

I

Blind Image Blur Estimation via Deep Learning
Ruomei Yan and Ling Shao, Senior Member, IEEE

Abstract— Image blur kernel estimation is critical to blind
image deblurring. Most existing approaches exploit handcrafted
blur features that are optimized for a certain uniform blur across
the image, which is unrealistic in a real blind deconvolution
setting, where the blur type is often unknown. To deal with
this issue, we aim at identifying the blur type for each input
image patch, and then estimating the kernel parameter in this
paper. A learning-based method using a pre-trained deep neural
network (DNN) and a general regression neural network (GRNN)
is proposed to first classify the blur type and then estimate
its parameters, taking advantages of both the classification
ability of DNN and the regression ability of GRNN. To the
best of our knowledge, this is the first time that pre-trained
DNN and GRNN have been applied to the problem of blur
analysis. First, our method identifies the blur type from a mixed
input of image patches corrupted by various blurs with different
parameters. To this aim, a supervised DNN is trained to project
the input samples into a discriminative feature space, in which the
blur type can be easily classified. Then, for each blur type,
the proposed GRNN estimates the blur parameters with very
high accuracy. Experiments demonstrate the effectiveness of the
proposed method in several tasks with better or competitive
results compared with the state of the art on two standard
image data sets, i.e., the Berkeley segmentation data set and
the Pascal VOC 2007 data set. In addition, blur region segmen-
tation and deblurring on a number of real photographs show
that our method outperforms the previous techniques even for
non-uniformly blurred images.

Index Terms— Blur classification, blur parameter estimation,
blind image deblurring, general regression neural network.

I. INTRODUCTION

MAGE blur is a major source of image degradation, and

deblurring has been a popular research topic in the field of

image processing. Various reasons can cause image blur, such

as the atmospheric turbulence (Gaussian blur), camera relative

motion during exposure (motion blur), and lens aberrations

(defocus blur) [1].

The restoration of blurred photographs, i.e., image deblur-

ring, is the process of inferring latent sharp images with

Manuscript received April 2, 2015; revised December 20, 2015; accepted
February 2, 2016. Date of publication February 26, 2016; date of current
version March 9, 2016. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Weisi Lin.
(Corresponding author: Ling Shao.)

R. Yan is with the College of Electronic and Information Engineer-
ing, Nanjing University of Information Science and Technology, Nanjing
210044, China, and also with the Department of Electronic and Electrical
Engineering, The University of Sheffield, Sheffield S1 3JD, U.K. (e-mail:
rmyan2013@gmail.com).

L. Shao is with the College of Electronic and Information Engineering,
Nanjing University of Information Science and Technology, Nanjing 210044,
China, and also with the Department of Computer Science and Digital
Technologies, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.
(e-mail: ling.shao@ieee.org).

inadequate information of the degradation model. There

are different approaches to consider this problem. On the

one hand, according to whether the blur kernel is known,

deblurring methods can be categorized into blind and non-

blind ([2]–[5]). Non-blind deblurring requires the prior

knowledge of the blur kernel and its parameters, while in

blind deblurring we assume that the blurring operator is

unknown. In most situations of practical interest the Point

Spread Function (PSF) is not acquired, so the application

range of the blind deblurring [6] is much more common

than that of the non-blind deblurring. In real applications, a

single blurred image is usually the only input we have to

deal with. Existing approaches for blind deblurring usually

describe the blur kernel of the whole image as a single uniform

model. The kernel estimation is carried out before the non-

blind deconvolution step, which is the standard procedure of

blind deblurring. One type of the classical blind deconvolution

methods involve improving image priors in the maximum a-

posteriori (MAP) estimation. In terms of image priors, sparsity

priors ([3], [7]–[10]) and edge priors ([4], [11]) are

commonly considered in the literature. These algorithms

typically use an Expectation Maximization (EM) step, which

updates the estimation of the blur kernel at one step and the

sharp image at the other step. Although image prior based

methods can successfully estimate the kernels as well as

the latent sharp images, there are flaws which restrict their

applications. The major flaw of sparsity priors is that they can

only represent very small neighborhoods [12]. The edge prior

methods, largely depending on the image content, will easily

fail when the image content is homogeneous. In this paper,

a “learned prior” based on the Fourier transform is proposed

for the blur kernel estimation. The frequency domain feature

and deep architectures solve the issue of no edges in some of

the natural image patches. Though the input is patch-based,

our framework can handle larger image patches compared to

sparsity priors.

On the other hand, a blurred image can be either locally

(non-uniform) or globally (uniform) blurred. In real applica-

tions, locally blurred images are more common, for instance,

due to multiple moving objects or different depths of field.

In the previous work of Levin et al. [13], it is found that the

assumption of uniform blur made by most algorithms is often

violated. Therefore, we argue that significant attention should

be paid to blur type classification, because the type of blur is

usually unknown in photographs or various regions within a

single picture. Despite its importance, only a limited number

of methods have been proposed for blur type classification.

One typical example is applying a Bayes Classifier using

handcrafted blur features, for instance, local autocorrelation

congruency [14]. Another similar method has been proposed

by Su et al. [15] based on the alpha channel feature, which

has different circularity of the blur extension. Though both

of them managed to detect local blurs in real images, their

methods are based on handcrafted features.

Although the methods based on handcrafted features can

perform well in the cases shown in [14] and [15], their

applicability is still limited due to the diversity of natural

images. Recently, many researchers have shifted their attention

from the heuristic prior to the learned deep architecture. The

deep hierarchical neural network roughly mimics the nature of

the mammalian visual cortex, which has been applied in many

vision tasks, such as object recognition, image classification,

and even action recognition. In Jain et al.’s denoising

work [16], they have shown the potential of using Convolu-

tional Neural Network (CNN) for denoising images corrupted

by Gaussian noise. In such an architecture, the learned

weights and biases in the deep convolutional neural network

are obtained through training on a sufficient number of natural

images. At the testing stage, these parameters in the network

act as “prior” information for the degraded images, which lead

to better results than state-of-the-art denoising approaches.

Another example is the blur extent metric developed by a

multi-feature classifier based on Neural Networks (NN) [17].

Their results show that the combined learned features

work better than most individual handcrafted features.

Most previous deep architectures (NN, CNN) are trained on

randomly initialized weights and gradually approximate a local

optimum. Unfortunately, a bad initialization could sometimes

yield a poor local optimum. To address this issue, we propose

to use a Deep Belief Network (DBN) for the initialization

of our Deep Neural Network (DNN). The reason why this pre-

training could benefit the deep neural network has been

studied in [18].

Inspired by the practical blur type classification

in [14] and [15] and the merit of learned descriptors

in [16] and [17], we propose the two-stage architecture for

blur type classification and parameter identification. Targeting

realistic blur estimation, we attempt to handle two difficulties

in this paper. One of them is blind blur parameter estimation

from a single (either locally or globally) blurred image without

doing any deblurring. A two-stage framework is proposed:

first, a pre-trained DNN is chosen for accomplishing the

feature extraction and classification to determine the blur

type; second, different samples with the same blur type will

be sent to the corresponding GRNN blocks for the parameter

estimation. A deep belief network is trained only for weight

initialization in an unsupervised way. The DNN uses the

weights and the backpropagation to ensure more effective

training in a supervised way. The other challenge is the pixel-

based blur segmentation using classified blur types. Similar to

the first step in the above method, the proposed pre-trained

DNN is applied for identifying blur types of all the patches

within the same image.

This paper makes five contributions:

• To our knowledge, this is the first time that pre-trained

DNN has been applied to the problem of blur analysis.

• A discriminative feature, derived from edge extraction
on Fourier Transform coefficients, has been proposed

to preprocess blurred images before they are fed into

the DNN.

• A two-stage framework is proposed to estimate the blur
type and parameter for any given image patch degraded

by spatially invariant blur of an unknown type.

• GRNN is first explored in this paper as a regression

tool for blur parameter estimation after the blur type is

determined.

• The proposed framework is also applied to real images
for local blur classification.

II. RELATED WORK

A. Previous Learning-Based Blur Analysis

An early popular method [19], which is a learning-based

blur detector, has used combined features for the neural

network. The basic idea is that blurry regions are less affected

by low pass filtering compared to sharp regions. The filtering

evolution based descriptors, the edge ratio, and the point

spread function serve as region descriptors for the neural

network.

Rather than using a single handcrafted feature,

Liu et al. [14] proposed a learning-based method which

combines several features together to form a more

discriminative feature for blur detection. The first blur

feature is the local power spectrum slope, which is based on

the fact that the amplitude spectrum slope of a blurred image

is steeper than that of a sharp image due to the loss of the

high frequency information. The second feature is the gradient

histogram span. This feature indicates the edge sharpness

distribution by the gradient magnitude. The third feature is

from the perspective of color saturation. Using the above three

features, an image (or image patch) can be classified as blur

or non-blur by training a Bayes classifier. Similarly, a motion

blur descriptor, based on the local autocorrelation congruency,

can be used as another feature for the Bayes classifier to

distinguish motion blur from defocus blur. Later, improved

handcrafted features for blur detection, classification,

blurriness measure have been proposed [15], [20],

leading to better results.

Another blur assessment algorithm employs multiple weak

features to boost the performance of the final feature descrip-

tor [17]. Their target is to measure how blurry an image

is by classifying it as excellent, good, fair, poor or bad.

Eight features are used as the input for a neural network.

Those features are: frequency domain metric, spatial domain

metric, perceptual blur metric, HVS based metric, local phase

coherence, mean brightness level, variance of the HVS fre-

quency response and contrast. The results have shown that the

combined features work better than individual features under

most circumstances.

B. Restricted Boltzmann Machines

An Restricted Boltzmann Machine (RBM) is a type of undi-

rected graphical model which contains undirected, symmetric

connections between the input layer (observations) and the

hidden layer (representing features). There are no connec-

tions between the nodes within each layer. Suppose that the

= −

input layer is hk−1, and the hidden layer is hk , k = 2, 3, 4
The probabilities in the representation model are determined
by the energy of the joint configuration of the input layer and
the output layer, which can be expressed as:

E(hk−1, hk ; θ)
Hk−1 Hk Hk−1 Hk . .

wij h
k−1

hk −
.

bih
k−1 −
.

c jh
k

 (1)

i=1 j =1

i j i

i=1

j

j =1

Fig. 1. The proposed architecture: DNN is the first stage for blur type

where θ = (w, b, c) denotes the model parameters, wij

represents the symmetric interaction term between unit i in

the layer hk−1 and unit j in the layer hk . bi and c j are the
bias terms of the nodes i and j , respectively.

In an RBM, the output units are conditionally indepen-

dent given the input states. So an unbiased sample from

the posterior distribution can be obtained when an input data-

vector is given, which can be expressed as:

P(h|v) = P(hi |v) (2)
i

Since hi ∈ {0, 1}, the conditional distributions are given as:

Hk−1

p(hk = 1|hk−1; θ) = σ(
.

wij h
k−1 + c j) (3)

classification, which has 3 output labels. GRNN is the blur PSF parameter
estimation, which has different output labels for each blur type. P1, P2, and P3

are the estimated parameters, which can be seen in Sec. IV-C. B1, B2, and B3

are the features for Gaussian, motion, and defocus blur, respectively.

(a.k.a. the point spread function), ∗ indicates the convolution
operator, and n is the additive noise.

In blind image deconvolution, it is not easy to recover the

PSF from a single blurred image due to the loss of information

during blurring [23]. Our goal is to classify the blurred patches

into different blur types according to the blur related features

and then we estimate blur parameters for each classified patch.

Several blurring functions are considered in this paper as

shown in Fig. 2.
In many applications, such as satellite imaging, Gaussian

j

p(hk−1 k

i

i=1

Hk
.

k

blur can be used to model the PSF of the atmospheric

turbulence:
i = 1|h ; θ) = σ(wij h j + bi) (4) 1 x 2 2

j =1 q(x,σ) = √
2πσ

exp(−
1 + x2

2σ 2
), x ∈ R (6)

where σ(t) = (1 + e−t)−1.
As shown in the above equation, weights between two layers

and the biases of each layer decide the energy of the joint
configuration. The training process of the RBM is to update

θ = (w, b, c) by Contrastive Divergence (CD) [21].
The intuition for CD is: the training vector on the input

where σ is the blur radius to be estimated, and R is the region

of support. R is usually set as [−3σ, 3σ], because it contains
99.7% of the energy in a Gaussian function [24].

Another blur is caused by linear motion of the camera,

which is called motion blur [25]:

layer is used for the inference of the output layer, so the units
⎧

1
 ⎨⎪
, (x1, x2)

.
sin(ω)

.
 = 0, x 2 + x 2 ≤ M2/4

of the output layer have been updated as well as the weights

connected between layers. Afterwards, another inference goes

from the output layer to the input layer with more updates

q(x) =

M
⎪⎩

0, otherwise

cos(ω) 1 2
 (7)

of the weights and input biases. This process is carried out

repeatedly until the representation model is built.

III. METHODOLOGY

In this section, we describe the proposed two-stage frame-

work (Fig. 1) for blur classification and parameter estimation.

where M describes the length of motion in pixels and

ω is the motion direction with its angle to the x axis. These

two parameters are what we need to estimate in our system.

The third blur is the defocus blur, which can be modeled

as a cylinder function: ⎧
1

,
2 2

We explain the problem formulation, the proposed blur fea- q(x) =
⎨

πr 2
,
 x1 + x2 ≤ r (8)

tures, the training of DNN, and the structure of the GRNN in

Sec. III-A, Sec. III-B, Sec. III-C, and Sec. III-D, respectively.

A. Problem Formulation

The image blurring can be modeled as the following degra-

dation process from the high exposed image to the observed

image [22]:

g(x) = q(x) ∗ f (x) + n(x) (5)

where x = {x1, x2} denotes the coordinates of an
image pixel, g represents the blurred image, f is the
intensity of the latent image, q denotes the blur kernel

⎩
0, otherwise

where the blur radius r is proportional to the extent of

defocusing.

In [14], a motion blur descriptor, local autocorrelation

congruency, is used as a feature for the Bayes classifier

to discriminate motion blur from defocus blur because the

descriptor is strongly related to the shape and value of the PSF.

Later, Su et al. [15] have presented alternative handcrafted

features for blur classification, which gives better results with-

out any training. Though both methods generate good results

on identifying motion blur and defocus blur, the features

they used are limited to a single or several blur kernels.

π Rr , r =

|

Fig. 2. Illustration of the PSF of three blur types: (a) Gaussian blur with σ = 3 and kernel size 21 × 21; (b) Motion blur with length 5, and motion
angle 45◦; (c) Defocus blur with r = 5.

In this paper, we propose a general feature extractor for

common blur kernels with various parameters, which is closer
where u = {u1, u2}. For the defocus blur,

to realistic application scenarios. Therefore, enlightened by Q(u) = J1(π Rr)

,

u2 + u2.
1 2

the previous success of applying deep belief networks to

discriminative learning [26], we use the DNN as our feature

extractor for blur type classification.

When designing the DBN unsupervised training step, it is

natural to use observed blurred patches as training and testing

samples. However, their characteristics are not as obvious

as their frequency coefficients [27]. Hence, the logarithmic

power spectra are adopted as input features for the DBN,

since the PSF in the frequency domain manifests different

characteristics for different blur kernels. Bengio et al. [28]
have pointed out that scaling continuous-valued input to (0, 1)

J1 is the first-order Bessel function of the first kind and the

amplitude is characterized by almost-periodic circles of

radius R along which the Fourier magnitude takes value zero.1

For the motion blur, the FT of the PSF is a sinc function:

Q(u) = sin(π Mω) 1 2

π Mω , ω = ± M , ± M ,
In order to know the PSF Q(u), we attempt to identify the

type and parameters of Q from the observation image G(u).

Therefore, the normalized logarithm of G can be used in our

implementation:

log(|G(u)|) − log(|Gmin |)

worked well for pixel gray levels, but it is not necessarily

appropriate for other kinds of input data. From Eq. (5) one
log(|G(u)|)norm =

log(G

max |) − log(|G min |
(10)

)

can see that the noise might interfere the inference in the

training processing [28], so preprocessing steps are necessary

for preparing our training samples. In this paper, we use

an edge detector to obtain binary input values for the DBN

training, which has been proved to benefit the blur analysis

task. As is shown in Table II, the results with edge detector

are in general better than those without.

We propose a two-stage system to first classify the blur

kernel and then estimate the blur parameters, which is similar

to our previous work in [29]. These two stages have a similar

network architecture but different input layers. The first stage

is an initial classification of the blur type, and the second

stage is to further estimate the blur parameters using samples

within the same category from the results of the first stage.

This is different from our previous work whose second stage is

for parameter identification. Since the variation between blur

parameters of the same blur type is not as great as that between

different blur types, more discriminative features have been

designed for the second stage. In the parameter estimation

stage, the general regression neural network is applied for the

prediction of the continuous parameter, which performs better

than the plain neural networks with back-propagation in our

implementations as demonstrated in [30].

B. Blur Features

1) Features for Motion and Defocus Blurs: If we apply the

Fourier Transform (FT) to both sides of Eq. (5), we can obtain:

G(u) = Q(u)F(u) + N(u) (9)

where G represents G(u), Gmax = maxu(G(u)), and

Gmin = minu(G(u)).
As shown in Fig. 3, the patterns in these images

(log(|G(u)|)norm) can represent the motion blur or the defocus
blur intuitively. Hence, no extra preprocessing needs to be

done for the blur type classification. However, defocus blurs

with different radii are easy to be confused, which also has

been proved in our experiments. Therefore, for blur parameter

identification, an edge detection step is proposed here.

Since the highest intensities concentrate around the center of

the spectrum and decrease towards its borders, the binarization

threshold has to be adapted for each individual pixel, which

is computationally prohibitive. If a classic edge detector is

applied directly, redundant edges would interfere with the

pattern we need for the DBN training. Many improved edge

detectors have been explored to solve this issue, however, most

of them do not apply to the logarithmic power spectra data,

which cause even worse performance [31], [32]. For instance,

Bao et al. [31] proposed to improve the Canny detector by the

scale multiplication, which indeed enhances the localization of

the Canny detector. However, this method does not generate

good edges on our images.

The Edge Detection on the Logarithm Images of the Blurred

Images: In this application scenario, the input for the edge

detector is log(|G(u)|)norm . Since the goal of our edge detec-
tion is to obtain useful blur parameters in the deep learning

process, the detected edges should be well presented by

1http://www.clear.rice.edu/elec431/projects95/lords/elec431.html

http://www.clear.rice.edu/elec431/projects95/lords/elec431.html

j

Fig. 3. Illustration of the PSF of three blur types: (a) Image with Gaussian
blur; (b) Image with motion blur; (c) Image with defocus blur; (d) Logarithmic

spectrum of Gaussian blur (σ = 2); (e) Logarithmic spectrum of motion blur
(M = 9,ω = 45); (f) Logarithmic spectrum of defocus blur(R = 30);
(g) Logarithmic spectrum of Gaussian blu r (σ = 5); (h) Logarithmic
spectrum of Gaussian blur (σ = 10); (i) Logarithmic spectrum of Gaussian
blur (σ = 20).

the most important edges (not necessarily all of the edges).

To be precise, for motion blur, all we need is several straight

lines which could represent the correct motion length and

angle. For defocus blur, we need to get rid of scattered

and small curves and keep the continuous and smooth ones.

According to Eq. (9), the image noise will affect the contrast

around image edges in the logarithm spectra image. Different

textures in different input images would affect the logarithm

images too. However, the periodic functions of those blur

kernels guarantee the distribution of the spectra images, which

makes our edge detection process easier.

We solve this issue by applying the Canny detector first,

and then using a heuristic method to refine the detected edges

according to our goal. Due to the fact that the useful edges are

isolated near zero-crossings, we need to refine the detection

results from the logarithmic power spectrum. The Canny edge

detector is applied to form an initial edge map. Then, we
design several steps to select the most useful edges: 1) For both

2) Features for the Gaussian Blur: For the Gaussian blur,

the Fourier transform of the PSF is still a Gaussian function,

and there is no significant pattern change in the frequency

domain. From Eq.(6), we can see that the Gaussian kernel

serves as a low pass filter. When the sigma of this filter

is larger, more ‘high frequency information’ will pass in.

However, from our observation, when the σ is larger than 2,

the pattern on the logarithmic spectrum image barely changes

(as shown in Fig. 3), and only the intensity of the image

changes. In the experiment section, we show that edge detec-

tion can not improve the results significantly.

C. The Training Process of Deep Neural Networks

Deep belief nets are used as a generative model for feature

learning in a lot of previous works [26], in which DBN has

outperformed various deep learning models such as DNN and

DCNN. However, in the recent research for applying deep

models to image classification, DCNN has performed very

well compared to most other methods on datasets like MNIST,

CIFAR-10, and SVHN. [33]. In most of the classification

tasks, there are subtle differences between image objects or

categories, in which case learning the semantic meaning of

images is very important. CNN is good at capturing the pixel

correlation within a small neighborhood, which is very useful

for the task of image classification.

However, in our case, we are not looking for the semantic

meaning of our blur features. In fact, they are already pretty

distinctive in terms of categories. The difficulty in our task is

how to capture the very precise detail when we extract features

for the blur classification because the distances of the extracted

edges could include the category information. Therefore, in

this paper, we first construct the DBN by unsupervised greedy

layer-wise training to extract features in the form of hidden

layers. Then the weights in these hidden layers serve as the

initial values for a neural network. In this process, the neural

network is trained in a supervised way.

1) Regularization Terms: Given that

E(hk−1, hk ; θ) =− log P(hk−1, hk) (11)

Assume the training set is hk−1 k−1

1 , . . . , hm , the following

of the blur types, we select “important” edges. The important

edges have two meanings: a) edges with the significant contrast

across them. For each edge (curve), the standard deviation

regularization term is proposed for reducing the chance of

overfitting:
m . .

k−1 k

of the intensity on each side of the curve σl could be used

to measure the strength of the edges. For edges like these,

min −
{wij , bi c j }

p=1

log

h

P(hp , hp) (12)

we tend to use a ranking for all the strength of the edges
in the image. For our specific problem, we only keep the

n
+ λ
.

|t − 1
m
.

E [h
(
 pk) (p(k−1)) 2

first K edges; b) edges which are isolated from other edges.

j =1

m
p=1

j |h]| (13)

Assuming the isolated region has the radius d, those edges, in

the orthogonal direction of the current edge within radius d,

will be discarded [11]. 2) For the motion blur, we abandon

short and very curvy edges. We consider the orientations

θ = [0,π] of the candidate edges within radius d. Also, using
the results from the first step, we consider that all the edges

should only have one angle which is the same as the one

of the “important” edge. Therefore, it is very easy to discard

unnecessary edges and refine the estimate of the blur length.

Sample results are shown in Fig. 6.

where E [·] is the conditional expectation given the data, t is
the constant controlling the sparseness of the hidden units hk ,

and λ is a constant for the regularization. In this way, the

hidden units are restricted to have a mean value closing to t.

2) The Pretrained Deep Neural Network: The training

process of the proposed DNN is described in Algorithm 1

and illustrated in Fig. 4:

• The input layer is trained in the first RBM as the visible

layer. Then, a representation of the input blurred sample
is obtained for further hidden layers.

i

i

Algorithm 1 DNN Pretraining

Fig. 4. The diagram of the pre-trained DNN.

The goal for the optimization process is to minimize the

backpropagation error derivatives:

φ∗ = arg min[−
.

y p log ŷ p] (14)

φ
p

Evaluate the error signals for each output and hidden unit

using back-propagation of error [34].

D. General Regression Neural Network

Once our classification part is completed, the blur type

of the input patch could be specified. However, what would

mostly interest the user is the parameter of the blur kernel,

using which the deblurring process would be greatly improved.

In our previous work [29], the two-stage framework has

successfully predicted the category of the parameter. In this

sense, we know that this framework can work as a whole if we

want to know the rough value of the blur parameter. However,

to obtain the precise value of the parameter, we need to come

to the regression framework.

The general regression neural network is considered to

• The next layer is trained as an RBM by greedy layer-wise

information reconstruction. The training process of RBM

is to update weights between two adjacent layers and the

biases of each layer.

• Repeat the first and second steps until the parameters in

all layers (visible and all hidden layers) are learned.

• In the supervised learning part, the above trained para-
meter W, b, a are used for initializing the weights in the

deep neural network.

be a generalization of both Radial Basis Function Net-

works (RBFN) and Probabilistic Neural Networks (PNN).

It outperforms RBFN and backpropagation neural networks

in terms of the results of prediction [35]. The main function

of a GRNN is to estimate a joint probability density function

of the input independent variables and the output.

As shown in Fig. 5, GRNN is composed of an input layer, a

hidden layer, “unnormalized” output units, a summation unit,

and normalized outputs. GRNN is trained using a one-pass

learning algorithm without any iterations. Intuitively, in the

training process, the target values for the training vectors help

to define cluster centroids, which act as part of the weights

for the summation units.

Assume that the training vectors can be represented as X

and the training targets are Y . In the pattern layer, each hidden

unit is corresponding to an input sample. From the pattern

layer to the summation layer, each weight is the target for the
M d input sample. The summation units can be denoted as:

ŷk = σ (
.

w
(l+1)

h(
.

w
(l)

xi)) .n

kj
j =0

ji
i=0 Yˆ = i=1 Yi exp(−D2/2σ 2) (15) n 2 2

l = 1, 2, ... , N − 1

k = 1, 2, ... , K

.
i=1 exp(−Di /2σ)

where D2 = (X − Xi)T (X − Xi), σ is the spread parameter.

Fig. 5. The diagram of GRNN.

In the testing stage, for any input T , the Euclidean distance

between this input and the hidden units are calculated. In the

summation layer, the weighted average of the possible ‘target’

is calculated for each hidden node and then averaged by the

normalization process.

E. Forming the Two-Phase Structure

The proposed method is formed by two-stage learning

(Fig. 1). First, the identification of blur patterns is carried

out by using the logarithmic spectra of the input blurred

patches. The output of this stage is 3 labels: the Gaussian

blur, the motion blur and the defocus blur. With the label

information, the classified blur vectors will be used in the

second stage for blur parameter estimation. At this stage,

motion blur and defocus blur will be further preprocessed by

the edge detector (Sec. III-B) before the training but Gaussian

blur vectors remain the same (As shown in our previous

experiments [29], the appropriate feature for Gaussian blur

is the logarithmic spectra without edge detection). This stage

outputs various estimated parameters for individual GRNN as

shown in Sec. IV-C.

IV. EXPERIMENTS

A. Experimental Setup

Training Datasets: The Oxford image classification

dataset,2 and the Caltech 101 dataset are chosen to be our

training sets. We randomly selected 5000 images from each

Fig. 6. Comparison of the three edge detection methods applied to a training
sample. From left to right: (a) the logarithmic power spectrum of a patch;
(b) the edge detected by Canny detector (automatic thresholds); (c) the edge
detected by the improved Canny detector using the scale multiplication [31];
(d) the edge detected by our method.

Testing Datasets: Berkeley segmentation dataset

(200 images), which has been applied to the denoising

algorithms [36], [37] and image quality assessment [38],

has been used for our testing stage. Pascal VOC 2007:

500 images are randomly selected from this dataset [39].

6000 testing samples are chosen from each of them accord-

ing to the same procedure as the training set. The numbers of

the three types of blurred patches are random in the testing set.

Blur Features: The Canny detector is applied to the logarith-

mic power spectrum of image patches with automatic low and

high thresholds. Afterwards, the isolated edges are selected

with the radius of 3 pixels according to the suggestions

from [11].

DBN Training: For parameters of the DBN learning process,

the basic learning rate and momentum in the model are set

according to the previous work [28]. In the unsupervised

greedy learning stage, the number of epochs is fixed at 50

and the learning rate is 0.1. The initial momentum is 0.5, and

it changes to 0.9 after five epochs. Our supervised fine-tuning

process always converges in no more than 30 epoch.

GRNN Training: For parameters of the GRNN training,

there is a smoothness-of-fit parameter σ that needs to be tuned.

A range of values [0.02, 1] with the intervals of 0.1 has been

used for determining the parameter, which is shown in Fig. 7.

The value σ = 0.2 is selected for our implementation.

of them.

The size of the training samples ranges from 32 × 32 to

128 × 128 pixels, which are cropped from the original images.
By empirical evaluations, the best results occur when the patch

size is 32 × 32. Each training sample has two labels: one is
its blur type (the values are 1, 2, or 3) and the other one

is its blur parameter (it is a continuous value which belongs

to a range as shown in Sec. IV-C). The size of the training

set is 36000 (randomly selected from those cropped images).

In those 36000 training samples, 12000 of them are degraded

by Gaussian PSF, 12000 of them are degraded by the PSF of

motion blur, and the rest are degraded by the defocus PSF.

2http://www.robots.ox.ac.uk/~vgg/share/practical-image-classification.htm

B. Image Blur Type Classification

In our implementation, the input visible layer has
1024 nodes, and the output layer has 3 nodes representing

3 labels (Gaussian kernel, motion kernel, and defocus blur ker-

nel). Therefore, the whole architecture is: 1024 −→ 500 −→
30 −→ 10 −→ 3. These node numbers in each hidden layer
are selected empirically.

On the one hand, we compare our method with the pre-

vious blur type classification methods based on handcrafted

features: [14], [15]. Their original frameworks contain a blur

detection stage, and the blur type classification is applied

afterwards. However, in our algorithm, the image blurs are

simulated by convolving the high quality patches with various

http://www.robots.ox.ac.uk/~vgg/share/practical-image-classification.htm

Fig. 7. The estimation error changes with the spread parameter of GRNN.
The parameter testing was done on the data which are corrupted with Gaussian
blur with various kernels.

TABLE I

COMPARISON OF OBTAINED AVERAGE RESULTS ON THE TWO TESTING

DATASETS WITH THE STATE-OF-THE-ART. CR1 IS THE BERKELEY

DATASET, AND CR2 IS THE PASCAL DATASET

Fig. 8. The parameter estimation was done on the data which are corrupted
with different blur kernels with various sizes. In CRxx the first x refers to the
dataset type (1 for Berkeley and 2 for Pascal) and the second x refers to the
blur type (the Gaussian blur, the motion blur, and the defocus blur).

PSFs. In our comparison, [14] has been trained and tested with
the same datasets we used, while [15] has been tested with the

same testing set we used.

On the other hand, back-propagation Neural Network [40],

convolutional Neural Network (CNN) [41] and Support Vector

Machine (SVM) have been chosen for the comparison of

the classifiers. The same blur feature vectors are used for

NN and CNN. The SVM-based classifier was implemented

following the usual technique: several binary SVM classifiers

are combined to the multi-classifier [42].

The classification rate is used for evaluating the

performance:

CR 100
Nc

(%) (16)

=
Na

Fig. 9. Cumulative histogram of the deconvolution error ratios.

ours, CNN is much easier to get overfitting compared to

the DBN.

C. Blur Kernel Parameter Estimation

In this experiment, the parameters of the blur kernels are
estimated through GRNN. For different blur kernels, different

parameters are estimated as explained in Sec. III-A. The

parameters are set as: 1) Gaussian blur has a range: σ =
[1, 5]; 2) Motion blur has ω = [30, 180]; 3) defocus blur:

R = [2, 23]. The architectures in each GRNN are the same.
The first comparison is between our previous method [29]

where Nc is the number of correct classified samples, and Na

is the total number of samples.

We can observe from Table I that algorithms based on

learned features perform better than those based on hand-

crafted features, which suggests that learning-based feature

extractor is less restricted to the type of the blur we con-

sider. Meanwhile, our method performs best among all the

algorithms using automatically learned features. The reason

why DBN in this task can achieve better results than CNN is

that CNN is trained in a supervised way from the beginning,

which will take large quantity of training data. Though our

labeled training data is large, it is still difficult to avoid

overfitting when the appropriate size of the CNN is not

known. However, DBN is trained as a generative model

first, and then a distinctive model, which means it learns

the ‘feature’ before the ‘classification’. For problems like

and the method proposed in this paper, through which we

would like to see the improvement by using the regression

rather than the classification. Table II has shown the perfor-

mance of the image deblurring using the estimated parameters.

One can see that apart from the Gaussian blur, both results of

the other two types have been improved significantly by using

parameter estimation instead of classification. Visual results

of this experiment are also shown in Fig. 11. The metrics

we used for this comparison are PSNR, SSIM, Gradient

Magnitude Similarity Deviation (GMSD) [43], and Gradient

Similarity (GS) [44].

The other type of comparisons are made between our

methods and other regression methods. Specifically, our

method is compared to the back-propagation Neural Network,

Support Vector Regressor (SVR) [45], and pre-trained DNN

plus linear regressor (the same input layer of the blur features

TABLE II

QUANTITATIVE COMPARISON OF THE PROPOSED METHOD AND THE PREVIOUS METHOD [29]. THE RESULTS

SHOWN ARE THE AVERAGE VALUES OBTAINED ON THE SYNTHETIC TEST SET

Fig. 10. Comparison of the deblurred results of images corrupted by motion blur with length 10 and angle 45. (a) Ground truth. (b) The blurred image.
(c) CNN. (d) Levin et al. [9]. (e) Cho and Lee [4]. (f) Ours.

but continuous targets instead of discrete labels). As shown in

Fig. 8, our GRNN method achieves the best results among all,

which demonstrate the fact mentioned in [35] and [46] that

GRNN yields better results compared to back-propagation

neural network. As can be seen from the figure, SVR performs

much better than neural networks with our input data, which

also proves that determining prediction results directly from

the training data seems to be a better scheme for our problem

compared to the weight tuning in the back-propagation

frameworks. Moreover, our proposed GRNN works better

than the pre-trained DNN with a linear regressor as shown in

Fig. 8, which shows that GRNN is a better regressor for the

blur analysis.

D. Deblurring Synthetic Test Images

Using the Estimated Values

Once the blur type and the parameter of the blur kernel are

estimated, it is easier to use non-blind image reconstruction

method EPLL [5] to restore the latent image. The restored

images are compared with the results of several popular blind

image deblurring methods in the case of motion blur (easier

for fair comparisons).

The quantitative reconstruction results are presented by

the cumulative histogram [13] of the deconvolution error

ratio across test datasets in Fig. 9. The error ratio in this

figure is calculated by comparing the two types of SSD error

between reconstructed images and the ground truth images

(e.g. bin error = 2.5 counts the percentage of test examples
achieving error ratio below 2.5). One of them is the restored

results using estimated kernel and the other one is with the

truth kernel.

The deconvolved images are shown in the following

Fig. 10. Contrary to the quantitative results, it is obvious that

our deblurred images have very competitive visual quality.

Our method outperforms CNN a lot due to the fact that

our GRNN step can provide much more precise parameter

estimation. Another comparison of the deconvolution results

of real test images is shown in the Fig. 13.

E. Blur Region Segmentation on the Real Photographs

In this experiment, our DNN structure is trained on

real photographs, from which blurred training patches are

extracted. The blur types of the patches are manually labeled.

200 partially blurred images are selected from Flickr.com.

Half of these images are used for training and the other half

Fig. 11. Comparison of the deblurred results of different images corrupted by various blur kernels. (a) Ground truth. (b) The defocus blur. (c) [29].
(d) Ours. (e) Ground truth. (f) The Gaussian blur. (g) [29]. (h) Ours. (i) Ground truth. (j) The motion blur. (k) [29]. (l) Ours.

Fig. 12. Comparison of the blur segmentation results for real image which was blurred with non-uniform blur kernels. (a) input blurred image;
(b) blur segmentation result in [14]; (c) blur segmentation result in [15]; (d) our result.

Fig. 13. Comparison of the deblurring results for partially blurred images. (a) input blurred image; (b) deblurring result of [29];
(c) our result. (Zoom in for better viewing).

are used for testing according to what has been described in

paper [14]. The size of each patch is still the same compared

to previous experiments (32 by 32). Using the blur type

classification results by our proposed method, we also

consider the spatial similarity of blur types in the same region

mentioned by Liu et al.’s [14].

The segmentation result of our method is compared

with [14] and [15] in Fig. 12. As can be seen from these

subjective results, our classification is more solid even when

the motion is significant. This is useful for real deblurring

applications.

V. CONCLUSIONS

In this paper, a learning-based blur estimation method has

been proposed for blind blur analysis. Our training samples are

generated by patches from abundant datasets, after the Fourier

transform and our designed edge detection. In the training

stage, a pre-trained DNN has been applied in a supervised

way. That is, the whole network is trained in an unsupervised

manner by using DBN and afterwards the backpropagation

fine-tunes the weights. In this way, a discriminative classifier

can be trained. In the parameter estimation stage, a strong

regressor GRNN is proposed to deal with our problem of blind

parameter estimation. The experimental results have demon-

strated the superiority of our proposed method compared to the

state-of-the-art methods for applications such as blind image

deblurring and blur region segmentation for real blurry images.

REFERENCES

[1] R. L. Lagendijk and J. Biemond, Basic Methods for Image Restoration
and Identification. London, U.K.: Academic, 2000.

[2] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-
Laplacian priors,” in Proc. Conf. Adv. Neural Inf. Process. Syst.,
Vancouver, BC, Canada, 2009, pp. 1–9.

[3] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman,
“Removing camera shake from a single photograph,” ACM Trans.
Graph., vol. 25, no. 3, pp. 787–794, Jul. 2006.

[4] S. Cho and S. Lee, “Fast motion deblurring,” in Proc. ACM SIGGRAPH
Asia, Yokohama, Japan, 2009, Art. no. 145.

[5] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” in Proc. IEEE Int. Conf. Comput. Vis.,
Barcelona, Spain, Nov. 2011, pp. 479–486.

[6] M. S. C. Almeida and L. B. Almeida, “Blind and semi-blind deblur-
ring of natural images,” IEEE Trans. Image Process., vol. 19, no. 1,
pp. 36–52, Jan. 2010.

[7] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from
a single image,” ACM Trans. Graph., vol. 27, no. 3, pp. 721–730,
Aug. 2008.

[8] N. Joshi, R. Szeliski, and D. J. Kriegman, “PSF estimation using sharp
edge prediction,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Anchorage, AK, USA, 2008, pp. 1–8.

[9] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Efficient marginal
likelihood optimization in blind deconvolution,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Colorado Springs, CO, USA, Jun. 2011,
pp. 2657–2664.

[10] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a
normalized sparsity measure,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Colorado Springs, CO, USA, Jun. 2011, pp. 233–240.

[11] T. S. Cho, S. Paris, B. K. P. Horn, and W. T. Freeman, “Blur kernel
estimation using the radon transform,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Colorado Springs, CO, USA, Jun. 2011, pp. 241–248.

[12] L. Sun, S. Cho, J. Wang, and J. Hays, “Edge-based blur kernel estimation
using patch priors,” in Proc. IEEE Int. Conf. Comput. Photography,
Cambridge, MA, USA, Apr. 2013, pp. 1–8.

[13] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding
and evaluating blind deconvolution algorithms,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Miami Beach, FL, USA, Jun. 2009,
pp. 1964–1971.

[14] R. Liu, Z. Li, and J. Jia, “Image partial blur detection and classification,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Anchorage, AK,
USA, Jun. 2008, pp. 1–8.

[15] B. Su, S. Lu, and C. L. Tan, “Blurred image region detection and
classification,” in Proc. 19th ACM Multimedia, Scottsdale, AZ, USA,
2011, pp. 1397–1400.

[16] V. Jain and H. Seung, “Natural image denoising with convolutional
networks,” in Proc. Conf. Adv. Neural Inf. Process. Syst., Vancouver,
BC, Canada, 2008, pp. 769–776.

[17] A. Ciancio, A. L. N. T. da Costa, E. A. B. da Silva, A. Said, R. Samadani,
and P. Obrador, “No-reference blur assessment of digital pictures based
on multifeature classifiers,” IEEE Trans. Image Process., vol. 20, no. 1,
pp. 64–75, Jan. 2011.

[18] D. Erhan, P. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, “The
difficulty of training deep architectures and the effect of unsupervised
pre-training,” in Proc. IEEE Int. Conf. Artif., Intell., Statist., Clearwater
Beach, FL, USA, May 2009, pp. 153–160.

[19] J. Rugna and H. Konik, “Automatic blur detection for metadata extrac-
tion in conten-based retrieval context,” in Proc. SPIE Internet Imag. V,
vol. 5304. San Diego, CA, USA, 2003.

[20] K. Gu, G. Zhai, W. Lin, X. Yang, and W. Zhang, “No-reference image
sharpness assessment in autoregressive parameter space,” IEEE Trans.
Image Process., vol. 24, no. 10, pp. 3218–3231, Oct. 2015.

[21] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Comput., vol. 14, no. 8, pp. 1771–1800, Aug. 2002.

[22] R. Molina, J. Mateos, and A. K. Katsaggelos, “Blind deconvolution
using a variational approach to parameter, image, and blur estimation,”
IEEE Trans. Image Process., vol. 15, no. 12, pp. 3715–3727, Dec. 2006.

[23] W. Hu, J. Xue, and N. Zheng, “PSF estimation via gradient domain
correlation,” IEEE Trans. Image Process., vol. 21, no. 1, pp. 386–392,
Jan. 2012.

[24] F. Chen and J. Ma, “An empirical identification method of Gaussian blur
parameter for image deblurring,” IEEE Trans. Signal Process., vol. 57,
no. 7, pp. 2467–2478, Jul. 2009.

[25] D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE
Signal Process. Mag., vol. 13, no. 3, pp. 43–64, May 1996.

[26] S.-H. Zhong, Y. Liu, and Y. Liu, “Bilinear deep learning for image
classification,” in Proc. 19th ACM Int. Conf. Multimedia, Scottsdale,
AZ, USA, 2011, pp. 343–352.

[27] M. Cannon, “Blind deconvolution of spatially invariant image blurs with
phase,” IEEE Trans. Acoust., Speech, Signal Process., vol. 24, no. 1,
pp. 58–63, Feb. 1976.

[28] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Proc. Conf. Adv. Neural Inf. Process.
Syst., Vancouver, BC, Canada, 2006, pp. 1–6.

[29] R. Yan and L. Shao, “Image blur classification and parameter identifi-
cation using two-stage deep belief networks,” in Proc. Brit. Mach. Vis.
Conf., Bristol, U.K., 2013, pp. 70.1–70.11.

[30] D. F. Specht, “A general regression neural network,” IEEE Trans. Neural
Netw., vol. 2, no. 6, pp. 568–576, Nov. 1991.

[31] P. Bao, L. Zhang, and X. Wu, “Canny edge detection enhancement by
scale multiplication,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 9, pp. 1485–1490, Sep. 2005.

[32] W. McIlhagga, “The Canny edge detector revisited,” Int. J. Comput. Vis.,
vol. 91, no. 3, pp. 251–261, Feb. 2011.

[33] C. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. (2014). “Deeply-
supervised nets.” [Online]. Available: http://arxiv.org/abs/1409.5185.

[34] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989.

[35] D. Tomandl and A. Schober, “A modified general regression neural
network (MGRNN) with new, efficient training algorithms as a robust
‘black box’-tool for data analysis,” Neural Netw., vol. 14, no. 8,
pp. 1023–1034, Oct. 2001.

[36] S. Roth and M. J. Black, “Fields of experts: A framework for learning
image priors,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
San Diego, CA, USA, Jun. 2005, pp. 860–867.

[37] D. Martin, D. Fowlkes, and J. Malik, “A database of human segmented
natural images and its application to evaluating segmentation algorithms
and measuring ecological statistics,” in Proc. IEEE Int. Conf. Comput.
Vis., Vancouver, BC, Canada, Jul. 2001, pp. 416–423.

[38] K. Gu, G. Zhai, X. Yang, and W. Zhang, “Using free energy principle
for blind image quality assessment,” IEEE Trans. Multimedia, vol. 17,
no. 1, pp. 50–63, Jan. 2015.

[39] M. Everingham, V. G. L., C. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes challenge,” Int. J. Comput. Vis., vol. 88,
no. 2, pp. 303–338, Jan. 2010.

[40] T. Mitchell. Machine Learning. New York, NY, USA: McGraw-Hill,
1997.

[41] R. Palm, “Prediction as a candidate for learning deep hierarchical models
of data,” M.S. thesis, Dept. Inform., Tech. Univ. Denmark, Kongens
Lyngby, Denmark, 2012.

http://arxiv.org/abs/1409.5185

[42] S. Duan and K. Keerthi, “Which is the best multiclass svm method? An

empirical study,” in Proc. Int. Conf. Multiple Classifier Syst., Seaside,
CA, USA, 2005.

[43] W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude
similarity deviation: A highly efficient perceptual image quality index,”
IEEE Trans. Image Process., vol. 23, no. 2, pp. 684–695, Feb. 2014.

[44] A. Liu, W. Lin, and M. Narwaria, “Image quality assessment based
on gradient similarity,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1500–1512, Apr. 2012.

[45] S. R. Gunn, “Support vector machines for classification and regres-
sion,” School Electron. Comput. Sci., University of Southampton,
Southampton, U.K., Tech. Rep., 1998.

[46] Q. Li, Q. Meng, J. Cai, H. Yoshino, and A. Mochida, “Predicting hourly
cooling load in the building: A comparison of support vector machine
and different artificial neural networks,” Energy Convers. Manage.,
vol. 50, no. 1, pp. 90–96, Jan. 2009.

Ling Shao (M’09–SM’10) is currently a Professor
with the Department of Computer Science and Digi-
tal Technologies, Northumbria University, Newcastle
Upon Tyne, U.K., and a Guest Professor with the
College of Electronic and Information Engineer-
ing, Nanjing University of Information Science and
Technology. He was a Senior Lecturer (2009–2014)
with the Department of Electronic and Electrical
Engineering, The University of Sheffield, and a
Senior Scientist (2005–2009) with Philips Research,
The Netherlands. His research interests include com-

puter vision, image/video processing, and machine learning. He is a fellow
of the British Computer Society and the Institution of Engineering and
Technology. He is an Associate Editor of the IEEE TRANSACTIONS ON

IMAGE PROCESSING, the IEEE TRANSACTIONS ON NEURAL NETWORKS

AND LEARNING SYSTEMS, and several other journals.

Ruomei Yan received the B.Eng. degree in telecom-
munications engineering and the M.Eng. degree in
telecommunications and information systems from
Xidian University, China, and the Ph.D. degree
in electronic and electrical engineering from The
University of Sheffield, U.K. Her research interests
include image processing, machine learning, and
image compression.

