and AP scores for 

each method are listed in Table II, from which we can observe 

that the proposed approach achieves the best performance with 

respect to both the AUC score and the AP   score. 

 
 

C. Evaluation on the iCoseg Data  Set 

We further evaluate the proposed algorithm on the iCoseg 

data set in which each image group may contain much more 

(17 on average) related images. Since IPCS [12] and PCS [17] 

are not valid on more than two images,  we  only compared  

the proposed approach with the two state-of-the-art cosaliency 

detection methods, i.e., CBCS [14] and CSHS [15], in this  

data set. Some experimental results are shown in Fig.  11, 

which contains five image groups, i.e.,  the  Cheetah  group, 

the  Elephants  group, the  Gymnastics  group, the Stonehenge 



 

 
 

 
Fig. 10. ROC curves  and PR curves  for the proposed approach  and other  state-of-the-art  algorithms  (including  the cosaliency  methods  and the single  
image methods) on the Image Pair data set. Solid lines: methods for cosaliency detection. Dashed lines: approaches used for intraimage saliency detection. 
OURS-intra corresponds to the performance of the proposed intraimage saliency prior. OURS-CP and OURS-OP are the curves of the proposed contrast prior 
and object prior, respectively.  OURS-DP and OURS-SH are the curves of the proposed deep intersaliency and shallow intersaliency, respectively.  CBCS-S is  
the intraimage saliency detection approach proposed in  [14]. 

 

TABLE II 

COMPARISON OF AUC AND AP SCORES BETWEEN THE PROPOSED APPROACH AND THE OTHER 

STATE-OF-THE-ART METHODS ON THE IMAGE PAIR DATA SET 
 

              
 

 

               
 

 

Fig. 11.    Qualitative comparisons of cosaliency maps on the iCoseg data   set. 
 

group, and the Panda group. As can be seen, the proposed 

approach can  obtain  robust  performance  in  the  sense  that 

it suppresses the cluttered and complex     background regions 

(see the top two groups in Fig. 11), and meanwhile, uniformly 

highlights the cosalient objects with different viewpoints and 

shapes (see the bottom three groups in Fig.   11). 



 

 
 

 
Fig. 12. ROC curves and PR curves for the proposed approach and other state-of-the-art algorithms (including the cosaliency methods and the single image 
methods) on the iCoseg data set. Solid lines: methods for cosaliency detection. Dashed lines: approaches used for intraimage saliency detection. OURS-intra 
corresponds to the performance of the proposed intraimage saliency prior. OURS-CP and OURS-OP are the curves of the proposed contrast prior and object 
prior, respectively. OURS-DP and OURS-SH are the curves of the proposed deep intersaliency and shallow intersaliency, respectively. CBCS-S is the intraimage 
saliency detection approach proposed in  [14]. 

 

TABLE III 

COMPARISON OF AUC AND AP SCORES BETWEEN THE PROPOSED APPROACH AND THE OTHER 

STATE-OF-THE-ART METHODS ON THE iCoseg DATA SET 
 

 

 

 

Fig. 13. Comparison of AUC  and AP scores between  the proposed approach  and the other state-of-the-art  cosaliency  detection  methods for each image  
group in the iCoseg data  set. 

 

Similar to what we did in  the  Image  Pair  data  set,  we 

also compared the proposed saliency prior transfer method 

with the intrasaliency detection method CBCS-S [14], and 

another three state-of-the-art single image saliency detection 

algorithms HS [32], LR [33], and DRFT [46] in the iCoseg 

data set. The ROC curves and PR curves of these approaches 

were drawn in Fig. 12, and the corresponding AUC scores and 

AP scores were listed in Table III. From Fig. 12 and Table III, 

it shows that the proposed saliency prior transfer method still 

obtains  satisfactory  performance, which  is  better  than those 

two unsupervised single saliency models LR and HS, but 

worse than the supervised single saliency method DRFI. Due 

to our analysis,  the  reason  for  the  promising  performance 

of DRFI mainly lies in some  additional considered factors, 

e.g., discriminative regional description and learning-based 

multilevel saliency fusion. This finding suggests a potential 

utility in transferring more useful knowledge for cosaliency 

detection in our future work. More importantly, like in the 

Image Pair data set, the cosaliency detection results of the pro- 

posed method could also outperform all other   state-of-the-art 



 

 
TABLE IV 

AVERAGE RUNTIME (s) PER IMAGE 

 

 

 
algorithms and achieve the highest true positive rates on the 

whole ROC curve as well as the highest precisions on the 

whole PR curve consistently. 

To perform further verification, we compared the AUC and 

AP scores between the proposed approach and the other state- 

of-the-art cosaliency detection methods for each image group 

in the iCoseg data set in Fig. 13. As can be seen, the proposed 

approach is superior  to  the  other  state-of-the-art algorithms 

in 25 image groups among the  overall  38  image  groups.  

For some image groups, e.g., Stonehenge2, Elephants, and 

Woman Soccer Players2, the proposed approach improves the 

performance of the existing cosaliency detection algorithms to 

a large extent. 

 
D. Computational Cost and Runtime 

Given an image group with M images, the time complexity 
of the proposed algorithm for generating cosaliency maps for 

these images is O(Mτ logτ) + O(M2), where τ indicates the 
number of pixels in each image. For intuitional comparison, 
Table IV lists the  average  execution  time  for  each  image  
by using  different approaches. The  experiment was  run  on  
a PC with Intel i3-2130 3.4-GHz CPU    and 8-GB RAM. The 

code was implemented in MATLAB without optimization. For 

IPCS [12] and CBCS [14], we run the source codes provided 

by the authors on  the  same  environment. Since  the  authors 

of CSHS [15] did not release their source code, we directly 

reported its runtime listed in their paper, which was  run on  

the PC with a similar configuration to ours. As can be seen, 

the proposed algorithm achieves the best performance with the 

moderate computational complexity. 

 
V. CONCLUSION 

In this paper, we have proposed a novel cosaliency detection 

framework, which is one of the earliest efforts  to  inves-  

tigate the feasibility of using deep learning in cosaliency 

detection. For better solving the problems in generating a 

robust intrasaliency map, this paper made the earliest effort to 

transfer useful knowledge from the auxiliary annotated data 

sets. Rather than just exploring the shallow intersaliency, we 

also proposed to mine the deep intersaliency by discovering 

the intrinsic and coherent structures of the cosalient objects. 

Comprehensive experiments on two publicly available bench- 

marks have demonstrated the effectiveness of the proposed 

work. 

For the further work, we tend to extend the proposed work 

in the following directions. First, we will improve the proposed 

work by using more principled integration framework to fuse 

the  obtained  information  cues.  Second,  we  will  embed the 

cosaliency detection process into weakly supervised learning 

framework [50], [51] for helping the object selecting with 

weakly labeled images. Third, the proposed method can also 

be extended and applied to a wide range of video processing 

tasks, such as video foreground extraction, video categoriza- 

tion, and video memorability computation  [53]. 
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