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Abstract— We    present   a    novel    spatiotemporal   saliency 
detection method to estimate salient regions in videos based on 

the gradient flow field and energy optimization. The proposed 
gradient   flow   field   incorporates   two   distinctive   features: 
1) intra-frame boundary information and 2) inter-frame motion 

information together  for  indicating the  salient  regions.  Based 
on the effective utilization of both intra-frame and inter-frame 
information in the gradient flow field, our algorithm is robust 

enough  to  estimate  the  object  and  background  in  complex 
scenes  with  various  motion  patterns  and  appearances.  Then, 
we introduce local as well as global contrast saliency measures 

using  the  foreground  and  background  information  estimated 
from the gradient flow field. These enhanced contrast saliency 
cues uniformly highlight an entire object. We further propose a 

new energy function to encourage the spatiotemporal consistency 
of the output saliency maps, which is seldom explored in previous 
video saliency methods. The experimental results show that the 

proposed algorithm outperforms state-of-the-art video saliency 
detection methods. 

Index  Terms— Video  saliency, energy  optimization, gradient 

flow field, spatiotemporal saliency energy. 
 

I.  INT RODUCT ION 

HE  human  vision  system  is  remarkably  effective  in 

selecting visually important regions in its visual field. 

This cognitive process enables humans to easily interpret 

complex scenes in real time without training. Saliency detec- 

tion is originally a task of predicting scene locations where 

a human observer may fixate [3], [9]. Recently, it has been 

extended to detect the salient object, which is the focus of 

our paper. The output of salient object detection is usually a 

saliency map where the intensity of each pixel represents the 

probability of that pixel belonging to the salient object. Over 

the last few decades, salient object detection has gained much 

attention for its wide applications, such as unsupervised image 
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segmentation [35], [36], image retargeting [13], [23], [24], 

object recognition and detection [31], [34], [42], video 

compression [41] and summarization [30], [32]. 

The  task  of  salient  object  detection  for  still  images  is 

to  identify  the  most  salient  and  attention-grabbing object 

in a static scene. To accomplish this, many image saliency 

algorithms have been proposed. These methods in general can 

be categorized as either bottom-up or top-down approaches. 

Top-down approaches [12], [19], [26], [27], [47] are goal- 

directed and require an explicit understanding of the context 

of  the  image. Supervised learning with  a  specific class  is 

therefore a frequently adopted principle. Most of the saliency 

estimation methods are based on bottom-up visual attention 

mechanisms, which are independent of the knowledge of the 

content in the image and utilize various low level features, 

such as intensity, colour and orientation. 

While  image  saliency  detection  has   been  extensively 

studied, computing spatiotemporal saliency for videos is  a 

relatively  new  problem.  For  saliency  detection  in  videos, 

the motion cues of objects provide indication for the visual 

foregrounds; however, various background motions also bring 

difficulties for locating the motion objects. There are a few 

methods [7], [8], [11], [14], [20], [37], [50] designed for video 

saliency till now and most of them simply add the motion 

feature to  image saliency models (e.g., [7], [8], and  [37]) 

to cope with the extra temporal dimension. Additionally, these 

methods generally neglect the fact that video saliency should 

be  spatiotemporally consistent,  i.e.,  the  saliency  values  of 

foreground/background regions should not  change dramati- 

cally along the time axis. Most of these methods process the 

input video in a frame-by-frame basis without a measure for 

global saliency computation across the whole video sequence. 

Real spatiotemporal processing should design a global saliency 

algorithm with the consideration of space-time consistency. 

Perceptual research  [2],  [4],  [5]  indicates  that  the  most 

important  factor  in  low-level  visual  saliency  is  contrast; 

an assumption, called contrast prior, is used in  almost all 

bottom-up saliency detection methods, no matter for image 

saliency  [6],  [9],  [17],  [28],  [29],  [38],  [51]  or  video 

saliency [7], [8], [15], [16], [33], [49]. This fundamental 

assumption states that a pixel/patch is salient if its appearance 

is high contrast within a certain context. Although these 

contrast prior based methods have achieved success in their 

own aspects, a few commonly noticeable and critically influ- 

encing issues still exist. Typically, these methods detect only 

high-contrast edges and have their difficulty in highlighting the 

entire object uniformly, attenuating the smooth object interior.
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Another related issue is to choose an appropriate surrounding 

context range. Too large a surrounding range causes difficulty 

in  distinguishing among similar  colors  in  both  foreground 

and background, while the opposite approach leads to object 

attenuation. 

Aiming  to  solve  these  open  problems,  we  propose  a 

novel saliency optimization framework for detecting salient 

objects in videos. Firstly, we address these problems with the 

proposed   gradient   flow  field   utilizing   different   distinc- 

tive features. According to the famous feature integration 

theory (FIT)  proposed by  Tresiman and  Gelade  [1],  basic 

visual features such as motion and edges are processed at the 

human pre-attentive stage for visual attention. Following this 

theory, our gradient flow field deeply incorporates edge and 

motion features, which considers different foreground motion 

patterns, resists wrong motion estimation and indicates the 

locations of salient areas. Benefiting from the estimation for 

foreground and background, we further introduce local as well 

as global contrast saliency measures, which are able to remedy 

the shortcoming of contrast prior based methods and uniformly 

highlight an entire object. Finally, we present a spatiotemporal 

energy function to encourage the spatiotemporal consistency 

of the saliency maps, which is critical for video saliency 

detection. The source code of this work will be available at.1 

Compared to the existing approaches, the proposed method 

offers the following contributions: 

•   A novel video saliency detection method is proposed for 

automatically locating the visual foregrounds with a low 

constraint on their appearances and motion patterns. 

•   We propose a gradient flow field, which deeply incorpo- 

rates intra-frame and inter-frame information to efficiently 

detect the salient regions. 

•   A spatiotemporal saliency energy function is presented to 

encourage the spatiotemporal consistency of the output 

video salience maps. 

 
II.  RELATED WORK 

We  now  briefly review  previous  work  along  two  lines: 

bottom-up image saliency and video saliency, as our work is on 

bottom-up salient object detection method for video sequences. 

Bottom-Up Image Saliency: Image saliency has been exten- 

sively  studied  for  decades.  Instead  of  surveying the  large 

volume of literature, we focus on recent works of bottom-up 

image  saliency  that  are  most  related  to  our  method,  and 

analyze their properties and limitations. Bottom-up approaches 

resemble mechanisms in pre-attentive vision and are largely 

independent of the knowledge of content in the image. These 

saliency methods can be broadly classified into two categories: 

frequency-domain methods and spatial-domain methods. 

For frequency-domain methods, it is usually assumed that 

globally less frequent features are more salient, and frequency 

analysis is carried out in the spectral domain. For example, 

Hou and Zhang [28] proposed a saliency detection algorithm 

using spectral residual on the log spectra representation for 

images.  Guo  et  al.  [16]  claimed  that  the  phase  spectrum 

of   the   Fourier   transform  is   the   key   in   obtaining  the 
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location  of   salient   regions.  Later,  Achanta  et   al.   [22] 

introduced   a    frequency-tuned   approach    to    estimating 

center-surround contrast using color and luminance features. 

Fang et al. [10], [13] introduced saliency models in compressed 

domain for adaptive retargeting. 

Our   method   detects   saliency   in   the   spatial-domain. 

Spatial-domain usually adopt several visual cues (color, 

contrast, etc.) for salient object detection. As one of the earliest 

methods, Itti et al. proposed a saliency model based on the 

neuronal architecture of the primates’ early visual system [29]. 

Specifically, they proposed a  set  of  center-surround opera- 

tions as local feature contrast in the color, intensity, and 

orientation. These visual features are then linearly combined 

to  generate the  final saliency map. Based  on  Itti’s  model, 

Walther and Koch [31] created SaliencyToolBox (STB) and 

Gao et al. [6], [7] further utilized the center-surround 

mechanism  for  both  image  and  video  saliency  detection. 

Harel et al. [27] developed a saliency detection model by using 

a graph-based dissimilarity measure. In [38], Goferman et al. 

built a content-aware saliency detection with the considera- 

tion of the contrast from both local and global perspectives. 

Klein and Frintrop [40] presented a framework for saliency 

detection based  on  the  efficient fusion of  different feature 

channels and the local center-surround hypothesis. In [48], 

Cheng et al. aimed at two saliency indicators: global appear- 

ance  contrast  and  spatially  compact  distribution. Recently, 

several  methods  [46],  [51]  exploited  some  information of 

the background, called boundary prior. These methods treat 

image boundaries as background, further enhancing saliency 

computation. 

Video Saliency: Video saliency detection aims to identify the 

most salient object from video sequences. To the best of our 

knowledge, there are only a few methods specifically designed 

to address this problem till now, and most of them are based 

on bottom-up mechanisms. Different from image saliency 

detection, moving objects catch more attention of human 

beings than static ones, even if the objects have large contrast 

to their neighbors in static images. In other words, motion is 

the most important cue for video saliency detection, which 

makes deeper exploration of the inter-frame information 

crucial. The existing methods, however, usually build their 

system with a simple combination of image saliency models 

with  motion  cues.  For  example,  Gao  et  al.  [7]  extended 

their  image  saliency  model  [6]   by  adding  the   motion 

channel for  prediction of  human eye  fixations in  dynamic 

scenes  based  on  the  center-surround hypothesis. Similarly, 

Mahadevan and  Vasconcelos [8]  combined center-surround 

saliency with the dynamic textures for spatiotemporal saliency 

using the saliency model in [6]. In [37], Seo et al. computed 

the so-called local regression kernels from the given video, 

measuring the likeness of a pixel (or voxel) to its surrounding. 

They extended their model for video saliency detection 

straightforwardly by  extracting a  feature  vector from  each 

spatiotemporal 3D cube. Recently, Rahtu et al. [20] used a 

statistical framework and local feature contrast in illumination, 

color,  and  motion  for  formulating  final  saliency  maps. 

Fu  et  al.  [49]  proposed  a  cluster-based  saliency  method, 

where three visual attention cues: contrast, spatial, and global
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Fig. 1.    Illustration of our saliency estimation steps. (a) Two frames from different input videos; (b) optical flow fields v of frames in (a); (c) the optical 
flow gradient magnitude M o  of v by (2); (d) abstraction of frames in (a) through SLIC; (e) the color gradient magnitude M c  of abstraction in (d) by (1); 
(f) spatiotemporal gradient field M by combining M c  and M o ; (g) our saliency detection results computed by the gradient flow field. 

 

correspondence, are devised to measure the cluster saliency. 

Zhou et al. [33] adopted space-time saliency to generate a 

low-frame-rate video from a high-frame-rate input using 

various  low-level  features  and  region-based  contrast 

analysis. Nevertheless, these approaches process the input 

video  sequence  in  a  frame-by-frame  basis,  ignoring  the 

fact that video saliency maps should be spatiotemporally 

consistent. It can be seen that video saliency detection is still 

an emerging and challenging research problem to be further 

investigated. 
 

III.  OUR APPROACH 

The   goal   of   our   work   is   to   produce   the   accurate 

into superpixels Rk = { Rk,1 , Rk,2 , · · · }, and the corresponding 

abstraction of frame Ik  is denoted by I ×     (see Fig. 1(d)). Then 

we compute the color gradient magnitude M c  of abstraction 

frame I ×     at position x(x , y): 

M c (x) = ∗∇ I × (x)∗.                              (1) k                       k 

We adopt the large displacement motion estimation 

algorithm [39] to  compute the optical flow. Let  vk   be the 

optical flow field of Ik , we then compute the magnitude of 

the gradient of vk : 

M o                       
k
 

k (x) = ∗∇ v (x)∗.                              (2) 

The color gradient magnitude M c  and optical flow gradient

spatiotemporal saliency maps, where the objects of interest are 

discovered and the foreground and background are separated 

over  the  whole  video.  Our  method  has  three  main  steps: 

magnitude M o  are integrated into a spatiotemporal gradient 
field Mk  of frame  fk  as follows: 

  
M c                                                o                                      o

saliency estimation, saliency cues refinement and spatiotem-
 

Mk (x) =
 k 

(x) · (1 − ex p(−λ · M
k 

(x)))    if  max(M
k 

) > 1;

 

poral saliency optimization. 

 
A. Saliency Estimation 

Given an input video sequence, we first obtain the super- 

pixels for each frame to preserve the initial structure elements 

of video contents, while the undesirable details are efficiently 

simplified  and  ignored.  Strong  edges  or  contours  in  the 

frame are preserved as boundaries between superpixels. These 

boundaries and discontinuities reveal the important content of 

the video frame (see bottom image of Fig. 1(e)). However, 

the  color  discontinuities  are  not  discriminative  enough  in 

a  complex scenario with  highly textured background areas 

(see top image of Fig. 1(e)). Motion information can be 

reasonably assumed to contribute to salient region detection, 

since the pixels which change abruptly in the optical flow 

field often attract more attention by people (see top image 

of Fig. 1(b)). Nevertheless, motion information alone is insuf- 

ficient for identifying the salient regions since the moving 

objects may have very small optical flow, or the background 

is dynamic (see bottom image of Fig. 1(b)). 

According  to  the  aforementioned analysis,  we  integrate 

both discontinuity and motion information into our saliency 
optimization framework, which is more reliable than either 

alone. Let I =  { I1 , I2 , · · ·} be a set of frames of the input 

video I. We first apply the SLIC [25] to abstract each frame Ik 

M c                                                                                        o 
k (x)                                            if  max(Mk ) ≤ 1. 

(3) 
 

In practice, we have found that M o has more discriminative 

ability when max(M o )  > 1. Therefore, an exponential func- 

tion is employed to emphasize M o . λ is a scaling factor for the 

exponential function, and we set λ = 1 in all our experiments. 

When max(M o )≤1,  the scene is nearly static and the very 

small optical flow is not discriminative. Fig. 1(c) shows the 

optical flow gradient magnitude M o between two frames from 

different videos. From the top one we can find that it is very 

helpful to reveal the moving object when the max value of M o 

is larger than 1. When the object is nearly static, e.g., the boat 

in Fig. 1 is moving slowly, M o  is very small and becomes 
less effective (see the bottom image of Fig. 1(c)). Clearly, the 

spatiotemporal gradient field (see Fig. 1(f)) is able to reveal 

the locations of visually important regions, which are better 
compared to considering either color discontinuities or motion 

information only. Based on this effort, we present an efficient 

and robust saliency estimation algorithm in the following. 

We can imagine that many flows start from the four sides 

of the frame and end at the opposite sides along the vertical/ 

horizontal directions (see Fig. 2(a)). When the flow passes 

through the current frame, the value of the flow will increase 

with the value of the corresponding spatiotemporal gradient 

field. Let  the  size  of  the  frame  Ik   be  n × m,  we  define
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Fig. 2.    Illustration of our gradient flow field using (6) and (7). (a) Gradient 
flows start from the four sides of the frame and end at the opposite sides 
along the vertical/horizontal directions. When the flow passes through the 
spatiotemporal gradient field, the value of the flow will increase. (b) Four 
value maps VF (x) correspond to four kind of flows along different directions 

through (6). (c) Gradient flow field computed by (7). 

 
a gradient flow F l  from the left side of Ik  to the right side as 
follows: 

some noisy points. That is because the gradient flow only 

considers all  the  points in  the  same  straight line,  and the 

gradient flow cannot pass these noisy points. Therefore, we 

redefine our definition of the gradient flow in (6) as follows: 

VF l (x) = M (x) + min(VF l ((x − t , y − 1)), 

. . . , VF l ((x , y − 1)), 

. . . , VF l ((x + t , y − 1))).     (8) 
 

In this way, a gradient flow considers all the surrounding 

(2t + 1) gradient flows. (6) can be viewed as a special case 

of (8) when t = 0. Fig. 3 gives an illustration of gradient flow 
fields computed by (7) and (8) with different values of t . When t 

∈ {1, 2, 3}, the estimation for the visual importance map by the 
gradient flow field is more correct than the estimated one when 

t = 0. However, the performance of the gradient flow field will 
decrease when the value of t  increases too much. That is 
because more object boundaries are ignored when more gradient 
flows are taken into account (see Fig. 3(e) and (f)). Therefore, 
we set the value of t as 2 in all our experiments. 

We then average the gradient flow field in a region level. 

Given the gradient flow field Tk of Ik , we can get the following 
R

F 
l  = {fl }m 

= {(i, j )}m 
,  1 ≤ i ≤ n.             (4)

 region-averaged gradient flow field Tk  :

j   j =1 j =1   
xr ∈ Rx Tk (xr )

A left-to-right gradient flow F l  contains all the pixels in 

the same row of the frame. Similar to the definition of F l , we 

define right-to-left gradient flow F r, top-down gradient flow
 

 

 
 

where  Rx
 

k  (x) = k 

| Rx | 
,                   (9)

 

F t  and down-top gradient flow F d : 
k    indicates  the  region  that  pixel  x  belongs  to, 

xr  indicates the pixels in region  Rx , and | Rx | denotes the

k                    k 

r  m                                              m                                                                                                                                                                            R

F r  = {f j } j =1  = {(i, m − j + 1)} 
 

j =1 ,  1 ≤ i ≤ n, number of pixels in region Rx . Then we normalize Tk    with

F t  = {ft }n
 = {(i, j )}n

 ,  1 ≤ j ≤ m, 
values in [0, 1]. 

Our gradient flow field can obtain satisfying results in most

F d  = {fd }n 
= {(n − i + 1, j )}1 

,  1 ≤ j ≤ m.    (5)
i   i =1 i =n situations, while it will introduce inaccurate saliency results

For   frame   Ik ,   the   pixels   in   the   path   of   flow   F 

(e.g. left-to-right gradient flow f l ) will be I F  = { Ik (f
l )}m      = 

k                    j     j =1 

when the optical flow is not correct. As shown in Fig. 4(b), 

the top image shows an example of the optical flow gradient 

magnitude M o  with acceptable motion estimation. While the

{ Ik (i, j )}
m

 .  We  then  formulate the  value  of  the  flow at motion estimation in the bottom one is incorrect, this situation

position x(x , y) as follows: 
 

y                           y 

VF l (x) = VF l ((x , y)) = 
      

M (fl ) = 
      

M ((x , j )) 

makes  the  corresponding  spatiotemporal  gradient  field  M 

(see the bottom image of Fig. 4(c)) unreliable. Fig. 4(d) shows 

our gradient flow field based saliency results corresponding to

j =1 j =1 two adjacent frames. Two saliency maps are quite different -

= M (x) + VF l ((x , y − 1)).                               (6) 

The value of a left-to-right gradient flow F l  will increase 

when  it  passes  through  the  spatiotemporal  gradient  field 

(see Fig. 2(b)). Based on the gradient flow, we build a gradient 

flow field T as follows: 
 

T (x) = min(VF l (x), VF r (x), VF t (x), VF d (x)) 

= M (x) + min 
 

VF l ((x , y − 1)), VF r ((x , y + 1)), 

the top one is more accurate than the bottom one. That is 

because of the unsatisfactory optical flow estimation for the 

bottom frame. 

For  an  input  video  sequence,  we  can  observe  that  the 

visual backgrounds are consistent between adjacent frames. 

Therefore, we can safely assume that the visual background 

regions in one frame are also not salient in the next frame. 

Based on this assumption, we first rewrite (1) as follows:

c             ×                                                           R

M c          

      
· ∗∇ Ik (x)∗    if Tk−1 (x) < η;  

(10)
VF t ((x + 1, y)), VF d ((x − 1, y))  .

 
k (x) = 

∗∇ I ×                                                                               R



 

R 

k−1 

ε o 

 

(7) 

From (7), we can find that the value of T at x is the value 

of M at x by adding the minimum value of its 4-neighbors. 

Fig. 2(c) shows that our gradient flow field T  can correctly 

estimate the visually important regions. However, the gradient 

flow field T will be influenced by the outlier of its neighbors 

k 
(x)∗         if T

k−1 
(x) ≥ η. 

That means we will decrease the color gradient magnitude at 

position x in current frame Ik  by multiplying εc  (εc  ∈ [0, 1]), 
when  the  visual  importance  at  position  x  is  less  than 

η (η ∈ [0, 1]) in previous frame Ik−1 . Similarly, (2) is rewritten 

as: 

M o          

       
· ∗∇ vk (x)∗    if T

k−1 
(x) < η;

because we only consider 4-neighbors. T  is also sensitive to k (x) = ∗∇ vk (x)∗          if T R 
(11) 

(x) ≥ η.
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Fig. 3.   Our gradient flow field and saliency maps generated by previous representative contrast prior based methods. (a)-(f) Our gradient flow fields computed 
by (7) and (8) with different values of t . 

 

 
 
 

Fig. 4.    Illustration of our performance when the optical flow is inaccurate. (a) Two adjacent frames Ik−1   and Ik  from the input video. (b) Optical flow 

gradient magnitude M o  via (2). From the bottom image we can find that the motion estimation is incorrect. (c) Corresponding spatiotemporal gradient field 
M to (b). (d) Our gradient flow field based saliency map for frames Ik−1  and Ik  by (9). (e) Spatiotemporal gradient field M with refined M c  by (10) and 

M o  by (11), which is better than (c). (f) More correct saliency results from (e). (g) The dark regions indicate the virtual background regions. (h) Our saliency 

map SC  combining global and local saliency cues by (17). 

We  set  the  value  of  parameter η  as  0.2.  It  means  that 

the pixel/region is seen as visual background when its 

corresponding value in the gradient flow field is less than 0.2. 

We use the set Bk  to indicate the background regions in the 

k-th  frame.  Fig.  4(g)  shows  examples for  the  background 

region  Bk .  Fig.  4(f)  shows  our  gradient  flow  field  based 

saliency  map  using  (10)  and  (11).  Comparing  with  the 

results in Fig. 4(d), the results in Fig. 4(f) give a significant 

improvement. Although a part of foreground is not salient, 

it is observed that the objects and backgrounds are roughly 

separated. In the next step, we will further introduce global 

and local saliency measures to generate more uniform saliency 

maps by utilizing this property. 
 

B. Saliency Cues Refinement 

Local Saliency Cue:  Many works [6], [9], [17], [28], [29], 

[38], [51] use the region contrast against its surrounding scales 

as a saliency cue, which is computed as the summation of its 

color differences from other regions and weighted by their 

spatial distances. In this way, the contrast saliency cue for 

superpixel Rk, p  in frame Ik  can be written as 

|Rk | 

C ( Rk, p ) =  
      

φ( Rk, p , Rk, p× ) ∗ ck, p − ck, p×  ∗2 ,    (12) 

p× =1 

where ck, p   and ck, p×    are colors of regions  Rk, p   and  Rk, p× 

respectively.  φ( Rk, p , Rk, p× )    =    ex p{− D( Rk, p , Rk, p× )/σ 2 } 

controls    the    spatial    influence    between    two    regions 

Rk, p   and  Rk, p× .  D( Rk, p , Rk, p× )  is  a  square  of  Euclidean 

distance between region centers of Rk, p  and Rk, p× . 

With the φ( Rk, p , Rk, p× ) term, close regions have a larger 
impact than distant ones. Parameter σ  controls the range of 

neighborhood. Clearly, (12)  measures color  contrast of  all 

the surrounding regions. However, some limitations of this 

region contrast based saliency measure are obvious. The first 

one is that the regions distinct from the surrounding should 

be highlighted not matter whether this region belongs to the 

foreground or the background. Secondly, this strategy causes 

the  object  attenuation  problem.  Thirdly,  the  parameter  σ , 

which is the particular scale threshold and quite important 

for  the  contrast  based  saliency  cue,  is  difficult  to  set  a 

suitable value. If  σ  is  large, all regions will be compared 

in  a  near-global  manner.  When  σ   is  set  a  small  value, 

small  and  unsuitable  neighborhoods  will  be  considered. 

In previous approaches, the value of σ  is manually set. This 

illustrates that the definition of the range of the neighborhood 

is not clear, which needs to be further exploited. These 

limitations are mainly because that this saliency measure lacks a  

method to confirm where the surrounding background is.
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Fig. 5.   Comparison between our proposed surrounding background contrast 
based saliency measure with traditional contrast prior based saliency measures. 

Global Saliency Cue: The surrounding background contrast 

measure  is  a  kind  of  local  saliency  cue,  which  considers 

the averaged distance between a region and surrounding 

backgrounds. We  further  define a  global  saliency  measure 

of a superpixel as the length of its shortest distance to the 

virtual backgrounds. The distance between any two  super- 

pixels  Dg ( Rk, p , Rk, p× )  considers the color distance and the 

gradient flow field distance, which is defined as 
 

Dg ( Rk, p , Rk, p× ) 
w−1

(a) Input frame. (b)-(d) Saliency maps computed by different state-of-the-                                                                                          R                  R 

art contrast prior based methods: Hou and Zhang [28], Itti et al. [29] and
 min 

r            ,r , 
∗ ci − ci +1 ∗2 · exp (|Tk  (ri ) − Tk  (ri +1 )|),

1 = Rk, p    2

Goferman et al. [38]. (e) Saliency maps computed by our local saliency cue 
with (12). 

...,rw = Rk, p×   
i =1

 

s.t. superpixel ri  and ri 

 

+1  are adjacent,                          (15)

where ci (T R (ri )) and ci ×     (T R (ri +1 )) are the gradient flow field
 

k                                 k
A  few  examples  for  these  aforementioned limitations  are 

illustrated   in   Fig.   5(b)–(d),   which   shows   the   saliency 

results generated by three representative contrast prior based 

methods [28], [29], [38]. In order to overcome these 

disadvantages, we reintroduce the foreground-background 

contrast assumption into the saliency detection problem by 

using our gradient flow field to effectively detect background 

regions. We assume that a region highly different from its 

surrounding background is  salient.  The  enhanced  saliency 

measurement, called surrounding background contrast, is 

defined as 

values of regions ri  and ri +1  respectively. The distance Dg can 

be efficiently solved by Johnson’s algorithm [18]. The global 
saliency cue gC ( Rk, p )  of a superpixel Rk, p  is the shortest 

distance from Rk, p  to the background superpixels Bk , which 

is offered by our gradient flow field. 
 

gC ( Rk, p )     min Dg ( Rk, p , Rk, p× ),    s.t. Rk, p×        Bk .   (16) 
p× 

 

If   superpixel   Rk, p    is   outside  the  desired  object,  its 

foreground probability is small because there possibly exists 

a relatively shorter pathway to backgrounds. The superpixels 

which are connected by this pathway have less difference with
 |Rk |                     × 

lC ( Rk, p ) = 
p× =1, Rk, p× ∈Bk 

φ ( Rk, p , Rk, p× ) ∗ ck, p − ck, p× ∗2 
, 

p× =1, Rk, p× ∈Bk 
φ ( Rk, p , Rk, p× ) 

background superpixels in color space and gradient flow field. 

Whereas, if superpixel Rk, p is inside the object, this superpixel 

is distinct from background superpixels, which increases the

(13) 
 

(13)  measures color  contrast to  surrounding background 

regions, which can be viewed as the average appearance 

distance from a region to its surrounding background. The 

function φ×( Rk, p , Rk, p× ) is defined as 

φ×( Rk, p , Rk, p× ) = ex p{− D( Rk, p , Rk, p× )/ Ds ( Rk, p )}, 

where Ds ( Rk, p ) = arg min D( Rk, p , Rk, p× ), Rk, p×  ∈ Bk . 
p× 

(14) 
 

The  function  Ds ( Rk, p )  indicates  the  shortest  Euclidean 

distance between region centers of Rk, p and other background 

regions of Bk . According to (13), the object regions of Rk −Bk 

receive higher saliency values compared with the background 

regions with their high color contrast. And the saliency values 

of  background  regions  of  Rk  − Bk   should  be  effectively 

suppressed by only considering the surrounding background 
regions of  Bk .  According to  (14),  if  a  region  is  spatially 

close  to  the  background, the  value  of  Ds (·) is  small  and 

the contrast measurement is mainly influenced in a relatively 

smaller scope. If the value of Ds (·) is larger, which means a 

region is far from the background, the region will be compared 

with  background regions  in  a  larger  extent.  (14)  enforces 

the  regions of  Rk  − Bk   to  be  compared with  surrounding 

backgrounds and function Ds (·) is able to automatically adjust 

the neighborhood scope of every region, which remedies the 
limitations of previous contrast prior based methods. 
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k 

k 

distance gC ( Rk, p ). 

For frame Ik , we normalize both global saliency cue gC 
and local saliency cue lC  to the range of [0, 1]. Hence we 

combine these terms to compute a saliency value SC  for each 

superpixel in Bk  as follows: 

SC ( Rk, p ) = min{lC ( Rk, p ), gC ( Rk, p )}.             (17) 

In practice, we find that setting the saliency as the minimal 

value of surrounding background contrast bC and global 

saliency cue gC will produce outstanding and uniform saliency 

results (see Fig. 4(h)). 
 

 
C. Spatiotemporal Saliency Optimization 

In the previous step, we have detected the salient regions 

and obtained the satisfying results by considering the local 

spatiotemporal consistency for each frame. Therefore, we 

further propose a spatiotemporal saliency energy function to 

keep the whole video saliency temporally consistent. 

Let    Q    be    a    set    of    all    the    superpixels   of    a 

video  ( Q   =   R1  ∪ R2 ∪  · · · ).  For  convenience,  we  take 

Q  =  {1, 2, · · · , N }, | Q|  =  N .  For superpixel q  ∈ Q, we 
define 
 

q = (xq , kq ),    1 ≤ xq ≤ n, 1 ≤ yq ≤ m 
 

where xq   =  (xq , yq )  indicates the coordinate of the center 

point  of  superpixel  q  and  kq   is  the  index  of  the  frame 

superpixel q that belongs to.
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kq 

kq 

kq 

   

q × =1 

 

The   saliency   of   superpixel   q   therefore   is   SC (xq ) 

computed by the last step. We propose an energy function 

to  encourage the  spatiotemporal consistency  of  the  whole 

video saliency map. The final saliency of each superpixel is 

defined as sq , which is further optimized through the proposed 

spatiotemporal saliency energy function as follows: 
 

F  = Funar y + Fs moot h 

For all these databases: SegTrack, FBMS and ViSal, three 

measures are employed for the quantitative evaluation. We first 

use precision versus recall curves (PR curves) for performance 

evaluation. Given a saliency map with saliency values in the 

range of  [0,  255], we  vary  a  threshold from  0  to  255 to 

obtain different binary masks from the saliency map. Then 

we  compute the  precision and  recall at  each  value of  the 

threshold for comparing the quality of different saliency maps.

= α 
 

(sq  − SC (xq ))
2 +  
 

 wq ,q × (sq − sq × )2 .      (18) The precision value corresponds to the ratio of salient pixels

q                                           q ,q × ∈ℵ 
 

where the set ℵ contains all the spatially adjacent superpixels 

within one frame and the temporally adjacent superpixels in 

a neighborhood: if ∗ xq  − xq ×    ∗ ≤ 800 and | kq  − kq ×   | =  1, 
superpixels q and q ×     are temporally adjacent. The parameter 

correctly assigned to all the pixels of extracted regions, while 
the recall corresponds to the fraction of detected salient pixels 

in relation to the ground truth of salient pixels. The curves 

are then averaged on each video sequence. We also estimate 

F-Measure [22] for considering both precision and recall: 

1 + γ 2 ) · precision · recall
α is the positive coefficient for balancing the relative influence 

between Funar y  and Fs moot h . 

( 
F-score = 

 

γ 2 · precision + recall 

 

.             (21)

The  first  term  Funar y   defines  an  unary  constraint  that 
each  superpixel  tends  to  have  the  initial  estimation  for 

its   saliency   SC (xq ).   The   smooth   term   Fs moot h    gives 

spatiotemporal consistency constraint that all the spatiotem- 

porally adjacent superpixels of the whole video sequence 

should  have  the  same  saliency  when  they  are  similar. 

wq ,q ×      = exp(−∗cq  − cq × ∗) is a weighting function that gives 
a similarity measure for spatiotemporally adjacent superpixels 

q and q ×,  and cq  indicates the mean CIELab color value of 
superpixel q . 

C
 

Thresholding is applied and γ 2  is set to 0.3 as suggested 

in [22]. We further introduce the mean absolute error (MAE) 

into the evaluation. The MAE estimates the approximation 

degree between the saliency map and the ground truth, which 

is normalized to [0, 1]. MAE provides a new means of 

evaluation,  which  directly  measures  how  close  a  saliency 

map  is  to  the  ground truth.  We  measure  the  performance 

of the proposed algorithm, and compare with competitive 

image and video saliency methods, such as frequency-tuned 

saliency [22] (IG), saliency filter [45] (SF), sliding window

Based  on  s  =   [sq ]N ×1    and s  ∗   =   [S
kq 

(xq )]N ×1 ,  the based saliency [20] (SS), cluster-based co-saliency [49] (CS),

quadratic  energy  function  F   can  be  formulated  as  the 

following matrix forms: 
 

F = α(s  − s  ∗)T (s  − s  ∗ ) + s T (B − W)s ,        (19) 
 

where W = [wq ,q × ]N ×N   and B = di ag([b1, · · · , bN ]). 
The diagonal elements of the metric B are the degree values 

self-resemblance based saliency detection [37] (SD), 

Quaternion Fourier Transform based saliency [16] (QS) and 

space-time saliency [33] (ST). Finally, we report the run time 

of our method and the state-of-the-art video saliency methods. 
 

A. Comparisons on SegTrack and FBMS Datasets

of the weight matrix W: bq = 
    N

 wq ,q × . (19) can be solved The SegTrack database [21] was originally introduced to

by convex optimization and we finally obtain the saliency of 

superpixels s  as follows: 
 

s  = α(B − W + αE)−1 s  ∗,                      (20) 
 

where E is an identity matrix and we set parameter α = 0.5 

for all the test videos in our experiments. 
 

 
IV.  EXPERIMENTAL RESULTS  

Our approach automatically detects salient regions in video 

clips  using  spatial  gradients and  temporal motion  features 

between frames. In this section, we provide the experimental 

comparison results to demonstrate the benefits of our approach. 

We first evaluate our approach on the well-known SegTrack 

dataset [21] and Freiburg-Berkeley Motion Segmentation 

Dataset (FBMS) [43], [44]. To deeper explore the issue of video 

saliency detection and establish a benchmark for future work, 

we further introduce a video saliency dataset, called ViSal,2  

which is collected from existing video databases and YouTube. 

And the corresponding qualitative and quantitative 

experimental results are also reported. 
 

2 http://github.com/shenjianbing/videosal/ViSal.zip 

http://github.com/shenjianbing/videosal/ViSal.zip
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evaluate tracking algorithms and then widely used for video 

segmentation, and  it  is  also  suitable  for  evaluating  video 

saliency  detection. There are  six  videos (birdfall, cheetah, 

girl,  monkeydog,  parachute,  and  penguin)  that  range  in 

length  from  21  to  70  frames  in  this  dataset.  The  FBMS 

dataset [43], [44] contains 59 video sequences. For both 

datasets,  a  pixel-level  segmentation  ground-truth  for  each 

video is available. The videos in these two datasets present 

various challenges such as large foreground and background 

appearance variation, significant shape deformation, and large 

camera motion. 

As mentioned before, we first give the qualitative compar- 

isons with two image saliency methods: IG [22] and SF [45], 

and five video saliency works: SS [20], CS [49], SD [37], 

QS [16] and ST [33]. We then provide quantitative perfor- 

mance comparisons with these methods, which demonstrate 

that our method has the  ability to  generate more accurate 

saliency results. Fig. 6 shows a visual comparison between our 

method and [16], [20], [22], [33], [37], [45], [49] for selected 

frames of different test sequences. IG [22] is a frequency- tuned 

approach that computes saliency in images using low level 

features of color and luminance. SF  [45] proposes a contrast-

based saliency estimation by computing two measures
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Fig. 6.    Video saliency results on the SegTrack dataset (top three videos) and the FBMS dataset (bottom three videos). From left to right: indicative frames 
of input videos, IG [22], SF [45], SS [20], CS [49], SD [37], QS [16], ST [33], our method and ground truth (GT). 

 

of contrast that rate the uniqueness and the spatial distribution 

of  superpixels. However, both  IG  and  SF  do  not  perform 

well, as they both lack inter-frame information. For example, 

the  backgrounds  of  the  cheetah  video  is  pretty  complex, 

which places large difficulties for these methods to correctly 

detect the motion objects. Our algorithm integrates intra-frame 

information and motion features between frames into our 

gradient flow field, which makes our method discriminative 

enough in these scenes. 

SS  [20]  locates  the  salient  objects  more  precisely  than 

IG  [22]  and  SF  [45],  because  it  utilizes  different  intra- 

frame  information and  motion  cues.  However,  it  tends  to 

highlight background pixels due to the use of sliding windows. 

Furthermore, as a video saliency detection method, it does 

not consider temporal consistency for video saliency. As a 

result, the saliency value of the same region may be 

dramatically varied in different frames (e.g., on monkeydog). 

Similar conclusions are also observed on results of other video 

saliency methods: CS  [49],  SD  [37],  and  QS  [16].  Based 

on  the  proposed  spatiotemporal  saliency  energy  function, 

our method fully explores the temporal consistency property 

of video saliency in our saliency optimization step. 

The performance of CS [49] is also not satisfactory, even 

though  it  considers  the  correspondence  of  objects  across
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Fig. 7.    Comparison of PR curves (left), F-measure (middle) and MAE (right) on the SegTrack dataset (top row) and the FBMS dataset (bottom row). 

 

the  video  sequence.  The  global  correspondence  between 

the  multiple frames is  learned during a  clustering process 

in CS. However, this clustering process can become less 

effective in complex videos, especially when the non-salient 

background involves the similar appearance (e.g., color) as 

the  salient  areas,  as  also  mentioned in  [49].  Our  gradient 

flow field efficiently utilizes the intra-frame and inter-frame 

information, which provides powerful constraints that help to 

avoid this issue and leads to significant improvements over 

other methods. 

SD [37] proposes a bottom-up saliency detection algorithm 

by employing local steering kernels and using a nonparametric 

kernel density estimation based on the matrix cosine similarity. 

In most cases, SD is able to locate the salient objects with the 

consideration of temporal information, but the saliency maps 

are  generated in  low  resolution and  some  moving objects 

are  assigned low  saliency  values (e.g., on  monkeydog and 

horse). Therefore, deeper exploration of motion features will 

be needed to improve the performance. Similarly, in QS [16], 

motion features are also considered into their Quaternion 

Fourier Transform process for obtaining spatiotemporal 

saliency   maps.   Some   results   of   QS   are   impressive (e.g., 

on cheetah), while this method overemphasizes small and 

local features rather than highlighting the whole object (e.g.,  

on  monkeydog).  Additionally,  this  method  may  fail when 

the motion information is not correct (e.g., on girl). 

As  a  video saliency  method, ST  [33]  combines various 

low-level features  including motion  features  for  predicting 

the spatiotemporally salient object. However, this method still 

does not consider enforcing temporal coherence of the saliency 

map across the video (e.g., on marple). Another limitation is 

that the simple mechanism for utilizing motion features can not 

correctly locate salient objects with complex motion patterns 

(e.g., on girl). The difference between our method and others 

is significant. Our method exhibits substantial robustness and 

produces correct saliency maps, even for complex scenes. 

We    present   quantitative   comparisons   with   previous 

well-known methods: IG [22], SF  [45], SS  [20], CS  [49], 

SD [37], QS [16] and ST [33] on the SegTrack and FBMS 

datasets. Precision versus recall curves (PR curves), F-score 

and the mean absolute error (MAE), are employed for the 

evaluation. The precision-recall and F-measure curves on these 

two databases are plotted in Fig. 7 (left) and Fig.  7 (middle), 

respectively. These curves have demonstrated that our method 

significantly outperforms the other seven methods. The 

SegTrack and FBMS video databases present large difficulties 

for previous saliency methods, which reflects the importance 

of utilizing motion information for video saliency detection. 

The comparison results in Fig. 7 (right) show that our method 

achieves the lowest MAE values, which reflects that our 

algorithm produces results closer to ground truth. 
 
 
B. Comparisons on ViSal Database 

Although  videos  from  SegTrack  [21]  and  FBMS  [43], 

[44] databases span a large range of difficulties, the amount
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Fig. 8.    Visual comparison of previous approaches to our method and ground truth (GT) on the ViSal dataset. From left to right: indicative frames of input 
videos, IG [22], SF [45], SS [20], CS [49], SD [37], QS [16], ST [33], our method and ground truth (GT). As can be seen, our method produces saliency 
maps closest to ground truth. 

 

of  video  clips  in  SegTrack  is  small  and  motion  patterns 

of objects in FBMS are simple. To deeper explore general 

situations  with  various  foreground/background motion 

patterns  and  complex  color  distributions  and  to  establish 

a   benchmark   for   future   work,   we   construct   a   new 

dataset (ViSal) that is specially designed for video saliency 

detection. This dataset consists of 17 challenging video 

sequences containing complex color distributions (motorbike, 

cow, etc.), highly cluttered background (man, panda, etc.), 

various object motion patterns (static: boat, fast: car), rapid 

topology changes (cat, motorbike, etc.) and camera motion 

(gokart, motorbike, etc.). The length of these videos ranges 

from 30 to 100 frames and all clips are manually annotated 

as the given classes. 

In order to demonstrate the effectiveness of our method, 

we test the proposed method on our ViSal dataset. A visual 

comparison of different video saliency methods with six typical 

videos is shown in Fig. 8. 1) car. The foreground is moving 

fast and variation in foreground scale is substantial. 

2) gocart. The foreground moves with dynamic (nonuniform) 

motion and this example exhibits camera motion. 3) horse. 

The foreground is more stable and the scene is nearly static.
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Fig. 9.    Comparison of PR curves (left), F-measure (middle) and MAE (right) on our ViSal dataset. 
 

TABLE I 

COMPA RI S O N O F AVERAGE  RUN T IM E (SECONDS  P E R FRAME ) 

ON THE  SEGTRAC K DATA S E T 
 

 
 
 
 

Our  method  automatically  adapts  to  these  three  examples 

with very different motion patterns and produces reliable 

saliency results. Additionally, our method performs well in 

highlighting large  salient objects, such  as  on  car.  That  is 

because our  method uses  surrounding background contrast 

instead of traditional contrast prior. For this scene, SD [37] and 

QS [16] tend to highlight the boundaries and assign relatively 

low probabilities to pixels inside the objects. 4) motorbike. 

The fourth example shows rapid topology changes and erratic 

motion. 5) panda. Highly cluttered background presents diffi- 

culties for foreground detection. 6) snow leopard. Complex 

color  distributions and  high  similarity  between  foreground 

and  background make  it  hard  to  locate  the  salient object. 

On these difficult examples, the saliency maps calculated by 

the proposed method are more visually consistent with the 

shape and location of the ground truth than the saliency maps 

generated by other methods. To compare the aforementioned 

methods quantitatively, PR curves, F-measure and the MAE 

are used again for the evaluation. As shown in Fig. 9, the 

performance of our method is superior to those of previous 

well-known methods. 
 

 
C. Run Time Statistics 

 

The  average run time  of  currently top-performing video 

saliency methods: SS [20], CS [49], SD [37], QS [16] and 

ST [33] on the Segtrack database are presented in Table 1. 

All the saliency maps are produced by directly running their 

implementation codes by the authors. All the tests were 

performed on a Windows platform and under the same 

computer  configuration  Intel  Xeon  E5-2609  @2.40  GHz 

with 32.0 GB RAM. The run time excludes optical flow 

computation, which all methods require as input. As shown 

in Table 1, our method is much faster than the others, but is 

only slower than frequency domain based QS [16]. 

V.  DISCUSSIONS AND CONCL USION 

In this paper, we proposed a novel video saliency detec- 

tion method to produce high-quality and spatiotemporally 

consistent saliency maps. A novel gradient flow field method 

was introduced into our framework, which fully incorporates 

inter-frame and  intra-frame information such  as  edges and 

motion features between neighboring frames for detecting the 

locations of visual foregrounds. Additionally, two enhanced 

contrast saliency cues: local and global contrast, were intro- 

duced to bias foreground objects with higher saliency, which 

is  built  upon the  visual  importance detection results  from 

the  gradient  flow  field.  These  two  discriminative saliency 

cues overcome the shortage of traditional contrast prior based 

saliency methods and uniformly highlight the entire object. 

Furthermore, a spatiotemporal saliency energy function was 

proposed  to  refine  the  spatiotemporal  consistency  of  the 

output  salience  maps,  which  can  be  efficiently solved  by 

convex optimization. Based on these efforts, our algorithm is 

applicable for complex scenes even with dramatic foreground 

and  background appearances  or  motion  pattern  variations. 

Experimental results  show  the  superiority of  the  proposed 

video saliency approach to predict the salient objects over three 

different datasets with a large amount of data. This approach is 

applicable to many tasks when objects are processed sequen- 

tially in a spatiotemporal manner. 
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