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Abstract 

Enteropathogenic Escherichia coli (EPEC) are non-invasive foodborne 

diarrhoeal pathogens that are a leading cause of infant death in the developing 

world. As antibiotic resistance increases amongst pathogens, new treatments 

are required to reduce infant mortality. Probiotic bacteria could offer a solution, 

and Lactobacillus reuteri have been shown to alleviate diarrhoea and reduce 

EPEC colonisation in clinical studies. Here, we utilised mucus and non-mucus 

producing human intestinal epithelial cell lines as well as human duodenal 

biopsies to investigate the effects of L. reuteri ATCC PTA 6475 and ATCC 

53608 on EPEC infection, with particular focus on pathogen adherence, host 

mucin production, and innate immune response. 

Short-term protection assays demonstrated that pre-incubation with an excess 

of L. reuteri inhibited EPEC epithelial binding, independently of secreted 

products and probiotic epithelial adhesion. Increased pre-incubation times 

enhancing L. reuteri adhesion reduced EPEC binding to HT-29 cells by ATCC 

PTA 6475. While this strain did not inhibit EPEC adhesion to LS174T cells, 

ATCC PTA 6475 significantly reduced cell to cell spread of EPEC, a 

characteristic which has not previously been described. 

In addition to reducing EPEC adherence, incubation with L. reuteri ATCC PTA 

6475 increased MUC2 protein production in LS174T cells. In contrast, EPEC 

infection reduced MUC2 protein levels and this effect was diminished by co-

incubation with ATCC PTA 6475, suggesting that L. reuteri protect against 

EPEC-mediated MUC2 degradation. L. reuteri also demonstrated anti-

inflammatory characteristics, as ATCC PTA 6475 and ATCC 53608 inhibited 

EPEC-induced interleukin-8 protein expression in HT-29 cells.  

Taken together, our findings suggest that L. reuteri protects against EPEC 

infection by reducing pathogen binding and modulating host mucus production 

and inflammation. These effects are strain-specific and dependent on the host 

model system used. Therefore, the probiotic potential of L. reuteri strains 

needs to be carefully evaluated in relevant systems before application in 

clinical practice.  
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1.1. Enteropathogenic E. coli 

Escherichia coli are rod shaped, Gram-negative, facultative anaerobes which 

colonise the infant gastrointestinal (GI) tract (GIT) within hours after birth 

(Kaper et al., 2004). These microbes were originally isolated from the stools 

of infants by Theodor Escherich in 1885 (Bacterium coli commune) and were 

seen as harmless commensals in the GIT (Reprinted in English, Escherich 

(1988)). However, the identification of Bacterium coli var. neapolitanum, which 

would later be renamed enteropathogenic E. coli (EPEC), as the causative 

agent of “summer diarrhoea” in the UK in the 1940’s demonstrated that this 

bacterial species could also have pathogenic tendencies (Bray, 1945; Bray & 

Beavan, 1948; Levine et al., 1978). Since the identification of EPEC, numerous 

other E. coli pathotypes have been described, which have been broadly 

classified as either diarrhoeagenic or extra-intestinal pathogenic E. coli 

(ExPEC) (Figure 1.1) (Kaper et al., 2004).  

 

 

Figure 1.1: The colonisation sites of the major E. coli pathotypes 

Modified from Croxen and Finlay (2010). 
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The diarrhoeagenic E. coli pathotypes are EPEC, enterohaemorrhagic E. coli 

(EHEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), 

enteroinvasive E. coli (EIEC), and diffusely adherent E. coli (DAEC) (Croxen 

et al., 2013). The recently described pathotype adherent invasive E. coli 

(AIEC) is also found in the GIT, where it has been linked to the development 

of ileal Crohn’s disease. However, this strain is not specifically associated with 

the development of diarrhoea (Darfeuille-Michaud, 2002). The ExPEC 

pathotypes which have been described are uropathogenic E. coli (UPEC) and 

neonatal meningitis E. coli (NMEC) which colonise the bladder and brain, 

respectively (Croxen & Finlay, 2010). The evolution of these distinct E. coli 

pathotypes is facilitated thorough the plasticity of the E. coli genome, which 

contains a core genome (genes located in at least 95% of publically available 

sequenced E. coli genomes) of approximately 3050 genes and a pan-genome 

(genes located in fewer than 95% of publically available sequenced E. coli 

genomes) of over 16,300 genes (Kaas et al., 2012). The expansive pan-

genome contains the E. coli virulence repertoire which enables E. coli to infect 

the host and induce diarrhoea.  

Diarrhoeal disease is currently the second largest killer of children under the 

age of 5, responsible for the deaths of an estimated 800,000 children per year 

in 2010, primarily from sub-Saharan Africa and south east Asia (Liu et al., 

2012a). In the developing world, socio-economic status is inversely 

proportional to the risk of moderate to severe diarrhoea (MSD), as children 

from parents with higher wealth status, greater access to clean water, and 

more highly educated mothers, were less likely to present with MSD than 

children from poorer backgrounds (Kotloff et al., 2013). While there are 

numerous etiological factors which cause this diarrhoeal health burden, 

diarrhoeagenic E. coli are a major contributor as the pathotypes ETEC and 

EIEC (Shigella) have been identified as two of the four major causes for MSD 

(Kotloff et al., 2013). While the incidence of EPEC infection was lower than 

ETEC and EIEC, the presence of EPEC in cases of MSD was significantly 

associated with infant death (Kotloff et al., 2013). Furthermore, a systematic 

review of diarrhoeal mortality from 1990 to 2011 estimated that EPEC was the 

second major cause of death (after rotavirus) in children under 5 years of age 
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in 2011 (Lanata et al., 2013). Crucially, a rotavirus vaccine has been 

developed in recent years which has shown a high clinical efficacy (Vesikari 

et al., 2006). However, no vaccines have been developed for the prevention 

of EPEC infection so far.  

Thus, EPEC remains an important diarrhoeal pathogen and further research 

into the pathogenic mechanisms is required. In this section, I will discuss the 

current knowledge regarding EPEC infection. 

 

1.1.1. Epidemiology 

1.1.1.1. Emergence and classification 

The bacterial species Bacterium coli var. neapolitanum, later classified as 

EPEC serogroup O111, were first described in the United Kingdom by John 

Bray, who found that these bacteria were present in children with “summer 

diarrhoea” but were mostly absent from healthy infants (Bray, 1945; Levine, 

1987). Infections mainly affected infants (average age of 6 months) and were 

associated with high mortality (20 deaths out of 51 reported cases) (Bray, 

1945). The researchers identified these bacteria by developing an antiserum, 

which was used in the slide-agglutination test to differentiate EPEC from non-

pathogenic E. coli strains (Bray & Beavan, 1948; Levine, 1987). The use of 

this technique for E. coli recognition, as well as the development of O and H 

antigen serotyping by Kauffman in 1947, led to the detection of E. coli 

associated with diarrhoea in children across Europe and the United States of 

America (Levine, 1987; Robins-Browne, 1987). This pathotype was 

subsequently renamed enteropathogenic E. coli by Neter and colleagues and 

further divided into the classical EPEC serotypes O26, O55, O86, O111, O114, 

O119, O125, O126, O127, O128, O142, and O158 (Neter et al. (1955) and 

reviewed in Robins-Browne (1987), Levine (1987), Nataro and Kaper (1998), 

and Croxen et al. (2013)).  

With the identification of the E. coli pathotypes EIEC and ETEC in the 

subsequent decades, popular scientific thought suggested that EPEC was a 
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derivative of ETEC which had lost its enterotoxin plasmid during storage 

(Gross et al., 1976). However, the absence of toxins in diarrhoea which had 

an EPEC presence refuted this allegation (Gross et al., 1976). Definitive 

confirmation of a distinct EPEC pathotype was finally achieved by volunteer 

studies performed by Levine and colleagues, who demonstrated that EPEC 

strains of the serotype O127:H6 and O142:H6, which had been stored for 7 

years, were able to induce diarrhoea, but did not produce heat-stable or heat-

liable enterotoxins, which were characteristic for ETEC (Levine et al., 1978).  

In 1995, the EPEC pathotype underwent further redefinition and now 

encompasses two groups, typical and atypical EPEC (aEPEC), which are 

characterised by the presence or absence of the bundle forming pilus (BFP) 

encoded on the EPEC adherence factor (EAF) plasmid, respectively (Nataro 

& Kaper, 1998; Trabulsi et al., 2002). The EAF plasmid has an important role 

in the induction of diarrhoea by typical EPEC, as the loss of the EAF plasmid 

reduced the incidence of diarrhoea relative to the parent strain in adult 

volunteer studies (Levine et al., 1985). While aEPEC lack the EAF plasmid, 

these strains may have acquired additional virulence factors which 

compensate for the functionality of the EAF plasmid. 

While typical EPEC are a relatively homogenous group, with similar virulence 

factors between strains, aEPEC demonstrate greater heterogeneity and are 

thought to be more closely related to EHEC, with 81% of aEPEC strains not 

belonging to classical EPEC O-serotypes and 26.6% of aEPEC strains being 

“O-non-typeable” (Hernandes et al., 2009). Interestingly, the aEPEC serotype 

O55:H7 appears to share a common ancestor with EHEC O157:H7, with 

divergence of these pathotypes approximately 400 years ago (Whittam et al., 

1993; Zhou et al., 2010).  

As my focus in this PhD project was on the typical EPEC strain O127:H6 

E2348/69, the term EPEC will refer exclusively to typical EPEC and atypical 

EPEC will be referred to as aEPEC throughout this thesis. 
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1.1.1.2. Incidence, reservoirs, and transmission 

When EPEC were initially identified, infection was widespread in developed 

countries (Nataro & Kaper, 1998). While infection rates have decreased in the 

developed world, EPEC infection has become prevalent in the developing 

world (Nataro & Kaper, 1998). This shift in burden has been associated with 

improvements in hygiene and medical treatment however, it is also important 

to note that EPEC-induced diarrhoea in the developed world may be 

underreported and thus, the incidence of EPEC infection may be 

underestimated (Nataro & Kaper, 1998).  

The prevalence of EPEC amongst isolated diarrhoeagenic E. coli can vary 

between locations, with EPEC comprising 3.2% of diarrhoeagenic E. coli in 

Thailand (Ratchtrachenchai et al., 2004) compared to 15.5% in India (Dutta et 

al., 2013). While typical EPEC were originally thought to be more prominent in 

the developing world, in recent years the detection of aEPEC has increased 

relative to typical EPEC in children presenting with diarrhoea, as studies in 

India (Dutta et al., 2013; Nair et al., 2010), Iran (Nakhjavani et al., 2013), 

Kuwait (Albert et al., 2009), Thailand (Ratchtrachenchai et al., 2004), and 

Vietnam (Nguyen et al., 2005; Thompson et al., 2015) have predominantly 

isolated aEPEC from stools, with a previous study estimating that 78% of 

isolated EPEC were attributable to the aEPEC group (Ochoa et al., 2008). 

However, the role of aEPEC in the induction of diarrhoea is currently 

controversial, as the detection of aEPEC was greater in control patients than 

those presenting with diarrhoea (50% controls versus 18% with diarrhoea; 

Thompson et al. (2015)). In contrast, other studies have found a significant 

association between the presence of aEPEC and diarrhoeal symptoms (2.3% 

controls versus 12.8% with diarrhoea; Robins-Browne et al. (2004)). As the 

contribution of aEPEC to diarrhoea remains uncertain, further study is required 

to determine whether aEPEC, or other factors, are the causative agent. 

A key issue when interpreting epidemiological data is the difference in protocol 

and inclusion criteria amongst different studies. However, the recent Global 

Enteric Multicentre Study (GEMS) has provided an up-to-date evaluation on 

the causes of MSD in children up to 5 years old in seven case-controlled 
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populations in sub-Saharan Africa (Kenya, Mali, Mozambique, and The 

Gambia) and South Asia (Bangladesh, India, and Pakistan), with standard 

operating procedures across all sites (Kotloff et al., 2013). This landmark study 

analysed the role of pathogens associated with MSD in 9439 children and 

found that while EPEC were not a major cause of diarrhoea (with a significant 

association to MSD only found in Kenya), this pathogen was significantly 

associated with death (2.6-fold increased risk) when present in infants with 

MSD (Kotloff et al., 2013). In contrast, aEPEC were not significantly associated 

with either the development of MSD or the likelihood of death when present. 

Risk of death from typical EPEC infection may be linked to specific allele 

variants, in particular nleG; however, while the function of this gene is known 

(E3 ubiquitin ligase), the specific cellular target has not yet been defined 

(Donnenberg et al., 2015). Thus, while the incidence of typical EPEC has 

reduced in recent years, this pathotype still represents a serious threat to infant 

health. 

While EPEC infection has been well documented, no specific reservoir in the 

environment has yet been identified. As humans are the only known natural 

hosts for EPEC, current thought suggests that both symptomatic and 

asymptomatic humans are the primary reservoirs (Croxen et al., 2013; Levine 

& Edelman, 1984). The spread of EPEC from one host to the next occurs 

through faecal-oral transmission, a route shared amongst all diarrhoeagenic 

E. coli, with bacterial transfer facilitated through contact with both infected 

people and soiled surfaces. Additionally, contaminated water may also be a 

pathogen reservoir, as EPEC infection is particularly prevalent in bottle-fed 

infants (Levine & Edelman, 1984). While infection is predominant in children 

under the age of two, adult infection has been observed in volunteer studies, 

where a dose of 108 to 1010 EPEC were sufficient to induce diarrhoea, if the 

gastric acid was neutralised prior to inoculation (Levine et al., 1978). However, 

due to the high infectious dose, and the need for gastric acid neutralisation, 

the study by Levine and colleagues suggested that natural adult infection was 

unlikely (Levine et al., 1978). The dose required for the infection of infants is 

currently unknown, although it is thought to be much lower than the observed 

dose for adults (Nataro & Kaper, 1998).  
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1.1.2. Pathogenesis 

EPEC demonstrates tropism to the duodenum, with EPEC adhesion to the 

intestinal epithelium being defined as a three-step process (Croxen et al., 

2013; Donnenberg & Kaper, 1992). Firstly, EPEC adhesins, such as BFP, bind 

to the epithelial surface and form an initial attachment to the mucosa. 

Secondly, the type 3 secretion system (T3SS) transfers translocated intimin 

receptor (Tir) into the host cell, which self-inserts into the host cell membrane. 

Finally, Tir attaches to EPEC-bound intimin, forming an intimate attachment 

between EPEC and the host cell. Concurrent with the transfer of Tir, further 

effector proteins are translocated into the host cell through the T3SS, which 

subsequently modify host cell processes and mediate the formation of the 

attaching and effacing (A/E) lesion. The attachment of EPEC to the intestinal 

epithelium is a key step in the development of diarrhoea. This process has 

been thoroughly investigated and we now have a good understanding of the 

individual stages required for attachment to the host. 

 

1.1.2.1. Initial attachment 

The initial attachment of EPEC to the epithelium is mediated through EPEC-

bound adhesins such as BFP, a type IV pilus encoded on the EAF plasmid, 

which adheres to phosphatidylethanolamine (PE), a phospholipid present in 

the host cell membrane (Figure 1.2A) (Foster et al., 1999; Giron et al., 1991; 

Khursigara et al., 2001). The role of the BFP in initial binding has been 

demonstrated on cancer cell lines, as an isogenic Δbfp strain showed 

significantly reduced adhesion compared to the wildtype, when incubated on 

Caco-2 cells (Cleary et al., 2004). Furthermore, strains which were unable to 

intimately adhere but produced BFP demonstrated comparable binding to the 

wildtype strain when incubated on Caco-2 cells (Cleary et al., 2004). 

Additionally, the blockage of BFP with antiserum reduced EPEC binding to 

HeLa cells (Giron et al., 1991). These cancer cell line-based studies imply an 

important role for BFP in epithelial binding. However, investigations with more 

complex model systems, such as in vitro organ culture (IVOC) of human 
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duodenal biopsies, are less conclusive, as an EPEC strain cured of the EAF 

plasmid was unable to adhere to the intestinal epithelium, whereas an isogenic 

Δbfp strain demonstrated comparable binding to the wildtype when incubated 

on duodenal biopsies (Hicks et al., 1998; Knutton et al., 1987). These findings 

suggested that while the EAF plasmid is required for epithelial colonisation, 

adhesion was not mediated by BFP. In human volunteer studies, the absence 

of either the EAF plasmid or the bfp gene reduced the incidence of diarrhoea, 

indicating that while BFP is not essential for infection, this adhesin is 

associated with the onset of diarrhoea in vivo (Bieber et al., 1998; Levine et 

al., 1985).  

 

Figure 1.2: EPEC adhesins which facilitate initial contact with the host 

epithelium 

Electron micrographs of EPEC BFP (A), ECP (B), EspA (C), and flagella (D). 

Arrows indicate the appendage of interest. Scale bars: 1 µm (A), 0.1 µm (B), 

0.25 µm (C), and 0.7 µm (D). Images adapted from Cleary et al. (2004) (A), 

Saldana et al. (2009) (B), Knutton et al. (1998) (C), and Girón et al. (2002) (D). 
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In addition to BFP, the E. coli common pilus (ECP) has also been implicated 

in EPEC adhesion to host cells (Figure 1.2B). The ECP, which is shared 

amongst both pathogenic and commensal E. coli strains, can mediate 

epithelial binding, as the expression of ecp in the non-adherent E. coli strain 

HB101 demonstrated comparable adhesion to a HB101 strain expressing bfp, 

when incubated on HeLa and HT-29 cells (Rendón et al., 2007; Saldana et al., 

2009). Furthermore, while the isogenic ecp mutant showed comparable 

adhesion to wildtype EPEC, the loss of both ecp and espA significantly 

reduced EPEC binding relative to the single gene mutant strains, suggesting 

an accessory role in mediating EPEC attachment to the epithelium (Saldana 

et al., 2009). In addition to BFP and ECP, the presence of long polar fimbriae 

(LPF) on EPEC has been identified as a potential adhesin however, the role 

of these fimbriae during EPEC infection is poorly understood, with the current 

knowledge suggesting that LPF are not involved in EPEC binding to the 

intestinal epithelium (Tatsuno et al., 2006). A recent study found that the 

production of LPF may be suppressed in EPEC, as inactivation of Histone-like 

nucleoid structuring (H-NS), which represses LPF expression, enhanced 

EPEC binding to Caco-2 cells, but did not significantly increase colonisation of 

murine small intestinal epithelium (Hu et al., 2015). However, H-NS is a global 

regulator of the EPEC genome, and as such this protein may modify the 

expression of other adhesins which could improve EPEC binding to epithelial 

cells (Atlung & Ingmer, 1997; Hu et al., 2015).  

The translocon of the T3SS, comprised of E. coli secreted protein A (EspA) 

monomers, has also been implicated in the initial attachment of EPEC to the 

intestinal epithelium (Figure 1.2C) (Cleary et al., 2004; Knutton et al., 1998). 

However, the interaction of EspA with the host cell is relatively weak, as 

vigorous washing displaced EPEC isogenic mutant strains which lacked BFP 

and intimin however, the use of a gentler washing technique increased 

bacterial adhesion (Cleary et al., 2004). These findings suggest that while the 

EspA translocon assists in establishing initial contact with the epithelium, this 

role would appear to be supportive rather than a dominant effect.  

While flagella have primarily been investigated for their role in motility, this 

appendage can also adhere to the host epithelium, as the loss of the flagellum 
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reduced EPEC binding to HeLa and T84 cells (Figure 1.2D) (Girón et al., 2002; 

Sampaio et al., 2009). However, EPEC strains which were flagellated but did 

not produce BFP and EspA were non-adherent to Caco-2 cells, indicating that 

the flagellum is unable to compensate for the loss of other adhesins (Cleary et 

al., 2004). A potential target for flagella are mucins, glycoproteins which are 

produced by the intestinal epithelium, as EPEC flagella adhere to bovine 

intestinal mucus (Erdem et al., 2007). Interestingly, flagella from the probiotic 

E. coli Nissle 1917 interact with the mucus component gluconate, and this 

interaction mediated persistence in the host mucus (Troge et al., 2012).  

The cell surface protein lymphocyte inhibitory factor (LifA) is the largest known 

effector protein to be produced by A/E E. coli, with a predicted molecular mass 

of 366 kDa, and is thought to have a role in bacterial adhesion to the host 

(Deng et al., 2012; Klapproth et al., 2000). A similar gene has been identified 

in the A/E pathogens C. rodentium (lifA) and EHEC (efa1) where it is essential 

for the onset of disease in both murine and bovine models, respectively 

(Klapproth et al., 2005; Stevens et al., 2002). Interestingly, an EPEC lifA 

mutant strain demonstrated both localised adherence as well as the formation 

of A/E lesions when incubated with HeLa cells, implying that this protein is not 

essential for EPEC binding (Klapproth et al., 2000). However, LifA may play 

an accessory role in EPEC adherence to epithelial cells, as the loss of both 

lifA and bfp significantly reduced adhesion relative to an EPEC strain deficient 

in bfp (Badea et al., 2003).  

While numerous EPEC appendages have been associated with facilitating the 

initial contact between EPEC and the host epithelium, the principle factor 

which is responsible for initial binding appears to be the BFP. However, the 

presence of additional adhesins supports the formation of these initial 

interactions and thus enhances EPEC binding to IECs. Further research is 

required to determine how different adhesins interact with the host, which 

could aid in the development of new vaccines against EPEC infection.  
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1.1.2.2. Formation of the A/E lesion 

1.1.2.2.1. Intimate attachment 

After establishing initial binding to the host cell, EPEC firmly attaches to the 

intestinal epithelium by forming an A/E lesion, characterised by intimate 

attachment, microvillous effacement, and actin pedestal formation. The 

development of the A/E lesion is mediated through the T3SS, which is 

encoded by the locus of enterocyte effacement (LEE) pathogenicity island 

(PAI), as the transfer of the LEE into non-pathogenic E. coli K12 was sufficient 

to enable A/E lesion formation on Caco-2 cells (McDaniel & Kaper, 1997; 

Pallen et al., 2005). Interestingly, the LEE PAI appears to have been acquired 

via horizontal gene transfer, as this region has a GC content of 39%, which is 

substantially lower than the 51% GC content of the total E. coli genome 

(McDaniel et al., 1995). 

The T3SS is an approximately 3.5 MDa complex which is produced by a 

number of Gram-negative pathogens, including Salmonella, Yersinia, and 

EPEC (Puhar & Sansonetti, 2014). This structure spans the inner and outer 

bacterial membranes and facilitates the transfer of effector proteins from the 

bacterium into the host cell (Puhar & Sansonetti, 2014). The T3SS is 

composed of approximately 25 proteins, which include a cytoplasmic ATPase 

(EscN), a periplasmic needle-like structure (EscQ, EscJ, EscD, EscC, and 

EscF), a hollow filament which extrudes away from the bacterial cell 

(composed of EspA monomers), and a pore-forming domain at the tip of the 

filament (EspB and EspD) (Figure 1.3) (Pallen et al., 2005; Puhar & 

Sansonetti, 2014). After pore-formation in the cell membrane, bacterial 

effector proteins are translocated from the bacterium to the host, at a rate of 

up to 60 molecules per second (Puhar & Sansonetti, 2014).  
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Figure 1.3: The structure of the EPEC T3SS 

Taken from Pallen et al. (2005). IM, inner membrane; PG, peptidoglycan layer; 

OM, outer membrane; EM, eukaryotic membrane. 

 

One of the first effector proteins transferred into the cell is Tir, which inserts 

into the host cell membrane and binds to intimin, encoded by eaeA, located 

on the bacterial cell surface (Deibel et al., 1998; Donnenberg & Kaper, 1991; 

Kenny et al., 1997; Rosenshine et al., 1992; Rosenshine et al., 1996). The 

interaction between intimin and Tir is essential for the intimate attachment of 

EPEC to the host cell, bringing EPEC to within 10 nm of the epithelial surface 

(Frankel et al., 2001; Kenny et al., 1997; Knutton et al., 1987). 

In addition to the transfer of Tir into the host cell, the EPEC T3SS delivers 

further effector proteins into the cell which manipulate a multitude of host 

processes (Dean & Kenny, 2009). These virulence factors are divided into 

LEE-encoded (7 confirmed, including Tir) and non-LEE-encoded (Nle) (at least 

20 identified) effector proteins (Deng et al., 2012). A core repertoire of 21 

effector proteins, which include the 7 LEE proteins, are shared amongst all 

A/E pathogens and contribute to the formation of the A/E lesion, as well as 

having other roles in the subversion of host cell processes (effector proteins 
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with known functions in EPEC are shown in Table 1.1) (Wong et al., 2011). 

Variation in the number of Nle effector proteins amongst different isolates is 

common, which may be a reflection of different infection strategies (Wong et 

al., 2011).  
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Table 1.1: EPEC effector proteins with known functions 
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1.1.2.2.2. Effacement of microvilli 

The effacement of microvilli is a defining characteristic of the A/E lesion (an 

absence of microvilli underneath EPEC is shown in Figure 1.4A). Microvillous 

effacement is thought to contribute to the production of diarrhoea by reducing 

the absorptive surface available for the uptake of water and nutrients by the 

host (Croxen et al., 2013). Microvillous effacement during EPEC infection of 

the small intestinal epithelium is dependent on a functional T3SS, which 

suggests that this process is mediated by secreted effector proteins (Shaw et 

al., 2005). The effector protein Tir has been implicated in this process on Caco-

2 cells however, Tir is not essential for the effacement of microvilli on duodenal 

biopsy tissue, demonstrating conflicting data dependent on the model system 

used (Dean et al., 2006; Dean et al., 2013; Shaw et al., 2005). It is important 

to note that tir-deficient EPEC demonstrate reduced adhesion to the duodenal 

epithelium, which may inhibit Tir-associated microvillous effacement (Schuller 

et al., 2007; Shaw et al., 2005).  

The effacement of microvilli has been attributed to collaborative action of the 

effectors EspF, Map, and Tir on Caco-2 cells, implying that the effectors 

involved may demonstrate functional redundancy (Dean et al., 2006). Whether 

these proteins work in concert to efface microvilli at the duodenal epithelium 

remains to be determined. 

 

1.1.2.2.3. Formation of the actin pedestal 

The actin pedestal is a hallmark characteristic of A/E E. coli infection of 

epithelial cells, which has been demonstrated on both in vitro and ex vivo 

intestinal epithelial models (examples of ex vivo pedestals shown in Figure 

1.4) (Knutton et al., 1989). These pedestals were first identified by Knutton 

and colleagues, who noted that EPEC which were intimately attached to the 

epithelium were surrounded by “cuplike projections” and later identified that 

these projections contained high concentrations of filamentous actin (Knutton 

et al., 1989; Knutton et al., 1987).  
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Figure 1.4: Actin pedestal formation on EPEC-infected duodenal tissue 

Transmission (A) and scanning (B) electron micrographs of EPEC mounted 

on actin pedestals (indicated by arrows). MV = microvilli. Images were taken 

from Knutton et al. (1987) (A) and this study (B). 

 

The formation of the actin pedestal involves substantial cytoskeletal 

reorganisation, as filamentous actin is recruited from the host cell cytoskeleton 

and transferred to the apical surface, underneath the EPEC bacterium 

(Knutton et al., 1989). This process, which was initially documented using 

cancer cell lines, is instigated through the binding of intimin to Tir which causes 

the cytoplasmic C-terminal domain of Tir to cluster together (Campellone et 

al., 2004a). The phosphorylation of the tyrosine 474 (Y474) residue on Tir by 

host cell kinases forms a binding site for the host cell adaptor protein Nck, 

which subsequently recruits the host protein neural Wiskott-Aldrich syndrome 

protein (N-WASP) to the Tir complex (Bommarius et al., 2007; Gruenheid et 
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al., 2001; Phillips et al., 2004; Swimm et al., 2004). N-WASP activates the 

actin-related protein 2/3 (ARP 2/3) complex which initiates the nucleation of 

actin filaments underneath EPEC (Gruenheid et al., 2001; Kalman et al., 

1999).  

Interestingly, in the absence of Y474, EPEC infection still results in weak actin 

recruitment. This is mediated by phosphorylation of the tyrosine 454 (Y454) 

residue on Tir and is independent of Nck (Campellone & Leong, 2005). While 

these processes have been documented in vitro, studies using tissue explants 

have demonstrated that Tir was essential for epithelial colonisation, but 

phosphorylation of the Y454 and Y474 domains was not required for N-WASP 

recruitment and formation of actin pedestals, suggesting Tir-independent actin 

recruitment ex vivo (Schuller et al., 2007). Furthermore, an atypical EPEC 

O125:H6 isolate lacking the Y474 domain on Tir demonstrated intimate 

adherence and microvilli effacement, despite a lack of actin pedestal formation 

(Bai et al., 2008). This suggests an uncoupling of intimate attachment/ 

microvillous effacement from actin pedestal formation (Frankel & Phillips, 

2008).  

While Tir is the only EPEC effector protein required to form the actin pedestal 

in vitro, other effectors modulate this process. The LEE-encoded EspH protein 

influences actin pedestal length by promoting the recruitment of N-WASP to 

the site of EPEC infection (Tu et al., 2003; Wong et al., 2012). In contrast to 

EspH, effector proteins Mitochondrial associated protein (Map) and EspJ 

inhibit the formation of the actin pedestal. EspJ reduces actin polymerisation 

by inhibiting host kinases (Young et al., 2014). This effector protein could 

prevent the formation of actin pedestals by secondary bacteria, promoting the 

translocation of non-adhered EPEC away from the site of infection (Marchès 

et al., 2008; Young et al., 2014). The effector Map temporarily antagonises the 

formation of the actin pedestal on HeLa cells however, this process is 

subsequently inhibited by the phosphorylation of Tir (Kenny et al., 2002). 

Whether Map interacts with the development of the actin pedestal when using 

a more physiologically relevant model system remains to be investigated. 
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1.1.2.3. Additional mechanisms contributing to diarrhoea 

1.1.2.3.1. Disruption of tight junctions 

The intestinal epithelium is comprised of a single layer of enterocytes, which 

prevent access of intestinal contents into underlying tissue (Turner, 2009). 

These enterocytes are linked via tight junction (TJ) proteins, such as occludin 

and claudin, which regulate the access of water, ions, and nutrients into the 

host through paracellular channels, as well as inhibiting bacterial access to the 

underlying tissues (Turner, 2009). Upon infection with EPEC, permeability of 

the intestinal barrier increases, allowing the movement of ions and water into 

the lumen, instigating the production of diarrhoea (Viswanathan et al., 2009). 

One of the key effector proteins involved in the disruption of the TJ barrier is 

EspF, as the loss of this effector significantly reduced the change in 

transepithelial electrical resistance (TER) (a measure of the epithelial barrier 

integrity) of EPEC-infected T84 cells (McNamara et al., 2001; Muza‐Moons et 

al., 2004; Thanabalasuriar et al., 2010). TJ integrity was reduced through the 

inhibition of TJ protein (zonula occludens-1 (ZO-1), occludin, and claudin-1) 

recycling from the cytosol to the TJ, weakening the epithelial barrier 

(McNamara et al., 2001; Muza‐Moons et al., 2004; Thanabalasuriar et al., 

2010). In addition to in vitro studies, the infection of mice with wildtype EPEC 

induced occludin relocalisation and reduced TER in the terminal ileum, 

whereas infection with EPEC deficient in espF demonstrated no effect on 

either of these parameters, despite comparable levels of intestinal colonisation 

(Shifflett et al., 2005). Similarly, claudin relocalisation has been observed in 

mice infected with wildtype C. rodentium, whereas an espF-deficient mutant 

did not induce TJ protein rearrangement (Guttman et al., 2006). Furthermore, 

the water content of faeces in the mouse colon was reduced in mice infected 

with the espF mutant relative to those infected with the wildtype, further 

strengthening the link between EspF-induced changes in epithelial barrier 

function and water secretion (Guttman et al., 2006).  

Other effector proteins have been associated with an increased epithelial 

permeability such as Map, which induced a comparable decrease in TER as 
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EspF when incubated on polarised Caco-2 cells (Dean & Kenny, 2004). 

However, these effects are disputed in vivo, as TJ localisation was near 

identical between mice infected with map-deficient C. rodentium mutant and 

those infected with wildtype pathogen (Guttman et al., 2006). TJ protein 

recycling between the cytosol and the lateral surface is an important procedure 

in the maintenance of epithelial barrier function and thus, this process 

represents a key target to induce epithelial permeability (Glotfelty et al., 

2014a). The effector protein NleA inhibits cell protein trafficking in the host cell 

and as a consequence, disrupts the exchange of TJ proteins at the epithelium 

with those in the cytosol of the IEC (Thanabalasuriar et al., 2010). A similar 

mechanism has been implicated for LEE-encoded EspG1 and its non-LEE-

encoded homologue EspG2, which fragment microtubules in the host cell via 

the degradation of α-tubulin (Tomson et al., 2005). The role of EspG1/2 in TJ 

disruption appears to be of less importance than EspF, as the deletion of 

EspG1/2 delayed, but did not prevent, the decrease in TER induced by EPEC 

infection of polarised IECs (Glotfelty et al., 2014b; Matsuzawa et al., 2005; 

Tomson et al., 2005). These findings suggest that Map, NleA, and EspG1/2 

may have an accessory role in altering the permeability of the epithelial barrier.  

 

1.1.2.3.2. Ion transporter and aquaporin dysfunction 

While TJ proteins control molecular access through the paracellular pathway, 

transporters regulate the movement of ions and nutrients through the 

transcellular pathway. Ion transporters such as Downregulated in adenoma 

(DRA), Na+ /H+ -exchange protein 3 (NHE3), and the sodium-glucose linked 

transporter-1 (SGLT-1) move ions from the lumen into the cell to maintain the 

uptake of water into the host (Viswanathan et al., 2009). 

DRA, an anion exchanger which removes Cl- from the intestinal lumen by 

exchanging bicarbonate, has a decreased expression during EPEC infection, 

which has been associated with microtubule degrading effector proteins 

EspG1/2 (Gill et al., 2007). These effectors decrease DRA levels via the 

simultaneous increase in DRA endocytosis from the epithelial surface 
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alongside the inhibition of DRA exocytosis, through the manipulation of the 

microtubule network (Gill et al., 2007; Gujral et al., 2015). Other T3S effector 

proteins inhibit ion transporters such as EspF, which reduced NHE3 levels in 

intestinal Caco-2 and PS120 fibroblast cells (Hecht et al., 2004; Hodges et al., 

2008). Similarly, EspF, Map, and Tir work in unison to partially inactivate the 

SGLT-1 transporter of polarised Caco-2 cells (Dean et al., 2006). As mice 

infected with a C. rodentium isogenic espF mutant demonstrated decreased 

luminal water content, this supports an in vivo role for EspF in ion transporter 

dysfunction, although it is important to note that this effect may be associated 

with TJ disruption (Guttman et al., 2006).  

In addition to the disruption of ion transporters, C. rodentium effectors EspF 

and EspG have a partial role in removing aquaporins, transporters which 

rapidly move water across the apical membrane (Guttman et al., 2007). 

However, deletion of both espF and espG was not sufficient in preventing 

aquaporin redistribution, implying that other effector proteins may be involved, 

as only the infection of mice with an T3SS-deficient mutant demonstrated 

comparable aquaporin distribution to the non-treated controls (Guttman et al., 

2007). The mechanism remains to be defined however, the previously 

discussed roles of EspF and EspG on actin and microtubule networks, 

respectively, may provide a clue to the mechanisms responsible.  

 

1.1.2.4. Clinical significance: symptoms, diagnosis, and 

treatment 

EPEC infection is characterised by the rapid onset of acute watery diarrhoea. 

In addition, abdominal cramps, nausea, vomiting, and fever have been 

associated with EPEC infection (Donnenberg et al., 1993b; Levine & Edelman, 

1984; Nataro & Kaper, 1998). 

As the classification of EPEC has become more complex, detection methods 

have adapted to distinguish between individual strains. While older diagnostic 

methods focused on phenotypic features of EPEC, such as O and H serotypes 

(which would exclude approximately a quarter of all aEPEC strains), more 



42 
 

modern techniques have focussed on histopathological characteristics, such 

as actin pedestal formation, as well as distinct genetic sequences (Croxen et 

al., 2013). In laboratories with cell culture facilities, actin pedestals can be 

identified on EPEC-infected HeLa cells using the fluorescent actin stain (FAS) 

test, which utilises fluorescein isothiocyanate (FITC) conjugated to the 

phalloidin toxin to target filamentous actin (Knutton et al., 1989). While the FAS 

test distinguishes between E. coli pathotypes, as only EPEC and EHEC form 

actin pedestals, genetic analysis is required for further identification, utilising 

either DNA probes or PCR screens to target eaeA, bfp, and stx, which encodes 

Shiga toxin (Croxen et al., 2013). While molecular analysis of genetic 

sequences is the current standard for the classification of EPEC strains, the 

reliance on less accurate diagnostic methods in resource-poor environments, 

such as serotyping, may underestimate the prevalence of aEPEC in patients 

with diarrhoea. 

As infections are generally self-limiting, current therapies are similar to most 

diarrhoeal treatments, with a focus on rehydration of the patient with oral 

rehydration therapy (Croxen et al., 2013). However, oral rehydration therapy 

can fail in patients with severe EPEC diarrhoea (possibly due to dysfunction 

of the SGLT-1 transporter) and thus antibiotic treatment is occasionally 

required (Croxen et al., 2013; Dean et al., 2006). As with other pathogens, 

antibiotic resistance is increasing with recent clinical isolates demonstrating 

resistance to multiple antibiotics, particularly penicillins, quinolones, and 

cephalosporins (Canizalez-Roman et al., 2013; Garcia et al., 2011; Malvi et 

al., 2015; Nakhjavani et al., 2013; Sang et al., 2012; Scaletsky et al., 2010). 

The development of a vaccine against EPEC infection remains an area of 

particular interest, as none are currently available (Croxen et al., 2013). 

Interestingly, IgA antibodies against the EPEC cell-associated proteins EspA, 

intimin, EspB, and BFP have been identified in the breast milk of Mexican 

mothers, which may represent potential targets for vaccine development 

(Parissi-Crivelli et al., 2000).  

An alternative solution could be the use of probiotics; a meta-analysis of 63 

studies demonstrated that probiotics can reduce acute infectious diarrhoea 

(Allen et al., 2010). However, these findings are limited by variable treatment 
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regimens and the range of probiotic species investigated thus, further study is 

required on specific strains to determine the mechanisms behind these anti-

diarrhoeal effects (Allen et al., 2010). 

 

1.2. Probiotic Lactobacillus 

1.2.1.  The history of probiotics 

The concept of probiotic bacteria was originally established by the Russian 

scientist Élie Metchnikoff at the start of the last century, who believed that the 

long life of Bulgarian peasants was associated with the consumption of 

fermented milk products, which contained lactic acid bacteria (Brown & 

Valiere, 2004; Holzapfel & Schillinger, 2002; Metchnikoff, 1907). Metchnikoff 

noted, “The dependence of the intestinal microbes on the food makes it 

possible to adopt measures to modify the flora in our bodies and to replace 

the harmful microbes by useful microbes”, suggesting that certain bacteria 

could deliver health benefits to the host (FAO/WHO, 2001; Metchnikoff, 1907). 

While these findings received some initial attention, the probiotic concept 

remained unproven and interest diminished during the following decades until 

the 1970’s (FAO/WHO, 2001). The term “probiotic” (meaning: for life) was 

conceived approximately 50 years after Metchnikoff’s observations, originally 

in reference to products which aid the gut microbiota, a contrast to the 

detrimental effects of antibiotics on microbes (Hamilton-Miller et al., 2003; 

Holzapfel & Schillinger, 2002; Kollath, 1953; Vergin, 1954). The word 

“probiotic” was then adapted by Lilly and Stillwell (1965) to refer to microbial 

products which stimulated the growth of other microbes (Holzapfel & 

Schillinger, 2002).  

Parker (1974) further revised the term “probiotic” to a definition similar to the 

modern usage, interpreting probiotics as ‘organisms and substances which 

contribute to intestinal microbial balance’ (Hamilton-Miller et al., 2003). 

Probiotics were further redefined by Fuller (1989) as, “A live microbial feed 

supplement which beneficially affects the host animal by improving its 

intestinal balance”, which referred specifically to live microbes, now an 



44 
 

essential component for the consideration of a product as a probiotic 

(FAO/WHO, 2001).  

The most recent and widely used definition for probiotics was conceived by 

Guarner and Schaafsma (1998) and selected by the Food and Agriculture 

Organisation (FAO) and the World Health Organisation (WHO) expert 

Consultation on Health and Nutritional properties of powder milk with live lactic 

acid bacteria in 2001 as an appropriate definition (FAO/WHO, 2001). This 

definition was recently grammatically updated (Hill et al., 2014) and its most 

current form is as follows: 

 

“Live microorganisms that, when administered in adequate amounts, confer 

a health benefit on the host”. 

  

This definition encompasses the three core components required for a product 

to be characterised as a probiotic, namely that bacteria in the product must be 

viable, that any health effect is associated with the minimum required dose, 

and that the minimum dose is present whenever the product is administered 

i.e. at the end of the products shelf life (Hill et al., 2014).  

Probiotic strains are generally derived from either the Lactobacillus or 

Bifidobacterium genera, although others such as E. coli Nissle 1917 and 

Streptococcus salivarius ssp. thermophilus also demonstrate probiotic 

characteristics (Holzapfel et al., 1998). As Lactobacillus species are naturally 

present in the GIT and contribute to the maintenance of the intestinal 

microbiota, these bacteria are an obvious choice in the investigation for 

probiotics with novel characteristics (Holzapfel & Schillinger, 2002). However, 

before discussing probiotic effects which have been associated with specific 

Lactobacillus strains, it is important to first understand the role and function of 

the commensal gut microbiota. 
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1.2.2.  The microbiota of the gastrointestinal tract 

The microbiota has previously been referred to as a “virtual organ” due to its 

substantial metabolic activity, which plays an essential role in the normal 

functioning of the host (O'Hara & Shanahan, 2006). In physical terms, 

microbial cells far outnumber the cells of the host, with an approximate 10-fold 

difference between the two (O'Hara & Shanahan, 2006; Shanahan, 2002).  

However, at the genetic level this difference is even larger, with the combined 

microbial genome being over 100-fold greater than the human genome 

(O'Hara & Shanahan, 2006; Shanahan, 2002). The majority of these microbes 

are located in the GIT and are comprised of 92.9% bacteria, 5.8% viruses, and 

the remaining 1.3% consisting of archaea and eukaryotes (Arumugam et al., 

2011; Turnbaugh et al., 2007). The bacterial load changes dependent on the 

location within the GIT, as the stomach and duodenum contain between 101 

and 103 colony forming units (CFU)/ mL which increases along the intestine to 

between 1011 and 1012 CFU/ mL located in the adult colon (Figure 1.5) (O'Hara 

& Shanahan, 2006; Suau et al., 1999).  

 

 

Figure 1.5: Bacterial concentration within the human GIT 

The bacterial load of the GIT increases in density from the stomach and 

duodenum to the distal colon. Image taken from O'Hara and Shanahan (2006). 
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The microbiota of the GIT is unique to an individual however, species from the 

Bacteroidetes and Firmicutes phyla are generally predominant (Ottman et al., 

2012). The composition of the microbiota is influenced by numerous factors 

throughout the life of the host organism, including the delivery method of the 

neonate, diet, use of antimicrobial products, and host genetics. The general 

consensus on the development of the microbiota is that the infant gut in utero 

is sterile and upon birth, the neonatal GIT is colonised by pioneer species 

which are primarily delivered from the mother, principally through the birthing 

process, breast feeding, and physical contact (Palmer et al., 2007). Children 

delivered via Caesarean section have greater numbers of C. difficile and E. 

coli, whereas neonates delivered via vaginal birth have a greater number of 

Bacteroides fragilis (Penders et al., 2006). Similar increases in C. difficile and 

E. coli have also been observed in infants who are exclusively formula-fed 

rather than breast-fed (Penders et al., 2006). As the infant continues onto solid 

food and grows into a toddler, the microbiota continues to develop, reaching 

peak complexity during adulthood wherein the microbial community stabilises 

until old age and diversity begins to decrease (Figure 1.6) (Ottman et al., 2012; 

Palmer et al., 2007).  
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Figure 1.6: The composition of the gut microbiota develops through age 

and external factors 

Image taken from Ottman et al. (2012). 

 

The constituent members of the intestinal microbiota are unique to each 

individual, but key metabolic pathways are almost universally present amongst 

examined microbiomes, such as carbohydrate metabolism and vitamin 

biosynthesis (Human Microbiome Project Consortium, 2012). This 

demonstrates a functional redundancy amongst commensal bacterial species, 

where numerous bacteria possess the genes required to synthesise a 

particular product, for example riboflavin, and any of these bacterial species 

can inhabit this particular niche (Human Microbiome Project Consortium, 

2012). One of the essential functions that the gut microbiota performs is the 

synthesis of vitamins, micronutrients used in the production of essential 

enzymes, as the human host lacks the biosynthetic pathways required for 

these processes (LeBlanc et al., 2013). In addition to vitamin synthesis, the 

microbiota also aids in the uptake of energy by the host, as germ-free mice 

have a 60% increase in body fat after inoculation with a “conventional” 

microbiota, even if the overall calorie intake is reduced (Bäckhed et al., 2004). 
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Alongside occupying metabolic niches, the microbiota also has an important 

role in the physical development of the intestinal tract, as the morphology of 

the intestine differs between germ-free and conventionally raised mice 

(Sommer & Bäckhed, 2013). Histological analysis of the GIT of germ-free mice 

has revealed a thinner mucus layer, thinner villi, and smaller, immature 

immune features such as Peyer’s patches (Sommer & Bäckhed, 2013). This 

demonstrates that the microbiota interacts with the intestinal mucosa to 

develop both the physiological and immunological processes of the host. 

Furthermore, while the immune response can clear potential insults, the 

microbiota also acts as a barrier to infection, known as colonisation resistance, 

which can prevent the access of GI pathogens such as Salmonella enterica 

serovar Typhimurium to the epithelium (Stecher et al., 2007). 

 

1.2.2.1. Dysbiosis of the intestinal microbiota 

In most individuals, the microbiota supports the host through the functions 

previously discussed in 1.2.2. However, dysfunction in the microbiota has 

been associated with the development of numerous pathologies. Dysbiosis, 

defined as a change in the “balance” of microbes in the microbiota, can be 

induced through numerous stimuli including antibiotic use, diet, hygiene, and 

host immune function (Figure 1.7) (Sommer & Bäckhed, 2013; Tamboli et al., 

2004). This alteration in the intestinal microbiota has been associated with 

diseases such as inflammatory bowel disease (IBD), obesity, and antibiotic-

associated diarrhoea (AAD), which I will briefly discuss here. 
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Figure 1.7: Factors associated with dysbiosis of the intestinal microbiota 

Image taken from Sommer and Bäckhed (2013). 

 

IBD is a term that primarily refers to ulcerative colitis (UC) and Crohn’s disease 

(CD), two conditions which are characterised by severe abdominal pain, 

vomiting, bloody diarrhoea, and weight loss which drastically decrease the 

quality of life of affected patients (Pizzi et al., 2006). The exact causes behind 

IBD are presently unknown, with the current consensus suggesting that both 

CD and UC have multiple triggers, including those shown in Figure 1.7 (for a 

more thorough analysis of these factors, see Bernstein and Shanahan (2008)). 

Of particular interest is the role of the microbiota, as diversity is decreased in 

patients with CD and UC relative to patients without IBD (Ott et al., 2004; 

Walker et al., 2011). The underlying reason for this decrease is unknown, 

although the use of antibiotics in early childhood has been correlated with an 

increased risk of developing IBD (Hviid et al., 2011; Kronman et al., 2012; 

Shaw et al., 2010, 2011). Additionally, IBD has been linked to decreased levels 

of Akkermansia muciniphila and increased numbers of Ruminococcus gnavus 
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and Ruminococcus torques (Belzer & de Vos, 2012; Png et al., 2010). 

Crucially, while changes in the levels of a particular microbial species has been 

associated with IBD, it is important to note that no single microbe has been 

definitively implicated in the development of these diseases. Thus, it remains 

to be determined whether the decrease in the diversity of the microbiota is a 

cause or symptom of IBD (Joossens et al., 2011; Manichanh et al., 2012; Sokol 

et al., 2006; Walker et al., 2011; Willing et al., 2009).  

Obesity is a global health crisis, as more than 1.9 billion adults were reported 

as overweight in 2014, with 600 million of those classified as obese, 

representing 39% and 13% of the world’s adult population, respectively (WHO, 

2015). Similar to IBD, obesity is a multifactorial disease based on lifestyle, 

environmental, and genetic influences (Figure 1.7). One component which is 

thought to contribute to the development of obesity is the gut microbiota, due 

to the role these bacteria play in the digestion of food and the acquisition of 

energy. The role of the microbiota in obesity was first demonstrated by 

Turnbaugh et al. (2006), who demonstrated that transfer of the microbiota from 

obese mice into germ-free mice significantly increased body fat relative to 

control mice with a “healthy” microbiota after 2 weeks. Interestingly, this 

change in body fat was not due to an increased calorific intake, but rather an 

increased energy harvest (Turnbaugh et al., 2006). Similar findings have also 

been reported in germ-free mice which were inoculated with the faecal 

microbiota of twins who were discordant for obesity, as mice with the obese 

microflora showed higher adiposity than those with the lean microbiota 

(Ridaura et al., 2013). A reported difference between the healthy and obese 

microbiota is the level of diversity, as diet-induced obese mice, as well as 

obese humans, have a distinct decrease in microbial diversity (Turnbaugh et 

al., 2008; Turnbaugh et al., 2009). This reduction in humans is associated with 

lifestyle factors, as diets have changed to more energy dense foods, the 

microbiota has adapted to utilise this increased energy resource. Obesity and 

associated metabolic disorders, such as type II diabetes, will likely be a key 

health challenge of the 21st century and as such, a thorough understanding of 

the role of the gut microbiota in obesity, and how we can modify it, may offer 

solutions to this epidemic. 
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While there are multiple factors contributing to the onset of obesity and IBD, 

the development of AAD has a more defined aetiology. AAD is an umbrella 

term for the development of diarrhoea in patients after the administration of 

antibiotics (Bartlett, 2002). However, I will focus on AAD associated with C. 

difficile infection, which occurs in 10-20% of cases of AAD (Bartlett, 2002). 

Severe infection by C. difficile is characterised by repeated episodes of 

diarrhoea, which can contain blood, as well as the formation of 

pseudomembranes on the colonic epithelium, which develop after the use of 

antibiotic therapy for an unrelated condition (Bartlett, 2002). The specific 

reason behind the onset of C. difficile-induced AAD is thought to be due to the 

unintentional removal of the microbiota by antibiotic treatment, which removes 

the natural colonisation resistance that the microbiota provides (Borriello & 

Barclay, 1986; Young & Schmidt, 2004). Disruption of the microbiota has been 

confirmed in patients with recurrent C. difficile diarrhoea, which demonstrated 

a reduction in microbial diversity compared to patients with either a single 

incidence of C. difficile-induced diarrhoea or those who were not infected 

(Chang et al., 2008). The lack of bacterial competition allows C. difficile, which 

may naturally be present in the microflora, to establish a persistent infection 

and induce diarrhoea, despite further antibiotic therapy (Bartlett, 2002). Thus, 

restoration of the gut microbiota via faecal microbial transplant has been 

explored as a potential therapeutic avenue. Systematic reviews of studies 

reporting on the effectiveness of faecal microbial transplants on C. difficile 

infection have demonstrated that this therapy has considerable potential, with 

cure rates of approximately 90% in patients with recurrent infection (Gough et 

al., 2011; Kassam et al., 2013; Li et al., 2016). Although both randomised 

controlled trials and long term safety studies are required to support the use 

of faecal microbial transplant, this treatment demonstrates the important role 

of the gut microbiota in reducing the impact of infection. 
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1.2.3.  The Lactobacillus genus 

The Lactobacillus genus consists of over 200 recorded species of lactobacilli 

(http://www.ncbi.nlm.nih.gov/taxonomy), isolated from a range of locations 

including faeces, breast milk, animals, and plants (Walter, 2008). Lactobacilli 

are Gram-positive, non-spore forming facultative anaerobes of the Firmicute 

phylum which produce lactic acid and have been traditionally used in the 

development of numerous products including yoghurt, cheese, and other 

fermented foods (Claesson et al., 2007). In addition to their use in food 

fermentation, lactobacilli are also a normal resident of the human microbiota; 

with isolates identified in the oral cavity, the GIT, and the vagina of mammals, 

including humans (Walter, 2008). It is important to note that the overall 

numbers of lactobacilli in the distal GIT is low relative to other bacterial 

species, representing 0.01% of the total adult faecal microbiota (~106 CFU/ g) 

(Harmsen et al., 2002). In the proximal GIT, the number of Lactobacillus 

species increases to approximately 1% of the total microbial population 

(Walter, 2008). In the adult stomach and small intestine however, the 

proportion of lactobacilli which are transient relative to autochthonous isolates 

remains to be determined (Walter, 2008). In contrast to findings in adults, 

lactobacilli were detected in 45% of infants at 108-109 CFU/ g of faeces over 

the first 6 months from birth (Ahrné et al., 2005; Grönlund et al., 2000). This 

difference in adult and infant microbial ecology is primarily due to differences 

in diet, as lactobacilli are acquired from the mother’s breast milk and are 

amongst the pioneer colonisers of the infant GIT (Karlsson et al., 2011; Martín 

et al., 2003; Solís et al., 2010). Additionally, Lactobacillus spp. from the 

mother’s vagina have been shown to temporarily colonise approximately 1 in 

4 infants after birth (Matsumiya et al., 2002). These studies demonstrate that 

the mother is a reservoir of lactobacilli for infants and as such, the loss of 

exposure to these species, through both Caesarean section and formula-

feeding, may have an impact on the development of the newborn microbiota 

(see section 1.1.2). 

The role of Lactobacillus in the GIT is varied, due to the heterogeneous 

characteristics of this genus; however, certain strains have been identified with 
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probiotic features which can improve host intestinal function, such as aiding 

the resolution of diarrhoea. 

 

1.2.4.  Use of Lactobacillus in the treatment of diarrhoea 

Numerous meta-analyses have investigated the impact of Lactobacillus spp. 

on diarrhoea, with positive outcomes reported in the prevention of AAD (21-

64% reduction) (Kale‐Pradhan et al., 2010; McFarland, 2006, 2015; Pattani et 

al., 2013; Szajewska et al., 2006) as well as a reduction in the duration of acute 

infectious diarrhoea by between 16.8 – 26.4 hours (Allen et al., 2010; Huang 

et al., 2002; Szajewska et al., 2013; Urbańska et al., 2016; Van Niel et al., 

2002). It is important to note that while meta-analyses provide a powerful 

technique to evaluate the efficacy of a particular therapeutic regimen by 

pooling data from multiple studies, probiotic characteristics are strain-specific 

and thus, effects observed at the genus and species level may not be 

applicable to every strain of a particular species. Thus, while these meta-

analyses are useful in the general assessment of probiotics on GI disorders, 

differences in the probiotic strains used as well as variation in study 

methodology (such as length of treatment, follow up period, and the selection 

of inpatients versus outpatients) should be appreciated when considering 

these findings. However, two systematic reviews of L. rhamnosus GG have 

shown that treatment with this strain reduces the incidence of AAD by 30% 

(McFarland, 2006; Szajewska et al., 2006). Additionally, both L. rhamnosus 

GG and L. reuteri DSM 17938 decrease the duration of acute infectious 

diarrhoea by 26.4 hours and 24.82 hours, respectively (Szajewska et al., 2013; 

Urbańska et al., 2016). These studies demonstrate that specific Lactobacillus 

strains can improve diarrhoeal conditions. Potential mechanisms behind these 

probiotic characteristics will be discussed. 
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1.2.4.1. Mechanisms of probiotic action 

In vitro studies investigating the probiotic effects of lactobacilli have aimed to 

identify the specific mechanisms behind probiotic action, which can be broadly 

classified as microbe-host and microbe-microbe interactions. Microbe-host 

mechanisms include modulation of the host immune response, epithelial 

barrier integrity, and mucin production (Mack et al., 2003; Resta-Lenert & 

Barrett, 2003; Vizoso Pinto et al., 2009). Microbe-microbe inhibitory actions 

include the production of antimicrobial compounds as well as competition for 

nutrients and binding sites (Lebeer et al., 2008). These protective actions can 

be widespread amongst probiotic Lactobacillus or specific at either the species 

or strain level (Figure 1.8) (Hill et al., 2014). 

 

 

Figure 1.8: Distribution of potential protective characteristics amongst 

probiotics 

Beneficial characteristics can be widespread amongst probiotics or specific to 

certain species or strains. Image taken from Hill et al. (2014). 
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Adhesion to the host is a frequently investigated probiotic characteristic, as 

intestinal colonisation, even if transient, is thought to be necessary to allow a 

probiotic to deliver its beneficial effects (Tuomola et al., 2001). Thus, the 

identification of specific proteins which enhance this process has been a topic 

of much interest (Vélez et al., 2007). Bacterial adhesins are generally 

classified according to their binding target (e.g. mucus-binding protein), the 

location on the bacterial cell (e.g. surface layer protein), or the mode of 

attachment to the bacterial surface (e.g. sortase-dependent proteins) (Vélez 

et al., 2007). The adhesive potential of probiotics is normally assessed in vitro 

using mucus-deficient intestinal epithelial cell lines, such as Caco-2, HT-29, 

and T84, and thus binding efficiencies may not be applicable to the in vivo 

situation (further discussed in 1.4).  

Interestingly, adhesion can also have anti-pathogenic effects through the 

competitive exclusion of pathogens from the intestinal epithelium. Pathogen 

exclusion is thought to be dependent on either competition for mutual binding 

sites/receptors or steric hindrance, where the probiotic cell physically blocks 

the access of a pathogen to the epithelial surface (Lebeer et al., 2008). These 

characteristics in vivo would be similar to colonisation resistance, where the 

probiotic bacteria and the host microbiota outcompete the infectious agent by 

preventing the pathogen from gaining a foothold in the intestinal milieu.  

In addition to inhibition of pathogens through “passive” mechanisms, 

Lactobacillus strains also produce a battery of antimicrobial compounds which 

can either kill or reduce the growth of competitor bacteria (Servin, 2004). The 

organic acids produced by Lactobacillus have potent antibacterial properties, 

as high lactic acid-producing strains inhibited S. Typhimurium, EHEC, and C. 

difficile infection in vitro (De Keersmaecker et al., 2006; Makras et al., 2006; 

Ogawa et al., 2001; Tejero-Sariñena et al., 2012). Similar effects have been 

reported in vivo, where production of lactic acid was associated with increased 

protective effects against the infection of chickens and mice with 

Campylobacter jejuni and S. Typhimurium, respectively (Annuk et al., 2003; 

Neal-McKinney et al., 2012). Likewise to lactic acid, the production of 

hydrogen peroxide by Lactobacillus has been associated with anti-pathogenic 

effects, although this is more common in vaginal isolates rather than intestinal 
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lactobacilli (Servin, 2004). However, hydrogen peroxide produced by intestinal 

Lactobacillus johnsonii strains NCC 533 and 933 can kill S. Typhimurium and 

so this method of inhibition may be more prevalent amongst other lactobacilli 

in the gut (Atassi & Servin, 2010; Pridmore et al., 2008).  

Lactobacillus species also produce bacteriocins, which are small heat-stable 

peptides targeted against related microbes inhabiting a similar niche (Eijsink 

et al., 2002). The mechanism of action of these peptides is generally through 

the formation of pores in the membrane of target bacteria, causing the 

intracellular contents to leak out from the cell (Eijsink et al., 2002; O’Connor et 

al., 2015). The best described bacteriocin is nisin, a class I bacteriocin 

(lantibiotic) produced by the lactic acid bacterium Lactococcus lactis, which 

has been used in the food manufacturing industry for the last 50 years due to 

its broad-spectrum inhibitory activity against Gram-positive bacteria, 

particularly the food contaminant Listeria monocytogenes (Delves-Broughton 

et al., 1996). While the inhibitory effects of these peptides are generally 

assessed in vitro, the protection of mice by Lactobacillus salivarius UCC118 

against L. monocytogenes was dependent on the production of the class II 

bacteriocin Abp118, demonstrating that these proteins are also effective in 

vivo (Corr et al., 2007). Interestingly, a small number of bacteriocins produced 

by lactobacilli can also kill Gram-negative bacteria, such as the L. salivarius 

1077 peptide L-1077 which inhibited both C. jejuni and Salmonella enterica 

serovar Enteritidis in vitro, as well as reducing the levels of these pathogens 

in the liver and spleen of infected chickens (Svetoch et al., 2011). It is important 

to note that these antimicrobials can inhibit both pathogenic and commensal 

bacteria, as the administration of Abp118-producing L. salivarius UCC118 

altered the microbiota in both murine and porcine models (Murphy et al., 2012; 

Riboulet-Bisson et al., 2012). While there were no reported changes in the 

health of animals which consumed the bacteriocin-producing lactobacilli, 

alterations to the microbiota may have unintended side effects and thus, the 

impact of these antimicrobials on the microbial community requires  

further investigation. 

In addition to antimicrobial characteristics, probiotic lactobacilli can also 

interact with the host. These interactions can have beneficial effects, such as 
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strengthening the epithelial barrier, which can be weakened during GI 

conditions such as IBD and infection (Lebeer et al., 2008). Beneficial effects 

of probiotics on epithelial barrier function have been demonstrated in vitro, as 

L. plantarum DSM 2648 and L. rhamnosus GG attenuated the decrease in 

TER associated with EPEC and EHEC infection of intestinal epithelial cells 

(Anderson et al., 2010; Johnson-Henry et al., 2008). The protection of 

epithelial barrier function has been associated with the prevention of TJ 

proteins ZO-1, claudin-1, and occludin dissociation from the lateral surfaces of 

the epithelial cells (Johnson-Henry et al., 2008; Miyauchi et al., 2009; Roselli 

et al., 2007). Similar findings have been reported in vivo, as L. rhamnosus 

OLL2838 and the mixed species probiotic product VSL#3 (containing 

Bifidobacterium longum, B. infantis, B. breve, L. acidophilus, L. casei, L. 

delbrueckii subsp. Bulgaricus, L. plantarium, and Streptococcus 

salivarius subsp. Thermophilus) inhibited TJ protein redistribution in mice with 

induced colitis (Madsen et al., 2001; Mennigen et al., 2009; Miyauchi et al., 

2009). Similar effects have also been reported in humans, as L. plantarum 

WCFS1 increased occludin localisation to TJs, relative to mock-treated 

controls (Karczewski et al., 2010). However, while these studies have 

demonstrated changes in epithelial barrier function induced by Lactobacillus 

species, the specific mechanisms for these effects, i.e. the molecules and 

associated receptors which initiate these changes, remain poorly defined 

(Lebeer et al., 2008). One protein which has shown promising effects on 

maintaining TJ integrity is the L. rhamnosus GG-derived protein p40, which 

alleviates DSS-induced colitis in mice via interaction with the epidermal growth 

factor (EGF) receptor (Yan et al., 2011). Whether similar proteins, which utilise 

the same mechanism, are present in other Lactobacillus strains requires 

further investigation.   

 

1.2.5.  Lactobacillus reuteri 

The gut symbiont Lactobacillus reuteri is an autochthonous inhabitant of the 

mammalian gut, with the taxonomic classification shown in Figure 1.9 (Walter 

et al., 2011). L. reuteri isolates have been identified in numerous mammals, 
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including humans, mice, pigs, hamsters, cattle, rats, and dogs (Casas & 

Dobrogosz, 2000; Korhonen et al., 2007; Reuter, 2001; Salzman et al., 2002). 

In the porcine gut, L. reuteri is one of the most numerous Lactobacillus species 

isolated from the ileum, where biofilms of lactobacilli and other commensals 

bind directly to the intestinal surface (Walter, 2008). In human adults, L. reuteri 

has been detected throughout the GIT and in faeces, and has been noted as 

a predominant species in the small intestine, although this is controversial as 

other studies have suggested that only 4% of the population has an indigenous 

L. reuteri population (Dal Bello et al., 2003; Hayashi et al., 2005; Reuter, 2001; 

Valeur et al., 2004). In addition to the GIT, L. reuteri has also been isolated 

from both the vagina and breast milk, and strains sequestered from these 

environments have been widely associated with probiotic health benefits, 

including the synthesis of vitamins such as B12 and folate, as well as the 

prevention and treatment of infectious diarrhoea (Abrahamsson et al., 2009; 

Saulnier et al., 2011; Shornikova et al., 1997a; Shornikova et al., 1997b; 

Urbańska et al., 2016).  

 

 

Figure 1.9: Taxonomic classification of L. reuteri 
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1.2.5.1. Interaction of L. reuteri with the host 

Phylogenetic analysis of L. reuteri strains isolated from numerous 

backgrounds (human, mouse, rat, pig, chicken, and turkey) has determined 

that L. reuteri demonstrates host specificity (Oh et al., 2010). These findings 

have been confirmed experimentally, as L. reuteri strains sequestered from 

rodents (mouse and rat) outcompeted isolates from others backgrounds in 

germ-free mice (Oh et al., 2010). Additionally, murine L. reuteri strains lacking 

host-specific genes demonstrated reduced levels of colonisation of the murine 

foregut, further demonstrating that certain genes enhance ecological fitness in 

L. reuteri (Frese et al., 2013). These genes have numerous roles in the host, 

such as survival of gastric acid and encoding adhesins, which enhance binding 

to the mucosa, such as Mucus binding protein (MUB) and Cell and mucus 

binding protein (CmbA), produced by L. reuteri ATCC 53608 and ATCC PTA 

6475, respectively (Table 1.2). The evolution of these host-specific adhesins 

demonstrates the symbiotic relationship that mammals and birds have with L. 

reuteri, as the development of these evolutionary lineages is thought to span 

millions of years (Oh et al., 2010). The identification of these adhesins offers 

a method for the evaluation of potential probiotics for both human and animal 

consumption, as the presence of adhesins may enhance L. reuteri persistence 

in the host. 
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(Frese et al., 

2013; 

Heinemann et 

al., 2000; 

MacKenzie et 

al., 2010; Roos 
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Jonsson, 2002; 

Walter et al., 

2005; Walter et 

al., 2008) 

 

 

 

 

 

 

 

 

 

Table 1.2: L. reuteri proteins associated with adhesion to the mucosa 

Alternative strain names; 11063, 2MM4-1a, 3JCM112, 4MM2-3, 5FJ1. 
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1.2.5.2. Probiotic characteristics of L. reuteri 

The application of L. reuteri as a probiotic has increased in recent years, as 

numerous studies have identified beneficial effects on the host, including the 

attenuation of diarrhoea and immunomodulation (summarised in Table 1.3). In 

addition to these host effects, L. reuteri can also inhibit other microbes, as 

certain strains produce 3-hydroxypropionaldehyde, a potent antimicrobial 

commonly referred to as reuterin (Talarico et al., 1988). Reuterin is produced 

as an intermediate compound during the fermentation of glycerol into 1, 3-

propanediol, which is used to reoxidise NAD+ from NADH (pathway shown in 

Figure 1.10) (Lüthi-Peng et al., 2002; Schaefer et al., 2010). While L. reuteri 

has a high resistance to reuterin, this anti-microbial has broad inhibitory activity 

against Gram-positive and Gram-negative bacteria, as well as yeast, fungi, 

and protozoa (Axelsson et al., 1989; Casas & Dobrogosz, 2000; Chung et al., 

1989). Interestingly, L. reuteri actively secretes reuterin into its local 

environment when other bacteria are present, indicating that this mechanism 

may be used to gain a competitive advantage in the GIT milieu (Schaefer et 

al., 2010). As the production of reuterin has been demonstrated by L. reuteri 

JCM 1112 in the murine intestine in vivo, this further supports this mode of 

action (Morita et al., 2008). Due to reuterin’s broad inhibitory effects on 

microbial pathogens, this compound has numerous potential applications, 

such as a food preservative and as a pharmaceutical product (Vollenweider & 

Lacroix, 2004).  
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Table 1.3: Summarised probiotic characteristics of three L. reuteri 

strains 
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Figure 1.10: Reuterin synthesis pathway 

Reuterin is produced by L. reuteri as an intermediate compound during the 

production of 1, 3- Propanediol from glycerol. Reuterin is composed of an 

equilibrium mixture of hydrated monomeric, monomeric, and cyclic dimeric 

forms of 3-hydroxypropionaldehyde. Image taken from Casas and Dobrogosz 

(2000). 

 

In addition to reuterin, some L. reuteri strains (such as LTH2584) produce 

reutericyclin, a broad-spectrum antibiotic that alters the electrochemical 

gradient of the Gram-positive bacterial cell membrane (Gänzle et al., 2000). 

Reutericyclin has demonstrated inhibitory effects against numerous important 

pathogens, including Staphylococcus aureus, Bacillus subtilis, and C. difficile 

(Gänzle et al., 2000; Gänzle & Vogel, 2003; Hurdle et al., 2011). While this 

antibiotic shows promising effects, it still remains to be determined whether it 

is produced in vivo, as only L. reuteri isolates from sourdough have currently 

been shown to produce this compound (Gänzle & Vogel, 2003). 

While numerous L. reuteri strains synthesise the anti-microbial reuterin, other 

effects are strain-specific. Thus, we will discuss the demonstrated probiotic 

characteristics of two of the most commonly used human L. reuteri isolates, 

ATCC PTA 6475 and ATCC 55730. 
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1.2.5.2.1. L. reuteri ATCC PTA 6475 

L. reuteri ATCC PTA 6475, also known as MM4-1a, were originally isolated 

from the breast milk of a healthy Finnish woman, and is currently used in 

formulations by the probiotic company Biogaia (Stockholm, Sweden) (Liu et 

al., 2010). Investigations into the probiotic characteristics of ATCC PTA 6475 

have revealed that this strain can alleviate the effects of gastritis in vivo when 

used in combination with L. reuteri DSM 17938, as two randomised controlled 

trials in humans have identified a reduction in Helicobacter pylori symptoms, 

including diarrhoea (Emara et al., 2013; Francavilla et al., 2014). ATCC PTA 

6475 monoculture has also demonstrated anti-diarrhoeal effects, as probiotic 

supplementation reduced the production of diarrhoea by 1 day in rota-virus-

infected mice (Preidis et al., 2012). Additionally, germ-free mice pre-treated 

with ATCC PTA 6475 prior to EHEC infection shed decreased numbers of 

EHEC as well as maintained body weight, relative to non-treated littermates 

(Eaton et al., 2011). The mechanism behind the reduction of diarrhoea is 

unknown however, ATCC PTA 6475 is a reuterin producer and this strain has 

been linked to the inhibition of numerous enteric pathogens in vitro, including 

EHEC, ETEC, and S. enterica, which may partially explain these probiotic 

effects (Spinler et al., 2008). An alternative mechanism may be associated 

with the modulation of the host inflammatory state, as ATCC PTA 6475 has 

demonstrated potent anti-inflammatory effects, both in vitro and in vivo (Jones 

& Versalovic, 2009; Lin et al., 2008; Preidis et al., 2012). The anti-inflammatory 

characteristics of ATCC PTA 6475 have also been associated with an 

increased bone density in both male and oestrogen-deficient female mice 

(Britton et al., 2014; Collins et al., 2016; McCabe et al., 2013). A potential 

mechanism behind the immunomodulatory effects of ATCC PTA 6475 is the 

production of histamine from dietary L-histidine, which suppresses protein 

kinase A signalling, subsequently reducing the production of inflammatory 

cytokines (Gao et al., 2015; Thomas et al., 2012). Inhibition of the inflammatory 

response through the production of histamine by L. reuteri has been 

demonstrated both in vitro and in vivo, further supporting this mechanism (Gao 

et al., 2015; Thomas et al., 2012).  
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Interestingly, a recent study by Buffington et al. (2016) has identified that 

supplementation of ATCC PTA 6475 into mice with social disorders, induced 

via maternal high fat diet, improved sociability. While the authors linked this 

effect to the neuropeptide oxytocin, which can be induced by ATCC PTA 6475 

(Poutahidis et al., 2013), the immunomodulatory characteristics of this strain 

may also have an effect, as inflammation has also been associated with 

altered brain development (Bolton & Bilbo, 2014). The implications of these 

findings, both ethically and scientifically, remain to be determined as these 

data suggest that specific probiotics may impact the host in ways which have 

not previously been appreciated. As such, further study is required to fully 

understand the effects of ATCC PTA 6475 on the host. 

 

1.2.5.2.2. L. reuteri ATCC 55730 

L. reuteri ATCC 55730 were first isolated from the breast milk of a Peruvian 

mother who lived in the Andes, and have previously been used in probiotic 

products by Biogaia (Liu et al., 2010). As ATCC 55730 contained a plasmid 

with antibiotic resistance, this strain has now been superseded by the plasmid-

cured daughter strain DSM 17938, which has maintained the probiotic 

characteristics of ATCC 55730 (Liu et al., 2010; Rosander et al., 2008).  

Similarly to ATCC PTA 6475, the impact of ATCC 55730/ DSM 17938 on 

diarrhoea has been an area of investigation in numerous studies. These 

findings have implied that the administration of either ATCC 55730 or DSM 

17938 can reduce both the occurrence and symptoms of acute diarrhoea in 

children (Dinleyici et al., 2014; Francavilla et al., 2012; Gutierrez-Castrellon et 

al., 2014; Shornikova et al., 1997a; Urbańska et al., 2016). However, one study 

did not identify any beneficial effects of DSM 17938 against nosocomial 

diarrhoea in children, although the reason behind this contrast with the other 

studies is unknown (Wanke & Szajewska, 2012). Interestingly, DSM 17938 

specifically reduced the incidence of both EPEC- and rotavirus-associated 

diarrhoea in infants (Savino et al., 2015; Shornikova et al., 1997b). Similar 

findings have also been reported in adults, as the incidence of GI and 
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respiratory illness decreased by 60% in volunteers consuming ATCC 55730, 

relative to those in the placebo group (Tubelius et al., 2005). These probiotic 

strains were well tolerated with no side effects in either healthy or 

immunocompromised individuals and thus, represent a potential option to treat 

diarrhoea (Mangalat et al., 2012; Wolf et al., 1998).  

In contrast to ATCC PTA 6475, ATCC 55730 has often been described as an 

immunostimulatory probiotic (Liu et al., 2010). In healthy human volunteers, 

ATCC 55730 increased the number of B lymphocytes in the duodenum and 

CD4+ T-lymphocytes in the ileum (Valeur et al., 2004). Immune stimulation has 

also been observed in vitro, as ATCC 55730 secreted products stimulated the 

production of TNF-α by the monocyte cell line THP-1 (Lin et al., 2008). 

However, in children with active rectal UC, the direct administration of ATCC 

55730 by enema to the inflamed area reduced mucosal inflammation, as well 

as increasing the levels of the anti-inflammatory cytokine interleukin-10 (IL-10) 

at the site of inflammation (Oliva et al., 2012). Similar findings have also been 

reported in patients with active gingivitis, as volunteers using chewing gums 

containing L. reuteri ATCC 55730 and ATCC PTA 5289 demonstrated 

decreased levels of pro-inflammatory IL-8 and tumour necrosis factor-α (TNF-

α) (Twetman et al., 2009). Thus, these findings suggest that ATCC 55730 and 

DSM 17938 have immunomodulatory features, rather than only stimulating the 

immune response. This is supported by recent findings in a mouse model of 

necrotising enterocolitis (NEC), as DSM 17938 decreased numbers of T-

effector cells and increased T-regulatory cells in the inflamed tissue, as well 

as decreasing mortality and disease severity (Liu et al., 2014). Similar findings 

have been reported in high-risk human neonates, as prophylactic treatment 

with DSM 17938 significantly reduced the risk of NEC (Hunter et al., 2012). 

Infantile colic is defined as excessive crying with no apparent cause and is a 

common condition in infants up to 6 months (Sung et al., 2012). A recent meta-

analysis of 444 infants identified that treatment with ATCC 55730 and DSM 

17938 decreased crying 2.3-fold, relative to infants given either placebo or 

standard therapy (simethicone) (Bird et al., 2016). Importantly, there were no 

apparent side effects associated with L. reuteri supplementation, indicating 

that this therapy would be safe for future usage (Bird et al., 2016).  
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1.3. Innate mechanisms of host defence 

The intestinal epithelium, which provides the first line of defence against 

foreign antigens and bacteria, is composed of a single layer of enterocytes, 

Paneth cells, enteroendocrine cells, and goblet cells, which work in unison to 

regulate the movement of nutrients and water out of the lumen, while 

preventing microbial access across the epithelium. Homeostasis in the GIT is 

maintained by the epithelial cells through multiple mechanisms, such as the 

production of the mucus layer and the innate immune response (Johansson & 

Hansson, 2011c; McGuckin et al., 2011). The failure of these barriers is a basis 

for dysbiosis in the gut, as well as the development of IBD (Neuman & Nanau, 

2012). Whilst the mucus layer and the innate immune response inhibit 

bacterial access, these defences can be modified through microbial 

interaction, including both EPEC and Lactobacillus, and thus the role of 

bacteria on these systems remains an important area of research. 

 

1.3.1.  Mucus 

1.3.1.1. Intestinal mucus production 

The lining of the GIT encompasses the largest surface area of any part of the 

human body, totalling approximately 400 m2 in adults, and is covered by a 

thick layer of mucus (Mowat & Viney, 1997). The mucus layer is a biochemical 

coating which protects the intestinal epithelium by lubricating the mucosal 

surface, preventing mechanical damage from food passing through the 

intestines. The mucus layer also acts as a barrier and a habitat for microbes, 

preventing bacterial access to the epithelium while also providing a glycan-rich 

environment for commensal bacteria to inhabit.  

The thickness and structure of the mucus layer is dependent on the location 

in the GIT, which corresponds with the role of each section in digestion as well 

as the bacterial burden (Johansson et al., 2011b). The current understanding 

of mucus thickness is based on findings in rodents, although a more recent 

study with human colonic biopsies was in agreement with these observations 
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(Figure 1.11) (Atuma et al., 2001; Gustafsson et al., 2012). In the stomach, a 

thick mucus layer is required to protect the epithelium from the harsh acidic 

conditions which could damage the epithelial surface (Ermund et al., 2013). 

The mucus structure changes in the small intestine, as the mucus thickness 

decreases and becomes loose and penetrable (Ermund et al., 2013). This 

change in the mucus facilitates the absorption of nutrients by villi while also 

protecting the epithelial surface, as the rapid transit time of digested food, the 

efficient capture of bacteria by the mucus as well as the production of 

antimicrobial compounds, inhibits microbial access to the epithelium (Ermund 

et al., 2013). In the distal small intestine and the large bowel (ileum and colon, 

respectively), the mucus thickness increases drastically, as the bacterial load 

reaches its peak in the colon (Ermund et al., 2013). As the transit time of food 

in the colon is reduced, the thick outer mucus layer provides a habitat for the 

large microbial population, which extract inaccessible nutrients from digested 

material in the lumen (Bäckhed et al., 2005). These changes in mucus 

thickness represent a dynamic response to the specific challenges that the 

regions of the GIT encounter.  

 

 

Figure 1.11: Mucus thickness throughout the rat GIT 

The thickness of the inner and outer mucus layers change dependent on the 

location in the GIT. Image adapted from Juge (2012). 
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In addition to variable mucus thickness, the structure of the mucus layer also 

differs between GI locations (Atuma et al., 2001). In the rat colon, the mucus 

forms an inner (~150 µm) and an outer (~550 µm) layer, the former excluding 

bacterial access to the epithelium whereas the latter facilitates bacterial 

colonisation (Figure 1.12A) (Johansson et al., 2011a). These layers 

demonstrate different physical properties, as the outer mucus layer can be 

easily removed via aspiration, while the inner layer remains adherent (Atuma 

et al., 2001; Gustafsson et al., 2012). The outer mucus layer is formed from 

the inner layer via the cleavage of cysteine residues in the mucin proteins, 

which initiates a four-fold expansion of the mucin glycoprotein while 

maintaining the structural integrity of the mucus layer (Figure 1.12B) 

(Johansson et al., 2011a; Johansson et al., 2008). 
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Figure 1.12: The inner and outer mucus layers of the colon 

(A) The inner stratified (S) and outer mucus layer (green) where the former is 

devoid of bacteria (red) whereas the latter demonstrates distinct bacterial 

colonisation. Scale bar = 20 µm. Image taken from Johansson et al. (2008). 

(B) Cleavage of cysteine residues in the MUC2 mucin initiates a four-fold 

expansion of the glycoprotein. Images taken from Johansson et al. (2011a). 

 

In contrast to the colon, the mucus layer of the small intestine is comprised of 

a single layer of loose mucus, which can be aspirated to reveal the villous 

surface (Atuma et al., 2001; Ermund et al., 2013). However, microbial access 

to the small intestinal epithelium is rarely observed, as bacteria are inhibited 

by antibacterial compounds such as defensins and RegIII lectins, which are 

released by Paneth cells and enterocytes (Figure 1.13) (Bevins, 2006; 

Vaishnava et al., 2011).  
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Figure 1.13: Mucus structure in the small and large intestine 

Bacterial access to the small intestinal epithelium is inhibited through the 

production and secretion of anti-microbial compounds into the loose mucus 

layer (A). In the large intestine, the dense inner mucus layer inhibits bacterial 

movement to the epithelium (B). Image adapted from Johansson and Hansson 

(2011c). 

 

Mucus has an essential role in inhibiting the access of biological and chemical 

insults to the epithelial surface. This has been demonstrated in mice deficient 

in Muc2, the primary secreted mucin in the murine small and large intestine, 

which spontaneously develop a severe colitis, characterised by the production 

of bloody stools as well as reduced weight gain (Van der Sluis et al., 2006). 

The induction of colitis is partly due to the microbiota contacting the gut 

epithelium. Mice deficient in O-glycan formation, and hence demonstrated 

altered mucus properties, showed reduced colitis when treated with broad-

spectrum antibiotics, which depleted aerobic and anaerobic bacteria (Fu et al., 

2011). Furthermore, when Muc2-deficient mice were exposed to A/E pathogen 

C. rodentium, the symptoms of infection were amplified, as these mice rapidly 

lost weight and demonstrated a 90% mortality rate, whereas wildtype mice 

recovered from infection after one week (Bergstrom et al., 2010). These 

studies demonstrate the importance of mucus in maintaining a healthy GIT. 
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1.3.1.2. Mucin structure and production 

The mucus layer is produced by secretion of mucin glycoproteins from 

epithelial goblet cells. Up to date, 17 mucins have been identified in humans, 

with 10 of these produced in the GIT (Arike & Hansson, 2016). Mucins can be 

divided into two groups, secreted gel-forming mucins (MUC2, -5AC, -5B, and 

-6) and membrane-bound mucins (MUC1, -3, -4, -12, -13, and -17) (Arike & 

Hansson, 2016). All mucin glycoproteins share a common core structure, a 

protein domain which is rich in proline, threonine, and serine residues (called 

the PTS domain), and can be over 2000 amino acids long (Arike & Hansson, 

2016). The serine and threonine residues of the PTS domain are heavily 

glycosylated, forming a distinct “bottle brush” structure, contributing up to 70% 

of the mucin mass (Figure 1.14) (Arike & Hansson, 2016; Johansson et al., 

2011b; Juge, 2012; Lindén et al., 2008a).  

 

 

Figure 1.14: Structure of gel-forming and transmembrane mucins 

Mucin glycoprotein structure with the protein core (red) and oligosaccharides 

decorations (green). Image taken from (Johansson et al., 2011b) 

 

Bacterial access to the epithelium throughout the GIT is inhibited by the 

adhesion of bacteria to mucins which mimic cell surface receptors, trapping 

microbes away from the epithelium (Lindén et al., 2008a). Trapped bacteria 
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are subsequently removed during the turnover of mucus through sheer 

mechanical force, which is generated from the movement of digested food 

through the intestines (Kerss et al., 1982). In the small and large intestine, 

MUC2 is the predominant secreted mucin, which forms a net-like structure 

upon release from the goblet cell, acting as a filter to prevent microbial 

passage to the epithelium (Johansson et al., 2011a). The formation of the 

MUC2 mucin in the goblet cell has been relatively well defined. Briefly, the 

MUC2 protein dimerises at the C-terminus in the endoplasmic reticulum before 

transportation to the Golgi body (Figure 1.15A) (Ambort et al., 2012a; 

Johansson et al., 2011b). In the Golgi body, the PTS domains of the apomucin 

are glycosylated and N-terminal oligomerisation occurs, before the mucin 

molecules are packed into vesicles (Ambort et al., 2012a; Johansson et al., 

2011b). Upon release from the goblet cell, the mucin molecules expand and 

combine to form the net-like structure, linked by covalent and non-covalent 

bonds (Figure 1.15B) (Ambort et al., 2012b; Johansson et al., 2011b).  

 

 

Figure 1.15: Formation of the MUC2 mucin structure 

(A) C-terminal dimerisation of MUC2 apomucin (indicated by the arrow), (B) 

MUC2 polymeric net-like structure. Image adapted from Johansson et al. 

(2011b). 

 

One of the key roles of glycan decorations of MUC2 are to protect the mucin 

from degradation by host digestive enzymes (Arike & Hansson, 2016). The 

glycans of the MUC2 mucin are themselves resistant to proteases and further 

prevent the access of these enzymes to the vulnerable mucin protein core 
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(Lidell et al., 2006). Additionally, glycans also play an important role in the 

selection of the host microbiota, as O-glycans act as adhesion sites and 

nutrient sources for commensal bacteria (Juge, 2012; Koropatkin et al., 2012; 

Tailford et al., 2015b). 

 

1.3.1.3. Mucus as a habitat for the microbiota 

The mucus layer facilitates the colonisation of a diverse range of microbes, as 

mucin O-glycans have a diverse structure which offer numerous binding sites 

for different bacteria (Derrien et al., 2010; Juge, 2012). Bacterial localisation 

in the GIT is influenced by mucin glycan structures, as these carbohydrates 

differ across the GIT, which may be a host mechanism to encourage the 

growth of certain bacteria in specific areas of the gut (Donaldson et al., 2016). 

In mice, differences in glycan structures have been identified across the GIT, 

as the levels of sulfation, fucosylation, and sialyation of mucins was dependent 

on the location in the small and large intestine (Larsson et al., 2013). The 

importance of glycosylation in bacterial binding to mucins has been 

demonstrated in animal models, as mice deficient in the production of O-

glycans with a core-1 structure demonstrated an altered gut microbiota, with 

increased abundance of Bacteroidetes relative to Firmicutes, whereas 

wildtype mice were the inverse (Sommer et al., 2014). Bacterial adhesion to 

mucins is mediated by a variety of surface receptors, such as the MUB protein 

of L. reuteri ATCC 53608, which binds to terminally sialyated glycans (Etzold 

et al., 2014a; MacKenzie et al., 2010). The MUB protein contains multiple 

repeats constituted of Ig- and mucus binding domains with homology to the 

MucBP domain of L. monocytogenes (Boekhorst et al., 2006; Etzold et al., 

2014a; Juge, 2012; MacKenzie et al., 2009). While MUB is unique to ATCC 

53608, surface proteins containing the MucBP domain are located throughout 

all sequenced L. reuteri genomes such as the CmbA adhesin from human L. 

reuteri isolates (Etzold et al., 2014b; Jensen et al., 2014; MacKenzie et al., 

2010). Other Lactobacillus species also produce surface proteins with mucus-

binding domains, including L. rhamnosus GG (mucus-binding factor protein) 

and L. plantarum strains WCFS1 and 299v (mannose-specific adhesin) 
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(Pretzer et al., 2005; von Ossowski et al., 2011). The prevalence of adhesins 

containing mucus-binding characteristics indicates the importance of these 

proteins in Lactobacillus colonisation/survival in the host. Besides specific 

mucus binding proteins, bacterial extracellular appendages also interact with 

intestinal mucins, such as the L. rhamnosus GG SpaCBA pilin and the 

probiotic E.coli Nissle 1917 flagella (Juge, 2012; Kankainen et al., 2009; 

Lebeer et al., 2012; Nishiyama et al., 2015; Troge et al., 2012). 

In addition to providing binding sites for the microbiota, the mucus layer also 

acts as a food source, as glycans from mucins can be utilised by bacterial 

species that produce mucin-degrading enzymes (Koropatkin et al., 2012; 

Tailford et al., 2015a). Ruminococcus, Bifidobacterium, Bacteroides, and 

Akkermansia species have all been identified as mucin degraders however, 

these effects, as well as the specific glycans targeted, are strain specific (Crost 

et al., 2013; Crost et al., 2016; Derrien et al., 2004; Ruas-Madiedo et al., 2008; 

Sonnenburg et al., 2005).  For example, A. muciniphilia demonstrates a narrow 

glycan range whereas Bacteroides thetaiotaomicron targets both dietary- and 

host-derived glycans (Derrien et al., 2004; Sonnenburg et al., 2005). 

As a consequence of mucin degradation, mucinolytic bacteria produce a range 

of metabolites, including short chain fatty acids (SCFA), particularly butyrate, 

which aid in the maintenance of epithelial homeostasis and provide an energy 

source for colonocytes (Hamer et al., 2008). Butyrate can also increase the 

production of mucus by IEC’s (Barcelo et al., 2000; Finnie et al., 1995; 

Hatayama et al., 2007; Tazoe et al., 2009). The exact mechanism remains 

unknown but the ERK signalling cascade has been implicated (Tazoe et al., 

2009). It is important to note that the majority of studies have investigated the 

impact of butyrate on the colon rather than the small intestine. However, 

butyrate, as well as the SCFAs acetate and propionate, are detected in 

ileostomy effluent, which indicates that SCFAs are present in the small 

intestine and thus may have similar beneficial effects (Zoetendal et al., 2012). 

In addition to effects on the host, butyrate also influences bacterial virulence 

and reduces the expression of the key S. enterica pathogenicity island SPI1, 

which is necessary for epithelial colonisation (Gantois et al., 2006). The health 
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benefits of SCFAs on maintaining host homeostasis remains an area of active 

research. 

 

1.3.1.4. Pathogen subversion of the mucus layer 

In order to initiate infection in the healthy GIT, pathogens must either infiltrate 

or degrade the mucus layer (Figure 1.16) (reviewed in McGuckin et al. (2011)). 

The flagellum is a key bacterial appendage which facilitates movement 

through mucus as well as enhancing microbial persistence by binding to 

mucins, as demonstrated for EPEC, EHEC, and C. difficile (Erdem et al., 2007; 

Tasteyre et al., 2001). Interestingly, the EPEC flagellum is not essential for the 

colonisation of human duodenal biopsies with an intact mucus layer, as a fliC-

deficient mutant demonstrated enhanced binding relative to the wildtype 

(Schüller et al., 2009). This implies that the interaction between flagella and 

the mucus may inhibit epithelial infection (Schüller et al., 2009). However, 

components of the C. difficile flagella specifically bind to mucus from the 

mouse caecum but not the porcine stomach, which could indicate either host 

or GIT location selection by C. difficile (Tasteyre et al., 2001). 
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Figure 1.16: Pathogenic mechanisms to subvert the mucus layer 

Pathogens can either (A) degrade the mucus layer with extracellular 

mucinases, (B) target microfold (M) cells which sample the gut microbiota and 

are not covered by a thick mucus layer, or (C) secrete toxins which diffuse 

through the mucus and disrupt TJs and inhibit mucus production. Image 

adapted from McGuckin et al. (2011). 

 

Some GI pathogens produce enzymes which degrade mucus (Figure 1.16A) 

(McGuckin et al., 2011). Mucinase production has been identified in numerous 

pathogens including EAEC (Pic), EHEC (StcE), and Vibrio cholerae (TagA) 

(Dutta et al., 2002; Grys et al., 2005; Szabady et al., 2011). The EHEC 

metalloprotease StcE cleaves the protein core of the mucin glycoprotein, 

degrading the mucus coating and revealing the epithelial surface for 

colonisation (Angel et al., 2012; Grys et al., 2005). Additionally, the 

degradation of the mucus layer creates a nutrient-poor environment for 

commensal bacteria, which reduces colonisation resistance by the host 
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microbiota against EHEC infection (Bäumler & Sperandio, 2016). Alternatively, 

H. pylori modifies the local environment to reduce mucus viscoelasticity, 

without degrading the mucus layer (Celli et al., 2009). The stomach mucus 

forms an effective barrier at a low pH however, H. pylori releases a urease 

which hydrolyses urea and elevates the pH of the mucus from 4 to 6 (Celli et 

al., 2009). By altering the rheological properties of the mucus, H. pylori can 

move freely toward the epithelium, to escape from the harsh acidic 

environment of the stomach lumen (Celli et al., 2009; Montecucco & Rappuoli, 

2001).  

In the small intestine, microfold (M) cells, present in the dome epithelium of 

Peyer’s patches, sample antigens from the lumen and transport them to 

underlying immune cells (Wang et al., 2014b). The sampling of the microbiota 

is an essential component of the localised immune system in the gut, which 

allows the host to prepare an antigen-specific IgA response against potential 

insults, without inducing an inflammatory response (Neutra et al., 2001). For 

effective sampling in the lumen, M cells have minimal mucus coverage, due to 

a lack of goblet cells in the Peyer’s patch, and thus offer a preferential site for 

infection in the small intestine (Figure 1.16B) (McGuckin et al., 2011; Wang et 

al., 2014b). Infection of M cells has been demonstrated by numerous invasive 

GI pathogens, including S. Typhimurium, S. flexineri, and L. monocytogenes 

(Jensen et al., 1998; Jepson & Clark, 2001; Jones et al., 1994; Sansonetti et 

al., 1996).  

Some GI pathogens produce toxins which travel through the functional mucus 

layer and access the epithelium (Figure 1.16C) (McGuckin et al., 2011). These 

toxins can alter the mucus in various ways, such as H. pylori-secreted 

cytotoxins CagA and VacA, which directly inhibit mucin synthesis and 

secretion (Beil et al., 2000; Byrd et al., 2000). Alternatively, toxins can modify 

the mucus layer indirectly, such as those produced by V. cholerae, which 

impact on the normal functioning of the cell and further induce apoptosis or 

weaken TJs in the epithelial barrier (Arce et al., 2005; Fasano et al., 1997; 

Lucas, 2010).  Through interaction with the epithelium, cholera toxin induces 

the secretion of water into the lumen which disrupts the mucus layer and 

induces diarrhoea, providing an opportunity for V. cholerae to both establish 
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infection in the host and disseminate into the external environment (Lucas, 

2010).  

The current understanding of the interaction between EPEC and the mucus is 

limited however, the infection of mice with the related A/E pathogen C. 

rodentium induced the depletion of Muc2 from goblet cells, mediated by the 

host immune response, indicating that the detection of A/E bacteria induced 

changes in the mucus layer (Bergstrom et al., 2008). Additionally, EPEC 

produces SslE (secreted and surface-associated lipoprotein from E. coli; also 

produced by ETEC and ExPEC), a secreted enzyme which has mucinolytic 

properties in vitro and in vivo (Luo et al., 2014; Nesta et al., 2014; Valeri et al., 

2015). While this enzyme offers a mechanism behind EPEC access to the 

epithelium, the impact of this mucinase during human infection still remains to 

be determined.   

 

1.3.2.  Innate immune response 

1.3.2.1. Innate immune response to pathogens 

If a pathogen subverts the mucus layer and gains access to the epithelium, 

the host then initiates innate immune defence mechanisms against the 

invading microbe (Figure 1.17). This response detects ubiquitous microbial 

molecules, referred to as microbe-associated molecular patterns (MAMPs), 

which are detected by pattern recognition receptors (PRRs). PRRs are 

comprised of Toll-like receptors (TLRs), receptors that detect MAMPs at the 

host cell surface or in endosomes, and nucleotide-binding oligomerization 

domain (NOD)-like receptors (NLRs), which detect intracellular MAMPs 

(Figure 1.18) (Chen et al., 2009). Due to the constant evolution of pathogens 

which can quickly adapt to avoid host defences, PRRs have evolved to identify 

a limited range of highly conserved motifs which are not produced by higher 

eukaryotes, such as peptidoglycan, lipopolysaccharide (LPS) , and flagellin, 

detected by TLR2, TLR4, and TLR5, respectively (Aderem & Ulevitch, 2000). 

The detection of a MAMP initiates a cascade via the nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein 
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kinase (MAPK) signalling pathways, which activate the pro-inflammatory 

transcription factors NF-κB and activator protein-1 (AP-1), respectively 

(Aderem & Ulevitch, 2000; Chen et al., 2009; de Grado et al., 2001). The target 

genes of NF-κB include the cytokines interleukin (IL)-1β, IL-6, IL-8, TNF-α, and 

interferon-γ (IFN-γ), which are secreted from the host cell and induce the 

chemotactic migration of macrophages, phagocytes, neutrophils, and dendritic 

cells to the site of infection (Tak & Firestein, 2001). These immune cells attack 

pathogens with DNA-damaging free-radicals (such as H2O2 and NO) as well 

as engulfing and phagocytosing microbes (Knight, 2000).  

 

Figure 1.17: Innate immune response in the GIT 

The innate immune response is initiated upon detection of MAMPs by PRRs 

(either TLRs or NLRs). The PRRs initiate the NF-κB signalling cascade, 

upregulating the expression of pro-inflammatory genes, which encode 

secreted antimicrobial proteins (AMP) and inflammatory cytokines. The 

secretion of cytokines recruits phagocytes to the site of infection, inducing 

transepithelial migration to the apical surface. These immune cells release 

free-radicals (such as NO and H2O2) and phagocytose invading microbes.  

 

Furthermore, the detection of pathogens by the intestinal epithelium (through 

TLRs and NLRs) can induce the production and secretion of antimicrobial 
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peptides, such as defensins, REGIII lectins, and cathelicidins, which integrate 

into the bacterial cell wall and/or membrane and form pores, resulting in 

osmotic leakage and cell death (Mukherjee & Hooper, 2015). These small 

peptides are produced by Paneth cells, enterocytes and goblet cells and are 

specifically targeted against bacteria, as these antimicrobials have net positive 

charges, whereas the bacterial cell wall has a net negative charge, allowing 

electrostatic interactions between the peptide and the bacterial cell (Dürr et 

al., 2006; Fujii et al., 1993; Mukherjee et al., 2014). In contrast, only the 

cytoplasmic surface of the eukaryotic cell membrane is negatively charged, 

thus the controlled secretion of these cationic peptides outside the membrane, 

prevents interaction with the host cell (Mukherjee & Hooper, 2015).  
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Figure 1.18: Inflammatory signalling pathway activation by PRRs upon 

detection of MAMPs 

(A) TLR-mediated and (B) NLR-mediated signalling pathways. Image adapted 

from Chen et al. (2009). 
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1.3.2.2. Innate immune response against EPEC infection 

The innate immune response raised against EPEC infection has been well 

investigated and has been associated with neutrophil infiltration at the site of 

infection (Moon et al., 1983). The migration of neutrophils across the epithelial 

surface is mediated by the chemoattractant IL-8, a cytokine which is 

significantly increased during EPEC infection (Khan et al., 2008; Nadler et al., 

2010; Pearson et al., 2011; Ruchaud-Sparagano et al., 2007; Savkovic et al., 

1997; Schüller et al., 2009; Sharma et al., 2006; Zhou et al., 2003). Flagellin, 

the principle component of the EPEC flagellum, has been implicated as the 

primary immunostimulatory factor, as flagellin induced the production of IL-8 

in both in vitro (HT-29 and T84) and ex vivo (duodenal biopsies) models (Khan 

et al., 2008; Schüller et al., 2009; Sharma et al., 2006; Zhou et al., 2003). 

Whilst flagellin has been identified as a key inducer of the IL-8 response, it is 

important to note that the loss of fliC does not completely abrogate the 

production of IL-8, implying that other immunostimulatory factors are involved 

(Khan et al., 2008; Schüller et al., 2009; Sharma et al., 2006). While EPEC 

LPS, DNA, and EspC do not induce an IL-8 response in vitro, the additional 

immunogenic factor(s) remain unknown (Sharma et al., 2006).  

Interestingly, the innate immune response against EPEC infection is thought 

to contribute to the onset of diarrhoea, as migrating neutrophils initiate the 

release of chloride ions by the epithelium, which induces fluid secretion from 

epithelial cells into the lumen (Crane et al., 2002; Crane et al., 2007; 

Viswanathan et al., 2009). However, EPEC counteracts the host immune 

response via the secretion of effector proteins into the host cell.  

 

1.3.3.  The effect of EPEC on innate defences 

The innate immune response raised against EPEC perturbs the normal 

intestinal milieu, creating a hostile environment, which aids in the clearance of 

the pathogen from the host. However, the EPEC genome encodes a vast 

repertoire of effector proteins that dampen the host response to infection 

(Kaper et al., 2004). These effectors target the NF-κB and the MAPK signalling 
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pathways and effectively inhibit the immune response through the 

mechanisms described below. 

The NF-κB transcription factor is a key mediator in the propagation of the 

innate immune response against EPEC infection. NF-κB is comprised of two 

subunits, p50 and p65, which are dimerised at the Rel homology domain on 

the N-terminus of each subunit (Pearson et al., 2011). In the non-inflamed cell, 

NF-κB is located in the cytoplasm in an inactive form bound to IκB however, 

upon initiation of the pro-inflammatory cascade, IκB is phosphorylated by IκB 

kinase (IKK), which induces IκB ubiquitination (Tak & Firestein, 2001). The 

removal of IκB subsequently activates NF-κB, which translocates to the 

nucleus and initiates the transcription of genes containing a κB enhancer 

element, such as IL-8 (Figure 1.17A) (Kunsch & Rosen, 1993; Tak & Firestein, 

2001). The EPEC effector protein NleE prevents NF-κB activation by inhibiting 

phosphorylation of IKK and subsequent degradation of IκB (Figure 1.19) 

(Nadler et al., 2010; Newton et al., 2010; Vossenkämper et al., 2010; Yen et 

al., 2010). NleB has a similar, though less pronounced, effect on IKK (Gao et 

al., 2013; Li et al., 2013; Nadler et al., 2010; Pearson et al., 2011). In addition, 

NleB reduces the GAPDH-mediated degradation of TNF receptor associated 

factor-2 (TRAF2), which is activated during the TNF-α-induced inflammatory 

response, which further inhibits NF-κB activation (Gao et al., 2013; Li et al., 

2013). In contrast to NleE and NleB, NleC directly targets the NF-κB 

heterodimer by cleaving the p65 subunit at the N-terminus, degrading NF-κB 

(Figure 1.19) (Baruch et al., 2011; Mühlen et al., 2011; Pearson et al., 2011; 

Yen et al., 2010). The effector proteins NleH1 and NleH2 also target the NF-

κB complex, specifically the non-Rel component human ribosomal protein S3 

(RPS3), which inhibits the localisation of NF-κB to κB enhancer sites (Gao et 

al., 2009; Pham et al., 2012; Wan et al., 2007). However, despite substantial 

homology between these proteins, these effectors induce different effects on 

RPS3, as NleH1 and NleH2 inhibit and activate RPS3, respectively (Gao et 

al., 2009; Pham et al., 2012). Interestingly, despite NleH1 reducing RPS3 

translocation to the nucleus, an EHEC ΔnleH1 mutant strain induced a more 

severe disease in infected pigs, which was associated with an enhanced 

inflammatory response, even though little diarrhoea was produced (Gao et al., 
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2009). As both NleH1 and NleH2 can interact and bind to each other, this 

suggests that these proteins modulate the innate immune response in unison 

however, the mechanism behind this effect remains unknown (Pham et al., 

2012). Finally, the EPEC Tir protein also inhibits the NF-κB pathway through 

the recruitment of Src homology region 2 domain-containing phosphatase-1 

(SH-1), which subsequently binds to and inhibits TRAF6 phosphorylation, 

preventing the activation of TGF-β activated kinase-1 and further downstream 

processes (Figure 1.19) (Ruchaud-Sparagano et al., 2011; Yan et al., 2012).  

 

 

Figure 1.19: Inhibition of the NF-κB inflammatory pathway by EPEC 

effector proteins 

EPEC effector proteins (blue) target both inflammatory cascade proteins (red) 

and helper proteins (brown) which initiate the innate immune response. Image 

adapted from Raymond et al. (2013). 
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While the NF-κB pathway is the predominant mechanism responsible for the 

innate immune response against EPEC infection, the MAPK pathway also 

contributes to inflammation through the induction of AP-1 (Figure 1.20). 

However, activation of the MAPK pathway is inhibited by EPEC effector 

proteins such as NleD, which cleaves JNK and p38, subsequently preventing 

the nuclear translocation of AP-1 (Marchés et al., 2005). Interestingly, the loss 

of nleD does not reduce IL-8 protein production (Baruch et al., 2011; Marchés 

et al., 2005). Similarly to NleD, NleC also targets and cleaves p38, 

demonstrating the multifunctional activity of this protein, which also targets the 

p65 subunit of NF-κB (discussed above) (Sham et al., 2011). In contrast to 

other EPEC effector proteins, NleH2 stimulates an increase in AP-1 activity 

however, the mechanism behind this effect remains to be determined (Gao et 

al., 2009).  

 

 

Figure 1.20: Inhibition of the MAPK signalling pathway by EPEC effector 

proteins 

EPEC effector proteins NleD and NleC cleave signalling molecules in the 

MAPK signalling pathway. Image based on Morrison (2012). 
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1.3.4.  The effect of Lactobacillus on innate defences 

As the mucus layer is the primary colonisation site for lactobacilli in the GIT, 

as well as the initial barrier to infection, microbial modulation of this surface is 

an area of ongoing investigation (Juge, 2012; Walter, 2008). Upregulation of 

MUC3 gene and protein expression has been demonstrated by the probiotic 

strain L. plantarum 299v when incubated on HT-29 cells (Mack et al., 2003; 

Mack et al., 1999). Furthermore, changes in MUC3 expression in HT-29 cells 

were associated with a decrease in EPEC binding (Mack et al., 2003; Mack et 

al., 1999). Lactobacillus also modulate the production of secreted mucins, as 

MUC2 protein levels in LS174T cells and mice were increased by the L. 

rhamnosus GG secreted protein p40, which interacted with the EGF receptor 

(Wang et al., 2014a). Furthermore, L. reuteri ATCC PTA 4659 and R2LC 

increased the mucus thickness in mice with DSS-induced colitis and in healthy 

controls (Ahl et al., 2016).  

In addition to enhancing the mucus layer, some Lactobacillus strains also have 

potent immunomodulatory characteristics, which can aid in the maintenance/ 

restoration of gut homeostasis during inflammatory events. Moreover, the 

influence of probiotics on ailments with persistent GI inflammation, such as 

IBD, has shown some promising outcomes, although further randomised 

controlled trials are required to ensure clinical efficacy (Ghouri et al., 2014). 

The effects of probiotics on the innate immune response have generally been 

determined by measuring changes in pro-inflammatory cytokine production, 

using both in vitro and in vivo model systems. Lactobacillus strains are usually 

classified as either anti-inflammatory or immunostimulatory, such as L. reuteri 

ATCC PTA 6475 and L. reuteri ATCC 55730, respectively (previously 

discussed in 1.2.4.1.1 and 1.2.4.1.2). Importantly, immunomodulatory effects 

can be dependent on either the model system used or the immune stimulus, 

as L. rhamnosus GG decreased the production of IL-8 in Caco-2 cells treated 

with flagellin, yet induced IL-8 production in HT-29 cells infected with S. 

Typhimurium (Lopez et al., 2008; Pinto et al., 2009). Furthermore, mice with 

DSS-induced colitis presented with an increased disease severity when 

treated with L. rhamnosus GG relative to mice which did not receive the 
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probiotic, demonstrating that probiotic choice can influence clinical outcome in 

vivo (Mileti et al., 2009).  

The exact mechanisms responsible for the immunomodulatory characteristics 

of Lactobacillus strains are often poorly defined however, inhibition of IκB 

degradation has been suggested in multiple studies (Ko et al., 2007; Lopez et 

al., 2008; Ma et al., 2004; Petrof et al., 2009; Tien et al., 2006). Alternatively, 

some Lactobacillus strains increase the production of anti-inflammatory 

cytokines by dendritic cells, such as IL-10 (Christensen et al., 2002; Drakes et 

al., 2004; Fernandez et al., 2011; O'Hara et al., 2006). Additionally, secreted 

products produced by lactobacilli have been associated with decreased 

expression of inflammatory cytokines (Coconnier et al., 2000; Nemeth et al., 

2006). In a small number of studies, the decrease in inflammation has been 

directly associated with specific compounds, such as the anti-oxidant 

glutathione and histamine, which are produced by L. fermentum 5716 and L. 

reuteri ATCC PTA 6475, respectively (Peran et al., 2006; Thomas et al., 2012). 

Whether the production of these compounds is widespread amongst anti-

inflammatory lactobacilli remains to be determined and is an area of ongoing 

research. 

 

1.4. Model systems for studying bacterial interaction with the 

intestinal mucosa 

1.4.1.  Cultured epithelial cell lines 

The most frequently used model for the assessment of both Lactobacillus and 

EPEC interactions with the intestinal epithelium are cultured epithelial cell 

lines. Generally, either HeLa cells, derived from a cervical carcinoma, or colon 

carcinoma cells have been used to determine the effects of lactobacilli and 

EPEC on microbial binding, the innate immune response, and mucin 

regulation (Law et al., 2013). As the intestinal epithelium exhibits distinct 

polarity, cell-based models have been adapted to resemble this structure, with 

polarised Caco-2 and T84 cells frequently being used to determine the impact 

of bacterial interaction with the epithelia. However, the interactions between 
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microbes and cancer cell lines is known to differ from those which occur at the 

intestinal epithelium, which is due to a number of reasons (Law et al., 2013). 

Firstly, the intestinal epithelium consists of four main cell types (enterocytes, 

goblet cell, enteroendocrine cells, and Paneth cells), whereas cultured 

epithelial cells represent a single cell type. Thus, the interaction and cross-

communication between the various cell types in the epithelium is not 

observed in cultured cell line based models. Furthermore, the most frequently 

used IECs (HT-29, Caco-2, and T84) are enterocyte-like cells, which do not 

secrete mucins and are thus not protected by a mucus layer. As the mucus 

protects the epithelium in vivo, the absence of this layer removes an essential 

component of intestinal defence against microbes in the healthy intestinal 

environment (Johansson et al., 2011b; Johansson et al., 2011a; Johansson et 

al., 2008). Thus, the use of non-mucus producing IECs to evaluate probiotic 

binding is more representative of ailments with a perturbed mucus barrier, 

such as IBD, rather than the healthy GIT. Finally, immortal cancer cell lines 

have undergone substantial genomic mutations which enable these cells to 

continuously propagate, whereas non-malignant cells enter senescence. This 

presents a key problem, as these mutations can alter the basic cell physiology 

and the function of the cell.  

However, cancer cell lines enable the researcher to dissect the gut epithelium 

from the complex environment of the GIT, which can assist in the identification 

of novel bacterial features. Nonetheless, it is crucial to complement results 

from cell-based assays with more physiologically relevant models, to ensure 

that these findings are representative of the in vivo situation (Law et al., 2013). 

 

1.4.2.  In vivo model systems 

The identification of relevant in vivo models for EPEC infection remains an 

active area of investigation, as experiments on infants would be highly 

unethical (Goosney et al., 2000; Law et al., 2013). A small number of studies 

have been performed on adult volunteers to assess EPEC virulence 

(Donnenberg et al., 1993b; Levine & Edelman, 1984; Levine et al., 1985; 
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Tacket et al., 2000; Vallance & Finlay, 2000). It is important to note that 

stomach acid neutralisation and a large EPEC dose were required to induce 

diarrhoea in adults, which does not represent the conditions required for 

natural infection (Nataro & Kaper, 1998). 

Investigators have used gnotobiotic piglets as an in vivo infection model for 

human EPEC infection and identified EPEC colonisation in the porcine 

midileum (Moon et al., 1983; Tzipori et al., 1985). However, the required 

maintenance costs for larger animals and maintaining germ-free status, as well 

as few genetically modified lines, encourages the use of alternative model 

systems. Mice have also been utilised to investigate EPEC infection of the 

GIT, with Savkovic et al. (2005) identifying mucosal colonisation and neutrophil 

migration to the epithelium. However, these data are conflicting with other 

reports, which show minimal colonisation of the mouse GIT by EPEC 

(Klapproth et al., 2005; Mundy et al., 2006). In contrast, streptomycin-treated 

and neonatal mice supported EPEC adhesion when treated with a high 

bacterial dose, suggesting colonisation resistance by the intestinal microbiota 

as a cause for absent EPEC binding in conventional mouse models (Dupont 

et al., 2016; Royan et al., 2010). Although EPEC-infected germfree and 

neonatal mice demonstrated A/E lesion formation at the epithelial surface, 

these mice do not develop watery diarrhoea after infection (Dupont et al., 

2016; Meador et al., 2014; Vallance & Finlay, 2000). Thus, no murine model 

to date presents with the complete repertoire of clinical symptoms associated 

with EPEC infection of human infants (Law et al., 2013; Vallance et al., 2002).  

The natural murine pathogen C. rodentium has often been used as a proxy for 

EPEC to examine intestinal infection by A/E pathogens, as the Citrobacter 

genome contains a LEE PAI which shares 41 open reading frames with the 

EPEC LEE PAI (Deng et al., 2001). However, 32% of the C. rodentium 

genome is not shared with EPEC, which includes at least seven putative T3S 

effector proteins (Petty et al., 2010). Further differences from EPEC infection 

include location of intestinal colonisation, as C. rodentium adhere to the murine 

cecum and colon, and different pathologies, as C. rodentium infection does 

not induce profuse, watery diarrhoea in the host (Law et al., 2013). 

Additionally, C. rodentium infection is not limited to infant mice (Law et al., 
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2013). In contrast, infection of weaned rabbits with rabbit EPEC demonstrated 

a similar phenotype to human EPEC colonisation, as the infection was age 

restricted and induced a similar tissue pathology, alongside potentially lethal 

diarrhoea (Law et al., 2013; Moon et al., 1983; Robins-Browne et al., 1994). 

However, the severity of diarrhoea in infant rabbits inhibits the investigation 

into moderate changes in disease phenotype (Law et al., 2013). Furthermore, 

there are few genetically modified rabbit lines, which limits the evaluation of 

the host response to EPEC infection (Law et al., 2013).  

In contrast to EPEC infection studies, clinical studies investigating probiotic 

characteristics are more prevalent, as Lactobacillus species are generally 

regarded as safe (GRAS) and can thus be consumed without risk of harm to 

the participant, which reduces ethical and safety concerns (Salminen et al., 

1998). Furthermore, L. reuteri strain ATCC 55730 was not detrimental in 

immunocompromised patients, further supporting the GRAS status of these 

microbes (Wolf et al., 1998). In addition to human volunteer studies, animals 

have been used to investigate probiotic characteristics including mice, rats, 

chickens, and pigs. However, as L. reuteri strains demonstrate ecological 

adaption to their original host species, this limits the use of animals when 

investigating the probiotic characteristics of human-derived strains, as findings 

in one species may not be applicable to another (Walter, 2008).  

 

1.4.3.  Ex vivo model systems 

To overcome the lack of relevant in vivo models for EPEC infection studies, 

Knutton and colleagues developed an in vitro organ culture (IVOC) system, 

which used intestinal mucosal biopsy samples to investigate the interaction of 

A/E E. coli with the intestinal epithelium (Knutton et al., 1987). IVOC has 

numerous advantages over traditional cell culture, including the presence of 

all major epithelial cell types and the protective mucus layer (Fang et al., 

2013). A limitation of IVOC is that EPEC infection is not restricted to the 

mucosal surface. However, a polarised system (pIVOC) has been developed, 

which confines bacterial access to the epithelial biopsy surface, enabling the 
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investigation of the innate immune response against EPEC infection (Schüller 

et al., 2009). 

IVOC is a valuable model for the study of microbe-host interactions at the 

intestinal mucosa however, there are a number of limitations which prevent 

the routine use of this system. Firstly, IVOC studies require ethical approval, 

as samples are acquired from patients in addition to any biopsies which are 

taken for diagnostic use. Secondly, access to human tissue can be 

unpredictable due to the need for patient consent. Thirdly, different host 

backgrounds can result in considerable variation between experiments. 

Finally, IVOC experiments are limited to approximately eight hours, as tissue 

survival is reduced in the absence of blood supply. While there are limitations 

to the IVOC method, this system is currently regarded as the gold standard for 

the investigation of pathogenic E. coli interaction with the intestinal mucosa 

(Girard et al., 2007; Phillips & Frankel, 2000; Schüller et al., 2009).  

Human intestinal tissue has also been used in the investigation of probiotic 

Lactobacillus characteristics, such as samples from patients with IBD to 

determine the impact of probiotic strains on inflammation (Tsilingiri et al., 

2012). The interaction between lactobacilli and GI pathogens has also been 

explored with intestinal tissue from the porcine gut (Bogovič Matijašić et al., 

2006; Collins et al., 2010). Nonetheless, the use of intestinal tissue for 

probiotic research remains a niche area.  
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1.5. Aims and objectives 

The overarching aim of this PhD project was to determine the influence of 

probiotic L. reuteri on EPEC infection of the human intestinal epithelium, with 

particular focus on 1) EPEC binding, 2) mucus production, and 3) pro-

inflammatory host response. Both in vitro and ex vivo human intestinal 

epithelial cell models were used in this study. 
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CHAPTER TWO: Methods and Materials 
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2.1. Bacterial strains and growth conditions 

2.1.1.  Bacterial strains 

The bacterial strains used in this study are listed in Table 2.1. All experiments 

using EPEC were performed in a containment level 2 facility. 

 

Strain Description Reference 

L. reuteri   

ATCC PTA 6475 Human isolate Oh et al. (2010) 

ATCC PTA 6475 CmbA- Human isolate Etzold et al. (2014b) 

DSM 20016 Human isolate Oh et al. (2010) 

LMS11-3 Human isolate Oh et al. (2010) 

ATCC 55730 Human isolate Oh et al. (2010) 

ATCC 53608 Pig isolate Oh et al. (2010) 

ATCC 53608 MUB- Pig isolate MacKenzie et al. (2010) 

100-23C Rat isolate Oh et al. (2010) 

LB54 Chicken isolate Oh et al. (2010) 

   

EPEC   

E2348/69 EPEC wildtype (O127:H6) Levine et al. (1978) 

CVD452 EPEC escN mutant Jarvis et al. (1995) 

AGT01 EPEC fliC mutant Girón et al. (2002) 

UMD864 EPEC espB mutant Donnenberg et al. (1993a) 

   

Table 2.1: Bacterial strains used in this study 

 

2.1.2.  Culture methods 

L. reuteri were routinely cultured in de Man, Rogosa and Sharpe (MRS) culture 

medium (Oxoid), which is selective for Lactobacillus by low pH (6.2 ± 0.2). L. 

reuteri broth cultures were inoculated from frozen glycerol stocks and grown 

standing in an anaerobic cabinet (5% CO2, 10% H2 and 85% N2, Don Whitley 

Scientific) at 37 °C overnight. L. reuteri colonies were cultured at 37 °C on 

MRS agar (1.5% w/v agar, Formedium) plates overnight under anaerobic 

conditions. 

EPEC were routinely cultured in Lennox Lysogeny Broth (LB) (Formedium) 

and grown standing in aerobic conditions at 37 °C overnight. EPEC colonies 
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were cultured at 37 °C on LB agar (1.5% w/v agar) plates overnight under 

aerobic conditions. 

EPEC cultures were stored as streaks on LB plates for up to one month at 4 

°C before re-streaking. EPEC deletion mutants were selected with the 

appropriate antibiotic at the following concentrations: kanamycin (50 µg/ mL) 

and chloramphenicol (25 µg/ mL).  

  

2.1.3.  Cryopreservation and thawing of strains 

Stock cultures of L. reuteri and EPEC were preserved in 15% (v/v) glycerol 

solution. A 50% glycerol solution was prepared in deionised distilled H2O 

(ddH2O) and sterilized by autoclaving. 300 µL 50% glycerol solution was mixed 

with 700 µL fresh overnight culture in a sterile ampoule by pipetting and snap 

frozen on dry ice before long term storage at -70 °C. 

 

2.2. Cell culture 

All cell lines were routinely cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) containing 4500 mg/ L glucose and 3700 mg/ L sodium bicarbonate 

(Sigma). DMEM medium was supplemented with 4 mM L-glutamine (Sigma) 

and 10% foetal bovine serum (FBS, Sigma). Cells were maintained at 37 °C 

in a 5% CO2 atmosphere. Media used during routine cell culture were warmed 

to 37 °C prior to use. Cells were grown in 25 cm2 culture flasks (Sarstedt and 

Greiner Bio-One) and passaged at full confluency. 

HT-29 (ECACC 91072201) and LS174T cells (ECACC 87060401), originally 

isolated from human colon adenocarcinoma, were used between passages 5 

to 20 and 7 to 27, respectively. 
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2.2.1.  Trypsinisation and passaging of cell lines 

At confluency, the cell culture media were removed and cells were washed 

twice with 4 mL PBS (Sigma) to remove residual FBS, which can deactivate 

trypsin. Cells were washed once with 0.5 mL 0.25% trypsin- 0.02% 

ethylenediaminetetraacetic acid (EDTA) solution (T/E, Sigma) before 0.5 mL 

T/E were applied. Cells were incubated at 37 °C until cell detachment from the 

flask (approximately 5 min). Trypsin was deactivated by resuspending the cells 

in 4.5 mL supplemented DMEM, and cells were split at dilution ratios of 1:10 

into a new 25 cm2 culture flask. Cells were split approximately every 7 days 

and the cell culture media were replaced every 2 days, to prevent acidification. 

 

2.2.2.  Determination of cell concentration and cell seeding 

After trypsinisation, 10 µL of cell suspension was mixed with 10 µL trypan blue 

(Sigma) to identify nonviable cells. Trypan blue is unable to permeate the cell 

membrane of live cells, and only dead cells are stained blue. Viable cells were 

counted using an improved Neubauer haemocytometer (Hawksley; depth 0.1 

mm) and an inverted light microscope (Zeiss Invertoskop ID03). Two fields (1 

x 10-4 mL/ field) (Figure 2.1) were counted and multiplied by 104 to determine 

the cell concentration. The volume of cell suspension required for seeding (x) 

was determined by the following formula; 

x = (y * w) / z 

y is the desired number of cells/ well, w is the number of wells to be seeded, 

and z is the cell concentration.  

Cells were seeded into 24 well plates at 1 x 105 cells/ well (HT-29) or 1.5 x 105 

cells/ well (LS174T). Cells were seeded onto sterile coverslips (CS), for 

microscopy analysis, or directly onto wells for all other experiments. Cells were 

grown to confluence (7 days) and, prior to infection, cell culture media were 

replaced with plain DMEM. 
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Figure 2.1: Neubauer cell counting chamber 

Red boxes indicate the cell counting area with a defined volume of 0.1mm3, 

equivalent to 10-4 mL. 

 

2.2.3.  Cryopreservation and resurrection of cell lines 

2.2.3.1. Cryopreservation of cell lines 

Cells were grown in 75 cm2 culture flasks until confluence. Cells were 

trypsinised and resuspended in 5 mL supplemented DMEM, and the cell count 

was determined as described in 2.2.2. Cell concentration was adjusted to 2-4 

x 106 cells/ mL, and 950 µL cell suspension was added to a freezing vial. 50 

µL dimethyl sulfoxide (DMSO) (5% final concentration, Sigma) was added, and 

vials were placed in a freezing container (Mr Frosty, Nalgene), containing 

isopropanol (Sigma), and cooled to -80 °C overnight at a cooling rate of 1 °C/ 

min to reduce ice crystal formation. Frozen vials were transferred to liquid 

nitrogen storage (vapour phase; -190 °C) for long term preservation.  
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2.2.3.2. Resurrection of cell lines 

Frozen vials were removed from liquid nitrogen storage and warmed quickly 

to room temperature (RT). The cell suspension was transferred into 5 mL 

supplemented DMEM, resuspended and centrifuged for 7 min at 188 x g to 

remove DMSO. The supernatant was discarded, and the cell pellet was 

resuspended in 7 mL supplemented DMEM. The cell suspension was 

transferred into a 25 cm2 culture flask and cultured as previously described. 

 

2.3. Infection assay 

2.3.1.  Adhesion assay 

Prior to inoculation, L. reuteri and EPEC were spun down at 18,000 x g for 5 

min and resuspended in DMEM. Approximately 5 x 107 bacteria (Multiplicity of 

infection (MOI) of 50 bacteria/ cell) were incubated with the cell monolayers at 

37 °C in a 5% CO2 atmosphere for 1 h. The cell monolayers were washed with 

PBS (3x) to remove non-adherent bacteria, and processed according to further 

applications. 

 

2.3.2.  Protection assay 

2.3.2.1. Short-term protection assay  

For short-term protection assays, 5 x 108 L. reuteri (MOI 500) were pre-

incubated with cell monolayers for 1 h. Subsequently, 5 x 106 EPEC (MOI 5) 

were added for 1 h. At the end of the experiment, cell monolayers were 

washed with PBS (3x), and processed according to further applications.  
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2.3.2.2. Long-term protection assay 

Cells were pre-incubated with 5 x 108 L. reuteri for 4 h, and the cell culture 

media were tested with pH indicator strips (ThermoFisher, pH range 4.5-10.0 

at 0.5 intervals) after the incubation to determine potential acidification. 

Non-adherent lactobacilli were removed by washing with DMEM for 5 min on 

a rocking platform (30 rotation/ min), and cells were incubated with 5 x 106 

EPEC for 1 or 3 h. At the end of the experiment, cells were washed with PBS 

(3x) and processed for further applications.  

 

2.3.3.  Contact killing assay 

To assess the impact of L. reuteri on EPEC viability, 5 x 108 L. reuteri were 

pre-incubated for 1 h in 1 mL DMEM medium at 37 °C in 5% CO2 atmosphere, 

and 5 x 106 EPEC were added and further incubated for 1 h. As 1% Triton X-

100 (TX-100, Sigma) was used in protection assay experiments to release 

adherent bacteria (see 2.3.5), 1% TX-100 was added to the co-culture for 10 

min after the EPEC incubation. EPEC survival was assessed by plating out 

serial dilutions of the co-culture on LB agar plates and viable EPEC were 

determined relative to the initial inoculum by plate counting. 

 

2.3.4.  Co-culture assay 

To determine the effect of L. reuteri and EPEC on mucus production and the 

inflammatory response, 5 x 107 L. reuteri were incubated with 5 x 107 EPEC 

on cell monolayers at 37 °C in 5% CO2 atmosphere for 6 h. Cell culture media 

were spun down at 18,000 x g for 5 min and the supernatant frozen at – 80 °C 

until processing. Cells were washed with PBS (3x) and processed for further 

applications. 
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2.3.5.  Quantification of bacterial colonisation 

Cells were lysed with 1% TX-100 in PBS for 10 min at RT to release adherent 

bacteria. The lysate was serially diluted in PBS, plated out and incubated 

overnight at 37 °C. Bacterial colonies were counted, and adherence was 

determined according to the following formula; 

% adherence = (adherent bacteria/ mL/ inoculated bacteria/ mL) * 100 

 

2.4. In vitro organ culture (IVOC) of human intestinal biopsy 

tissue 

2.4.1.  Ethical approval and collection of biopsy samples 

This study was performed with ethical approval from the University of East 

Anglia Faculty of Medicine and Health ethics committee (ref 2010/11-030). All 

biopsies were collected through the Norwich Biorepository, which has National 

Research Ethics Service approval (ref 08/h0304/85+5). Samples were 

provided by the Gastroenterology Department at the Norwich and Norfolk 

University Hospital. 

Up to six biopsies from the second part of the duodenum were obtained with 

informed consent from 87 adults (24-87 years; average age 64.7; 42 male and 

45 female) undergoing routine upper endoscopy for investigation of GI 

symptoms (see Appendix 1 for a copy of the Norwich Biorepository information 

sheet and consent form for adult patients). Patients were not included in the 

study if they met any of the following criteria; 

Previous infection of Human Immunodeficiency Virus or Hepatitis B. 

The patient suffered from any conditions of the small bowel. 

For studies investigating the immune response, patients were also excluded if 

they had used immunosuppressive medication within the past month. 
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Biopsies were taken from macroscopically normal areas, transported to the 

laboratory in IVOC medium and processed for experimentation within the next 

hour. 

 

2.4.2.  Culture of biopsy samples  

Biopsies were maintained in IVOC medium (0.94 g NCTC 135 medium 

(Sigma), 0.22 g sodium bicarbonate (Sigma), and 1 g D-(+)-mannose (Sigma), 

to prevent bacterial adhesion by type I fimbriae, dissolved in 90 mL ddH2O). 

The solution was filter sterilized with a 0.45 µm syringe filter (Sartorius Stedim), 

and combined with 90 mL DMEM and 20 mL newborn calf serum (Sigma). The 

medium was stored at 4 °C. 

IVOC was performed as described previously (Knutton et al., 1987). Briefly, 

biopsies were cut with a disposable scalpel to a diameter of 2-3 mm and 

orientated with the mucosal side upwards on a foam support (Simport) in a 12 

well plate in 1 mL IVOC medium. IVOC medium in the well was adjusted to 

allow a thin film of medium to cover the biopsy. Biopsies were infected with 25 

µL standing overnight culture (2.5 x 107 bacteria) and incubated on a seesaw 

rocker with 12 revolutions/ min in air with 5% CO2 at 37 °C for up to 8 h. 

Medium was changed at 4 h and 6 h to maintain pH and prevent bacterial 

overgrowth. At the end of the experiment, biopsies were transferred to glass 

screw cap tubes and washed twice with PBS by vigorous shaking to remove 

mucus and non-adhering bacteria. Alternatively, biopsies were processed 

without washing to allow assessment of the mucus layer. 

 

2.4.2.1. Polarised IVOC 

The polarised IVOC technique was pioneered by Schüller et al. (2009), and is 

an adaption of IVOC which restricts bacterial access to the mucosal surface. 

For this, the biopsy was sandwiched between two Perspex disks (12 mm 

diameter, Faculty of Science Mechanical Workshop, University of East Anglia) 

with a central aperture (2 mm diameter), as demonstrated in Figure 2.2.  
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For mounting of the biopsy, a cellulose nitrate membrane filter (3 µm pore size, 

Whatman) was soaked in IVOC medium and placed onto the basal disk. The 

biopsy was placed centrally on the membrane and orientated with the mucosal 

side facing upwards under a dissection microscope. To prevent bacterial 

leakage, the apical disk was sealed to the mucosal biopsy surface with 

Histoacryl tissue glue (Braun Medical). The biopsy-containing unit was 

mounted into a Snapwell support (polycarbonate membrane, Corning) and 

placed into a 6 well plate with 3 mL IVOC medium in the basolateral chamber. 

For adherence assays, biopsies were submerged in 180 µL IVOC medium and 

infected with 20 µL standing overnight bacterial culture (2 x 107 CFU). The 

biopsies were incubated on a seesaw rocker at 37 °C in a 5% CO2 atmosphere 

for up to 6 h. Apical medium was removed after 2 h, and biopsies were washed 

with 200 µL IVOC medium. Biopsies were further incubated under slightly 

submerged conditions (~50 µl of medium) to reduce epithelial shedding. For 

protection assays, biopsies were pre-incubated with 109 L. reuteri in 300 µL 

IVOC medium for 2 h. Biopsies were washed with IVOC medium to remove 

non-adherent L. reuteri and biopsies were incubated with 2 x 107 EPEC for 4 

h. At the end of the experiment, specimens were removed from the support, 

washed, and processed according to further applications.  

 

 

Figure 2.2: pIVOC system 

Biopsies were mounted between two Perspex disks with a central aperture to 

limit bacterial access to the mucosal biopsy surface. Adapted from 

Schüller et al. (2009). 
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2.4.3.  Scanning electron microscopy 

Biopsies were fixed in 2.5% glutaraldehyde (Agar Scientific) in PBS overnight 

and stored at 4 °C until processing. All subsequent incubation steps were 

performed on a rocker. Samples were washed twice with PBS and once with 

ddH2O for 10 min. The biopsies were dehydrated by subsequent incubation in 

30%, 50%, 70%, and 90% acetone in ddH2O for 15 min followed by two 15 

min incubations in 100% acetone. The specimens were dried by incubation in 

tetramethylsilane (Sigma) for 10 min and air-dried for at least 10 min. Samples 

were orientated under a dissecting  microscope and mounted with the mucosal 

surface facing upwards on aluminium stubs (TAAB Laboratory Equipment 

Ltd.) using silver paint (Agar Scientific). The biopsies were sputter-coated with 

gold (Polaron SC7640 sputter coater, Quorum Technologies), and viewed with 

a JEOL JSM 4900 LV scanning electron microscope (School of Environmental 

Sciences, UEA). 

 

2.4.4.  Biopsy cryosections 

Biopsies with preserved mucus layers were embedded in optimal cutting 

temperature compound (Sakura) in a cryotube, snap-frozen in an ethanol/dry 

ice bath and stored at -80 °C. Serial sections of 7 µm were cut with a Microm 

HM550 cryostat (Thermo Scientific), picked up on poly L-lysine-coated slides 

(Agar Scientific) and air-dried for at least 30 min. Slides were stored at -80 °C 

until processing. 

 

2.4.5.  Quantification of bacterial colonisation of biopsies 

Biopsies were transferred to microcentrifuge tubes and lysed in 1 mL 1% TX-

100 for 15 min at RT. The specimens were homogenised with a sterile pestle 

(Sigma), and vortexed. Serial dilutions of the lysate were plated on LB agar, 

and adherent bacteria were quantified by plate counting. 
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2.4.6.  Preparation of biopsy lysates for cytokine analysis 

Biopsies were transferred to microcentrifuge tubes containing 250 µL ice cold 

lysis buffer (1% TX-100 and 0.5% protease inhibitor cocktail (Sigma) in PBS). 

Samples were incubated on ice for 5 min and homogenised with a sterile 

pestle. The lysate was centrifuged at 18,000 x g for 15 min at 4 °C to pellet 

insoluble proteins. The supernatant was removed and stored at -80 °C until 

further processing. 

 

2.5. Fluorescence staining 

2.5.1.  Antibodies and dilutions 

The antibodies used in this study are listed in Table 2.2. 

 

Antigen Host species Dilution Source 

CmbA Rabbit 1:250 D. MacKenzie 

MUB Rabbit 1:250 D. MacKenzie 

Srr Rabbit 1:250 D. MacKenzie 

E. coli Goat 1:500 abcam 

NF-κB Rabbit 1:200 Santa Cruz 

MUC2 Mouse 1:250 Santa Cruz 

MUC5AC Rabbit 1:250 Santa Cruz 

    

Table 2.2: Primary antibodies used in this study 

 

All incubations with antibodies were performed at RT. 

 

2.5.2.  Staining of adherent cell lines and tissue cryosections 

Slides containing cryosections were equilibrated to RT for 10 min, and sections 

were encircled with a PAP pen (Sigma) to prevent antibody crossover between 

sections. For mucus preservation, coverslips and cryosections were fixed with 

ice-cold methanol/ acetone (1:1; MeOH/ acetone) for 4 min on ice, and washed 
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once with PBS. For all other applications, fixation was performed in 3.7% 

formaldehyde in PBS (formalin) for 15 min at RT. All samples were stored at 

4 °C in PBS until further processing.  

Samples were incubated in 0.5% bovine serum albumin (BSA; Sigma), and 

0.1% TX-100 (formalin-fixed samples only) in PBS for 20 min to block non-

specific binding sites and permeabilise the cell membrane. All reagents were 

diluted in 0.5% BSA in PBS, as detailed in Table 2.2. Samples were washed 

once with PBS and incubated with the first primary antibody for 60 min at RT. 

Unbound antibody was removed by washing with PBS on a rocking platform 

for 10 min, and specimens were incubated with the secondary antibody for 30 

min in the dark. Secondary antibodies were either Alexa Fluor-488 or Alexa 

Fluor-568 (IgG; Life Technologies) and were used at a 1:400 dilution. Unbound 

antibody was removed by washing, and incubations in primary/ secondary 

antibodies were repeated with the remaining antibodies. If required, samples 

were counterstained with 4', 6-diamidino-2-phenylindole (DAPI; 1:5000; 

Roche) to label cell nuclei and/or fluorescein isothiocyanate (FITC)-

conjugated phalloidin (1:200; Sigma) to visualise filamentous actin and actin 

pedestals. Samples were washed for 40 min with a single PBS change, air-

dried for 5 min, and mounted in Vectashield (Vector Laboratories). Samples 

were stored at 4 °C in the dark until evaluation with a fluorescence microscope 

(Axiovert 200M or Axioimager M2, Zeiss). 

 

2.5.3.  Analysis of fluorescence microscopy images 

To quantify EPEC actin pedestal and microcolony formation, images were 

taken from ten random fields of view at a set exposure time. EPEC were 

counted and each bacterium was classified on whether they were associated 

with an actin pedestal and whether they were contained in a microcolony (five 

or more bacteria grouped together). 

To quantify mucin protein in LS174T cells, images were taken at set exposure 

times and analysed using ImageJ, a public domain imaging software (Wayne 

Rasband, NIH). Protein levels were determined by measuring fluorescence 
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intensity by analysis of integrated density. To reduce background, 

fluorescence intensity was limited to a minimum threshold for inclusion in the 

analysis which was kept constant for all images within an experiment.  

 

2.6. Gene expression analysis using quantitative real time 

PCR (qPCR) 

2.6.1.  RNA extraction 

Eukaryotic RNA from LS174T cells was extracted using the RNeasy Mini kit 

(Qiagen) with RNase-free tubes, tips, and reagents. Confluent LS174T cells 

were lysed with 350 µL RLT buffer, supplemented with 3.5 µL β-

mercaptoethanol (Sigma) to inhibit intrinsic RNases. Cells were detached by 

scraping with a pipette tip. The lysate was homogenised by vortexing for 10 

sec and stored at -80 °C until further processing. RNA extraction was 

performed according to the manufacturer’s protocol for “RNA extraction from 

animal cells using spin technology”. Genomic DNA was removed by “on-

column” digestion with DNase I as described in the manufacturer’s protocol. 

RNA was eluted in 30 µL RNase-free water and stored at -20 °C  

until further processing. 

 

2.6.2.  Assessment of RNA quality by agarose gel 

electrophoresis and spectrophotometry 

RNA integrity was determined by agarose gel electrophoresis in 

Tris/Borate/EDTA (TBE) buffer (10x TBE:108 g Tris (Sigma), 55 g boric acid, 

and 40 mL 0.5 M EDTA, pH 8.0 (Sigma) in 1 L ddH2O). RNA samples were 

labelled with DNA nontox dye (PanReac AppliChem) separated in a 1% (w/v) 

agarose (Sigma) gel at 250 mA and 90 V for 30 min (Consort E863), and 

visualised using a U:Genius ultra violet gel imager (Syngene). RNA integrity 

was confirmed by identification of the 28S and the 18S ribosomal RNA 

subunits (Figure 2.3).  
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RNA quantity and purity was assessed with a NanoDrop ND-1000 

spectrophotometer (Thermo Scientific). Protein contamination was evaluated 

by the ratio of absorbance at 260 nm and 280 nm with a value between 1.8 

and 2.0 considered acceptable. The ratio of absorbance at 230 nm and 260 

nm was used as a secondary measure to assess salt contamination, with a 

value between 1.5 and 2 considered acceptable. RNA quantity was 

determined by absorbance at 260 nm, and RNA concentrations were 

presented as ng/ µL. 

 

Figure 2.3: Representative image of intact RNA 

RNA degradation was assessed by agarose gel electrophoresis. Each lane 

represents an individual sample. 

 

2.6.3.  cDNA synthesis 

Complementary DNA (cDNA) was synthesised from 1 µg RNA using the 

qScript cDNA supermix (Quanta Biosciences), according to the 

manufacturer’s instructions, and a thermal cycler (Biometra Professional Trio). 

A reverse transcriptase-negative (RT-) control, with no added cDNA supermix, 

was run alongside the cDNA synthesis to assess DNA contamination during 

qPCR analysis. cDNA was diluted at a ratio of 1:3 with sterile nanopure H2O 

and stored at 4 °C for up to 1 week or at -20 °C for long-term storage. 
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2.6.4.  Primers used in this study 

 

Target 
gene Primer sequence 

Product 
size (bp) Reference 

MUC1 F 5’CGACGTGGAGACACAGTTCA 3’ 165 This Study 

R 5’AGAACACAGACCAGCACCAG 3’   

MUC2 F 5’ACTGCACATTCTTCAGCTGC 3’ 233 This Study 

R 5’ATTCATGAGGACGGTCTTGG 3’   

MUC3A F 5’ACCACCCTTACATCACGCAG 3’ 121 This Study 

R 5’AAGCACACTGTCCCTGTTCC 3’   

MUC5AC F 5’CTGGGGTCCTCATTCAGCAG 3’ 212 This Study 

R 5’CCCGAATTCCATGGGTGTCA 3’   

MUC6 F 5’GCTTCGTATTCGACGGCAAC 3’ 256 This Study 

R 5’ATGTCCACGACAAGGCTCAG 3’   

MUC12 
F 5’TGAAGGGCGACAATCTTCCTC 3’ 104 

(F) Moal et al. (2005) 
(R) This Study 

R 5’AGTGTAGTCTGCCTCCAGGAT 3’   

MUC13 F 5’TGTAAACACAGCCACCAACCA 3’ 158 This Study 

R 5’AAGTAGCTGTTGGGAAAGGTGT 3’   

MUC17 F 5’GTTTCAACACCACTGGCACC 3’ 122 This Study 

R 5’CTGGTCCCGGTACTCCACTA 3’   

IL-8 F 5'TTGAGAGTGGACCACACTGC 3' 98 Ou et al. (2009) 

R 5'TGCACCCAGTTTTCCTTGG 3'   

YWHAZ F 5'ACTTTTGGTACATTGTGGCTTCAA 3' 94 Jacob et al. (2013) 

R 5'CCGCCAGGACAAACCAGTAT 3'   
POLR2A F 5'GATGGGCAAAAGAGTGGACTT 3' 180 Schüller et al. (2009) 

R 5' GGGTACTGACTGTTCCCCCT 3'   

    
Table 2.3: Primers used in this study 

 

2.6.5.  Primer design 

All primers selected for this study were based on publically available human 

gene sequences (http://www.ensembl.org/index.html) and supplied by Sigma 

Genosys. Primers were designed using the PrimerBLAST software 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) with the following 

parameters: 

 Primer length: 15-25 base pairs (bp) 

 Melting temperature (Tm): 58 – 63 °C 
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 GC content: 20-80% 

 Self-complementarity: <8 

In addition, forward and reverse primers for a specific gene were designed 

to have a melting temperature within 2 °C of each other. When possible, 

the following additional parameters were employed:  

 Amplicon length: 80 – 250 bp 

 Amplicon GC content: <60% 

 Spanning of exon-intron boundaries 

Primers were evaluated for the formation of secondary structures and primer 

dimers using the Sigma design tool. Lyophilised oligonucleotides were 

resuspended in RNase-free water to a final concentration of 100 µM and 

stored at -20 °C. 

 

2.6.6.  qPCR 

qPCR experiments were performed using SYBR® Green JumpStart™ Taq 

ReadyMix™ (SYBR) (Sigma). Each experiment was performed in a 96 well 

PCR plate (Sarstedt), with each well containing 5 µL SYBR Readymix, 1 µL 

primer solution (containing 10 µM forward and reverse primer), 0.1 µL internal 

reference dye, 1 µL cDNA, and 3 µL nanopure H2O. The plate was kept on ice 

during pipetting to prevent amplification before the start of the cycling protocol. 

Samples were run in duplicate for each gene tested. Corresponding RT- and 

non-template controls (without cDNA) controls were included for each primer 

pair to assess DNA contamination of RNA preparations and reagents, 

respectively. The plate was sealed with transparent sealing film (Sarstedt) and 

spun down using a swing-rotor centrifuge at 2000 x g for 1 min, to gather 

reagents at the base of the wells. The qPCR reaction was performed using an 

ABI7500 Taqman real-time PCR system (Applied Biosystems) with the 

following cycling parameters: 
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Stage 1 – 1 cycle 

 95 °C for 2 min – Initial denaturation 

Stage 2 – 40 cycles 

 95 °C for 30 sec – Denaturation 

 60 °C for 30 sec – Annealing 

 72 °C for 35 sec – Elongation 

Stage 3 – 1 cycle 

 72 °C for 5 min – Final elongation (for gel electrophoresis) 

Stage 4 – 1 cycle – Dissociation curve analysis 

 95 °C for 15 sec 

 65 °C for 60 sec 

 95 °C for 15 sec 

 60 °C for 15 sec 

Amplification and dissociation curves were analysed using Taqman SDS 

software. 

 

2.6.7.  Primer validation 

Primer specificity was assessed by dissociation curve analysis (single peak) 

and agarose gel electrophoresis to determine product size. Primer efficiency 

was determined by amplifying two-fold serial dilutions (1:2 to 1:32) of template 

cDNA. Cycle threshold (CT) values were log transformed and plotted against 

dilutions, and the slope of the regression line was determined. Slopes of -3.0 

to -3.6 were considered acceptable, indicating 85 to 115% amplification 

efficiency according to the formula;  

Amplification efficiency = (10^(-1/slope-1)) *100. 

 



112 
 

2.6.8.  Relative quantification of gene expression (ΔΔCT) 

The ΔΔCT method determines relative changes in gene expression between 

treated and non-treated samples (Livak & Schmittgen, 2001). CT values for the 

gene of interest (GOI) were normalised by subtraction of the geometric mean 

of the reference genes (YWHAZ and POLR2A), the normalised value referred 

to as ΔCT. To determine the relative change in gene expression (ΔΔCT) of the 

GOI, the non-treated ΔCT was subtracted from the ΔCT of the treated sample. 

Fold expression values were determined as follows: 

Fold-expression = 2–ΔΔCT 

 

2.7. Quantification of IL-8 expression by ELISA 

IL-8 production was quantified using the human IL-8 enzyme-linked 

immunosorbent assay (ELISA) development kit (Peprotech) according to the 

manufacturer’s instructions. Reactions were performed in Nunc Maxisorb 

immunoassay 96 well plates (Fisher Scientific), and colour development was 

quantified using a Benchmark Plus Microplate Spectrophotometer plate reader 

and Microplate Manager 5.2.1 software (Bio-Rad). IL-8 production in biopsy 

lysates was normalised against total protein content, determined using the DC 

protein colorimetric assay (Bio-Rad) according to the manufacturer’s protocol 

for microtitre plates. The standard curve was prepared with 0.1 – 0.5 µg/ mL 

BSA in lysis buffer and 10 µL of sample/standard were used for analysis.  

 

2.8. Statistical analysis 

All data are shown as means ± standard errors of the mean (SE). Statistical 

analysis was performed using GraphPad Prism software (version 5). Student’s 

T-test was used to determine differences between two groups. One-way 

ANOVA with Tukey’s multiple comparisons test was used to determine 

differences between multiple groups. Non-parametric Kruskal-Wallis with 

Dunn’s post hoc test was used for quantification of IL-8 production in biopsies. 
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All gene expression data were log10 transformed before statistical analysis. A 

P value of <0.05 was considered significant with degrees of statistical 

significance presented as follows: *=P<0.05, **=P<0.01, ***=P<0.001. 
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CHAPTER THREE: L. reuteri inhibition of EPEC adherence to 

the human intestinal epithelium 
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The work contained in this chapter was the basis of the following 

publication: 

 

Walsham, A. D., MacKenzie, D. A., Cook, V., Wemyss-Holden, S., Hews, C. 

L., Juge, N., & Schüller, S. (2016). Lactobacillus reuteri Inhibition of 

Enteropathogenic Escherichia coli Adherence to Human Intestinal 

Epithelium. Frontiers in microbiology, 7. 

(See Appendix 2) 
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3.1. Introduction and objectives of study 

Adhesion to the host is an important step in EPEC pathogenesis (Knutton et 

al., 1987). EPEC adhere to the epithelium by forming A/E lesions, which have 

been observed in both human in vitro and ex vivo models (Knutton et al., 1989; 

Knutton et al., 1987). A/E lesions are characterised by intimate attachment of 

EPEC to the host cell, effacement of underlying microvilli and the 

polymerisation of actin beneath the bacterium (Knutton et al., 1989; Moon et 

al., 1983). Formation of the A/E lesion reduces the absorptive surface and, 

alongside the effects of other T3S effector proteins, contributes to the onset of 

diarrhoea (Moon et al., 1983; Viswanathan et al., 2009). Therefore, inhibition 

of EPEC binding to the host provides an attractive target for prevention and 

treatment strategies. 

Probiotics offer a solution to inhibit pathogen binding, with those which 

persevere within the host being particularly valuable (Juge, 2012; 

Kleerebezem et al., 2010). Probiotic persistence in the GIT is seen as 

beneficial as this increases the interaction time between the host and the 

probiotic to deliver beneficial effects, such as competing with pathogens to 

reduce infection (Lebeer et al., 2008). To investigate probiotic-pathogen 

interaction, in vitro models have been developed which typically use three 

intervention protocols: pre-incubation of the probiotic before infection 

(protection), inoculation of pathogen and probiotic together (competition), and 

probiotic administration after infection (displacement). Protection assays 

simulate the use of probiotics as a preventative measure before infection, 

whereas displacement assays investigate the effect of probiotics after 

infection, resembling therapeutic intervention. Previous studies investigating 

the impact of lactobacilli on EPEC adherence to epithelial cell lines have 

demonstrated that pre- or co-incubation of live Lactobacillus spp. reduced 

EPEC binding (Bernet et al., 1994; Coconnier et al., 1993a; Forestier et al., 

2001; Sherman et al., 2005). In addition, non-viable lactobacilli have also 

shown antagonistic effects against diarrhoeagenic E. coli adhesion to 

intestinal cell lines (Chauvière et al., 1992b; Coconnier et al., 1993a; 

Coconnier et al., 1993b). Competitive exclusion has been suggested as one 
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mechanism responsible for the reduction in pathogen binding by probiotics, 

through both physical inhibition (steric hindrance) and competition for mutual 

binding sites (Chan et al., 1985). While the specific host receptors are 

generally undefined, carbohydrate-containing receptors have previously been 

linked to adhesion of lactobacilli and enteric pathogens to host cells 

(Adlerberth et al., 1996; Lee & Puong, 2002; Neeser et al., 2000). Interestingly, 

cell-surface adhesins isolated from L. crispatus and L. helveticus reduced S. 

Typhimurium, EIEC, EHEC, and EPEC binding to epithelial cells and 

extracellular matrix proteins, suggesting mutual receptors (Chen et al., 2007; 

Horie et al., 2002; Johnson-Henry et al., 2007).  

However, the accessibility of cell-surface receptors to probiotic bacteria in a 

healthy individual is uncertain, as the epithelium is covered by a thick layer of 

mucus (Atuma et al., 2001; Juge, 2012). The mucus layer of the GIT is the 

primary colonisation site for commensal bacteria, facilitating host-microbe and 

microbe-microbe interactions (Johansson et al., 2011a). Yet, most studies 

investigating adherence of probiotic bacteria and their interaction with 

pathogens have generally used non-mucus producing IECs, such as Caco-2, 

HT-29, and T84 cells (Navabi et al., 2013a; van Klinken et al., 1996). As these 

cell lines lack a functional mucus layer, the observed interactions may better 

represent a diseased state such as IBD, in which the mucus layer has been 

compromised, rather than the healthy mucosa prior to infection (Sheng et al., 

2012).  

In this study, we sought to determine the effects of L. reuteri on EPEC binding 

to the intestinal epithelium in the absence and presence of a mucus layer. For 

this, we selected the colon adenocarcinoma cell lines HT-29 and LS174T, as 

these cell lines represent the two interfaces for L. reuteri to exert an effect 

against EPEC binding; at the epithelial surface (HT-29) and in the mucus layer 

(LS174T). HT-29 cells resemble the enterocytes of the small intestine and 

produce MUC3, a membrane-bound mucin which is present in the small and 

large intestine (Mack et al., 2003), and have been used in a number of studies 

investigating inhibition of pathogen colonisation by lactobacilli (Candela et al., 

2008; Mack et al., 1999; Rousset, 1986; Zhang et al., 2010b). In contrast, 

LS174T cells are goblet cell-like and produce MUC2 and MUC5AC, the major 
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secreted mucins of the intestines and stomach, respectively (Kuan et al., 1987; 

van Klinken et al., 1996). In addition to cancer cell lines, the IVOC model was 

utilised with human duodenal biopsies. IVOC demonstrates greater 

physiological relevance to the GIT, as biopsies demonstrated the native gut 

structure and were covered by a representative mucus layer. While IVOC is 

considered the gold standard for the investigation into EPEC interaction with 

the intestinal epithelium, few studies have utilised this model for probiotic 

research (Collins et al., 2010). 

 

3.2. Results 

3.2.1.  L. reuteri adhesion to HT-29 cells is strain specific 

To select adhering L. reuteri strains for further protection assays, several L. 

reuteri isolates, from human, pig, chicken, and rat (Table 2.1), were incubated 

with HT-29 cells for 1 h. Bacterial adhesion was initially evaluated by 

fluorescence microscopy using antibodies specific to L. reuteri adhesins. As 

shown in Figure 3.1A, adhesion varied between L. reuteri strains with the rat 

isolate 100-23C demonstrating minimal adhesion, with few bacteria attached 

to HT-29 cells, while the human strain ATCC PTA 6475 and the pig isolate 

ATCC 53608 displayed greater adhesion, with bacteria localised across the 

monolayer. We also observed that ATCC 53608 demonstrated 

aggregative properties.  

Bacterial binding to HT-29 cells was further quantified by plating out serial 

dilutions of cell lysates and counting colony forming units (CFU). Whereas 

ATCC 53608 demonstrated the highest adherence to HT-29 cells, the human 

strains ATCC PTA 6475 and DSM 20016 exhibited similar adhesion as EPEC 

and isolates ATCC 55730 and LB54, from human and chicken respectively, 

exhibited the lowest binding potential (Figure 3.1B). As the strains with the 

greatest binding, we selected ATCC PTA 6475 and ATCC 53608 for further 

analysis. Additionally, these L. reuteri isolates showed distinct binding 

patterns, as aggregates of ATCC 53608 were bound to individual HT-29 cells. 
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In contrast, fewer ATCC PTA 6475 were bound to individual cells, but these 

bacteria were more dispersed across the epithelial surface.  

 

 

Figure 3.1: L. reuteri adhesion to HT-29 cells is strain specific 

HT-29 cells were incubated with various L. reuteri strains and EPEC for 1 h. 

Adherent bacteria were observed by immunofluorescence staining (A) and 

quantified by plate counting (B). (A) ATCC PTA 6475, ATCC 53608 and 100-

23C were stained with antisera specific to the adhesins CmbA, MUB, and SRR 

respectively (red) while cell nuclei were labelled with DAPI (blue). Images are 

representative of three independent experiments performed in duplicate. 

Scale bars = 10 µm. (B) Bacterial adhesion is expressed as a percentage 

relative to the inoculated dose. Data are shown as means ± standard error of 

the mean (SE) of three independent experiments performed in duplicate.  
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3.2.2.  Mucus binding proteins increase L. reuteri adhesion to 

HT-29 and LS174T cells 

The role of L. reuteri adhesins, such as CmbA (ATCC PTA 6475) and MUB 

(ATCC 53608), has previously been investigated, and binding to mucus 

(CmbA and MUB) and Caco-2 cells (CmbA) has been demonstrated (Jensen 

et al., 2014; MacKenzie et al., 2010). We aimed to identify the importance of 

the adhesins CmbA and MUB in binding to mucus-producing LS174T and 

mucus-deficient HT-29 cells. The presence of MUC2 was investigated in both 

cell lines by immunofluorescence staining, which demonstrated that MUC2 

was only expressed in LS174T cells (Figure 3.2A). 

To investigate the role of CmbA and MUB in L. reuteri adhesion to mucus and 

the epithelium, LS174T and HT-29 cells were incubated with ATCC PTA 6475, 

ATCC 53608, and isogenic adhesin deletion mutants (ATCC PTA 6475 CmbA- 

and ATCC 53608 MUB-) for 1 h. Quantification of adhered bacteria revealed 

that the absence of MUB significantly reduced adherence to HT-29 and 

LS174T cells (Figure 3.2B). We also observed a reduction in the binding of the 

CmbA- mutant relative to the wildtype strain, but this did not reach significance. 

Furthermore, the adhesion of all strains to LS174T cells was significantly 

higher than HT-29 cells. 
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Figure 3.2: Mucus binding proteins enhance L. reuteri adhesion to HT-29 

and LS174T cells 

(A) Immunofluorescence staining confirmed production of MUC2 (green) in 

LS174T but not HT-29 cells. Cell nuclei were stained with DAPI (blue). Images 

are representative of three independent experiments performed in duplicate. 

Scale bar = 10 µm. 

(B) EPEC, L. reuteri ATCC PTA 6475, ATCC 53608, or isogenic adhesin 

mutants (ATCC PTA 6475 CmbA- and ATCC 53608 MUB-) were incubated 

with HT-29 and LS174T cells for 1 h. Adhesion of bacteria is expressed as a 

percentage relative to the inoculated dose. Data are shown as means ± SE of 

three independent experiments performed in duplicate.  ** = P <0.01. 
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3.2.3.  L. reuteri inhibits EPEC adhesion to HT-29, but not 

LS174T cells 

To investigate the effect of L. reuteri on EPEC adhesion, we pre-incubated 

HT-29 and LS174T cells with L. reuteri before EPEC infection. To determine 

the pre-treatment period for further experiments, HT-29 cells were pre-

incubated with a 100x excess of L. reuteri for 1 or 3 h before addition of EPEC 

for 1 h. EPEC adhesion was assessed by plate counting. As shown in Figure 

3.3A, pre-treatment of HT-29 cells with L. reuteri ATCC PTA 6475 and ATCC 

53608 for 1 and 3 h significantly inhibited EPEC adhesion. As the protective 

effect did not significantly change between the 1 and 3 h pre-treatment, we 

used a 1 h pre-incubation for further experiments. We then determined the 

minimal dose required to inhibit EPEC binding by pre-incubating HT-29 cells 

with a 100x, 10x or 1x (equivalent numbers) excess of L. reuteri, relative to the 

EPEC inoculum, before infecting with EPEC for 1 h. While 100x excess of 

ATCC PTA 6475 or ATCC 53608 significantly inhibited EPEC adhesion, no 

effect was observed with a 10x or 1x excess of L. reuteri (Figure 3.3B). In 

contrast to HT-29 cells, pre-treatment with a 100x L. reuteri excess did not 

significantly reduce EPEC binding to LS174T cells (Figure 3.3C).  
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Figure 3.3: L. reuteri pre-incubation inhibits EPEC adhesion to HT-29, but 

not LS174T cells 

(A) HT-29 cells were pre-incubated with a 100x excess of L. reuteri ATCC PTA 

6475, ATCC 53608, or left untreated (-) for 1 h or 3 h before EPEC was added 

for 1 h. Cell-associated EPEC were quantified by plate counting and adhesion 

was expressed as a percentage relative to the EPEC inoculum. Data are 

shown as means ± SE of three independent experiments performed in 

duplicate.  * = P <0.05; ** = P <0.01. 

(B) HT-29 cells were pre-incubated with a 100x, 10x or 1x (equivalent 

numbers) excess of L. reuteri ATCC PTA 6475, ATCC 53608 or left untreated 

(-) for 1 h before the addition of EPEC for 1 h. Cell-associated EPEC were 
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quantified by plate counting, and adhesion was expressed relative to 

inoculated EPEC. Data are shown as means ± SE of three independent 

experiments performed in duplicate.  * = P <0.05. 

(C) LS174T cells were pre-incubated with a 100x excess of L. reuteri ATCC 

PTA 6475, ATCC 53608, or left untreated (-) for 1 h before the addition of 

EPEC for 1 h. Cell-associated EPEC were quantified by plate counting, and 

adhesion was expressed relative to inoculated EPEC. Data are shown as 

means ± SE of three independent experiments performed in duplicate. 

 

To determine whether inhibition of EPEC adhesion to HT-29 cells by L. reuteri 

was dependent on L. reuteri adhesion to the epithelium, HT-29 cells were 

incubated with a 100x excess of L. reuteri for 2 h (total incubation time of L. 

reuteri and HT-29 cells in previous experiments) and washed to remove 

unbound bacteria before the addition of EPEC for 1 h. In addition, the effect of 

L. reuteri secreted products on EPEC adherence was investigated by 

incubating HT-29 cells with L. reuteri-conditioned cell culture medium (DMEM 

pre-incubated with L. reuteri for 2 h) before infection with EPEC for 1 h. As 

shown in Figure 3.4, EPEC binding was not significantly reduced by adherent 

L. reuteri or conditioned medium.  
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Figure 3.4: Inhibition of EPEC adhesion is independent of adherent L. 

reuteri and secreted anti-microbial compounds 

HT-29 cells were exposed to the following treatments before incubation with 

EPEC for 1 h: L. reuteri for 1 h (total LR), L. reuteri for 2 h and subsequent 

removal of non-adherent bacteria (adherent LR), L. reuteri-conditioned 

medium for 2 h (supernatant), or non-treated (-). Cell-associated EPEC were 

quantified by CFU and adhesion was expressed as a percentage relative to 

inoculated EPEC. Data are shown as means ± SE of three independent 

experiments performed in duplicate.  * = P <0.05. 
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3.2.4.  L. reuteri ATCC 53608 decreases EPEC viability  

in co-culture 

While secreted products from L. reuteri did not affect EPEC adherence, we 

further investigated whether L. reuteri or its secreted products reduced EPEC 

viability. A 100x excess of L. reuteri or L. reuteri-conditioned cell culture 

medium was pre-incubated for 1 h in cell-free wells before the addition of 

EPEC for 1 h. While incubation with ATCC PTA 6475 or conditioned media did 

not affect the number of EPEC recovered, incubation with ATCC 53608 

demonstrated a reduction in recovered EPEC, although this did not reach 

significance (Figure 3.5A).  

As described in previous studies (MacKenzie et al., 2010) and demonstrated 

in Figure 3.1A, ATCC 53608 forms autoaggregates mediated by the adhesin 

MUB. This property may have caused the reduced EPEC CFU counts 

observed in the previous assay by “trapping” EPEC bacteria within bacterial 

clusters. To investigate this hypothesis, co-culture experiments were repeated 

with ATCC 53608 MUB-, which does not aggregate (Figure 3.5B). In addition, 

some co-cultures were treated with TX-100, the detergent we used to lyse the 

HT-29 and LS174T cell monolayers, at the end of the experiment to determine 

whether TX-100 affected aggregate formation or EPEC recovery. As shown in 

Figure 3.5C, co-incubation with ATCC 53608 or the MUB-deficient mutant 

significantly decreased the recovery of EPEC. In addition, TX-100 treatment 

did not impact on EPEC growth or ATCC 53608-mediated reduction of EPEC 

retrieval. 
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Figure 3.5: Co-incubation with L. reuteri ATCC 53608 reduces EPEC 

recovery independent of aggregate formation 

(A) L. reuteri ATCC PTA 6475, ATCC 53608 (100x excess), conditioned 

medium, or untreated medium was pre-incubated for 1 h before the addition 

of EPEC for 1 h. Recovered EPEC were quantified by plate counting and 

expressed as a percentage relative to the number of inoculated bacteria. Data 

are shown as means ± SE of three independent experiments performed in 

duplicate.  
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(B) Phase contrast images of L. reuteri ATCC 53608 wildtype and ATCC 

53608 MUB-. Images are representative of three independent experiments 

performed in duplicate. Scale bars = 10 µm. 

(C) L. reuteri ATCC 53608 wildtype or a MUB-deficient mutant (53608 MUB-) 

were pre-incubated for 1 h before the addition of EPEC for 1 h. At the end of 

the experiment, some co-cultures were treated with TX-100, and EPEC were 

quantified by plate counting. Recovered EPEC are expressed as a percentage 

relative to the number of inoculated EPEC. Data are shown as means ± SE of 

three independent experiments performed in duplicate. Asterisks denote a 

significant difference from EPEC only control.  ** = P <0.01; *** = P <0.001 

 

3.2.5.  Adherent L. reuteri ATCC PTA 6475 inhibit EPEC 

adhesion to HT-29 but not LS174T cells 

In our previous experiments, we did not observe inhibition of EPEC binding to 

HT-29 cells by adherent L. reuteri after 2 h incubation (Figure 3.4). However, 

after a 1 h incubation, few L. reuteri were bound to HT-29 cells (Figure 3.1A). 

To increase L. reuteri adhesion, incubations were extended to 4 and 6 h, and 

adhesion was assessed by immunofluorescence. Whereas binding of L. 

reuteri was similar after 4 or 6 h incubation (data not shown), detachment of 

HT-29 and LS174T cell monolayers increased with longer incubations. 

Therefore, a 4 h pre-incubation period was selected for further studies. 

As shown in Figure 3.6A, L. reuteri ATCC PTA 6475 and ATCC 53608 

extensively adhered to LS174T cells, while binding to HT-29 cells was less 

pronounced. In addition, aggregate formation of ATCC 53608 was evident on 

HT-29 cells, as previously observed (Figures 3.6A). Having established 

efficient L. reuteri adherence, the protection assay was modified. Cells were 

pre-incubated with L. reuteri (100x excess) for 4 h, non-adherent L. reuteri 

were removed, and EPEC were added for 1 h. Results demonstrated in Figure 

3.6B showed that adherent ATCC PTA 6475, but not ATCC 53608, 

significantly inhibited EPEC adherence to HT-29 cells. In contrast, no effect 

was observed in LS174T cells (Figure 3.6B).  
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Figure 3.6: Adherent L. reuteri ATCC PTA 6475 inhibit EPEC binding to 

HT-29 but not LS174T cells 

(A) Confluent HT-29 and LS174T cells were incubated with ATCC PTA 6475 

or ATCC 53608 for 4 h. Adherent L. reuteri (green) were visualised by 

immunofluorescence microscopy. Cell nuclei were counterstained with DAPI 

(blue). Colour channels are merged for HT-29 whereas only the green channel 

is shown on LS174T cells, to improve clarity of L. reuteri. Images are 

representative of three independent experiments performed in duplicate. 

Scale bars = 10 µm. 
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(B) HT-29 and LS174T cells were pre-incubated with ATCC PTA 6475, ATCC 

53608 (100x excess), or left untreated (-) for 4 h. Non-adherent bacteria were 

removed and EPEC were added for 1 h. Cell-bound EPEC were quantified by 

plate counting, and adhesion was expressed as a percentage relative to 

inoculated EPEC. Data are shown as means ± SE of three independent 

experiments performed in duplicate.  * = P <0.05. 

 

3.2.6.  Pre-incubation with L. reuteri ATCC PTA 6475 increases 

the formation of EPEC microcolonies on LS174T cells 

As LS174T cells produce mucus, CFU counts in cell lysates may not provide 

an accurate measure of EPEC adherence to the epithelial surface. To 

differentiate between mucus- and cell surface-bound bacteria, we utilised the 

fluorescent actin staining test to identify actin pedestal formation, a 

characteristic of A/E lesion formation (Figure 3.7A). EPEC were incubated with 

LS174T cells for 3 h to enable pedestal formation, and total EPEC and EPEC 

associated with pedestals were quantified by immunofluorescence microscopy 

and counting. While pre-treatment with L. reuteri did not influence EPEC A/E 

lesion formation (Figure 3.7B), more prominent clusters of EPEC were 

observed in LS174T cells pre-incubated with ATCC PTA 6475 (Figure 3.7C). 

Quantification of EPEC contained within these microcolonies confirmed that 

significantly more EPEC were located in microcolonies after pre-incubation 

with ATCC PTA 6475 compared to ATCC 53608- and non-treated  

cells (Figure 3.7D). 
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Figure 3.7: Adherent ATCC PTA 6475 enhance EPEC microcolony 

formation in LS174T cells 

(A) LS174T cells were incubated with EPEC (red) for 3 h. Actin pedestal 

formation was visualised by immunofluorescence staining for filamentous actin 

(green) and E. coli (red). Image representative of four independent 

experiments performed in duplicate. Scale bar = 10 µm. 

(B) Quantification of EPEC associated with actin pedestals. LS174T cells were 

pre-incubated with ATCC PTA 6475, ATCC 53608 or left untreated (-) for 4 h, 

and EPEC were added for 3 h. Pedestal formation was expressed as a 

percentage relative to the total number of adherent EPEC. Data are shown as 

means ± SE of four independent experiments performed in duplicate. 

(C) Pre-incubation of LS174T cells with ATCC PTA 6475 increased EPEC 

microcolony formation compared to untreated cells (-). EPEC were visualised 

by immunofluorescence staining and are shown in black and white to increase 

clarity. Image is representative of four independent experiments performed in 

duplicate. Scale bars = 10 µm.  

(D) Quantification of EPEC microcolony formation (five or more bacteria). 

EPEC contained within microcolonies were expressed as a percentage 
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relative to the total number of adherent EPEC observed. Data are shown as 

means ± SE of four independent experiments performed in duplicate.  *** = P 

<0.001 

 

3.2.7.  L. reuteri is localised in the mucus layer of human 

duodenal biopsies 

While cultured cells are a useful tool in the assessment of host-microbe 

interactions, these cell lines lack the complex epithelial structure formed from 

multiple cell types (Law et al., 2013). Thus, findings using cultured cells require 

further validation in more physiologically relevant model systems, such as 

IVOC. Therefore, to further investigate bacterial binding to the human intestinal 

mucosa, duodenal biopsies were inoculated with L. reuteri ATCC PTA 6475, 

ATCC 53608, or EPEC for 8 hours, and colonisation was assessed by 

scanning electron microscopy (SEM). To distinguish between bacterial 

localisation in the mucus layer and at the epithelial surface, biopsies were fixed 

with either the mucus layer present or removed to reveal the epithelium. We 

identified that EPEC were localised in the mucus layer and at the epithelial 

surface of the biopsy, with prominent A/E lesion formation and microvillous 

elongation across the villous surface (Figure 3.8A). In contrast, both L. reuteri 

strains were located exclusively in the mucus layer, with no apparent binding 

to the epithelium (Figure 3.8A, images shown for ATCC PTA 6475 only). This 

was confirmed by immunofluorescence staining of cryosections, which 

demonstrated that L. reuteri were restricted to the mucus layer (Figure 3.8B). 
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Figure 3.8: L. reuteri localise to the mucus layer of human duodenal 

biopsies 

(A) SEM of duodenal biopsies incubated with L. reuteri ATCC PTA 6475 or 

EPEC for 8 h. Biopsies were fixed with the mucus layer present (mucus) or 

washed to allow visualisation of the epithelium (epithelium). Images are 

representative of three independent experiments performed in duplicate. 

(B) Fluorescence microscopy of duodenal biopsies incubated with L. reuteri 

ATCC PTA 6475 for 8 h. Cryosections were stained for MUC2 (green), ATCC 

PTA 6475 (red) and cell nuclei (blue). Images are representative of three 

independent experiments performed in duplicate. Scale bars = 10 µm. 
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3.2.8.  Pre-incubation with L. reuteri inhibits EPEC colonisation 

of the intestinal epithelium by polarised IVOC 

To quantify EPEC adherence to the duodenal biopsy epithelium, a polarised 

IVOC (pIVOC) model restricting bacterial access to a defined mucosal surface 

area was used (Schüller et al., 2009). The time period of EPEC infection was 

optimised to enable sufficient colonisation of the epithelium without epithelial 

shedding. Biopsies were infected for 6 to 8 h, and EPEC colonisation and 

epithelial integrity were assessed by SEM. While no epithelial shedding was 

observed on non-infected controls (8 h incubation), substantial shedding of the 

epithelium occurred after 7 and 8 hours of EPEC infection (Figure 3.9). In 

contrast, epithelial integrity was maintained after 6 h of infection (Figure 3.9), 

and this period was chosen for further pIVOC experiments. 
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Figure 3.9: EPEC colonisation of human duodenal biopsy epithelium in 

pIVOC 

Biopsies were infected with EPEC or left non-infected for 6 to 8 h and 

examined by SEM. The epithelium was preserved on both uninfected (8 h) and 

biopsies incubated with EPEC for 6 h, demonstrated by the discernible brush 

border. However, shedding of the biopsy epithelium and exposure of the 

basement membrane was observed after 7 and 8 h of EPEC infection. Images 

are representative of eight independent experiments performed in duplicate. 
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3.2.9.  L. reuteri reduces EPEC colonisation of human 

duodenal biopsy epithelium 

To investigate the influence of L. reuteri on EPEC colonisation ex vivo, 

duodenal biopsies were pre-incubated with 50x excess of ATCC PTA 6475, 

ATCC 53608, or left untreated (-) for 2 h. After removal of non-adherent L. 

reuteri, biopsies were infected with EPEC for 4 h. At the end of the experiment, 

the mucus layer was removed by washing and EPEC colonisation of the 

epithelium was quantified by plating out biopsy lysate and determining CFUs. 

Our data revealed a significant reduction in EPEC colonisation by L. reuteri 

compared to non-treated biopsies (Figure 3.10). 

 

Figure 3.10: L. reuteri ATCC PTA 6475 and ATCC 53608 significantly 

inhibit EPEC colonisation of duodenal biopsy epithelium 

Duodenal biopsies were pre-incubated with ATCC PTA 6475, ATCC 53608, 

or left untreated (-) for 2 h, non-adherent bacteria were removed, and EPEC 

were added for 4 h. Cell-bound EPEC were quantified by plate counting and 

adhesion is presented as EPEC CFU/ biopsy. Data are shown as means ± SE 

of four independent experiments performed in duplicate. * = P <0.05; ** = P 

<0.01. 
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3.3. Discussion 

The colonisation efficacy of probiotic bacteria is often assessed using 

epithelial cancer cell lines (Joint FAO/WHO Working Report, 2002; Vélez et 

al., 2007). However, most of these cell lines lack a functional mucus layer 

which is likely to impact on bacterial binding, as the mucus layer is the primary 

habitat for commensal bacteria (Johansson et al., 2008; Navabi et al., 2013a). 

In this study, we examined the effects of L. reuteri on EPEC colonisation of the 

human intestinal epithelium using enterocyte- and goblet cell-like cell lines as 

well as human duodenal biopsies as models of human infection. Through this 

investigation, we aimed to develop our understanding of probiotic-pathogen 

interaction and evaluate the probiotic potential of L. reuteri.  

 

3.3.1.  Influence of L. reuteri strain selection on epithelial 

adhesion 

In this study, we demonstrated that L. reuteri binding to HT-29 cells is strain-

dependent. This is consistent with previous findings, which have emphasised 

the importance of strain specificity when investigating Lactobacillus adhesion 

to IECs (Chauviere et al., 1992a; Tuomola & Salminen, 1998). One study 

identified variable adhesion efficacy between a selection of Lactobacillus 

species to HT-29 cells, with strain-specific cell surface molecules aiding L. 

reuteri adhesion (Wang et al., 2008). These cell surface molecules may have 

evolved due to adaptation of lactobacilli to their local environment (Frese et 

al., 2011). Niche adaptation has previously been documented in L. reuteri, as 

genomic clades which contain adhesins that enhance adhesion to the host 

organism have been identified in strains isolated from humans, rodents, and 

pigs (Oh et al., 2010; Wegmann et al., 2015). Supporting previous studies, 

deletion of host-specific adhesin genes in the rodent strain L. reuteri 100-23 

diminished colonisation of Lactobacillus-free mice (Frese et al., 2011). 

Therefore, the presence of specific adhesins in L. reuteri provides a rationale 

for the selection of candidate probiotics. However, adhesion studies are 

required to confirm binding efficacy.  
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Interestingly, ATCC 53608, a porcine isolate, demonstrated the highest 

adherence of the L. reuteri strains examined. Similarities between the porcine 

and human GIT (Heinritz et al., 2013) may account for this characteristic, and 

thus the porcine gut may provide an additional avenue for the isolation of novel 

probiotic strains. It is important to note the ecological variation within the 

porcine and human GIT however, with numerous Lactobacillus species 

forming biofilm layers directly contacting the squamous epithelium of the pig 

stomach (Fuller et al., 1978). Within humans, no such niche has been 

identified and relatively few Lactobacillus species are thought to be persistent 

in the GIT (Walter, 2008). Efficient adhesion of ATCC 53608 to human IECs 

may be linked to the formation of aggregates mediated by the MUB protein, 

as ATCC 53608 MUB- did not aggregate and showed diminished adherence 

to IEC’s (MacKenzie et al., 2010; Wadstroum et al., 1987).  

L. reuteri strains ATCC PTA 6475, DSM 20016, and LMS11-3, originally 

isolated from human hosts, demonstrated comparable binding to HT-29 cells, 

whereas human strain ATCC 55730 showed reduced adhesion. These 

findings are supported by previous studies, which demonstrated high 

adherence of ATCC PTA 6475 (referred to as MM4-1a) and DSM 20016 to 

HT-29, Caco-2, and LS174T cells, whereas the ATCC 55730-derived strain 

DSM 17938 showed reduced binding (Jensen et al., 2012). Interestingly, 

ATCC 55730 is currently marketed as a dietary supplement, and previous 

studies have demonstrated colonisation of the stomach and duodenum of 

human volunteers, suppression of Helicobacter pylori infection, and reduction 

of diarrhoeal episodes in children (Francavilla et al., 2008; Valeur et al., 2004; 

Weizman et al., 2005). Therefore, the lack of correlation between in vitro and 

in vivo data suggests that probiotic screening with cell line models requires 

further validation with more physiologically relevant model systems. 

Mucus binding proteins (MBPs) facilitate adhesion of lactobacilli to the host 

(reviewed in Juge (2012); Lebeer et al. (2008); Van Tassell and Miller (2011); 

Vélez et al. (2007)) and have been identified within a range of Lactobacillus 

species, such as the L. rhamnosus GG SpaCBA pillin (Kankainen et al., 2009) 

and the L. reuteri 104R surface protein MapA (Miyoshi et al., 2006; Rojas et 

al., 2002). MBPs typically consist of a sorting peptide, an LPxTG motif in the 
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C-terminus (anchoring the MBP to the bacterial cell wall), and multiple repeats 

of the mucus binding domain mub, which shares homology with the bacterial 

mucin binding protein domain Pfam-MucBP, a sequence located in a number 

of L. monocytogenes proteins (Boekhorst et al., 2006; Juge, 2012). The MUB 

protein of ATCC 53608 and the CmbA protein of ATCC PTA 6475 have been 

characterised as MBPs which mediate adhesion to mucus and the epithelium 

in vitro (Etzold et al., 2014a; Jensen et al., 2014; Roos & Jonsson, 2002). In 

our study, we identified that MUB and CmbA enhanced L. reuteri binding to 

both mucus-secreting LS174T cells and mucus-deficient HT-29 cells. As HT-

29 cells have been shown to express cell-bound MUC3 when stimulated by L. 

rhamnosus GG and L. plantarum 299v, this may suggest a potential receptor 

for L. reuteri binding (Mack et al., 2003).  

While CmbA and MUB enhance L. reuteri adhesion, ATCC PTA 6475 CmbA- 

and ATCC 53608 MUB- still partially bound to LS174T cells. This finding 

suggests that additional cell surface proteins may contribute to the adhesion 

of these L. reuteri strains to mucus. One study identified three L. acidophilus 

NCFM cell surface proteins, FbpA, Mub, and SlpA, which contributed to 

adhesion to Caco-2 cells (Buck et al., 2005). Furthermore, these binding 

proteins may be multifactorial in purpose, with additional roles to cellular 

adhesion. The elongation factor Tu protein of L. johnsonii La1, a guanosine 

nucleotide protein which assists protein synthesis in the cytoplasm, has been 

identified as an adhesin-like molecule on the bacterial cell surface (Granato et 

al., 2004). While our findings are supported by these studies, the presence of 

additional adhesins on L. reuteri ATCC PTA 6475 requires  

further investigation.  

We further observed increased adhesion of L. reuteri and EPEC to LS174T 

compared to HT-29 cells, suggesting that mucus enhanced microbial binding. 

This is in agreement with our data on duodenal biopsies, which demonstrated 

L. reuteri localisation to the mucus. Previous studies have demonstrated 

increased binding of L. rhamnosus GG, L. johnsonii La1, and L. bulgaricus 

ATCC 11842 human intestinal mucus compared to resected human colonic 

tissue (Ouwehand et al., 2002). Put together with our data, these findings 

suggest preferential lactobacilli binding to mucus, potentially due to MBPs 
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such as MUB and CmbA. While further investigation is required to confirm that 

enhanced L. reuteri binding to LS174T cells is mediated by the adhesion of 

MBPs to mucins, these findings support the use of mucus-producing models 

when investigating probiotic adhesion 

 

3.3.2.  Influence of L. reuteri on EPEC adherence in vitro 

In this study, we report that L. reuteri ATCC PTA 6475 and ATCC 53608 

significantly inhibit EPEC adhesion to HT-29 cells. One mechanism of 

pathogen inhibition is competitive exclusion, where probiotics compete with a 

pathogen to access binding sites on the epithelial surface. Previous reports 

investigating competitive exclusion have suggested that either pre-incubation 

of the probiotic or co-incubation with the pathogen is required, as pathogen 

displacement is uncommon (Lebeer et al., 2008). One study investigating pre-

incubation, co-incubation, and displacement of DAEC and ETEC binding by L. 

acidophilus La1 demonstrated that inhibition of E. coli binding to Caco-2 cells 

was only achieved during protection and co-incubation studies (Bernet et al., 

1994). A similar study investigating the effect of L. salivarius and L. plantarum 

on S. aureus adhesion to Caco-2 cells identified that only pre-incubation and 

competition assays inhibit S. aureus binding (Ren et al., 2012). As previous 

reports have demonstrated successful inhibition of pathogenic E. coli adhesion 

by pre-incubation with Lactobacillus species (Bernet et al., 1994; Coconnier et 

al., 1993a), we selected this intervention protocol for our study. 

We initially investigated the influence of L. reuteri pre-incubation time on EPEC 

binding. We determined that 1 and 3 hour pre-incubation of L. reuteri inhibited 

EPEC adhesion to HT-29 cells. A previous study identified that 1 hour pre-

incubation of L. acidophilus ATCC 4356 and S. thermophilus ATCC 19258 

significantly inhibited EIEC adhesion to Caco-2 cells (Resta-Lenert & Barrett, 

2003). Longer pre-incubation periods have also been reported, with 6 hour 

pre-incubation of either L. acidophilus R0052 or L. rhamnosus R0011 inhibiting 

both EPEC and EHEC adhesion to polarised T84 cells (Sherman et al., 2005). 
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Previous studies investigating the protective effects of lactobacilli on EPEC 

adhesion to non-mucus producing IECs have found different dosage 

requirements with equivalent numbers of L. acidophilus La1 inhibiting EPEC 

adherence to Caco-2 cells (Bernet et al., 1994; Coconnier et al., 1993a). 

Interestingly, the study by Coconnier et al. (1993a) also found that pre-

incubation with heat-killed L. acidophilus decreased EPEC binding too Caco-

2 cells, although a 10-fold excess was required for this effect. Similarly, EPEC 

binding to polarised T84 cells was reduced by L. acidophilus and L. rhamnosus 

when pre-incubated at 10x and 1,000x excess, respectively (Sherman et al., 

2005). Furthermore, L. rhamnosus and a selection of L. acidophilus strains 

inhibited EHEC adherence to HT-29 cells when incubated at 1,000x excess 

(Kim et al., 2008). Thus, our findings that a 100-fold excess of L. reuteri 

reduced EPEC binding agree with other studies investigating the protective 

characteristics of Lactobacillus. 

It has been demonstrated that lactobacilli produce anti-microbial compounds 

(Servin, 2004). Some L. reuteri strains, including ATCC PTA 6475 and ATCC 

53608, produce the antimicrobial compound reuterin from glycerol, which 

inhibits a broad spectrum of bacterial species, including E. coli (Spinler et al., 

2008; Talarico et al., 1988). Furthermore, lactic acid produced by L. casei 

Shirota and L. acidophilus YIT 0070 has bacteriostatic and bactericidal effects 

on EHEC (Ogawa et al., 2001). However in our study, EPEC adherence was 

not affected by L. reuteri-conditioned medium, which suggests that neither 

lactic acid nor reuterin are responsible for the suppression of EPEC binding. 

We further investigated the interaction between L. reuteri and EPEC in the 

absence of HT-29 cells, to determine the effect of L. reuteri on EPEC viability. 

We observed that co-incubation with ATCC 53608 wildtype and a MUB-

deficient mutant decreased EPEC viability independently of secreted products. 

With these initial experiments, we were unable to identify a specific 

mechanism behind this reduction in EPEC viability. However, further studies 

could investigate whether this effect is dependent on live bacteria and whether 

this effect is constitutive or a specific response to competitor bacteria. 

Competitive binding of probiotics to pathogen cell surface receptors has also 

been suggested as an inhibitory mechanism. One study found that EPEC 
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adherence to HT-29 cells was inhibited by L. plantarum 299v, but not by an L. 

plantarum 299v mutant deficient in a mannose-specific adhesin (Mack et al., 

2003). The loss of this adhesin may have prevented the competitive exclusion 

of EPEC from shared receptors, as EPEC produces mannose-sensitive type I 

fimbriae (Adlerberth et al., 1996; Knutton et al., 1987). However, it should be 

noted that the role of type I fimbriae in EPEC host cell binding is currently 

undefined (Elliott & Kaper, 1997). In contrast to these previous findings, during 

our short-term protection assays, L. reuteri bound to the epithelium were 

unable to reduce EPEC adherence. As we only observed a protective effect 

when non-adherent L. reuteri were maintained, these findings suggest that L. 

reuteri exclude EPEC by steric hindrance, where L. reuteri cells impede EPEC 

access to the epithelial surface, during short-term pre-incubations (Chan et al., 

1985). 

In contrast to HT-29 cells, L. reuteri did not affect EPEC adhesion to LS174T 

cells during short-term protection assays. Previous studies on pathogen-

probiotic interaction within mucus have shown that a 1 hour pre-incubation of 

L. casei Shirota and L. johnsonii LJ1 reduced S. Typhimurium adhesion to 

immobilised human mucus (Tuomola et al., 1999). This effect appeared to be 

species-specific as a selection of L. rhamnosus strains had either no effect or 

significantly increased S. Typhimurium adhesion (Tuomola et al., 1999). 

Similarly, the probiotic E. coli Nissle 1917 reduced EHEC binding when co-

cultured for 2 hours with LS174T cells (Rund et al., 2013). This difference to 

our observations is likely due to alternative experimental conditions, such as 

the probiotic species investigated and the models used. It is currently not 

known why L. reuteri did not inhibit EPEC access to LS174T cells although the 

presence of additional binding sites in the secreted mucus is one potential 

explanation.  

As we observed low levels of L. reuteri binding to the epithelium during short-

term protection assays, we modified the cell culture model to investigate the 

impact of adherent L. reuteri on EPEC binding by increasing the pre-incubation 

period to 4 hours, and removing non-bound L. reuteri. Interestingly, we 

observed a reduction in EPEC adherence to HT-29 cells after pre-incubation 

with ATCC PTA 6475, but not ATCC 53608. This difference may be associated 
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with the strain-specific adherence characteristics. While ATCC PTA 6475 

binding was uniformly distributed across the epithelial surface, aggregates of 

ATCC 53608 were associated with fewer cells thus potentially blocking fewer 

EPEC binding sites. 

Surprisingly, neither L. reuteri strain inhibited EPEC binding to LS174T cells 

when pre-incubated for 4 h, despite higher adherence to this cell line. As 

LS174T cells produce mucus, EPEC may access additional binding sites 

within the mucus layer, and the EPEC flagellum has previously been shown to 

increase binding to bovine mucus (Erdem et al., 2007). To differentiate 

between EPEC binding to mucus and the cell surface epithelium, we adapted 

the infection protocol to enable actin pedestal formation, a marker of epithelial 

adhesion, which can be detected by fluorescence microscopy (Moon et al., 

1983; Viswanathan et al., 2009). However, we found no significant difference 

in the number of cell-bound EPEC on LS174T cells pre-treated with either L. 

reuteri strain compared to non-treated controls. These findings suggest that 

ATCC PTA 6475 and ATCC 53608 do not reduce EPEC binding to the LS174T 

cell surface. This could be associated with the secreted mucus layer, as MUC2 

may reduce L. reuteri access to epithelial receptors which are shared with 

EPEC, reducing competition for mutual binding sites. 

Interestingly, we observed a significant increase in the number of EPEC 

contained in microcolonies on LS174T cells pre-incubated with ATCC PTA 

6475 compared to both ATCC 53608-treated and non-treated controls, which 

may be associated with different L. reuteri binding characteristics. Although 

the adhesion of both L. reuteri strains to LS174T cells appeared similar, we 

were unable to differentiate between mucus and cell-bound L. reuteri. As such, 

adherence to the LS174T cell surface may differ between L. reuteri strains, as 

we observed on HT-29 cells. Thus, the adhesion of ATCC PTA 6475 to 

LS174T cells may inhibit the cell-cell spread of EPEC, resulting in microcolony 

formation. Further investigation with CmbA-deficient ATCC PTA 6475 as well 

as removal of the LS174T mucus layer (through inhibition of mucus synthesis 

or mucus degradation) could be utilised to investigate ATCC PTA 6475 binding 

to LS174T cells. 
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3.3.3.  Influence of L. reuteri on EPEC colonisation ex vivo 

Investigations into probiotic-pathogen interactions have generally used cell-

line based models to identify potential beneficial outcomes. However, cancer 

cell lines consist of clonal cell populations whereas in vivo, the intestinal 

epithelium is comprised of a mixture of different cell types (including 

enterocytes and goblet cells) with a defined mucus layer and host microbiota 

(Johansson & Hansson, 2011c; Noah et al., 2011). To address this difference 

between the in vitro and in vivo situation, we further investigated the interaction 

of L. reuteri and EPEC by IVOC of human duodenal biopsies. IVOC is 

regarded as the current gold standard for investigating interactions of EPEC 

with the human intestinal mucosa (Fang et al., 2013; Knutton et al., 1987). Yet, 

IVOC has not been used to investigate probiotic effects against pathogens at 

the human epithelial surface. However, a previous study has shown that pre-

incubation with L. plantarum JC1 did not reduce S. Typhimurium adhesion to 

porcine jejunal and colonic intestinal tissue (Collins et al., 2010). In contrast, 

pre-incubation with L. reuteri LM1 and L. salivarius LM2 inhibited Brachyspira 

pilosicoli colonisation of chicken caecal tissue (Mappley et al., 2011).  

In this study, we showed that L. reuteri ATCC PTA 6475 and ATCC 53608 

were localised in the mucus layer and were unable to access the epithelium of 

human duodenal biopsies. Previous studies have identified epithelial binding 

of lactobacilli to human and porcine intestinal tissue samples, in the absence 

of the mucus layer (Bogovič Matijašić et al., 2006; Tsilingiri et al., 2012). Our 

findings, alongside these previous studies, suggest that lactobacilli do not 

access the epithelium when the mucus layer is intact. Thus, investigations into 

the effects of probiotics on mucus-free models may only represent conditions 

where the mucus layer is either absent or non-functional, such as IBD (Sheng 

et al., 2012). Furthermore, the exclusion of L. reuteri from the duodenal 

epithelium may also be due to anti-microbial products secreted by enterocytes 

and Paneth cells into the mucus layer (Ouellette, 1997). The mouse 

antimicrobial lectin RegIIIγ (a homologue of human Hepatocarcinoma-

intestine-pancreas/pancreatic associated protein (HIP/PAP)) has previously 

been identified as an inhibitor of Gram-positive bacteria which is secreted by 
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villous by enterocytes (Cash et al., 2006; Vaishnava et al., 2011). The 

secretion of RegIIIγ, as well as other antimicrobials such as β-defensins, is 

thought to maintain an exclusion zone between the small intestinal epithelium 

and the microbiota (McGuckin et al., 2011; Ouellette, 2004; Porter et al., 1997). 

Thus, it is probable that the production of antimicrobial products and the 

secretion of the mucus layer exclude L. reuteri from the duodenal epithelium.  

Interestingly, pre-incubation with L. reuteri significantly reduced EPEC binding 

to the epithelium of duodenal biopsies. As L. reuteri were restricted to the 

mucus layer, inhibition of EPEC binding to the epithelium must occur at the 

mucus interface, e.g. by steric inhibition of EPEC penetration of the mucus 

layer. These data contrast with our observations in mucus-producing LS174T 

cells where L. reuteri did not reduce EPEC adhesion. This could be due to 

differences in mucus composition, as the secreted mucus layer of the 

duodenum is mainly comprised of MUC2, whereas LS174T cells produce 

MUC2, MUC5AC (usually expressed in the stomach), and gallbladder mucin 

(Atuma et al., 2001; van Klinken et al., 1996). Therefore, future studies should 

utilise physiologically relevant model systems, such as IVOC, to assess 

probiotic characteristics. 

 

3.4. Summary 

In this study, we have demonstrated strain-specific protective effects of L. 

reuteri against EPEC adhesion to intestinal cell lines and duodenal biopsies. 

These protective mechanisms include competitive exclusion, both within the 

mucus layer and at the epithelial surface, as well as potential inhibition of 

EPEC dispersion across the epithelium. Furthermore, we observed that 

inhibition was dependent on the model system used. Therefore, these findings 

emphasise the importance of model and strain selection when investigating 

probiotic characteristics. 
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4.1. Introduction and objectives of study 

The mucus layer is the first line of defence against invading pathogens of the 

GIT. Mucus is structurally composed of mucins, heavily glycosylated proteins 

with tandem repeats of PTS residues, which form a mesh-like structure 

enabling colonisation by commensal bacteria and impeding microbial access 

to the epithelium (Johansson et al., 2011b; Juge, 2012). The mucus of the 

colon forms two layers, the outer loose layer which facilitates microbial 

colonisation and the inner adherent layer which excludes the microbiota from 

the epithelium (Johansson et al., 2008). In contrast, the mucus of the small 

intestine forms a single loose layer, which is colonised by microbes, to facilitate 

nutrient absorption (Johansson et al., 2011b). The colonic and small intestinal 

mucus layers are composed of MUC2, the major secreted mucin in the human 

intestine (Johansson et al., 2011b). In addition to the secreted mucus layer, 

intestinal epithelial cells are covered by the glycocalyx, which is composed of 

the cell-bound mucin MUC3 (Kim & Ho, 2010). The glycocalyx and secreted 

mucus impede bacterial movement, as flagella of EPEC and EHEC bind to 

mucin O-glycans (Erdem et al., 2007; Ye et al., 2015). Furthermore, mucins 

act as decoy receptors for pathogen adhesion, as the binding of H. pylori and 

EPEC to cell-bound mucins MUC1 and MUC3 inhibits pathogen access to the 

epithelial cell surface (Lindén et al., 2009; Mack et al., 2003). In addition to the 

physical mucus barrier, bacterial access to the intestinal epithelium is inhibited 

by the secretion of antimicrobial compounds, such as defensins and lectins, 

by intestinal epithelial cells into the mucus layer (Johansson & Hansson, 

2011c; Vaishnava et al., 2011).  

Pathogens have evolved multiple strategies to circumvent the host mucus 

layer. The stomach pathogen H. pylori secretes cytotoxins CagA and VacA, 

which reduce mucin synthesis by inhibiting intracellular processing of 

glycoproteins (Beil et al., 2000; Byrd et al., 2000). Alternatively, pathogenic E. 

coli produce mucin-degrading enzymes such as StcE (EHEC, Grys et al. 

(2005)), SslE (secreted and surface-associated lipoprotein from E. coli; EPEC, 

ETEC, and ExPEC, Luo et al. (2014), Nesta et al. (2014)), and Pic (Dutta et 

al., 2002), which reduce the viscosity of the mucus layer and facilitate 
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penetration to the epithelial surface. Therefore, enhancing the mucus layer 

could inhibit EPEC colonisation and probiotics offer a potential mechanism, as 

previous studies have identified modulation of host mucin expression by 

Lactobacillus isolates. While production of cell-associated MUC3 is enhanced 

by L. rhamnosus GG and L. plantarum 299v in HT-29 cells, secreted L. 

rhamnosus GG protein p40 has been associated with an increase in MUC2 

expression in LS174T cells and murine intestinal models (Caballero-Franco et 

al., 2007; Mack et al., 2003; Wang et al., 2014a). Thus, stimulation of host 

mucin production by probiotics may offer a therapeutic strategy to reduce 

pathogen binding to the epithelium.  

In this study, we aimed to investigate the effect of EPEC and L. reuteri strains 

ATCC PTA 6475 and ATCC 53608 on mucin dynamics in mucus-secreting 

LS174T cells and human duodenal biopsies.  

 

4.2. Results 

4.2.1.  MUC5AC expression in LS174T cells is significantly 

increased by L. reuteri ATCC 53608 and EPEC 

To investigate the effects of L. reuteri and EPEC on mucin gene expression, 

LS174T cells were incubated with L. reuteri or EPEC for different time periods, 

and expression of intestinal mucins MUC1, MUC2, MUC3A, MUC5AC, MUC6, 

MUC12, MUC13, and MUC17 was determined by relative qPCR analysis, 

using the ΔΔCt method (Livak & Schmittgen, 2001). Prior to gene expression 

studies, specificity and amplification efficiency of all primers was determined 

by Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and qPCR 

(Figure 4.1). Specificity of each primer set was determined by the presence of 

a single peak in the dissociation curve (Figure 4.1A) and the presence of a 

single band at the predicted size on an agarose gel (Figure 4.1B). The 

formation of a primer dimer was noted during MUC13 amplification, as a single 

peak was identified on the dissociation curve, but two bands were observed 

by gel electrophoresis (Figure 4.1A and B). We excluded MUC3A from further 

analysis as only one in three MUC3A primer sets demonstrated amplification 
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of a single product. Furthermore, when the amplicon was examined by gel 

electrophoresis, only a faint band was observed (Figure 4.1B). 

 

Figure 4.1: Validation of primer specificity and amplification efficiency 

(A) Dissociation curves were generated for each primer pair. The presence of 

a single peak indicated primer specificity to a single target. (B) Agarose gel 



149 
 

electrophoresis analysis of qPCR products to determine amplicon product 

size. Representative image from two experiments (C) Amplification efficiency 

of primer pairs. Primers were tested in a qPCR assay with cDNA which had 

been serially diluted two-fold. Ct values of each dilution were plotted on a 

scatter graph and the slope was used to determine the primer efficiency of 

each primer set. Data are representative of four independent experiments. 

 

To normalise our qPCR data, we selected the housekeeper genes tyrosine 3-

monooxygenase/ tryptophan 5-monooxygenase activation protein, zeta 

polypeptide (YWHAZ, Jacob et al. (2013)) and RNA polymerase II (POLR2A, 

Schüller et al. (2009)), as the expression of these genes did not change during 

treatment with either ATCC PTA 6475 (Figure 4.2A) or EPEC (Figure 4.2B) 

and non-treated cells.  

 

 

Figure 4.2: Housekeeper genes YWHAZ and POLR2A demonstrate stable 

expression under treated and non-treated conditions 

LS174T cells were treated with L. reuteri ATCC PTA 6475 (A), EPEC (B) or 

left non-treated (NT) for 6 h and expression of YWHAZ and POL2RA was 

determined by qPCR. Data are shown as means of Ct ± SE of three 

experiments performed in duplicate. 
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Subsequent qPCR analysis demonstrated that incubation with L. reuteri ATCC 

53608 significantly increased MUC5AC and MUC1 gene expression at 1-4 h 

and 1 h, respectively (Figure 4.3). In contrast, expression of MUC6, MUC12, 

MUC13 and MUC17 did not significantly change after 1 to 6 h incubation with 

either EPEC or L. reuteri (Figures 4.3–4.5). 
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Figure 4.3: Incubation with L. reuteri ATCC 53608 significantly increases 

MUC5AC and MUC1 gene expression in LS174T cells 

LS174T cells were incubated with ATCC 53608 for 1, 3, 4, and 6 h or left non-

treated for 6 h. (A) Expression of mucin genes which did not significantly 

change, or were only significantly increased at one time point, relative to NT 

controls. (B) Fold change in MUC5AC gene expression at 1, 3, 4, and 6 h, 

relative to non-treated control. Data are shown as means ± SE of three 

independent experiments performed in duplicate.  * = P <0.05; ** = P <0.01; 

*** = P <0.001. 
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In contrast to L. reuteri ATCC 53608, incubation of LS174T cells with ATCC 

PTA 6475 did not significantly change mucin gene expression at any time point 

(Figure 4.4).  

 

 

Figure 4.4: ATCC PTA 6475 does not significantly induce mucin gene 

expression in LS174T cells 

LS174T cells were incubated with ATCC PTA 6475 for 1, 3, 4, and 6 h or left 

non-treated for 6 h, and expression of mucin genes was determined relative 

to non-treated controls. Data are shown as means ± SE of three independent 

experiments performed in duplicate. 

 

Interestingly, infection of LS174T cells with EPEC significantly upregulated 

expression of MUC5AC at 1-6 h and MUC2 at 1 and 6 h post-infection (Figure 

4.5B and C). 
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Figure 4.5: EPEC significantly induces MUC2 and MUC5AC gene 

expression in LS174T cells 

LS174T cells were incubated with EPEC for 1, 3, 4, and 6 h or left untreated 

for 6 h. (A) Expression of mucin genes which did not significantly change 

relative to non-treated controls.  (B) Fold change in MUC2 gene expression at 

1, 3, 4, and 6 h, relative to non-treated controls. (C) Fold change in MUC5AC 

gene expression at 1, 3, 4, and 6 h, relative to non-treated controls. Data are 

shown as means ± SE of three independent experiments performed in 

duplicate.  * = P <0.05; ** = P <0.01; *** = P <0.001. 
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4.2.2.  MUC2 protein levels in LS174T cells are significantly 

altered by L. reuteri ATCC PTA 6475 and EPEC 

As we observed an increase in MUC2 gene expression by EPEC as well as 

an upregulation of MUC5AC by both ATCC 53608 and EPEC, we sought to 

confirm these findings at the protein level. Therefore, LS174T cells were 

incubated with EPEC, ATCC 53608, ATCC PTA 6475, or left untreated for 6 h 

and MUC2 and MUC5AC protein expression was investigated by 

immunofluorescence staining. Fluorescence was subsequently quantified by 

integrated density using ImageJ software (Wayne Rasband, NIH).  

MUC5AC immunofluorescence staining of non-treated cells demonstrated 

mucin localisation on distinct cells (Figure 4.6A). In contrast to our qPCR 

findings, neither L. reuteri nor EPEC significantly affected the total amount of 

MUC5AC protein relative to NT controls (Figure 4.6B-D).  
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Figure 4.6: MUC5AC protein content in LS174T cells was not altered by 

incubation with EPEC or L. reuteri 

(A) MUC5AC immunofluorescence staining in LS174T cells. Image is 

representative of three independent experiments. Scale bar = 10 µm. (B-D) 

Integrated density quantification of MUC5AC immunofluorescence staining in 

LS174T cells incubated with (B) ATCC 53608, (C) ATCC PTA 6475, or (D) 

EPEC for 6 h. Data were compared to the NT control and are shown as means 

± SE of three independent experiments performed in duplicate. 

 

Immunofluorescence staining of MUC2 in non-treated LS174T cells 

demonstrated a distinct cellular localisation on the majority of cells (Figure 

4.7A). Whereas incubation of LS174T cells with ATCC 53608 did not 

significantly change MUC2 protein expression (Figure 4.7B), treatment with 

ATCC PTA 6475 significantly increased MUC2 protein levels relative to NT 

controls (Figure 4.7C). In contrast, infection with EPEC significantly decreased 

the MUC2 fluorescence density in LS174T cells (Figure 4.7D).  
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To determine whether incubation with L. reuteri could restore MUC2 levels in 

EPEC-infected LS174T cells, equivalent numbers of ATCC PTA 6475 and 

EPEC were added to LS174T cells for 6 h. As shown in Figure 4.7E, co-

incubation of ATCC PTA 6475 with EPEC restored MUC2 protein in LS174T 

cells to non-treated levels. 
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Figure 4.7: MUC2 protein levels in LS174T cells are modulated by ATCC 

PTA 6475 and EPEC 

(A) Immunofluorescence staining of MUC2 protein in LS174T cells. Image is 

representative of five independent experiments. Scale bar = 10 µm. (B-E) 

Integrated density quantification of MUC2 immunofluorescence staining in 

LS174T cells incubated with (B) ATCC 53608, (C) ATCC PTA 6475, (D) 

EPEC, or (E) ATCC PTA 6475 and EPEC for 6 h. Data are shown as means 

± SE of either three (A-D) or five (E) independent experiments performed in 

duplicate.  * = P <0.05; ** = P <0.01; *** = P <0.001 versus NT controls.  
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4.2.3.  Mucus analysis in duodenal biopsies 

As we observed differences between mucin gene and protein expression in 

LS174T cells, we investigated mucus protein levels in duodenal biopsies. This 

represented a substantial technical challenge, as the mucus layer collapses if 

the sample becomes dehydrated, due to the high water content which supports 

the mucus structure (Johansson & Hansson, 2012; Johansson et al., 2008). 

To optimise mucus preservation in human duodenal biopsies, cryosections 

were fixed with MeOH/ acetone (1:1) or processed without fixation and stained 

for MUC2 and cell nuclei. Cryosections fixed with MeOH/ acetone 

demonstrated discernible MUC2 staining in goblet cells, but not staining of the 

mucus layer, whereas an external mucus layer was observed in non-fixed 

samples (Figure 4.8A). Therefore, further experiments were performed on 

non-fixed samples. 

To investigate whether L. reuteri or EPEC altered mucus production by human 

tissue, as observed in LS174T cells, duodenal biopsies were incubated with 

L. reuteri or EPEC for 8 h. Cryosections were stained for MUC2 and cell nuclei, 

and L. reuteri and EPEC were detected by using antisera specific to CmbA, 

MUB, or E. coli. Mucus thickness was examined at numerous points along the 

villous. However, mucus preservation was inconsistent along the biopsy 

surface, ranging from the presence of an intact mucus layer (Figure 3.8B) to 

small patches of mucus covering the epithelium (Figure 3.8C). Therefore, this 

method was unsuitable for assessing changes in mucus thickness due to L. 

reuteri and EPEC. 



159 
 

 

Figure 4.8: Preservation of MUC2 protein in biopsy cryosections 

(A) MUC2 staining (green) of cryosections of duodenal biopsies without 

fixation or fixed in MeOH/ acetone. Cell nuclei were labelled in blue. White 

arrows indicate goblet cells, M indicates the external mucus layer. Images are 

representative of two independent experiments performed in duplicate. Scale 

bar = 10 µm. (B-C) MUC2 fluorescence staining of cryosections showing a 

well-preserved mucus layer overlaying the villus epithelium (B) or mucus 

detachment (C). Mucus and villous tips are indicated by M and V, respectively. 

Images are representative of three independent experiments performed in 

duplicate. Scale bars = 50 µm (B) and 100 µm (C). 
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4.3. Discussion 

The mucus layer is a dynamic environment which acts as a habitat and food 

source to commensal bacteria, as well as providing a barrier to infection. 

Disruption of the mucus layer to gain access to the epithelium is a key process 

during GI infection by a number of pathogens thus, restoration of the mucus 

layer through probiotics may offer therapeutic solution to inhibit infection. 

In this study, we have analysed the modulatory effects of L. reuteri and EPEC 

on mucus production using the MUC2-producing LS174T cell line. Our results 

suggest that EPEC reduces MUC2 protein levels and that this effect can be 

mitigated through co-incubation with L. reuteri ATCC PTA 6475. 

 

4.3.1.  Mucin gene expression does not directly correlate with 

protein levels  

To investigate the impact of L. reuteri and EPEC on mucin production, we 

analysed the expression of major intestinal mucin genes and MUC2 and 

MUC5AC protein levels in LS174T cells. While MUC5AC gene expression was 

significantly upregulated by ATCC 53608 and EPEC, no significant changes 

in MUC5AC protein levels were detected. In addition, incubation with EPEC 

significantly upregulated MUC2 gene expression, but resulted in a significant 

decrease in MUC2 protein levels. Ultimately, treatment with ATCC PTA 6475 

caused a significant increase in MUC2 protein levels despite absent effect on 

MUC2 gene expression. Taken together, these results show a lack of 

correlation between mucin gene expression and protein levels. This has been 

previously demonstrated in mice with cystic fibrosis, where Muc2 gene 

expression was decreased in the ileum of mice with cystic fibrosis compared 

to WT mice, but no change in mucin quantity was detected (Parmley & 

Gendler, 1998). Differences in mucin gene and protein levels have also been 

reported during C. rodentium infection of mice, where Muc1 and Muc2 gene 

expression in the distal colon was highest during the early stage of infection, 

while increased mucus thickness was only observed 10 days later (Gustafsson 

et al., 2013). These findings demonstrate that mucin gene expression is not 
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directly correlated with protein levels and suggest different stages of post-

translational regulation, as outlined below.  

As the biosynthesis of mucin is a multi-step process, there are numerous 

opportunities for pathogens to disrupt mucin protein production and secretion. 

After protein synthesis, apomucins are N-glycosylated and dimerized in the 

rough endoplasmic reticulum before being translocated into the Golgi 

apparatus, where O-glycosylation occurs (Asker et al., 1998). H. pylori LPS 

reduces mucin production in rat gastric biopsies by inhibiting sulfation and O-

glycosylation of apomucins (Liau et al., 1992). After glycosylation, mucins are 

packed into granules and secreted into the lumen. Mucin secretion can be 

initiated by secondary messengers, such as Ca2+ and cyclic AMP (Ambort et 

al., 2012a; Takahashi et al., 1999) or bacterial proteins such as the potent 

secretagogue Cholera toxin (Forstner et al., 1981; Lencer et al., 1990). In 

contrast, H. pylori reduces mucus turnover in the mouse stomach by 

increasing the time from mucin synthesis to secretion (Navabi et al., 2013b).  

 

4.3.2.  Influence of L. reuteri on mucin expression 

In this study, we determined that L. reuteri ATCC PTA 6475 significantly 

increased MUC2 protein levels in LS174T cells relative to non-treated controls. 

This agrees with similar observations reported for other Lactobacillus species. 

L. rhamnosus GG secreted protein p40 increases MUC2 gene and protein 

expression in LS174T cells and mouse colonic epithelium, by activating EGF 

receptor (Wang et al., 2014a). Modulation of MUC2 gene expression by L. 

rhamnosus GG has also been demonstrated in Caco-2 cells (Mattar et al., 

2002). However, as Caco-2 cells do not secrete MUC2 protein (van Klinken et 

al., 1996), the biological relevance of these findings are questionable. In 

addition, L. rhamnosus GG and L. plantarum 299v stimulate expression of cell-

associated MUC3 protein in HT-29 cells (Mack et al., 2003). While we did not 

detect MUC3A mRNA in LS174T cells, future experiments could investigate 

the expression of MUC3A protein at the intestinal epithelium using human 

duodenal biopsies, to determine whether MUC3A is modulated by L. reuteri 
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and whether mucin expression was associated with decreased  

microbial binding. 

Mucus secretion from goblet cells into the gut lumen is a continuous process, 

excluding microbes from the epithelial surface and providing lubrication for the 

movement of digested material (Deplancke & Gaskins, 2001). This process 

can be induced by secretagogues such as carbachol or calcium ionophores, 

thereby increasing the thickness of the mucus layer and reducing pathogen 

access to the epithelium (Deplancke & Gaskins, 2001; McCool et al., 1990). 

Previous studies have shown that administration of the probiotic VSL#3, 

containing a mixture of Lactobacillus, Bifidobacterium, and Streptococcus 

spp., increased Muc1, Muc2, and Muc3 gene expression and total mucin 

secretion in the rat intestine (Caballero-Franco et al., 2007). Furthermore, 

conditioned medium of the individual VSL#3 Lactobacillus species stimulated 

mucin secretion by LS174T cells (Caballero-Franco et al., 2007). 

Unfortunately, the secretagogues were not identified in the study and thus, we 

do not know whether this effect is strain-specific or a generic feature  

of Lactobacillus. 

In our investigation, we did not determine whether the increase in MUC2 

protein levels in LS174T cells was caused by stimulation of MUC2 production 

or exocytosis. Mucin synthesis could be determined by pulse-chase 

experiments using labelled mucins (GalNAz or [3H] glucosamine) (Byrd et al., 

2000; Cole et al., 2013). Alternatively, mucin synthesis could be inhibited with 

benzyl-α-GalNAc and total MUC2 levels could be compared between non-

treated, L. reuteri-treated, and secretagogue-treated LS174T cells (Kuan et 

al., 1989; McCool et al., 1990).  

 

4.3.3.  Influence of EPEC on mucin expression  

In this study, we determined that EPEC reduced MUC2 protein levels in 

LS174T cells. While previous studies have investigated the interaction of 

EPEC with mucus, these reports have mainly focused on microbial binding 

rather than the effect of EPEC on mucin protein levels. One study showed a 
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significant increase in expression of MUC2 and MUC5AC protein in HT-29 

MTX cells infected with atypical EPEC, but not EPEC E2348/69 used in our 

study (Vieira et al., 2010). This discrepancy may be due to the difference cell 

lines used as HT-29 MTX cells predominantly secrete MUC5AC, whereas 

LS174T cells primarily produce MUC2 (Hennebicq-Reig et al., 1998). 

Further studies have investigated the effect of related pathogens on mucus 

production in vivo. Infection of rabbits with a rabbit EPEC strain induced mucus 

secretion and increased the number of ileal goblet cells (Ramirez et al., 2005). 

Similarly, infection of mice with C. rodentium increased mucus secretion 

(Bergstrom et al., 2008; Lindén et al., 2008b). Interestingly, these effects were 

dependent on the adaptive immune response, as mucus secretion in 

immunocompromised mice was unaffected by C. rodentium infection 

(Bergstrom et al., 2008). In contrast, our study focussed on the localised rather 

than systemic response during the early stages of infection and in the absence 

of an adaptive immune response. While we did not determine the mechanisms 

underlying reduced MUC2 protein levels, we can suggest potential 

explanations and future experiments to test these hypotheses. Firstly, EPEC 

infection could inhibit mucin synthesis as shown for H. pylori, which 

suppresses MUC5AC and MUC1 synthesis in gastric cells and MUC1 

synthesis in the stomach of infected mice (Byrd et al., 2000; Navabi et al., 

2013b). These effects were also mediated by bacterial lysates and could be 

caused by the cytotoxins CagA and VacA, which inhibit mucin production (Beil 

et al., 2000; Byrd et al., 2000). No homologous toxins have been identified in 

EPEC, but other proteins might mediate a similar effect. To further investigate 

this hypothesis, pulse-chase experiments with labelled mucins could be 

performed as previously described (4.3.2).  

An alternative mechanism could be degradation of MUC2 protein by secreted 

enzymes. The extracellular E. coli serine protease autotransporter of the 

Enterobacteriaceae (SPATE) proteins have previously been associated with 

mucin degradation (Dutta et al., 2002). In particular, the class II SPATE Pic 

(produced by EAEC and S. flexneri) and Tsh (produced by avian pathogenic 

E. coli), but not the EPEC class I SPATE protein EspC, degrade bovine 

submaxillary mucus (Dutta et al., 2002). While class I SPATEs have not 
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previously been associated with glycoprotein degradation (Ruiz-Perez & 

Nataro, 2014), it is important to note that the impact of EspC on intestinal 

MUC2 has not been investigated thus far. Specificity of SPATEs to particular 

mucins has previously been demonstrated for the class II SPATE EatA 

produced by ETEC, which degraded MUC2, but not bovine submaxillary 

mucus (Kumar et al., 2014). In addition, the secreted serine proteases from 

the nematode Trichuris muris selectively degrade murine Muc2, but not 

Muc5ac (Hasnain et al., 2012).  

Alternative secreted enzymes produced by E. coli pathotypes have also been 

associated with mucin degradation, such as the EHEC extracellular zinc 

metalloprotease StcE, which degrades salivary MUC7 (Grys et al., 2005). StcE 

has been suggested to enhance intimate attachment to the epithelium by 

removing cell-bound mucins, as an isogenic stcE mutant formed fewer actin 

pedestals on Hep-2 cells than the wildtype strain, despite similar levels of 

adhesion (Grys et al., 2005). Surprisingly, recombinant StcE did not degrade 

intestinal MUC2 or MUC5AC in cell lysates (Grys et al., 2006). In contrast, the 

E. coli metalloprotease SslE degrades both bovine submaxillary mucus and 

human MUC2 (Luo et al., 2014; Nesta et al., 2014; Valeri et al., 2015). SslE 

(previously referred to as YghJ) is produced by ETEC, ExPEC, and EPEC and 

can be expressed on the cell surface or secreted (Baldi et al., 2012; Iguchi et 

al., 2009; Luo et al., 2014). SslE promotes rabbit EPEC infection, as an 

isogenic sslE mutant demonstrated reduced colonisation and pathogenesis 

(Baldi et al., 2012). Thus, SslE and EspC represent potential candidates and 

their role in MUC2 degradation during EPEC infection should be further 

investigated by construction of isogenic deletion mutants.  

Our study has also demonstrated that incubation with L. reuteri ATCC PTA 

6475 inhibits the reduction in MUC2 protein levels induced by EPEC. Our 

findings in Chapter 3 demonstrate that L. reuteri ATCC PTA 6475 does not 

affect EPEC viability or inhibit binding to LS174T cells. It is therefore unlikely 

that inhibition of EPEC binding would explain the effect of L. reuteri on MUC2 

levels in LS174T cells co-incubated with EPEC. As ATCC PTA 6475 enhanced 

MUC2 protein amounts when incubated with LS174T cells alone, this suggests 

that the increase in MUC2 induced by L. reuteri counteracts the decrease 
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induced by EPEC. Thus, further investigation is required to identify the 

molecular determinants responsible for EPEC and ATCC PTA 6475-mediated 

modulation of MUC2 protein levels. 

 

4.3.4.  Investigating mucus production in intestinal biopsies 

In addition to the studies on LS174T cells described above, we also used 

human duodenal biopsies to investigate the effects of L. reuteri and EPEC on 

mucus production ex vivo. Unfortunately, we were unable to reliably quantify 

mucus thickness due to lack of consistent mucus preservation on biopsy 

samples. Preservation of the mucus layer has previously been described as 

problematic due to high water content, as dehydration of this layer causes the 

mucus layer to collapse (Johansson & Hansson, 2012).  

Non-fixed tissue samples have been used to assess the mucus thickness of 

the human stomach (Jordan et al., 1998) and the colon (Fyderek et al., 2009) 

using the histochemical stains Alcian Blue and Periodic Acid Schiff, which 

detect acidic and neutral mucins, respectively (Matsuo et al., 1997). 

Comparison of mucus thickness by evaluation of stained cryosections and in 

vivo measurements in the rat distal colon, has produced similar results for the 

inner adherent mucus layer, while the outer loose mucus layer was lost during 

histological processing (Strugala et al., 2003). In contrast to the stomach and 

the colon, the mucus layer of the small intestine is loose and can be easily 

removed (Atuma et al., 2001; Gustafsson et al., 2012). Thus, determining the 

thickness of the small intestinal mucus layer presents a substantial technical 

challenge. Fixation with Carnoy’s solution (60% dry ethanol, 30% chloroform, 

and 10% glacial acetic acid) and paraffin embedding has demonstrated 

excellent preservation of both the loose outer and the adherent inner mucus 

layer of the murine colon (Johansson et al., 2008; Johansson et al., 2009). 

However, this protocol required the preservation of a whole piece of murine 

colon with the faecal pellet in situ, to prevent mucus layer detachment 

(Johansson et al., 2011a). As we used human duodenal biopsies in our study, 
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it is uncertain whether comparable preservation of the small intestinal mucus 

layer would have been achieved with Carnoy’s fixation. 

Measurements of mucus layer thickness in the murine small intestine have 

previously been achieved by visualising the mucus with inactivated charcoal 

particles (Atuma et al., 2001; Gustafsson et al., 2012). Mucus thickness was 

subsequently determined in situ by measuring the mucus with a 

micromanipulator connected to a microscope (Atuma et al., 2001; Gustafsson 

et al., 2012). The advantage of this technique is the lack of additional 

processing steps as well as real-time measurements of changes in the mucus 

layer. However, specialist equipment and method adaption for human 

duodenal samples would be required. 

An alternative method to assess the impact of EPEC and L. reuteri on mucus 

production ex vivo would be to analyse de novo mucin synthesis, as previously 

described in 4.3.2. This technique has previously been used on resected 

colonic tissue and colonic biopsies from patients with ulcerative colitis and thus 

could potentially be adapted for IVOC (Finnie et al., 1995; Tytgat et al., 1996).  

 

4.4. Summary 

In this study, we identified that L. reuteri ATCC PTA 6475 and EPEC enhanced 

and reduced MUC2 protein levels in LS174T cells, respectively. Furthermore, 

when these strains were co-incubated with LS174T cells, ATCC PTA 6475 

counteracted the decrease in MUC2 protein content induced by EPEC. While 

the specific mechanisms behind these changes still remain to be investigated, 

these data suggest that both EPEC and L. reuteri ATCC PTA 6475 affect 

mucus production in the human GIT.  

As the mucus layer is the first line of defence against infection, the 

development of probiotics supporting the mucus layer may have applications 

for reducing enteric infections and alleviating diseases with a compromised 

mucus layer, such as IBD. As mucus-stimulating characteristics are strain-

specific, further research is required to identify the mechanisms behind these 
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effects as well as the bacterial strains capable of modulating mucus 

production. Furthering our understanding of these processes may contribute 

to the development of new therapies and vaccines against EPEC infection. 
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5.1. Introduction and objectives of study 

EPEC infection of the intestinal mucosa is characterised by moderate 

inflammation and the recruitment of neutrophils to the site of infection 

(Savkovic et al., 1996). This response is modulated by both pro- and anti-

inflammatory signals generated by EPEC (Savkovic et al., 1996; Sharma et 

al., 2006). The initial immune response against EPEC is dependent on the 

detection of bacterial flagellin by host TLR5, which activates NF-κB and 

induces the translocation of this transcription factor into the nucleus (Khan et 

al., 2008; Ruchaud-Sparagano et al., 2007; Schüller et al., 2009; Sharma et 

al., 2006; Zhou et al., 2003). Binding of NF-κB to inflammatory genes 

subsequently initiates the production of pro-inflammatory cytokines such as 

the neutrophil chemoattractant IL-8 (Kunsch et al., 1994; Savkovic et al., 

1996). However, EPEC downregulate the immune response by T3S effector 

proteins, inhibiting NF-κB translocation into the nucleus and counteracting 

other signalling pathways, such as AP-1 (Hartland et al., 2000; Jarvis et al., 

1995; Knutton et al., 1998; Wong et al., 2011). The reduced inflammatory 

response inhibits EPEC clearance from the host (Wong et al., 2011).  

Probiotics can restore immune homeostasis to the intestinal milieu and specific 

strains exhibit anti-inflammatory or immuno-stimulatory characteristics in in 

vitro and in vivo systems (Díaz‐Ropero et al., 2007). For example, the anti-

inflammatory probiotic mixture VSL#3 induced and maintained remission in 

patients with ulcerative colitis (Bibiloni et al., 2005; Huynh et al., 2009; Miele 

et al., 2009; Sood et al., 2009; Tursi et al., 2010). Immunomodulation has also 

been demonstrated for L. reuteri as strains ATCC 55730 and ATCC PTA 5289 

reduced pro-inflammatory cytokine expression in patients with gingivitis 

(Twetman et al., 2009). Furthermore, ATCC PTA 4659 and ATCC 55730-

derived strain DSM 17938 reduced the incidence of LPS-induced necrotising 

enterocolitis by modulation of TLR4 and NF-κB signalling (Liu et al., 2012). As 

inflammation contributes to the development of diarrhoea, anti-inflammatory 

probiotics could be applied to reduce diarrhoeal symptoms (Viswanathan et 

al., 2009). A promising candidate probiotic is L. reuteri ATCC PTA 6475, which 

produces histamine that suppresses the pro-inflammatory response (Jones & 
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Versalovic, 2009; Lin et al., 2008; Liu et al., 2010; McCabe et al., 2013; Preidis 

et al., 2012; Thomas et al., 2012). In line with these studies, we investigated 

the influence of L. reuteri ATCC PTA 6475 and ATCC 53608 on IL-8 cytokine 

production during EPEC infection of intestinal cell lines and human duodenal 

biopsies. 

 

5.2. Results 

5.2.1.  L. reuteri inhibits EPEC-induced IL-8 production by  

HT-29 cells 

To investigate the effects of L. reuteri on IL-8 protein production, HT-29 cells 

were incubated with L. reuteri ATCC PTA 6475, ATCC 53608, EPEC, or left 

non-treated for 6 h, and IL-8 protein levels in cell culture media were 

determined by ELISA. As shown in Figure 5.1A, IL-8 production by HT-29 cells 

was significantly induced by EPEC infection relative to non-treated controls. In 

contrast, neither L. reuteri isolate induced the production of IL-8. To determine 

whether these strains demonstrated anti-inflammatory effects against EPEC-

induced IL-8 production, HT-29 cells were co-incubated with equivalent 

numbers of EPEC and either ATCC PTA 6475 or ATCC 53608 for 6 h. We 

identified that co-incubation with L. reuteri significantly reduced IL-8 levels 

relative to HT-29 cells incubated with EPEC alone, though this did not reach 

baseline levels (Figure 5.1B).  
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Figure 5.1: Co-incubation with L. reuteri ATCC PTA 6475 and ATCC 53608 

inhibits EPEC-induced IL-8 production by HT-29 cells 

(A) HT-29 cells were incubated with L. reuteri ATCC PTA 6475, ATCC 53608, 

EPEC, or left non-treated (NT) for 6 h. (B) HT-29 cells were co-incubated with 

equivalent numbers of EPEC and ATCC PTA 6475, ATCC 35608, or EPEC 

alone for 6 h. IL-8 protein levels in cell culture media were assessed by ELISA. 

Data are shown as means ± SE of three independent experiments performed 

in duplicate. ** = P <0.01; *** = P <0.001 versus non-treated controls. £ = P 

<0.05; £££ = P <0.001 versus EPEC-infected samples.  

 

To determine the kinetics of IL-8 production in mucus-producing LS174T cells, 

incubations with L. reuteri or EPEC were performed for 3, 4 and 6 h, and IL-8 

was determined as previously described. In contrast to HT-29 cells, incubation 

with L. reuteri ATCC PTA 6475 and ATCC 53608 induced IL-8 production in 

LS174T cells, suggesting pro-inflammatory effects in this cell line (Figure 5.2), 

therefore HT-29 cells were used for further experiments. 
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Figure 5.2: L. reuteri and EPEC induce IL-8 protein production by  

LS174T cells 

LS174T cells were incubated with ATCC PTA 6475, ATCC 53608, EPEC for 

3, 4, or 6 h or left non-treated (NT) for 6 h. IL-8 levels in cell culture media 

were assessed by ELISA. Data are shown as means ± SE of three 

independent experiments performed in duplicate. ** = P<0.01; *** = P <0.001 

versus NT.  

 

 



173 
 

5.2.2.  EPEC supernatant induces IL-8 production in HT-29 

cells 

Previous studies have shown that EPEC-induced IL-8 response in vitro and ex 

vivo is predominantly associated with flagellin, although other factors have 

been described (Khan et al., 2008; Schüller et al., 2009; Sharma et al., 2006; 

Zhou et al., 2003). To determine whether EPEC flagellin caused increased  

IL-8 production in HT-29 cells, 6 h incubation were performed with wildtype 

EPEC, an isogenic fliC mutant (AGT01), or filter sterilised supernatant from 

EPEC overnight cultures (SN). As shown in Figure 5.3, incubation with 

wildtype EPEC and EPEC SN significantly increased IL-8 production relative 

to HT-29 cells treated with the fliC mutant or the NT control. 

. 

 

Figure 5.3: EPEC supernatant induces IL-8 production in HT-29 cells 

HT-29 cells were incubated with wildtype EPEC (WT), EPEC supernatant 

(SN), isogenic fliC mutant strain AGT01 (ΔfliC), or left non-treated (NT) for 6 

h. IL-8 protein levels in cell culture media were assessed by ELISA. Data are 

shown as means ± SE of either three (WT SN) or six independent experiments 

performed in duplicate. ** = P<0.01; *** = P <0.001 versus NT. £ = P<0.05; ££ 

= P<0.01 versus isogenic fliC mutant. 
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5.2.3.  L. reuteri ATCC PTA 6475 inhibits EPEC supernatant-

induced IL-8 production in HT-29 cells  

As EPEC SN induced a comparable inflammatory response to EPEC, we 

investigated the impact of L. reuteri on IL-8 induction in HT-29 cells treated 

with EPEC SN or SN diluted 10- to 1000-fold. We identified that non-diluted 

and 10 to 100-fold diluted EPEC SN significantly increased IL-8 production, 

and that ATCC PTA 6475 inhibited IL-8 production in HT-29 cells treated with 

100-fold diluted EPEC SN (data not shown). Therefore, EPEC SN was diluted 

100-fold for further experiments. As anti-inflammatory characteristics have 

been linked to secreted products, L. reuteri-conditioned medium (cell culture 

medium treated with L. reuteri for 6 h) and EPEC SN were co-incubated with 

HT-29 cells for 6 h. As shown in Figure 5.4, only incubation with ATCC PTA 

6475 significantly reduced IL-8 production stimulated by EPEC SN, whereas 

treatment with ATCC 53608 or L. reuteri-conditioned medium had no effect. 
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Figure 5.4: ATCC PTA 6475-mediated inhibition of IL-8 production is 

independent of secreted products 

HT-29 cells were incubated with EPEC supernatant (ESN) and L. reuteri ATCC 

PTA 6475, ATCC 53608 or L. reuteri-conditioned medium, or left non-treated 

(NT) for 6 h. IL-8 levels in cell culture media were assessed by ELISA. Data 

are shown as means ± SE of three independent experiments performed in 

duplicate. ** = P<0.01 versus ESN. 

 

5.2.4.  NF-κB translocation in HT-29 cells 

The translocation of NF-κB from the cytoplasm to the cell nucleus is a key step 

in the upregulation of IL-8 protein in response to EPEC infection (Savkovic et 

al., 1997). To determine whether this process was modulated by L. reuteri, a 

protocol for establishing NF-κB p65 (RelA) translocation into the nucleus was 

required. For this purpose, HT-29 cells were incubated with EPEC for 1 and 2 

h or treated with 10 ng/ mL TNF-α for 1 and 4 h. Non-confluent HT-29 cells 

were used to improve visual acuity, and short time points were chosen to 

reduce NF-κB suppression by EPEC effector proteins. 
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While we observed cytoplasmic staining of p65 in all samples, we did not 

detect nuclear translocation of NF-κB in EPEC- or TNF-α-treated HT-29 cells 

(Figure 5.5). This finding suggests that alternative techniques are required to 

investigate changes in NF-κB localisation in HT-29 cells. 

 

 

Figure 5.5: Anti-p65 immunofluorescence staining did not detect NF-kB 

nuclear translocation in HT-29 cells 

HT-29 cells were infected with EPEC for 1-2 h, treated with 10 ng/ mL TNF-α 

for 1-4 h, or remained non-treated. Cells were stained for p65 (green), E. coli 

(red), and cell nuclei (blue). Black and white images of the green channel is 

shown to improve clarity. Images are representative of either two (EPEC) or 
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three (TNF-α) independent experiments performed in duplicate. Scale bars = 

10 µm. 

5.2.5.  Influence of L. reuteri on IL-8 production in EPEC-

infected duodenal biopsies 

As L. reuteri inhibited EPEC-induced IL-8 production in HT-29 cells, we further 

investigated the effects of L. reuteri and EPEC on IL-8 protein levels in 

duodenal tissue using pIVOC and evaluated by ELISA. As biopsies were of 

variable size, IL-8 protein levels were adjusted against total protein content of 

the biopsy lysate. As shown in Figure 5.6, there was no significant difference 

in IL-8 protein levels between L. reuteri and non-treated controls, whereas 

EPEC infection significantly increased IL-8 protein content. In contrast to HT-

29 cells, co-incubation with L. reuteri did not significantly affect IL-8 production 

in EPEC-infected tissues. (Figure 5.6). 

 

Figure 5.6: L. reuteri does not affect EPEC-induced IL-8 production in 

duodenal biopsies 

Duodenal biopsies were exposed to L. reuteri ATCC PTA 6475, ATCC 53608, 

EPEC, or left non-treated (NT) for 6 h. In addition, co-incubations of equivalent 

numbers of L. reuteri and EPEC were performed. Each data point represents 

an individual biopsy sample. The median is indicated by a line. * = P <0.05; ** 

= P <0.01; *** = P <0.001 versus NT. 
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5.2.6.  The IL-8 response is not suppressed by EPEC during 

infection of duodenal biopsies 

As we did not observe L. reuteri modulation of the IL-8 response in EPEC-

infected biopsies, we investigated whether EPEC suppression of the immune 

response described in cell lines may have obscured any protective effects of 

L. reuteri. Therefore, HT-29 cells were incubated with wildtype EPEC or a 

T3SS-deficient escN mutant (CVD452; Jarvis et al, 1995) for up to 8 h. As 

shown in Figure 5.7A, HT-29 cells produced significantly more IL-8 when 

infected with ΔescN mutant versus wildtype EPEC after 4-8 h of incubation.  

Interestingly, no immunosuppressive effect was observed in human duodenal 

as incubation with T3SS-deficient mutants ΔescN and ΔespB (UMD864; 

Donnenberg et al, 1993a) induced comparable IL-8 levels to wildtype EPEC 

(Figure 5.7B). In addition, infection with a fliC mutant did not induce a 

significant increase in IL-8 levels compared to NT controls.  
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Figure 5.7: The IL-8 response is not downregulated by EPEC during 

infection of duodenal biopsies 

(A) HT-29 cells were incubated with wildtype EPEC (WT) or isogenic escN 

mutant strain CVD452 (ΔescN) for 2-8 h. IL-8 levels in cell culture media were 

assessed by ELISA. Data are shown as means ± SE of three independent 

experiments performed in duplicate. * = P<0.05; **** = P <0.0001 versus WT. 

(B) Duodenal biopsies were infected with either wildtype EPEC, isogenic 

mutants deficient in fliC (AGT01), espB (UMD864), escN (CVD452), or left 

non-treated (NT) for 6 h. IL-8 protein was determined from biopsy lysates and 

is displayed relative to the total protein content of each biopsy. Each data point 

represents an individual biopsy sample. The median is indicated by a line. * = 

P<0.05; ** = P<0.01 versus NT. 
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5.3. Discussion 

The innate immune system is a key component of the host response which is 

responsible for the initial defence against invading pathogens. While the innate 

immune response prevents the vast majority of potential insults, some GI 

pathogens have evolved mechanisms to inhibit inflammation. The weakened 

immune response contributes to the production of diarrhoea in the host. 

Probiotics may offer a solution to reduce the incidence of diarrhoea, as certain 

bacterial strains have been identified as having immunomodulatory 

characteristics. 

In this investigation, we have explored the immunomodulatory effects of L. 

reuteri on EPEC-induced IL-8 protein production using both in vitro and ex vivo 

models. Furthermore, we have examined the role of the T3SS in IL-8 

production during EPEC infection of the small intestinal epithelium. 

 

5.3.1.  Role of flagellin and the T3SS in IL-8 induction during 

EPEC infection 

In this study, we determined that EPEC induced the production of the immune 

cytokine IL-8 by HT-29 cells and human duodenal biopsies. As HT-29 cells 

showed a diminished IL-8 response when infected with an isogenic fliC mutant, 

this suggests that flagellin is a major inducer of the IL-8 response during EPEC 

infection. This finding is consistent with previous reports which have identified 

EPEC flagellin as a key inducer of IL-8 production by intestinal HT-29, T84, 

and Caco-2 cells (Khan et al., 2008; Ruchaud-Sparagano et al., 2007; Sharma 

et al., 2006; Zhou et al., 2003). The role of flagellin in IL-8 induction has also 

been demonstrated in paediatric duodenal biopsies, as both wildtype EPEC 

and purified flagella induced IL-8 protein production (Schüller et al., 2009). 

Similar to our own results in duodenal biopsies, infection with a fliC deletion 

mutant resulted in a diminished, although not completely abrogated, IL-8 

response, which suggests other inflammatory factors may be produced by 

EPEC. The induction of IL-8 by a FliC-independent mechanism has been 

shown in non-polarised HT-29 and Caco-2 cells, although the exact 
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mechanism has not been clarified (Khan et al., 2008; Schüller et al., 2009; 

Sharma et al., 2006).  

While EPEC flagellin induces IL-8 protein expression, the T3SS has been 

implicated in down-regulating the innate immune response (Ruchaud-

Sparagano et al., 2007). This effect has been attributed to several effector 

proteins encoded outside the LEE region (Nle) (Nadler et al., 2010; Newton et 

al., 2010; Vossenkämper et al., 2010). NleE prevents the phosphorylation of 

Iκβ kinase (IKK), and thus reduces the degradation of the NF-κB inhibitor IκB, 

inhibiting activation of NF-κB (Nadler et al., 2010). This effect has been 

demonstrated in HeLa and Caco-2 cells as well as isolated dendritic cells and 

has been associated with a diminished IL-8 response (Nadler et al., 2010; 

Newton et al., 2010; Vossenkämper et al., 2010). The inhibitory action of NleE 

is further enhanced by the effector protein NleB, which inhibits the activation 

of NF-κB by reducing GAPDH-mediated ubiquitination of TRAF2, a protein 

involved in TNF-α mediated NF-κB activation (Gao et al., 2013; Nadler et al., 

2010). Furthermore, the effector protein NleC degrades the p65 subunit of the 

NF-κB complex (Pearson et al., 2011; Yen et al., 2010). Notably, the roles of 

these effector proteins have primarily been documented in cancer cell lines, 

and their effect in the in vivo situation remains largely unknown. While we 

observed a T3SS-dependent immunosuppressive effect in EPEC-infected HT-

29 cells, this was not evident during infection of human duodenal biopsies. A 

similar lack of immunosuppression has recently been demonstrated during 

EHEC infection of human colonic biopsies, suggesting a delay or absence of 

this mechanism in human intestinal tissues (Lewis et al., 2016). 

 

5.3.2.  Impact of L. reuteri on the EPEC-induced IL-8 response 

in vitro 

In our study, we showed that L. reuteri strains ATCC PTA 6475 and ATCC 

53608 induced IL-8 production in LS174T, but not HT-29 cells. This difference 

could be due to cell line-specific features, such as cell type (goblet cell versus 

enterocyte) and the genetic background of the host, which can impact on 
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probiotic effects (van Baarlen et al., 2013). This has previously been observed 

in L. rhamnosus GG, which stimulated IL-8 production in HT-29 cells infected 

with S. Typhimurium, but reduced IL-8 protein in Caco-2 cells treated with 

flagellin, despite similar methodologies  (Lopez et al., 2008; Pinto et al., 2009). 

While the immune stimulus was different in each of the prior studies (S. 

Typhimurium versus isolated flagellin from Pseudomonas aeruginosa) which 

may have influenced probiotic effects, these findings demonstrate that 

thorough evaluation of probiotics on relevant model systems is necessary to 

determine immunomodulatory characteristics of specific Lactobacillus strains. 

Probiotic immunomodulation of pathogen-induced immune responses by 

intestinal epithelial cell lines has previously been reported, and strain-specific 

anti-inflammatory and immunostimulatory characteristics have been shown. In 

this study, we found that co-incubation with L. reuteri ATCC PTA 6475 and 

ATCC 53608 significantly reduced IL-8 production in EPEC-infected HT-29 

cells. Similar findings have been reported for other Lactobacillus species, such 

as the porcine isolate Lactobacillus sobrius DSM 16698, which upregulated 

anti-inflammatory IL-10 and reduced IL-8 protein content in ETEC-infected 

porcine IECs (Roselli et al., 2007). In addition, pre-incubation of T84 cells with 

L. rhamnosus JB-1 or mixed probiotic VSL#3 prior to infection with Salmonella, 

reduced IL-8 production (Ma et al., 2004; Madsen et al., 2001). In contrast, 

lactobacilli can sensitise cells to pathogenic insult, as the pre-treatment of HT-

29 cells with L. plantarum BFE or L. rhamnosus GG increased the IL-8 

response to S. Typhimurium (Pinto et al., 2009). This effect may be due to 

increased production of TLR2 and TLR5, which detect lipoteichoic acid and 

flagellin, respectively (Pinto et al., 2009).  

As flagellin is a potent inducer of the pro-inflammatory response to many 

pathogens, the effect of lactobacilli on flagellin-induced IL-8 production has 

been investigated in previous studies. Pre-treatment with L. rhamnosus GG 

attenuated IL-8 induction in Caco-2 cells stimulated with flagellin from P. 

aeruginosa (Lopez et al., 2008). Interestingly, anti-inflammatory effects of 

probiotics against a pathogen do not imply reduction of the immune response 

to particular bacterial components, as L. salivarius UCC118 attenuated IL-8 

production in HT-29 cells treated with S. Typhimurium but not with Salmonella 
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flagella (O'Hara et al., 2006). These findings are similar to our own, as L. 

reuteri ATCC 53608 significantly reduced the production of IL-8 by HT-29 cells 

when co-cultured with EPEC. However, there was no reduction in IL-8 protein 

when HT-29 cells were treated with ATCC 53608 and EPEC SN. In contrast, 

L. reuteri ATCC PTA 6475 significantly reduced the IL-8 response to both 

EPEC and EPEC SN. The mechanism behind this strain-specific effect 

remains to be defined but potential explanations will be discussed. 

While EPEC SN contains EPEC flagella (Girón et al., 2002; Zhou et al., 2003), 

it may also comprise additional pro-inflammatory factors, such as LPS, which 

induce the production of IL-8 (Cario et al., 2000; Hoshino et al., 1999; Poltorak 

et al., 1998). Probiotics have previously demonstrated anti-inflammatory 

effects against LPS-induced inflammation, as VSL#3, L. paracasei 1602, 

and L. reuteri 6798 decreased the production of TNF-α in LPS-treated ileal 

and colonic explants from IL-10-deficient mice (Madsen et al., 2001; Peña et 

al., 2005). Interestingly, L. reuteri ATCC PTA 6475, ATCC PTA 4659, and 

ATCC PTA 5289 inhibited LPS-induced IL-8 production in porcine IECs and 

rat ileum (Liu et al., 2010). As we utilised SN rather than EPEC-derived LPS 

or flagellin, further experimentation is required to determine whether L. reuteri 

inhibits IL-8 production induced by these specific components. These findings 

would elucidate the host signalling pathways through which L. reuteri 

modulates the innate immune response. Additionally, as EPEC-derived 

flagella induce IL-8 production in duodenal biopsies (Schüller et al., 2009), it 

would be interesting to investigate whether L. reuteri inhibited flagellum-

induced IL-8 production in duodenal samples. 

As mentioned previously, production of IL-8 and other pro-inflammatory 

cytokines is mediated by the transcription factor NF-κB. A number of 

Lactobacillus strains, such as L. rhamnosus GG and JB-1, as well as L. 

plantarum ATCC 8014, have been shown to inhibit NF-κB activation by 

preventing IκB degradation in HeLa, T84, and Caco-2 cells (Ko et al., 2007; 

Lopez et al., 2008; Ma et al., 2004). Unfortunately, we were unable to 

determine whether ATCC PTA 6475-mediated IL-8 reduction in EPEC-

infected HT-29 cells was dependent on NF-κB activation, as 

immunofluorescence staining of NF-κB was unsuitable to detect nuclear 
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translocation in HT-29 cells treated with EPEC or TNF-α. This was consistent 

with a previous study reporting the absence of nuclear NF-κB 

immunofluorescence staining in IL-1β-treated HT-29 cells, whereas Caco-2 

cells demonstrated distinct NF-κB nuclear localisation (Jobin et al., 1997). 

However, use of electrophoretic mobility shift assays and ELISA showed 

nuclear localisation in IL-1β-treated HT-29 cells, although at lower levels than 

treated Caco-2 cells (Jobin et al., 1997; Sibartie et al., 2009). These findings 

suggest that immunofluorescence microscopy is unsuitable to determine 

changes in NF-κB localisation in HT-29 cells, and alternative methods such as 

mobility shift assays or ELISA should be used.  

Some Lactobacillus strains secrete factors inhibiting immune stimulation by 

pathogens. The mechanism behind this inhibition is often undefined, and 

possibly dependent on bactericidal effects. However, pre-incubation of 

Salmonella with supernatant from L. acidophilus LB, L. casei 2756, L. curvatus 

2775, or L. plantarum 2142 reduced IL-8 induction in Caco-2 cells (Coconnier 

et al., 2000; Nemeth et al., 2006). Alternatively, some Lactobacillus strains 

secrete products which directly impact on the immune state of the host cell. 

For example, L. reuteri ATCC PTA 6475 SN reduced production of TNF-α by 

LPS-treated monocytes and macrophages from children with active Crohn’s 

disease (Jones & Versalovic, 2009; Lin et al., 2008). This has been linked to 

the production of the immunoregulatory compound histamine, which is derived 

from the essential amino acid L-histidine (Thomas et al., 2012). ATCC PTA 

6475-derived histamine activates the histamine H2 receptor, which reduces the 

production of TNF-α via inhibition of the MAPK pathway in monocytoid cells 

(Thomas et al., 2012). These findings contrast our own observations, as the 

conditioned medium of ATCC PTA 6475 did not attenuate the production of 

IL-8 by HT-29 cells stimulated with EPEC SN. These differences may be due 

to differences in cell type (IECs versus monocytes), cytokines investigated (IL-

8 versus TNF-α), or bacterial culture conditions (as histamine may not have 

been produced during our experiments). Taken together, our findings 

demonstrate that L. reuteri ATCC PTA 6475 and ATCC 53608 have 

immunomodulatory effects on IECs. These effects are independent of 

secreted products and thus may be dependent on the presence of the bacteria 
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at the epithelium.. Further investigation is required to define the mechanism 

behind the reduction in IL-8 protein levels in L. reuteri ATCC PTA 6475- and 

ATCC 53608-treated IECs, such as the impact of L. reuteri cell surface 

proteins on the innate immune response. An improved understanding of the 

mechanisms behind this effect will further validate the probiotic potential of 

these anti-inflammatory bacteria on the inflamed epithelium. 

 

5.3.3.  The effect of L. reuteri on the EPEC-induced IL-8 

response ex vivo 

In contrast to findings in HT-29 cells, incubation with L. reuteri did not reduce 

IL-8 production in EPEC-infected duodenal biopsies. As L. reuteri did not 

penetrate the mucus layer, this could imply that adhesion to the epithelium is 

necessary for modulation of the immune response. This has previously been 

demonstrated by L. rhamnosus GG, which required the SpaCBA pilus for 

epithelial binding and inhibition of IL-8 expression in Caco-2 cells (Lebeer et 

al., 2012). Similarly, adherent live L. rhamnosus JB1 were required to inhibit 

IL-8 production in stimulated T84 and HT-29 cells (Ma et al., 2004). It is 

important to note that trauma of tissue removal induced inflammation in 

biopsies, as non-treated samples produced elevated levels of IL-8. The 

induction of the innate immune response due to tissue removal is a technical 

limitation of pIVOC when investigating the innate immune response. 

Therefore, it would be interesting to assess the anti-inflammatory effects of L. 

reuteri using an in vivo model, which would not present with background 

inflammation. 

Additionally, the immune status of the host can also impact on probiotic 

immunomodulation, as L. rhamnosus GG downregulated the immune 

response to milk in hypersensitive patients, but increased the expression of 

immunostimulatory receptors in the control group (Pelto et al., 1998). Active 

inflammation can also sensitise the epithelium to probiotics, as TNF-α-treated 

HT-29 cells showed enhanced IL-8 protein levels when subsequently exposed 

to L. plantarum BFE 1685 or L. rhamnosus GG, whereas neither strain induced 
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IL-8 production in non-treated cells (Pinto et al., 2009). Furthermore, the 

incubation of L. rhamnosus GG, L. plantarum NCIMB8826, and L. 

paracasei B21060 with tissue samples from patients with UC and CD caused 

severe degradation of biopsy tissue, whereas incubation with healthy samples 

did not alter tissue structure (Tsilingiri et al., 2012). 

Moreover, it is important to note that the immunomodulatory effects of 

probiotics may be cell-specific, as L. rhamnosus GG and L. plantarum 

NCIMB8826 did not induce IL-8 production in Caco-2 cells, but stimulated IL-

12 and TNF-α expression in human peripheral blood monocytes (Mileti et al., 

2009). Furthermore, L. rhamnosus GG and L. plantarum NCIMB8826 

amplified the progression of colitis in DSS-treated mice (Mileti et al., 2009). 

Crucially, these characteristics are strain-specific, as L. paracasei B21060 

reduced the symptoms of DSS-induced colitis versus mice without the 

probiotic (Mileti et al., 2009). In addition to chemically-induced inflammation, 

lactobacilli also decreased inflammation induced by pathogens. L. johnsonii 

La1 reduced keratinocyte-derived protein chemokine (KC; mouse cytokine 

homologous to human IL-8) serum levels in mice with ongoing H. pylori 

infection, and L. paracasei ssp. paracasei NTU 101 decreased IL-1β and IL-6 

expression in EHEC-infected mice (Sgouras et al., 2005; Tsai et al., 2010). 

Anti-inflammatory effects have also been described in human studies, as L. 

reuteri ATCC 55730 and ATCC PTA 5289 decreased IL-8 and TNF-α levels in 

patients with active gingivitis (Twetman et al., 2009).  

As previous studies have demonstrated that probiotics can deliver anti-

inflammatory effects during acute inflammation events, it would be interesting 

to investigate the impact of ATCC PTA 6475 and ATCC 53608 on inflamed 

tissue samples using the pIVOC model; to determine whether the anti-

inflammatory characteristics we observed were applicable to an inflamed 

milieu. Furthermore, future study into the role of epithelial binding on 

immunomodulation of intestinal samples would be beneficial for developing 

our understanding of how probiotics modulate the innate immune response. 

Aspiration of the mucus layer has been demonstrated on murine duodenal 

tissue (Atuma et al., 2001; Gustafsson et al., 2012). Therefore, this approach 

could be applied to human duodenal biopsies, to investigate whether epithelial 
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contact with the epithelium is necessary for L. reuteri immunomodulation. 

Additionally, it would be interesting to assess the impact of L. reuteri on EPEC-

induced IL-8 production in paediatric biopsies. As the immune system matures 

with age, the inflammatory response to EPEC infection may differ between 

adult and paediatric samples (Levy, 2007). 

 

5.4. Summary 

In this part of the study, we demonstrated that L. reuteri ATCC PTA 6475 and 

ATCC 53608 inhibited IL-8 induction in EPEC-infected HT-29 cells. This effect 

appeared to be dependent on L. reuteri adhesion to the host epithelium, as we 

did not observe IL-8 inhibition by L. reuteri supernatants or biopsy samples 

with an intact mucus layer. While the specific mechanisms behind L. reuteri 

immune modulation remain undefined, our findings demonstrate that ATCC 

PTA 6475 and ATCC 53608 can modulate the innate immune response 

induced by EPEC infection. 

The innate immune system provides a key barrier against EPEC infection of 

the intestinal epithelium. The secretion of T3S proteins weakens the 

inflammatory response which inhibits EPEC clearance but contributes to the 

production of diarrhoea in the host. Modulation of the inflammatory response 

by anti-inflammatory probiotics could reduce diarrhoeal symptoms in these 

patients. Therefore, the identification of probiotics with anti-inflammatory 

characteristics is an important area of research for developing therapies to 

reduce the burden of EPEC-induced diarrhoea.  
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The aim of this PhD project was to evaluate the potential of Lactobacillus 

reuteri to reduce pathogenesis of enteropathogenic Escherichia coli infection. 

In particular, the effects of L. reuteri on 1) EPEC binding to the intestinal 

epithelium, 2) mucus production, and 3) the innate immune response were 

characterised. To investigate these effects, mucus- and non-mucus producing 

intestinal epithelial cells (HT-29 and LS174T cells, respectively) and duodenal 

biopsies were utilised as models of the human intestinal epithelium.  

In the first part of this study, we identified that L. reuteri inhibited EPEC binding 

to intestinal epithelium at the mucus and epithelial level. These effects were 

strain-specific and included competition for binding receptors and the inhibition 

of EPEC dispersal across the epithelial surface. The protective effects 

observed were also dependent on the intestinal epithelial model used, which 

emphasised the requirement for physiologically relevant model systems. 

Therefore, future studies should investigate whether L. reuteri ATCC PTA 

6475 and ATCC 53608 inhibit EPEC colonisation of the intestinal epithelium 

in animal trials and clinical studies. 

A limitation of this study was the use of non-polarised IECs, as the human 

intestinal epithelium demonstrates distinct apical and basolateral polarisation 

of cell surface receptors. Thus, it would be interesting to assess the efficiency 

of L. reuteri binding to polarised cells which may have an alternative 

distribution of receptors on the apical surface than non-polarised cells. 

Additionally, polarised cells could be used to investigate the impact of L. reuteri 

on EPEC-induced changes to TJ integrity, a key mechanism behind the 

induction of diarrhoea in vivo. However, it is not possible to polarise HT-29 

cells, thus alternative small intestinal models, such as Caco-2 cells, 

xenografts, or intestinal biopsies, would be required. Furthermore, while we 

assessed the impact of L. reuteri monocultures on EPEC infection, mixed 

probiotic cultures have been suggested to deliver greater benefits to the host. 

Therefore, it would be interesting to investigate the impact of L. reuteri co-

cultures on EPEC pathogenesis. 

We also examined the impact of L. reuteri and EPEC on mucus production 

and determined that these bacteria significantly increased and decreased 
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MUC2 protein levels in LS174T cells, respectively. The effect of probiotic 

bacteria on the production of mucus has previously been poorly investigated, 

thus our data provide evidence that certain L. reuteri strains influence GI mucin 

levels. A limitation of this study was that we determined relative changes in 

fluorescence rather than total change in mucin protein. Therefore, it would be 

beneficial to confirm that the change in fluorescence which we identified 

corresponded with a significant change in MUC2 protein, by analysis of de 

novo mucin synthesis or Western blot. Future research should investigate the 

mechanism behind L. reuteri-induced change in MUC2 levels and determine 

whether ATCC PTA 6475 induced de novo mucin synthesis or enhanced 

mucus secretion, as well as the role of L. reuteri epithelial binding, cell surface 

proteins, and secreted products on mucus production.  

In the final part of this study, we determined that L. reuteri inhibited IL-8 

production by EPEC-infected intestinal epithelial cells. This is the first study to 

identify that L. reuteri ATCC PTA 6475 and ATCC 53608 can modulate the 

production of IL-8 protein by enterocytes in response to infection. As these 

anti-inflammatory effects appear to be dependent on epithelial binding, it 

would be interesting to investigate whether L. reuteri modify the innate immune 

response of intestinal samples with a compromised mucus layer. Additionally, 

future studies should assess the impact of L. reuteri on other pro- and anti-

inflammatory markers, such as IL-1β, IL-6, and IL-10 to further elucidate the 

mechanisms behind L. reuteri immunomodulation.  

In summary, the findings from this PhD demonstrate that L. reuteri ATCC PTA 

6475 and ATCC 53608 can protect the human intestinal epithelium against 

EPEC infection. These effects were particularly pertinent to ATCC PTA 6475, 

which inhibited EPEC microcolony dispersal, enhanced the levels of MUC2, 

and inhibited EPEC-induced IL-8 protein production. The characterisation of 

L. reuteri protective effects provides further evidence for the selection of these 

lactobacilli in the prevention of EPEC-induced acute infectious diarrhoea. 
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