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I. Abstract 

 

 

Nanoparticles have been utilised in a wide range of applications and they provide 

unique advantages as drug delivery carriers and imaging agents in biomedicine. In 

particular, nanoparticles have been employed as therapeutic systems in oncology to 

overcome the limitations of conventional chemotherapeutics.  

 Melanoma is the cancer of pigment-producing cells in the basal layer of the 

epidermis. Once metastasised, melanoma is highly aggressive and notoriously difficult 

to treat with the currently available therapies. In order to improve the therapeutic 

options available for the treatment of melanoma, we developed iron oxide 

nanoparticles for use as a melanoma-specific drug delivery system. Iron oxide 

nanoparticles are useful tools in oncology as their superparamagnetic properties allow 

them to be used as a delivery system capable of acting as both an imaging contrast 

agent and a magnetic hyperthermia therapy agent.  

Here, we developed a targeted iron oxide nanoparticle that exploits the 

overexpression of melanocortin 1 receptor, which is upregulated on the cell surface of 

melanoma cells. Surface functionalisation of iron oxide nanoparticles with the 

melanocortin 1 receptor agonist, α-melanocytes stimulating hormone, increased 

internalisation of nanoparticles in melanoma cells compared to non-melanoma and 

melanocyte cell lines. Moreover, the cytotoxic drug paclitaxel, was successfully 

encapsulated into the outer shell of the nanosystem. Delivery of paclitaxel via 

melanoma targeted iron oxide nanoparticles led to dose dependent cytotoxicity in 

melanoma cells.  
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A major limitation in the application of novel nanosystems in the clinic is the 

lack of an accurate and substantial toxicity assessment at the early stages of 

development. We addressed this issue by developing a hazard assessment protocol that 

combines cytotoxicity data with an embryonic vertebrate phenotypic assay to produce 

an overall toxicity index. Our iron oxide nanoparticle was assessed using this toxicity 

methodology to confirm they induced no toxic effects, and so were validated for 

further developed to be used as a therapeutic system.  
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1.1 Cell cycle control and cancer  

 

1.1.1 Genetic control of the cell cycle in the eukaryotic cell 

 

Multicellular eukaryotic cells undergo an ordered sequence of events in order to 

proliferate, where the cell duplicates its chromosomes and divides. This process is 

known as the cell cycle and can be divided into four distinct phases (Whitfield et al., 

2002). G1 is an intermediate phase preceding the end of cell division. In G1, the cell 

undertakes its normal physiological role. The chromosomes during G1 are in their 

extended form, thus genes are able to regulate the synthesis of RNA in order to mediate 

the metabolism of the cell (Bertoli et al., 2013). Following G1, S (synthesis) phase 

occurs. During this phase DNA is synthesised, resulting in each chromosome 

consisting of two sister chromatids joined by centrosomes required for cell division. 

G2 phase follows in which further proteins, notably microtubules, required for cell 

division are synthesised. G1, S, and G0 are all considered as interphase, the interval 

between nuclear divisions. Mitosis is the M phase of the cell cycle where nuclear 

division occurs and can be further subdivided into four stages; prophase, metaphase, 

anaphase, and telophase. The nuclear membrane is broken down in prophase and the 

chromosomes condense. Centrosomes duplicate and organise microtubules to form the 

mitotic spindle. During metaphase, the chromosomes line up at the equatorial plane at 

the midline of the cell via the centrosome and then align along the metaphase plate. 

The centromeres divide at anaphase and each sister chromatids are transported to 

opposite poles of the cell. At telophase, spindle fibres dissipate and the nuclear 

membrane reforms around the uncoiling chromosomes at the pole of the cell. After 
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telophase the cell undergoes cytokinesis, a process which sees the cell divide into two 

cells, each with a full set of chromosomes.  

A cell may also go into a resting phase known as G0. After the G1 checkpoint, 

typically if there is a lack of growth factors or nutrients, a cell can enter G0 instead of 

passing into S phase. During G0, the cell is not preparing to divide but instead enters 

quiescence. Quiescence is a reversible state, and the cell can enter the cell cycle again 

if the conditions are right for it to divide (Morrison et al., 1997). Alternatively, if a cell 

is under stress from DNA damaging agents it will protect itself by loss of proliferative 

potential. If this is irreversible, the cell is said to be in senescence (Campisi and Di 

Fagagna, 2007).  

Cell death is also an important physiological process that maintains cell 

numbers in tissues that are undergoing cell turnover (Bellamy et al., 1995). Broadly, 

cell death can occur as necrosis or apoptosis. Necrosis occurs due to pathological 

events that kill the cell in an uncontrolled manner leading to rupturing of the cell and 

the release of the cell’s contents into the surrounding area resulting in inflammation. 

Apoptosis however, is an active and normal physiological event, which results in the 

controlled breaking up of the cell into membrane-enclosed fragments, known as 

apoptotic bodies, that are recognised by macrophages for phagocytosis (Canbay et al., 

2003).  

 

1.1.2 Cell signalling control and regulation 

 

Cells in multi-cellular organisms are in continual communication with each other. This 

signalling regulates basic cellular activities and coordinates phenotypic response to 

external stimuli, most often a molecule secreted by another cell. The stimulus is 
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detected by a receptor on the surface of the target cell’s plasma membrane and transfers 

this signal to the cytoplasmic side. Further transmission of the signal occurs through 

effector molecules that cascade down a signalling pathway to other proteins in the 

cytoplasm that undergo a conformational change often, but not exclusively, by 

phosphorylation or dephosphorylation. This cascade can terminate with the activation 

of transcription factors (TFs) that trigger a cellular response, such as the activation of 

gene transcription in the nucleus. The effector can also influence the biological activity 

of other proteins, leading to cellular changes such as cytoskeletal conformation and 

metabolic activity.  

 The type of signalling can be characterised by the distance the signalling 

molecules have to travel to the target cell and can be described as endocrine, paracrine, 

or autocrine signalling. In endocrine signalling, endocrine cells secrete hormones into 

the bloodstream to have an effect on distant target cells. Usually, this produces a slow 

but long lasting response. In paracrine signalling, the signalling molecule acts upon 

target cells that are in close proximity to that of the signal-releasing cell. In autocrine 

signalling, the signal releasing cell acts upon itself as the signalling molecule is 

secreted and targets receptors on the surface of the same cell.  

 There are four superfamilies of receptors that are used in different signalling 

pathways. These are the ligand-gated ion channels, intracellular receptors, G-protein 

coupled receptors (GPCRs), and enzyme-linked receptors. Ligand-gated ion channels 

control the flow of ions across cell membranes and are regulated by the binding of a 

ligand to the channel. The response to ligand-gated ion channels is extremely rapid 

(Cockcroft et al., 1990). Intracellular receptors, as the name suggests, are located 

intracellularly. As a result, the ligand must be able to diffuse into the cell in order to 

interact with the receptor to evoke a response (Starr et al., 1996).  
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 With nearly 1000 different receptors in humans, GPCRs are the largest family 

of cell-surface molecules (Katritch et al., 2013). They are involved in key 

physiological functions and produce a vast array of biological responses such as 

cellular proliferation, survival, differentiation, and migration (figure 1.1.1; (Dorsam 

and Gutkind, 2007). All GPCRs have a single peptide that is embedded in the cell 

membrane. The peptide has seven-transmembrane spanning α-helices with an 

extracellular amine terminal and an intracellular carboxyl terminal (Kobilka, 2007). 

The GPCR is intracellularly linked to a G-protein that contains three subunits, α -, β -

, and γ – subunits. Upon extracellular binding of a ligand, the GPCR activates the G 

protein by replacing the guanosine diphosphate (GDP) molecule, bound to the α – 

subunit, with guanosine triphosphate (GTP). Subsequently, the subunits dissociate to 

interact with downstream cellular effectors. Hydrolyses of GTP on the α – subunit 

causes the G protein to reassemble and return to its inactive state.  

 As with GPCRs, enzyme-linked receptors contain an extracellular binding site 

for signalling molecules. The intracellular domain is an enzyme and, upon binding of 

the ligand, the enzyme undergoes a conformational change to become activated or 

inhibited. Receptor protein-tyrosine kinases (RTKs) are an important example of 

enzyme-linked receptors. RTKs are membrane proteins containing a single 

transmembrane domain, an extracellular binding domain, and an intracellular protein 

kinase domain (figure 1.1.2; (Bier, 2005, Hubbard, 1999). Binding of a ligand leads to 

receptor dimerisation, where two inactive monomers come together through 

interaction with the bivalent ligand (Lemmon and Schlessinger, 2010).  
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Figure 1.1.1 G-protein coupled receptors (GPCRs). Multiple ligands are used as agonists to GPCRs 

including bigenic amines, amino acids and ions, lipids, and peptides and proteins. After activation, 

GPCRs interact with heterotrimeric G proteins (comprising of α-, β-, and γ- subunits). After a 

conformational change of the receptor, GDP is exchanged for GTP on the α-subunit. G proteins have 

the ability to activate several downstream effectors including adenylyl cyclase, PKA, ion channels, and 

phospholipase C. Activated effector molecules ultimately activate TFs that alter gene regulation of key 

cellular events such as proliferation, cell survival, differentiation, migration, extracellular matrix (ECM) 

degradation, and angiogenesis. Abhorrent activation of any components within the signalling pathway 

can lead to dysregulation of these biological responses, potentially initiating tumorigenesis. Figure from 

Dorsam and Gutkind, 2007. 
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Figure 1.1.2 Receptor tyrosine kinases (RTKs). Activation of RTK is mediated through extracellular 

ligand binding. Upon binding, RTK monomers dimerise leading to intracellular trans-

autophosphorylation. The adaptor protein, through the SH2 or PTB domain, interacts with the 

phosphorylated RTK residues. Downstream, ERK, is activated and translocates to the nucleus, where it 

is able to activate transcriptional targets. Figure from Bier, 2005. 
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After dimerisation, the intracellular kinase domains come in close contact with 

each other and trans-autophosphorylate, where the protein kinase of one monomer 

phosphorylates the tyrosine of the other and vice versa (Lemmon and Schlessinger, 

2010). Intracellular signalling molecules, containing Src-homology 2 (SH2) domain 

or the phosphotyrosine-binding (PTB) domain (Pawson and Scott, 1997, Pendergast 

et al., 1993), interact with the phosphorylated tyrosine residues. These molecules 

regulate the phosphorylation of downstream signalling molecules to activate signalling 

pathways, including the mitogen-activated protein kinases (MAPK)/extracellular 

signal-regulated kinases (ERK) signalling pathway and the phosphatase and tensin 

homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/AKT signalling pathway, 

eventuating with the activation of TFs.  

   

1.1.3 Development of cancer   

 

Cancer has had a huge impact on human health and, over the last few decades, there 

has been an exponential growth in the knowledge surrounding the mechanisms 

involved in cancer initiation and progression (Liotta and Petricoin, 2000, Tysnes and 

Bjerkvig, 2007). Cancer proves to be a complex group of genetic diseases that most 

often occurs in the DNA of somatic cells. Genetic mutations can provide an advantage 

to an individual cell, allowing it to outgrow and out compete the local tissue 

environment. The dominance of these mutated cells can lead to the death of 

neighbouring cells, loss of tissue/system function, and, ultimately, to the death of the 

organism. Every cell in the human body contains the machinery to transform into a 

cancer cell but ordinarily they are regulated to an extraordinary degree. The 

transformation from healthy cell to a highly malignant tumour cell, tumorigenesis, is 
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a multistep process of genetic modifications that sees the cell gain a certain set of 

biological capabilities. These capabilities, well known as the hallmarks of cancer 

(Hanahan and Weinberg, 2000), are alterations in the cell physiology that combine to 

dictate the extent of malignant growth. These include the ability to sustain proliferative 

signalling, evade growth suppressors, enable replicative immortality, resist cell death, 

induce angiogenesis, and activate invasion and metastasis (Hanahan and Weinberg, 

2000). More recently, emerging hallmarks (including deregulation of cellular 

energetics and avoidance of immune destruction) and enabling characteristics 

(including tumour-promoting inflammation and genome instability and mutation) have 

been described as contributors to the pathogenesis of cancer (figure 1.1.3; (Hanahan 

and Weinberg, 2011). Tumour initiation is now regarded as a progressive multistep 

process were the cancer cell has an accumulation of genetic alterations and further 

genetic alterations are required for a pre-malignant lesion to form a primary tumour 

(Klein, 1998). At this early stage, the cells are not considered invasive or metastatic.  
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Figure 1.1.3 Biological capabilities of cancer. Normal cell proliferation and homeostasis is tightly 

regulated. There are distinct biological capabilities, or hallmarks, that cells acquire in order to be 

considered cancerous. The alterations in the cell physiology include the ability to sustain proliferative 

signalling, evade growth suppressors, avoid immune destruction, enable replicative immortality, 

tumour-promoting inflammation, activate invasion and metastasis, induce angiogenesis, genome 

instability and mutation, resist cell death, and deregulate cellular energetics. The combination of these 

hallmarks dictates the growth and progression of a tumour. Figure from Hanahan and Weinberg, 2011. 
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1.1.4 Pathology of the tumour microenvironment  

 

Initially, a tumour was viewed as a rather simplistic homogenous group of cancer cells. 

However, the tumour proves to be a far more complex tissue that relies on the 

interaction between cancer cells and host cells (Egeblad et al., 2010, Liotta and Kohn, 

2001). Within a solid tumour, there are a number of specialised cells that aid in tumour 

survival and progression. These specialised cells infiltrate at early tumorigenesis and 

include cancer-associated fibroblasts (CAF), cancer stem cells (CSC), cancer cells, 

immune inflammatory cells (ICs), endothelial cells (EC), pericytes (PC), invasive 

cancer cells, and bone marrow-derived cells (BMDCs) (Hanahan and Weinberg, 2011) 

that signal to each other and provide the scaffolding to support the survival and growth 

of cancer cells. 

 As the tumour tissue grows in size, angiogenesis (the formation of new blood 

vessels) is required to provide sufficient oxygen and nutrients. Without angiogenesis, 

tumour size is thought to be restricted to 1-2 mm3 (Muthukkaruppan et al., 1982) and 

the tumour is likely to become necrotic (Parangi et al., 1996). Angiogenesis is 

promoted by secretion of growth factors from cancer cells. Vascular endothelial 

growth factor (VEGF) is a major angiogenic factor that is essential for the survival of 

vascular ECs. VEGF is upregulated in many tumours and overexpression is correlated 

to tumour progression and patient prognosis (Baillie et al., 2001, Itakura et al., 2000). 

Tumour cells and cells from the local stroma, release VEGF (agonist for the receptors 

VEGFR-1, VEGFR-2, and NRP1), angiopoietin ligands (agonist for Tie receptors), 

delta-like and jagged ligands (agonists for Notch receptors), ephrin ligands (agonist 

for Eph receptors), and slit ligands (agonist for Robo receptors) (Coultas et al., 2005, 



Chapter one 

 

12 

 

Phng and Gerhardt, 2009). These ligands regulate the proliferation and migration of 

ECs in blood vessels underlying the tumour. This leads to branching of the vasculature 

towards the VEGF gradient emanating from the tumour cells (Blanco and Gerhardt, 

2013). At the leading edge, the vascular sprout is comprised of stalk and tip cells (Weis 

and Cheresh, 2011). The stalk cells express Notch receptors and the tip cells, at the 

furthermost point of the vascular sprout, expresses Notch, VEGF, and Robo receptors 

(Blanco and Gerhardt, 2013). The established tumour vasculature allows the tumour 

to continue growing in size (Kim et al., 1993, Roskoski, 2007, Yancopoulos et al., 

2000). 

There are key physiological difference between normal tissue vasculature and 

the vasculature in the tumour environment (Siemann, 2011). In normal tissue, blood 

vessels form an ordered and efficient network, which work alongside an equally 

efficient systematic network of lymphatic vessels that drain waste metabolic fluid from 

the tissue (figure 1.1.4). The aggressive and hurried rate of tumour angiogenesis due 

to overexpression of pro-angiogenic factors such as VEGF, leads to a disorganised 

structure of blood vessels with irregular branching that are hyperpermeable (Gee et al., 

2003, Roskoski, 2007, Tong et al., 2004). The lack of PC (perivascular cells that wrap 

around ECs) results in blood vessels that are haemorrhagic and hyperdilated (Bergers 

and Song, 2005). The accompanying lymphatic system is as leaky and dilated as the 

vasculature, providing poor and inefficient drainage of waste fluids from the tissue 

(Leu et al., 2000, Padera et al., 2002).  
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Figure 1.1.4 Vasculature structure in normal tissue and the tumour microenvironment. (a) In 

normal tissue, PCs help to maintain linear blood vessels by contraction around ECs. The surrounding 

ECM, containing fibroblasts, macrophages, and collagen fibres, is highly organised. Lymphatic vessels 

provide efficient drainage of waste fluid from the tissue. (b) Tumour tissues contain blood vessels that 

have disorganised branching, are hyperdilated, and have no constant blood flow or direction. The 

disruption in PC organisation contributes to tumour growth. The ECM has a higher density of collagen 

fibres, fibroblasts, and macrophages compared to normal tissue. There is also a lack of sufficient 

drainage due to the absence of lymph vessels. Figure from Danhier et al., 2010.  
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1.1.5 Invasion and metastasis  

 

As the tumour mass continues to grow it can invade the local tissue and, in a process 

called metastasis, spread from the primary tumour site to secondary sites throughout 

the body (Schroeder et al., 2012). Metastasis of a tumour represents a great challenge. 

Rarely does the primary tumour alone lead to death; approximately 90% of cancer 

deaths are a result of cancer growth at secondary sites (Wittekind and Neid, 2005). 

The formation of the tumour vasculature and lymphatics give cancer cells access to 

the rest of the body. However, before the cancer cells can make use of these passage 

ways, they must first invade the local tissue and undergo intravasation into the lumina 

of blood or lymphatic vessels (figure 1.1.5; (Schroeder et al., 2012).  

 In order for intravasation to occur, tumour cells must exhibit a loss of cell-to-

cell adhesion. This requires significant changes to the cell phenotype. The major 

change is the loss of epithelial-like phenotype by downregulation of cytokeratin, E-

cadherin, and a loss of epithelial cell polarity (Onder et al., 2008, Thompson and 

Newgreen, 2005). This is in conjunction with the acquisition of a fibroblast-like 

phenotype, which is more motile and invasive. Upregulation of protease secretion 

(such as the matrix metalloproteinases MMP-2 and MMP-9) allows degradation of the 

surrounding ECM (Qin et al., 2008). The process from an epithelial phenotype to a 

fibroblast-like phenotype is called epithelial to mesenchymal transition (EMT). The 

TFs Slug and Snail are involved in the regulation of E-cadherin expression, as well as 

repressing the expression of genes encoding tight junction components.  
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Figure 1.1.5 Stages of tumour cell metastasis. The process of cancer cells travelling from the original 

primary tumour to set up a secondary site of tumour growth, is called metastasis. Metastasis is a 

multistep process were the metastatic cells (a) escape from the primary tumour by inducing a loss of 

cell-cell adhesion through epithelial to mesenchymal transition (EMT). As a result, (b) the cell is more 

motile and begins to invade the local ECM. (c) Upregulation of several enzymes, such as MMP-1 is 

required for the cancer cell to intravasate through endothelial junctions into the lumen of the blood 

vessel. Within the blood stream, cancer cells are likely to be destroyed by the immune system. (d) 

Cancer cells can bind to receptors, such as E-selectin, N-cadherin, and integrin, on the surface of 

endothelial cells to mediate extravasation. (e) Aggregation of platelets on the surface of cancer cells can 

help to prevent detection by the immune system whilst travelling through the blood stream. (f) 

Extravasation is the movement of the cancer cell out of the blood vessel where, (g) the cell can undergo 

mesenchymal to epithelial transition (MET) and establish a secondary tumour site. Figure from 

Schroeder et al., 2012. 
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These TFs are vital for EMT and overexpression of both contributes to the acquisition 

of invasive and metastatic properties for the cancer cell (Jethwa et al., 2008, Sun et al., 

2014, Zheng et al., 2015).  

 Once the tumour cells have undergone EMT and infiltrated the blood stream, 

they are known as circulating tumour cells (CTCs). Metastasis is a largely inefficient 

process and the immune system, haemodynamic forces, and/or apoptosis triggered by 

the loss of cell attachment, kills the majority of CTCs (Barok and Szöllősi, 2011); less 

than 0.01% of CTCs eventually form a secondary tumour growth (Fidler, 1970). As 

metastasis accounts for 90% of cancer patient deaths, analysis of the presence and 

quantity of CTCs has been shown to be a useful and accurate tool for prognosis 

(Williams, 2013). Furthermore, characterisation of CTCs can be used to gain vital 

molecular information of the tumour; useful for drug management (Krebs et al., 2010).  

 After arresting in microvascular beds, CTCs can undergo extravasation and 

establish a secondary tumour site, where they can interact with the local stromal cells 

to promote tumour growth. The reversal of EMT, mesenchymal-epithelial transition 

(MET), is required for metastatic colonisation (Brabletz, 2012). The cellular origin of 

the primary tumour often dictates where metastatic sites will occur as tumour cells 

appear to have an organ-preference for metastasis (Langley and Fidler, 2011). The 

theory that certain tumour types tend to metastasise to specific organs is not new. 

Stephen Paget’s 1889 ‘soil and seed’ hypothesis proposed that there were favourable 

interactions between the CTCs (‘seed’) and the secondary organ they occupy (‘soil’). 

Lung cancer often metastasises to the brain, bone, adrenal gland, and liver; breast 

cancer to the bone, lungs, liver, and brain; prostate cancer to the bone; colorectal 

cancer to the liver and lungs; and melanoma often metastasises to the lung, brain, skin, 

and liver (Martin et al., 2000).  
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1.2 Melanoma 

 

1.2.1 Epidemiology of melanoma  

 

Cutaneous melanoma is a form of cancer that occurs as the result of uncontrolled 

proliferation of melanocytes; specialised melanin-producing cells located in the basal 

layer of the epidermis. Metastatic melanoma is the most lethal form of skin cancer and 

incident rates are rising faster than any other cancer (Lens and Dawes, 2004). 

Currently, malignant melanoma is the fifth most common cancer in the UK. Over the 

past several decades, the overall incidence rate of melanoma has increased 

significantly, reaching epidemic proportions (Canavan and Cantrell, 2016, Linos et al., 

2009). In the United States, there was an increase in melanoma cases from 13.9 (per 

100,000 person-years) in the period of 1989-1991, to 21.9 in the period of 2007-2009 

(Shaikh et al., 2016). In the UK, melanoma represents approximately 4% of total 

cancer cases and in 2013, there were over 14,500 new cases of malignant melanoma. 

Alarmingly, there was an increase in incidence rate from 4.8 (per 100,000 person-year) 

to 23.0 in 2012 in the UK (Cancer Research UK). Incidence rates of melanoma is 

correlated to age; rates increase steadily from 20-24 years to a peak at 90 + years. 

However, unlike many other cancers, melanoma frequently affects people below 65 

years old (~55%).  

 From 1971 to 2012, there has been a steady increase in melanoma related 

mortality in the UK from 1.2 (per 100,000 person-years) to 2.5. This increase is in line 

with the high rise of incidence rates, particularly in people aged over 75 (Ferlay, 2013). 
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This mortality rate equates to the 19th most common cause of cancer death in Europe, 

with over 22,000 deaths (Ferlay, 2013).  

 

1.2.2 Development of Melanocytes 

 

Melanocytes arise from the multipotent neural crest (NC) cells. The NC arises at the 

boarder of the closing neural tube and non-neural exoderm in vertebrate embryos 

(figure 1.2.1.a; (Shyamala et al., 2015). As a result of their stem cell-like multipotent 

potential, NC cells are able to differentiate into a range of cell types; these include 

melanocytes, neurons and glia cells of the nervous system, neuroendocrine cells of the 

adrenal medulla, and the craniofacial skeletal and connective tissue (Crane and 

Trainor, 2006). NC induction is a multistep process involving a variety of signalling 

pathways at specific time points in the developing embryo. Wnt, fibroblast growth 

factor (FGF), and bone morphogenetic protein (BMP) are inductive signalling ligands 

secreted from the underlying mesoderm and non-neural ectoderm that play a vital role 

in NC induction. BMP antagonists, such as chordin, noggin, and follistatin, are 

secreted factors from the Spemann’s Organiser that set up a dorsal-ventral gradient of 

BMP activation (De Robertis, 2006). Inhibition of BMP signals in the dorsal ectoderm 

leads to neural fate, whereas high levels gives rise to epidermis. An intermediate level 

of BMP signal is required to induce NC. In addition, high levels of Wnt and FGF 

signalling from the underlying paraxial mesoderm, as well as Wnt signalling from non-

neural ectoderm, are required (Labonne and Bronner-Fraser, 1998).  
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Figure 1.2.1 Formation of melanocytes from the NC. (a) The neural plate boarder is established by 

intermediate levels of BMPs, Wnt, and FGF from the underlying paraxial mesoderm, as well as Wnt 

signals from the non-neural ectoderm. Once the neural tube forms, NC cells undergo EMT and 

delaminate from the dorsal neural tube. NC cells then migrate to different areas of the embryo before 

differentiation to cell types such as melanocytes, neurons, osteoblasts, and Schwann cells. Figure 

adapted from Shyamala et al., 2015. (b) The TF MITF is required for NC differentiation into 

melanocytes. Figure adapted from Mort et al., 2015.  
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Introduction of Wnt/β-catenin signalling components, such as receptors (frizzled-3, 

frizzled-7, LRp6) and the intracellular signalling molecule, β-catenin, have been 

shown to induce NC (Abu-Elmagd et al., 2006, Deardorff et al., 2001, Labonne and 

Bronner-Fraser, 1998, Tamai et al., 2000). Once the neural boarder is established, TFs 

Zic1 and Pax3 activate early NC specifiers in a Wnt-dependent fashion. These include 

TF specifiers C-myc, Slug, Snail, FoxD3, and Sox9 (Honore et al., 2003). Early NC 

specifiers are in turn able to induce the expression of downstream NC specifiers such 

as SoxE (Honore et al., 2003). Sox10, a member of the SoxE family, is required for 

the survival of NC. Loss of Sox10 leads to a decrease in NC proliferation and an 

increase in apoptosis (Honore et al., 2003).  

 Following specification and closure of the neural tube, NC cells undergo an 

EMT, making the cells more migratory. Snail plays a vital role in NC EMT by down-

regulating E-cadherin expression and claudins (Cano et al., 2000). Repression of E-

caderin is essential for NC induction and failure to do this leads to an amassing of 

epithelial cells that are unable to migrate (Nieto et al., 1994). Once NC cells have lost 

polarity, MMPs are produced and secreted. In particular, the gelatinase MMP-2 is 

required to degrade the surrounding ECM allowing migrating NC cells to delaminate 

from the neuroepithelium. Knockdown of MMP-2 during Xenopus development 

results in a decrease in NC derived melanophore migration (Tomlinson et al., 2009). 

NC specifiers involved in differentiation of NC are not only expressed in premigratory 

cells, but also during migration. The SoxE family act upstream of many effector genes 

that promote terminal differentiation into one of the NC derived cell types. Other TFs 

can repress the differentiation of one cell type and lead the cell into a different cell 

lineage (Sauka-Spengler and Bronner-Fraser, 2008).  
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 The fate of the premigratory NC is determined before delamination from the 

crest and there are thought to be two NC origins of melanocytes with different 

migration patterns. Firstly, there is a population of early differentiated melanoblasts 

that are derived from the NC and migrate dorsolaterally through the dermis between 

the somites (blocks of mesoderm in the developing embryo) and the developing 

epidermis (Mort et al., 2015). A second population of adult melanocytes is thought to 

originate from a glial-melanoblast precursor cell, that has the potential to differentiate 

into glia or melanocytes (Dupin et al., 2003), and migrate along the ventrolateral 

pathway (Mort et al., 2015). 

 The master regulator of melanocyte differentiation is the TF microphthalmia-

associated transcription factor (MITF) and is absolutely required for melanocyte 

formation (figure 1.2.1.b; (Steingrimsson et al., 2004). MITF is a basic helix-loop-

helix leucine zipper dimeric TF (Shibahara et al., 2001) that binds to the E-box 

promoter sequence CACGTG and CACATG (Hemesath et al., 1994, Yasumoto et al., 

1994). MITF has a central role in melanocyte development, differentiation, survival, 

and growth, largely due to transcriptional target genes of MITF (Levy et al., 2006); 

figure 1.2.2). Progression of the cell cycle can be mediated MITF by regulation of 

CDK2, essential for transition through G1 to S phase (Du et al., 2004). Anti-apoptotic 

Bcl2 is also mediated directly through MITF and a loss of MITF expression can lead 

to apoptosis in melanocytes (Mcgill et al., 2002). The promoter regions for the main 

pigmentation enzymes TYR, TYRP1, and DCP, all contain MITF E-box binding sites 

in melanocytes (Bentley et al., 1994, Bertolotto et al., 1996, Yasumoto et al., 1997). 
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Figure 1.2.2 MITF target genes. (a) MITF plays a central role in the induction of melanoma, 

melanocyte differentiation, cell cycle progression, and melanocyte survival. MITF is downstream of 

both GPCRs and RTKs. MITF target genes include p21 and INK4a (involved in cell cycle progression), 

TBX2 and CDK2 (involved in cell proliferation), BCL2 (involved in cell survival), and TYR and AIM-1 

(involved in melanocyte differentiation. (b) The regulation of MITF target gene transcription occurs 

through MITF binding sequences (E-boxes) in the gene promoter region. Figure from Levy et al., 2006.  
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1.2.3 Initiation and progression of melanoma  

 

Melanocyte proliferation can lead to a non-cancerous aggregation of cells known as a 

benign nevus, which commonly do not progress to melanoma due to cellular 

senescence. Melanoma typically progresses at first through a radial growth phase 

(RGP), during which they can be easily resected through surgery. During this phase, 

the tumour proliferates and invades the local epidermis but is restricted by the 

basement membrane which lies above the blood vessel containing dermis (figure 

1.2.3;(Dye et al., 2013). If vertical growth phase (VGF) occurs, melanoma cells can 

invade the dermis and there is a greater risk of metastasis (Crowson et al., 2006).  

The transformation of nevi to metastatic melanoma, as with all cancers, 

requires an accumulation of molecular mutations to influence cell proliferation, death, 

differentiation, angiogenesis, and invasiveness. Several factors and signalling 

pathways involved in the early development and survival of melanocytes are 

implicated in melanoma. UV radiation, a major environmental risk factor for 

melanoma initiation, typically leads to DNA damage via dimerisation of cytosine-

thymine and thymine-thymine (De Gruijl et al., 2001). There are numerous genetic 

anomalies associated with metastatic melanoma. Amongst these, components of the 

MAPK/ERK and PTEN/PI3K/AKT signalling pathways are regularly involved. In 50-

60% of melanomas, BRAF (a member of the MAPK/ERK pathway) is mutated leading 

to abhorrent signalling. In melanoma with BRAF wildtype, NRAS (another 

component of the MAPK/ERK pathway), is mutated at a frequency of 20-25%.  
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Figure 1.2.3 Initiation and progression of melanoma. Melanocytes are melanin-producing cells 

located at the base of the epidermis (1). Uncontrolled proliferation can result in a benign nevus, where 

growth is limited and restricted to the surrounding tissue (2). At this stage, whilst there is just radial 

growth, the tumour is easy to remove during surgery. If the cells begin to invade vertically through the 

basement membrane and into the underlying dermis (3), treatment options are limited and prognosis is 

poor. If the tumour continues to progress, cancer cells can dissociate from the primary tumour and 

invade the vascular or lymphatic system (4) and metastasise to a secondary site (5). Figure adapted from 

Dye et al., 2013.  
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Other notable genetic alterations include MITF (frequency 20%), telomerase reverse 

transcriptase (TERT) (frequency 70-80%), and PTEN (frequency 40-60%; 

(Shtivelman et al., 2014). Mutations in melanocortin-1 receptor (MC1R), a GPCR 

involved in melanogenesis, is also associated with an increased risk of melanoma 

(Kennedy et al., 2001, Palmer et al., 2000). Melanoma largely follows the standard 

model of progression for carcinomas (cancer of epithelial cells). Recruited cells from 

the surrounding environment, such as immune cells, help to induce angiogenesis. 

Macrophages promote angiogenesis by releasing pro-angiogenic molecules such as 

FGF-2 (Reiland et al., 2006) and interleukin-8 (IL-8) (Srivastava et al., 2015). 

Overexpression of both MMP-2 (Rotte et al., 2012) and MMP-9 (Tang et al., 2013) is 

indicative of a more invasive and metastatic phenotype, associated with a worsened 

patient prognosis. 

The main route of melanoma metastasis is regarded as via the lymphatic system 

and whilst in transit, melanoma cells must evade detection by the immune system. 

Natural killer (NK) cells are one of the most efficient cells for the defence against 

cancer cells. NKD2D receptors are expressed on the surface of NK cells. NKD2D 

ligands are expressed at low levels on the surface of normal cells however, they are 

overexpressed on cells which are infected, transformed (as with cancer cells), or 

stressed (Fuertes et al., 2008). Melanoma cells are able to retain NKD2D ligands 

intracellularly to prevent their expression on the cell surface (Fuertes et al., 2008). In 

turn, this helps melanoma cells to evade destruction from NK cells (Zbytek et al., 

2008). Melanoma cells can undergo different patterns of metastatic spread; the most 

frequent first metastasis is located at the regional lymph nodes (~50%; (Mervic, 2012, 

Zbytek et al., 2008), followed by distant sites (~25%), and satellite and/or in-transit 

metastasis (~24%; (Mervic, 2012). 
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1.2.4 Pathological staging of melanoma 

 

Pathological staging of melanoma is used to indicate the extent of growth and 

spread of the tumour. There are several systems used to describe the stages of 

melanoma progression including the Breslow scale, TNM staging (Balch et al., 2009), 

and number staging. The Breslow scale measures the thickness of the melanoma in the 

skin (in millimetres). After dissection, the melanoma is analysed for the depth of 

invasion into the skin. In the UK, TNM staging is most frequently used in the clinical 

setting. TNM stands for tumour, node, and metastasis (table 1.2.1), where T is used to 

categorise the size of a primary tumour and is measured according to the Breslow 

scale. T can be further divided into groups a and b to characterise the tumour as 

ulcerated or not. Ulceration is defined as a breaking of the skin over the tumour and if 

the tumour is ulcerated (b) it has a higher risk of spreading from the primary site.  
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Table 1.2.1 TNM staging of melanoma. Adapted from Balch et al., 2009 

T Thickness (mm) Ulceration status/mitoses 

Tis  n/a n/a 

T1 ≤ 1.0 a. without ulceration and mitoses < 1/mm2 

b. with ulceration or mitoses ≥ 1/mm2 

T2 1.01-2.00 a. without ulceration 

b. with ulceration  

T3 2.01-4.00 a. without ulceration 

b. with ulceration  

T4 > 4.00 a. without ulceration 

b. with ulceration  

N Number of nodes Nodel metastatic burden 

N0 0 n/a 

N1 1 a. micrometastasis  

b. macrometastasis  

N2 2-3 a. micrometastasis  

b. macrometastasis  

c. in transit metastases/satellites without metastatic 

nodes  

N3 4 + metastatic nodes, or matted nodes, or in transit 

metastases/satellites with metastatic nodes 

M Site Serum LDH 

M0 no distant metastases n/a 

M1a distant skin, subcutaneous or 

nodal metastases 

normal  

M1b lung metastases  normal 

M1c all other visceral metastases  normal 

any distant metastasis   elevated  
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1.2.5 Current therapeutic options for the treatment of melanoma 

 

Patient prognosis is generally good if melanoma is diagnosed early whilst it is still 

under RGP. If it is limited to the local epidermis with no sign of metastasis, melanoma 

can be cured by surgery. However, once the melanoma has metastasised and the 

tumour is unresectable, long-term prognosis is notoriously poor. After the tumour has 

developed into a late-stage metastatic disease, there are limited successful therapeutic 

options. Currently, the gold standard is surgery followed by sentinel lymph node 

(SLN) biopsy (SLNB), where the SLN (the first lymph node in which the cancer is 

likely to spread to from a primary tumour) is removed and examined for the presence 

of tumour cells. If the SLNB is positive, this indicates the cancer is in the SLN. This 

could also mean the melanoma has spread to regional lymph nodes and to other organs. 

If this is the case, the patient prognosis is poor; for stage 4 melanoma (table 1.2.2), 5-

year survival rate is approximately 15-20% (Dickson and Gershenwald, 2011).  

 Traditionally, chemotherapeutics, such as the alkylating agent dacarbazine 

(DTIC), have been used as a general cytotoxic drug to help reduce the size of advanced 

melanoma. DTIC is typically administered intravenously at a dose of 150-200 mg/m2/d 

for 5 days or as a single dose of 800-1,000 mg/m2, with doses repeated every 3 to 4 

weeks (Bhatia et al., 2009). Although the efficacy of DTIC is higher than other 

chemotherapeutic options, the survival benefits remain minimal and DTIC efficacy is 

relatively low, with less than 2% of patients treated with DTIC alone surviving 6 years 

(Hill et al., 1984).  
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Table 1.2.2 Number staging of melanoma (Cancer Research UK; 

http://www.cancerresearchuk.org/about-cancer/type/melanoma/treatment/stages-of-melanoma). 

Stage 0 

In situ melanoma. Melanoma cells are only in the top surface layer of the epidermis and have not 

started to spread to deeper layers.  

Stage 1A 

The melanoma is less than 1 mm thick. The covering layer of skin over the tumour is not broken (it 

is not ulcerated). The melanoma is only in the skin and there is no sign that it has spread to the lymph 

nodes or other parts of the body.  

Stage 1B 

The melanoma is less than 1 mm thick and the skin is broken (ulcerated). Or it is between 1 and 2 

mm and is not ulcerated. The melanoma is only in the skin and there is no sign that it has spread to 

lymph nodes or other parts of the body. 

Stage 2A 

The melanoma is between 1 and 2 mm thick and is ulcerated. Or it is between 2 and 4 mm and is not 

ulcerated. The melanoma is only in the skin and there is no sign that it has spread to lymph nodes or 

other parts of the body. 

Stage 2B 

The melanoma is between 2 and 4 mm thick and is ulcerated. Or it is thicker than 4 mm and is not 

ulcerated. The melanoma is only in the skin and there is no sign that it has spread to lymph nodes or 

other parts of the body. 

Stage 2C 

The melanoma is thicker than 4mm and is ulcerated. The melanoma is only in the skin and there is 

no sign that it has spread to lymph nodes or other parts of the body. 

Stage 3A 

The melanoma has spread into up to 3 lymph nodes near the primary tumour. But the nodes are not 

enlarged and the cells can only be seen under a microscope. The melanoma is not ulcerated and has 

not spread to other areas of the body. 

Stage 3B 

The melanoma is ulcerated and has spread to between 1 and 3 lymph nodes nearby but the nodes are 

not enlarged and the cells can only be seen under a microscope OR 

The melanoma is not ulcerated and it has spread to between 1 and 3 lymph nodes nearby and the 

lymph nodes are enlarged OR 

The melanoma is not ulcerated, has spread to small areas of skin or lymphatic channels, but nearby 

lymph nodes do not contain melanoma cells 

Stage 3C  

There are melanoma cells in the lymph nodes and small areas of melanoma cells in the skin or lymph 

channels close to the main melanoma OR 

The melanoma is ulcerated and has spread to between 1 and 3 lymph nodes nearby which are 

enlarged OR 

The melanoma may or may not be ulcerated and has spread to 4 or more nearby lymph nodes OR 

The melanoma may or may not be ulcerated and has spread to lymph nodes that have joined together 

Stage 4  

These melanomas have spread elsewhere in the body, away from where they started (the primary 

site) and the nearby lymph nodes. The most common places for melanoma to spread are the lung, 

liver or brain or to distant lymph nodes or areas of the skin. 
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Over the past several years, with the increased understanding of the molecular 

mechanisms involved in the initiation and progression of melanoma, there has been 

significant advancement in the development of novel therapeutics for the treatment of 

metastatic melanoma (Johnson and Sosman, 2015). After the identification of the 

BRAF mutation in 40-50% of melanoma (Davies et al., 2002), BRAF has been 

explored as a potential therapeutic target and several BRAF inhibitors have been 

evaluated in clinical trials. The first, vemurafenib, improved patient survival rates and 

decreased death (Flaherty  et al., 2010, Sosman  et al., 2012). After phase III trials of 

vemurafenib, response rates were improved from 5% to 48% after treatment with 

vemurafenib (compared to DTIC alone; (Chapman  et al., 2011). After the initial 

success of vemurafenib, relapse commonly occurred and nearly all of the patients 

treated with the BRAF inhibitor experienced tumour progression within 2 years of 

therapy. This is likely due to the formation of drug resistant cell populations that 

bypass BRAF through other MAPK components, such as NRAS, or parallel signalling 

pathways (Nazarian et al., 2010, Poulikakos et al., 2011, Rizos et al., 2014).  

 Recently, inhibitors of immune checkpoints have been developed for cancer 

therapy. Ordinarily, the immune system has the ability to distinguish healthy cells from 

cells it sees as ‘foreign’. Cancer cells can often overcome these immune checkpoints 

to avoid destruction by the immune system (Chen and Mellman, 2013). Drugs that 

target these checkpoints aim to increase immune response to cancer cells (Pardoll, 

2012a). An example of a potential immune checkpoint drug target is the cytotoxic T 

lymphocyte antigen (CTLA-4). CTLA-4 is a receptor expressed on the surface of T 

cells and is a negative regulator of T cell activation. Immune checkpoints are necessary 

to prevent excessive autoimmune response in healthy cells. In T helper cells, CTLA-4 

suppresses T cell activity by preventing T cell activation via CD28. By inhibiting 
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CTLA-4, T cells are activated by CD28, leading to an increased immune response 

(Krummel and Allison, 1995).  Ipilimumab is an immunotherapy that inhibits CTLA-

4 (Acharya and Jeter, 2013) and has been shown to extend the overall survival rate 

from 4 to 36 months in melanoma patients (Hao et al., 2014, Pardoll, 2012b). However, 

the lack of clear clinical advantages and the occurrence of adverse side effects 

(documented as severe and long lasting) prevented the development of ipilimumab 

(Hodi et al., 2010).  

 Antibodies to programmed cell death protein 1 (PD-1) have been tested in 

melanoma and provide an alternative to CTLA-4 inhibitors. PD-1 is a membrane 

associated factor expressed by tumour cells that inhibits T-cell function (Gajewski, 

2006). Nivolumab, the first anti-PD-1 to be developed as a therapeutic agent, provided 

an objective response in 29% of patients with melanoma with minimal adverse effects 

(as low as 6%; (Topalian  et al., 2012). Another monoclonal antibody to PD-1, 

pembrolizumab, has been investigated for therapeutic benefits to melanoma patients 

(Robert et al.). After treatment with pembrolizumab, patients who had no success with 

ipilimumab treatment had a response rate of 26%. As these are relatively novel 

therapies, there is no long-term survival data. The combination of anti-CTLA-4 and 

anti-PD-1 has demonstrated complementary activity in patients with unresectable 

stage III or  stage IV melanoma (Larkin et al., 2015). 
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1.3 Nanomedicine 

 

1.3.1 Nanomaterials (NMs) in oncology 

 

NMs are defined as sub-micronic colloidal systems comprising of organic, inorganic, 

or both, materials. Common organic NMs include dendrimers, cyclodextrin, micelles, 

and liposomes. Inorganic NMs include core-shelled NMs (such as iron oxide, gold, 

and silver), nanorods, fullerene, and carbon nanotubes (figure 1.3.1; (Bombelli et al., 

2014). Nanotechnology has developed exponentially and is currently being utilised in 

numerous industries such as electronics, materials and textiles, energy, food, and 

pharmaceuticals (Bouwmeester et al., 2009, Gajewski, 2006, Mcintyre, 2012, Wagner 

et al., 2006). Due to the NM size range and the diversity of industries using 

nanomaterials, nanotechnology is a multi-disciplinary area of research. In terms of 

publications in subject specific journals, the discipline of material science accounts for 

around 50% of nano-publications. This is followed by chemistry (44%), physics 

(11%), and biomedical sciences (9%; (Porter and Youtie, 2009). Other disciplines 

using nanotechnology include environmental science, cognitive science, and computer 

science (Porter and Youtie, 2009). As NMs are on the same order of magnitude as 

proteins, they have the potential to be developed into powerful tools for biomedical 

use. These include applications such as fluorescent biological labels, drug and gene 

delivery systems, chemotherapy delivery, tissue engineering, detection of pathogens, 

detection of proteins, tumour hyperthermia, MRI contrast agents, and separation of 

biological molecules (Salata, 2004).  
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Figure 1.3.1 NMs used in oncology. Organic NMs frequently used as a drug delivery system for cancer 

therapy include (A) dendrimer, (B) cyclodextrin, (C) micelles, (D) liposomes. Inorganic NMs 

frequently used as nanocarriers in oncology include (E) core-shell NM, (F) nanorod, (G) fullerene, (H) 

carbon nanotube. Figure from Bombelli et al., 2014. 
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There has been an exponential increase in the number of biomedical multifunctional 

NMs that can act as both a therapeutic drug delivery system for the treatment of 

disease, and as a non-invasive diagnostic tool; the combination of therapeutic and 

diagnostics has coined the term ‘theranostics’ and is a key advantage for using NMs 

for a range of disease states.  

For biomedical use, in particular oncology, NM size is in the range of 1 to 200 

nm and they can be encapsulated with hydrophilic and/or hydrophobic drugs, 

depending on the NM and method of preparation. For polymer-based drug delivery 

systems, drugs can be physically entrapped within the formulation or covalently bound 

to the polymer matrix (Cho et al., 2008). Micelles are formed from amphiphilic 

molecules consisting of a hydrophobic core and a hydrophobic outer shell. The 

hydrophobic corecan act as a reservoir for hydrophobic drugs and the hydrophilic outer 

surface allows the micelle-drug formulation to be water-soluble. Liposomes are 

produced from self-assembled lipid bilayers that are then formed into spherical 

colloidal vesicles. As with micelles, liposomes have a hydrophilic surface allowing for 

dispersion in an aqueous solution. The inside of liposomes contain water, in which 

hydrophobic drugs can be dispersed. Lipophilic drugs can be trapped in the 

hydrophobic tails of the lipids, protected from the aqueous solution. Several liposomal 

drug formulations are approved or are in clinical trials (Suzuki et al., 2016). Drug 

association with metallic core nanoparticles (NPs) can be more complex than with self-

assembling liposomes and micelles, and is largely dependent on the surface 

functionalisation of the metal core. Drug complexes can be achieved with reversible 

interactions between NPs and drugs, such as hydrophobic interaction with lipophilic 

drugs and hydrophobic regions of polymer coating. NP-drug conjugates can also be 

formed by covalent bonds by common covalent coupling such as between two thiol 
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groups, two primary amines, a carboxylic acid and primary amine, maleimide and 

thiol, hydrazide and aldehyde, and a primary amine and aldehyde (Werengowska-

Ciećwierz et al., 2015).   

 Resistance to chemotherapy and targeted therapies is currently a major 

challenge in cancer research. Cancer cells inherently have unstable genomes and can 

become resistant to therapies by adapting the intended drug target (making the drug 

obsolete) or by abhorrent activation of other signalling components to bypass the 

molecular drug target. The one-dimensional approach to cancer therapy by using a 

single drug is fast being realised as ineffective and out-dated. Combinational NM 

formulations have been effective in the treatment of tumours by delivering 

chemosensitising agents alongside chemotherapeutics (Chiu et al., 2009, Hu and 

Zhang, 2012, Shapira et al., 2011). The ability to encapsulate hydrophobic and 

hydrophilic drugs in NMs means that drug combinations that had previously not been 

explored, can be developed (Zhang et al., 2007). 

 

1.3.2 Passive targeting of NMs in cancer  

 

One of the largest advantages of the use of NMs in oncology is the potential to 

specifically target cancer cells within the tumour tissue. Conventional 

chemotherapeutics often act upon proliferating cells as a means to prevent tumour 

growth and, unfortunately, this results in toxicity to healthy cells that typically have 

fast turn-over such as in the hair folicle, skin, blood, gastrointestinal tract, and immune 

system. This systemic toxicity leads to significant side effects and limits the 

chemotherapeutic dose administered.  
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NM-mediated delivery of anti-cancer drugs can passively target tumors via the 

enhanced permeability and retention (EPR) effect (Maeda et al., 2013). EPR exploits 

the solid tumor physiology, which differs from normal tissue. As described in 1.1.4, 

the blood vessels of tumours deviates from the normal physiology. Of considerable 

interest is the defective and leaky endothelium.  

In most tumours, the tumour vasculature is of irregular diameter and contains 

abnormal branching patterns. This increase in blood vessel permeability in the tumour 

environment allows the accumulation of large molecules (10-500 nm) from the tumour 

vessels to the interstitial space (Peer et al., 2007). This effect is compounded by the 

lack of efficient drainage from the lymphatic system (figure 1.3.2; (Peer et al., 2007). 

As a result of tumour targeting, NM-drug systems aim to increase the drug 

concentration within the tumour environment and, as a result, limit the drug 

concentration in normal tissue. NMs can also improve the solubility drugs for 

intravenous administration, increase drug stability, and improve cellular uptake of 

drugs (Danhier et al., 2010). Several passively tumour-targeted NM systems are in the 

advanced stages of development or have been clinically approved (Cho et al., 2008). 

Genexol-PM is a polymeric micelle NM formulation containing the chemotherapeutic 

drug paclitaxel (PTX) and is currently in phase II-IV clinical trials for breast, lung, 

pancreatic, bladder cancer (Ahn et al., 2014, Lv et al., 2014).  A study using Genexol-

PM combined with doxorubicin is also recruiting for phase II clinical trials for 

metastatic breast cancer (NCT01784120). Abraxane is another polymeric micelle NM 

formulation containing PTX that passively targets tumours (Hersh et al., 2015). PTX 

alone is highly toxic due to the pharmacological formulation used and non-specific 

dispersal of the drug throughout the body (Gradishar et al., 2005).  
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Figure 1.3.2 Passive and active targeting of NMs in the tumour microenvironment. Passive 

targeting of NMs is achieved by exploiting the tumour physiology. NMs are able to extravasate through 

the hyperpermeable vasculature and into the tumour tissue. The poor lymphatic drainage associated 

with solid tumours, increases the retention of the nanosystems in the tumour. Inset, NMs can actively 

target specific cell types ones they are located within the tumour. This is accomplished by the 

association of targeting moieties on the surface of the NMs that can interact with receptors on the surface 

of the target cell. The resulting interaction leads to receptor-mediated endocytosis of the NM and its 

payload. Figure from Peer et al., 2007. 
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Abraxane, containing non-covalently bound PTX, limits the toxicity by passively 

targeting the tumour (reducing systemic damage) and removes the need to use the toxic 

formulation of PTX. Abraxane is FDA approved for use in advanced pancreatic 

cancer, advanced non-small cell lung cancer, and advanced breast cancer (Miele et al., 

2009). Passively tumour-targeted liposomes have also been FDA approved. Myocet 

(doxorubicin containing liposomes) is approved for breast cancer (Markman, 2006) 

and DaunoXome (daunorubicin containing liposomes) is approved for Kaposi sarcoma 

(Rivera, 2003, Rosenthal et al., 2002).  

 

1.3.3 Active targeting of NMs in cancer  

 

Despite the EPR effect being pre-clinically promising for increasing NM numbers at 

the tumour site, currently it does not appear to be as successful clinically (Prabhakar 

et al., 2013). There are concerns over relying solely on the EPR effect for the targeting 

of cancer therapeutics. Firstly, there is significant heterogenetity between tumours 

affecting pore size and blood vessel structure. Moreover, NMs do not passively target 

micro-metastasis before the tumour environment and its associated vasculature has 

been established. Furthermore, there is limited knowledge regarding which preclinical 

tumour models are reproducible in patient tumours and there is no guarantee that the 

drug payload will be to the cancer cells rather than the stroma. As a result, NM 

targeting can be unpredictable when depending on the EPR effect alone. Attention has 

therefore turned towards active targeting via cell-specific markers such as surface 

proteins (Byrne et al., 2008). Active targeting is achieved by conjugation of targeting 

moieties (such as proteins or antibodies) to the surface of the NM. Targeting moieties, 

rather than increasing NM tumour localisation, increase cellular internalisation 
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(Hatakeyama et al., 2007, Kirpotin et al., 2006). Increasing internalisation of NM-drug 

increases the therapeutic effect compared to the drug alone (Iinuma et al., 2002, Lopes 

De Menezes et al., 1998). Numerous targeted NMs are being developed for a range of 

cancers, comprising of different core materials, surface modifications, and targeting 

moieties (Byrne et al., 2008).  

Potential targeting moieties are commonly surface located proteins that are 

upregulated on the target cell. General targets include proteins that are expressed in a 

range of tumours and look to exploit upregulated molecules associated with tumour-

specific capabilities such as targeting angiogenesis and uncontrolled proliferation. 

Monoclonal antibodies to VEGF, overexpressed in cancers to promote tumour 

angiogenesis, have been conjugated to ferric oxide NPs to target glioma cells 

(Abakumov et al., 2015) and to silica NPs to selectively deliver the RTK inhibitor 

sunitinib to malignant glioblastoma xenograft mice (Goel et al., 2014). Other tumour 

vasculature targets include the integrin αvβ3 molecule, an endothelial cell receptor 

involved in cell-ECM interactions. The αvβ3 integrin is highly overexpressed on 

activated endothelial cells in the tumour-associated environment and has been 

demonstrated to be crucial for angiogenesis (Kumar, 2003). A cationic lipid-based NP 

conjugated to a small αvβ3 ligand and coupled showed specificity to αvβ3 through 

receptor-binding studies and cell adhesion experiments using melanoma cells (Hood 

et al., 2002). Moreover, after coupling to cDNA encoding ATPμ-Raf, the αvβ3-

targetted NPs lead to melanoma regression in vitro and regression of pulmonary and 

hepatic metastases of colon carcinoma after administration in mice (Hood et al., 2002). 

Like αvβ3 integrins, membrane type-1 (MT1) MMP is also expressed on the 

angiogenic endothelium and tumour cells (Sounni et al., 2002). MT1-MMP targeted 

liposomes suppressed colon carcinoma growth in xenograft mice (Kondo et al., 2004), 
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As uncontrolled proliferation is a major characteristic and biological capability 

of cancer cells, it is not surprising that there is great interest in targeting cell 

proliferation in oncology using NMs (as well as non-nanotheraputics). In breast 

cancer, the human epidermal growth factor receptor 2 (HER-2), a RTK, is a frequently 

investigated NP target as it is overexpressed in breast cancer and leads to uncontrolled 

proliferation. In vitro studies have shown poly(lactic-co-glycolic acid) (PLGA) 

conjugated with anti-HER-2 antibody fragments can internalise specifically in HER-2 

positive cells (Chen et al., 2008). Significantly, the actively targeted PLGA-HER-2 

NPs had a better therapeutic benefit compared to the drug alone after administration 

to HER-2 overexpressing tumour-bearing mice (Chen et al., 2008).  

The epidermal growth factor receptor (EGFR) is a RTK expressed in over a 

third of solid tumours, including breast, lung, and colorectal, and is indicative of 

advanced disease and poor progression (Laskin and Sandler, 2004). PGLA NPs 

functionalised with an EGFR ligand and encapsulated with combinational drugs 

(including PTX and lonidamine (LON)). EGFR targeted PGLA-PTX/LON NPs 

decrease tumour volume and tumour weight in breast cancer xenograft mice, compared 

to the PTX/LON combination therapy (Milane et al., 2011).  

As the molecular knowledge of individual tumour types expands, there has 

been an increase in the discovery of novel targets. Combination of specific targeting 

of distinct tumour types on a NM that increases cellular uptake of anti-cancer drugs, 

increases drug circulation times, a platform for combination therapy using multiple 

drugs, and acts as a theranostics agent, provides a powerful tool for drug delivery.  

The fate of the NM after administration into an organism is determined by a 

number of factors, including the choice of targeting moiety on the NM surface 

(Coupland et al., 2009). Other physico-chemical properties identified as modulating 
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cellular uptake include the NM size (Jiang et al., 2008), shape, surface charge (Doherty 

and Mcmahon, 2009), and surface chemistry (Conner and Schmid, 2003, Jiang et al., 

2011). The route of NM cellular uptake is important as it can influence the intracellular 

trafficking and ultimately the NM fate within the cell (Zhao et al., 2011). Generally, 

NMs are within a size range typical of cellular components and, as a result, can 

internalise into living cells by exploiting cellular endocytosis mechanisms (Conner and 

Schmid, 2003). The main endocytic pathways employed by NMs include 

macropinocytosis, caveolin-dependent endocytosis, clatherin-dependent endocytosis, 

and receptor-mediated endocytosis (Conner and Schmid, 2003). Macropinocytosis 

involves the engulfing of fluids and small materials, reported as between 0.5 – 10 µm, 

that reside in the extracellular environment through membrane invagination; inward 

folding of the plasma membrane over extracellular fluid containing materials such as 

NMs. The inward portion of the plasma membrane then buds off to form a 

macropinosome which internalises the engulfed material before transportation through 

the cytoplasm. In most cases the resulting macropinosome acidifies and decreases in 

size. In other cases, macropinosomes fuse with lysosomes (Canton and Battaglia, 

2012). With receptor-mediated endocytosis, internalisation occurs from specific 

receptor-ligand interaction (Jiang et al., 2008). The most common receptor-mediated 

endocytic transport system is the clathrin-dependent pathway, where clathrin 

assembles into a lattice at the plasma membrane to form coated pits containing the 

internalised receptor and ligand (Conner and Schmid, 2003). Clathrin-mediated 

endocytosis can also occur as non-receptor mediated where clathrin proteins 

polymerise at the cell membrane without the presence of receptor-ligand interaction. 

In most cases of clathrin-dependent endocytosis, the endolysosomal pathway is 
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initiated and the engulfed material moves through intracellular compartments such as 

early endosomes, late endosomes, and lysosomes (Sandin et al., 2012).  

  



Chapter one 

 

43 

 

 

1.3.4 NMs in a biological environment 

 

The introduction of NMs in a biological environment (such as in the bloodstream after 

intravenous administration), results in biomolecules, such as lipids and proteins, 

associating with the NM surface. The NM coating formed is known as a protein corona 

(figure 1.3.3; (Walczyk et al., 2010). For NMs designed as theranostic agents, 

particularly those that are functionalised to interact with a specific cell type, the 

interface between the surface proteins of the cell and the surface of the NM dictates 

the physiological response of the cell. Once in a biological environment, the formation 

of the protein corona changes the characterisation of the NM and the cell can produce 

a different physiological response than predicted.  By isolation of the associated 

proteins from the NM surface, it was observed that typically NM-protein interaction 

forms a hard corona composed of a few proteins that are strongly associated and slowly 

exchanging (Walczyk et al., 2010). The soft corona, on the other hand, provides an 

outer layer of weakly associated proteins that undergo rapid exchange with the free 

proteins in the biological environment (figure 1.3.3.a). The combination of proteins in 

the corona is likely to influence how the cell ‘sees’ the NM and the cellular response 

it evokes (figure 1.3.3.b; (Walczyk et al., 2010). The make-up of the absorbed proteins 

on the surface of a NM can determine its fate in vivo. Direct comparison of bare, 

PEGylated, and targeted liposomes with coronas formed from in vivo proteins and in 

vitro corona showed different composition of the resulting corona; in vivo coronas 

contained a wider range of proteins than coronas formed in vitro (Hadjidemetriou et 

al., 2015). Moreover, corona formation decreased receptor binding and cellular 

internalisation (Hadjidemetriou et al., 2015). 
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a 

 

b 

 

 

Figure 1.3.3 NMs in a biological environment and the protein corona. (a) In a biological 

environment, a NM forms a NM-protein complex. The associated protein on the surface of the NM is 

known as the protein corona. The outer layer is composed of weakly interacting proteins that undergo 

rapid exchange with free proteins in the local environment (top left). A hard corona, consisting of 

strongly associated proteins, is more stable and dissociates less readily from the surface of the NMs. (b) 

The formation of the protein corona affects how the cell recognises the NM at the bionanointerface. The 

protein corona may also mask any targeting moieties on the surface of the NM, and prevent interaction 

with a target receptor. Figure adapted from Walczyk et al., 2009.  
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Prolongation in circulation times of biomedical NMs is an important 

consideration, particularly in oncology where increased circulation time results in 

enhanced tumour drug uptake (Kwon et al., 1994, Lindner et al., 2004). A major hurdle 

is the avoidance of the reticuloendothelial system (RES). The RES is part of the 

immune system that consists of phagocytic cells. Macrophages, located in the liver 

and spleen, phagocytose NMs bound with serum protein (Moghimi et al., 2001). 

Specialised macrophages in the liver, called Kupffer cells, interact with NMs and 

remove them from the blood stream (Moghimi et al., 2001, Petros and Desimone, 

2010). The design and surface functionalisation of biomedical NMs must therefore 

take into account the formation of a protein corona and consider how to increase 

circulation times. The development of ‘stealth’ NMs are thought to prevent 

opsonisation, increase circulation times in vivo (resulting in an increase in 

effectiveness of the EPR effect), and avoid rapid clearance from the RES (Larson et 

al., 2012). Hydrophilic polymers, such as poly(ethylene glycol) (PEG) have long been 

used to stabilise NMs and produce ‘stealth’ NMs (Klibanov et al., 1990, Uster et al., 

1996, Woodle and Lasic, 1992).  

  

1.3.5 NMs in the treatment of melanoma 

 

Combining the aforementioned advantages of nanomaterials as drug delivery systems 

in oncology and the need for advancement in melanoma therapeutics, several groups 

have been investigating the use of nanotechnology for the treatment of melanoma. 

Strategies involve improving currently available cytotoxic drugs and making them less 

toxic to healthy cells. Docetaxel (DTX) is a potent broad-spectrum anti-tumour agent 

that is insoluble in water. As a result of its poor solubility, the drug is suspended in a 
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formulation vehicle containing Tween-80 and ethanol, which exhibits toxic effects 

(Yang et al., 2012). Ernsting et al. developed a NP formulation containing DTX 

(Ernsting et al., 2011). The NP formulation comprised a biocompatible 

carboxymethylcellulose polymer stabilised by conjugation of PEG, with DTX 

encapsulated. The formulation proved to induce less toxic side effects and improved 

accumulation of DTX in the tumour, resulting in improved efficacy (compared to the 

approved taxane nanoformulation, Abraxane) on the tumour burden in preclinical 

melanoma mouse model (Ernsting et al., 2012). Polycaprolactone NPs stabilised with 

PEG and encapsulated with DTX, also had significantly higher anti-tumour effect and 

lower systemic toxicity than DTX alone (Zheng et al., 2009).  

 Effective targeting of NMs to melanoma at the cellular level requires 

identification of upregulated surface markers. Functionalisation of the NM with a 

targeting moiety incites interaction between the NM and the melanoma cell. Several 

melanoma surface markers have been identified, providing promising targets for NM 

targeted therapy (Bombelli et al., 2014). The folate receptor is overexpressed on a 

range of cancerous cells, including melanoma (Skinner et al., 2016). NMs, with 

molecular imaging properties, conjugated to a folate ligand have shown to be 

selectively internalised in melanoma cell lines. Moreover, in a mouse subcutaneous 

B16 melanoma model, folate targeted NPs showed increased uptake in tumour tissue 

compared to the unconjugated NP alone (Rolfe et al., 2014). NMs have also been 

developed to target the tumour stroma and vasculature by aminopeptidase N (CD13) 

(Chen et al., 2010), neuropilin-1 (Sugahara et al., 2009), and CREKA to target fibrin-

fibronectin and accumulate in the tumour vessels and stroma, resulting in clotting in 

the tumour blood vessels (Simberg et al., 2007). Amongst the most promising 

melanoma target is the MC1R. Numerous NMs with MC1R ligands have been 
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explored as potential therapeutic delivery systems for melanoma (Lu et al., 2009). The 

binding affinity of MC1R ligands was analysed in MC1R overexpressed cells. 

Selectivity to MC1R was confirmed by binding assays in cells with overexpressed 

members of the melanocortin family (MC2R, MC3R, MC4R, and MC5R; (Barkey et 

al., 2011). Furthermore, conjugation of the MC1R selective ligand to polymer micelle 

NP formulation did not affect the binding affinity to melanoma cells (Barkey et al., 

2011). Interaction with MC1R ligands conjugated to NPs has been demonstrated to 

induce receptor-mediated transcytosis. PEGylated gold NPs surface functionalised 

with an MC1R agonist were internalised upon ligand-receptor binding, whereas NPs 

functionalised with an MC1R antagonist remained on the cell surface and were not 

internalised (Lu et al., 2012).  

 

1.4 Thesis overview 

 

The research aim of this project was to produce a targeted NM that could act as a drug 

delivery system for the treatment of metastatic melanoma. Ideally, the NM should act 

as a multi-model system, which acts as a therapeutic system as well as a diagnostic 

tool (a theranostic).  

In Chapter 3, the synthesis of hydrophobic Fe3O4 NPs is described as well as 

the functionalisation of the resulting NPs to allow dispersion in an aqueous solution. 

Optimisation of the purification method is explored, to produce a biocompatible and 

safe nanosystem. NP surface modification to provide a stable system that is capable of 

targeting melanoma is also discussed before full characterisation.  

In Chapter 4, due to the current lack of a full toxicity protocol to evaluate the 

safety of novel NMs, a comprehensive toxicity screening assay is presented. The 
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preclinical tool aims to quickly and accurately assess potential NM toxicity by 

combination of in vitro and in vivo toxicity models. Furthermore, the Fe3O4 NP 

developed in Chapter 3 will be subjected to this toxicity protocol in order to establish 

if it represents a safe and viable candidate for therapeutic use.  

In Chapter 5, the effectiveness of Fe3O4 NPs as a biological tool will be 

assessed, including the cellular uptake of Fe3O4 NPs in melanoma cells. The NP will 

be further developed as a therapeutic agent by encapsulation of a chemotherapeutic 

drug before the efficacy of the system is evaluated.  

Finally, in Chapter 6 all these findings are discussed in full detail within the 

wider content of the current literature.  
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Materials and methods  

 

The following chapter describes the experimental methods and chemicals (table 2.0.1) 

used for the work presented in this thesis. This includes the synthesis, 

functionalisation, and purification of Fe3O4 NPs; NP and peptide characterisation; cell 

culture conditions and in vitro experiments; in vivo toxicity assessment, including NP 

uptake in mammalian models; in vitro targeting of NP to melanoma cells; digestion 

and sorting of human lymphadectomy tissue.  
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Table 2.0.1 List of materials. Materials used throughout this thesis with their supplier and catalogue 

number stated.  

 
Materials used for NP synthesis, functionalisation, and purification  

   

Product Supplier Catalog No. 

1,2-tetradecanediol Sigma-Aldrich 260290 

1–ethyl–3–(3–dimethylaminopropyl) carbodiimide 

(EDAC)  

Sigma-Aldrich E1769 

Benzyl ether Sigma-Aldrich 108014 

Cellulose Ester dialysis membrane, 100 kDa Spectrum Labs 131414 

Cellulose Ester dialysis membrane, 3.5-5 kDa Spectrum Labs 131198 

Centrifuge tube, thinwall, polypropylene (for rotor SW 28) Beckman Coulter 326823 

Chloroform (CHCl3) Sigma-Aldrich C2432 

Fe(acac)3 Sigma-Aldrich F300 

FluidMAG-Amine  Chemicell 4121 

FluoSphere, 20 nm Molecular Probes  F8787 

HCl 4 M in dioxane Sigma-Aldrich 345547 

Nile red Sigma-Aldrich 19123 

N,N-Dimethylformamiode (DMF) Sigma-Aldrich PHR1553 

N,N-Dissopropylethylamine (DIPEA) Sigma-Aldrich 496219 

Oleic Acid Sigma-Aldrich O1008 

Oleylamine Sigma-Aldrich O7805 

PEG succinimidyl carboxymethyl ester, Mw 2000 Jenkem Technology  M-SCM-2000 

Poly(maleic anhydride-alt-1-octadecene) (PMAO) Sigma-Aldrich 419117 

Sephacryl S-300 high resolution  GE Life Sciences 17-0599-01 

Sodium azide (NaN3) Sigma-Aldrich S2002 

Sucrose  Sigma-Aldrich S0389 

t-Boc amine PEG NHS ester, Mw 2000 Jenkem Technology  TBOC-

PEG2000-

NHS 

Tetramethylammonium hydroxide (TMAH) Sigma-Aldrich 426318 

Toluene Sigma-Aldrich 179417 

   

Materials used for NP and peptide characterisation  

   

Product Supplier Catalog No. 

1,10-phenathroline Sigma-Aldrich P9375 

Acetonitrile (ACN) Sigma-Aldrich 271004 

Citric acid monohydrate Sigma-Aldrich C1909 

Hydrochloric acid (HCl), 37% Sigma-Aldrich 320331 

Hydroxylamine hydrochloride Sigma-Aldrich 379921 

Iron (II) sulphate heptahydrate Sigma-Aldrich 215422 
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Sodium citrate Sigma-Aldrich PHA1416 

Sulphuric acid Sigma-Aldrich 339741 

TEM copper grids, 70 µm square holes Agar Scientific  AGG203 

Thioglycolic acid Sigma-Aldrich T3758 

Triflouroacetic acid (TFA) Sigma-Aldrich 271004 

Uranyl acetate dihydrate Sigma-Aldrich 73943 

α-cyano-4-hydroxycinnamic acid (HCCA) Sigma-Aldrich C2020 

   

Materials used for cell culture and in vitro experiments  

   

Product Supplier Catalog No. 

3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide  Sigma-Aldrich M2128 

Acrylamide/bis-aceylamide, 40% Sigma-Aldrich A7168 

Agarose, genetic analysis grade Fisher Scientific 10688973 

Ammonium chloride (NH4Cl) Sigma-Aldrich A9434 

Ammonium persulfate (APS) Sigma-Aldrich 248614 

BCA Protein Assay Kit Pierce 23225 

Bovine serum albumin (BSA) Fisher Scientific 12861630 

Cell strainer 70 µm pore size Fisher Scientific 15370801 

Collagenase IV Fisher Scientific 17104019 

cOmplete mini Tablets protease inhibitor cocktail Roche 4693124001 

Coverslip, borosilicate glass, ø 18 mm VWR 631-0153 

Deoxyribonuclease I from bovine pancreas  Sigma-Aldrich D5025 

Dimethyl sulfoxide (DMSO)  Fisher Scientific 10213810 

Dithiothreitol (DTT)  Sigma-Aldrich D0632 

ECL Prime Western Blotting Detection GE Healthcare RPN2232 

EZ-PCR Mycoplasma Test Kit GeneFlow K1-0210 

Fermentas Spectra ™, multicolour broad range protein 

ladder 

Fisher Scientific 11842124 

Fetal calf serum (FCS) (Lot # RVJ35882) Hyclone SV30160 

Gel Red ™ nucleic acid stain VWR BT41003 

Hank's Balanced Salt solution (HBSS) Sigma-Aldrich 55021C 

Human melanocyte growth supplement (HMGS) Fisher Scientific 10378213 

Hyaluronidase from bovine testes Sigma-Aldrich H3506 

L-glutamine, 20 mM sterile filtered Sigma-Aldrich G7513 

Marvel Milk Powder Marvel n/a 

Medium 254 Fisher Scientific 10236533 

N,N,N',N'-Tetramethylethylenediamine (TEMED) Sigma-Aldrich T9281 

Nitrocellulose 0.45 µm 300 mm x 3.5 m Fisher Scientific 10773485 

Paraformaldehyde, 95% Sigma-Aldrich 158127 

Penicillin (10000 units/ml), Streptomycin (10 mg/ml) Sigma-Aldrich P0781 

Phosphate buffered saline (PBS) tablets Fisher Scientific 12821680 

PhosSTOP phosphatase inhibitor cocktail tablet Roche 4906837001 

Quick load 1 Kb DNA ladder Fisher Scientific 10787018 
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Quick load 100 bp DNA ladder NEB H04675 

RPMI-1640 Hyclone SH30096.01 

SDS loading buffer Cell Signalling 

Technology 

7722 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich 71725 

Sodium phosphare dibasic anhydrous (Na2HPO4) Sigma-Aldrich RES20908-A7 

Sodium phosphare monobasic (NaH2PO4) Sigma-Aldrich S5011 

Trizma hydrochloride Sigma-Aldrich T5941 

Trypan Blue solution, 0.4% in PBS  Fisher Scientific 10593524 

Trypsin Neutralizer Solution Fisher Scientific 11667104 

Trypsin-EDTA, 0.5% Fisher Scientific FF01058J 

Vectashield antifade mounting medium Vector Laboratories H1000 

   

Antibodies and cell stains  

   

Product Supplier Catalog No. 

anti-human CD45, Alexa Fluor® 610  Fisher Scientific 10518173 

anti-human neural/glial antigen 2 (NG2), Alexa Fluor® 

488  

eBioscience  53-6504 

anti-MC1R, rabbit  Abcam  AB125031 

anti-MelanA, rabbit Abcam  AB51061 

anti-mouse, HRP conjugated, horse Cell Signaling  7076 

anti-PARP-1, rabbit Santa Cruz SC-25780 

anti-rabbit, HRP conjugated, goat Cell Signaling  7074 

anti-α-tubulin, mouse Cell Signaling  3873 

Hoechst 33342 trihydrocholride trihydrate  Fisher Scientific 11534886 

Phalloidin, Alexa Fluor 568 Invitrogen  10135092 

   

Materials used for in vivo experiments  

   

Product Supplier Catalog No. 

Calcium chloride (CaCl2)  Sigma-Aldrich C1016 

Cystine Sigma-Aldrich C33000000 

Ethyl 3–aminobenzoate methanesulfonate Sigma-Aldrich E10521 

Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-

tetraacetic acid (EGTA) 

Sigma-Aldrich E2889 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich E9884 

Gentamicin Fisher Scientific 15710049 

Glutaraldehyde solution, 8% Sigma-Aldrich G7526 

HEPES Sigma-Aldrich H4034 

Magnesium sulfate (MgSO4) Sigma-Aldrich M7506 

Methanol (MeOH) Sigma-Aldrich 322415 

MOPS Sigma-Aldrich M1254 

Optimal cutting temperature (OCT) compound Agar Scientific AGR1180 

Osmium tetroxide solution, 4% Sigma-Aldrich 75632 
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Potassium cholride (KCl) Sigma-Aldrich P9333 

Potassium dihydrogen phosphate (KH2PO4) Sigma-Aldrich PHR1330 

Propylene oxide Sigma-Aldrich 110205 

Sodium cacodylate trihydrate Sigma-Aldrich C0250 

Sodium chloride (NaCl) Sigma-Aldrich S7653 

Tween-20  Sigma-Aldrich P1379 

   

Laboratory consumables    

   

Product Supplier Catalog No. 

Centrifuge tube, sterile, 15 ml Fisher Scientific 11849650 

Centrifuge tube, sterile, 50 ml Fisher Scientific 11819650 

Chromatography paper, pure cellulose, 20 cm x 20 cm Fisher Scientific 11320744 

Ethanol, 95.0%  Sigma-Aldrich 652261 

Microcentrifuge tube, 1.5 ml  Fisher Scientific 11558232 

Microplate, sterile, 96 well  Fisher Scientific 10567131 

Parafilm M,10 cm x 76 cm Fisher Scientific 10018130 

Pipette serological, sterile, 10 ml Fisher Scientific 11839660 

Pipette serological, sterile, 25 ml Fisher Scientific 11517752 

Pipette serological, sterile, 5 ml Fisher Scientific 11829660 

Pipettor tip, 0.1-10 µl  Fisher Scientific 11933416 

Pipettor tip, 100-1250 µl Fisher Scientific 11548442 

Pipettor tip, 1-200 µl Fisher Scientific 11538422 

Test tube, Falcon, round bottom polystyrene, 5 ml Fisher Scientific 10186360 

Tissue culture dish, sterile, ø 10 cm Fisher Scientific 10508921 

Tissue culture dish, sterile, 12 well  Fisher Scientific 10098870 

Tissue culture dish, sterile, 24 well Fisher Scientific  10376912 

Tissue culture dish, sterile, 6 well  Fisher Scientific 10119831 

Tissue culture flask, sterile, 25 cm2 culture area Fisher Scientific 10490033 
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Table 2.02 List of recipes. Recipes used throughout this thesis. 

Name  Final Volume Final pH 

Lysis buffer  50 mM Tris-HCl 200 ml PBS pH 7.4 

 1% Triton X-100   

 150 mM NaCl    

Note: store at 4 oC 

MEMFA Formaldehyde (3.7%)  100 ml MQW pH 7.4 

 MOPS (0.1 M)   

 EGTA (2 mM)   

 MgSO4 (1 mM)   

MMR, 1 x  NaCl (100 mM) 1000 ml MQW pH 7.5 

 HEPES (5 nM)    

 CaCl2 (2 nM)   

 MgCl2 (1 mM)   

Paraformaldehyde (PFA), 4% 8 g Paraformaldehyde 200 ml PBS pH 7.3 

Note: dissolve PFA in initial 150 ml PBS at 60 oC in fume cupboard  

PBS, 1 x 1 PBS tablet consisting of: 100 ml MQW pH 7.4 

 137 mM NaCl    

 10 mM Phosphate Buffer   

 2.7 mM KCl   

PBST  8 g NaCl 800 ml MQW pH 7.4 

 0.2 g KCl   

 1.44 g Na2HPO4   

 0.24 g KH2PO4   

 2 ml Tween-20   

Ponceau stain  5 ml glacial acetic acid  100 ml MQW - 

 0.2 g Ponceau S   

Note: store at 4 oC 

Running buffer, 10 x 30.2 g Tris-base (25 mM) 1000 ml MQW pH 8.3 

 144 g Glycine (190 mM) 

 

  

 0.1% SDS   

SDS, 10%  20 g SDS  200 ml MQW - 

Sørensen’s glycine buffer  39.0 ml NaH2PO4 (0.2 M) 100 ml MQW pH 7.0 

 61.0 ml Na2HPO4 (0.2 M)   

TAE, 50 x 121 g Tris Base 500 ml MQW pH 8.0 

 28.55 ml Acetic Acid   

 50 ml, 0.5 M EDTA   
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TBS, 10 x  24.23 g Tris-HCl 1000 ml MQW pH 7.6 

 80.6 g NaCl    

Note: TBST, 0.1% Tween-20 to be added to 1 x TBS. 

Transfer buffer, 10 x  30.2 g Tris-base (25 mM) 1000 ml MQW pH 8.3 

 144 g Glycine (190 mM)   

 0.1% SDS   

Note: 20% Methanol added to 1 x Transfer buffer. Store at 4oC 

Tris-HCl, 0.5 M 19.7 g Tris-HCl 200 ml MQW pH 6.8 

Tris-HCl, 1.5 M 36.4 g Tris-HCl 200 ml MQW pH 8.8 
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2.1 Nanoparticle synthesis, functionalisation, and purification 

 

2.1.1 Cadmium selenide quantum dot (CdSe QD) synthesis  

 

CdSe QDs were synthesised by microwave heating, in a conventional microwave 

oven, of an aqueous 0.1 M cadmium perchlorate with 0.01 M N, N-dimethyl seleno-

urea in the presence of a stabiliser, 0.1% (w/v) sodium citrate (Wang et al., 2008). This 

resulted in uncoated 10:1 CdSe QDs.  

 Initially, 0.025 g of sodium citrate was dissolved in ~ 50 mL filtered Milli-Q 

water (MQW) and the pH was adjusted to 9.2. Cadmium ions were obtained by the 

addition of 2 mL cadmium perchlorate, and selenium ions from 2 mL N, N-dimethyl 

seleno-urea, and the pH was readjusted back to 9.2. The solution was heated in a 

microwave oven at 800 W continuously for 60 s before gently mixing and heated for 

a further 30 s. The particles where then left in the dark for 3 days.  

 

2.1.2 Fe3O4 NP synthesis  

  

Monodispersed magnetic Fe3O4 NPs were synthesised by high-temperature phase 

reaction of iron salts in the presence of oleic acid and oleylamine (Sun et al., 2004). 

Gradual heating during thermal decomposition of salts allowed control over particle 

diameter and a better size distribution. This method resulted in hydrophobic particles 

in an organic solvent (Sun et al., 2004).  

Fe(acac)3 (2 mmol, 706 mg),1,2-tetradecanediol (10 mmol, 2 g), benzyl ether 

(20 mL), oleic acid (2 mmol, 565 mg), and oleylamine (2 mmol, 935 mg) were mixed 
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and magnetically stirred under a flow of N2 and initially heated to 100oC over 45 min 

(figure 2.1.1). The mixture was kept at 100 oC for 45 min before gradually heating to 

200 oC over 40 min and kept at this temperature for 2 h. Finally, the mixture was heated 

to reflux at 300 oC; the reflux temperature is dependent on the boiling temperature of 

benzyl ether (298 oC). After 30 min at 300 oC, the mixture was cooled to room 

temperature and left overnight. 

The black-brown mixture was transferred using a small volume of toluene to 

centrifuge tubes and centrifuged at 6000 rpm for 10 min to remove any insoluble 

residue. Particles were then precipitated from the supernatant by centrifugation in an 

excess of ethanol at 8500 rpm for 20 min. After the removal of ethanol, the particles 

were resuspended in 5 ml of toluene and filtered with a 0.22 μm pore syringe filter.  
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Figure 2.1.1 Fe3O4 synthesis apparatus. A round bottom flask was placed in a heating mantle, attached 

to a resistor to control temperature, above a magnetic stir plate.  Temperature was monitored via a 

thermal probe entering the second neck of the round bottom flask. For reflux, a condenser was attached 

to 0 oC pumped water. The top of the condenser was attached to a nitrogen line and the reaction occurred 

under a constant flow of N2.  
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2.1.3 Fe3O4 NP phase transfer using PMAO 

 

Iron oxide NPs were prepared as described in method 2.1.2, resulting in hydrophobic 

particles that were soluble in an organic solvent. For use in biological application, 

Fe3O4 NPs had to undergo a phase transfer by surface functionalisation to allow 

solubility in an aqueous solution. This was achieved by the addition of an amphiphilic 

polymer, poly(maleic anhydride-alt-1-octadecene) (PMAO), to the surface of the 

particle (Di Corato et al., 2008). The hydrophobic alkyl groups of the octatedecene 

chain in PMAO were able to intercalate with the surfactant chains of the oleate and 

dodecanethiol chains from the Fe3O4 NPs via hydrophobic interactions. The resulting 

particle was wrapped in a polymeric shell where the hydrophilic group was exposed 

on the outside, allowing the Fe3O4 NPs to be soluble in an aqueous solution. 

To achieve this, Fe3O4 NPs in toluene were precipitated by centrifugation in an 

excess of ethanol at 8000 rpm for 20 min. PMAO was dissolved in chloroform and 

added in excess to the dried particles. The solution was mixed for 30 mins at 20 oC at 

210 mbar, to evaporate off the chloroform. The pressure was then lowered to 180 mbar 

until the particles appeared dry before a final pressure of 70 mbar for 10 min. To ensure 

all chloroform had been evaporated, the particles were further dried through a stream 

of nitrogen for 1 h. An excess of PMAO in 0.1 M tetramethylammonium hydroxide 

(TMAH) was added at a concentration of 1 mg/ml at a volume ratio of 1:10 (PMAO : 

Fe3O4) for 1 h. The base, TMAH, was used to hydrolyse the anhydride ring resulting 

in a charged COO- group, increasing solubility and acting as an anchor for the 

convenient attachment of other molecules. The solution was sonicated for a minimum 

of 20 mins to disperse the Fe3O4-PMAO NPs in the aqueous solution and the mixture 

was shaken overnight at room temperature.  
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Fe3O4-PMAO NPs were dialysed against PBS pH 7.4, (10 mM NaCl) 0.31 

osmol using a dialysis membrane with Mw cut-off (MWCO) of 100 kDa to remove 

part of the unbounded polymer for 3 days.  

 

2.1.4 Fe3O4-PMAO purification by size exclusion chromatography  

 

Addition of excess polymer (150 mg/ml) during coating and functionalisation led to 

the formation of micelles. As a result, the sample appeared polydispersed by dynamic 

light scattering (DLS) analysis suggesting the formation of aggregates. Before use in 

any biological assay, the sample was first purified to remove micelles and possible 

NP-polymer aggregates and create a monodispersed population. Size exclusion 

chromatography was used to separate Fe3O4-PMAO from PMAO micelles. A 

Sephacryl S-300 High Resolution column was used with a cross sectional area of 5 

cm2 and a length of 25 cm with a single pump. The column was washed 3 times with 

100 mM PBS before the sample was loaded. The eluent was pumped at a rate of 0.6 

ml per minute and the fractions were collected in collection tubes at a rate of 1.5 min 

per tube.   

 

2.1.5 Fe3O4-PMAO purification by ultracentrifugation  

 

Purification was achieved by ultracentrifugation of the particles through a sucrose 

gradient. This method had previously been shown to produce highly pure 

monodispersed NPs of a variety of particle types (Di Corato et al., 2008). Particles 

move through the sucrose gradient until they reach a comparable density. As a result, 

NPs are separated by size and excess polymer is removed from the NPs.  
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A 2% to 66% sucrose gradient was used. The stock solution of 66% (w/w) 

sucrose was made using 66 g of sucrose in a total weight of 100 g MQW and gently 

stirred on a low heat. A range of sucrose concentrations were made by diluting the 

stock solution in MQW to make the fractions 58.9%, 51.8%, 44.7%, 37.6%, 30.5%, 

23.4%, 16.3%, 9.2%, and 2%. The addition of 0.05 M sodium azide was added to each 

fraction to prevent any contamination whilst NPs were passed through the sucrose 

gradient. Starting with 66%, decreasing concentrations were layered on top of each 

other in a centrifuge tube. The gradient was left overnight for the sucrose to equilibrate 

and form a continuous gradient.  The NPs were carefully added on top of the sucrose 

gradient and spun at 25000 rpm for 4 h in a Beckman Coulter SW 28 swinging bucket 

rotor. 

After size exclusion and removal of excess polymer by ultracentrifugation, 

fractions were removed from the tube using a syringe and needle. Confirmation of the 

presence of excess polymer in a fraction was done by electrophoresis through 1.5% 

agarose gel. Each fraction was loaded with 3 x SDS sample buffer and run for 1 h at 

90 V. Excess polymer fluoresced blue after ultraviolet (UV) excitation whereas bound 

polymer did not as it was quenched by the NP, and so any fraction containing excess 

polymer was visualised by UV irradiation after electrophoresis. DLS was instead used 

for fractions with no excess polymer to determine the size of the NPs, fractions with a 

similar size distribution at DLS were grouped together. To remove the sucrose from 

the sample, NPs were dialysed against PBS pH 7.4, (10 mM NaCl) 0.31 osmol using 

a dialysis membrane with MWCO of 2 kDa for 3 days.  

Finally, the particles were filtered using a 0.22 μm pore syringe filter and 

concentrated by centrifugation with 50 kDa Amicon filter units at 4000 rpm until they 

reached the desired concentration. 
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2.1.6 PEGylation of Fe3O4-PMAO NPs 

 

The maleic anhydride ring allows easy functionalisation of the particle. PEGylation of 

a NP has been shown to stabilise the particle in a biological environment by reducing 

the interaction of proteins with the surface of the NP, reduce cytoxicity, and prolong 

circulation time (Gref et al., 2000).  

Carboxylated Fe3O4 cores were synthesised and purified as previously 

described (method 2.1.2, 2.1.3, and 2.1.5). Coupling of Fe3O4-PMAO to PEG was 

done using an excess of methoxy PEG succinimidyl carboxymethyl ester (Mw 2000) 

in the presence of the catalyst 1–ethyl–3–(3–dimethylaminopropyl) carbodiimide 

(EDAC). Solutions of 20 mM PEG (2000 kDa-NH2) and 0.15 M EDAC were made up 

beforehand in PBS. These were added to 250 µl of carboxylated Fe3O4-PMAO NPs 

using 100 µl of both PEG-NH2 and EDAC in a final volume of 1000 µl; final 

concentration of 2 mM (PEG) and 15 mM (EDAC). The solution was placed on a 

shaking block at room temperature and agitated overnight.  

 To remove excess PEG, Fe3O4-PEG NPs were dialysed against PBS pH 7.4, 

(10 mM NaCl) 0.31 osmol using a dialysis membrane with MWCO of 2 kDa for 24 h. 

 

2.1.7 Conjugation of α-MSH peptide and PEG 

 

The α-MSH peptide (PEP) (H-Ser-Tyr-Ser-Nle-Glu-His-d-Phe-Arg-Trp-Gly-

Lys(Dde)-Pro-Val-NH2; (Lu et al., 2009) and scrambled peptide were purchased from 

Jenkem Technology. CH3-PEG-NH2 was attached to PEP via the N terminal serine 

residue. In a 10 ml round bottom flask, 5.3 mg of peptide (0.0033 mmol) and 13.2 mg 
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t-Boc mono-amine PEG N-hydroxylsuccinimide (NHS) ester (0.0066 mmol) were 

dissolved in DMF (1.5 ml) and N, N-Dissopropylethylamine (DIPEA) (30 μl). The 

reaction was stirred at room temperature for 24 h. DMF solvent was then removed by 

evaporation at 37 °C under vacuum resulting in a white powder. The powder was then 

dissolved in 3 ml H2O and dialysed in a 3.5-5 kDa dialysis membrane against H2O for 

3 days at 4 °C.  

Deprotection of the tert-butoxycarbonyl (Boc) group was achieved using 

HCl/dioxane as previously described (Han et al., 2001). First, protected PEG-PEP was 

lyophilised to return it to a powder. In a solution of 4 M HCl in dioxane, 0.2 mmol 

protected PEG-PEP was added to a 25 ml round bottom flask at 4 °C and mixed using 

a magnetic stir bar. The reaction was removed from ice and left mixing overnight at 

room temperature. After the reaction was complete, the solution was lyophilised under 

vacuum until a powder. The deprotected PEG-PEP was then prepared as a 20 mM 

stock in PBS pH 7.4, (10 mM NaCl) 0.31 osmol.  

 

2.1.8 Conjugation of PEG-PEP to Fe3O4-PMAO 

 

After deprotection, the conjugated PEG-PEP was attached to Fe3O4-PMAO 

using the same method as PEGylation of Fe3O4-PMAO NPs (method 2.1.6). In place 

of 100 µl PEG, 10% 20 mM deprotected PEG-PEP and 90% 20 mM PEG was used in 

the presence of the catalyst EDAC. Solutions of 10 % 20 mM PEG-PEP (2000 kDa-

NH2), 90 % 20 mM mono-amine PEG, and 0.15 M EDAC were made up beforehand 

in PBS. These were added to 250 µl of carboxylated Fe3O4-PMAO NPs using 100 µl 

of both PEG-NH2/deprotected PEG-PEP and EDAC in a final volume of 1000 µl; final 
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concentration of 2 mM (PEG/PEG-PEP) and 15 mM (EDAC). The solution was placed 

on a shaking block at room temperature and agitated overnight.  

 To remove excess PEG, PEG-PEP, and reaction byproducts such as urea, 

Fe3O4-PEG-PEP NPs were dialysed against PBS pH 7.4, (10 mM NaCl) 0.31 osmol 

using a dialysis membrane with MWCO of 2 kDa for 24 h. 

 

2.1.9 Nanoparticle drug encapsulation 

 

Hydrophobic molecules were encapsulated into the hydrophobic shell of Fe3O4-PEG 

and Fe3O4-PEP NPs. For NP cellular uptake that was performed using confocal 

microscopy (method 2.5.1) and flow cytometry (method 2.5.2) nile red (NR) was 

encapsulated in the hydrophobic shell. NR has a λex 552 nm and λem 600-700 nm and 

was made into 1 mg/ml stock in CHCl3. To Fe3O4-PEG or Fe3O4-PEP in PBS, 0.5% 

(v/v) of NR in CHCl3 was added and left overnight at room temperature for the small 

volume of CHCl3 to evaporate fully. Successful encapsulation of NR was evaluated 

using a Horiba Yobin FluoroLog-3 spectrophotometer.  

Paclitaxel (PTX) was also encapsulated via this method. A stock of 5 mM PTX 

in CHCl3 was added to 1012.4 NP/ml Fe3O4 NPs to a final concentration of 50 μM and 

left overnight for CHCl3 to evaporate. NPs were then dialysed against PBS pH 7.4, (10 

mM NaCl) 0.31 osmol using a dialysis membrane with Mw cut-off (MWCO) of 100 

kDa for 3 days. 
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2.1.10 Commercial NPs 

 

FluidMAG-Amine magnetic NPs were purchased from Chemicell Gmbh (Berlin, 

Germany), stated as size (hydrodynamic diameter) 50 nm. FluoSphere fluorescent 

carboxylated-modified microspheres yellow-green (λex, 505 nm; λem, 515 nm) were 

purchased from Molecular Probes at a stated hydrodynamic diameter of 20 nm. 

 

2.2 Nanoparticle and peptide characterisation 

 

2.2.1 Dynamic light scattering (DLS) 

 

DLS, also known as Photon Correlation Spectroscopy, is an important tool for 

determining the hydrodynamic size and size distribution of particles within a solution. 

Typically, DLS is used to measure particles in the sub-micron region and can measure 

particles down to a few nanometres in diameter. DLS measures size and size 

distribution by shining a monochrome coherent light beam onto spherical particles that 

are in Brownian motion. As the particles undergo Brownian motion their relative 

position to each other changes  and consequently the scattered light intensity changes. 

This variation in scattered light intensity is then analysed as a function of time.. The 

extent of this change in wave frequency is related to the size of the moving particles. 

Smaller particles, moving fast, exhibit a larger Doppler shift than larger, slow moving 

particles (Hiemenz and Rajagopalan, 1997). When the combined scattered light from 

several particles is added together, there is time-dependent fluctuation in the intensity 

of the scattered light that can be measured on a photo counter.  
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The velocity of the Brownian motion is defined by the translational diffusion 

coefficient and so the sizes of the spherical particles can be calculated using the Stokes 

– Einstein equation: 

  

𝑫𝒉 =  
𝒌𝑩 𝑻

𝟑𝝅𝜼𝑫𝒕
  Equation 2.1 

  

Where Dh is hydrodynamic diameter, Dt is the translational diffusion 

coefficient, k is Boltzmann’s constant, T absolute temperature, and 𝜂 is viscosity. The 

scattered light was detected at an angle under an angle of 173o. DLS was performed 

using Malvern Zetasizer Nano ZS (Malvern Instruments, Malvern, UK).  

 

2.2.2 ζ-potential 

 

ζ-potential is the potential difference between the surface of a solid particle in a 

colloidal system and the liquid. The value given can be used to assess the stability of 

the particle. Particles with a large positive or negative value, often >30 mV, are 

considered stable. This is due to the repulsion between particles. Below this value there 

is a limited force among the particles to repel each other, leading to instability and 

aggregation. ζ-potential was measured using Malvern Zetasizer Nano ZS (Malvern 

Instruments, Malvern, UK).   

 

2.2.3 Inductively coupled plasma optical emission spectroscopy (ICP-OES) 

 

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to 

determine the concentration of Fe3O4 NPs and CdSe QDs. A radio frequency generator 
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surrounds a quartz torch. When the torch is initiated, a large electromagnetic field is 

created by the radio frequency in the coil. An argon gas is ionised to produce positive 

ions. This is the used to excite atoms in a sample that produces a unique emission 

spectrum specific to the element. Quantitative analysis of the resulting emission 

spectrum is used to gain the concentration of the metal in the sample. For ICP-OES 

analysis, samples were sent to the School of Environment Science, University of East 

Anglia.  

 

2.2.4 Iron concentration using o-phenanthroline  

 

The concentration of Fe2+ in a sample of Fe3O4 NPs was determined colourimetrically 

using the compound 1, 10-phenathroline (Nitin et al., 2004).  1, 10-phenathroline is a 

colourless tricyclic nitrogen heterocyclic compound that forms a complex with Fe2+ 

via two nitrogen atoms with available electron pairs (figure 2.2.1). The resulting 

complex is a red colour that can be measured at 510 nm.  

In order to release the iron, thioglycolic acid was added to the sample. The 

resulting Fe3+ ions are reduced using hydroxylamine hydrochloride. Sodium citrate 

was used to maintain an acidic pH required for Fe-phenanthroline complex formation. 

A hydroxylamine hydrochloride (reducing agent) working stock was made using 

hydroxylamine hydrochloride 1.4 mol/L prepared in 2 mol/L analytical grade HCl.  

Iron standards were made from a stock solution of iron (II) sulphate 

heptahydrate in sulfuric acid (200 mg iron (II) sulphate heptahydrate in 10 mls 1:1000 

H2SO4). For the stock, 200 mg of iron (II) sulphate heptahydrate was dissolved in 8 ml 

of H2O in a 10 ml volumetric flask. Concentrated H2SO4, 10 µl, was added before 

making up to the mark with H2O. The resulting 20 mg/ml solution contained 400 mg/L 
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Fe. The iron solution was diluted in a total volume of 100 µl (after addition of all 

reagents) to the concentrations in table 2.2.1.  
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Figure 2.2.1 Fe2+ and phenathroline complex used to determine iron concentration.  Fe2+ in excess 

is able to bind to both N atoms of 1, 10-phenathroline. Each Fe binds to three 1, 10-phenathroline 

molecules. The resulting complex was used to determine Fe concentration by measuring absorption at 

510 nm.  
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Table 2.2.1 Fe standard concentrations for determination of iron concentration using o-

phenanthroline. 

 

 mg/L Fe Volume standard solution Volume of H2O 

A 400 50 µl 20 µl 

B 360 45 µl 25 µl 

C 320 40 µl 30 µl 

D 280 35 µl 35 µl 

E 240 30 µl 40 µl 

F 200 50 µl 1:2 20 µl 

G 160 40 µl 1:2 30 µl 

H 120 30 µl 1:2 40 µl 

I 80 20 µl 1:2 50 µl 

J 40 10 µl 1:2 60 µl 

K 0 0 µl 70 µl 
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Thioglycolic acid, 1 µl, was added to each standard solution of iron. Unknown 

iron oxide samples were diluted into a range of dilutions before the addition of 

thioglycolic acid to break up the nanoparticles for at least 2 h. To each standard and 

sample, 10 µl of hydroxylamine hydrochloride reducing agent (1.4 mol/L prepared in 

2 mol/L analytical grade HCl), 1, 10-phenathroline (0.25% (w/v) 1, 10-phenothroline 

in 50% EtOH), and sodium citrate was added and left for at least an hour at room 

temperature for the colour to fully develop before measuring at 510 nm. Sodium citrate 

buffer stock was prepared by dissolving 21 g citrate acid monohydride in 200 ml 1 M 

NaOH and made up to 1 L H2O. A working solution of the sodium citrate buffer was 

prepared by addition of 40.3 ml of sodium citrate buffer stock to 0.1 M HCl in 100 ml, 

pH adjusted to the range of 2.9 to 3.5. 
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Figure 2.2.2 Calibration curve for assessing iron concentration. Typical calibration curve for 

standards used to calculate the iron concentration of Fe3O4 cored NPs. Y= 0.002433*X + 0.005364, R2 

= 0.9994. Mean ± SD.  
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2.2.5 Transmission electron microscopy (TEM) 

 

Transmission electron microscopy (TEM) is an electron-based imaging technique that 

is often used in nanotechnology. Unlike light microscopes, TEM uses a beam of 

electrons as a light source that, due to the small wavelength of electrons, results in a 

higher resolution. The beam of electrons interacts strongly with sample matter whilst 

under vacuum to prevent electron scattering. Materials that are electron transparent are 

shown as light areas on an image and where the electrons cannot transmit, the image 

is dark (figure 2.2.3).  

Tecnai 20 TEM with AMT cameras, operating at an accelerating voltage of 

200 kV, provided images of the dried NPs to assess particle diameter. TEM provided 

images containing a large number of particles that were statistically analysed. TEM 

samples were prepared by dropping a dilute suspension of NP onto carbon-coated 300 

– mesh copper grids and left to dry for 30 s at room temperature. Samples were then 

counterstained with 2% uranyl acetate (UA). UA was left to evaporate for a further 30 

s at room temperature. A minimum of 100 particles were counted for each sample. Fiji 

Image J software was used to analyse the resulting images. 

 

2.2.6 Atomic force microscopy (AFM) Fe3O4 NPs 

 

Atomic force microscopy (AFM) is a scanning probe microscopy technique (Binnig 

et al., 1986) that utilises forces between a probe tip mounted on a cantilever and the 

surface in which it is interacting (Hoo et al., 2008, Wang et al., 2007). Unlike TEM, 

AFM is able to measure NP size in a vertical dimension. The tip is placed above the 
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surface at a distance in which it is able to interact with the different forces from the 

sample. The AFM tip keeps a constant force from the sample surface, and so as the 

topography of the sample changes, the cantilever is bent (figure 2.2.3). A laser 

refracting off the back of the cantilever detects this movement, which in turn is read 

by a photo-detector. The resulting data characterises shape and size distribution of a 

particle population.  

 NanoWizard II AFM (JPK, Germany) operating in contact mode under 

ambient conditions provided AFM images of Fe3O4 NPs. A sample of 100 µl was 

dropped on a glass slide and allowed to dry for 5 min. AFM images were taken with 

tipless Si cantilevers with a nominal length of 225 µm, force constant 48 N/m, and a 

nominal resonance frequency of 190 kHz. All measurements were exported to JPK 

image processing software.   

 

2.2.7 Fourier Transform-Infra-Red (FT-IR) spectroscopy. 

 

Mid infra-red radiation, with a wavelength spectral range of 4000 cm-1 to 500 cm-1, 

can be absorbed by molecules at specific frequencies. Absorption spectra from Fourier 

transform infra-red (FT-IR) spectroscopy can be used to identify chemical bonds 

within the molecule by comparison to reference absorptions wavenumber of common 

functional groups. This can then be used to characterise the compound and identify 

functional groups within the molecule (Bekyarova et al., 2009, Fang et al., 2009, 

Nagesha et al., 2009). For samples in a dry state, attenuated total reflection FT-IR 

(ATR-FT-IR) is used, providing a better signal than with molecules suspended in a 

medium.  
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For this work, Perkin-Elmer ATR-FT-IR spectrometer was used. The samples were 

placed in round bottom flasks and dried under a flow of nitrogen until all solvent was 

removed. The powder samples were recorded after 16 scans by correcting the 

background.  
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Figure 2.2.3 Basic diagram showing the workings of AFM. Adapted from Binnig et al., 1986. The 

AFM tip, on the end of the cantilever, was passed along the sample surface. The force between the tip 

and the sample deflected the cantilever. 1. Sample surface; 2. AFM tip; 3. Cantilever; 4. Diode laser 5. 

Laser light path 6. Position-sensitive photo-detector; A. Contour of AFM tip movement due to attraction 

or repulsion from sample surface. 
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2.2.8 High performance liquid chromatography (HPLC) 

 

High performance liquid chromatography (HPLC) is a powerful analytical technique 

that is based on column chromatography. In normal phase HPLC, a non-polar solvent 

mobile phase, containing the sample, is passed through a stationary phase, often a 

porous silica gel bonded with alkyl chains on the surface. The stationary phase 

provides a chemical environment for the sample within the solvent to interact with. 

Polar compounds within the sample interact with the stationary phase and so are 

retained in the column for a longer period of time compared to less, or non-polar, 

compounds. The time taken for a compound to pass through the column to the detector 

is known as the retention time and can be varied by the pressure of the system, the 

column (material used, length, pore size), composition of the solvent, and the 

temperature of the column. In reverse phase HPLC, the silica stationary phase is 

modified by the attachment of hydrocarbon chains to make it non-polar and a polar 

solvent is used as the mobile phase. As a result, polar molecules will travel through 

the column more quickly than non-polar molecules which tend to form attractions with 

the hydrocarbon groups in the stationary phase.  

 To analyse the peptide reverse phase HPLC was used. APhenomenex C18 

column was used with a particle size of 5 μm, pore size 100 Ǻ, length of 150 mm, and 

an internal diameter of 4.60 nm. A UV absorption detection was use at 230 nm. For 

the mobile phase a gradient elusion was used consisting of 0-5 min 95% H2O, 5-35 

min 95% MeOH, 35-45 min 95% H2O at a flow rate of 1 ml/min at 25 oC. Both eluents 

contained 0.1% TFA. 
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2.2.9 Matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) 

 

Matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) is a mass 

analysis technique that can be used to identify the mass of a variety of biomolecules, 

such as whole proteins and peptides (Caprioli et al., 1997). The sample is dispersed in 

a matrix material containing a chromophore to absorb the laser incident light. The 

sample and matrix is dried on a MALDI target plate. After inserting the target plate 

and initiating the MALDI-TOF, short pulses of laser light is focused onto the sample. 

Energy from the incident light causes the sample and matrix to volatilise and form 

ions. The ions are then accelerated by high voltage before drifting through the flight 

tube towards the detector. The time of flight before detection at the end of the flight 

tube is dependent on the mass of the ions. Mass is then calculated using the following 

equation: 

  

m/Z = B (t-A)2 

 

Where, m is mass, Z is calculated from the charge of the ion, A and B are 

calibration constants determined by calibration to a known m/Z, and t is time of flight.  

 

In this work, a Shimadzu Axima-CFR MADLI-TOF with a variable repetition 

rate 50 Hz N2 laser with a wavelength of 337 nm was used to analyse the mass of PEG, 

peptide, and successful conjugation of both. A matrix material was prepared 

containing 10 g α-cyano-4-hydroxycinnamic acid (HCCA) added to 1 ml 50:50 

water/acetonitrile (ACN) with 0.1% triflouroacetic acid (TFA) in a 1.5 ml 
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microcentrifuge tube. The sample solution, at a concentration of 1 mg/ml in water, was 

diluted 1:1 with ACN and 0.1% TFA before adding to the matrix at a ratio of 1:1. The 

combined sample and matrix was dropped onto a metal target plate and dried before 

analysis using Shimadzu Axima-CFR MADLI-TOF. 
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2.3 Cell culture conditions and in vitro experiments 

 

2.3.1 General cell culture conditions 

 

All cells were incubated at 37oC, 5% CO2 / 95% air. In this work, all cell lines used 

were monolayer cells attached to tissue culture flasks. General cell culture conditions 

were adapted from Basic Principles of Cancer Cell Culture (Langdon, 2004).  

Continuous cultures are single cell types that are immortalised and grow 

indefinitely. Usually however, they will grow for a limited time before growth is 

affected and in this study continuous cultures were grown to passage 30 after which 

time they are likely to senesce. The continuous cultures used were A375 (human 

malignant melanoma), SK-MEL-28 (human malignant melanoma), M202 (human 

malignant melanoma), M229 (human malignant melanoma), M285 (human malignant 

melanoma), A2058 (human malignant melanoma), B16F10 (mouse malignant 

melanoma), MDCK (canine kidney), and A549 (human lung carcinoma). Cells were 

gifted by Prof. Chien and Prof. Moon, University of Washington (A375, SK-MEL-28, 

M202, M229, M285, and A2058); Dr. Al-Jamal, University of East Anglia (B16F10); 

Dr. Mogensen, University of East Anglia (MDCK); and Dr. Morris, University of East 

Anglia (A549). These cells lines were cultured in Roswell Park Memorial Institute 

(RPMI) 1640 cell culture media with 25 mM HEPES zwitterion to maintain a pH range 

of 7.0-7.6,  phenol red pH indicator, carbohydrates in the form of glucose (1.8-2.2 g/l), 

and essential amino acids and vitamins. 

RPMI-1640 was supplemented with 10% heat-inactivated foetal calf serum 

(FCS) which contained a mixture of albumins, growth factors, and growth inhibitors, 
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which are all important for supporting the growth of cells, maintaining cell 

characteristics and increasing the buffering capacity of the media. Also added to the 

culture media was 2 mM L-glutamine, 100 μg/ml penicillin, and 100 μg/ml 

streptomycin. Continuous adherent cells were subcultured using the protease 0.25% 

trypsin/EDTA in HBSS without Ca2+/Mg2+ at 70-80% cell confluency.   

Human epidermal melanocytes lightly pigmented (HEMA-lp) used in this 

work were commercial primary cells isolated from lightly pigmented human tissue 

obtained from ThermoFisher Scientific (#C0245C). Medium 254 with 200 µM 

calcium chloride was used for HEMA-lp cell culture and supplemented with human 

melanocyte growth supplement (HMGS). After addition of HMGS to a 500 ml bottle, 

Medium 254 contained a final concentration of bovine pituitary extract (BPE; 0.2% 

v/v), fetal calf serum (0.5% v/v), recombinant human insulin-like growth factor-1 (1 

µg/ml), bovine transferrin (5 µg/ml) basic fibroblast growth factor (3 ng/ml), 

hydrocortisone (0.18 µg/ml), heparin (3 µg/ml), and phorbol 12-myristate 13-acetate 

(PMA; 10 ng/ml). As HEMA-lp cells are sensitive to trypsin, the subculturing of cells 

was done with trypsin neutraliser after 0.25% trypsin/EDTA in HBSS without 

Ca2+/Mg2+. 

 

2.3.2 Seed stock preparation of cell lines 

 

All cell lines were stored as a seed stock in sterile cryovials in liquid nitrogen. The 

cells were suspended in FCS with 10% DMSO at a concentration of approximately 

0.75 x 106 cells/ml. Subsequent freezing of the cells was achieved in a Mr Frosty 

freezing container (ThermoFisher Scientific) containing 100% isopropanol and 

transferred to a -80 oC freezer. The freezing container was used to insure the cells froze 
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at the optimal rate for cell preservation (-1 oC/min). Once at -80 oC, cryovials were 

transferred to the liquid nitrogen dewar for long-term storage. 

Resuscitation of the cells was achieved by rapid thawing of cryovials in a 37 

oC water bath. As soon as the cell suspension had thawed, 5 ml of appropriate growth 

media was added to dilute the DMSO and the cells seed in a cell culture flask. After 

the cells had adhered to the culture flask, the DMSO containing media was removed, 

the cells gently washed with PBS, and fresh media was added.  

 

2.3.3 PCR detection of mycoplasma 

 

Routine inspection for mycoplasma contamination was carried out on all cell lines. 

Mycoplasmas can impact the analysis of biological assays and are a particular problem 

in cell culture as, unlike most bacterial or fungal contamination, they can be very 

difficult to detect without specific screening. Testing for mycoplasma contamination 

was performed using EZ-PCR mycoplasma test kit following manufacturer’s 

instructions as well as with PCR primers (Van Kuppeveld et al., 1994, Van Kuppeveld 

et al., 1993): 

 

Forward Primer (GPO-3) 5’ - 3’: GGGAGCAAACAGGATTAGATACCCT  

Reverse Primer (MGSO): 5’ - 3’: TGCACCATCTGTCACTCTGTTAACCTC 

 

Briefly, media, was removed from the cell culture flask after being in contact 

with the adherent cells for a minimum of 48 h. A positive control of Mycoplasma 

hominis DNA and a negative control of nuclease free sterile water was used. After 

DNA amplification using a thermal cycler, samples were analysed using 
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electrophoresis through a 2% agarose gel (2% w/v agarose in TAE buffer). The gel 

was run at 90 V for approximately 30 min with 5 µl Quick-Load 1 kb DNA ladder. 

Using the DNA intercalating agent GelRed (0.004% v/v) in the agarose gel, the 

amplified DNA was visualised under UV light using a BioRad Molecular Imager 

ChemiDoc XRS. A positive sample was confirmed by a band at 270 bp.  

 

2.3.4 Trypan Blue exclusion assay 

 

Cell viability after stimulation with different NPs was assessed using Trypan Blue 

exclusion assay (Strober, 2001). Trypan Blue is a dye that is able to penetrate through 

the cell membrane of dead cells. Trypan Blue is unable to penetrate live cells. A549 

and SK-MEL-28 cell lines were seeded at a seeding density of 26550 cells per well 

and MDCK cells at 20000 cells per well in a 24-well plate. Cells were exposed to NPs 

at different concentrations for 72 h. After 72 h the cells were detached from the wells 

using 100 μl trypsin/EDTA. Once detached, 10 μl of cell suspension and 10 μl of 

Trypan Blue were loaded into a haemocytometer and counted using a light microscope. 

Results were expressed as percent cell viability normalised to a control of unstimulated 

cells.  

 

2.3.5 Cell viability MTT assay 

 

Tetrazolium salts, such as 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide 

(MTT), are reduced to formazan by the cytochrome of viable cells (Berridge and Tan, 

1993). The resulting dark blue formazan product can be easily measured using a 

spectrophotometer (λmax 565), allowing viable cells to be quantified.  
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A549, SK-MEL-28, and MDCK cells were seeded at a density of 4500 cells 

per well in 96 well plates and incubated overnight. After incubation, the media was 

discarded and the cells were washed once with PBS before 140 μl of fresh media was 

added to each well. Different concentrations of NPs were achieved by dilution in either 

PBS or autoclaved MQW and added to the appropriate wells, of which the final volume 

was 150 μl. The cells were stimulated with the NPs for 72 h. After stimulation, the 

media containing NPs was discarded and the cells washed with PBS. Fresh media and 

50 μl of MTT (2 mg/ml), in autoclaved MQW, was added to a total volume of 250 μl 

per well and incubated for 4 h. The media was then removed, leaving the insoluble 

formazan product. DMSO (200 μl per well) and Sørensen’s glycine buffer (25 μl) per 

well was used to resuspend the formazan before reading at absorbance 570 nm on a 

spectrophotometer. Percentage viability of the cells was calculated as a ratio of mean 

absorbance from quadruplicate readings with respect to the control wells of non-

stimulated cells: 

Percentage cell viability = (Isample/Icontrol) x 100 

 

2.3.6 Protein extraction and quantification 

 

Cells were removed from the flask or well plate using EDTA/Typsin and suspended 

in media. The cells were then centrifuged at 1200 rpm for 5 mins and the supernatant 

aspirated. The resulting cell pellets were lysed in lysis buffer with the addition of 

PhosSTOP phosphatase inhibitor and cOmplete protease inhibitor for 30 mins on ice, 

and then centrifuged at 16000 x g for 10 mins at 4 oC. Protein concentration was 

calculated from the crude protein supernatant using the colourimetric BCA Protein 

Assay Kit (Walker, 2009). Dilutions of the supplied BSA with known protein 
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concentrations are used to produce a standard curve at an absorbance of 562 nm using 

POLARstar Optima microplate reader (BMG Labtech) after colour development 

reaction with BCA. This was then used to determine the protein concentration of the 

cell lysates. 

 

2.3.7 SDS-polyacrylamide gel electrophoresis 

  

Protein concentrations were equalised in lysis buffer before adding 

dithiothritol (DTT) reducing agent, to reducing disulphide bridges, and SDS Loading 

Buffer and heated at 90 °C for 10 mins (Jenei et al., 2009). Samples were then loaded 

onto a 12% resolving polyacrylamide gel, overlaid with a 5% stacking gel (table 2.3.1) 

set in Biorad mini PROTEAN 3 cell apparatus. The total amount of protein loaded was 

in the range of 20-30 µg. Gels were loaded into the Biorad Electrode Assembly and 

placed into the Mini Tank with running buffer.    

Protein samples were run through the 5% polyacrylamide stacking gel at 90 V 

until they reached the interface between the upper and lower gels using 1 x running 

buffer. Once at the 12% resolving gel, the voltage was increased to 120 V until the 

proteins had fully resolved through the gel and electrophoresis was terminated.  
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Table 2.3.1 Reagents of resolving and stacking polyacrylamide gels for electrophoresis 

 

12% resolving (lower) gel 5% stacking (upper) gel 

 

MQW - 3.45 ml 

 

MQW - 2.90 ml 

40% acrylamide - 2.40 ml 40% acrylamide – 0.75 ml 

1.5 M Tris (pH 8.8) -  2.00 ml 0.5 M Tris (pH 6.8) - 1.25 ml 

10% SDS – 80 μl 10% SDS – 50 μl 

10% APS – 80 μl 10% APS – 50 μl 

TEMED – 8 μl TEMED – 5 μl 
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2.3.8 Western Immunoblotting 

 

Following electrophoresis, protein was transferred from the polyacrylamide 

gel to a nitrocellulose membrane in accordance with BioRad Mini protean 3 transfer 

system in a transfer buffer for 2 h at 250 mA. Successful transfer of proteins onto the 

nitrocellulose membrane was checked using Ponceau S red staining. The nitrocellulose 

membrane was then blocked to prevent non-specific binding of primary and/or 

secondary HRP-conjugated antibodies to the membrane; leading to a high background 

and a low signal-to-noise ratio. Depending on the primary antibody, the membrane 

was blocked for 1 h at room temperature in either 5% milk powder in PBS or 3% FCS 

in TBST (Safholm et al., 2006). Primary antibody, diluted in the relevant blocking 

buffer, was added overnight at 4 °C.  

Following incubation with the primary antibody, the membrane was washed 

three times, each wash for 10 mins, in TBST to remove any unbound primary antibody. 

The applicable HRP-conjugated secondary antibody was then added for 1 hour at room 

temperature. Again, the membrane was washed three times in TBST to remove any 

unbound secondary antibody before Pierce Enhanced Chemi-Luminescence (ECL) 

Western Blotting Substrate to detect HRP activity. After addition of the peroxidase 

substrate, the HRP activity was visualised using BioRad Molecular Imager ChemiDoc 

XRS. A loading control of α-tubulin was used to check that protein concentrations 

were even across the samples and that even transfer occurred.  
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2.3.9 Reverse transfection of siRNA 

 

MC1R siRNA (ThermoFisher Scientific) was transfected into A2058 cells by 

adaptation of a previously described reverse transfection protocol (Chien et al., 2009). 

A RNA interference (RNAi) duplex was made to a final concentration of 20 nM 

siRNA in 100 µl serum free media with the addition of 1 µl Lipofectamine transfection 

reagent per well. The siRNA and Lipofectamine was incubated together at room 

temperature for 20 min to allow for the formation of siRNA-Lipofectamine complexes. 

The cells were prepared in complete growth media (without antibiotics) so that the 

cells were 50% confluent in a 12-well plate. Cells were incubated for 48, 72, and 96 

h.  

 

2.4 In vivo analysis  

 

2.4.1 Obtaining embryos 

 

Female Xenopus laevis adults were primed by injection of 100 units of pregnant mare 

serum gonadotrophin (PMSG) into the dorsal lymph sac 5-7 days before the eggs were 

required. To induce ovulation, 250 μl of human chorionic gonadotrophin (hCG) was 

injected into each dorsal lymph sac. After approximately 14 h at 18 oC, manual 

squeezing of the female X. laevis abdomen to encourage egg release into a petri dish. 

Testis were removed from a sacrificed male and stored in testes buffer (100% FCS, 

MMR (4:1)). The eggs were then covered, for 5 m at 18 oC with testes that had been 

homogenised in MMR. Concentration of the salt solution was reduced to 0.1 x MMR 
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and the eggs are left for 20 m at 18 oC for fertilisation. The eggs were then placed in a 

beaker containing 2% cysteine (pH 8.0) dissolved in MMR and gently stirred to 

remove the jelly coat that the eggs are encased in. Cysteine was removed by washing 

in MMR followed by a wash of 0.1 x MMR. Procedures described thus far were 

undertaken by a member of the Wheeler lab with the appropriate animal licence for 

the handling of adult Xenopus laevis. All experiments were performed in compliance 

with the relevant laws and institutional guidelines at the University of East Anglia. 

The research had approval by the local ethical review committee according to UK 

Home Office regulations. 

 Embryos were left at 18 oC and monitored until they had reached the required 

stage for the phenotypic assay, according to Nieuwkoop and Faber (NF; Nieuwkoop 

and Faber, 1956). The eggs were cleaned once every hour in 0.1 x MMR and 1:1000 

gentamycin until they have reached the necessary stage. Any dead embryos were 

removed twice daily.  

 

2.4.2 Xenopus phenotypic assay 

 

Live embryos were collected for exposure to NPs at NF stages 4, 15, and 38, as 

described in 2.4.1. The stages of X. laevis were selected to assess NP toxicity during 

key stages of development an organism. These stages correlate to pre-gastrulation (NF 

stage 4), pre-neuralation (NF stage 15), and pre-tadpole (NF stage 38). Concentrations 

of NPs were made up using serial dilutions 0.1 x MMR, total volume 500 μl per well. 

In a 24-well plate, 5 embryos per well were collected in 500 μl of 0.1 x MMR and 

added to the NPs, total volume 1000 μl per well.  
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Embryos were incubated and exposed to NPs at 18 oC until the required NF 

stage. Embryos exposed to NPs at NF stages 4 and 15 were fixed at NF stage 38. Those 

that were exposed to NPs at NF stage 38 were fixed at NF stage 45. Once the embryos 

reached the required stage they were washed in 0.1 x MMR and anesthetised with 0.6 

mg/ml ethyl 3–aminobenzoate methanesulfonate salt before fixing in MEMFA. The 

embryos are left in MEMFA for 1 h at room temperature or overnight at 4 oC. After 2 

washes in PBST all embryos were ranked by phenotypic abnormalities. Once ranked, 

the embryos were dehydrated in increasing concentrations of methanol, 25%, 50%, 

and 75%, before being stored at -20 oC in 100% MeOH. The embryos were rehydrated 

using decreasing concentrations of MeOH, 75%, 50%, and 25% and 2 washes of 

PBST, before imaging or sectioning (method 2.4.3-2.4.5).  

 

2.4.3 Cryosection of embryos 

 

Embryos were placed in 30% sucrose overnight at 4 oC. They were then transferred to 

cryomoulds containing optimal cutting temperature (OCT) solution or 15% fish 

gelatin. The embryos were then orientated in the correct position for cutting. Once 

orientated, the samples were flash frozen by surrounding the cryomoulds with dry ice 

until the OCT or fish gelatin had completely solidified. Samples were then stored at - 

80 oC until needed. Using a LEICA CM 1950 Cryostat, the embryos were sectioned at 

10 μm and kept on 5% TESPA coated slides overnight at room temperature. The slides 

were then washed with PBS, stained with Hoescht 33342, before hydromount was used 

to secure a cover slip over the samples. 
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2.4.4 X. laevis whole mount fluorescence microscopy 

  

To investigate internalisation of the fluorescent PS-COOH NPs in X. laevis, NF stage 

38 embryos were exposed to 1015 NP/ml until they had developed to NF stage 45. 

Embryos were then anesthetised with 0.6 mg/ml ethyl 3–aminobenzoate 

methanesulfonate salt. PS-COOH particles were imaged in the bloodstream of 

anaesthetised embryos using Nikon Eclipse 600 with a CCD digital camera, with an 

emission filter of 509–547 nm.  

 

2.4.5 X. laevis TEM 

 

Internalisation of Fe3O4-core NPs (Fe3O4-PEG and Fe3O4-NH2) was assessed using 

TEM microscopy, as previously described (2.2.5). Embryos were exposed to 1015.3 

Fe3O4 NPs from NF stage 38 to NF stage 45. Embryos were then fixed in 4% 

paraformaldehyde and 2% glutaraldehyde in 0.1 M sodium cacodylate (Bacchetta et 

al., 2012). A post fix of 1% osmium tetroxide (OsO4) for 1.5 h at 4 oC was used to 

increase electron density in lipids and proteins. Fixed embryos were then dehydrated 

in decreasing concentrations of MeOH before being washed in 100% propylene oxide 

before infiltration in propylene oxide resin overnight. Embryos were then submersed 

in resin and polymerisation occurred at 60 oC for 48 h. Sections, at 1 μm thickness, 

were mounted onto carbon-coated 300 – mesh copper grids and observed using a 

Tecnai 20 TEM with AMT cameras, operating at an acceleration voltage of 200 kV.  
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2.4.6 Mouse Magnetic Resonance Imaging (MRI) 

 

Fe3O4-core NPs were sent to Institute for Pharmacological Research “Mario Negri” 

(IRCCS) in Milan for murine toxicology and uptake assays. All experiments involving 

mice was conducted in compliance with national (Decreto Legge nr 116/92, Gazzetta 

Ufficiale, supplement 40, February 18, 1992; Circolare nr 8, Gazzetta Ufficiale, July 

14, 1994) and international laws and policies (EEC Council Directive 86/609, OJL 

358, 1, Dec. 12, 1987; Guide for the Care and Use of Laboratory Animals, US National 

Research Council, 8th edition, 2011). The work was reviewed by IRCCS-IRFMN 

Animal Care and Use Committee (IACUC) and then approved by the Italian ‘Istituto 

Superiore di Sanità’ code 17/01 D Appl 3. NFR mice were bred until 3 months old and 

maintained under pathogen-free conditions at the IRCCS Animal Care Facility. A total 

of 15 mice were used and were randomly divided into three experimental groups PBS-

treated control group (n=3), Fe3O4-NH2 (n=6) and Fe3O4-PEG treated mice (n=6). NP 

solution at a concentration of 15 µg Fe3O4/ml and control was injected as a single 150 

µl dose in the tail vein.  

 MRI was performed on mice pre and post NP treatment on 7 T/30 cm 

horizontal bore magnet (Bruker-Biospin) with a 12 cm gradient set, capable of 

supplying a maximum of 400 mT/m. Mice were anesthetised with isoflurane, 30% 

oxygen, and 70% nitrous oxide during MRI analysis and body temperature stabilised 

with a warmed cradle at 36 ± 1 oC. A total of three mice were used for each group and 

MRI was performed after 24 h and 120 h after NP injection. Intensity was normalised 

to signal from the dorsal muscle as this is an area where NPs do not accumulate and 

analysis was concentrated on the liver and kidney tissues using Fuji Image J imaging 
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software. Post MRI scan, all animals were sacrificed with an overdose of 75 mg/kg 

ketamine and 1 mg/kg medetotimine.  

 Following MRI analysis, liver and kidney tissue was removed from the animals 

and post fixed with 4% paraformaldehyde for 24 h. Samples were then paraffin 

embedded and processed for histopathology. Sections, 5 µm in thickness, were stained 

with hematoxylin and eosin (HE) before observation using a light microscope. Perl’s 

staining (Diapath Perl’s Staining Kit; (Katsnelson et al., 2011, Song et al., 2015) was 

used to highlight Fe3O4 in the tissue.  

 

2.5 NPs in vitro 

 

2.5.1 Confocal microscopy 

 

Cells were seeded at seeding density of 2 x 104 cells per well in a 12 well plate, each 

well containing a sterile ø 18 mm borosilicate glass cover slip. The cells were left 

overnight at 37 oC to adhere to the glass cover slips before addition of NPs.  

At the assay endpoint, the media was removed and the cells were washed in 3 

times PBS before fixation in 4% paraformaldehyde. Coverslips were then washed a 

further 3 times with PBS and any reactive aldehydes from the fixative were quenched 

with a wash of 50 mM NH4Cl. Coverslips were than mounted on a glass slide using 

Hydromount and secured. Cells were imaged using a Zeiss LSM510 META confocal 

microscope.  
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2.5.2 Flow cytometry  

 

Flow cytometry is a technique used to analyse physical properties of NPs with a size 

range of 0.2-150 m. The most common application is the analysis of cells and, for 

this work, flow cytometry was employed to analyse the uptake of NPs in mammalian 

cells (Suzuki et al., 2007, Zucker and Daniel, 2012). The suspended cells are 

transported in the fluidics of the flow cytometer and are focused as a stream of 

individual cells by the sheath fluid, and directed through the flow cell where it is hit 

by a laser beam. As the sample stream is pressurised, the flow rate can be controlled 

by changing the pressure (figure 2.5.1).  

When the cells are hit by the laser the light is deflected. The extent at which 

the light is scattered is a result of the surface area or size of the cell, measured by the 

forward scatter (FCS) and the internal compartments, or granulation measured by side 

scatter (SSC). Once the correct population of single cells has been established 

fluorescent activity can be analysed.   

For NP uptake analysis we encapsulated the fluorescent dye NR into the 

hydrophobic shell of the Fe3O4-core NP (method 2.1.8). As a fluorescent compound, 

NR absorbs light from the argon ion laser beam emitting light at 488 nm, which was 

used for this work. The absorption of light causes an electron in NR to be raised to a 

higher energy level. The return of this electron to the ground state results in a release 

of energy that is emitted at a longer wavelength to the 488 nm originally absorbed by 

the compound at a maximum λem 635 nm. We detected the emission of NR using one 

of the machine detectors, FL-4.  
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Cells were seeded at a seed density of 5 x 104 cells per well in a 24-well plate 

and left to adhere overnight. After the cells had adhered, they were washed with PBS 

before exposure to NPs at a final concentration of 1.4 x 1012 NP/ml. At the assay 

endpoint, the cell media was removed and the cells washed with 1 x PBS before de-

adherence of cells using 0.2% trypsin/EDTA. Once the cells were resuspended, they 

were transferred to a 1.5 ml microcentrifuge tube and pelleted by centrifugation at 200 

x g for 5 mins. The supernatant was then removed and the resulting cell pellet was 

resuspended in media. The cells were then washed with PBS before fixation in 4% 

paraformaldehyde in PBS for 30 mins at room temperature with agitation. After 

fixation, cells were washed by pelleting at 1500 rpm and resuspending in PBS. This 

was repeated three times. Finally, the cells were suspended in PBS + 2% FCS and 

transferred to 5 ml round bottom polystyrene test tube before measuring using 

Beckman Coulter Cytomics FC 500 flow cytometer.  Analysis was performed using 

Kaluza Analysis 1.3 (Beckman Coulter) software.  
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Figure 2.5.1 Flow cytometry fluidics. The sample of cells is injected into the fluidics of the flow 

cytometer and directed into a single stream of cells via the sheath fluid (1). Once directed into a 

hydrodynamic focus the sample is hit by a laser beam (2). Increasing the pressure of the fluidics leads 

to a wider stream of sample through the laser beam. This can cause the laser to hit the cells at a below 

optimal angle, resulting in a lower accuracy. Decreasing pressure insures a single cell stream of sample 

through the laser beam resulting in a higher accuracy. Multiple detectors are used to identify SS, FS, 

and fluorescence. Image from Becton, Dickinson, and Company.  

  



Chapter two 

 

117  

  

 

2.6 Human lymphadectomy tissue  

 

2.6.1 Tissue digestion  

 

Patients diagnosed with cutaneous melanoma had given prior consent for biopsied 

tissue, after sentinel lymph node biopsy, to be used for our research. HTA-compliant 

Norwich Biorepository (HTA licence 11208; National Research Ethics Service 

reference, 08/H0304/85) ethical approval was obtained. All procedures of patient-

derived melanoma cells were approved by the UEA Faculty of Medicine and Health 

ethics committee (Ref: 2013/2014-03HT). 

Tissue was collected from the Norfolk and Norwich University Hospital and 

transported to the lab in a sterile 50 ml centrifuge tube containing 1 x HBSS, 2% FCS, 

100 U/ml penicillin, and 100 μg/ml streptomycin. Once in the cell culture laboratory, 

the sample was weighed and characterised according to its general appearance. The 

tissue was washed twice and vortexed in PBS to remove any blood and/or debris; the 

tissue was decanted and the liquid discarded. After transfer to a sterile petri dish, the 

tissue was finely minced using forceps and scissors. A digestion solution containing 

0.075% collagenase IV in PBS, 0.01% hyaluronidase from bovine testes, and 0.01% 

deoxyribonuclease I from bovine pancreas, was added to a small beaker along with the 

minced tissue sample and a magnetic stir bar. The digesting sample was placed in a 

water bath at 37 oC and mixed for 30 mins. During this time the majority of the tissue 

should be digested, however the sample was strained through a 70 μm nylon mesh 

filter into a 50 ml centrifuge tube to remove any large undigested material. After 

filtration, the cells were pelleted from the digestion solution by centrifugation at 200 
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x g for 10 mins. The supernatant was discarded and the cell pellet was resuspended in 

PBS to wash.  

 

2.6.2 Cell staining of digested lymphadectomy tissue for FACS 

 

Cells were stained with anti-human neural/glial antigen 2 (NG2) Alexa Fluor® 488, 

melanoma marker (Li et al., 2003, Yang et al., 2004), and anti-human CD45 Alexa 

Fluor® 610, lymphocyte marker (Bouma-Ter Steege et al., 2004, Ninomiya et al., 

2007), directly conjugated primary antibodies. After digestion, primary cells in PBS 

were centrifuged at 200 x g for 10 mins to pellet the cells. The supernatant was 

removed and the cells resuspended in HBSS containing 2% FCS as a blocking buffer 

and incubated at room temperature for 20 mins.  

Following blocking, the cell suspension was transferred to two sterile micro-

centrifuge tubes; an unlabelled control, and an antibody-labelled sample. The cells 

were centrifuged at 450 x g for 5 mins and, after discarding the supernatant, then 

resuspended in 100 μl of HBSS 2% FCS. NG2 and CD45 antibodies were added to the 

microcentrifuge tube for the labelled sample and incubated, in the dark at room 

temperature, for 30 mins.  

After staining, cells were pelleted at 450 x g for 5 mins and washed twice in 

HBSS 2% FCS. For each wash the cells were centrifuged at 450 x g for 5 mins at room 

temperature and the supernatant was discarded between washes. Following the last 

wash, the cells were resuspended in 500 μl HBSS 0.5% FCS. 

The samples were taken directly to a Sony SH800 cell sorter (Institute of Food 

Research, Norwich Research Park) contained in a BioMat class II biological safety 

cabinet and sorted into NG2+ /CD45- and NG2- populations. 
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3. Synthesis, functionalisation, and purification of Fe3O4 nanoparticles  

 

3.1 Introduction 

 

Iron oxides in the nanometre range have been explored for a variety of applications 

including catalysis (Li et al., 2003), magnetic data storage (Terris and Thomson, 2005), 

materials (Lu et al., 2002), and, in biomedicine as drug delivery systems and contrast 

imaging agents (Figuerola et al., 2010, Li et al., 2013). As a biomedical tool, in 

particular for oncotherapy (Peng et al., 2008, Zhang and Kievit, 2012), iron oxide 

nanoparticles (NPs) have many advantages over other nanomaterials, such as their 

biocompatibility (Hanini et al., 2011). The combined magnetic and optical function of 

Fe3O4 NPs allow simultaneous diagnostic and therapeutic benefits. Among the 

different iron oxides, magnetite (Fe3O4) has attracted increasing interest as Fe3O4 NPs 

for biomedical application largely due to their superparamagnetic (SPM) properties 

where, under an alternating magnetic current, the NP can evoke therapeutic 

hyperthermia (Sonvico et al., 2005). Once there is Fe3O4 NP uptake in cells, 

intracellular magnetic heating of tumour cells can be achieved by the application of an 

external alternating magnetic field (AMF). The electromagnetic field transfers energy 

to the NP, which in turn can deliver cytotoxic amounts of thermal energy. Tumour 

cells are particularly sensitive to increased physiological temperatures of 42-45 oC 

(Overgaard and Overgaard, 1972). 

 A further advantage of Fe3O4 core NPs as an oncology drug delivery system is 

the exploitation of their unique properties for the use as magnetic resonance imaging 

(MRI) tools (Bulte et al., 1999). As a targeted MRI contrast agent, the progression of 
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a tumour can be monitored in a non-invasive and real-time manner; providing 

improved diagnostics. Several Fe3O4 NPs have been developed as MRI contrast agents 

for a range of disease states (Arsalani et al., 2010, Kim et al., 2001, Lee et al., 2004, 

Tromsdorf et al., 2009).  

The integration of a NP that can be used as both a diagnostic and a therapeutic 

agent is termed ‘theranostic’ (Xie et al., 2010). In order to be used for therapeutic 

hyperthermia and as an MRI contrast agent Fe3O4 NPs, and other ferromagnetic or 

ferrimagnetic NPs, must be under a critical size to exhibit SPM activity. Magnetite 

reaches this critical size at diameters less than 10 nm, when the particle becomes a 

single-domain structure and, principally, magnetisation does not vary across the NP; 

all atoms within an individual NP are aligned and the particle is the sum of all these 

magnetic moments (Jordan et al., 2009). As a result, the NPs display anisotropy energy 

where the energy is directionally dependent. Generally, there is a preference for NP 

direction known as uniaxial anisotropy. Fe3O4 NPs with uniaxial anisotropy flip in the 

direction of their magnetisation to a stable orientation (Fannin, 1991). There are two 

stable orientations with minimum energy states antiparallel to each other. Thermal 

excitation is required to reverse the magnetisation over time where the average time to 

undergo this flip is known as Néel’s relaxation time (τN) (Fannin, 1991): 

 

 

𝝉𝑵 =  𝝉𝟎 𝒆𝒙𝒑 ( 
𝒌𝑽

𝒌𝑩 𝑻
 )         Equation 3.1 
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Where, 

 τ0: The time constant specific to the material related to atomic reorganisation 

time (typically between 10-9 to 10-12 s). 

 kV: The energy barrier of which the magnetisation flip has to overcome from 

k as an anisotropy constant and V as volume. 

 kB: The Boltzmann constant. 

 Τ: The Temperature 

 

An applied AMF can flip the orientation of the particles along the magnetic axis if 

it is able to surpass the energy barrier (kV). Under an AMF, rotation of the overall 

magnetic moment of the NPs away from the stable orientation minimises its potential 

energy leading to internal friction from the movement of the magnetic moment (Jordan 

et al., 2009).  

In order for Fe3O4 NPs to display SPM properties required for therapeutic 

hyperthermia, the size and size distribution of the NP core is particularly important. 

As defined by the above equation, the smaller the NP, the stronger the influence of 

thermal energy upon it. A particle diameter between 10 – 13 nm leads to intermediate 

superparamagnetic – ferromagnetic properties, whereas above 13 nm is in the 

ferromagnetic region (Bakoglidis et al., 2012). In addition, as the temperature released 

from the system is dependent on the sum of the magnetic moment a monodispersed 

population of NPs is required to have an effect (Bakoglidis et al., 2012). Therefore, in 

order to acquire superparamagnetic properties, the synthesis method for Fe3O4 NPs 

must be able to control the size of NPs and produce a narrow size distribution.   

 There are many recognised methods for the production of superparamagnetic 

iron oxide nanoparticles (SPIONs). Broadly, these methods can be divided into three 
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different routes of synthesis: physical, chemical, and biological. Chemical synthesis 

being the most popular method by publication. Within the route of chemical synthesis, 

co-precipitation, microemulsion, hydrothermal, and thermal decomposition are 

particularly proven (Hyeon, 2003). Co-precipitation is amongst the simplest and most 

established method, the Massart procedure (Bee et al., 1995), has changed very little 

over time. The method requires the addition of a base to an aqueous solution of Fe2+ 

and Fe3+ ions (1:2 stoichiometry). This results in a magnetite precipitate in a basic 

solution. However, due to magnetite readiness to oxidise to ferric hydroxide, the 

synthesis must occur in an inert gas. Disadvantageously, this method can be difficult 

to control size and size distribution. 

Highly monodispersed NPs can be synthesised by thermal decomposition of 

organic iron precursors (Sun et al., 2004). The precursors are decomposed at high 

temperature in the presence of a non-polar solvent and a capping agent at the boiling 

point of the solvent. The size of the resulting hydrophobic NPs can be easily controlled 

by modifying the reactions conditions such as the reflux time. Synthesised in this way, 

the NP core presents a narrow size distribution and the correct diameter to exhibit 

SPM.  

Before use in a biological assay, hydrophobic Fe3O4 NPs must undergo a phase 

transfer to allow them to disperse in an aqueous solution. Amphiphilic molecules 

contain regions of hydrophobic and hydrophilic properties. Amphiphilic polymers can 

be used to functionalise the surface of NPs;where the hydrophobic regions of the 

polymer interact with the alkyl chains on the surface of the NP.h As the amphiphilic 

polymer intercalates and wraps around the surface of the NP, the hydrophilic regions 

are exposed to the outside. This completes phase transfer and allows the NP to be 

dispersed in an aqueous solution.  
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In a biological environment, the NP surface can accumulate biomolecules. 

Proteins are one of the major constituents of biological fluids and when they become 

adsorbed on the surface of a NP, as they often do, a protein corona will form (Walczyk 

et al., 2010). The formation of a protein corona is largely dependent on particle size 

(Deng et al., 2011), surface charge (Hühn et al., 2013), and NP colloidal stability 

(Gebauer et al., 2012). For a targeted NP, the formation of a protein corona can change 

how the NP and cell interacts with one another (Walczyk et al., 2010). 

An approach to promote specific uptake of the NPs by tumour cells is to 

functionalise the NP surface with biological ligands that selectively interact with 

receptors overexpressed by the cancer cells. To avoid the formation of a protein 

corona, which can hamper the target of the ligand and destabilise the NP, a non-ionic 

hydrophilic polymer is often used: poly(ethyleneglycol) (PEG) being one of the most 

studied polymers used for the stabilisation of a range of NPs (Allen et al., 1995, 

Bhattarai et al., 2003, Sheng et al., 2009).  

This project aims to produce a monodispersed population of Fe3O4-core NPs 

that can be dispersed in an aqueous solution. The NPs will be stabilised using PEG 

(Fe3O4-PEG) and further functionalised with a targeting peptide to melanoma cells 

(Fe3O4-PEP). In this work, we have chosen to use a maleic anhydride polymer. 

Poly(maleic anhydride-alt-1-octadecene) (PMAO) is a polymer containing an 

anhydride ring and a 18-carbon long alkyl side chain. Copolymers of maleic anhydride 

have been used to for aqueous dispersion and further surface functionalisation of 

different NPs (Di Corato et al., 2008, Pellegrino et al., 2004), including Fe3O4 NPs 

(William et al., 2006). Furthermore, an added advantage of using a maleic anhydride 

polymer is that the maleic anhydride ring can be opened in a basic environment. Once 

the ring is open, additional functionalisation is easily achieved. Ethanolamine (Lees et 
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al., 2009), Jeffamine M-1000 (Lees et al., 2009), NH2 terminated poly(N-

isopropylacrylamide) (Qin et al., 2009), NH2 terminated PEG (Bronstein et al., 2010, 

Moros et al., 2012, Muir et al., 2009), and 4-aminophenyl β-D-galactopyranoside 

(Moros et al., 2010) have all been successfully attached via the maleic anhydride.  

 

3.2 Synthesis and phase transfer of Fe3O4 NPs 

 

Fe3O4 core NPs were synthesised as previously described (Sun et al., 2004); section 

2.1.2) by high-temperature solution phase reaction of iron salts (iron (iii) 

acetylacetonate, Fe(acac)3) and 1,2-hexadecanediol, with oleic acid and oleylamine. 

This method has previously been used to produce a monodispersed population of 

Fe3O4 NPs (Sun et al., 2004). The reaction conditions can be modified by changing the 

temperature of the reaction to adjust the final diameter of the magnetite core. In this 

work, we performed high-temperature solution phase reaction at a reflux temperature 

300 oC using benzyl ether to produce NPs with a diameter of 8 nm. AFM gave a clear 

representation of the NP size and size distribution after synthesis (figure 3.2.1). The 

actual average diameter of the Fe3O4 core, after AFM analysis, was 6 ± 1 nm. Residual 

material from the reaction was removed and the Fe3O4 NPs were dispersed in toluene. 

In order to use the NPs in biological assays, a phase transfer reaction was used to 

disperse the Fe3O4 NPs in an aqueous solution. Amphiphilic coating of Fe3O4 NPs was 

achieved using PMAO. PMAO, as an amphiphilic compound, was able to intercalate 

the alkyl chains with the hydrophilic chains of the oleate ligand on the surface of the 

Fe3O4 NP (figure 3.2.2). Fe3O4 NPs, as a result, were wrapped in the PMAO with the 

anhydride ring on the surface of the NP.  
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Figure 3.2.1 AFM characterisation of Fe3O4 NPs. (a) Representative images of Fe3O4 NPs from AFM 

topography. (b) Fe3O4 NP size distribution showing a mean diameter of 6 nm ± 1 SD after AFM analysis 

of 50 NPs. 



 

            

 

 

 

Figure 3.2.2 Amphiphilic coating of Fe3O4 NPs.  Iron salts in the presence of oleic acid, oleylamine, and benzyl ether solvent were heated gradually to 200 oC and refluxed at 

300 oC resulting in monodispersed hydrophobic Fe3O4 NPs with oleate on the surface. The hydrophobic chains of the oleate surfactant and the alkyl chains of PMAO intercalated, 

leaving the hydrophilic maleic anhydride ring exposed to the surface of the Fe3O4 NPs. 
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The hydrodynamic diameter of Fe3O4 NPs in toluene, before PMAO coating, 

was 12 nm with a PDI of 0.1 (figure 3.2.3.a). The size distribution suggests a highly 

monodisperse population of NPs. After phase transfer with PMAO, the DLS profile 

became more polydisperse and contained two populations with different size 

distributions; 26 nm and a larger population at 193 nm (figure 3.2.3.b). As PMAO was 

added in excess, it is likely that this second population is due to the formation of 

polymer micelles or to polymer-NP aggregates. PMAO micelles can self-assemble, 

were the non-polar alkyl chains of multiple PMAO molecules bunch together in the 

centre of a sphere-like structure with the hydrophilic regions facing outwards (Di 

Corato et al., 2008). Therefore, it is important that in our methodology to effectively 

purify the monodispersed coated NPs from other aggregates and micelles. 
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Figure 3.2.3 Size distribution of Fe3O4 NPs before purification. (a) Representative DLS 

measurement of Fe3O4 NPs in toluene, Z-Ave 12 nm (b) Representative DLS measurement of Fe3O4 

NPs in PBS in the presence of excess PMAO. 
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3.3 Purification of Fe3O4-PMAO nanoparticles  

 

To purify Fe3O4 NPs and remove the second population of larger aggregates, firstly 

size exclusion chromatography was used. Fe3O4 NPs were passed through a Sephacryl 

S-300 column. The size and polydispersity index (PDI) for each fraction containing 

Fe3O4 NPs was analysed using DLS. The size range of the fractions containing Fe3O4 

NPs (fractions 1-24; table 3.3.1) varied from ~ 20 nm to 127 nm. Combined, the size 

distribution was too large, however for each fraction the PDI was low; mean PDI 0.14. 

Although size exclusion chromatography led to each fraction being an acceptable 

monodisperse population of Fe3O4 NPs, each fraction was ~ 1 ml of diluted NPs. 

Overall, this method of purification was time consuming and led to a low concentration 

of sample and so other approaches were investigated. 

Ultracentrifugation through a sucrose gradient has been described as a more 

efficient method of removing excess polymer from NPs in solution (Di Corato et al., 

2008). Sucrose gradient density and centrifugation time was adjusted for Fe3O4 NPs. 

We used a gradient of 10% to 66% (v/v) sucrose that was left to equilibrate, forming 

a continuous gradient. Unpurified Fe3O4 NPs were loaded on top of the sucrose 

gradient (10% sucrose) and centrifuged at 25000 rpm for 4 h. After centrifugation, the 

Fe3O4 NPs had clearly travelled through the sucrose as seen by the yellow/orange band 

of NPs in the gradient (figure 3.3.1). As PMAO micelles are less dense than Fe3O4 NPs 

they passed a shorter distance through the sucrose gradient than the NPs. UV light 

showed the presence of free polymer above the band of NPs (figure 3.3.1) as free 

PMAO absorbs UV light while when PMAO is attached on the surface of the NPs it 

is quenched (Di Corato et al., 2008). 
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Table 3.3.1 Size and size distribution of Fe3O4 NPs after size exclusion chromatography.  

IOX-PMAO  

Fraction Z-Ave (d.nm) PDI  

1 127 0.2  

2 93 0.2  

3 122 0.3  

4 78 0.2  

5 82 0.2  

6 63 0.1  

7 60 0.1  

8 59 0.1  

9 53 0.1  

10 49 0.1  

11 46 0.1  

12 43 0.1  

13 39 0.1  

14 38 0.1  

15 35 0.1  

16 33 0.1  

17 31 0.1  

18 29 0.1  

19 27 0.1  

20 26 0.1  

21 25 0.1  

22 23 0.1  

23 32 0.3  

24 22 0.1  
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Figure 3.3.1 Fe3O4 purification via ultracentrifugation through a sucrose gradient. After 

ultracentrifugation, Fe3O4 NPs travelled further through the sucrose gradient (10 – 66%) than 

the PMAO polymer alone. Free polymer was visualised above the NP population using UV 

light (right hand panel). Following ultracentrifugation, Fe3O4 NPs (brown coloured fractions) 

were extracted from the free polymer using a syringe and needle.  
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 Layers from the centrifuge tube were removed for characterisation. After gel 

electrophoresis through an agarose gel, free PMAO was found in lanes 2 – 5 from the 

first fractions (figure 3.3.2.a). Layers 1-3 (lanes 2-4) contained no traces of Fe3O4 NPs, 

however lane 5 (fraction 4) had a low concentration of Fe3O4 NPs, as seen by a faint 

yellow/orange colouring. Both fractions 5 and 6 (lane 6 and 7) contained the majority 

of Fe3O4 NPs extracted from the ultracentrifugation tube with no free PMAO visible. 

Size and size distribution of fractions 5 and 6 were analysed using DLS (figure 

3.3.2.b). Fe3O4-PMAO NPs in fraction 5 had a Z-ave of 23nm and a PDI of 0.2. In 

fraction 6, Fe3O4-PMAO NPs had a Z-ave of 25 nm and a PDI of 0.2. Both fractions 

had an acceptable monodispersed population of Fe3O4-PMAO NPs with the free 

PMAO polymer removed. 
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Figure 3.3.2 Separation of Fe3O4 NPs from free PMAO. (a) Free PMAO can be visualised using UV 

light on a 1.5% agarose gel. After removal of different fractions from the centrifuge tube, gel 

electrophoresis was used to assess free PMAO. Lane 1 contained 100 base pair ladder and subsequent 

lanes contained fractions collected after ultracentrifugation (lane 2 starting from the top of the centrifuge 

tube). Both fractions 5 and 6 contained NPs, extracted from ~ 35 % sucrose. The combined fractions 2-

4 (left microcentrifuge tube) was compared to fraction 6 (right microcentrifuge tube) under UV light. 

(b) DLS size population measurements of fraction 5 and 6 retrieved after ultracentrifugation. 
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3.4 PEGylation of Fe3O4 NPs 

 

To stabilise Fe3O4 NPs in physiological conditions, PEG chains were linked to the NP 

surface. When Fe3O4-PMAO NPs were in a basic environment, the anhydride ring 

opened. Tetramethylammonium hydroxide (TMAH), 0.1 M, was used to do this. Once 

the anhydride ring was open, carboxyl functional groups are exposed and can react 

with the amine terminal of PEG through EDAC activation; this results in surface 

attachment of PEG to the Fe3O4-PMAO NP (figure 3.4.1). TEM analysis provided 

images of the resulting Fe3O4-PEG NPs (figure 3.4.2.a). Images show the core Fe3O4 

of the NP and the outer shell consisting of the PMAO and PEG. TEM shows 

monodispersed NPs with little-to-no aggregation. Using ImageJ software, the size and 

size distribution of both the Fe3O4 core alone and the Fe3O4 with the shell was 

analysed. Fe3O4 core was a mean diameter was 8 ± 1 nm (figure 3.4.2.b). This is 

comparable to the proposed size of 8 nm from the synthesis method used (Di Corato 

et al., 2008), and to 6 ± 1 nm from AFM analysis of the synthesised Fe3O4 NPs in 

toluene (figure 3.2.1). With the PMAO-PEG outer shell, the diameter increased to 21 

± 3 nm (figure 3.4.2.b) from TEM.  

 



    

 

 

 

            

 

Figure 3.4.1 PEGylation of Fe3O4 NPs. The open anhydride ring allowed easy attachment of monoamine PEG via the amine terminal.  
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Figure 3.4.2 TEM characterisation of Fe3O4-PEG. (a) TEM analysis shows the high contrast from 

Fe3O4 core and the outer shell after PEGylation. Representative images from different grids, scale bars 

indicated (b) Size distribution, measured from the TEM images, was used to compare Fe3O4 core size 

against Fe3O4-PMAO with the outer shell. Mean diameter of Fe3O4 core alone was 8 nm (SD ± 1) and 

with the outer core mean diameter was 21 nm (SD ± 3); 100 NPs were analysed using ImageJ software.  
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3.5 Conjugation of PEG and α-MSH peptide 

 

The α-MSH peptide was identified as a suitable targeting molecule for the desired 

application of Fe3O4-NPs (see chapter 5).  Prior to attachment to Fe3O4-PEG NPs, α-

MSH peptide and a scrambled control were tested to see if they promoted cell 

proliferation or caused toxicity. As a targeting molecule for a chemotherapeutic drug 

delivery system, it would not be advantageous for it to promote cell proliferation to 

non-targeted cells. The α-MSH peptide is an agonist for the receptor melanocortin 1 

(MC1R) expressed on the cell surface of melanocytes and melanoma cells (Kennedy 

et al., 2001). Upon interaction with α-MSH peptide, MC1R initiates a signalling 

cascade that ultimately leads to the activation of genes for a cellular response, 

including initiating cell proliferation (Busca and Ballotti, 2000). As a result, cell 

viability was tested using MTT assay in melanoma cell lines (M202, SK-MEL-28, and 

A375) and a non-melanoma cell line (A549). After exposure up to 100 µg/ml of both 

α-MSH and a scrambled version of the same peptide for 24 h, there was no significant 

loss of cell viability or evidence of promotion (figure 3.5.1). As a result, it was a viable 

peptide for attachment to Fe3O4-PEG.  
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Figure 3.5.1. Cell viability assay after exposure to α-MSH and scrambled peptide. Melanoma (M202, SK-MEL-28, and A375) and non-melanoma (A549) cell lines were 

exposed to α-MSH and scrambled peptide for 24 h before cell viability was assessed using MTT assay.  All values normalised to vehicle, mean ± SEM, n = 3. 



Chapter three 

  

 

144  

 

For functionalisation of Fe3O4 with α-MSH, firstly α-MSH was conjugated to 

t-Boc amine PEG NHS ester using N, N-Diisopropylethylamine (DIPEA) to produce 

PEG-PEP (figure 3.5.2; (Hamley, 2014)). The PEG t-Boc protection group  was then 

removed to expose the amine at the PEG end of PEG-PEP. Deprotection of tBoc was 

achieved by using 4 M HCl in anhydrous dioxane solution (method 2.1.7; (Han et al., 

2001)). MALDI mass spectrometry (MS) was used to characterise PEG, PEP, and to 

confirm conjugation of both. MALDI MS of PEG 2000 contained a main peak just 

above 2000 Da, as expected (figure 3.5.3). A peak was also seen at ~ 4000 D due to a 

small population of dimerised PEG. α-MSH peptide alone had a MALDI mass spectra 

with a peak at 1770 Da as expected (figure 3.5.4). After conjugation using DIPEA, 

MALDI mass spectrometry showed a peak at ~ 4000 Da as a result of the 1700 Da 

PEP with the 2000 Da PEG (figure 3.5.5). There was also a peak related to the 

unreacted PEP and a peak at ~ 6000 Da where PEP had attached to the small population 

of dimerised PEG. After purification by dialysis through a 2 kDa nitrocellulose 

membrane, the excess PEP was removed from the sample as seen from the lack of a 

peak at 1700 Da on the MALDI mass spectra (figure 3.5.6).  
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Figure 3.5.2 Structure of the conjugated PEG α-MSH peptide. (a) Amino acid composition of α-

MSH (NDP-MSH) with the NH2 of the lysine protected with Dde group. (b) The NH2 terminal of the 

peptide chain (R) reacts with the NHS ester on the PEG (R’) to form a peptide bond (Hamley, 2014). 

(c) The resulting conjugated PEG-PEP.  
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Figure 3.5.3 MALDI mass spectrum of PEG 2000. A large peak at ~ 2280 Da showed the PEG 2000 

before purification. A peak at ~ 4360 Da represented dimerised PEG 2000.  
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Figure 3.5.4 MALDI mass spectrum of α-MSH peptide. A single peak at ~ 1770 Da confirmed the 

presence of α-MSH peptide. 
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Figure 3.5.5 MALDI mass spectrum of PEG 2000 and α-MSH in the reaction mix. The reaction 

mix before purification, contained α-MSH PEP alone (peak at ~ 1770 Da), conjugated PEG-PEP (peak 

at ~ 4000 Da), and the dimerised PEG conjugated to PEP (peak at ~ 6200 Da).  
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Figure 3.5.6 MALDI mass spectrum of PEG 2000 conjugated to α-MSH. PEG-PEP was purified by 

dialysis for 3 days in a 2 kDa nitrocellulose membrane. Dialysis was performed against PBS at room 

temperature. The purified reaction mix contained conjugated PEG-PEP (peak at ~ 4000 Da) and the 

dimerised PEG conjugated to PEP (peak at ~ 6200 Da).  
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Further characterisation was achieved by high performance liquid 

chromatography (HPLC) analysis. HPLC retention time for PEP alone through a 

Phenomenex C18 column (conditions stated in methods 2.2.8) was ~ 1000 s  (figure 

3.5.7). After conjugation of PEG-PEP, HPLC retention times were ~ 80 s for free PEG, 

~ 1000 s for free PEP, ~ 1250 sfor PEG-PEP, and ~ 1400 s for the dimerised PEG-

PEP. Again, PEG-PEP was purified by dialysis through a 2 kDa nitrocellulose 

membrane (figure 3.5.8.a). The HPLC chromatograph shows that the free PEG and 

free PEP had been removed from the sample as there is no peak at 80 and 1000 s 

(figure 3.5.8.b).  
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min 

 

Figure 3.5.7 HPLC chromatogram of α-MSH peptide. Peptide alone had a retention time of ~ 18 

min (1000 s). 
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Figure 3.5.8 HPLC chromatogram of PEG 2000 and α-MSH. (a) PEG 2000 and α-MSH in the 

reaction mix. The peaks represent free PEG (80 s), free PEP (1250 s), and PEG-PEP (1400 s). (b) PEG-

PEP was purified by dialysis for 3 days in a 2 kDa nitrocellulose membrane. Dialysis was performed 

against PBS at room temperature.  

  

a 
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 3.6 Attachment of PEG-PEP to Fe3O4-PMAO 

 

Commercial α-MSH peptide was conjugated to PEG as previously described (figure 

3.5.2 and method 2.1.7). Excess PEG-PEP was removed from Fe3O4-PEP by dialysis 

against PBS pH 7.4, 0.31 osmol using a dialysis membrane with MWCO of 2 kDa for 

24 h. To assess the attachment of PEG-PEP to Fe3O4-PMAO, samples for ATR-FT-IR 

were dried under vacuum using a Schlenk line. Powdered samples were then measured 

on the optically dense diamond crystal of a Perkin-Elmer ATR-FT-IR spectrometer.  

First, Fe3O4 oleate NPs were analysed. FT-IR spectrum showed peaks at 2852 

and 2922 cm-1 which were attributed to the asymmetrical CH2 and the symmetrical 

CH2 bands associated to the stretching vibrations from the oleic acid coating the Fe3O4 

NP (Yang et al., 2010); figure 3.5.9). Further evidence of oleic acid from CH3 can be 

seen at 1409 cm-1 as well as the C=O stretching vibration at 1710 cm-1 (Wu et al., 

2004). A broad peak could be seen at ~ 3400 cm-1 attributed to the carboxylic acid 

from the oleic acid on the surface of the Fe3O4 NPs (Sun et al., 2007). There is a large 

peak at 580 cm-1 due to the Fe–O bonds from the Fe3O4 core.   

After coating with PMAO and PEG, Fe3O4-PEG NP FT-IR spectrum showed 

a decrease in the peaks at 2852 and 2922 cm-1 (from the oleic acid), and 580 cm-1 (from 

the Fe3O4 core) due to the core and oleic acid being masked by the PMAO and PEG 

(figure 3.5.10). Moreover, a peak at 1217 cm-1 , attributed to C-O-C present in PEG, 

confirmed the presence of PEG on the surface of Fe3O4 NPs (Le Thi Mai et al., 2009).  

FT-IR was also used to confirm successful attachment of PEG-PEP to Fe3O4-

PMAO (to produce Fe3O4-PEP NPs). As with Fe3O4-PEG (figure 3.5.10), there was a 

decrease in the oleic acid peaks 2852 and 2922 cm-1, and the peak from the Fe3O4 core 
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at 580 cm-1
, due to the masking of the inner most molecules after addition of PEG-PEP 

(figure 3.5.11). The peak at 1217 cm-1, attributed to C-O-C in PEG, remained, again 

suggesting PEG-PEP was conjugated to Fe3O4-PMAO NPs. Furthermore, the FT-IR 

spectrum for Fe3O4-PEP showed peaks at both 1642 and 1559 cm-1 which were 

assigned to amide I (1600-1700 cm-1) and amide II (1500-1560 cm-1) bonds (Cai and 

Chen, 2007, Kouassi et al., 2005, Le Thi Mai et al., 2009), due to the amine groups of 

the amino acids in the peptide chain (figure 3.5.11). Overall, this data shows that the 

PEG-MSH peptide could be easily conjugated on to the surface of Fe3O4-PMAO NPs. 
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Figure 3.5.9 FTIR spectrum of Fe3O4. The large peak at 580 cm-1 is indicative of the Fe-O from the 

Fe3O4 core. Other important peaks from bonds found in the oleic acid, demonstrating that oleic acid is 

on the surface of the NP, include CH2 (2852 and 2922 cm-1), CH3 (1409 cm-1), C=O (1710 cm-1), and 

the OH (broad peak at 3400 cm-1).  
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Figure 3.5.10 FTIR spectrum of Fe3O4-PEG. A peak at 580 cm-1 is indicative of the Fe-O from the 

Fe3O4 core. The oleic acid can be seen from bonds such as the CH2 (2852 and 2922 cm-1), CH3 (1409 

cm-1), C=O (1710 cm-1), and the OH (broad peak at 3400 cm-1). The addition of PEG led to a peak at 

1217 cm-1 due to the C-O-C bond.  
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Figure 3.5.11 FTIR spectrum of Fe3O4-PEG-PEP. A peak at 580 cm-1 is indicative of the Fe-O from 

the Fe3O4 core. The oleic acid can be seen from bonds such as the CH2 (2852 and 2922 cm-1), CH3 (1409 

cm-1), C=O (1710 cm-1), and the OH (broad peak at 3400 cm-1). A peak at 1217 cm-1 is visible due to 

the C-O-C bond in PEG. Peaks at 1642 and 1559 cm-1 (from amide I and II bonds) confirm the presence 

of PEP on the surface of the NP.  
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3.7 Discussion  

 

Due to their SPM properties, Fe3O4 NPs are useful tools in biomedical applications 

(Cheng et al., 2005, Gao et al., 2009). In particular, these properties can be exploited 

in the field of oncology and utilised as both therapeutic and diagnostic tools (Wang et 

al., 2007). In order to achieve this, the Fe3O4 core of the NP must be within a certain 

size range and, more importantly, with a limited size distribution. This uniformity 

allows Fe3O4 NPs to act in unison to produce a SPM effect (Jordan et al., 2009).  

A major challenge in the use of Fe3O4 NPs in biomedicine is the lack of control 

of shape, size, and size distribution during synthesis (Mohapatra and Anand, 2010). 

Chemical precipitation is a simple and efficient method of Fe3O4 NP synthesis, 

however there is limited control of size distribution (Tartaj et al., 2006). Hydrothermal 

decomposition of iron salts, as used in this work, produced Fe3O4 NPs with the core 

mean diameter > 10 nm (7.8 ± 1.0 nm, figure 3.3.1) and a highly monodispersed size 

population. Within this size range, Fe3O4 should exhibit SPM properties required for 

MRI diagnostics and thermal ablation therapy. Furthermore, Fe3O4 NPs were easily 

functionalised for phase transfer with PMAO via the oleate on the NP surface.  

Although purification by size exclusion chromatography resulted in NP 

fractions with narrow size distributions (table 3.2.1), the process was inefficient and 

lead to a loss in yield. Ultracentrifugation through a sucrose gradient was used as an 

alternative purification method (figure 3.2.4) which provided a quick and efficient way 

to remove excess PMAO micelles from the NP sample. Ultracentrifugation resulted in 

a monodispersed population of Fe3O4-PMAO NPs (PDI ~ 1.7) that were dispersed in 

aqueous phase.  
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Further functionalisation was achieved by the attachment of PEG (MW 2000) 

to the surface of the NP. PEG has previously been shown to increase NP stability and 

improve circulation time of the NPs (Jokerst et al., 2011, Otsuka et al., 2003, Yoo et 

al., 2010). FT-IR confirmed the presence of PEG on the surface of Fe3O4 NPs, to 

produce Fe3O4-PEG NPs, by identification of key chemical bonds. The targeting 

peptide (α-MSH) was added to PEG prior to attachment to the NPs. MALDI mass 

spectrometry and HPLC confirmed the conjugation of the 1700 Da peptide to the 2000 

Da PEG (figure 3.4.6, 3.5.8.a). PEG-PEP was then purified which successfully 

removed both the free PEG and free PEP (figure 3.5.7, 3.5.8.b). After conjugation of 

PEG-PEP with DIPEA, the tBoc group on the N terminal of the PEG was deprotected 

using 4 M HCl in dioxane. Successful attachment of PEG-PEP to Fe3O4-PMAO using 

carbodiimide was measured using FT-IR. As with Fe3O4-PEG, FT-IR showed a 

reduction in the peaks caused by bonds from oleic acid (1409 cm-1, 1710 cm-1, 2852 

cm-1, and 2922 cm-1) and Fe3O4 (580 cm-1). This reduction was due to masking of the 

inner most molecules as a result of addiction molecules added to the surface. A peak 

at 1217 cm-1 was also indicative of the C-O-C bond found in PEG. Furthermore, peaks 

at 1642 and 1559 cm-1, assigned to amide I and amide II respectively, found in peptide 

bonds, were observed in the Fe3O4-PEP NPs. This suggests that there was an increase 

in peptide bonds on the surface of Fe3O4 NPs from effective conjugation of PEG-PEP. 

While FT-IR confirmed the presence of PEP on the surface of Fe3O4-PEP NPs, it does 

not quantify the amount of peptide that was successfully attached. The amount of 

targeting peptide available on the surface of the NP has a direct impact on cellular 

uptake and specificity (Broda et al., 2015, Gao et al., 2013). HPLC can be used to 

quantify the amount of free peptide in order to calculate the concentration of peptide 

attached to the surface of the NP (Zhang et al., 2014). Other groups have measured the 
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amount of protein on the NP surface directly using protein quantitation kits (Yu et al., 

2010). 

 Although PEG is well established as a stabilising agent for Fe3O4 NPs (Amstad 

et al., 2011), more work must be done to identify the stability of Fe3O4-PEG NPs (and 

after conjugation with PEG-PEP). The colloidal stability of the NPs was assessed 

before each biological assay (table 3.7.1), but no formal identification as to the long 

term stability was established. Lu et al., using NPs conjugated with the α-MSH peptide 

and PEG, found the NPs were stable for at least 24 h at 37 oC in 2.5 mM sodium citrate, 

PBS, 10% serum, and 100% serum (Lu et al., 2009). The results were comparable 

between NP-PEG and NP-PEG- α-MSH, suggesting the α-MSH peptide did not alter 

the colloidal stability within the first 24 h. NPs without the PEG coating aggregated in 

PBS, 10% serum, and 100% serum (Lu et al., 2009).  

  



Chapter three 

  

 

161  

 

  

Table 3.7.1 Size summary of Fe3O4 NPs from AFM, TEM, and DLS. Errors shown 

as ± SD.  

 

  

  

 AFM TEM DLS 

Fe3O4 NP  6 nm ± 1 8 nm ± 1 - 

Fe3O4-PMAO - 21 nm ± 3 25 nm ± 2 

Fe3O4-PEG - - 55 nm ± 1 

Fe3O4-PEP - - 57 nm ± 4 
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The scope of this work did not require large volumes of Fe3O4 NPs, and so it 

was focused on the synthesis of highly monodispersed population of NPs. However, 

for future applications, the scale-up of this methodology must be considered. As 

previously discussed, the size and size distribution of biomedical Fe3O4 NPs must be 

carefully controlled in order to produce NPs capable of exploiting the enhanced 

permeability and retention (EPR) effect (Maeda et al., 2013); section 1.3.2) and 

displaying SPM properties (Sonvico et al., 2005). In this respect, the method of 

synthesis is critical. The different synthesis methods for Fe3O4 NPs have their 

advantages and disadvantages. Although co-precipitation method is simple and could 

be easily scaled-up, the resulting NPs often have a broad size distribution. Synthesis 

by thermal decomposition, as demonstrated in this work, produces a narrow size 

distribution and provides a method which allows easy control of NP size; important if 

the NP is used for biomedical applications (Gonzalez-Moragas et al., 2015). However, 

the high temperature and long reaction times may make it difficult to be scale-up 

efficiently. Other methods of thermal decomposition to produce Fe3O4 NPs have been 

explored, specifically with the aim of scale-up (Gonzalez-Moragas et al., 2015). In this 

work, we have demonstrated that purification via ultracentrifugation through a sucrose 

gradient produced a NP population free of excess polymer and aggregates. However, 

using this method limits the volume of NP solution that can be purified at one time 

and the dialysis times between steps is long. An alternative to the extended waiting 

time whilst the sample is dialysing is to use a tangential flow filtration system; this has 

previously been used to remove excess surfactant from PEGylated NPs (Dalwadi and 

Sunderland, 2007) and did not have any adverse effects on the SPM properties of 

Fe3O4 NPs (Zaloga et al., 2015).  
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Overall, this chapter has demonstrated the successful synthesis, purification, 

and functionalisation of Fe3O4-PEP NPs. These NPs can be further developed to 

contain hydrophobic drugs in their polymeric shell to produce a theranostic NP able to 

function as both a diagnostic agent and as an anti-melanoma therapeutic system. 
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4. Development of a preclinical tool for predictive analysis of 

nanomaterial safety 

 

4.1 Introduction 

 

Research and development of biomedical nanomaterials (NMs) is currently amongst 

the most rapidly evolving area in drug delivery and biomedical imaging. Biomedical 

NMs are being developed for a vast number of disease states, notably cancer, 

infectious diseases, cardiovascular disorders, and immune and degenerative diseases 

(Brigger et al., 2012, Heckman et al., 2013, Lanza et al., 2006, Lin et al., 2013). The 

unique physico-chemical properties of NMs, such as size, composition, and surface 

area-to-volume ratio, contribute to their desirability as a drug delivery system. 

Although these characteristics can be advantageous to a drug delivery system they can 

also add to the complexity when investigating potential toxicity. Size, in particular, 

has been highlighted as an important physical characteristic of a NM when predicting 

potential toxicity (Nel et al., 2006, Oberdorster et al., 2005). Size-dependent toxicity 

has been demonstrated in a number of NMs, notably silver (Ivask et al., 2014, 

Kasemets et al., 2014, Kim et al., 2012) and gold (Coradeghini et al., 2013). The small 

size and high surface area-to-volume ratio contributes to the highly reactive nature of 

NMs (Oberdorster et al., 2005).  

As well as delivering therapeutic compounds, multi-model NMs can be 

functionalised with imaging agents to be used as both a diagnostic and therapeutic 

tools (Boisselier and Astruc, 2009, Brigger et al., 2012, Mornet et al., 2004).  Systemic 

toxicity, caused by non-specificity of drugs, can be overcome by functionalisation with 
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targeting moieties, such as peptides or antibodies, to target specific cell types or 

abhorrent proteins as part of a mutated cellular signalling pathway. Nevertheless, there 

are innumerable core materials and surface modifications, often non-FDA approved 

components, available to consider when designing NPs for biomedical use. This leads 

to vast permutations of physico-chemical properties and a complex task to predict 

potential toxicity.  

Despite the ever-increasing production of novel NMs for biomedical use, few 

have been approved by the Food and Drug Administration (Anselmo and Mitragotri, 

2016, Venditto and Szoka, 2013). The lack of a regulatory framework to assess the 

potential toxicity of a novel NM is restricting the transfer of many promising 

nanotherapeutics into a clinical environment (Desai, 2012). It is often difficult to 

acquire accurate toxicity results on novel engineered nanoparticles due to their poor 

physical chemical characterisation, which is frequently unpredictable in biological 

environments, and a lack of pre-clinical screening.   

Although in vitro models provide a quick and easy assessment of potential 

nanotoxicity, there can often be disagreement between in vitro and mammalian in vivo 

toxicology results (Joris et al., 2013).  Mammalian models, such as the mouse or rat, 

provide detailed assessment of toxicity; however at the early stage of a novel NM’s 

development it is not often feasible to use a higher organism model, which is 

considered expensive and time consuming. Furthermore, it would not be in keeping 

with the 3R’s (replacement, reduction, and refinement) outlined by the National Centre 

for the Replacement Refinement and Reduction of Animals in Research, which 

provides a framework for human animal research. Current initiatives such as ‘Tox 21’ 

aim to change the way toxicology is performed, providing alternatives to using rodent 

models and prioritising chemicals, which would need more extensive and costly 
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toxicological evaluation (Hsieh et al., 2015). It would be advantageous to use an in 

vivo model that could bridge the gap between in vitro cell based assays and a 

mammalian model. As a result, more primitive organisms such as Caenorhabditis 

elegans (a nematode) (Mohan et al., 2010, Wang et al., 2009), Danio rerio (zebrafish) 

(Asharani et al., 2008, George et al., 2011, Kim et al., 2013), and Xenopus laevis 

(African clawed frog) (Leconte and Mouche, 2013, Marcon et al., 2010), are being 

investigated as potential in vivo toxicity models.  

C. elegans has been an important model organism since the early 1960s when 

it was introduced as a tool for research (Brenner, 1974). In particular, it has been a 

successful model in developmental biology (including programmed cell death and 

ageing) and neurology (Bargmann, 1998), in part due to the short life cycle and the 

complete fate mapping of somatic cells.  It has also been proposed as an inexpensive 

animal model for drug screening as it is easy to administer water-soluble compounds 

and screen for resulting apoptotic responses. However, as with other invertebrates, 

there is little correlation between the anatomy of C. elegans and that of humans. 

Specifically, the lack of vascular and digestive systems, including the liver, kidneys, 

and pancreas, restricts C. elegans’ use as an appropriate system for assessing the 

potential risk of NMs to human health. The vertebrate systems of Danio rerio and 

Xenopus laevis both have considerable advantages as tools for assessing potential NM 

toxicity. As vertebrates, they have digestive, skeletal, and nervous systems, as well as 

a closed circulatory system. The analysis of these systems after nanoparticle exposure 

is important to ascertain any potential toxicity to human health. Xenopus has a long-

running history in toxicity testing, such as the frog teratogenesis assay-Xenopus 

(FETAX) assay, which provides high predictability of teratogens in mammals 

(Mouche et al., 2011). 
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We propose using the African clawed frog Xenopus as a suitable in vivo system 

for the toxicity assessment of novel NMs (Bacchetta et al., 2012, Nations et al., 2011). 

Xenopus is a higher vertebrate system that has been used at the forefront of 

developmental biology and has been highlighted for its use as a model for chemical 

genetic screening (Wheeler and Liu, 2012). There are many benefits to using Xenopus 

as an in vivo toxicity model including a relatively simple procedure to generate 

embryos resulting in high yields, an important consideration if the model is to be used 

in a high-throughput screening (HTS) assay. Xenopus start-up and maintenance costs 

are relatively low, making them a cost effective model compared to mammalian 

alternatives (Wheeler and Brändli, 2009). External development of the embryo allows 

for temporal control over the exposure to NMs, allowing investigation into the toxic 

affects during significant stages during embryogenesis, such as gastrulation and 

neurulation. Many embryos can be externally exposed to NM solution during their 

development. Exposure through embryogenesis can be used to determine any 

teratogenic effects, or the embryo can be exposed after organogenesis in order to 

determine any toxicity to organs simulating a more ‘adult’ model. Furthermore, the 

Xenopus developmental stages are well characterised making it an ideal model for 

phenotypic assays (Tomlinson et al., 2012). The sensitivity of embryos during 

development can be exploited to identify varying degrees of toxicity by a range of 

phenotypic abnormalities and give an indication into safe dosages, information not 

often accurately known before assessment in a mammalian model. 

This chapter will outline the methodology a nanotoxicity screening assay 

(figure 4.1.1) that involves an initial physico-chemical characterisation of the NMs in 

the biological environment and combines the sensitivity of X. laevis embryos during 

development in parallel with in vitro testing in mammalian cell lines to provide a 
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hierarchical, rapid, and low cost approach to assess NM toxicity. The system has been 

tested using four different nanoparticles (NPs); CdSe NPs (QDs), PEGylated 

magnetite NPs (Fe3O4-PEG), amine-functionalised magnetite NPs (Fe3O4-NH2), and 

fluorescent carboxylated polystyrene NPs (PS-COOH).  
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Figure 4.1.1 Nanotoxicology assay workflow. A NP in the early stages of development is firstly 

characterised in the assay buffers, cell media (RPMI + supplements) and embryos culture media (0.1 x 

MMR).  Particles that are unstable and aggregate in assay buffers must be redesigned or modified to 

increase stability. Once a stable particle is fully characterised, it will undergo an integrated toxicity 

screening protocol combining, in parallel, cytotoxicity assays in a range of cell lines and X. laevis 

ranking of phenotypic abnormalities.  The combined results produce a hazard ranking that indicates if 

the NP should advance for further development and toxicity screening in a rodent model. 
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4.2 Nanoparticle characterisation   

 

Several core materials are unsuitable for use in a biological system. Cadmium selenide 

quantum dots (QD), for example, show high levels of toxicity in several cell lines (Guo 

et al., 2007). Other Cd based core QD, such as CdTe, also show toxicity (Lovric et al., 

2005). The mechanism of toxicity for Cd core based QD is unknown but thought to be 

due to leaching of Cd2+ ions after core degradation in the cell. To this end, Derfus et 

al. demonstrated a correlation between surface oxidation, leading to the release of Cd 

ions and toxicity (Derfus et al., 2004). As it is well established that CdSe QD are highly 

toxic, we have used these NPs as a positive control in our assay. There are core 

materials thought to be biocompatible due to lack of toxicity, which as a result have 

high potential as drug delivery systems. Amongst these are iron oxide NPs, currently 

the only clinically approved metal oxide core (Qiao et al., 2009), and polystyrene 

nanoparticles (Fahmy et al., 2005).  We have used two iron oxide NPs with different 

surface functionalisation and physical chemical stability, as well as inert polystyrene 

particles to test the suitability of the methodology in detecting any possible related 

toxicity effects.  

QDs were synthesised in house as described in materials and methods 2.1.1 

(Ahire et al., 2015). Typically, core diameter for QD was 5 nm from TEM (figure 4.2.1 

and 4.2.2) with a hydrodynamic diameter in aqueous solution of 21 nm and a PDI of 

0.1 from DLS (figure 4.2.3). Commercial PS-COOH had a mean core diameter of 23 

nm and a hydrodynamic diameter in water of 345 nm, PDI 0.2 (figure 4.2.3). 



  

 

 

 

 

 

Figure 4.2.1 TEM analysis of NPs.  Representative images of QD, Fe3O4-PEG, PS-COOH and Fe3O4-NH2 NPs. 

QD Fe3O4-PEG PS-COOH Fe3O4-NH2 
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Figure 4.2.2 Size distribution of NPs. Distribution of NP diameter (nm) from TEM analysis. For each 

NP, 100 particles were analysed from representative TEM images with respective mean diameters of 5, 

6, 23, and 11 nm for QD, Fe3O4-PEG, PS-COOH, and Fe3O4-NH2 NPs. NPs were measured from 

different areas of the copper grid.  
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Figure 4.2.3 NP hydrodynamic size distribution from DLS.  NPs were dispersed into MQW apart 

from Fe3O4-PEG which was dispersed in PBS. Respective hydrodynamic diameters (Z-ave) of 21, 22, 

35, and 90 nm for QD, Fe3O4-PEG, PS-COOH and Fe3O4-NH2 NPs.  
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Table 4.2.1 Summary of NP characterisation in different buffers. NPs were dispersed in the 

different assay mediums, water (PBS*), RPMI-1640, and 0.1 x MMR. Hydrodynamic diameter, 

analysed using DLS, was compared to the core size using TEM. Error shown as standard deviation. 

 

 

*Fe3O4-PEG analysis in PBS 

  

 TEM Water (PBS*) RMPI-1640 10% FBS 0.1 x MMR 

D 

(nm) 

DH 

(nm) 

PDI ζ-potential 

(mV) 

DH 

(nm) 

PDI DH 

(nm) 

PDI 

QD 5 ± 2 21 ± 2 0.1 - 27 ± 0 108 ± 1 0.7 122 ± 2 0.1 

Fe3O4-PEG 6 ± 1 22 ± 0 0.2 - 4 ± 2 33 ± 3 0.2 22 ± 1 0.2 

PS-COOH 23 ± 6 35 ± 1 0.2 - 37 ± 2 75 ± 1 0.2 35 ± 1 0.2 

Fe3O4- NH2 11 ± 3 90 ± 1 0.2 + 30 ± 4 294 ± 2 0.4 2268 ± 96 0.2 
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Characterisation of the commercial Fe3O4-NH2 showed a mean core diameter 

of 11 nm and a greatly increased hydrodynamic diameter of 90 nm, PDI 0.2, from the 

DLS (figure 4.2.3); indicative of the formation of Fe3O4-NH2 clusters in aqueous 

solution. On the other hand, the in-house synthesised Fe3O4 NPs, mean core diameter 

6 nm, were stabilised using a PEG coating. This is evident in the low hydrodynamic 

diameter of 22 nm, PDI 0.2 (figure 4.2.3).  

It is also important to characterise the physico-chemical properties of the NPs 

in the relevant assay buffers to surmise if toxicity profiles are dependent on the 

material and components of the NP or due to aggregation. The salt buffer (0.1 x MMR) 

and cell growth media with 10% FCS was used to simulate conditions of each assay, 

including incubation over 72 h at 18 oC and 37 oC respectively. Although stable in 

aqueous solution, in the assay buffers QD and Fe3O4-NH2 showed some instability and 

aggregation (table 4.2.1). It is evident that the stability of these electrostatically 

stabilised NPs (table 4.2.1) is affected by the salt concentration in the MMR. In the 

presence of proteins, from the FCS supplemented media, aggregation in 

electrostatically stabilised NPs is reduced. This is due to the formation of NP-protein 

complexes to form a protein corona (Di Silvio et al., 2015, Walczyk et al., 2010). NP-

protein can be seen in all particles (table 4.2.1 and figure 4.2.4); however, after the 

initial increase in size when exposed to RPMI 10% FCS the size remained stable over 

the 72 hr at 37 oC.  
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Figure 4.2.4 Stability of NPs in assay buffers. Mean hydrodynamic diameters of NPs dispersed in 

assay buffers over 72 hr to assess colloidal stability. Error bars shown are SD. 
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4.3 Cell-based cytotoxicity analysis  

 

Cell-based assays are routinely used as a platform to evaluate the potential toxicity of 

a novel NM and, typically, they are used as a first screen in toxicological assessment 

(Monteiro-Riviere et al., 2009). Cytotoxicity assays are often based on identifying cell 

viability and/or cell stress after immortalised cell lines are exposed to NMs in a 

monoculture. The cell line used is often dependent on the target organ expected to 

experience NM exposure in vivo. After acute exposure to NMs, commonly ranging 

from 3 to 48 hr, the resulting cell viability is assessed by a biochemical assay. We have 

used 3 cell lines; A549 lung cancer, SK-MEL-28 melanoma, and MDCK canine 

kidney. These cell lines were selected as they represent easy to grow lines that are 

readily available for most research groups.   

Initially, cell morphology was observed after 72 hr exposure to the four NPs at 

high concentrations in the three lines (figure 4.3.1). The control, without NP exposure, 

shows the healthy morphology and confluency of the cells. After exposure to 1015.8 

NP/ml QD, there is a significant loss in cell viability and the remaining cells appear 

rounded and unhealthy. Fe3O4-PEG at 1015.3 NP/ml had no significant visible effect on 

morphology and confluency across all three cell lines. At relevant concentrations, PS-

COOH appears to have a small toxic effect, especially on the SK-MEL-28; the 

morphology is more rounded as they become detached from the plate and there is a 

noticeable loss of cells. Fe3O4-NH2 also showed signs of toxicity. Noticeably, 

aggregates of Fe3O4-NH2 can be seen on the surface on the cells.  
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Figure 4.3.1 Cell morphology after exposure to NPs.  Cells were exposed to 1015.8 NP/ml QD, 1015.3 

Fe3O4-PEG, 1015.9 PS-COOH, and 1016.5 Fe3O4-NH2 NPs for 72 hr. Shown are the resulting 

representative bright field images of the cell monolayers at 10 x magnification. Size bars 100 μm. 
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Basic cell viability assays, such as the Trypan Blue exclusion assay, are 

convenient as preliminary screening tools to identify potential toxicity. Trypan Blue is 

a diazo dye that is excluded by the intact membrane of healthy cells. The dye is able 

to pass the membranes of non-viable cells with a compromised membrane (Strober, 

2001), resulting in accumulation of the blue dye in the cytoplasm of the cell. Counting 

the stained cells, using a haemocytometer, indicates cell viability after exposure to 

NPs. Fe3O4-PEG and PS-COOH showed no significant toxicity up to the highest 

concentration of 1015.3 NP/ml and 1015.9 NP/ml respectively (figure 4.3.2). QD showed 

a loss of 50% viability in all cell lines at ~1013 NP/ml and dose dependent toxicity was 

observed; cell viability was reduced to >15% after exposure to 1015 NP/ml. Fe3O4-NH2 

at 1013.8 and 1014.2 showed minimal (A549) and no significant toxicity (SK-MEL-28 

and MDCK). However, after 72 hr exposure to 1015.5 NP/ml, Fe3O4-NH2 causes 

significant toxicity and in the three cell lines there was a mean cell viability of between 

45-52% (figure 4.3.2).  

It is important that different cytotoxicity assays are employed to determine the 

potential toxicity of a NP. Whilst the Trypan Blue may indicate no toxicity due to an 

intact membrane, other damage, such as mitochondrial damage or cell stress may 

occur.  Enzymatic assays with a spectrophotometric read out, such as MTT (3-[4,5-

dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), are quick and easy, and can 

provide an abundance of data for statistical analysis. The MTT assay relies on the 

reduction of tetrazolium salt to a formazan product by the cytochrome in the 

mitochondria of viable cells (Mosmann, 1983). The resulting formazan product, a dark 

blue precipitate, can be easily measured using a spectrophotometer (λmax 565 nm), 

allowing viable cells to be quantified. MTT was able to detect dose dependent toxicity 

of the positive control QD after 72 hr exposure at concentration range between 1012.8 
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and 1015.8 NP/ml (figure 4.3.3). At 1015.8 NP/ml QD cell viability for A549, SK-MEL-

28, and MDCK was reduced to 11.7%, 15.8%, and 21.7%, respectively.  
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Figure 4.3.2 Trypan blue analysis after NP treatment. A549, SK-MEL-28, and MDCK cell lines 

were exposed to different concentrations of QD, Fe3O4-PEG, PS-COOH, and Fe3O4-NH2 NPs. 

Cytotoxicity was evaluated by counting the number of viable cells using Trypan Blue after 72 h NP 

exposure. Percentage cell viability was calculated by normalising cell count to control cells. Error bars 

show SEM.   
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Figure 4.3.3 MTT analysis after NP treatment. A549, SK-MEL-28, and MDCK cell lines were 

exposed to different concentrations of QD, Fe3O4-PEG, PS-COOH, and Fe3O4-NH2 NPs. Cytotoxicity 

was evaluated MTT assay after 72 h NP exposure. Percentage cell viability was calculated by 

normalising cell count to control cells. Error bars show SEM. 
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In A549 and SK-MEL-28 cell lines, Fe3O4-PEG, Fe3O4-NH2, and PS-COOH 

induced no significant loss of cell viability. As the only non-cancerous cell line (yet 

immortalised), MDCKs appeared to be more sensitive to NP exposure. MDCK cell 

viability was reduced to ~58% after exposure to 1016.5 NP/ml Fe3O4-NH2 and after 

exposure to 1015.9 NP/ml PS-COOH cell viability was 77%.  

In nanotoxicology it is important to consider different concentration metrics to 

better understand the interaction between the nanomaterials and the cells. Currently, 

there is no metric that is recognised as an international standard. Mass, surface area, 

and number of NPs are the most common dose metrics for nanomaterial toxicity. For 

drug toxicology, mass concentration is perhaps the easiest and most common. A major 

difficultly with using mass-based dose metrics for nanotoxicology is Avogadro’s law; 

the molar mass of a solute is equal to 6.022 x 1023 NPs per mole. NPs in the nanoscale 

do not follow this law. Decreasing NP size, at a given mass, exponentially increases 

the NP number and surface area available to interact with a cell’s surface. The total 

surface area of the particulate material and the total number of NPs that are accessible 

to interact with the cell’s surface have been used as an alternative metrics (figure 4.3.4) 

(Hull et al., 2012, Zou et al., 2015). The number of NPs per ml was calculated by 

working out the mass of a single NP using the density of the material used. The 

concentration, in mg/L from ICP-MS analysis, divided by the mass of a single NP 

results in the number of NPs in a given volume. 



  

 

 

 

Figure 4.3.4 MTT alternative concentration matrices. Analysis of MTT cell viability assay after A549, SK-MEL-28, and MDCK cell lines were exposed to different 

concentrations of QD, Fe3O4-PEG, PS-COOH, and Fe3O4-NH2 NPs. Cytotoxicity was evaluated after 72 h NP exposure. (a) NP concentration expressed as weight to volume 

(μg/ml). (b) NP concentration expressed as surface area to volume (nm2/ml). Percentage cell viability was calculated by normalising cell count to control cells. Error bars show 

SEM. 
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Previous studies have shown that, despite a lack of cell death, exposure to 

nanomaterials can lead to cellular stress and an increase in reactive oxygen species 

(ROS) (Carlson et al., 2008, Filippi et al., 2015, Hussain et al., 2005). Evaluating levels 

of activated poly [ADP-ribose] polymerase 1 (PARP-1) is one way to determine if 

cells are under stress after exposure to NPs. PARP-1, a substrate for active cysteinyl-

aspartate protease cleavage, is activated by internal and external stress stimulus, such 

as the production ROS, and mediates DNA damage response and apoptosis (Tewari et 

al., 1995). In this study, we have evaluated the abundance of the active cleaved PARP-

1 protein as a marker for apoptosis in the response to exposure to NPs. Full length 

PARP-1 protein (116 kDa) is involved in DNA repair and differentiation (Javle and 

Curtin, 2011). Following apoptosis initiation, PARP-1 is cleaved by caspases, notably 

caspase-3, at the C-terminal to an active form (89 kDa). After NP treatment we found 

QDs and the cytotoxic drug cisplatin, the latter used as a positive control, induced 

apoptosis as shown through increased levels of cleaved PARP-1 protein (figure 4.3.5) 

using western immunoblotting. Lower levels of cleaved PARP-1 can be seen in A549 

when compared to SK-MEL-28 and MDCK cell lines after treatment with cisplatin 

and QDs. This shows the importance of using a range of cell lines for cytotoxicity 

analysis to avoid false negative results.   
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Figure 4.3.5 Western blot analysis of PARP-1 cleavage. Protein expression of full length (116 kDa) 

and cleaved (89 kDa) PARP-1 using Western Immunoblotting in A549, SK-MEL-28, and MDCK cell 

lines. Relative levels of full length and cleaved PARP-1 protein were analysed in whole cell lysates 

after 24 h NP stimulation with 70 μM cisplatin (positive control), 1015.8 NP/ml QD, 1015.3 NP/ml PEG-

Fe3O4, 1015.9 NP/ml PS-COOH, and 1015.5 NP/ml NH2-Fe3O4 NPs. Control cells were vehicle treated. -

tubulin (55 kDa) was used as a loading control. Graphs show normalised levels of the full length and 

cleaved PARP-1 calculated from densitometry analysis of the Western Immunoblot. 
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4.4 X. laevis as a multiparametric nanotoxicity assessment tool 

 

X. laevis embryos were exposed to a range of NP concentrations during different stages 

of development (figure 4.4.1). Embryos were selected at NF stage 4 and were 

incubated with NPs until NF stage 38 (NF 4 – 38). At NF stage 4 the X. laevis embryo 

is at 8 cells and continues to undergo cleavage, increasing the cell number. The embryo 

is considered a blastula once at 128 cells and the blastocoel, a fluid-filled cavity, forms 

within the embryo. After cleavage the embryo undergoes gastrulation. ‘It is not birth, 

marriage, or death, but gastrulation, which is truly the most important time in your 

life’. This statement by Lewis Wolpert, a leading developmental biologist, highlights 

the importance and sensitivity of this process. During gastrulation the three primary 

germ layers, the outer ectoderm, inner endoderm, and interstitial mesoderm, are 

produced. The process is sensitive due to the large amount of cell movement 

throughout the embryo, including invagination of bottle cells to form the primitive gut 

(Hardin and Keller, 1988).  

We also selected embryos at NF stage 15 for NP exposure until NF stage 38. 

At NF stage 15, embryos undergo neurulation to form the neural tube. This is also a 

very sensitive stage of embryo development as the neural tube develops into the brain, 

spinal column and neural crest (Davidson and Keller, 1999). Due to the extended 

period of organogenesis, the central nervous system, in particular, is sensitive to 

teratogenic effects. Neural tube defects (NTDs) can occur during neuralation when the 

neural tube fails to close. Common NTDs include spinal bifida and anencephaly 

(Greene and Copp, 2014). Finally, X. laevis at NF stage 38 were selected for exposure 

to NPs until NF stage 45 (figure 4.4.0). For our aim, it is important to look at these 
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later stages of the embryo development, as there are key organs that have been 

developed after NF stage 38. By NF stage 38 the embryonic kidney is functioning with 

a fully formed glomus, which is the filtration device of the X. laevis pronephros, the 

pronephric tubules, which collects filtrate from the glomus, and the pronephric duct 

(Dressler, 2006). The primitive embryonic gut, formed during gastrulation, starts to 

elongate and rotate to form the epithelium-lined lumen of the gut coils at NF stage 41 

through to NF stage 45. Later in X. laevis development, around NF stage 45, the liver 

bud differentiates and starts to display characteristics of hepatic tissue (Blitz et al., 

2006). Therefore, embryos exposed to NPs at the tadpole stage (NF 38-45) are an 

embryonic in vivo system, which more accurately represents an adult system.  

Embryos were exposed to a range of NP concentrations and left to develop 

until they had reached the required NF stage. After fixation, morphological scoring of 

a range of observed phenotypic abnormalities was carried out on 30 embryos per NP, 

concentration, and NF stage. Typical abnormalities recorded included edema, 

blistering, eye deformities, loss of melanocytes, loss of melanocyte migration, tail loss, 

stunted growth, axial defects (such as bent spine), degradation of tissue, and delayed 

development (figure 4.4.1). Grading of toxicity was based on these phenotypic 

abnormalities and embryos were scored as non-abnormal (healthy), abnormal (with 

phenotypic abnormalities), or dead.  

After exposure to QDs, X. laevis showed severe abnormalities even at the 

lowest concentrations and dose dependant toxicity can be seen across all NF stages 

(figure 4.4.2, 4.4.3, and 4.4.4). 



  

 

 

      

 Embryo at nanoparticle exposure Embryo fixed  

NF 4 – 38 NF 4: Eight cell NF 38: Late tailbud 

NF 15 – 38 NF 15: Undergoing neuralation  

NF 38 - 45 NF 38: Late tailbud  NF 45: Tadpole 

 

Figure 4.4.0 Staging of X. laevis embryos. Cartoons depict X. laevis embryos during the different stages of normal development that we selected for NP treatment. Diagrams 

taken from Xenbase and Xenopus laevis staging is based on Nieuwkoop and Faber (1994) Normal Table of Xenopus laevis (Daudin). 
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Figure 4.4.1 Examples of phenotypic abnormalities. Representative images of abnormalities 

observed in the X. laevis phenotypic assay; (i) NF stage 38 control embryo, (ii) NF stage 45 control 

embryo, (iii) embryo exposed to 1015.8 NP/ml QD at NF stage 38 and fixed at NF stage 45, showing 

embryo lethality and tissue degradation, (iv) dorsal view of X. laevis with bent tail, embryo fixed at NF 

stage 38 after exposure to 1014.2 NP/ml, (v and viii) X. laevis exposed to 1015.8 NP/ml QD at NF stage 4 

and fixed when control embryos reached NF stage 38. Abnormalities include eye deformities, stunted 

growth/development, edema, blistering, and melanocyte deformities, (vi and vii) embryo exposed to 

1014.2 NP/ml QD, abnormalities include stunted growth, bent spin, and loss of pigmentation in the eye.  
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Figure 4.4.2. X. laevis phenotypic assay at NF 4 – 38. (a) Representative images of embryos selected 

at NF stage 4 and left to develop in 1015.8 NP/ml QD, 1015.6 NP/ml Fe3O4-PEG, 1015.5 NP/ml PS-COOH, 

and 1015.3 NP/ml Fe3O4-NH2 NP solution until NF stage 38. After fixation embryos were imaged and 

analysed for any developmental abnormalities or death. (b) A total of 30 embryos were analysed for 

each concentration of NP to semi-quantify NP toxicity in X. laevis.  
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Figure 4.4.3. X. laevis phenotypic assay at NF 15 – 38. (a) Representative images of embryos selected 

at NF stage 15 and left to develop in 1015.8 NP/ml QD, 1015.6 NP/ml Fe3O4-PEG, 1015.5 NP/ml PS-

COOH, and 1015.3 NP/ml Fe3O4-NH2 NP solution until NF stage 38. After fixation embryos were imaged 

and analysed for any developmental abnormalities or death. (b) A total of 30 embryos were analysed 

for each concentration of NP to semi-quantify NP toxicity in X. laevis.  
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Figure 4.4.4. X. laevis phenotypic assay at NF 38 – 45. (a) Representative images of embryos selected 

at NF stage 38 and left to develop in 1015.8 NP/ml QD, 1015.6 NP/ml Fe3O4-PEG, 1015.5 NP/ml PS-

COOH, and 1015.3 NP/ml Fe3O4-NH2 NP solution until NF stage 45. After fixation embryos were imaged 

and analysed for any developmental abnormalities or death. (b) A total of 30 embryos were analysed 

for each concentration of NP to semi-quantify NP toxicity in X. laevis.  
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At QD concentrations in excess of 1015.2 NP/ml, all embryos were dead before 

reaching the selected NF stage, and there were clear signs of stunted growth, loss of 

melanocytes, eye deformities, and, in particular when exposed to late tailbud embryos 

(NF 38-45), tissue degradation. Embryo toxicity induced by QDs corresponded with 

QD toxicity in other mammalian developmental systems (Chan and Shiao, 2008), and 

with cytotoxicity data (figure 4.3.3). Fe3O4-PEG, the particle that we have synthesised 

for development into a theranostic NP, showed no toxic effects at any stage of X. laevis 

development. Fe3O4-NH2 NPs showed limited toxicity with exposure to the embryos 

through gastrulation (NF 4-38), the most sensitive stage. At the highest concentration 

of 1016.2 NP/ml Fe3O4-NH2 nearly all embryos of all stages were dead and aggregation 

of the NPs could be seen on the surface of the X. laevis. The toxicity of Fe3O4-NH2 in 

X. laevis, at a concentration in excess of 1016 NP/ml, is in agreement with cytotoxicity 

data in the MDCK cell line. Interestingly, PS-COOH NPs, which showed no effect on 

cell viability by the in vitro assays (figure 4.3.2 and 4.3.3), but at the higher 

concentrations evaluated, >1014 NP/ml, high toxicity was observed in the embryos at 

all stages. At lower concentrations, PS-COOH showed moderate toxicity, particularly 

when exposed to NF stage 4 embryos (figure 4.4.2).  

 

4.5 Uptake of NPs in X. laevis  

 

 For Fe3O4-PEG and PS-COOH NPs, which showed limited or no toxicity, it 

was important to investigate uptake of the NPs in X. laevis embryos to negate that 

absence of toxicity was due to a lack of internalisation of the NPs and limited exposure 

to sensitive organs. NF stage 38 embryos were incubated in a solution of Fe3O4-PEG 

at a concentration of 1015.3 NP/ml. Once developed to NF stage 45, embryos were fixed 
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and sectioned (materials and methods 2.4.2 and 2.4.5) before analysis using TEM. 

Fe3O4-PEG NPs were found in both the embryo head sections (figure 4.5.1 b (i) and 

(ii)) and in the gut sections (figure 4.5.1 b (iii) and (iv)).  

PS-COOH uptake was observed in embryos at NF stage 15-38 (figure 4.5.2 a-

d) and in NF stage 38-45 (figure 4.5.2 e). Increase in fluorescence could be seen in 

fixed NF stage 38 embryos in a dose dependent manner (figure 4.5.2 a-d). Importantly, 

fluorescence was observed in internal structures of the embryo such as the primitive 

gut and somites, suggesting NP internalisation. Moreover, embryos exposed at NF 

stage 38 with 1015 PS-COOH NPs and anesthetised at NF stage 45, showed aggregates 

of fluorescent particles moving through the blood stream (movie; stills from movie in 

figure 4.5.2 e). Larger particle aggregates could be traced moving with the blood flow 

through the intersomitic blood vessels. 
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Figure 4.5.1 TEM analysis of Fe3O4-PEG uptake in X. laevis. (a) Sections were taken from the head 

and gut of the embryo. (b) Representative images of sections from the head (i, ii) and gut (iii, iv) of NF 

stage 45 embryos after exposure to 1015.3 NP/ml Fe3O4-PEG NPs at NF stage 38. Size bars as indicated.  
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Figure 4.5.2 Fluorescent microscopy analysis of PS-COOH uptake in X. laevis. (a-d) X. laevis 

exposed to 1014.0 (b), 1014.9 (c), and 1015.5 (d) NP/ml PS-COOH at NF stage 15 and fixed at NF stage 38. 

3 animals shown in each image. Control cells were vehicle treated (a). (e) Frame stills of live embryo 

movie exposed to 1015.5 NP/ml at NF stage 38 and imaged live at NF stage 45. Images show the 

movement of the NP aggregates (marked by the white lines) moving through the intersomitic blood 

vessel of a developing embryo over 0.70 s. Grey dashed line shows the NP trajectory around the somite.  
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4.6 Assessment of NP safety in a mammalian system.  

 

After parallel in vitro and X. laevis phenotypic toxicity assays, in accordance with our 

protocol (figure 4.1.1), NPs that show low-to-no toxicity progress to further 

assessment in rodent models. Both Fe3O4-PEG and Fe3O4-NH2 particles constituted as 

viable to progress to mouse toxicological assessment. To validate our toxicity assay, 

these NPs were sent to the Istituto di Ricerche Farmacologiche “Mario Negri” 

(IRCCS), in Milan to be administered in mice to assess toxicity effects on specific 

organs. For iron core NPs, biodistribution in murine target tissue can be easily seen 

via MRI analysis.  

MRI analysis showed that in T2 weighed MRI coronal slices from epigastric 

and mesogastric regions, both iron oxide NPs accumulated in the liver and kidneys of 

the NP-treated animals compared to vehicle-treated controls (figure 4.6.1 a + b). 

Importantly, post-mortem histological sections from the tissues where these NPs 

accumulated (the liver and kidneys) demonstrated not only that the iron distribution 

(as assessed by Perl’s staining) corroborated the MRI findings, but importantly also 

failed to reveal any evidence of morphological tissue toxicity (figure 4.6.1 c, 4.6.2), 

highlighting that these NPs exhibit little-to-no toxicity in mammalian tissues. These 

findings show that X. laevis embryos, in conjunction with cytotoxicity assessment, is 

a useful tool to predict NP safety prior to administration and further testing in 

mammalian models.  



  

 

 

 

Figure 4.6.1 Assessment of iron oxide NPs in a mammalian model. (a) Representative MRI images showing coronal slices from treated mice corresponding to the epigastric 

(left column) and mesogatric region (right column). K, kidneys and L, liver (b) Histograms showing the grey levels in liver (upper panel) and kidney (lower panel) measured 

from vehicle- (black bars), Fe3O4-NH2 NPs (white bars) and Fe3O4-PEG NPs treated mice (grey bars) at one or five days after NP administration. Data are expressed as mean ± 

S.D. * < 0.005; ** < 0.01, ***<0.0001 compared to the vehicle (Student's t-test). (c) Perl’s stained tissue sections from target organs in treated animals. Tissues counter-stained 

with eosin. Representative images shown. 
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Figure 4.6.2 Comparison of Perl’s staining for tissular iron in liver and kidneys of NP treated 

animals at 24 hrs post-injection.  
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4.7 Hazard scoring – Combining in vitro cytotoxicity with X. laevis phenotypic 

scoring  

 

To compare the overall toxicity of a NP from both in vitro and in vivo assay data, 

hazard scores were given depending on assay parameters (table 4.7.1). For both Trypan 

Blue and MTT assays scoring was based on cell viability. At a given concentration, if 

the cell viability was >76% a hazard score of 0 was given; 50 – 75% cell viability 

equated to a hazard score of 1 (x); and <50% cell viability a hazard score of 2 (xx) was 

awarded. For the X. laevis phenotypic assays the hazard score was based on the 

percentage of healthy embryos, where embryos that were dead or with phenotypic 

abnormalities were considered unhealthy. A hazard score of 0 was given if >76% of 

the embryos were healthy; 50 – 75% healthy embryos produced a hazard score of 1 

(x); and if there was < 50% healthy embryos then the highest hazard score of 2 (xx) 

was conferred.  

For the cytotoxicity data the hazard score was taken from the mean cell 

viability in all cell lines from the highest NP concentration. For comparison, we took 

X. laevis analysis from the data produced from tadpole stage (NF stage 38-45) as NPs 

would be exposed to developed organs in the embryo and consequently more 

physiologically relevant to adult tissue. 

 There was a strong correlation between the in vitro and in vivo results obtained 

from the highly toxic QDs, with all assays leading to a hazard score of 2 (xx). For both 

iron core NPs, Fe3O4-PEG and Fe3O4-NH2, a hazard score of 0 was given and, again, 

there was agreement with the cell based assays and the X. laevis phenotypic assay.  
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Table 4.7.1 Hazard score obtained from cell cytotoxicity and X. laevis phenotypic assays. Hazard 

score is based on the parallel analysis of cell viability and percentage healthy embryos.  

 

Hazard Hazard Score Cell Viability (%) Healthy Embryo (%) 

0 0 >76 >76 

x 1 50 – 75 50 – 75 

xx 2 <50 <50 

 

 

 

  

 X. laevis (NF 4-38) X. laevis (NF 15-38) X. laevis (NF 38-45) 

QD xx xx xx 

PEG-Fe3O4 0 0 0 

PS-COOH x x xx 

NH2-Fe3O4 0 0 0 

 MTT Trypan Blue X. laevis (NF 38-45) 

QD xx xx xx 

PEG-Fe3O4 0 0 0 

PS-COOH 0 0 xx 

NH2-Fe3O4 0 0 0 
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Interestingly, PS-COOH NPs did not reduce cell viability or produce levels of 

cleaved PARP-1; however, in the X. laevis phenotypic assay, toxicity was observed. 

After exposure at the early stages of embryo development, NF 4 and 15, a hazard score 

of 1 (x) was awarded. After exposure to the tailbud embryos, NF 38-45, a higher 

toxicity was observed and, as less than 50% of the embryos were deemed as healthy, 

a hazard score of 2 was given (xx). This suggests that using the X. laevis in parallel to 

traditional cytotoxicity assays early on in the development of a novel NP can help to 

identify false negatives produced by cell-based assays. 

 

4.8 Discussion 

 

Increasingly, there is a higher demand for the accurate assessment of NP toxicity. The 

increase in development of novel nanotherapeutics continues to rise at a considerable 

rate, and yet remarkably few are deemed safe for biomedical applications. Often 

nanotherapeutics undergo quick and easy cell-based toxicity assessments in the hope 

that this reveals potential toxicity of the NP. It is not until these novel NPs reach a 

more robust toxicological screening, such as in a rodent model, that the formulation is 

deemed unsafe; after considerable time and cost for development of the NP. As such, 

the need for animal models that can produce effective and accurate toxicity data, and 

act as a bridge between conventional in vitro cell-based assays and higher mammalian 

models, has been established here. Alternatives to the traditional 2D monoculture 

toxicity assays have been suggested, for example the development of 3D and co-

culture in vitro cell-based models to mimic functions of living tissues (Lee et al., 

2009). A key area of this is to assess nephrotoxicity, often seen in adverse drug 

responses, by producing 3D kidney tissue (Astashkina et al., 2014, Lee et al., 2009, 
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Movia et al., 2011, Muller et al., 2010, Pampaloni et al., 2007, Smalley et al., 2006). 

However, although this work has its place in nanotoxicology, tissue mimetic models 

fail to reproduce complete systemic interactions between different organ systems 

found in in vivo models.   

 Early vertebrate developmental models provide whole in vivo systems that can 

accurately assess NP toxicity after interaction with complete organ systems with the 

benefit of rapid and high-throughput potential. Early vertebrate developmental 

models, such as Xenopus and zebrafish, are available in research departments and 

provide a cheap alternative to rodent models. Specifically, Xenopus has the advantage 

of being physiologically relevant to mammals with organs that are typically affected 

in human diseases (skin, lymphatic system, nervous system, gastrointestinal tract, 

cardiovascular system, primitive kidneys, hepatic system, and circulatory system) 

(Wheeler and Liu, 2012). Moreover, at a time where there are initiatives to reduce the 

amount of higher vertebrate models, early stage Xenopus embryos do not require an 

animal licence to work on, and are described under EU directive as not protected as 

non-human vertebrate models. We have shown that large volumes of X. laevis embryos 

can be tested in multi-well formats, allowing multiple NPs at a large range of 

concentrations to be tested alongside each other; a feat which is impossible to achieve 

in higher vertebrate models. In this study, a 24-well format was used with each well 

containing 5 embryos. In each experiment, 10 embryos were analysed for each NP at 

each concentration, and the process repeated 3 times. With the control, over 800 

embryos were analysed on the bench for each stage; over 2500 were analysed over all 

of the developmental stages (NF 4-38, 15-38, and 38-45).  This high capacity of 

analysis can help to negate false results that may be seen when using small sample 
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sizes in higher vertebrate animal models, where it is too expensive, too time 

consuming, or unethical to use such large numbers.  

 Physico-chemical NP characterisation needs to be established in each assay 

buffer. Electrostatically stabilised NPs, QDs and Fe3O4-NH2, were affected by the X. 

laevis embryo salt buffer MMR. In particular, Fe3O4-NH2 NPs showed excessive 

aggregation in MMR at the highest concentration of 1016.2 NP/ml (figure 4.2.4), 

leading to precipitation. Limited toxicity can be seen at concentrations <1016.2 NP/ml, 

whereas the majority of embryos die across all NF stages when exposed to the 

aggregated Fe3O4-NH2 NPs at concentrations > 1016.2 (figure 4.4.2, 4.4,3, and 4.4.4). 

This suggests the toxic effect is a result of colloidal instability rather than the 

nanomaterial itself. Moreover, Fe3O4-NH2 NPs aggregate less in the presence of 

proteins from the RMPI + 10% FCS cell media. This correlates to a milder toxic effect 

in cells treated with Fe3O4-NH2 (figure 4.3.2, 4.3.3), further suggesting instability of 

Fe3O4-NH2 as the cause of toxicity rather than the material itself. This highlights how 

important it is to fully characterise NPs in assay buffers in order to understand NP 

behaviour in vitro and in vivo.  

 Cytotoxicity results were as expected from literature, with CdSe QDs causing 

dose dependant toxicity, and both PS-COOH and Fe3O4 core NPs showing low-to-no 

toxicity (Liu et al., 2013, Shiohara et al., 2004). Differences in in vitro toxicity could 

be observed across the cell lines. After MTT analysis, MDCK (non-cancerous cell 

line) appeared more sensitive to NP cytotoxicity than A549 and SK-MEL-28 

(cancerous cell lines) (figure 4.3.3), highlighting the need to perform toxicity 

assessment in a range of cell lines. Robust immortalised cells are often used as the 

only initial screening of NP safety and these can lead to false negative results. This, in 



Chapter four 

 

214  
  

part, goes some way in explaining the disparity between in vivo and in vitro results 

(Kroll et al., 2009). 

Discounting the effects of aggregation seen at high concentrations of Fe3O4-

NH2, we saw a strong correlation between in vitro and in vivo results for all NPs tested. 

X. laevis phenotypic toxicity assessment was also in agreement with what has been 

reported in the literature, with CdSe QD material reported as toxic and iron oxide core 

showing low-to-no toxicity (Liu et al., 2013, Shiohara et al., 2004).  There is some 

discrepancy with in vitro and in vivo results after treatment with PS-COOH. 

Cytotoxicity assessment shows no significant loss of cell viability after PS-COOH 

exposure measured by Trypan Blue and MTT assays (figure 4.3.2 and 4.3.3) and no 

cleaved PARP-1 was observed. However, phenotypic abnormalities and embryo death 

was observed at the higher PS-COOH NP concentrations. We found NF 4-35 staged 

embryos were particularly sensitive to PS-COOH (figure 4.4.2). This contradiction 

emphasises the need for an integrated in vitro and in vivo toxicity assessment to insure 

identification of false negatives. In fact, there is evidence to suggest that with PS-

COOH NPs toxic effects may be seen due to carboxylic functionalisation of the 

polystyrene core and the interaction with plasma proteins (Clancy et al., 2010, 

Oslakovic et al., 2012).  

Generally, in the X. laevis phenotypic assay NPs were more toxic to embryos 

exposed at early developmental time points (NF 4-38 and NF 15-38; figure 4.4.3 and 

4.4.4), when the embryos were undergoing sensitive morphological changes. Although 

testing NP safety on these early stage embryos may not best assess toxicity to adult 

mammals, it can be adapted to evaluate teratogenesis. In literature, teratogenesis has 

been observed at both gastrula and neurala staged embryos after X. laevis embryos 

were microinjected with carboxyl functionalised nanodiamond NPs between NF stage 
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1 and 3 (Marcon et al., 2010). Other studies using metal oxide NPs (CuO, ZnO, etc.) 

have evaluated teratogenesis in X. laevis using the FETAX assay and reported major 

toxicity effects in the gastrointestinal tract (Nations et al., 2011). While FETAX 

focuseson the teratogenic effects to mid blastula stage embryos, we have demonstrated 

X. laevis as a versatile model that can be used to predict toxicity of nanomaterials 

beyond teratogenic effects. In our assessment, NF 38-45 would be more suitable than 

early stage embryos for use as a prognostic toxicity model as at NF 38 and beyond, 

the gills and mouth are open and the skin is more porous leading to possible respiratory 

and oral tract exposure (Dickinson and Sive, 2006). We have also demonstrated that 

NPs with different cores and functionalisation (Fe3O4 and PS-COOH NPs) are 

internalised by different staged X. laevis embryos (figure 4.5.1 and 4.5.2), and key 

internal organs were exposed to the NPs.  

We have developed a scoring system that allows X. laevis embryos to be used 

as a rapid and simple model for NP-mediated toxicity assessment (figure 4.1.1). This 

scoring system has been integrated with the results from the cytotoxicity data to 

facilitate optimal prediction for the NP toxicity in mammalian systems (table 4.7.1). 

As both Fe3O4 core NPs predicated low-to-no toxicity after combined scores from 

cytotoxicity and X. laevis phenotypic assessment, we evaluated these NPs in rodent 

models to validate our model. As both PS-COOH and QDs caused toxicity in vivo, 

they did not progress to testing in a rodent model as per our described workflow (figure 

4.1.1). Fe3O4 cored NPs (NH2 and PEG functionalised) were injected intravenously 

into mice. MRI was used to assess bioaccumulation of the NPs and identify the organs 

exposed to NPs; mostly, iron oxide was found in the parenchyma of the kidneys and 

the liver. Histochemical staining of liver and kidney tissue confirmed the MRI results. 

Moreover, despite long-term accumulation of both iron cored NPs, no gross 
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histopathological defects were observed, demonstrating that there were no 

toxicological effects from the NPs in these organs. The results from intravenously 

injected mice validate our findings from the integrated toxicity protocol (figure 4.6.1 

and 4.6.2). However, to better understand if X. laevis can be used in place of a rodent 

model, more comprehensive in vivo toxicity assays must be undertaken with known 

toxic NPs to understand the parallels with the X. laevis phenotypic assay and a rodent 

model; specifically, with NPs at a therapeutically relevant concentration range.   

Overall, we have shown that X. laevis can be integrated alongside in vitro 

analysis to produce an accurate and effective screening tool for novel nanomaterials. 

This approach helps to bridge the gap between in vitro and in vivo analysis for nano-

toxicity.  We believe Xenopus is a readily available laboratory model that has a unique 

flexibility in regards to external embryo development, cost, embryo numbers, and 

ethical considerations. We have shown X. laevis can be easily integrated into a 

standardised toxicity assessment and, ultimately, will minimise the time and cost of 

using higher vertebrate toxicity models at an early stage in nanomaterial design. 

Further optimisation of the protocol could see it being used to identify 

bioaccumulation of NPs in X. laevis and gain information that contributes to a better 

understanding of new nanotherapies in whole organism systems (Webster et al., 2016).   
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5. Development of a targeted nanoparticle drug delivery system for the treatment 

of metastatic melanoma 

 

5.1 Introduction  

 

Incidence rates of metastatic melanoma have been increasing rapidly over the past four 

decades and, as a result, is increasing faster than any other form of cancer (Lens and 

Dawes, 2004). Melanoma is the ninth most common cancer in Europe and the 19th 

most common cancer worldwide (Bombelli et al., 2014). Prognosis is generally good 

if diagnosed early and can be cured by surgery before the tumour has invaded. 

However, if the melanoma has metastasised and the tumours are unresectable, long-

term prognosis is poor. Once the tumour has developed into a late-stage metastatic 

disease, there are limited successful therapeutic options. Unresectable metastatic 

melanoma has a 3-year overall survival rate of less than 15% with conventional 

treatments (Balch et al., 2009).  

 Increased understanding of the molecular mechanisms of melanoma cells has 

led to the development of novel targeted therapies. Recently, new drugs have shown 

promising results in clinical trials (Chapman et al., 2011, Hodi et al., 2010, Robert et 

al., 2011). Amongst these are the FDA approved BRAF inhibitors dabrafenib and 

vemurafenib (Carrera et al., 2015, Kainthla et al., 2014, Roos et al., 2014). 

Approximately 50% of melanoma contain abhorrent BRAF production leading to cell 

survival, proliferation, differentiation, and migration (Sullivan and Flaherty, 2011). 

BRAF is a component of the mitogen-activated protein kinase (MAPK) signal 

transduction cascade (figure 5.1.1).  
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Figure 5.1.1 Current targeted immunotherapies for the treatment of metastatic melanoma. As 

BRAF is mutated in approximately 50% of metastatic melanomas, there is a lot of research into 

inhibitors for the MAP kinase signalling pathway. FDA approved vemurafenib and dabrafenib inhibit 

the mutant BRAF kinase and selumetinib inhibits MEK kinase to block transcription factor (TF) 

activation for continued proliferation. Ipilimumab is a monoclonal antibody that inhibits cytotoxic T 

lymphocyte antigen (CTLA-4) to increase T cell activity with the tumour tissue. CTLA-4 signalling 

inhibits T cell activation after binding to antigen presenting cells (Bombelli et al., 2014).  
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Upon activation of receptor tyrosine kinases (RTKs) by extracellular stimuli, RAS, a 

small G protein, is activated by phosphorylation. Sequential activation of BRAF and 

MEK follows, eventually leading to the phosphorylation of ERK which, in turn, is able 

to activate several transcription factors (Shaul and Seger, 2007). Abhorrent expression 

of the MAPK signalling pathway molecules can lead to uncontrolled activation of 

these transcription factors; if this is the case, drugs are designed to specifically inhibit 

the actions of mutated proteins (Roberts and Der, 2007). Both dabrafenib and 

vemurafenib inhibit the BRAF protein to reduce cell growth and division and are 

approved for use in late-stage, unresectable melanoma with BRAFV600E mutation 

(figure 5.1.1). However, these therapies are restricted to patients with BRAFV600E 

mutations and are not applicable to ~ 50% of melanoma suffers. MEK inhibitors are 

amongst the most promising new targeted therapeutics; trametinib is approved for use 

in BRAF mutated patients that have metastasised melanoma that cannot be removed 

by surgery (Robert et al., 2015) and selumetinib is in phase 3 clinical trials 

(NCT01974752; (Carvajal et al., 2014).   

Immunotherapy is a treatment option that aims to increase the activity of a 

patient’s immune system in order to fight cancer cells (Ito and Chang, 2013). 

Ipilimumab is an immunotherapy that inhibits cytotoxic T lymphocyte antigen 

(CTLA-4) (Acharya and Jeter, 2013). CTLA-4 is a receptor expressed on the surface 

of T cells and is a negative regulator of T cell activation. Once CTLA-4 is inhibited 

by ipilimumab, T cell activity in the tumour is enhanced (Keilholz, 2008). Other 

targets are being investigated to disrupt other immune checkpoints. Currently, there 

are several immunotherapies in clinical trials, which aim to inhibit programmed cell 

death-1 (PD-1) in patients with melanoma (NCT02626065, NCT02676869, 

NCT02335918, NCT01176474). PD-1 is an immunoinhibitory receptor which 
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suppresses T-cell growth, survival, and effector responses. Inhibiting PD-1 results in 

an increase in immune response to in the tumor environment (Parry et al., 2005). In 

clinical trials, anti-PD-1 therapies induced a greater response compared to 

chemotherapies and kinase inhibitors (Brahmer et al., 2012, Topalian et al., 2012). In 

contrast to CTLA-4 inhibition, anti-PD-1 therapies produce a less aggressive 

autoimmune response in patients (Zitvogel and Kroemer, 2012). 

Despite the development of novel targeted therapeutics for melanoma and their 

promise in patients, they are restricted by their low response and high relapse rates due 

to the formation of drug resistant tumour cell populations. Partial and complete 

regression after treatment with ipilimumab was reported in patients with stage IV 

melanoma previously untreated (Schartz et al., 2010). Drug resistant populations of 

melanoma have also been observed after treatment with Vemurafenib. Although there 

is an initial regression of the tumour after Vemurafenib administration, most patients 

relapse with lethal drug-resistant form of melanoma (Das Thakur et al., 2013). As a 

result, work must be done to develop novel drugs capable of targeting different 

pathways to eradicate the tumour before drug resistance occurs and that provide higher 

response rates. As previously discussed (section 1.3), working in the nanoscale 

provides many advantages to the drug delivery of cancer therapeutics (Bombelli et al., 

2014). Amongst these advantages is the ability of a NP drug delivery system to 

passively and actively target a tumour and a specific cell type. A targeted NP can be 

developed to act as both a therapeutic and a diagnostic tool (termed theranostic). A 

further advantage is the possibility to encapsulate multiple drugs to greatly improve 

patient response and bypass drug resistance.  

Several nanotherapeutics have been developed for unresectable melanomas. 

Albumin-stabilised paclitaxel nanoparticles (NPs) are in phase II clinical trials 
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(NCT00081042, NCT00738361) and have improved progression free survival rates. 

Paclitaxel is a general cytotoxic chemotherapeutic used for the treatment of several 

cancers which targets the cytoskeleton of the cell, specifically tubulin, to trigger cell 

death (Arnal and Wade, 1995). Although a potent anti-cancer drug, paclitaxel is 

limited by the serious side-effects it causes. This is partly due to the toxicity of the 

polyethoxylated castor oil used as a carrier. Abraxane is an FDA approved NP 

albumin-bound paclitaxel, which negates the need for polyethoxylated castor oil as a 

carrier and decreasing the systemic toxicity of the drug (Wang et al., 2013). 

More specific therapeutics have been added to paclitaxel for a more effective 

treatment. Albumin stabilised paclitaxel NPs in combination with carboplatin 

(NCT00404235; (Kottschade et al., 2011, Perez et al., 2009), vascular endothelial 

growth factor (VEGF) inhibitors (NCT00462423; (Miller  et al., 2007), and a 

combination of both VEGF inhibitors with carboplatin (NCT00626405; (Kottschade 

et al., 2013) have all improved overall survival rates in melanoma patients.  

NPs have numerous advantages as a drug delivery system in oncology (section 

1.3). NPs in a certain size range can exploit the leaky vasculature and the poor 

lymphatic drainage of the tumour environment. Passive accumulation of NPs in the 

tumour due to this physiology is known as the enhanced permeability and retention 

(EPR) effect (Brigger et al., 2012). Furthermore, NPs can be functionalised to target 

cell types to deliver drugs specifically and reduce systemic toxicity (Wang and 

Thanou, 2010). There are several targeting options for melanoma nanotherauptics. 

Aminopeptidase N (CD13) (Chen et al., 2010), fibrin-fibronectin (Simberg et al., 

2007), neuropilin (Sugahara et al., 2009), and integrins (Hood et al., 2002), are all 

associated with upregulation in the tumour cell vasculature. Laminin is expressed on 

the surface of melanoma cells and upregulated during invasion and metastasis (Sarfati 
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et al., 2011). A promising target is to take advantage of the upregulation of the melanin 

pigmentation signalling pathway. Melanocortin-1 receptor (MC1R) is expressed on 

the cell surface of melanocytes (Suzuki et al., 1996). In normal human melanocytes 

expression of MC1R is restricted to a few hundreds of molecules on the cell surface 

(Donatien et al., 1992), but it is upregulated on > 80% of melanoma cells (Cai et al., 

2005).  

MC1R is a one of five melanocortin receptors (MC1R-MC5R) which are G-

protein-coupled receptors (GPCR). Melanocortins have a wide range of physiological 

roles and are expressed in different tissues; MC1R in the skin and hair (Garcia-Borron 

et al., 2005), MC2R in the adrenal glands (Almeida et al., 2014), MC3R and MC4R in 

the hypothalamus (Millington, 2007), and MC5R in the kidneys (Tafreshi et al., 2013). 

Ordinarily, MC1R is predominantly a regulator of melanogenesis (Suzuki et al., 1996) 

upon binding of the peptide agonist α-melanocyte stimulating hormone (α-MSH). 

Ligand binding results in upregulation of cAMP, converted from cytoplasmic ATP by 

the intracellular messenger adenylyl cyclase (AC). In turn, cAMP activates protein-

kinase A (PKA), which translocates to the nucleus. At the nucleus, PKA 

phosphorylates cAMP-response-element binding protein (CREB) transcription 

factors. CREB binds to the CRE region at promoter sites upstream of key genes to 

activate expression. Microphthalmia-associated transcription factor (MITF) is a 

transcription factor that is activated by CREB (Chin, 2003); figure 5.1.2). MITF 

activates tyrosinase, the rate-limiting enzyme in melanogensis. MITF also plays a 

pivotal role in melanoma oncogenesis (Levy et al., 2006).  

MC1R contains small extracellular loops (Ringholm et al., 2004), which are 

thought to play a role in increasing binding affinity and ligand recognition of MC1R 

agonists (Chhajlani et al., 1996). The ligand-binding site of MC1R is contained in the 
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transmembrane fragments of the receptor where there is a region of highly charged 

aromatic residues containing Glu94 in transmembrane region 2, Asp117 and Asp 121 

both in transmembrane region 3. The Arg residue of the α-MSH pharmacophore core 

(His-Phe-Arg-Trp) binds to these MC1R transmembrane regions (Haskell-Luevano et 

al., 1996, Prusis et al., 1995, Prusis et al., 1997).  

Other melanocortin agonists, including α-, β-, γ-MSH, and the 

adrenocorticotropic hormone (ACTH), contain the same pharmacophore core. Due to 

this high degree of homology between the agonists, there is difficulty in designing a 

ligand that is highly specific for MC1R alone. The synthetic analogue of α-MSH, 

Nle4-D-Phe7 (NDP-MSH) has been demonstrated to be selective ligand for MC1R. 

Moreover, it is more potent than native α-MSH and is resistant to degradation (Hadley 

et al., 1985, Sawyer et al., 1980). 

In this study, Fe3O4-α-MSH NP (Fe3O4-PEP; developed in chapter 3) 

functionalised with the NDP-MSH analogue will be used to actively target MC1R on 

the surface of melanoma cells and specifically deliver a combination of the MEK 

inhibitor selumetinib and the cytotoxic drug paclitaxel.  One of the main challenges 

when using cultured cells for molecular biology is the presence of cell culture artefacts 

and lack of heterogeneity compared to the in vivo situation. It is widely reported that 

the genome of cultured cells varies greatly from primary cells and tends to be more 

uniform. Traditional monolayer culture systems often fail to reproduce in vivo 

conditions and have an altered gene expression (Bork et al., 2010). This lack of 

stability in the expression of genes can produce false results in molecular biology 

techniques such as Western Immunoblotting. When producing a targeted therapy, it is 

important to understand the target cell as close to in vivo as possible. To this end, we 
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have developed a novel protocol to isolate melanoma cells directly from resected tissue 

from patients with suspected metastatic melanoma. 

In this chapter, MC1R was found to be expressed in melanoma cell lines and 

over expressed in malignant melanoma. The targeted Fe3O4-PEP NP, containing the 

MC1R ligand α-MSH, was taken up more readily in melanoma cells than the non-

targeted Fe3O4-PEG NP. The chemotherapeutic drug, PTX, was encapsulated into the 

Fe3O4-PEG/Fe3O4-PEP system. Moreover, Fe3O4 NPs successfully delivered PTX to 

melanoma cells leading to cell death.  
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Figure 5.1.2 MC1R signalling pathway. Upon binding of the agonist α-MSH, the heterotrimeric G-

protein complexes down stream of MC1R activate AC. AC catalyses the conversion of cytoplasmic 

ATP to cyclic AMP (cAMP). In turn, cAMP activates PKA. After translocation to the nucleus, PKA 

phosphorylates the transcription factor CREB. Upon binding to CRE, CREB promotes the expression 

of several genes. A key target for CREB is the transcription factor MITF. Expression of MITF activates 

tyrosinase, the rate-limiting enzyme in melanogenesis (Chin, 2003).  
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5.2 MC1R expression in melanoma 

 

Expression levels of MC1R mRNA have previously been analysed using the 

microarray dataset GDS1375 from the NCBI Gene Expression Omnibus database 

(Edgar et al., 2002) (figure 5.2.1.a. Sherwood unpublished). The samples were 

regarded as normal skin, benign nevi, and melanoma. Compared to normal and benign 

data sets there was a significant increase in MC1R mRNA expression levels in the 

melanoma tissue.  

Western Immunoblotting was used to confirm the presence of MC1R protein 

in melanoma and melanocyte cell lines. M202, M229, M285, A375, and SK-MEL-28 

melanoma cells, and HEMA-lp melanocyte cells all had MC1R protein expression. 

HEMA-lp MC1R protein expression appeared reduced when compared to melanoma 

cells as expected (reference). Levels of MC1R have been shown to vary across 

different melanoma cells (Smith et al., 2001) and Western blot analysis shows SK-

MEL-28 has particularly high levels of MC1R protein expression (figure 5.2.1.b). 

Interestingly, the negative control of A549 lung cancer, MDA-MB-231 breast cancer, 

and HEK 293 human embryonic kidney cells showed positive for MC1R protein. 

Interestingly, MC1R protein has previously been identified in non-melanocytic cells 

presumed to be ‘negative’ for MC1R (Roberts et al., 2006). MC1R protein expression 

has also been demonstrated CIR-A2 LCL (lymphoblastoid B-cells) but was shown to 

be intracellular and not expressed on the cell surface (Salazar-Onfray et al., 2002). 

Overall, the data suggests that MC1R could represent a suitable tart receptor for 

mediating NP uptake in melanoma cells.  
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Figure 5.2.1 mRNA and protein expression of MC1R in tissue and melanoma cells (a). Microarray 

data from Gene Expression Omnibus (GEO) dataset GDS1375, normal/benign vs melanoma. Bars 

represent 95th and 5th percentile (Sherwood unpublished). (b). Representative Western Immunoblot 

showing protein levels of MC1R in melanoma cell lines (M202, M229, M285, A375, and SK-MEL-28) 

and non-cancerous melanocytes (HEMA-lp). Tubulin was used as a loading control. 

  

a 
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5.3 Nile red (NR) encapsulation into Fe3O4-core NPs 

 

In order to monitor MC1R-mediated uptake of Fe3O4 NPs in melanoma cells 

fluorescent labelling of NPs was required. To do this a hydrophobic dye, nile red (NR) 

was used.  NR is a lipophilic molecule (Mw 318.37) with strong fluorescent properties 

and was non-covalently absorbed into the hydrophobic shell of the previously 

synthesised Fe3O4-PEG NPs via method 2.1.8. In this work, NR was used as a proof 

of concept for the encapsulation of small hydrophobic molecules. It has the additional 

advantage of being highly fluorescent which was used to visualise encapsulation using 

a spectrophotometer (figure 5.3.1). Minimal background fluorescence was seen in 

Fe3O4-PEG and Fe3O4-PEP. After addition of NR and purification, both Fe3O4-PEG 

and Fe3O4-PEP produced similar fluorescent emission intensities at 520 nm after 

excitation at 480 nm.  Furthermore, NR being relatively insoluble in H2O could not be 

dispersed in the aqueous solution. Fluorescent emission measurements showed that 

NR before and after dialysis did not dissolve in H2O and so no fluorescence intensity 

was observed (figure 5.3.2). After NR encapsulation, Fe3O4-PEG-NR showed a 

fluorescence spectrum with a maximum of emission at 620 nm after excitation at 480 

nm. A slight decrease in fluorescence intensity was seen after Fe3O4-PEG-NR was 

dialysed through a 3-5 kDa nitrocellulose membrane overnight in PBS. Fe3O4-core 

NPs containing NR in their shell provided a powerful tool to investigate the targeted 

uptake of Fe3O4-PEP NPs in melanoma.   
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Figure 5.3.1 Encapsulation of NR in Fe3O4 NPs. An excitation of 480 nm was used and relative 

fluorescence intensity (FI) was measured to compare NR encapsulation in Fe3O4-PEG-NR and Fe3O4-

PEP-NR. Fe3O4 NPs without NR were used as a control (with and without α-MSH peptide).  
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Figure. 5.3.2 Purification of Fe3O4-PEG-NR. Fluorescence intensity was measured after excitation at 

480 nm to compare NR in Fe3O4-PEG-NR before and after 24 h dialysis in a 3-5 kDa nitrocellulose 

membrane against PBS at room temperature. This was compared to NR in H2O and Fe3O4 alone.
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5.4 Cellular uptake of targeted Fe3O4-α-MSH NPs in tumour cells 

 

After successful encapsulation of NR, Fe3O4-PEG-NR NPs were used to study uptake 

of NPs in melanoma cells. It was important to use a method of encapsulation, such as 

trapping the NR in the hydrophobic core, that did not affect the surface chemistry of 

the NP which could have inadvertently affected cellular uptake. Firstly, confocal 

microscopy was used to see if Fe3O4-PEG-NR can be used for imaging and uptake 

analysis. A2058 melanoma cells were seeded at 2 x 104 cells per well in 12 well plates 

and left to seed overnight. Fe3O4-PEG-NR NPs were added at a final concentration of 

1.4 x 1012 NP/ml in serum free media. Cells were incubated with NPs for 24 h before 

confocal microscopy. After 24 h incubation, Fe3O4-PEG-NR NPs freely entered 

A2058 cells and were ubiquitously seen in the cytoplasm of the cells (red images, 

figure 5.4.1). Reflected light also identified the presence of Fe3O4 from the core of the 

NPs within the cytoplasm (green, figure 5.4.1) (Shevtsov et al., 2014). Although there 

was limited evidence of co-localisation of NR and reflected light of Fe3O4, Fe3O4-PEG-

NR NPs appear to be delivering the NR molecule into the cells. Moreover, it showed 

that hydrophobic molecules are readily released from the nanoformulation upon 

delivery to the melanoma cells, which is likely to be MC1R-mediated. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4.1 Confocal microscopy of IOX-PEG-NR uptake in A2058 melanoma cells.  Hoechst 33342 stained nucleus (blue), NR (red) from the Fe3O4-PEG-NR NPs, and 

reflected light from Fe3O4 core of NP. Merged channels on far right. Scale bar 50 µm is the same for all images. Images are examples from 2 fields of view. 
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Uptake of Fe3O4-PEP-NR with the α-MSH targeting peptide attached was 

compared to the control of Fe3O4-PEG-NR to determine active uptake. As Fe3O4 NPs 

have been shown to deliver NR to cells (figure 5.4.1), flow cytometery was used to 

quantify internal fluorescence from internalised NR after NP delivery. B16F10 and 

A2058 melanoma; A549 lung cancer (control cell line); and HEMA-lp melanocyte cell 

lines were used in these studies. NPs were added to cells at 70-80% confluency at a 

final NP concentration of 1.4 x 1012 NP/ml. The fixed cells were then analysed using 

a flow cytometer. Fe3O4-PEG-NR and Fe3O4-PEP-NR uptake over time was measured 

by comparing the fluorescence geometric means (GM). Increasing the amount of 

fluorescence causes a shift in the histogram peak that can be quantified by comparing 

the position of the peak, known as the geometric mean, along the x-axis. NP uptake 

was evaluated at time points 30 min, 1 h, 3 h, and 5 h.  

 In B16F10 melanoma cells, Fe3O4-PEG-NR caused the GM of FL4 to increase 

modestly over 5 h. At 30 min, FL4 GM has increased by 1.4-fold difference compared 

to vehicle control (figure 5.4.2). Fe3O4-PEP-NR however, increased FL4 GM by a 9.4-

fold difference (figure 5.4.3). The non-targeting Fe3O4-PEG-NR caused the FL4 GM 

to increase to 3.0, 4.5, and 4.3-fold difference from 1, 3, and 5 h through non-MC1R-

mediated uptake. FL4 GM from the targeted Fe3O4-PEP-NR however increased to 

10.0, 15.0, 15.6-fold difference from 1, 3, and 5 h respectively.  

 Similar results were seen in A2058 human melanoma cells. After the first half 

an hour of NP incubation, Fe3O4-PEG-NR caused an FL4 GM increase of 1.6-fold 

difference (figure 5.4.4) compared to Fe3O4-PEP-NR which caused an FL4 GM 

increase of 6.0 (figure 5.4.5). Over 5 h there was no significant increase in FL4 GM in 

A2058 cells incubated with Fe3O4-PEG-NR; fold differences in FL4 GM were 1.4, 

1.7, and 1.7 for 1, 3, and 5 h respectively.  
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 The non-melanoma cell line, A549 lung cancer, showed no significant 

difference in FL4 GM over the 5 hours between Fe3O4-PEG-NR and Fe3O4-PEP-NR 

(figure 5.4.6, 5.4.7). Fold difference in FL4 GM after A549 incubation with Fe3O4-

PEG-NR was 1.1, 2.0, 2.2, and 3.1 for 0.5, 1, 3, and 5 h respectively. Similarly, the 

fold-difference in FL4 GM after A549 incubation with Fe3O4-PEP-NR was 1.2, 2.1, 

2.8, and 3 for 0.5, 1, 3, and 5 h respectively.  

 After comparing histograms (figure 5.4.8) and the fold change in FL4 GM 

(figure 5.4.9), it is clear that some non-MC1R-mediated uptake of Fe3O4-core NPs 

occurs in all cell lines evaluated. In B16F10, A2058, and A549 cells FL4 increase, due 

to internalisation of NR, can be seen up to 4-fold difference compared to control after 

incubation with Fe3O4-PEG-NR. Interestingly, Fe3O4-PEP-NR in the A549 non-

melanoma cells is comparable to the NPs without the targeting peptide. In conjunction 

with the increased fluorescence and the faster rate of uptake with targeted Fe3O4-PEP-

NR in B16F10 and A2058 melanoma cells compared to Fe3O4-PEG-NR it suggests 

that uptake beyond that of the 4-fold difference in FL4 GM is active targeting from 

the interaction between α-MSH peptide on the surface of Fe3O4-PEP-NR and MC1R 

on the melanoma cell surface.  
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Figure 5.4.2 Flow cytometry time uptake analysis of Fe3O4-PEG-NR in B16F10. (a) Control Fe3O4-

PEG. (b) Fe3O4-PEG-NR 0.5 h. (c) Fe3O4-PEG-NR 1 h. (d) Fe3O4-PEG-NR 3 h. (e) Fe3O4-PEG-NR 5 

h. Dot plot (left) shows linear FS against linear SS with the cell population selected for analysis (gate 

A). Histogram shows relative count against log FL4 with cells positive for FL4 in gate B.  
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Figure 5.4.3 Flow cytometry time uptake analysis of Fe3O4-PEP-NR in B16F10. (a) Control Fe3O4-

PEP. (b) Fe3O4-PEP-NR 0.5 h. (c) Fe3O4-PEP-NR 1 h. (d) Fe3O4-PEP-NR 3 h. (e) Fe3O4-PEP-NR 5 h. 

Dot plot (left) shows linear FS against linear SS with the cell population selected for analysis (gate A). 

Histogram shows relative count against log FL4 with cells positive for FL4 in gate B.  
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Figure 5.4.4 Flow cytometry time uptake analysis of Fe3O4-PEG-NR in A2058. (a) Control Fe3O4-

PEG. (b) Fe3O4-PEG-NR 0.5 h. (c) Fe3O4-PEG-NR 1 h. (d) Fe3O4-PEG-NR 3 h. (e) Fe3O4-PEG-NR 5 

h. Dot plot (left) shows linear FS against linear SS with the cell population selected for analysis (gate 

A). Histogram shows relative count against log FL4 with cells positive for FL4 in gate B.  
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Figure 5.4.5 Flow cytometry time uptake analysis of Fe3O4-PEP-NR in A2058. (a) Control Fe3O4-

PEP. (b) Fe3O4-PEP-NR 0.5 h. (c) Fe3O4-PEP-NR 1 h. (d) Fe3O4-PEP-NR 3 h. (e) Fe3O4-PEP-NR 5 h. 

Dot plot (left) shows linear FS against linear SS with the cell population selected for analysis (gate A). 

Histogram shows relative count against log FL4 with cells positive for FL4 in gate B.  
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Figure 5.4.6 Flow cytometry time uptake analysis of Fe3O4-PEG-NR in A549. (a) Control Fe3O4-

PEG. (b) Fe3O4-PEG-NR 0.5 h. (c) Fe3O4-PEG-NR 1 h. (d) Fe3O4-PEG-NR 3 h. (e) Fe3O4-PEG-NR 5 

h. Dot plot (left) shows linear FS against linear SS with the cell population selected for analysis (gate 

A). Histogram shows relative count against log FL4 with cells positive for FL4 in gate B. 
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Figure 5.4.7 Flow cytometry time uptake analysis of Fe3O4-PEP-NR in A549. (a) Control Fe3O4-

PEP. (b) Fe3O4-PEP-NR 0.5 h. (c) Fe3O4-PEP-NR 1 h. (d) Fe3O4-PEP-NR 3 h. (e) Fe3O4-PEP-NR 5 h. 

Dot plot (left) shows linear FS against linear SS with the cell population selected for analysis (gate A). 

Histogram shows relative count against log FL4 with cells positive for FL4 in gate B. 
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Figure 5.4.8 Representative histograms of flow cytometry time uptake analysis of Fe3O4-PEG-NR 

and Fe3O4-PEP-NR (a) B16F10, (b) A2058, and (c) A549 cell lines. Each histogram compares the log 

FL4 (x axis) with control (red), 0.5 h (green), 1 h (blue), 3 h (pink), and 5 h (orange). 
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Figure 5.4.9 Quantification of flow cytometry time uptake analysis. Fold change of the geometric 

mean from the flow cytometry histograms was calculated after normalising to control. In B16F10, 

A2058, and A549, Fe3O4-PEG-NR and Fe3O4-PEP-NR uptake was compared over 0.5, 1, 3, and 5 h 

incubation. Mean ± SD, n = 6. p = <0.05 *, <0.01 **. 
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5.5 Uptake of NPs in melanocytes cells  

  

Human epidermal melanocytes (HEMA-lp) were grown in Medium 254 supplemented 

with Human Melanocyte Growth Supplement (HMGS) as described in method 2.3.1. 

The morphology of HEMA-lp cells was assessed to insure they were fully 

differentiated (figure 4.5.1). HEMA-lp cells were slender with dendrites containing 

terminal swellings. Melanocytes grown with limited serum appear fibroblast-like in 

morphology (Donatien et al.).   

As MC1R is also expressed in normal melanocytes (figure 5.2.1.), we used 

flow cytometry to see if the targeted Fe3O4-PEP-NR NP also had increased uptake in 

HEMA-lp cells compared to the non-targeted Fe3O4-PEG-NR. After 5 h incubation 

with both NPs, there was no significant increase in uptake between Fe3O4-PEG-NR 

and Fe3O4-PEP-NR. The fold difference, compared to control, in FL4 GM for Fe3O4-

PEG-NR was 1.5 and 1.9 for Fe3O4-PEP-NR (figure 5.5.2); suggesting that both NPs 

were likely being taken up through non-MC1R-mediated pathways at the same rate.  

Overall, after 5 h there was an increase in uptake of Fe3O4-PEP NPs in 

melanoma cells (B16F10 and A2058) compared to Fe3O4-PEG NPs. There was no 

increase in difference in uptake between Fe3O4-PEP and Fe3O4-PEG NPs in non-

melanocytic cells (A549 and HEMA-lp). Across all cell lines there was a comparable 

level of uptake for Fe3O4-PEG NPs (figure 5.5.3). 
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Figure 5.5.1 Morphology of HEMA-lp cells. Melanocytes were grown in Medium 254 supplemented 

with Human Melanocyte Growth Supplement (HMGS). Melanocytes were fully differentiated with 

dendritic processes. Images taken from different fields of view. Scale bar 20 µm.  
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Figure 5.5.2 Flow cytometry time uptake analysis of Fe3O4-PEG-NR and Fe3O4-PEP-NR in 

HEMA-lp. (a). control HEMA-lp cells. (b) HEMA-lp cells after 5 h incubation with Fe3O4-PEG-NR. 

(c). HEMA-lp cells after 5 h incubation with Fe3O4-PEP-NR. Histogram shows relative count against 

log FL4 with cells positive for FL4 in gate B.  
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Figure 5.5.3 Quantification of 5 h flow cytometry time uptake analysis. Fold change of the 

geometric mean from the flow cytometry histograms was calculated after normalising to control. 

In B16F10, A2058, A549, and HEMA-lp cells, Fe3O4-PEG-NR and Fe3O4-PEP-NR uptake was 

compared after 5 h. Mean ± SD, n = 6. p = <0.05 *, <0.01 **.  
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5.6 MC1R-mediated uptake of Fe3O4-PEP-NR NPs 

 

Initially, to confirm the increase of cellular uptake of Fe3O4-PEP NPs in melanoma 

cells was due to MC1R-mediated internalisation, gene knockdown of MC1R was 

attempted. siRNA can be introduced into the cell via transfection where it can silence 

the expression of genes by inducing the degradation of mRNA. After transfection of 

siRNA for 48, 72, and 96 h, MC1R protein was still detected in A2058 cells (figure 

5.6.1).  

As MC1R was difficult to knockdown, an alternative method was used to show 

MC1R-mediated uptake. To confirm receptor-mediated internalisation, cells were 

blocked with an excess of peptide prior to NP incubation. For 30 mins, 200 µg/ml α-

MSH was used to block MC1-receptors on the surface of cells. As a negative control, 

the scrambled peptide of α-MSH was used. Fe3O4-PEG-NR and Fe3O4-PEP-NR NPs 

were then added in serum free media for 5 h incubation. In B16F10, there was no 

significant difference between the control Fe3O4-PEG-NR and the cells treated with 

either α-MSH or the scrambled peptide (figure 5.6.2). There was a significant decrease 

in the fold change FL4 GM between the control (non-blocked) Fe3O4-PEP-NR and the 

cells that had been pre-blocked with α-MSH and incubated with Fe3O4-PEP-NR 

(figure 5.6.3). However, there was also a decrease in uptake after prior incubation with 

the scrambled peptide similar to α-MSH. In A549, there was no difference between 

non-blocked, α-MSH, and scrambled peptide for both Fe3O4-PEG-NR and Fe3O4-PEP-

NR NPs (figure 5.6.4, 5.6.5).  

 In B16F10 cells, FI from both Fe3O4-PEG-NR and Fe3O4-PEP-NR NPs was 

high, making it difficult to see the differences between the control cells that were not 
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blocked and cells blocked with α-MSH or scrambled peptide. To further investigate 

peptide blocking of MC1R, NR was decreased from 0.5% (v/v) to 0.1% (v/v) in NPs. 

In B16F10 and A2058 melanoma cells, Fe3O4-PEP uptake was increased significantly 

compared to Fe3O4-PEG (control; figure 5.6.8). After blocking with 200 µg/ml α-MSH 

for 30 min, Fe3O4-PEP internalisation was reduced to levels comparable to the control. 

Moreover, incubating the cells with 200 µg/ml of scrambled peptide did not block 

Fe3O4-PEP internalisation (figure 5.6.8). In A549 cells, although uptake of Fe3O4-PEP 

was higher than control, there was no significant difference between Fe3O4-PEP, 

Fe3O4-PEP with α-MSH, and Fe3O4-PEP with scrambled peptide.  
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Figure 5.6.1 Western Immunoblot of siRNA knockdown of MC1R in A2058 melanoma cells. 

MC1R expression was analysed in A2058 cells after transfection with MC1R siRNA for 48, 72, and 96 

h.  
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Figure 5.6.2 Peptide blocking in B16F10 after Fe3O4-PEG-NR incubation. Dot plot (left) of B16F10 

cell population and log FL4 histogram after incubation of Fe3O4-PEG-NR for 5 h. (a) Control cells, (b) 

Fe3O4-PEG-NR, (c) Fe3O4-PEG-NR with α-MSH block, (d) Fe3O4-PEG-NR with scrambled block.   
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Figure 5.6.3 Peptide blocking in B16F10 after Fe3O4-PEP-NR incubation. Dot plot (left) of B16F10 

cell population and log FL4 histogram after incubation of Fe3O4-PEP-NR for 5 h. (a) Control cells, (b) 

Fe3O4-PEP-NR, (c) Fe3O4-PEP-NR with α-MSH block, (d) Fe3O4-PEP-NR with scrambled block. 

 

 



Chapter five 

  

259 
 

 

 
Figure 5.6.4 Peptide blocking in A549 after Fe3O4-PEG-NR incubation. Dot plot (left) of A549 cell 

population and log FL4 histogram after incubation of Fe3O4-PEG-NR for 5 h. (a) Control cells, (b) 

Fe3O4-PEG-NR, (c) Fe3O4-PEG-NR with α-MSH block, (d) Fe3O4-PEG-NR with scrambled block. 
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Figure 5.6.5 Peptide blocking in A549 after Fe3O4-PEP-NR incubation. Dot plot (left) of A549 cell 

population and log FL4 histogram after incubation of Fe3O4-PEP-NR for 5 h. (a) Control cells, (b) 

Fe3O4-PEP-NR, (c) Fe3O4-PEP-NR with α-MSH block, (d) Fe3O4-PEP-NR with scrambled block. 
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Figure 5.6.6 Peptide blocking in B16F10 and A549 after Fe3O4-PEG-NR and Fe3O4-PEP-NR 

incubation. Fold difference of FL4 GM. α-MSH and scrambled peptide 200 µg/ml for 30 min was used 

to block NP uptake. After peptide exposure, Fe3O4-PEG-NR and Fe3O4-PEP-NR NPs were incubated 

for 5 h before flow analysis. Mean ± SD, n = 6, p = <0.01 **. 
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Figure 5.6.7 Comparison of α-MSH peptide blocking in B16F10 and A549 after Fe3O4-PEG-NR 

and Fe3O4-PEP-NR incubation. Fold difference of FL4 GM. α-MSH peptide 200 µg/ml for 30 min 

was used to block NP uptake. After peptide exposure, Fe3O4-PEG-NR and Fe3O4-PEP-NR NPs with 

0.5% NR were incubated for 5 h before flow analysis. Mean ± SD, n = 6. p = <0.0001 ****. 
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Figure 5.6.8 Comparison of α-MSH peptide blocking and scrambled peptide. Fold difference of FL4 GM. α-MSH peptide 200 µg/ml for 30 min was used to block NP 

uptake. Scrambled α-MSH peptide was used as a control. After peptide exposure, Fe3O4-PEP-NR NPs with 0.1% NR were incubated for 5 h before flow analysis. Mean ± SD, 

n = 6. p = <0.05 *, <0.01 ** compared to blocking with α-MSH peptide.
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5.7 Encapsulation of a chemotherapeutic drug in Fe3O4 NPs 

 

Encapsulation of the hydrophobic drug PTX was achieved by method 2.1.8. For Fe3O4-

PEG-PTX and Fe3O4-PEP-PTX, there was a theoretical final concentration of 50 µM 

and a NP concentration of 1012.4 NP/ml. The stability of NPs was analysed using DLS 

measurements after addition of PTX; measurements were compared to the same batch 

of Fe3O4-PEG without drug (figure 5.7.1) with a Zave hydrodynamic diameter, dH, of 

55.0 nm and a PDI of 0.2. After addition of PTX, Fe3O4-PEG-PTX DLS measurements 

showed a slight increase in the hydrodynamic diameter from 55 nm to 61 nm. PDI also 

increased from 0.2 to 0.3 (figure 5.7.2).   
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Figure 5.7.1 Representative DLS size and polydispersity analysis of Fe3O4-PEG. Size distribution 

of Fe3O4-PEG by intensity (a) and raw correlation data (b). Fe3O4-PEG had a Z ave 55 nm and PDI of 

0.2. 
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Figure 5.7.2 Representative DLS size and polydispersity analysis of Fe3O4-PEG-PTX. Size 

distribution of Fe3O4-PEG-PTX by intensity (a) and raw correlation data (b). Fe3O4-PEG-PTX had a Z 

ave 61 nm and PDI of 0.3. 
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5.8 In vitro efficacy studies of drug loaded Fe3O4 NPs 

 

To preliminary evaluate the successful encapsulation of PTX in NPs, A549 and 

A2058 cell lines were incubated with Fe3O4-PEG-PTX and Fe3O4-PEP-PTX. These 

were normalised to the vehicle of NP without PTX. For cell viability assays, a 

theoretical concentration range between 750 nM and 0.3 nM of PTX was used, 

assuming 100% of PTX was encapsulated in the NPs. In A549 cells, Fe3O4-PEG-PTX 

and Fe3O4-PEP-PTX caused a marked decrease in cell viability after 72 h of incubation 

(figure 5.8.1); at a PTX concentration of 750 nM average cell viability was 46.4% 

Fe3O4-PEG-PTX, 72.1% Fe3O4-PEP-PTX, and 80.2% PTX alone. In A2058 

melanoma cells, PTX encapsulated in Fe3O4-core NPs had a higher efficacy than PTX 

alone. Moreover, targeted Fe3O4-PEP-PTX NPs appeared more potent than Fe3O4-

PEG-PTX.  

 Dose dependent toxicity of both NPs provides evidence that PTX is associated 

with Fe3O4-PEG and Fe3O4-PEP. In order to accurately assess the efficacy of each NP, 

the encapsulation of PTX must be quantified. However, as Fe3O4-PEP-PTX was more 

potent than PTX in melanoma cells and Fe3O4-PEP had an increased uptake in 

melanoma cells compared to non-melanoma cells via MC1R-mediated internalisation, 

the Fe3O4-PEP-PTX is an exciting prospect as a drug delivery system for the treatment 

of melanoma. This system has the potential for increasing drug efficacy compared to 

standard chemotherapy agents.  
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Figure 5.8.1 Cell viability of PTX loaded Fe3O4 core NPs in A549 and A2058 cell lines. After 72 h 

incubation with either Fe3O4-PEG-PTX, Fe3O4-PEP-PTX or PTX alone. All values normalised to 

vehicle, mean ± SD, n = 9. 
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5.9 Isolation of melanocytes from patient tissue 

 

Typically, cultured cell lines provide a poor model for predicating drug efficacy in 

patients due to loss of heterogeneity (Kryh et al., 2011, Yaffe, 1968). We wanted to 

develop a methodology to assess drug efficacy as close to the patient as possible by 

isolating melanoma cells without prior culturing. This should provide a system that is 

better for assessing the efficacy of the Fe3O4 NP drug delivery system in patients. 

Patients diagnosed with cutaneous melanoma had given prior consent for biopsied 

tissue, after sentinel lymph node biopsy, to be used for our research. HTA-compliant 

Norwich Biorepository (HTA licence 11208; National Research Ethics Service 

reference, 08/H0304/85) ethical approval was obtained. All procedures of patient-

derived melanoma cells were approved by the UEA Faculty of Medicine and Health 

ethics committee (Ref: 2013/2014-03HT). 

Neural/glial antigen 2 (NG2), also known as melanoma chondroitin sulphate 

proteoglycan (MCSP), is expressed on the surface of the majority (90%) of malignant 

melanoma (Li et al., 2003, Russell et al., 2013). NG2 is thought to play a role in cell 

proliferation, adhesion, and migration (Russell et al., 2013). For this reason, NG2 was 

chosen as a novel marker for melanoma cells. As tissue was taken from the patient’s 

lymph node, the lymphocyte common antigen (CD45) was used as a control 

(Nandedkar et al., 1998). Successfully isolated melanoma cells will be used to evaluate 

specificity of the Fe3O4-α-MSH NP (Fe3O4-PEP) in a model closer to the patient tissue 

than commercial cultured cells. As a result, the Fe3O4-PEP will be validated as a viable 

drug delivery system.  
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Patient tissue was collected fresh from lymphadenectomy and transferred 

directly to cell culture in HBSS supplemented with 2% FCS, 100 U/ml penicillin, and 

100 µg/ml streptomycin. Tissue was then dissociated by breaking down collagen IV 

of the basal lamina, DNA, and hyaluronic acid of the connective tissue. After digestion 

and filtration through a 70 µm nylon filter, cells were separated into a single cell 

suspension (figure 5.9.1). The cell morphology suggested a range of cell types and cell 

debris (figure 5.9.1).  

 To isolate melanoma cells, the sample was stained using fluorescent antibodies 

targeted against NG2 and CD45 before separating cell types with FACS. First, the cell 

population was selected from the FS and SS dot plot, avoiding the cell debris at the 

origin of the x and y axis (figure 5.9.2.a.i). The single cells were then re-analysed to 

check the population and the cells from this gate only were used for separating NG2+ 

and NG2- cells (figure 5.9.2.a.ii). The FL2 channel was used to identify cells positive 

for NG2 (y axis) and FL4 channel was used to identify CD45+ cells (figure 5.9.2.a.iii). 

The representative data shows 45.0% of the gated single cells were positive for NG2; 

identified by the cluster of f events with a high FI detected by the FL2 channel (y axis). 

A large proportion of cells, 46.2%, were NG2- and a small population had a high 

relative FI detected by the FL4 channel (x axis), indicating the presence of 

lymphocytes. Interestingly, there was a population of cells NG2+/CD45-. These cell 

could be NG2+ melanoma cells engulfed by CD45+ lymphocytes however, as the aim 

was to isolate melanoma cells, the NG2+/CD45+ population were not included in the 

NG2+ sorting. NG2+/CD45- cells (top gate, figure 5.9.2.a.iii.) were isolated into a 

centrifuge tube containing supplemented RPMI-1640. Into a separate centrifuge tube, 

also containing supplemented RPMI-1640, the NG2- population was sorted (bottom 

gate, figure 5.9.2.a.iii). The separate samples were then reanalysed (figures 2.9.2.b, 
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2.9.2.c) to confirm the FACS machine was calibrated correctly. NG2- cells were 

correctly separated into centrifuge tube (figure 2.9.2.b.iii) and NG2+ cells (figure 

2.9.2.c.iii) were correctly separated into a different centrifuge tube.   
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Figure 5.9.1 Patient sample after digestion and before FACs. Tissue was digested and separated into 

single cells.  
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Figure 5.9.2 Digested patient tissue sample sorted by FACs into NG2+ and NG2- cells. (a.i) cells 

were gated based on the dot plot against side scatter and forward scatter, (a.ii) the population of single 

cells were then gated for analysis, (a.iii) FL2 on y axis (NG2+) against FL4 on x axis (CD45). Cells 

were gated for NG2+ and remaining cells. (b, c) cells were then analysed after sorting. (b) Cells analysed 

after being selected as NG2-, and (c) cells analysed after being selected as NG2+.  
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After cell seeding for 24 h post FACS, the morphology of the two populations 

is clearly different (figure 5.9.3). NG2+ cells have started to attach to the culture 

surface, evident by the flattened shape of the cells, whereas NG2- cells appear smaller 

and not attached to the culture surface. NG2+ morphology continued to change over 2, 

3, and 4 days as they started to differentiate (figure 5.9.4.a). After 6 days, NG2+ cells 

had differentiated and proliferated (figure 5.9.4.b). The cells then appeared elongated 

and multi polar, comparable to the morphology of common cultured melanoma cells. 

These cells were then lysed and the presence of MC1R and Melan A protein was 

analysed using Western Immunoblotting (figure 5.9.4.c). NG2- and A549 (negative 

control) cells showed no evidence of Melan A protein expression. MC1R protein was 

also not found in the cell lysate of NG2- cells. The positive cells however, showed 

protein expression of Melan A and MC1R. Overall, it appears from the morphology 

and the presence of melanoma markers that sorting for NG2 has successfully isolated 

the melanoma from non-melanoma cells.  

 Importantly, the development of this method will enable us to ultimately test 

our novel anti-melanoma nanotherapy using a system that can isolate pure melanoma 

cells harvested from the patient biopsy material, several hours post-surgery.  
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Figure 5.9.3 Patient cells after sorted by FACs into NG2+ and NG2- populations. Cells were seeded 

for 24 h after FACs before imaging to assess cell morphology. Images from different fields of view of 

the sample patient sample. Scale bar 50 µm. 
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Figure 5.9.4 Characterisation of patient cells after sorted by FACs into NG2+ and NG2- 

populations. (a) Cell morphology of NG2+ cells after sorting and seeded for 2, 3, and 4 days. NG2+ 

cells were seeded after FACs and the morphology assessed for 2, 3, and 4 days. Error bars 50 µm. (b) 

NG2+ cells seeded after FACs and incubated for 6 days to assess cell morphology. (c) Western 

Immunoblot analysis of MC1R and Melan A protein levels in NG2-, NG2+, A549 lung cancer, and SK-

MEL-28 melanoma cells. Tubulin was used as loading control.  
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5.10 Discussion  

 

Targeted NPs are beginning to show great promise as drug delivery systems for the 

treatment of a wide variety of cancers (Kim et al., 2013, Lee et al., 2013, Lee et al., 

2014, Sung et al., 2007). For melanoma, MC1R is a promising target (Tafreshi et al., 

2012). We checked the expression of MC1R in a range of melanoma cell lines. M202, 

M229, M285, A375, and SK-MEL-28 all showed protein expression of MC1R (figure 

5.2.1). However, MC1R was also seen in A549 lung cancer, MDA-MB-231 breast 

cancer, and HEK 293 embryonic kidney cells. Several other studies have also shown 

MC1R expression in non-melanocytic cell lines (Roberts et al., 2006, Salazar-Onfray 

et al., 2002, Tafreshi et al., 2012).  Roberts et al. identified mRNA levels of MC1R in 

non-melanocytic cell lines including HEK 293, Colo 205 (colon), MCC 14/2 (Merkel 

cell carcinoma), H69 (lung), LCL (lymphoblastoid), and NHKs (human 

keratinocytes). After decreasing the number of amplification cycles, mRNA was not 

identified in the non-cancerous non-melanocytic cells, but observed in melanoma cells 

and human melanocytes. This suggests low levels of leaky MC1R gene expression in 

non-melanocytic cells and higher expression in melanoma and melanocytes. 

Moreover, after confocal microscopy and ligand binding assays intracellular levels of 

MC1R protein was observed in non-melanocytic cells. In melanoma and melanocytes, 

on the other hand, MC1R was found on the cell surface (Roberts et al., 2006). 

Extracellular expression of MC1R deviated from melanoma cells to non-melanoma 

cells only in in vitro cultured cells. It is often the case that, with an unstable genome, 

transferred cells for cell culture have an altered phenotype. 
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 In this study, NR was used as a small hydrophobic molecule for proof-of-

concept encapsulation into the outer shell of Fe3O4-PEG NP. Moreover, it had the 

added advantage of fluorescent properties that could be utilised for NP uptake studies 

into melanoma cells. As NR is insoluble in H2O, addition of the molecule into Fe3O4-

PEG aqueous solution forced NR into the hydrophobic shell of the NPs (figure 5.3.1.). 

In a solution without NPs, NR aggregated on the surface of the centrifuge tube or the 

dialysis membrane. As a result, only NR encapsulated in the Fe3O4-core NPs was 

dispersed in the solution (figure 5.3.2).  

 After encapsulation, we used the Fe3O4-PEG-NR as a tool to investigate NP 

uptake in cells. After A2058 melanoma cells were incubated with Fe3O4-PEG-NR 

cells, NR was seen intracellularly alongside Fe3O4-core (figure 5.4.1). As NR is a dye 

specifically designed for microscopy it is easy to using the confocal microscope. The 

Fe3O4-core particles, seen using reflected light, are not optimised to be seen using this 

type of microscopy. As a result, the NR is clearer to see than the NPs (figure 5.4.1) 

and it is difficult to see if there is co-localisation of the two. However, as NR is 

lipophilic it is safe to assume the NR either remains in the Fe3O4-PEG NP or is released 

once in the cell into adiposomes, intracellular lipids (Greenspan et al., 1985). A 

limitation with the use of NR as the only way to quantify the internalisation of NPs 

was the uncertainty that the NR stayed associated with the NP before internalisation 

in the cell. Internalised NR stains the hydrophobic domains of the cell (Greenspan et 

al., 1985), but internalisation could occur as either Fe3O4-NR or as free NR.  

 We wanted to investigate the specificity of this uptake by comparing the 

targeted Fe3O4-PEP NPs to the non-targeted Fe3O4-PEG NPs in both melanoma and 

control cells. Flow cytometry was used to quantify the cellular uptake of the NR 

associated with the NP. One of the advantages of using nanomaterials as drug delivery 
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systems in oncology is the accumulation of NPs into the tumour environment through 

the EPR effect (section 1.3.2). NPs are able to enter the cell through four pathways: 

clathrin/caveolar-mediated endocytosis, phagocytosis, macropinocytosis, and 

pinocytosis (Oh and Park, 2014). As a result, it was expected that the non-targeted 

Fe3O4-PEG-NR NPs cellular uptake would be observed in both melanoma and non-

melanocytic cell lines through non-MC1R-mediated uptake such as pinocytosis; and 

the same can be said for targeted Fe3O4-PEP-NR NPs. However, due to the active 

targeting through MC1R receptor-mediated endocytosis, the rate of cellular uptake 

should be increased compared to other uptake mechanisms (Wileman et al., 1985). To 

this end, we compared cellular uptake of targeted and non-targeted NPs over time. In 

both melanoma cells assessed, the rate of uptake was increased. Fe3O4-PEP-NR NPs 

were internalised quicker than the non-targeted Fe3O4-PEG-NR NPs, whereas the non-

melanocytic A549 cells showed no difference in cellular uptake between Fe3O4-PEG-

NR and Fe3O4-PEP-NR NPs. Uptake in A549 increased steadily from 30 min to 1 h, 

where it remained at a constant level. This NP uptake can be viewed as non-MC1R-

mediateduptake through uptake mechanisms such as pinocytosis. Although the 

extracellular presence of MC1R protein on non-melanocytic cells is disputed (Roberts 

et al., 2006), it is promising to see that despite the detection of MC1R protein there is 

no significant difference in A549 cellular uptake between Fe3O4-PEG-NR and Fe3O4-

PEP-NR NPs. Furthermore, the majority of literature outlining the successful targeting 

of α-MSH to MC1R in vitro has been shown in mouse melanoma cells (Leung, 2004, 

Qin et al., 2014, Vannucci et al., 2012). Encouragingly, specific targeting of MC1R 

using our Fe3O4-PEP-NR system appears to be working in both mouse (B16F10) and 

human (A2058) melanoma cell lines. These results indicate the system is a viable 

candidate for in vivo uptake studies. 
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 As melanocytes have cell surface expression of MC1R, albeit at a lower level 

than on melanoma cells (Donatien et al., 1992), the uptake in HEMA-lp cells was also 

investigated. It would be disadvantageous for Fe3O4-PEP drug loaded NPs to target 

healthy human cells. There was minimal uptake of both Fe3O4-PEG-NR and Fe3O4-

PEP-NR NPs after 5 h incubation, and no significant difference in cellular 

internalisation between the non-targeted and targeted NPs (figure 5.4.8). Healthy cells 

have a lower metabolism and uptake molecules at a slower rate than cancer cells. In 

this respect, it was expected that healthy human melanocytes will have a slower 

endocytic activity than cancer cells and it is beneficial that our data show low Fe3O4 

NP internalisation in the non-cancerous melanocytes and no detectable increase with 

the Fe3O4-PEP-NR targeted NP (figure 5.5.3). Data from the flow cytometry strongly 

suggests that if after Fe3O4-PEP NPs accumulate in the tumour microenvironment 

through EPR, then the increase rate of uptake will deliver any drug payload to the 

melanocytic cells; avoiding healthy non-cancer cells such as melanocytes.   

 Further experiments were undertaken to demonstrate that Fe3O4-PEP NPs were 

internalised through MC1R-mediated endocytosis. To block MC1R prior to incubation 

with Fe3O4-PEP NPs, B16F10 and A549 cells were incubated with an excess of α-

MSH peptide (figure 5.6.7). As expected, blocking non-melanocytic A549 control 

cells with an excess of α-MSH had no effect on the internalisation of both Fe3O4-PEG-

NR and Fe3O4-PEP-NR NPs; demonstrating non-MC1R-mediated endocytosis. In the 

melanocytic B16F10 cell line, blocking with an excess of α-MSH prior to Fe3O4-PEG-

NR incubation caused no effect; again signifying NP internalisation is by means other 

than MC1R-mediated endocytosis. Although the peptide blocking of MC1R did not 

decrease the relative FI from Fe3O4-PEP-NR to the same FI as Fe3O4-PEG-NR (figure 

5.6.7), there was a marked decrease in internalisation of Fe3O4-PEP-NR to Fe3O4-PEP-
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NR with the peptide block. This indicates that Fe3O4-PEP-NR is mostly being 

internalised via MC1R. After optimisation of the amount of NR from 0.5% to 0.1% 

NR, blocking with α-MSH did decrease the relative FI after Fe3O4-PEP incubation to 

the same as control NPs for both melanoma cell lines (figure 5.6.8). This suggests that 

with the higher amount of NR (0.5%) there may be free NR being internalised into the 

cell. At 0.1% NR, Fe3O4-PEP-NR can be successfully block with an excess of α-MSH 

providing evidence that Fe3O4-PEP-NR NPs are internalised through MC1R and the 

relative FI from the flow cytometry is not from free NR.                

 After establishing uptake specificity to melanoma cells, a chemotherapeutic 

drug was encapsulated into the NPs. PTX was loaded into Fe3O4-PEG and Fe3O4-PEP 

NPs using the same principles as encapsulation of NR. Although encapsulation of PTX 

was not specifically quantified, lower IC50 values than PTX alone and the dose 

dependent loss of cell viability in A549 and A2058 cells lines suggests that a 

significant amount of the original concentration of PTX was successfully encapsulated 

into the Fe3O4-core NPs. There was no significant difference after incubation with 

either Fe3O4-PEG-PTX and Fe3O4-PEP-PTX NPs for 72 h in both cell lines. At 72 h 

incubation, it is feasible to suggest that comparable amounts of both the targeted and 

non-targeted NPs have entered the cell. As a result, cells are exposed to the delivered 

PTX for a similar time. To improve understanding of efficacy of PTX loaded NPs, 

incubation times must be optimised. The next step would be to incubate the particles 

for a time point where there is a difference in NP internalisation. Flow cytometry data 

(figure 5.4.9) would suggest that after <5 h incubation of Fe3O4-PEP-PTX more PTX 

would be delivered to melanoma cells than after the same incubation time of Fe3O4-

PEG-PTX. If this were the case, at the lower incubation time, Fe3O4-PEP-PTX would 

be more potent to melanoma cells than Fe3O4-PEG-PTX. Further work also needs to 
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be done to quantify the concentration of PTX encapsulated into Fe3O4-core NP to 

properly understand the amount of drug delivered to the cell. 

 To understand uptake and drug efficacy of the Fe3O4 delivery system, we 

wanted to test as close to the patient as possible. In order to do that, we established a 

method for isolating melanoma cells from resected tissue containing multiple cell 

types. Melanoma cells were sorted, using FACS, by discriminating against NG2+ and 

NG2- cell populations (figure 5.6.2). Cell morphology was clearly different between 

the NG2+ and NG2- cells (figure 5.6.3). NG2+ cells then went on to proliferate and 

differentiate after seeding from 2 to 6 days (figure 5.6.4, 5.6.5.a). After differentiation, 

elongation and polarisation of the cells provided cell morphology similar to recognised 

melanoma cell lines (figure 5.6.5.a). Moreover, protein expression of NG2+ cells was 

consistent with melanoma (figure 5.6.5.b). Further characterisation of NG2+/NG2- 

cells is needed to convincingly confirm isolation of melanoma cells, but initial results 

show promise. A limiting step with the protocol was obtaining appropriate tissue. The 

amount of melanoma cells from resection varied greatly between samples. However, 

with the melanoma cell isolation protocol working, it leads the way for exciting 

experiments using the Fe3O4 drug system.  
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6.1 Discussion  

 

The use of conventional chemotherapeutics and radiation in oncology is widely 

regarded as out-dated (Hanahan and Weinberg, 2011). For the treatment of melanoma, 

resection of the tumour still represents the best chance of survival. Once metastasised, 

prognosis is poor; the 5-year survival rate for stage 4 melanoma is approximately 15-

20% (Dickson and Gershenwald, 2011). Before 2011, the chemotherapeutic drug 

dacarbazine (DTIC) was part of a standardised treatment. However, DTIC produced a 

tumour response in only 10-15% of patients and furthermore, did not increase 

progression-free survival (Middleton et al., 2000). A significant advancement in the 

genes and molecular mechanisms involved in melanoma tumorigenesis, the tumour 

microenvironment, and melanoma progression, contributed to the development of 

more targeted melanoma drugs (Flaherty et al., 2012). The discovery that the tumour 

in 50 % of melanoma patients harboured the BRAF Val600 mutation led to targeted 

drugs that inhibit the MAPK signalling pathway, of which BRAF is a component. 

These drugs include vemurafenib, dabrafenib, and trametinib. Although tumour 

response can be seen in patients treated with BRAF inhibitors, there is typically only 

a minimal increase in the median survival (5-7 months; (Jang and Atkins, 2013). This 

relapse due to the formation of tumour resistance. Changes in BRAF, such as abhorrent 

upregulation of mutated BRAF and the truncation of the BRAF protein (leading to an 

increase in kinase activity) accounts for drug resistance in 30% of patients (Poulikakos 

et al., 2011, Shi et al., 2012). As a result, attention is now focused on developing 

combinational therapies such as BRAF inhibitors with immunotherapy (including 

iplimumab and anti-PD1 antibody).  
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The use of multifunctional nanoparticles (NPs) in oncology is being explored 

as a way to overcome the limitations conventional chemotherapeutics. Importantly, 

NP drug delivery systems are able to accumulate in the tumour primarily through the 

enhanced permeability and retention (EPR) effect and be taken up in cancer cells more 

readily than in healthy cells; a strategy which limits systemic toxicity. Moreover, by 

combining several drugs into the nanoformulation, NPs are able to overcome common 

resistance mechanisms which can lead to patient relapse.  

Fe3O4 NPs are being developed as drug delivery systems for a range of cancers 

due to the unique properties of the material; specifically, when Fe3O4 is capable of 

exhibiting superparamagnetic (SPM) properties. For example, Fe3O4 cores have been 

shown to work well as MRI contrast agents (Gamarra et al., 2010, Wang et al., 2009). 

This approach is particularly useful as a diagnostic tool as the current procedure 

(sentinel lymph node biopsy) is invasive to the patient. Moreover, Fe3O4 NPs have 

also demonstrated that they can be used for further therapeutic benefits through 

thermal ablation treatment (Lin et al., 2014). 

The synthesis method outlined in chapter 3 produced highly monodispersed 

Fe3O4 NPs that were within a size range to exhibit superparamagnetic (SPM) 

properties (Xuan et al., 2009). Moreover, they were functionalised to be water soluble 

and stable in a biologically relevant environment, which is a mandatory requirement 

for intravenous administration. The DLS data showed no aggregation of Fe3O4-PEG 

NPs in the presence of proteins, which would suggest Fe3O4-PEG NPs would be stable 

in the blood stream. The use of PEG as stabilising agent is widely accepted to prevent 

clearance through the RES system and prolong circulation time (Xie et al., 2007).  

Before further development, Fe3O4 NPs were assessed for potential toxicity. 

Currently, there is no standardised toxicity assessment for NPs, and this has hindered 



Chapter six 

 

295 
 

the advancement of NPs to clinical use (Nyström and Fadeel, 2012). To address this, 

in chapter 4 we showed that the combination of cytotoxicity assays with a X. laevis 

phenotypic abnormality assay provided accurate toxicity data that was comparable to 

using a mouse model (Webster et al., 2016). The assay could rapidly identify NP-

induced toxicity that would otherwise be missed with conventional cytotoxicity assays 

at an early stage of multi-functional NP development. This work correlates with 

initiatives that aim to reduce the number of animals used in medical research as higher 

vertebrate models are replaced by the more primitive organism X. laevis at the early 

stages of toxicity assessment. Other research groups have also investigated using lower 

phylogenetic organisms for nanotoxicology asessement. For example, with similar 

advantages to using X. laevis, zebrafish has been proposed as another suitable toxicity 

model (Chen et al., 2016, Fako and Furgeson, 2009, Wehmas et al., 2015). The 

research presented in chapter 3 advances the knowledge of the use of developmental 

animal models in nanotoxicology and provides evidence that parallel cytotoxicity, and 

in vivo analysis is needed for accurate nanotoxicity assessment. Fe3O4 NPs that we 

developed in chapter 3 were put through this robust toxicity protocol. After parallel 

assessment with cytotoxic and X. laevis phenotypic assays, Fe3O4 NPs showed no signs 

of potential toxicity in these systems. These results were reinforced using a rodent 

model.  

The main aim of this work was to produce a NP that could specifically target 

melanoma cells. To achieve this, we sought to target the upregulated melanocortin 1 

receptor (MC1R; (Cai et al., 2005) using the agonist α-MSH. FT-IR analysis confirmed 

attachment of the α-MSH-PEG conjugate on the surface of Fe3O4 NPs. Successful 

encapsulation of the hydrophobic dye nile red (NR) into the outer shell of Fe3O4 NPs 

resulted in the dye being dispersed in an aqueous solution with two main advantages. 
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Firstly, it allowed Fe3O4 NPs to be visualised for uptake experiments through confocal 

microscopy and flow cytometry, as well as acting as a prove of concept that 

hydrophobic drugs would also successfully reside in the hydrophobic part of the NP 

shell.  

 Fe3O4-PEG NPs were passively internalised in A2058 melanoma cells, as 

visualised using confocal microscopy. Reflective light and fluorescence (from NR), 

showed that the NR was encapsulated in the NP, and both the Fe3O4 NPs and NR were 

internalised in the cell (further evidence of co-localisation of Fe3O4 and NR can be 

seen in the appendix). Other options for visualisation of Fe3O4 NPs included 

attachment of a fluorescent labelled PEG to the surface of the NP. Although this would 

provide more direct evidence of NP uptake, there was a concern that any modification 

of the NP surface would affect the reliability of the targeted uptake results.   

 Flow cytometry confirmed that Fe3O4-PEP NPs (targeted NPs) were 

internalised more readily than Fe3O4-PEG NPs (non-targeted NPs) in melanoma cells. 

Moreover, after blocking MC1R with an excess of α-MSH, we observed that Fe3O4-

PEP NP uptake was receptor mediated. Further work needs to be done to optimise 

Fe3O4-PEP NP uptake in melanoma cells. Fe3O4-PEP NPs contained a theoretical 10% 

PEG-PEP (compared to PEG alone) attached to the surface. Different ratios of PEG-

PEP to PEG need to be explored to provide optimal melanoma targeting without 

risking the stability of the NP.  

Fe3O4 NPs have shown to successfully target solid tumours passively by 

exploiting the enhanced permeability effects in vivo (Chertok et al., 2008, Larsen et 

al., 2009, Yu et al., 2008) and, with the relevant size and the same PEG coating, it is 

expected that our Fe3O4 NPs will also accumulate in a solid tumour. Once in the 

tumour environment, Fe3O4-PEP NPs will be selectively internalised by MC1R 
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overexpressing melanoma cells. Au NPs, conjugated to the same NDP-MSH peptide 

as we have used in this study, have shown NPs are selectively delivered to melanoma 

cells by microscopy (Lu et al., 2009). Mice injected with the Au–NDP-MSH NPs 

markedly reduced tumour size compared to Au-PEG NPs or saline alone after 

photothermal ablation (Lu et al., 2009). A major focus for the future work of this 

project would be to investigate the melanoma-targeting capabilities of Fe3O4-PEP NPs 

a rodent model in order to confirm NP in vivo uptake and biodistribution. The 

substantial work carried out in chapter 5 to confirm the specificity of Fe3O4-PEP NPs 

to melanoma cells would suggest that equally promising results would be seen in vivo.  

 A major concern with studying NP uptake via an overexpressed protein target 

is the translation from in vitro to in vivo. Although MC1R appears to be a promising 

targeted both in vitro and in vivo (Lu et al., 2009), the literature reports concern over 

the accurate identification and quantification of MC1R in melanoma cell lines (Roberts 

et al., 2006). As a result, the receptor blocking experiments in chapter 5 were important 

to show receptor mediated uptake of Fe3O4 NPs. Additionally, chapter 5 reports a 

methodology for the isolation of melanoma cells from human tissue samples. 

Successful isolation would allow NPs to be tested as close to clinically relevant 

melanoma cells as possible. The methodology separated melanoma cells from tissue 

containing multiple cell types by isolating cells expressing human glial antigen 2 

(NG2). These cells were characterised as melanoma cells by Western Immunoblot, 

which showed that NG2+ cells expressed the melanoma markers MelanA and MC1R. 

Continuation of this work would aim to show an increase in receptor mediated uptake 

of Fe3O4-PEP NPs in NG2+ cells compared to NG2- cells; thus confirming that once 

accumulated within the solid tumour, Fe3O4 NPs would preferentially target the 

melanoma cells rather than the local healthy tissue.  
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As a result of successful NR encapsulation, the hydrophobic and cytotoxic drug 

paclitaxel (PTX) was encapsulated by the same method. Although the concentration 

of PTX was not formally quantified, a dose dependent loss of cell viability in cell lines 

confirmed that PTX was associated with the Fe3O4 NPs. Going forward, PTX, or any 

other drug encapsulated in the NP, must be accurately quantified. Furthermore, several 

groups have looked at temperature/pH – dependent drug release from a 

nanoformulation (Chang et al., 2013, Kamaly et al., 2016, Xing et al., 2012), which is 

important to considered. The foremost aim for the continued development of our Fe3O4 

NP system, is the encapsulation of synergist drugs. There are numerous viable drugs 

that could be encapsulated into our nanosystem that have demonstrated to work 

effectively as combinational therapies. Amongst these is combining PTX with other, 

more targeted, drugs. Axitinib, a vascular endothelial growth factor (VEGF) inhibitor, 

alongside PTX led to an increase in standardised uptake value in patients with stage 

IV or unresectable stage III melanoma (Algazi et al., 2015). PTX with trametinib 

improved progression free and overall survival in non-BRAF mutated advanced 

melanoma (Coupe et al., 2015). Other drug combinations have been explored in 

melanoma patients. Phase III clinical trials have shown an increase in overall survival 

rate with treatment of dabrafenib and trametinib (Robert et al., 2015), nivolumab and 

ipilimumab (Larkin et al., 2015), and ipilimumab and dacarbazine (Maio et al., 2015).  

 In summary, this work has achieved the aim to produce a novel NP that 

specifically targets melanoma. The Fe3O4 NP is stable and safe, as tested by our 

nanotoxicity protocol, and appears to be preferentially internalised by MC1R 

expressing melanoma cells. The work presented here provides a solid platform for 

development of this NP tool as a multimodel drug delivery system and furthers the 

field of NP treatments for metastatic melanoma. Furthermore, by modification of 
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targeting moieties and drug choice, the system can be adapted to different mutational 

status of the cancer. Significantly, the nanoformulation developed here can be used as 

a future personalised medicine.  
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7.1 Additional in vitro NP uptake images 

 

As a member of the project to develop a novel targeted nanotherapy for the treatment 

of melanoma, Dr Paola Sánchez Moreno confirmed results seen in chapter 5. This 

section presents confocal images taken by Dr Sánchez Moreno at the Politecnico di 

Milano (currently unpublished). NP uptake was performed using serum free media for 

A2058 cell line and complete media (including 10 % serum) for B16F10 cells.  
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Figure A1 Confocal microscopy of Fe3O4-PEG NPs in A2058 melanoma cells. Nucleus stained with 

Hoechst 33342 (blue), Fe3O4 reflective light (red), and cell mask (green). Scale bar size stated. Panel a 

and b show different representative images.  
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Figure A2 Confocal microscopy of Fe3O4-PEG NPs in A2058 melanoma cells pre-blocked with 

excess peptide. Nucleus stained with Hoechst 33342 (blue), Fe3O4 reflective light (red), and cell mask 

(green). Scale bar size stated. Panel a and b show different representative images. 
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Figure A3 Confocal microscopy of Fe3O4-PEP NPs in A2058 melanoma cells. Nucleus stained with 

Hoechst 33342 (blue), Fe3O4 reflective light (red), and cell mask (green). Scale bar size stated. Panel a 

and b show different representative images. 
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Figure A4 Confocal microscopy of Fe3O4-PEP NPs in A2058 melanoma cells pre-blocked with 

excess peptide. Nucleus stained with Hoechst 33342 (blue), Fe3O4 reflective light (red), and cell mask 

(green). Scale bar size stated. Panel a and b show different representative images. 
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Figure A5 Confocal microscopy of Fe3O4-PEG NPs in B16F10 melanoma cells. Nucleus stained 

with Hoechst 33342 (blue), Fe3O4 reflective light (red), and cell mask (green). Scale bar size stated. 

Panel a and b show different representative images. 
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Figure A6 Confocal microscopy of Fe3O4-PEG NPs in B16F10 melanoma cells re-blocked with 

excess peptide. Nucleus stained with Hoechst 33342 (blue), Fe3O4 reflective light (red), and cell mask 

(green). Scale bar size stated. Panel a and b show different representative images.  
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Figure A7 Confocal microscopy of Fe3O4-PEP NPs in B16F10 melanoma cells. Nucleus stained 

with Hoechst 33342 (blue), Fe3O4 reflective light (red), and cell mask (green). Scale bar size stated. 

Panel a and b show different representative images. 
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Figure A8 Confocal microscopy of Fe3O4-PEG NPs in B16F10 melanoma cells re-blocked with 

excess peptide. Nucleus stained with Hoechst 33342 (blue), Fe3O4 reflective light (red), and cell mask 

(green). Scale bar size stated. Panel a and b show different representative images. 


