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Abstract— 3D object retrieval has attracted extensive research 

efforts and become an important task in recent  years.  It  is  
noted that how  to measure  the relevance  between  3D  objects  
is still a difficult issue. Most  of  the  existing  methods  employ 

just the model-based or view-based approaches, which may lead 
to incomplete information for 3D object representation. In this 
paper, we propose to jointly learn the view-model relevance 

among 3D objects for retrieval, in which the 3D objects are 
formulated in different graph structures. With the view informa- 
tion, the multiple views of 3D objects are employed to formulate 

the 3D object relationship in an object hypergraph structure. 
With the model data, the model-based features are extracted to 
construct an object  graph  to describe the relationship among  

the 3D objects.  The learning  on  the  two  graphs  is conducted  
to estimate the relevance among the 3D objects, in which the 
view/model graph weights can be also optimized in the learning 

process. This is the first work to jointly explore the view-based 
and model-based relevance among the 3D objects in a graph- 
based framework. The proposed method has been evaluated in 

three data sets. The experimental results and comparison  with 
the state-of-the-art methods demonstrate the effectiveness on 
retrieval accuracy of the proposed 3D object retrieval   method. 

Index Terms— 3D object retrieval, view information, model 
data, joint learning. 

I. INTRODUCTION 

D Objects have been widely applied in plenty of diverse 

applications [1]–[3], e.g., computer graphics, the medical 

industry, and virtual reality, due to the fast advances in graphic 

hardware, computer techniques and networks. Large scale 

databases of 3D objects are rapidly increasing, which leads 
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Fig. 1.    Example views of two 3D  objects. 
 

 
to the high requirement of effective and efficient 3D object 

retrieval algorithms. 

Recently, extensive research efforts have been dedicated to 

3D object retrieval technologies [4]–[7]. Existing 3D object 

retrieval approaches can be briefly divided into two paradigms, 

i.e., model-based methods and view-based  methods. 

In model-based method [8]–[10], 3D objects are described 

model-based features, such as low-level feature (e.g. the volu- 

metric descriptor [11], the surface distribution [9] and surface 

geometry [8], [12], [13]) or high-level features, e.g. the method 

in [14]. In [14], both  visual  and  geometric  characteristics 

are taken into consideration and a high level semantic space 

mapping from the low level features is further learned with 

user relevance feedback, which is another Euclidean space  

and can be regarded as a dimension reduction or feature 

selection method.  One  advantage  of  model-based  methods 

is that they can preserve  the  global  spatial  information  of 

3D objects. Although model-based method is effective, they 

require 3D model information explicitly, which limits the 

applications of model-based methods. The 3D model infor- 

mation is not always available, especially in some practical 

applications. 

In view-based method, [15]–[17], 3D objects are represented 

by a group of images from different directions. For different 

methods, these views may be captured with a static camera 

array or without such camera array constraint. For view-based 

method, the matching between two 3D objects is accomplished 

via multiple-view matching. Figure 1 shows some examples of 

multiple views for 3D objects. The view-based methods benefit 

from existing image processing/matching technologies. These 

methods make 3D object retrieval more flexible due to that 

they do not require 3D model information. Existing works [18] 

also show that view-based method can be highly discriminative 

for 3D objects, which also provide better retrieval perfor- 

mance  than  model-based methods [3],  [19].  Compared with



 

 
 

 

Fig. 2.    The framework of the proposed  method. 

 

model-based methods, one disadvantage of view-based 

methods is that when the camera array information is not 

available, they are difficult to describe the spatial relationship 

among different views. 

One typical scenario that 3D model information is not 

available is when we want to search the objects in the world. 

For example, when the tourist finds some interesting things and 

wants to find similar ones in the dataset, it is hard to obtain the 

model information but just take several pictures. In this case, 

the model-based methods cannot work and only the image- 

based methods can be applied. For model-based  method,  

CAD is a very important area for application. Other areas 

where model-based methods work well are entertainment,  

such as 3D TV and games, and the medical field, such as tele-

medical treatment and diagnosis. It is noted that  the  visual 

information becomes more important recently in the above 

application. Both the model-information and view-based 

information can bring in useful angles, which can further 

improve the performance. 

It is noted that most of existing methods separate the model-

based methods and the view-based methods, and employ 

either model information or view feature for 3D object 

retrieval. In this work, we  propose to  jointly  employ  both 

the model and the view information for 3D object relevance 

estimation. In the view part, representative views are firstly 

selected for each object, and then the view-level distances are 

calculated. Following the method in [20], an object hypergraph 

is constructed using the view star expansion. In the model  

part, the spatial structure circular descriptor [21] is extracted 

and a simple graph is generated using the pairwise object 

distances. In this way, the view information and the model  

data can be formulated  in  two  graph  structures.  Learning  

on the two graphs is conducted to estimate the relevance 

among 3D objects, in which the graph weights can be also 

optimized. Figure 2 demonstrates the schematic framework of 

the proposed approach. Evaluation on three datasets has shown 

superior 3D object retrieval accuracy performance compared 

with the state-of-the-art methods. 

The rest of the paper is organized as follows. Related work 

on 3D object retrieval is reviewed in Section II. The proposed 

method is provided in Section III. Experiments and discussion 

are given in Section IV.  We  conclude the paper in Section   V. 

II. RELATED WORK 

In this section, we  briefly  review  existing  methods  on  

3D   object   retrieval.   To   represent   3D   objects,  low-level 

features, such as volumetric descriptor [11] and surface 

geometry    [8], [12],     and     high-level     features,     such  

as  the  method  in  [14]  were   employed   in   previous 

works. 

For model-based 3D object retrieval, the shape descriptor   

is an important role for 3D object representation. According   

to [22], 3D shape descriptors can be divided into four cate- 

gories, i.e., histogram-based method [9], [23]–[25], transform- 

based method [26]–[29], graph-based method [30]–[32] and 

view-based method [21], [33], [34]. 

In the histogram-based method, a histogram-like feature is 

extracted from the 3D model to collect numerical values of 

certain attributes. Typical histogram-based descriptors include 

shape distribution [9], generalized shape distribution [23], 

extended Gaussian image [24] and 3D Hough transform [25]. 

In transform-based method, transform coefficients are 

employed as the 3D shape descriptor, such as 3D Fourier [26], 

spherical trace transform [27], radialized extend function [28], 

and concrete radialized shperical projection [29]. The graph-

based method aims to represent 3 objects by graph structure, 

and the comparison between 3D objects turns to matching of 

two graphs. Some typical graph-based methods include reeb 

graphs [30], [31] and skeletal graphs   [32]. 

Given the 3D model,  a  spatial  structure  circular  

descriptor (SSCD) descriptor was introduced in [21], which 

projected the model information into a circular region to 

preserve the global spatial information of the 3D model. In this 

method, the histogram for each SSCD view was calculated to 

measure the distance between two 3D objects. A panoramic 

view,  named  PANORAMA,  was  employed   in   [35]   for 

3D model representation. The panoramic view was generated 

by projecting the model to a lateral surface of a cylinder in 

PANORAMA, and the distance between two models can be 

calculated by the matching between two PANORAMA images. 

Leng et al. [14] employs both the Dbuffer descriptor [36], 

which contains  6  depth  buffer  images  from  the  front, 

lateral and vertical views, and  GEDT  coefficients  [37]  as 

the descriptors. Then  these  two  descriptors  are  combined  

as TUGE descriptor, which is 982-dimension. With user 

feedback, these low level features are mapped to high level 

semantic space, which is  another Euclidean space  and  can  

be regarded as a dimension reduction or feature selection 

method. A  bipartite  graph  learning  method  is  introduced  

in [38], where the comparison between two groups of multiple 

views is formulated in a bipartite graph. A learning-based 

method for bipartite graph matching is proposed in   [39]. 



 

 

In view-based 3D object retrieval methods, how to generate 

multiple views is an important issue. Some existing methods 

employed predefined camera arrays to capture views, while 

some other works may not have such constraints. Lighting 

Field Descriptor (LFD [33] is the first view-based 3D object 

retrieval method. In LFD, each 3D object was represented by 

several groups of representative views. Each group contained 

10 views and the Zernike moments and Fourier descriptors 

were employed as the view feature. The minimal distance 

between two groups of views from two compared 3D objects 

was employed as the pairwise object  distance.  Different  

from LFD, Elevation Descriptor (ED) [34] employed six range 

views from different directions of 3D objects. The depth 

histogram was extracted to describe the EDs and the matching 

between two groups of EDs was conducted to calculate the 

distance between two  3D  objects.  18  views  were  captured 

in  Compact  Multi-View  Descriptor  (CMVD)  [18]  from the 

18 vertices of a 32-hedron. 7 characteristic views were 

generated in [40] from different directions. In the camera 

constraint free method (CCFV) [41], a set of representative 

views are selected from the originally captured multiple views 

via  view  clustering  and  a  probabilistic  matching  method  

is then employed to calculate the  similarity  between  each 

two 3D objects. 

Some other methods first generate large scale raw views, 

and further select representative views in the big view pool. 

One typical method is Adaptive Views Clustering (AVC) [15]. 

In AVC, 320 initial views were firstly captured and represen- 

tative views, generally about 20 to 40 views, were selected 

from these raw views. The comparison between 3D objects is 

formulated as a probabilistic approach to measure the posterior 

probability  of  the  target  object  given  the  query.  In  [41],  

a positive matching model and a negative matching model 

were used to measure the relevance between a target object 

and the query. This is the first attempt to explore the relevance 

of one candidate object on both positive and negative samples 

and evaluation has shown satisfied performance. 

In [42], curvature scale space was employed as the view 

descriptor, which was further combined with Zernike Moments 

to measure the distance between two 3D models. In depth 

gradient image (DGI) model [43], both the surface and the 

contour information were synthesized, which can avoid restric- 

tions concerning the layout and visibility of the models in the 

scene. 

Distance  estimation  between  two  groups  of  views   is 

one important problem in view-based 3D  object  retrieval. 

Gao et al. [44] propose a learning based Hausdorff distance  

for 3D object retrieval. In this method, a Mahalanobis distance 

metric was learnt to the view-level distance measure, which 

can be further used in the object-level Hausdorff distance 

calculation. This method solves the challenges that the  label  

is on the object level while the distance  metric  is  on  the 

view level. To estimate the relevance among 3D objects, semi-

supervised learning has been investigated in recent  years. In 

[20], a hypergraph structure was employed to formulate the 

relationship among 3D objects. In this method, the view 

clustering was conducted to generate hyperedges, which were 

used to connect 3D objects. Based on different 

view clustering results, multiple hypergraphs could be 

constructed, and learning was conducted on the hypergraph to 

estimate the relevance among 3D objects. This method further 

extends existing view-based 3D object retrieval method to 

semi-supervised learning approach, which has been justfied as 

the state-of-the-art methods. Gaussian mixture model (GMM) 

was used in [45] to formulate the distribution of  multiple 

views for 3D objects. In this method, the KL divergence was 

employed to measure the distance between two 3D   objects. 

 
III. LEARNING VIEW-MODEL JOINT RELEVANCE 

FOR 3D OBJECT RETRIEVAL 

In this section, we introduce the view-model joint relevance 

learning method for 3D object retrieval. This method explores 

both the view information and the model data of 3D objects. 

The proposed method is composed of three key components, as 

shown in Figure 2. Given the view information of 3D objects, 

the proposed method first constructs a hypergraph to formulate 

the relationship among 3D objects with the view connections. 

Then with the model data, a spatial structure circular descriptor 

is extracted from each 3D model, and the distance between 

each two  3D  models  is  used  to  generate  a  simple  graph  

to explore the relationship among 3D models. Finally, the 

learning the joint view-model graphs is conducted to estimate 

the relevance among 3D objects. 

 
A. View-Based Hypergraph Generation 

Here the view-based hypergraph is  generated  following  
the method in  [20]  and  briefly  introduced  as  follows.  Let 

O = {O1, O2, . . . ,  On } denote the n 3D objects in the dataset, 

and  Vi   =  
.
vi1, vi2, . . . , vini 

.  
denote  the  ni   views  of  the 

i th 3D object Oi . In this part, we aim to explore the relevance 
among 3D object with multiple view  information. 

Generally, although multiple views can represent rich infor- 

mation of 3D objects, they also bring in redundant data, which 

may cause much computational cost and even lead to false 

results. Here we first select  representative  views  for  each 

3D object, and only these representative views are employed 

in the 3D object retrieval  process. 

Given the ni  views Vi  = 
.
vi1, vi2, . . . , vini 

. 
of Oi , we con- 

duct hierarchical agglomerative clustering (HAC) [46] to group 

these views into view clusters. The HAC method is selected 

here due to that it can guarantee the intracluster distance 

between each pair of views cannot exceed a given threshold. 

Here the widely employed Zernike moments [47] are used as 

the view features, which are robust to image rotation, scaling 

and translation and have been used in many 3D object retrieval 

tasks [15], [20], [33], [48]. The 49-D Zernike moments are 

extracted  from  each  view  of  3D  objects.  With   the    view 

clustering results, one representative view is selected from 
each view cluster. Here we let Vi  =   

.
vi1, vi2, ..., vimi 

.
 

denote the mi representative views for Oi . In our experiments, 

mi  mostly ranges from 5 to  20. 

Hypergraph has been used in many multimedia information 

retrieval tasks, such as image retrieval [49], [50]. Hypergraph 

has shown its superior on high-order information representa- 

tion.  In  our  work,  we  propose to  employ  star expansion to 
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Fig. 3. An illustration of hyperedge construction. In this figure, there are  
seven objects with representative views. Here one view from O4  is selected  
as the centra view, and its four closest views are  located  in  the  figure,  
which are from O1, O3, O6 and O7. Then the corresponding hyperedge 
connects  O1, O3,  O4,  O6  and O7. 

 

 
construct an  object hypergraph with  views  to  formulate  the 

B. Model-Based Graph Generation 

Given the model data of 3D objects, here we further explore 

the model-based object relationship. Here the spatial structure 

circular descriptor (SSCD) [21] is employed as the model 

feature. SSCD aims to represent  the  depth  information  of 

the model surface  on  the  projection minimal  bounding box 

of the 3D model. The depth histogram is generated as the 

feature for the 3D model. Following [21], the bipartite graph 

matching is conducted to measure the distance between each 

two  3D models, i.e., dSSC D(Oi , Oj ). 
Here,  the  relationship among 3D  objects is  formulated in 

a simple object graph structure G = (V, E, W). Here each 
vertex in G represents one 3D object, i.e., there are n  vertices 

in G. The weight of an edge e(i, j ) in G is calculated by 

using the similarity between two corresponding 3D objects 

Oi and Oj as 
. 

d 
.
v , v 

.2 
.

 

relationship among 3D objects. Here we denote the object 

hypergraph as GH = (VH , EH , WH ). For  the  n  objects  in 
the  dataset,  there  are  n  vertices in  GH ,  where each  vertex 

W 
.
vi , v j 

. 
= exp 

SSC D i j 

− 
2
 

s 

, (5) 

represents one 3D object. 

The hyperedges are generated as follows. We assume there 

are totally nr representative views for all n objects. We first 

calculate the Zernike moments-based distance between each 

two views, and the top  K  closest  views  can  be  generated 

for each representative view. For each  representative  view, 

one hyperedge is constructed, which connects the objects with 

views in the top K closest views. In our experiment, K  is set  

as 10. Figure 3 shows an example of hyperedge   generation. 

Generally, nr hyperedges can be generated for GH . The 

weight of one hyperedge eH  can be calculated   by 

where dSSC D 

.
vi , v j 

. 
is distance between Oi and Oj  , and σs is 

set as the median of all modal pair   distances. 
 

 
C. Learning on the Joint  Graphs 

Now we have two types of formulation of relationship 

among 3D objects, i.e., view-based and model-based. Here 

these two formulations are jointly explored to estimate the 

relevance among 3D objects. 

In this part, first we introduce the learning framework when 

the  view-based  and  model-based  information  are  regarded 

w  (e) 
1 .

 
K 

 

exp 

. 
d(vx , vc)

2 
.

 

− 
2
 

H 

 

, (1) 
with equal weight, and then we propose a jointly learning 

framework to learn the optimal combination weights for each 

modality. 

where vc is the centra view of the hyperedge, vx is one of the 

top K closest  view to  vc, d (vx , vc) is  the distance between  

vc and vx , and σH is empirically set as the median of all view 

pair distances. 

Given the object hypergraph GH = (VH , EH , WH ), the 
incidence matrix H can be generated  by 

. 
1 if vH ∈ eH 

1) The Initial Learning Framework:  Here  we  start  from 

the learning framework which regards different  modalities, 

i.e., model and view,  as equal. The 3D object retrieval task  

can be formulated as the one-class classification work as 

shown in [51]. The main objective is to learn the optimal 

pairwise object relevance under both the graph and hypergraph 

structure. Given the initial labeled data (the query object in 
our case), an empirical loss term can be added as a   constraint 

h(vH , eH ) = (2) 
0 if vH  ∈/ eH for the  learning process.  The transductive inference can     be 

The vertex degree of vH  can be defined  as formulated as a regularization  as 

ρ (vH ) = 
.

 
 

eH ∈EH 

ω (eH ) h (vH , eH ). (3) arg min {KV ( f ) + KM ( f ) + μR ( f )} (6) 

The edge degree of eH  can be defined  as 
In this  formulation,  f  is  the to-be-learnt relevance  vector, 

ρ(eH ) = 
.

 
 

vH ∈VH 

h(vH , eH ). (4) KV ( f ) is the regularizer term on the view-based hypergraph 

structure, KM ( f ) is the regularizer term on the model-based 

The vertex degree matrix and the edge degree matrix can  

be denoted by two diagonal matrices Dv and   De. 

In the constructed hypergraph, when two 3D objects   share 

more similar views, they can be connected by more hyperedges 

with high weights, which can indicate the high correlation 

among these 3D objects. 

graph structure, R ( f ) is the empirical loss. This objective 

function aims to minimize the empirical loss and the regular- 

izers on the model-based graph and the view-based hypergraph 

simultaneously which can lead to the optimal relevance 

vector f for retrieval. The two regularizers and the empirical 

loss term are defined as follows. 



 

α 

" 

" 

. 

f = 

 

The view-based hypergraph regularizer KV ( f ) is defined 

as 

2) Learning  the  Combination  Weights:  We  noted  that the 

view information and the model information may not share the 

same impact on 3D object representation. In some   scenarios, 
1 . . wH (eHi ) h (u, eHi ) h (v, eHi ) the  view  information may  be  more  important, and  in some 

KV ( f ) = 
2

  
eH u,v ∈VH 

ρ (e Hi ) other cases, the model data may play an important role. Under 
.   

f (u) f  (v)  
.2

 

× √
ρ (u) 

− √
ρ (v) 

such  circumstances,  we  further  learn  the  optimal   weights 

for the view information and  the  model data.  In  this  part,  

we introduce the learning framework embedding the combina- 
1 . . 

= 
2

 
eH u,v ∈VH . 
f 2 (u) 

wH (eHi ) h (u, eHi ) h (v, eHi ) 
 

ρ (eHi ) 

f (u) f (v) 
.

 

tion weight learning. The objective for the learning process is 

composed of three parts, i.e., the graph/hypergraph structure 

regularizers, the  empirical  loss  and  the  combination weight 
× 

ρ (u) 
− √

ρ (u) ρ (v) 

= f T (I − ©V ) f, (7) 

regularizer. 

Here we let α and β denote the combination weights for 

view-based and model-based information respectively,  where 

1 1 
α + β  = 1.  After  addeing the l2 norm on  the  combination 

where ©H  is defined as ©H  = D
− 

2 HWD−1 H T D
− 

2 . Here weights, the objective function can be further revised  as 
v e v 

we denote 6H = I − ©H , KV ( f ) can be written as . 2 2 2
..

 

 
KV ( f ) = f T 6H f. (8) 

arg min 
f,α,β 

α f T6H f + β f T 6S f + μ" f − y" + η 
.
 + β , 

(14) 

The model-based graph regularizer KM ( f ) is defined as 

1  . .   
f (u) f (v)  

.2
 

where α + β = 1. 

The solotion for the above optimization task is provided  as 
follows. To solve the above objective function, we alternatively 

KM ( f ) = 
2

  

u,v ∈V 

w (ei ) √
d (u) 

− √
d (v) optimize f and α/β. We first fix α and β, and optimize f. Now 

the objective function changes to . . 
f 2 (u) f (u) f (v) 

.
 

= 
u,v ∈V 

w (ei ) d (u) 
− √

d (u) d (v) arg min 
.

α f T 6H f 
f 

+ β f T 6S f + μ" f − y 2
. 

(15) 

=  f T (I − ©S) f, (9) 

where ©S  = D−1/2WD−1/2. Here we denote 6S  = I   − ©S, 

According to Eq. (13), it can be solved   by 

. 
1 

.−1 

KM ( f ) can be written as f  =   I + 
λ 

(α6H  + β6S) y. (16) 

KM ( f ) = f T 6S f. (10) Then we optimize α/β with fixed f . Here we employ the 

Lagrangian method, and the objective function changes  to 

The empirical loss term R ( f ) is defined as 
 

R( f )=" f − y  2, (11) 

 

arg min 
α,β 

α f T 6H f  + β f T 6S f  + η 
.

α2 + β2
.
 

. 

 
where  y  is the initial label vector. In the retrieval process,    it 

+ ξ (α + β − 1)  . (17) 

is defined as an n × 1 vector, in which only the query is set   
as 1 and all other components are set as   0. 

Now the objective function can be rewritten  as 

2
. 

Solving the above optimization problem, we can   obtain 

f T 6H f  +  f T 6S f 

ξ = − 
2 

− η, (18) 
1 f T 6H f  −  f T 6S f 

arg min 
. 

f T 6H f + f T 6S f + μ" f − y" 

f  can be solved  by 

. (12)  

 

and 

α 
2 

− 

 
1 

 
 

4η 

 
 

f T 6S f  −  f T 6H f 

(19) 

. 
1 

.−1 β = − . (20) 

f  =   I + 
λ 

(6H + 6S ) y. (13) 
2 4η 

 

f is the relevance of all the objects in the dataset with 

respect to the query object. A large relevance value indicates 

high similarity between the object and the query. The higher 

the corresponding relevance value is, the more  similar  the 

two objects are. With the  generated  object  relevance  f, all 

the objects in the dataset can be sorted in a descending order 

according to  f. 

The above alternative optimization can be processed  under 

the optimal f  value is  achieved, which can be used  for the  

3D object retrieval. With the learned combination weights, the 

model-based and view-based data can be optimally explored 

simultaneously and the relevance vector f can be  obtained. 

The main merit of the proposed method is that it jointly 

explore the view information and the model data of 3D objects 

in hypergraph/graph frameworks for 3D object  retrieval. 



 

 
 

 
 

 
 

Fig. 4. 3D object examples in the NTU and PSB datasets. (a) Example views 
of 3D models in the NTU dataset. (b) Example views of 3D models in the  
PSB dataset. 

 

IV. EXPERIMENT 

To evaluate the proposed approach for 3D object retrieval, 

we conduct experiments on three datasets and compare our 

approach  with  state-of-the-arts  methods.  In  this  section,  

we first introduce the testing dataset, followed by compared 

methods and evaluation criteria. Then we provide the 

experimental results and comparisons. 

 
A. Testing Datasets 

In our experiments, to evaluate the performance of the 

proposed method, three datasets are employed, i.e., National 

Taiwan University 3D Model database (NTU) [33], Princeton 

Shape Benchmark (PSB) [19] and Shape Retrieval Content 

2009 (SHREC) [2]. 

The NTU dataset is composed of 500 models from 50 cat- 

egories, such as bed, car, tank, truck, and plane. For each 

category, there are 10 3D models. In the NTU dataset, each 

object has a corresponding 3D model. To generate the multiple 

views of each  3D  model, a  virtual camera array including   

60  cameras is  employed. These 60  virtual cameras are  set  

on  the  vertices  of  a  polyhedron  with  the  same  structure  

of  Buckminsterfullerene  (C60).  In  this  way,  we  can obtain 
60 views for each 3D model. The PSB dataset [19] contains 

proposed method. 
• Elevation Descriptor (ED) [34]: ED employs six range 

views as the descriptor, which contains the altitude infor- 

mation of the 3D model from six directions. The distance 

between two models is calculated by  the  matching  of 

ED descriptors. 

• Extension Ray-Based Descriptor (ERD) [52]: In ERD, 

ray-based descriptor is employed for 3D model represen- 

tation. Concentric spheres are used to extract the surface 

information, and each  sampling  surface point is  given   

a corresponding value on the nearest  sphere  surface.  

The distance between two models is measured by the 

matching of these feature  vectors. 

• Query View Selection (QVS) [53]: In QVS, the employed 

query views are incrementally selected with relevance 

feedback and a distance metric is learnt for each newly 

selected query view. 

• Hypergraph Learning (HL) [20]: In HL, the relevance 

among 3D objects is formulated in a hypergraph structure, 

where the hyperedges are generated using the view 

clustering results. Semi-supervised learning is conducted 

to learn the relevance among 3D  objects. 

• Distance Combination (DC): In DC, both the model- 

based distance and the view-based distance are employed 

for 3D object matching. This method calculates the 

model-based distance and the view-based distance first 

and further combines these two distance as the pair-wise 

3D object distance. 

• Learning View-Model Joint Relevance (VMJR), i.e., the 

proposed method. 
We have implemented ED, ERD, QVS and HL following the 

descriptions in [20], [34], [52], and [53]. In the experiments, 

for each dataset, each time one 3D model is selected as the 

query, and 3D object retrieval is  conducted in  the  dataset. 

All the 3D models are employed as the query once. The 

average results for all queries in each dataset are employed  

for comparison. 
 

C. Evaluation Criteria 

In our experiments, the following criteria are employed to 

evaluate the retrieval performance of different methods. 

• Precision-Recall Curve [15]: The Precision-Recall curve 

is able to comprehensively demonstrate the retrieval 

performance, which illustrates the precision and recall 

measures by varying the threshold for distinguishing rel- 

evance and irrelevance in model retrieval. Here Precision 

and Recall are measured according  to 

1,814 models from 161 classes. The SHREC dataset [2] 

contains 800 3D models from 40 categories.     Each  category 

Precision 
# 

= {(all relevant models) ∩ ( retrieved models)} 

contains 20 3D models. The 60 cameras used in the NTU 

dataset are employed here to capture the 60 views for each   

3D model in the PSB and the SHREC datasets. Figure 4 shows 

some example 3D objects. 

and 

Recall = 

# (retrieved models) 
 

# {(all relevant models) ∩ (retrieved models)} 
.
 

# (all relevant models) 

 

B. Compared Methods 

In our experiments, the following state-of-the-art methods 

are selected as comparison to evaluate the performance of  the 

• F-Measure (F): F-measure considers the top 20  returned 

results for each query. F-measure is defined  as: 

F 
2 × P20 × R20 

,
 

= 
P20 + R20 



 

 

where P20 and R20 are the precision and recall values of 

the top 20 retrieval  results. 

• Average  Normalized  Modified  Retrieval   Rank 

(ANMRR) [54]: ANMRR evaluates the ranking 

performance by considering the ranking order. A low 

ANMRR value indicates a high precision in top returned 

results. 

To calculate the ANMRR, we first introduce the average 

retrieval rank (ARR). Given the kth query Qk , the top 

Sk = min{4 × τk , 2 × τmax } returned results are taken 
into consideration, where τk is the number of relevant 
objects for Qk , and τmax is the maximal number of 
relevant objects for all queries. For these Sk objects, if the 

i th result is relevant to the query, the rank r (i ) is the 

ranking position; otherwise r (i ) = S + 1. The ARR is 
accordingly calculated as 

τk 

ARR (Qk ) = 
.

 

i=1 

r (i ) 

τk 

 
. (21) 

The modified retrieval rank (MRR) can be calculated 

according to 

MRR (Qk ) = ARR (Qk ) − 
τk 

2  
− 0.5. (22) 

Then the MRR can be normalized to obtain the normal- 

ized MRR (NMRR) as 

MRR (Qk ) 
NM RR (Qk ) = 

S τk 
. (23) 

k − 2  + 0.5 

The ANMRR can be obtained by averaging the NMRR 

values of all queries  as 

1 
AN M RR = 

n
 

nq 
. 

NM RR (Qk ), (24) 
q  

k=1 

where nq  is the number of  queries. 

 

D. Experimental Results 

Figure 5 provides the Precision-Recall curves on the NTU, 

SHREC and PSB datasets for different compared methods. 

Figure 6 illustrates the quantitative measures on the three 

datasets respectively. As shown in these results, the proposed 

VMJR method can outperform all other  compared  method 

and achieve the best 3D object retrieval results. From the 

experimental results, we can obtain the following observations. 

• The   view-based   methods    can    achieve    better 

results    than    model-based     method.     As     shown  

in Figure 5 and Figure 6,  QVS  and  HL   outperform   

ED  and  ERD.  For  example,   in   the   NTU   dataset, 

HL achieves a  gain  of  95.53%  and  66.30%  in  terms 

of the F  measure  and  a  gain  of  20.13%  and  16.38% 

in terms of the ANMRR measure  compared  with  ED 

and ERD, respectively. Similarly, in the SHREC dataset, 

HL achieves a gain of 49.04% and 58.70% in terms  of 

the F measure and a gain of 28.63% and  28.10%  in 

terms of the ANMRR measure compared with ED and 

ERD, respectively. Similar conclusion can be found in 

the PSB dataset. This advantage of view-based   methods 

 
 

Fig. 5. Performance comparison of compared methods in terms of PR curves 
in the NTU, SHREC and PSB datasets. (a) PR curves in the NTU dataset. 
(b) PR curves in the SHREC dataset. (c) PR curves in the PSB dataset. 

 

can be dedicated to the highly discriminative information 

of multiple views for 3D object  representation. 

• Compared with model-based methods, the proposed 

VMJR method achieves better results. on retrieval accu- 

racy. For instance, in the NTU dataset, VMJR achieves a 

gain of 120.61% and 87.63% in terms of the F measure 

and a gain of 32.38% and 29.20% in terms of the 

ANMRR measure compared with ED and ERD, respec- 

tively. Similarly, in the SHREC dataset, VMJR achieves a 

gain of 61.22% and 71.66% in terms of the F measure and 

a gain of 34.87% and 34.38% in terms of the ANMRR 

measure compared with ED and ERD, respectively. Sim- 

ilar conclusion can be found in the PSB dataset. The 

proposed method employed both the view information 

and   the   model   data   for   3D   object   representation. 



 

 
 

 
 

 
 

 

 
 

Fig. 6. Performance comparison of compared methods in terms of F and 
ANMRR in the NTU, SHREC and PSB datasets. (a) F and ANMRR in the 
NTU dataset. (b) F and ANMRR in the SHREC dataset. (c) F and ANMRR   
in the PSB dataset. 

 
 

By jointly exploring the two  parts  of  information  in  

the hypergraph/graph structure, the proposed method can 

achieve better 3D object representation, which further 

leads to better 3D object retrieval  performance. 

• Compared with QVS, the proposed VMJR can achieve 

better performance. VMJR achieves a gain of 40.00%, 

17.13% and 16.08% in terms of the F measure and a gain 

of 25.82%, 16.70% and 18.00% in terms of the ANMRR 

measure compared with QVS in the NTU, SHREC and 

PSB datasets, respectively. The proposed method benefits 

from the joint graph formulation and the richer 3D object 

information. 

• In comparison with HL, the proposed method outper- 

forms HL in all datasets. VMJR achieves a gain of 

12.82%, 8.16% and 10.89% in terms of the F  measure 

and a gain of 15.34%, 8.73% and  14.78% in  terms of  

the ANMRR measure compared with QVS in the NTU, 

SHREC2009  and  PSB  datasets,  respectively.   Both  

HL  and  VMJR  employ  graph-based  learning  method, 

 
 

Fig. 7. Performance comparison of the proposed method with and without 
weight learning in terms of  F  and  ANMRR  in  the  NTU,  SHREC  and  
PSB datasets. 

 

while the proposed VMJR considers not only the view 

information but also the model data and formulates them 

in two different structures. VMJR can explore more 

complete information and learn better object relevance 

through the joint graph structures. 

• Compared with DC, the proposed method achieves better 

accuracy in 3D object retrieval. More specifically, VMJR 

obtains a gain of 18.96%, 12.17% and 13.75% in terms of 

the F measure and a gain of 18.92%, 13.59% and 16.60% 

in  terms  of  the  ANMRR   measure   compared   with 

DC in the NTU, SHREC2009 and PSB datasets, respec- 

tively. These results can demonstrate that the proposed 

VMJR can explore the joint view-model information 

better. 

• It is noted that when the query is outside of the database, 

we need to further embed it into the existing graph 

structure. First we can obtain the graph structure of the 

entire database. When a new object comes, the similarity 

between the object and other objects is  calculated and  

the new graph structure should be generated. It  is  quite  

a hard task to automatically update the graph structure, 

which is our future  work. 
 

E. On the Graph Weights 

In this subsection, we further  evaluate  the  influence  of 

the graph weights α and β for the hypergraph part and the 

graph part. α and β are used to balance the impact of view 

information and model data in 3D object representation and 

relevance estimation. A large α value will lead to focus on 

view information more than model data, while a small α value 

will make the proposed method focus on model data more 

than view information. It is noted that for different 3D object 

data, the view information and the model data can have varied 

influence. 

Figure 7 shows the comparison of the proposed method with 

equal weighting, in  terms  of  F  and  ANMRR.  As  shown in 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8. Performance comparison with respect to the variation of μ  of 
compared methods in terms of F and  ANMRR  in  the  NTU, SHREC and 
PSB datasets. (a) In the NTU dataset. (b) In the SHREC dataset. (c) In the 
PSB dataset. 

 

 

the results, with the learnt weights, the proposed method can 

achieve better 3D object retrieval performance than that using 

equal weighting. 

 
F. On  Parameter μ 

In this subsection, we evaluate the influence of the para- 

meter μ on  the 3D  object retrieval performance. μ is  used   

to modulate the effects of the loss term.  Here  we  vary  μ 

from 0.01 to 1000, and the performance on F and ANMRR     

is shown in Figure 8. As shown in the results, the proposed 

method can  achieve  satisfactory  results  when  μ  varies  in  

a large range. When μ is  too  small,  the  regularization  on 

the graph/hypergraph structures will dominate the learning 

process. When μ is too large, the influence of the regular- 

ization on the graph/hypergraph structures will be   decreased. 

Experiments show that μ = 10 is a good selection for the 
retrieval performance. 

 
G. Comparison With the Reported Results 

of State-of-the-Art Methods 

In this part, we further compare  the  proposed  method  

with the reported results on the NTU and the PSB dataset. 

Figure 9 shows the comparison on the two datasets, where   

the results from other compared methods are obtained directly 

from the reported performance in the corresponding  papers. 

CCFV [41] captures a group of multiple views and then 

select  a  set  of  representative  views  via  view  clustering.   

A probabilistic matching method is then employed to calculate 

the similarity between each two 3D objects. In GMM [45],   

the features of the views are formulated in a Gaussian Mixture 

 
Fig. 9. Performance comparison with the reported results in the NTU and  
PSB datasets. (a) F and ANMRR in the NTU dataset. (b) F and ANMRR in 
the PSB dataset. 

 
 

modal,  and  the  Kullback  Leibler   divergence   between   

two GMMs is calculated to measure  the  distance  between 

two 3D objects. In the visual-topic-model method (VTM) [55], 

latent dirichlet allocation is employed to formulate the visual 

feature of multiple views, and the Kullback Leibler divergency 

is used to measure  the  distance  between  two  3D  objects.  

As  shown  in  these  results,  the  proposed  method  is  able  

to achieve better results in comparison with the reported state-

of-the-art methods. 

 

 
 

H. Computational Cost 
 

In  this  part,  we  analyze   the   computational   cost   of  

the proposed method.  According  the  algorithm  introduced 

in Section III, the computational cost comes from three parts, 

i.e., the generation of view-based hypergraph, the generation of 

model-based graph, and the learning on the joint graphs. For 

the generation of view-based hypergraph, the computational 

complexity is O(nnav), where nav is the average number of 

views for each object. The computational cost for the model- 

based graph generation is O(n). The computational cost for the 

learning procedure scales as O(n3t), where t is the iteration 

times, which is around 10 in our   experiments. 

Figure 10 shows the computational cost for the proposed 

method in the three testing datasets, where the experiments 

were conducted on a PC with i52.4GHz CPU and 16GB 

memory. As shown in the results, the running time for each 

query increases when the dataset becomes larger, but the time 

is affordable in practice. 



 

 
 

 
 

Fig. 10. The running time of the proposed method in the NTU, SHREC and 
PSB datasets. 

 

 
V. CONCLUSION 

In this paper, we propose a joint view-model relevance 

learning method for 3D object retrieval. This method employs 

both the view information and the model data of 3D objects   

to jointly learn the relevance among 3D objects in hyper- 

graph/graph structures. For the view information, an object 

hypergraph is generated by using the  view  star  expansion. 

For the model data, an  object  graph  is  constructed  using  

the pairwise object distances. The learning on the graphs is 

conducted to estimate the object relevance, which can be used 

in 3D object retrieval. Evaluations on NTU, SHREC and PSB 

datasets are provided to show the superior results on retreival 

accuracy in comparison with the state-of-the-art  methods. 

The proposed method is flexible to the 3D object data. When 

both the view information and the model data are available, it 

can employ all of them in the framework. When either the view 

information or the model data is not available, the proposed 

method can degrade to a single modal method, which can just 

employ the view content or the model feature  individually. 
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