
 

I 

 

Blind Image Blur Estimation via Deep  Learning 
Ruomei Yan  and Ling Shao, Senior Member,  IEEE 

 

 

Abstract— Image blur kernel estimation is critical to blind 
image deblurring. Most existing approaches exploit handcrafted 
blur features that are optimized for a certain uniform blur across 
the image, which is unrealistic in a real blind deconvolution 
setting, where the blur type  is  often  unknown.  To  deal  with 
this issue, we aim at identifying the blur type for each input 
image patch, and then estimating the kernel parameter in this 
paper. A learning-based method using a pre-trained deep neural 
network (DNN) and a general regression neural network (GRNN) 
is proposed to first  classify  the  blur  type  and  then  estimate  
its parameters, taking advantages of both the classification  
ability of DNN and the  regression  ability  of  GRNN.  To  the  
best of our knowledge, this is the first  time  that  pre-trained 
DNN and GRNN have been applied to the problem of blur 
analysis. First, our method identifies the blur type from a mixed 
input of image patches corrupted by various blurs with different 
parameters. To this aim, a supervised DNN is trained to project 
the input samples into a discriminative feature space, in which the 
blur type can be easily  classified.  Then,  for  each  blur  type,  
the proposed GRNN estimates the blur parameters with very  
high accuracy. Experiments demonstrate the effectiveness of the 
proposed method in several tasks with better or competitive 
results compared with the state of the art on  two  standard  
image data sets, i.e., the  Berkeley  segmentation  data  set  and 
the Pascal VOC 2007 data set. In addition, blur region segmen- 
tation and deblurring on a number of real photographs show  
that our method outperforms the previous techniques even for 
non-uniformly blurred images. 

Index Terms— Blur classification, blur parameter estimation, 
blind image deblurring, general regression neural  network. 

 

I. INTRODUCTION 

MAGE blur is a major source of image degradation, and 

deblurring has been a popular research topic in the field of 

image processing. Various reasons can cause image blur, such 

as the atmospheric turbulence (Gaussian blur), camera relative 

motion during exposure (motion blur), and lens aberrations 

(defocus blur) [1]. 

The restoration of blurred photographs, i.e., image deblur- 

ring,  is  the  process  of  inferring  latent  sharp  images   with 

Manuscript received  April 2, 2015; revised December  20, 2015;   accepted 
February 2, 2016. Date of publication February 26, 2016; date of current 
version March 9, 2016. The  associate  editor  coordinating  the  review  of  
this manuscript and approving it for publication was Prof. Weisi Lin. 
(Corresponding author: Ling Shao.) 

R. Yan is  with  the  College  of  Electronic  and  Information  Engineer- 
ing, Nanjing University of Information Science and Technology, Nanjing 
210044, China, and also with the Department of Electronic and Electrical 
Engineering, The University of Sheffield, Sheffield S1 3JD, U.K. (e-mail: 
rmyan2013@gmail.com). 

L. Shao is with the College of Electronic and Information Engineering, 
Nanjing University of Information Science and Technology, Nanjing 210044, 
China, and also with the Department of Computer Science and Digital 
Technologies, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K. 
(e-mail: ling.shao@ieee.org). 

 

inadequate information  of  the  degradation  model.  There  

are different approaches to consider  this  problem.  On  the 

one hand, according to whether the blur kernel is known, 

deblurring methods can be categorized into blind and non-

blind ([2]–[5]). Non-blind deblurring requires the prior 

knowledge of the blur kernel and its parameters,  while  in 

blind deblurring we assume that the blurring operator is 

unknown. In most situations of practical interest the Point 

Spread Function (PSF) is not acquired, so the application 

range of the blind deblurring [6] is  much  more  common  

than that of the non-blind deblurring. In real applications, a 

single blurred image is  usually the only input we have to   

deal with. Existing approaches for blind deblurring usually 

describe the blur kernel of the whole image as a single uniform 

model. The kernel estimation is carried out before the non- 

blind deconvolution step, which is the standard procedure of 

blind deblurring. One type of the classical blind deconvolution 

methods involve improving image priors in the maximum a-

posteriori (MAP) estimation. In terms of image priors, sparsity 

priors ([3], [7]–[10])  and  edge  priors  ([4],  [11])  are 

commonly considered in the literature. These algorithms 

typically use an Expectation Maximization (EM) step, which 

updates the estimation of the blur kernel at one step and the 

sharp image at the other step. Although image prior based 

methods can successfully estimate  the  kernels  as  well  as  

the latent sharp images, there are flaws which restrict their 

applications. The major flaw of sparsity priors is that they can 

only represent very small neighborhoods [12]. The edge prior 

methods, largely depending on the image content, will easily 

fail when the image content is homogeneous. In this paper,     

a “learned prior” based on the Fourier transform is proposed 

for the blur kernel estimation. The frequency domain feature 

and deep architectures solve the issue of no edges in some of 

the natural image patches. Though the input is  patch-based, 

our framework can handle larger image patches compared to 

sparsity priors. 

On the other hand, a blurred image can be either locally 

(non-uniform) or globally (uniform) blurred. In real applica- 

tions, locally blurred images are more common, for instance, 

due to multiple moving objects or  different depths of  field.  

In the previous work of Levin et al. [13], it is found that the 

assumption of uniform blur made by most algorithms is often 

violated. Therefore, we argue that significant attention should 

be paid to blur type classification, because the type of blur is 

usually unknown in photographs or various regions within a 

single picture. Despite its importance, only a limited number 

of methods have been proposed for blur type classification. 

One typical example is applying a Bayes Classifier using 

handcrafted blur features, for instance, local autocorrelation 

congruency [14]. Another similar method has been   proposed 



 

 

by Su et al.  [15] based on the alpha channel feature, which  

has different circularity of the  blur  extension.  Though both 

of them managed to detect local blurs in real images, their 

methods are based on handcrafted  features. 

Although the methods based on handcrafted features can 

perform well in the cases shown in [14] and [15], their 

applicability is still limited due to the diversity of natural 

images. Recently, many researchers have shifted their attention 

from the heuristic prior to the learned deep architecture. The 

deep hierarchical neural network roughly mimics the nature of 

the mammalian visual cortex, which has been applied in many 

vision tasks, such as object recognition, image classification, 

and  even  action  recognition.  In  Jain  et al.’s denoising   

work [16], they have shown the potential of using Convolu- 

tional Neural Network (CNN) for denoising images corrupted 

by Gaussian noise. In such an architecture, the learned  

weights and biases in the deep convolutional neural network 

are obtained through training on a sufficient number of natural 

images. At the testing stage, these parameters in the network 

act as “prior” information for the degraded images, which lead 

to better results than state-of-the-art denoising approaches. 

Another example is the blur extent metric developed by a 

multi-feature classifier based on Neural Networks (NN) [17]. 

Their  results  show  that  the  combined  learned  features 

work better  than  most  individual  handcrafted  features.  

Most previous deep architectures (NN, CNN) are trained on 

randomly initialized weights and gradually approximate a local 

optimum. Unfortunately, a bad initialization could sometimes 

yield a poor local optimum. To address this issue, we propose 

to use a  Deep  Belief  Network  (DBN)  for  the initialization 

of our Deep Neural Network (DNN). The reason why this pre-

training could benefit the deep neural network has been 

studied in [18]. 

Inspired   by   the    practical    blur    type    classification  

in  [14]   and  [15]   and  the   merit  of   learned  descriptors   

in [16] and [17], we propose the two-stage architecture for  

blur type classification and parameter identification. Targeting 

realistic blur estimation, we attempt to handle two difficulties 

in this paper. One of them is blind blur parameter estimation 

from a single (either locally or globally) blurred image without 

doing any deblurring. A two-stage framework is proposed: 

first, a pre-trained DNN is chosen for accomplishing the 

feature extraction and classification to determine the blur  

type; second, different samples with the same  blur type will  

be sent to the corresponding GRNN blocks for the parameter 

estimation. A deep belief network is trained only for weight 

initialization in an unsupervised way. The DNN uses the 

weights and the backpropagation to ensure more effective 

training in a supervised way. The other challenge is the pixel-

based blur segmentation using classified blur types. Similar to 

the first step in the above method, the proposed pre-trained 

DNN is  applied for identifying blur types of all  the patches 

within the same  image. 

This paper makes five contributions: 

• To our knowledge, this is the first time that pre-trained 

DNN has been applied to the problem of blur   analysis. 

• A discriminative feature, derived from  edge  extraction 
on  Fourier  Transform  coefficients,  has  been  proposed 

to preprocess blurred images before  they  are  fed  into 

the DNN. 

• A two-stage framework is proposed to estimate the blur 
type and parameter for any given image patch degraded 

by spatially invariant blur of an unknown  type. 

• GRNN is first explored in this  paper  as  a  regression 

tool for blur parameter estimation after the blur type is 

determined. 

• The proposed framework is also applied to real images  
for local blur classification. 

 
II. RELATED WORK 

A. Previous Learning-Based Blur Analysis 

An early popular method [19], which is a learning-based 

blur detector, has used combined features for the neural 

network. The basic idea is that blurry regions are less affected 

by low pass filtering compared to sharp regions. The filtering 

evolution based descriptors, the edge ratio, and the point 

spread function serve as region descriptors for the neural 

network. 

Rather    than    using    a    single    handcrafted    feature, 

Liu et al. [14] proposed a learning-based method which 

combines several features together to form a more 

discriminative feature for blur detection. The first  blur  

feature is the local power spectrum slope, which is based on 

the fact that the amplitude spectrum slope of a blurred image  

is steeper than that of a sharp image due to the loss of the   

high frequency information. The second feature is the gradient 

histogram span. This feature indicates the edge sharpness 

distribution by the gradient magnitude. The third feature is 

from the perspective of color saturation. Using the above three 

features, an image (or image patch) can be classified as blur   

or non-blur by training a Bayes classifier. Similarly, a motion 

blur descriptor, based on the local autocorrelation congruency, 

can be used as another feature for the Bayes classifier to 

distinguish motion blur from defocus blur. Later, improved 

handcrafted features for blur detection,  classification, 

blurriness  measure  have  been  proposed   [15],   [20],  

leading to better results. 

Another blur assessment algorithm employs multiple weak 

features to boost the performance of the final feature descrip- 

tor [17]. Their  target  is  to  measure  how  blurry  an  image 

is by classifying it as excellent, good, fair,  poor  or  bad.  

Eight features are used as the input for a neural  network. 

Those features are: frequency domain metric, spatial domain 

metric, perceptual blur metric, HVS based metric, local phase 

coherence, mean brightness level, variance of the HVS fre- 

quency response and contrast. The results have shown that the 

combined features work better than individual features under 

most circumstances. 

 
B. Restricted Boltzmann Machines 

An Restricted Boltzmann Machine (RBM) is a type of undi- 

rected graphical model which contains undirected, symmetric 

connections between the input layer (observations) and the 

hidden layer (representing features). There are no connec- 

tions between  the  nodes within  each  layer.  Suppose that the 
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input layer is hk−1, and the hidden layer is hk , k = 2, 3, 4 .. .. 
The probabilities in the representation model are determined 
by the energy of the joint configuration of the input layer and 
the output layer, which can be expressed  as: 

E(hk−1, hk ; θ)  
Hk−1  Hk Hk−1 Hk . . 

wij h
k−1
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Fig. 1. The proposed  architecture:  DNN is the  first stage  for blur     type 

where  θ   =  (w, b, c)  denotes  the  model  parameters,   wij  

represents the symmetric interaction term between unit i in  

the layer hk−1 and unit j  in  the layer hk . bi  and c j  are the  
bias terms of the nodes i  and  j , respectively. 

In an RBM, the output units are  conditionally  indepen- 

dent given the input states.  So  an  unbiased  sample  from  

the posterior distribution can be obtained when an input data-

vector is given, which can be expressed  as: 

P(h|v) =     P(hi |v) (2) 
i 

Since hi ∈ {0, 1}, the conditional distributions are given as: 

Hk−1 

p(hk = 1|hk−1; θ) = σ( 
. 

wij h
k−1 + c j ) (3) 

classification, which has 3 output labels. GRNN is the blur PSF parameter 
estimation, which has different output labels for each blur type. P1, P2, and P3 

are the estimated parameters, which can be seen in Sec. IV-C. B1, B2, and B3 

are the features for Gaussian, motion, and defocus blur,    respectively. 

 

(a.k.a. the point spread function), ∗ indicates the convolution 
operator, and n is the additive  noise. 

In blind image deconvolution, it is not easy to recover the 

PSF from a single blurred image due to the loss of information 

during blurring [23]. Our goal is to classify the blurred patches 

into different blur types according to the blur related features 

and then we estimate blur parameters for each classified patch. 

Several blurring functions are considered in this paper as 

shown in Fig. 2. 
In  many applications, such  as  satellite  imaging, Gaussian 

j 
 

 
p(hk−1 k 

i 

i=1 

Hk 
. 

k
 

blur can be used to model the PSF of the atmospheric 

turbulence: 
i = 1|h ; θ) = σ(  wij h j + bi) (4) 1 x 2 2 

j =1 q(x,σ) = √
2πσ 

exp(− 
1 + x2 

2σ 2   
),   x ∈ R (6) 

where σ(t) = (1 + e−t)−1. 
As shown in the above equation, weights between two layers 

and the biases of each layer decide the energy of the joint 
configuration. The training process of the RBM  is to  update  

θ = (w, b, c) by Contrastive Divergence (CD) [21]. 
The intuition for CD is: the training vector on the input 

where σ is the blur radius to be estimated, and R is the region 

of support. R is usually set as [−3σ, 3σ ], because it contains 
99.7% of the energy in a Gaussian function   [24]. 

Another blur is caused by linear motion of the camera, 

which is called motion blur  [25]: 

layer is used for the inference of the output layer, so the  units 
⎧ 

1
 ⎨⎪ 
,   (x1, x2) 

.
sin(ω)

.
 = 0, x 2 + x 2 ≤ M2/4 

of the output layer have been updated as well as the weights 

connected between layers. Afterwards, another inference goes 

from the output layer to the input layer with more updates 

q(x) = 
 

M 
⎪⎩

0, otherwise 

cos(ω) 1 2
 (7) 

of the weights and input biases. This process is carried out 

repeatedly until the representation model is  built. 

 
III. METHODOLOGY 

In this section, we describe the proposed two-stage frame- 

work (Fig. 1) for blur classification and parameter estimation. 

where  M   describes  the   length  of  motion  in   pixels  and  

ω is the motion direction with its angle to the x axis. These 

two parameters are what we need to estimate in our    system. 

The third blur is the defocus blur, which can be modeled    

as a cylinder function: ⎧ 
1 

, 
2 2 

We  explain  the  problem formulation, the  proposed blur fea- q(x) = 
⎨ 

πr 2 
,
 x1 + x2 ≤ r (8) 

tures, the training of DNN, and the structure of the GRNN   in 

Sec. III-A, Sec. III-B, Sec. III-C, and Sec. III-D,  respectively. 

 
A. Problem Formulation 

The image blurring can be modeled as the following degra- 

dation process from the high exposed image to the observed 

image [22]: 

g(x) = q(x) ∗ f (x) + n(x) (5) 

where  x  =  {x1, x2}  denotes  the   coordinates   of   an  
image pixel, g represents the  blurred  image,  f  is  the 
intensity   of   the  latent  image,   q   denotes  the  blur  kernel 

⎩
0, otherwise 

where the blur radius r is proportional to the extent of 

defocusing. 

In [14], a motion blur descriptor, local autocorrelation 

congruency, is  used  as  a  feature  for  the  Bayes  classifier  

to discriminate motion blur from defocus blur because the 

descriptor is strongly related to the shape and value of the PSF. 

Later, Su et al. [15] have presented alternative handcrafted 

features for blur classification, which gives better results with- 

out any training. Though both methods generate good results 

on identifying motion blur and defocus blur,  the  features  

they  used  are  limited  to  a  single  or  several  blur   kernels. 
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Fig. 2. Illustration of the PSF of three blur types: (a) Gaussian blur with σ  = 3 and kernel size 21 × 21; (b) Motion blur with length 5, and motion 
angle 45◦; (c) Defocus blur with r =  5. 

 

In this paper, we propose a general feature extractor for 

common blur kernels with various parameters, which is closer 
where u = {u1, u2}. For the defocus blur, 

to  realistic  application  scenarios.  Therefore,  enlightened by Q(u) = J1(π Rr) 

,

u2 + u2. 
1 2 

the previous success of applying deep belief networks to 

discriminative learning [26], we use the DNN as our feature 

extractor for blur type classification. 

When designing the DBN unsupervised training step, it is 

natural to use observed blurred patches as training and testing 

samples. However, their  characteristics  are  not  as  obvious 

as their frequency coefficients [27]. Hence, the logarithmic 

power spectra are adopted as input features for  the  DBN, 

since the PSF in the frequency domain manifests different 

characteristics  for  different  blur  kernels.  Bengio  et al. [28] 
have pointed out that scaling continuous-valued input to (0, 1) 

J1 is the first-order Bessel function of the first  kind and the 

amplitude is characterized by almost-periodic circles of 

radius R along which the Fourier magnitude takes value zero.1 

For the motion blur, the FT of the PSF is a sinc function: 

Q(u) = sin(π Mω) 1 2 

π Mω   , ω = ± M , ± M , .. .. 
In order to know the PSF Q(u), we attempt to identify the 

type and parameters of Q from the observation image G(u). 

Therefore, the normalized logarithm of G can be used in our 

implementation: 

log(|G(u)|) − log(|Gmin |) 

worked well for pixel gray levels, but it is not necessarily 

appropriate for other kinds of input data. From Eq. (5) one 
log(|G(u)|)norm = 

log( G
 

max |) − log(|G min | 
(10) 

) 

can see that the noise might interfere the inference in the 

training processing [28], so preprocessing steps are necessary 

for preparing our training  samples.  In  this  paper,  we  use  

an edge detector to obtain binary input values for the DBN 

training, which has been proved to benefit the blur analysis 

task. As is shown in Table II, the results  with edge detector 

are in general better than those  without. 

We propose a two-stage system to first classify the blur 

kernel and then estimate the blur parameters, which is similar 

to our previous work in [29]. These two stages have a similar 

network architecture but different input layers. The first stage 

is an initial classification of the blur type, and the second  

stage is to further estimate the blur parameters using samples 

within the same category from the results of the first stage. 

This is different from our previous work whose second stage is 

for parameter identification. Since the variation between blur 

parameters of the same blur type is not as great as that between 

different blur types, more discriminative features have been 

designed for the second stage. In the parameter estimation 

stage, the general regression neural network is applied for the 

prediction of the continuous parameter, which performs better 

than the plain neural networks with back-propagation in our 

implementations as demonstrated in [30]. 

B. Blur Features 

1) Features for Motion and Defocus Blurs: If we apply the 

Fourier Transform (FT) to both sides of Eq. (5), we can obtain: 

G(u) = Q(u)F(u) + N(u) (9) 

where   G   represents   G(u),   Gmax    =   maxu(G(u)),  and 

Gmin = minu(G(u)). 
As shown in Fig. 3, the patterns in these images 

(log(|G(u)|)norm) can represent the motion blur or the defocus 
blur  intuitively. Hence,  no  extra  preprocessing needs  to  be 

done for the blur type classification. However, defocus blurs 

with different radii are easy to be confused, which also has 

been proved in our experiments. Therefore, for blur parameter 

identification, an edge detection step is proposed  here. 

Since the highest intensities concentrate around the center of 

the spectrum and decrease towards its borders, the binarization 

threshold has to  be adapted for each individual pixel, which  

is computationally prohibitive. If a classic edge detector is 

applied directly, redundant edges would interfere with the 

pattern we need for the DBN training. Many improved edge 

detectors have been explored to solve this issue, however, most 

of them do not apply to the logarithmic power spectra data, 

which cause even worse performance [31], [32]. For instance, 

Bao et al. [31] proposed to improve the Canny detector by the 

scale multiplication, which indeed enhances the localization of 

the Canny detector. However, this method does not generate 

good edges on our  images. 

The Edge Detection on the Logarithm Images of the Blurred 

Images: In this application scenario, the input for the edge 

detector is log(|G(u)|)norm . Since the goal of our edge detec- 
tion is to  obtain useful blur parameters in  the deep    learning 

process,  the  detected  edges  should  be  well  presented    by 
 

1http://www.clear.rice.edu/elec431/projects95/lords/elec431.html 

http://www.clear.rice.edu/elec431/projects95/lords/elec431.html
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Fig. 3. Illustration of the PSF of three blur types: (a) Image with Gaussian 
blur; (b) Image with motion blur; (c) Image with defocus blur; (d) Logarithmic 

spectrum of Gaussian blur (σ = 2); (e) Logarithmic spectrum of motion blur 
(M  =  9,ω  =  45);  (f)  Logarithmic  spectrum  of  defocus  blur(R   = 30); 
(g) Logarithmic spectrum of Gaussian blu r (σ = 5); (h) Logarithmic  
spectrum of Gaussian blur (σ = 10); (i) Logarithmic spectrum of Gaussian 
blur (σ  = 20). 

the most important edges (not necessarily all of the edges).   

To be precise, for motion blur, all we need is several straight 

lines which could represent the correct motion length and 

angle. For defocus blur, we  need  to  get  rid  of  scattered  

and small curves and keep the continuous and smooth ones. 

According to Eq. (9), the image noise will affect the contrast 

around image edges in the logarithm spectra image. Different 

textures in different input images would affect the logarithm 

images too. However, the periodic functions of those blur 

kernels guarantee the distribution of the spectra images, which 

makes our edge detection process  easier. 

We solve this issue by applying the Canny detector first,  

and then using a heuristic method to refine the detected edges 

according to our goal. Due to the fact that the useful edges are 

isolated near zero-crossings, we need to refine the detection 

results from the logarithmic power spectrum. The Canny edge 

detector  is  applied  to  form  an  initial  edge  map.  Then, we 
design several steps to select the most useful edges: 1) For both 

2) Features for the Gaussian Blur: For the Gaussian blur, 

the Fourier transform of the PSF is still a Gaussian function, 

and there is no significant pattern change in the frequency 

domain. From Eq.(6), we can see that the Gaussian kernel 

serves as  a  low  pass  filter.  When  the  sigma  of  this  filter 

is larger, more ‘high frequency information’ will pass in. 

However, from our observation, when the σ is larger than 2, 

the pattern on the logarithmic spectrum image barely changes 

(as shown in Fig. 3), and only the intensity of the image 

changes. In the experiment section, we show that edge detec- 

tion can not improve the results  significantly. 

C. The Training Process of Deep Neural  Networks 

Deep belief nets are used as a generative model for feature 

learning in a lot of previous works [26], in which DBN has 

outperformed various deep learning models such as DNN and 

DCNN. However, in the recent research for applying deep 

models to image classification, DCNN has performed very 

well compared to most other methods on datasets like MNIST, 

CIFAR-10, and SVHN. [33]. In most of the classification 

tasks, there are subtle differences between image objects or 

categories, in which case learning the semantic meaning of 

images is very important. CNN is good at capturing the pixel 

correlation within a small neighborhood, which is very useful 

for the task of image  classification. 

However, in our case, we are not looking for the semantic 

meaning of our blur features. In fact, they are already pretty 

distinctive in terms of categories. The difficulty in our task is 

how to capture the very precise detail when we extract features 

for the blur classification because the distances of the extracted 

edges could include the category information. Therefore, in 

this paper, we first construct the DBN by unsupervised greedy 

layer-wise training to extract features in the form of hidden 

layers. Then the weights in these hidden layers serve as the 

initial values for a neural network. In this process, the neural 

network is trained in a supervised  way. 

1) Regularization Terms:  Given that 

E(hk−1, hk ; θ) =− log P(hk−1, hk) (11) 

Assume the training set  is hk−1 k−1
 

1    , . . . ,  hm , the following 

of the blur types, we select “important” edges. The  important 

edges have two meanings: a) edges with the significant contrast 

across  them.  For  each  edge  (curve),  the  standard deviation 

regularization  term  is  proposed  for  reducing  the  chance of 

overfitting: 
m . . 

k−1 k 

of the intensity on each side of the curve σl  could be used     

to measure the strength of the edges. For edges like these, 

min − 
{wij , bi c j } 

 

p=1 

log 

h 

P(hp  , hp) (12) 

we tend to use a ranking for all the strength of the edges 
in  the  image.  For  our  specific  problem,  we  only  keep the 

n 
+ λ 
. 

|t − 1   
m 
. 

E [h
(
 pk) ( p(k−1))   2 

 

first  K  edges; b) edges which are  isolated from other  edges. 

 

j =1 

 
 

m 
p=1 

j    |h ]| (13) 

Assuming the isolated region has the radius d, those edges, in 

the orthogonal direction of the current edge within radius d, 

will be discarded [11]. 2) For the motion blur, we abandon 

short  and  very  curvy  edges.  We   consider  the  orientations 

θ = [0,π ] of the candidate edges within radius d. Also, using 
the results from the first step, we consider that all the edges 

should only have one angle  which is  the  same  as  the  one  

of the “important” edge. Therefore, it is very easy to discard 

unnecessary edges and refine the estimate of the blur length. 

Sample results are shown in Fig.  6. 

where E [·] is the conditional expectation given the data, t is 
the constant controlling the sparseness of the hidden units hk , 

and λ is a constant for the regularization. In this way, the 

hidden units are restricted to have a mean value closing to    t. 

2) The Pretrained Deep Neural Network: The training 

process of the proposed DNN is described in  Algorithm 1  

and illustrated in Fig.  4: 

• The input layer is trained in the first RBM as the visible 

layer. Then, a representation of the input blurred sample  
is obtained for further hidden  layers. 
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Algorithm 1 DNN Pretraining 

 
 

 

 

 
 

 
 

 
 

Fig. 4.    The diagram of the pre-trained  DNN. 

 

The goal for the optimization process is to minimize the 

backpropagation error derivatives: 

φ∗ = arg min[− 
. 

y p log ŷ p] (14) 

φ 
p
 

Evaluate the error signals for each output and hidden unit 

using back-propagation of error [34]. 

 

D. General Regression Neural Network 

Once our classification  part  is  completed,  the  blur  type 

of the input patch could be specified. However, what would 

mostly interest the user is the parameter of the blur kernel, 

using which the deblurring process would be greatly improved. 

In our previous work [29], the two-stage framework has 

successfully predicted the category of the parameter. In this 

sense, we know that this framework can work as a whole if we 

want to know the rough value of the blur parameter. However, 

to obtain the precise value of the parameter, we need to come 

to the regression framework. 

The  general  regression  neural  network  is  considered   to 

 

 

 

 

 

 

 

 

• The next layer is trained as an RBM by greedy layer-wise 

information reconstruction. The training process of RBM 

is to update weights between two adjacent layers and the 

biases of each layer. 

• Repeat the first and second steps until the parameters in 

all layers (visible and all hidden layers) are   learned. 

• In the supervised learning part, the above trained para- 
meter W, b, a are used for initializing the weights in the 

deep neural network. 

be a generalization of both Radial  Basis  Function  Net-  

works (RBFN)  and  Probabilistic  Neural  Networks  (PNN). 

It outperforms RBFN and  backpropagation neural networks  

in terms of the results of prediction [35]. The main function   

of a GRNN is to estimate a joint probability density function 

of the input independent variables and the   output. 

As shown in Fig. 5, GRNN is composed of an input layer, a 

hidden layer, “unnormalized” output units, a summation unit, 

and normalized outputs. GRNN is trained using a one-pass 

learning algorithm without any iterations. Intuitively, in the 

training process, the target values for the training vectors help 

to define cluster centroids, which act as part of the  weights  

for the summation units. 

Assume that the training vectors can be represented as X  

and the training targets are Y . In the pattern layer, each hidden 

unit is corresponding to an input sample. From the pattern 

layer to the summation layer, each weight is the target for  the 
M d input sample. The summation units can be denoted   as: 

ŷk  = σ (
. 

w
(l+1)

h(
. 

w
(l)

xi)) .n 

kj  
j =0 

ji  
i=0 Yˆ = i=1 Yi exp(−D2/2σ 2) (15) n 2 2 

l = 1, 2, ... , N − 1 

k = 1, 2, ... , K 

.
i=1 exp(−Di /2σ  ) 

where  D2 = (X − Xi)T (X − Xi), σ  is the spread parameter. 

   

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.    The diagram of  GRNN. 
 

In the testing stage, for any input T , the Euclidean distance 

between this input and the hidden units are calculated. In the 

summation layer, the weighted average of the possible ‘target’ 

is calculated for each hidden node and then averaged by the 

normalization process. 

 
E. Forming the Two-Phase Structure 

The proposed method is formed by  two-stage  learning  

(Fig. 1). First,  the  identification of blur patterns is  carried  

out by using the logarithmic spectra of the input blurred 

patches. The output of this stage is 3 labels: the Gaussian   

blur, the motion blur and the defocus blur. With the label 

information, the classified blur vectors will be used in the 

second stage for blur parameter estimation. At this stage, 

motion blur and defocus blur will be further preprocessed by 

the edge detector (Sec. III-B) before the training but Gaussian 

blur vectors remain the same (As shown in our previous 

experiments [29], the  appropriate feature for  Gaussian  blur  

is the logarithmic spectra without edge detection). This stage 

outputs various estimated parameters for individual GRNN as 

shown in Sec. IV-C. 

 
IV. EXPERIMENTS 

A. Experimental Setup 

Training Datasets: The Oxford image classification 

dataset,2 and the Caltech 101 dataset are chosen to be our 

training sets.  We  randomly selected  5000 images from   each 

 
Fig. 6. Comparison of the three edge detection methods applied to a training 
sample. From left to right: (a) the logarithmic power spectrum of a patch; 
(b) the edge detected by Canny detector (automatic thresholds); (c) the edge 
detected by the improved Canny detector using the scale multiplication   [31]; 
(d) the edge detected by our  method. 

 
Testing    Datasets:    Berkeley    segmentation     dataset 

(200 images), which has been applied to the denoising 

algorithms [36], [37] and  image  quality  assessment  [38],  

has been used  for  our  testing  stage.  Pascal  VOC  2007: 

500 images are randomly selected from this dataset   [39]. 

6000 testing samples are chosen from each of them accord- 

ing to the same procedure as the training set. The numbers of 

the three types of blurred patches are random in the testing set. 

Blur Features: The Canny detector is applied to the logarith- 

mic power spectrum of image patches with automatic low and 

high thresholds. Afterwards, the isolated edges are selected 

with  the  radius  of  3  pixels  according  to  the    suggestions 

from [11]. 

DBN Training: For parameters of the DBN learning process, 

the basic learning rate and momentum in the model are set 

according to the previous work [28]. In the unsupervised 

greedy learning stage, the number of epochs is  fixed  at  50 

and the learning rate is 0.1. The initial momentum is 0.5, and  

it changes to 0.9 after five epochs. Our supervised fine-tuning 

process always converges in no more than 30   epoch. 

GRNN Training: For parameters of the GRNN training, 

there is a smoothness-of-fit parameter σ that needs to be tuned. 

A range of values [0.02, 1] with the intervals of 0.1 has been 

used for determining the parameter, which is shown in Fig.  7. 

The value σ  = 0.2 is selected for our  implementation. 

of them. 

The size of the training samples ranges from 32 × 32 to  

128 × 128 pixels, which are cropped from the original images. 
By empirical evaluations, the best results occur when the patch 

size is 32 × 32. Each training sample has two labels: one is  
its blur type (the values are 1, 2, or 3) and the other one 

is its blur parameter (it is  a continuous value which belongs  

to a range as shown in Sec.  IV-C).  The size  of  the  training 

set is 36000 (randomly selected from those cropped images). 

In those 36000 training samples, 12000 of them are degraded 

by Gaussian PSF, 12000 of them are degraded by the PSF of 

motion blur, and the rest are degraded by the defocus   PSF. 
 

2http://www.robots.ox.ac.uk/~vgg/share/practical-image-classification.htm 

B. Image Blur Type Classification 

In  our  implementation,  the  input  visible  layer  has   
1024 nodes, and  the  output layer has 3  nodes representing    

3 labels (Gaussian kernel, motion kernel, and defocus blur ker- 

nel). Therefore, the whole architecture is: 1024 −→ 500    −→ 
30 −→  10 −→  3. These node numbers in each hidden    layer 
are selected empirically. 

On the one hand, we compare our method with the  pre- 

vious blur type classification methods based on handcrafted 

features: [14], [15]. Their original frameworks contain a blur 

detection stage, and the blur type classification is applied 

afterwards. However, in our algorithm, the image blurs are 

simulated by convolving the high quality patches with various 

http://www.robots.ox.ac.uk/~vgg/share/practical-image-classification.htm


 

 
 

  
 

Fig. 7.  The estimation error changes with the spread parameter of GRNN.  
The parameter testing was done on the data which are corrupted with Gaussian 
blur with various kernels. 

 
TABLE I 

COMPARISON OF OBTAINED AVERAGE RESULTS ON THE TWO TESTING 

DATASETS WITH THE STATE-OF-THE-ART. CR1 IS THE BERKELEY 

DATASET, AND CR2 IS THE PASCAL DATASET 

Fig. 8. The parameter estimation was done on the data which are corrupted 
with different blur kernels with various sizes. In CRxx the first x refers to the 
dataset type (1 for Berkeley and 2 for Pascal) and the second x refers to the 
blur type (the Gaussian blur, the motion blur, and the defocus blur). 

 

    

 

 

 

 

 

 
   

 
 

 
PSFs. In our comparison, [14] has been trained and tested with 
the same datasets we used, while [15] has been tested with the 

same testing set we  used. 

On the other hand, back-propagation Neural Network [40], 

convolutional Neural Network (CNN) [41] and Support Vector 

Machine (SVM) have been chosen  for  the  comparison  of 

the classifiers. The same blur feature  vectors  are  used  for 

NN and CNN. The SVM-based classifier was implemented 

following the usual technique: several binary SVM classifiers 

are combined to the multi-classifier  [42]. 

The classification rate is used for evaluating the 

performance: 

CR 100 
Nc 

(%) (16) 

= 
Na

 

 
Fig. 9.    Cumulative histogram of the deconvolution error  ratios. 

 

 

ours, CNN is much easier  to  get  overfitting  compared  to 

the DBN. 

 
C. Blur Kernel Parameter Estimation 

In this experiment, the parameters of the blur kernels are 
estimated through GRNN. For different blur kernels, different 

parameters are estimated as explained in Sec. III-A. The 

parameters  are  set  as:  1)  Gaussian  blur  has  a  range:  σ = 
[1, 5];  2)  Motion  blur  has  ω  = [30, 180];  3)  defocus blur: 

R = [2, 23]. The architectures in each GRNN are the same. 
The first comparison is between our previous method   [29] 

where Nc  is the number of correct classified samples, and  Na 

is the total number of  samples. 

We can observe from Table I that algorithms based on 

learned features perform better than those based on hand- 

crafted features, which suggests that learning-based feature 

extractor is less restricted to the type of the blur we  con-  

sider. Meanwhile, our method performs best among all the 

algorithms using automatically learned features. The reason 

why DBN in this task can achieve better results than CNN is 

that CNN is trained in a supervised way from the beginning, 

which will take large quantity of training data. Though our 

labeled training data is large, it is still difficult to avoid 

overfitting when the appropriate size of the CNN is not 

known. However, DBN is trained  as  a  generative  model  

first, and then a distinctive  model,  which  means  it  learns 

the  ‘feature’  before  the  ‘classification’.  For  problems  like 

and the method proposed in this paper, through which we 

would like to see the improvement by using the regression 

rather than the classification. Table II has shown the perfor- 

mance of the image deblurring using the estimated parameters. 

One can see that apart from the Gaussian blur, both results of 

the other two types have been improved significantly by using 

parameter estimation instead of classification. Visual results  

of this experiment are also  shown  in  Fig.  11.  The  metrics 

we used for this comparison are PSNR, SSIM, Gradient 

Magnitude Similarity Deviation (GMSD) [43], and Gradient 

Similarity (GS) [44]. 

The other type of comparisons are made between our 

methods and other regression methods. Specifically, our 

method is compared to the back-propagation Neural Network, 

Support Vector Regressor (SVR) [45], and pre-trained DNN 

plus linear regressor (the same input layer of the blur  features 

   
   

 

   
 
 
  

      

        

         

         

 



 

 
TABLE II 

QUANTITATIVE COMPARISON OF THE PROPOSED METHOD AND THE PREVIOUS METHOD [29]. THE RESULTS 

SHOWN ARE THE AVERAGE VALUES OBTAINED ON THE SYNTHETIC TEST  SET 

 

 

 

 
 

   
 

Fig. 10.    Comparison  of the deblurred  results  of images  corrupted  by motion  blur with length  10 and angle  45. (a) Ground truth.  (b) The blurred    image. 
(c) CNN. (d) Levin et al. [9]. (e) Cho and Lee [4]. (f) Ours. 

 

but continuous targets instead of discrete labels). As shown in 

Fig. 8, our GRNN method achieves the best results among all, 

which demonstrate the fact mentioned in [35] and [46] that 

GRNN yields better results compared to back-propagation 

neural network. As can be seen from the figure, SVR performs 

much better than neural networks with our input data, which 

also proves that determining prediction results directly from 

the training data seems to be a better scheme for our problem 

compared to the weight tuning in the back-propagation 

frameworks. Moreover, our proposed GRNN works better 

than the pre-trained DNN with a linear regressor as shown in 

Fig. 8, which shows that GRNN is a better regressor for the 

blur analysis. 

 
 

D. Deblurring Synthetic Test Images 

Using the Estimated  Values 

Once the blur type and the parameter of the blur kernel are 

estimated, it is easier to use non-blind image reconstruction 

method EPLL [5] to restore the latent image. The restored 

images are compared with the results of several popular blind 

image deblurring methods in the case of motion blur (easier  

for fair comparisons). 

The quantitative reconstruction results are  presented  by  

the cumulative histogram [13] of the deconvolution  error  

ratio across test datasets in Fig. 9. The error  ratio  in  this 

figure is calculated by comparing the two types of SSD error 

between  reconstructed  images  and  the  ground  truth images 

(e.g. bin error = 2.5 counts the percentage of test examples 
achieving error ratio below 2.5). One of them is the    restored 

results using estimated kernel and the other one is with the 

truth kernel. 

The deconvolved  images  are  shown  in  the  following  

Fig. 10. Contrary to the quantitative results, it is obvious that 

our deblurred images have very competitive visual quality. 

Our method outperforms CNN a  lot  due  to  the  fact  that  

our GRNN step can provide much more precise parameter 

estimation. Another comparison of the deconvolution results 

of real test images is shown in the Fig.   13. 
 

E. Blur Region Segmentation on the Real  Photographs 

In  this  experiment,  our  DNN  structure  is  trained  on  

real photographs, from which blurred training patches are 

extracted. The blur types of the patches are manually  labeled. 

200 partially blurred images are selected from  Flickr.com. 

Half of these images are used for training and the other half 



 

 
 

    
 

 
 

 
 

 

Fig. 11. Comparison of the deblurred results of different images corrupted by various blur kernels. (a) Ground truth. (b) The defocus blur. (c) [29]. 
(d) Ours. (e) Ground truth. (f) The Gaussian blur. (g) [29]. (h) Ours. (i) Ground truth. (j) The motion blur. (k) [29]. (l) Ours. 

 

 
 

Fig.  12. Comparison  of  the  blur  segmentation  results  for  real  image  which  was  blurred  with  non-uniform  blur  kernels.  (a)  input  blurred    image; 
(b) blur segmentation result in [14]; (c) blur segmentation result in [15]; (d) our result. 

 

 

 

Fig.   13. Comparison   of   the   deblurring   results   for   partially   blurred   images.   (a)   input   blurred   image;   (b)   deblurring   result   of         [29]; 
(c) our result. (Zoom in for better  viewing). 

 

are used for testing according to what has been described in 

paper [14]. The size of each patch is still the same compared  

to  previous  experiments  (32  by  32).  Using  the  blur    type 

classification results by our proposed method, we also  

consider the spatial similarity of blur types in the same region 

mentioned by Liu et al.’s    [14]. 



 

 

The  segmentation  result  of  our  method  is   compared 

with [14] and [15] in Fig. 12. As can be seen from these 

subjective results, our classification is more solid even when 

the motion is significant. This is useful for real deblurring 

applications. 

 
V. CONCLUSIONS 

In this paper, a learning-based blur estimation method has 

been proposed for blind blur analysis. Our training samples are 

generated by patches from abundant datasets, after the Fourier 

transform and our designed edge detection. In the training 

stage, a pre-trained DNN has been applied in a supervised  

way. That is, the whole network is trained in an unsupervised 

manner by using DBN and afterwards the backpropagation 

fine-tunes the weights. In this way, a discriminative classifier 

can be trained. In the parameter estimation stage, a strong 

regressor GRNN is proposed to deal with our problem of blind 

parameter estimation. The experimental results have demon- 

strated the superiority of our proposed method compared to the 

state-of-the-art methods for applications such as blind image 

deblurring and blur region segmentation for real blurry images. 

 
REFERENCES 

[1] R. L. Lagendijk and J. Biemond, Basic Methods for Image Restoration 
and Identification. London, U.K.: Academic, 2000. 

[2] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper- 
Laplacian priors,” in Proc. Conf. Adv. Neural Inf. Process. Syst., 
Vancouver,  BC, Canada, 2009, pp. 1–9. 

[3] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, 
“Removing camera shake from a single photograph,” ACM Trans. 
Graph., vol. 25, no. 3, pp. 787–794, Jul.   2006. 

[4] S. Cho and S. Lee, “Fast motion deblurring,” in Proc. ACM SIGGRAPH 
Asia, Yokohama, Japan, 2009, Art. no.  145. 

[5] D. Zoran and Y. Weiss, “From learning models of natural image patches 
to whole image restoration,” in Proc. IEEE Int. Conf. Comput. Vis., 
Barcelona, Spain, Nov. 2011, pp.  479–486. 

[6] M. S. C. Almeida and L. B. Almeida, “Blind  and semi-blind  deblur-  
ring of natural images,”  IEEE Trans.  Image Process., vol. 19, no. 1,   
pp. 36–52, Jan. 2010. 

[7] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from  
a single image,” ACM Trans. Graph., vol. 27,  no.  3,  pp.  721–730, 
Aug. 2008. 

[8] N. Joshi, R. Szeliski, and D. J. Kriegman, “PSF estimation using sharp 
edge prediction,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 
Anchorage, AK, USA, 2008, pp.  1–8. 

[9] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Efficient marginal 
likelihood optimization in blind deconvolution,” in Proc. IEEE Conf. 
Comput. Vis. Pattern Recognit., Colorado Springs, CO, USA, Jun. 2011, 
pp. 2657–2664. 

[10] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a 
normalized sparsity measure,” in Proc. IEEE Conf. Comput. Vis. Pattern 
Recognit., Colorado Springs, CO, USA, Jun. 2011, pp.   233–240. 

[11] T. S. Cho, S. Paris, B. K. P. Horn, and W. T. Freeman, “Blur kernel 
estimation using the radon transform,” in Proc. IEEE Conf. Comput. Vis. 
Pattern Recognit., Colorado Springs, CO, USA, Jun. 2011, pp. 241–248. 

[12] L. Sun, S. Cho, J. Wang, and J. Hays, “Edge-based blur kernel estimation 
using patch priors,” in Proc. IEEE Int. Conf. Comput. Photography, 
Cambridge, MA, USA, Apr. 2013, pp.  1–8. 

[13] A. Levin, Y. Weiss,  F.  Durand,  and  W.  T.  Freeman,  “Understanding 
and evaluating blind deconvolution algorithms,” in Proc. IEEE Conf. 
Comput. Vis. Pattern Recognit., Miami  Beach,  FL, USA,  Jun.  2009, 
pp. 1964–1971. 

[14] R. Liu, Z. Li, and J. Jia, “Image partial blur detection and classification,” 
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Anchorage, AK, 
USA, Jun. 2008, pp.  1–8. 

[15] B. Su, S. Lu, and C. L. Tan, “Blurred image region detection and 
classification,” in Proc. 19th ACM Multimedia, Scottsdale, AZ, USA, 
2011, pp. 1397–1400. 

[16] V. Jain and H. Seung, “Natural image denoising with convolutional 
networks,” in Proc. Conf. Adv. Neural Inf. Process. Syst., Vancouver,  
BC, Canada, 2008, pp.  769–776. 

[17] A. Ciancio, A. L. N. T. da Costa, E. A. B. da Silva, A. Said, R. Samadani, 
and P. Obrador, “No-reference blur assessment of digital pictures based 
on multifeature classifiers,” IEEE Trans. Image Process., vol. 20, no. 1, 
pp. 64–75, Jan. 2011. 

[18] D. Erhan, P. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, “The 
difficulty of training deep architectures and the effect of unsupervised 
pre-training,” in Proc. IEEE Int. Conf. Artif., Intell., Statist., Clearwater 
Beach, FL, USA, May 2009, pp.  153–160. 

[19] J. Rugna and H. Konik, “Automatic blur detection for metadata extrac- 
tion in conten-based retrieval context,” in Proc. SPIE Internet Imag. V, 
vol. 5304.   San Diego, CA, USA,  2003. 

[20] K. Gu, G. Zhai, W. Lin, X. Yang, and W. Zhang, “No-reference image 
sharpness assessment in autoregressive parameter space,” IEEE Trans. 
Image Process., vol. 24, no. 10, pp. 3218–3231, Oct.   2015. 

[21] G. E. Hinton, “Training products of experts by minimizing contrastive 
divergence,” Neural Comput., vol. 14, no. 8, pp. 1771–1800, Aug. 2002. 

[22] R. Molina, J. Mateos, and A. K. Katsaggelos, “Blind  deconvolution 
using a variational approach to parameter, image, and blur estimation,” 
IEEE Trans. Image Process., vol. 15, no. 12, pp. 3715–3727, Dec. 2006. 

[23] W. Hu, J. Xue, and N. Zheng, “PSF estimation via gradient domain 
correlation,” IEEE Trans. Image Process., vol. 21, no. 1, pp. 386–392, 
Jan. 2012. 

[24] F. Chen and J. Ma, “An empirical identification method of Gaussian blur 
parameter for image deblurring,” IEEE Trans. Signal Process., vol. 57, 
no. 7, pp. 2467–2478, Jul.  2009. 

[25] D. Kundur and D. Hatzinakos, “Blind image deconvolution,”  IEEE  
Signal Process. Mag., vol. 13, no. 3, pp. 43–64, May   1996. 

[26] S.-H. Zhong, Y. Liu, and Y. Liu, “Bilinear deep learning for image 
classification,” in Proc. 19th ACM Int. Conf. Multimedia, Scottsdale, 
AZ, USA, 2011, pp.  343–352. 

[27] M. Cannon, “Blind deconvolution of spatially invariant image blurs with 
phase,” IEEE Trans. Acoust., Speech,  Signal  Process., vol. 24, no. 1,  
pp. 58–63, Feb.  1976. 

[28] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer- 
wise training of deep networks,” in Proc. Conf. Adv. Neural Inf. Process. 
Syst., Vancouver,  BC, Canada, 2006, pp.  1–6. 

[29] R. Yan and L. Shao, “Image blur classification and parameter identifi- 
cation using two-stage deep belief networks,” in Proc. Brit. Mach. Vis. 
Conf., Bristol, U.K., 2013, pp.  70.1–70.11. 

[30] D. F. Specht, “A general regression neural network,” IEEE Trans. Neural 
Netw., vol. 2, no. 6, pp. 568–576, Nov.    1991. 

[31] P. Bao, L. Zhang, and X. Wu, “Canny edge detection enhancement by 
scale multiplication,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, 
no. 9, pp. 1485–1490, Sep.  2005. 

[32] W. McIlhagga, “The Canny edge detector revisited,” Int. J. Comput. Vis., 
vol. 91, no. 3, pp. 251–261, Feb.   2011. 

[33] C. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. (2014). “Deeply- 
supervised nets.” [Online]. Available: http://arxiv.org/abs/1409.5185. 

[34] Y. LeCun et al., “Backpropagation applied to handwritten zip code 
recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec.   1989. 

[35] D. Tomandl and A. Schober, “A modified general regression neural 
network (MGRNN) with new, efficient training algorithms as a robust 
‘black box’-tool  for  data  analysis,”  Neural  Netw.,  vol.  14,  no.  8,  
pp. 1023–1034, Oct. 2001. 

[36] S. Roth and M. J. Black, “Fields of experts: A framework for learning 
image priors,” in Proc. IEEE Conf.  Comput.  Vis.  Pattern  Recognit., 
San Diego, CA, USA, Jun. 2005, pp.  860–867. 

[37] D. Martin, D. Fowlkes, and J. Malik, “A database of human segmented 
natural images and its application to evaluating segmentation algorithms 
and measuring ecological statistics,” in Proc. IEEE Int. Conf. Comput. 
Vis., Vancouver,  BC, Canada, Jul. 2001, pp.  416–423. 

[38] K. Gu, G. Zhai, X. Yang,  and W.  Zhang, “Using free energy principle  
for blind image quality assessment,” IEEE Trans. Multimedia, vol. 17, 
no. 1, pp. 50–63, Jan.  2015. 

[39] M. Everingham, V. G. L., C. Williams, J. Winn, and A. Zisserman, “The 
pascal visual object classes challenge,”  Int. J.  Comput.  Vis., vol. 88,  
no. 2, pp. 303–338, Jan.  2010. 

[40] T. Mitchell. Machine Learning. New York, NY, USA: McGraw-Hill, 
1997. 

[41] R. Palm, “Prediction as a candidate for learning deep hierarchical models 
of data,” M.S. thesis, Dept. Inform., Tech. Univ. Denmark, Kongens 
Lyngby, Denmark, 2012. 

http://arxiv.org/abs/1409.5185


 

 
[42] S. Duan and K. Keerthi, “Which is the best multiclass svm method? An 

empirical study,” in Proc. Int. Conf. Multiple Classifier Syst., Seaside, 
CA, USA, 2005. 

[43] W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude 
similarity deviation: A highly efficient perceptual image quality index,” 
IEEE Trans. Image Process., vol. 23, no. 2, pp. 684–695, Feb.    2014. 

[44]  A. Liu, W.  Lin, and M. Narwaria,  “Image quality  assessment based    
on gradient similarity,”  IEEE Trans.  Image  Process., vol.  21, no. 4,  
pp. 1500–1512, Apr. 2012. 

[45] S. R. Gunn, “Support vector machines for classification and regres-  
sion,” School Electron. Comput. Sci., University of Southampton, 
Southampton, U.K., Tech. Rep.,  1998. 

[46] Q. Li, Q. Meng, J. Cai, H. Yoshino, and A. Mochida, “Predicting hourly 
cooling load in the building: A comparison of support vector machine 
and different artificial neural networks,” Energy  Convers.  Manage.,  
vol. 50, no. 1, pp. 90–96, Jan.   2009. 

Ling Shao (M’09–SM’10) is currently a Professor 
with the Department of Computer Science and Digi- 
tal Technologies, Northumbria University, Newcastle 
Upon Tyne, U.K., and a Guest Professor with the 
College of Electronic and Information Engineer-  
ing, Nanjing University of Information Science and 
Technology. He was a Senior Lecturer (2009–2014) 
with the Department of Electronic and Electrical 
Engineering, The University of Sheffield, and a 
Senior Scientist (2005–2009) with Philips Research, 
The Netherlands. His research interests include com- 

puter vision, image/video  processing, and machine learning.  He is a fellow  
of the British Computer Society and the Institution of Engineering and 
Technology. He is an Associate Editor of the IEEE TRANSACTIONS  ON  

IMAGE  PROCESSING,  the   IEEE   TRANSACTIONS  ON  NEURAL NETWORKS 

AND LEARNING SYSTEMS, and  several  other journals. 

 

 
 

Ruomei Yan received the B.Eng. degree in telecom- 
munications engineering and the M.Eng. degree in 
telecommunications and information systems from 
Xidian  University,  China,  and  the  Ph.D.  degree  
in electronic and electrical engineering from The 
University of Sheffield, U.K. Her research interests 
include image processing, machine learning, and 
image compression. 


